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Outline

* Need for compression
* Review of probability and stochastic processes

« Entropy as measure of uncertainty and lossless coding
bounds

« Huffman coding
 Arithmetic coding
« Binarization

« Scalar quantization
« Vector quantization
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Necessity for Signal Compression

Image / Video format Size
One small VGA size picture (640x480, 24-bit color) 922 KB
One large 12 MB pixel picture (3072x4096) 24-bit 36 MB
color still image
Animation ( 320x640 pixels, 16-bit color, 16 frame/s) 6.25 MB/second
SD Video (720x480 pixels, 24-bit color, 30 frame/s) 29.7 MB/second
HD Video (1920x1080 pixels, 24-bit color, 60 frame/s) 356 MB/second

Full HD, 1080%p
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Image/Video Coding Standards
by ITU and ISO

« (G3,G4: facsimile standard

« JBIG: The next generation facsimile standard
— ISO Joint Bi-level Image experts Group
« JPEG: For coding still images or video frames.
— I1SO Joint Photographic Experts Group
« JPEG2000: For coding still images, more efficient than JPEG
« Lossless JPEG: for medical and archiving applications.
« MPEGXx: audio and video coding standards of ISo
H.26x: video coding standard of ITU-T

ITU: International telecommunications union

« ISO: International standards organization
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Components in a Coding System

————————————————————————————————————————— ————— ——

| Encoder :
! Lossy Lossless !
| |
. ! . N Binary '
——b»~  Analysis [ Quantization = . |
| encoding !
| |
| |
[ S IS |
Source Quantizer Parameter Channel  jet—
model parameters statistics Noise

——————— —— ———————— ———— —— ————————————— ——— —————— -

, . . Binar
wtf—l— Synthesis [ Dequantizaion pese— deco di?;g —

© Yao Wang, 2016 EL-GY 6123: Image and Video Processing



Binary Encoding

* Binary encoding

— To represent a finite set of symbols using binary codewords.
* Fixed length coding

— N levels represented by (int) log,(N) bits.

— Ex: simple binary codes
« Variable length coding

— more frequently appearing symbols represented by shorter
codewords (Huffman, arithmetic, LZW=zip).

 The minimum number of bits required to represent a
sequence of random variables is bounded by its

entropy.

© Yao Wang, 2016 EL-GY 6123: Image and Video Processing 6



Reviews of Random Variables
(not covered during the lecture)

 What is random variables
* Asingle RV
— Pdf (continuous RV), pmf (discrete RV)

— Mean, variance
— Special distributions (uniform, Gaussian, Laplacian, etc.)

 Function of a random variable

 Two and multiple RV
— Joint probability, marginal probability
— Conditional probability
— Conditional mean and co-variance
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Examples of Random Variables

« Tossing two coins, X is the number of heads, and Y is
the number of tails

— XandY take on values {0, 1, 2}
— Discrete type

« Xis the lifetime of a certain brand of light bulbs
— X take on values [0, +«)
— Continuous type
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Distribution, Density, and Mass Functions

« The cumulative distribution function (cdf) of a random variable X, is

defined by F,(x)=Pr.(X <x),forall x.

« |If X'is a continuous random variable (taking value over a continuous
range)

— Fy(x) is continuous function. d
— The probability density function (pdf) of X is given by Jx (%) ZEF)((X)

« |f X'is a discrete random variable (taking a finite number of possible
values)

— Fy(x) is step function.
— The probability mass function (pmf) of X is given by

Py(x)=Pr.(X =x) The percentage of time that X=x.

© Yao Wang, 2016 EL-GY 6123: Image and Video Processing



Special Cases

W
PIX =k} Z(Z]pk(l— DY k=0L1...n

* Poisson distribution -

k

P{X:k}:e‘“%,kzo,l,...

» Normal (or Gaussian) N(u, 6?) N
1 i) /(262 \‘\
f(x) — e ) 1(207) /
J2ro A AN
* Uniform over (x4, X,),
1
F)=1x—x, X, <x<x,
0 otherwise

- Laplacian L(u, b)

_ e
f(x)= -

© Yao Wang, 2016 EL-GY 6123: Image and Video Processing
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Expected Values

« The expected (or mean) value of a random variable X:

f xfy(x)dx  1f Xis continuous

My = E{X} = ' o
erxxP (X =x) if Xisdiscrete

« The variance of a random variable X:

J: (x=7, ) f,(x)dx  if Xis continuous

o, =Var{X}= X o
erx (x_nx) P(X =x) if Xisdiscrete

« Mean and variance of common distributions:
— Uniform over range (x,, x,): E{x} = (x,+x,)/2, VarX = (x,-x,)%/12
— Gaussian N(u, 02): Ex = u, VarX = 02
— Laplace L(u, b): Ex = u, VarX = 2b?

© Yao Wang, 2016 EL-GY 6123: Image and Video Processing
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Functions of Random Variable

* Y=g(X)
— Following the example of the lifetime of the bulb, let Y
represents the cost of a bulb, which depends on its lifetime X

with relation
Y=+X

» Expectation of Y

f g(x)fy(x)dx  1if Xiscontinuous
xeXg(x)P(X =x) 1f Xisdiscrete

1y :E{Y}:{
 Variance of Y

J: (g(x)—n, )2 fyv(x)dx  if Xiscontinuous

O'§ =Var{Y} = : | -
erx (g (x)— ﬂy) P(X =x) if Xisdiscrete

© Yao Wang, 2016 EL-GY 6123: Image and Video Processing
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Two RVs

« VWe only discuss discrete RVs (l.e. X an or bo
discrete RVs)

* The joint probability mass function (pmf) of Xand Y is
given by

Py (X%, )=Pr(X=x,Y=Yy)

« The conditional probability mass function of X given Y is

Pyy(x/y)=Pr(X=x|Y=y)
* Important relations

Py (%, Y) =Py (x/ y) Dy (¥)

py(x)=) Pr. (X=xY=y)

yeY

© Yao Wang, 2016 EL-GY 6123: Image and Video Processing
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Conditional Mean and Covariance

« Conditional mean My, =E(X | y}=),  xP(X=x|Y=y)

* (Correlation
Rey=EXY}=)  0PX=xY=y)

 Correlation matrix

R-= E{{);}[X Y]} - {E{Xz} Ry }} EX*l=02 +12

R, EY

 Covariance  C,, = E{(X -0, )Y -1, =Ry, — 11,70,

 Covariance matrix

© Yao Wang, 2016 EL-GY 6123: Image and Video Processing 14



Multiple RVs

« The definitions for two RVs can be easily extended to
multiple (N>2) RVs, X, X,, ..., Xy

« The joint probability mass function (pmf) is given by
P(X;, X5 0Xy ) =Pr (X, =x,X, =x,,...Xy =xy)
« Covariance matrix is

[ X, -1, | ol C, .. C,

X,-n
’ ’ [Xl—ﬂl X,=1n, .. XN_UN]>:

XN_77N_ ) Cyvi Cyy o Oy

© Yao Wang, 2016 EL-GY 6123: Image and Video Processing 15



Statistical Characterization
of Random Sequences

Random sequence (a discrete time random process)

— Ex 1: an image that follows a certain statistics  F = {F,}
+ F, represents the possible value of the n-th pixel of the image, n=(m,n)
+ f, represents the actual value taken

— Ex 2: a video that follows a certain statistics

* F, represents the possible value of the n-th pixel of a video, n=(k,m,n)
+ f represents the actual value taken

— Continuous source: F, takes continuous values (analog image)

— Discrete source: F, takes discrete values (digital image)
Stationary source: statistical distribution invariant to time (space) shift
Probability distribution

— probability mass function (pmf) or probability density function (pdf): ps,(f)

— Jointpmfor pdf:  PraFea Fan (s 2o In) pifi. foo.. SN

— Conditional pmf or pdf:

Pr, L‘;f,,_1..‘?,,_;..-‘..;?,_.__\,': Pt | fr faroree o fi) P | g a0 fi )

© Yao Wang, 2016 EL-GY 6123: Image and Video Processing
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Entropy and Mutual Information

« Single RV: entropy

« Multiple RV: joint entropy, conditional entropy, mutual
information

© Yao Wang, 2016 EL-GY 6123: Image and Video Processing
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Entropy of a RV

« Consider RV F={f,1,,...,f}, with probability p,=Prob.
tF= 1t
 Self-Information of one realization f, : H,= -log(p,)

— p,=1: always happen, no information

— P, ~0: seldom happen, its realization carries a lot of
information

« Entropy = average information: H(F)= - ps(filog, pr( f).
feA

— Entropy is a measure of uncertainty or information content,
unit=bits

— Very uncertain -> high information content

© Yao Wang, 2016 EL-GY 6123: Image and Video Processing
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Example: Two Possible Symbols

 Example: Two possible outcomes
— Flip a coin, F={"head”, tail”}: p,=p,=1/2: H=1
(highest uncertainty)
— If the coin has defect, so that p,=1, p,=0: H=0 (no
uncertainty)
— More generally: p,=p, p,=1-p,

* H=-(p log p+ (1-p) log (1-p))
* His maximum when p=1/2 (most uncertain)

0 1/2 1 Y

© Yao Wang, 2016 EL-GY 6123: Image and Video Processing 19



Another Example: English Letters

« 20 letters, each has a certain probability of occurrence

11 ” o»n_n »

— Some letters occurs more often: “a”,”’s”,’t”, ...

(11 ” »” ”

— Some letters occurs less often: "q 7,z , ...

« Entropy ~= information you obtained after reading an
article.

« But we actually don’ t get information at the alphabet
level, but at the word level!
— Some combination of letters occur more often: “it”, “qu”,...

© Yao Wang, 2016 EL-GY 6123: Image and Video Processing 20



Joint Entropy

« Joint entropy of two RVs:

HF.G) = — rol f 2 log, prol f. g).
— Uncertainty of two RVs together o Z Z prg(f.8)log; prg(f.g)

feArgeAd,

H(F.G) = H(F )+ H(G)
* N-th order entropy
— Uncertainty of N successive samples of a random sequence

HyiFy= H(F.F.....Fn)

= — Z plh. fo.... fnlog, pt i oo oo fN),

LA, fryes fv]€ AN

» Entropy rate (lossless coding bound)
— Average uncertain per RV

|
H(F)= lim —Hy(F )= lim H: y(F).
‘\"—"’X N 4\"~’.’C

© Yao Wang, 2016 EL-GY 6123: Image and Video Processing 21



Conditional Entropy

« Conditional entropy between two RVs:

— Uncertainty of one RV 7 r|¢) = Z pe(g)H(F | g)
given the other RV ged,

= - Z Pg'g) Z Prigtf18)log, prig(fl8).
geA feAs

H(F )= HF|G) H(F.G)= HG)+ H(F |G)

« M-th order conditional entropy
He (F) = H(Fpy | Fag. Fygor o )
= Z pihfoooo o I HFypn | g fuucae o f)

[fio froe SugleAM

HFyq | far fureoo i)
==Y pUfast | fare fucre oo flog pUfar | fure faacr o fi).

frg1€A
HF)< Hoy(F) = lNHNtJ-' ) < Hy(F).

© Yao Wang, 2016 EL-GY 6123: Image and Video Processing
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Example: 4-symbol source

° Four Symbols: “a””’b”,”C”,”d”

e pmf: p’ =[0.5000,0.2143,0.1703,0.1154]

- 15t order conditional pmf: q;=Prob(f|f)

[0.6250 0.3750 0.3750 0.3750 ]
0.1875 03125 0.1875 0.1875
0.1250 0.1875 03125 0.1250

| 0.0625  0.1250  0.1250 0.3125

Q] =

« 2" order pmf: Pt L) = plhicng ] fie1).

Ex. p("ab")=p("a")q("b"/"a")=0.5%0.1875=0.0938
 Go through how to compute H;, H,, H_, ,.

© Yao Wang, 2016 EL-GY 6123: Image and Video Processing
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Mutual Information

 Mutual information between two RVs :
— Information provided by G about F

T O pro(f.g)
[(F.G)= E E ragl f. 2)log, . .
’ I‘:"v .‘{E."lz p}- - f g o pj."f -f" pg(g)

[(F.Gy= HF)—- HF|G)
[(F.:G) = H(F)

[HF.:G)=HF)+ HG)— HF.G)

* N-th order mutual information (lossy coding bound)

1}\1‘(.7:29)= Z Z p(fl.fg.....‘ﬁ\r.gl.gg.....g,\r] . log p(flflf}\'glgl

8N)

. . 2
lfn.,I'z.....]'.\'l;»:_,-l? l.el..e:......e.\'le,ﬁ.‘ © p(fl. f3 ..... ﬁ\r)p[g|.g3. -

© Yao Wang, 2016 EL-GY 6123: Image and Video Processing

. &N)

25



Lossless Coding (Binary Encoding)

« Binary encoding is a necessary step in any coding system
— Applies to
 original symbols (e.g. image pixels) in a discrete source,

» or converted symbols (e.g. quantized transformed coefficients) from a continuous
or discrete source

« Binary encoding process (scalar coding)

Binary Encoding

T (bit length [)

Probability table
Pi

Bit rate (bit/symbol):  R=>" plail(a;).

a;eA

© Yao Wang, 2016 EL-GY 6123: Image and Video Processing 26



Bound for Lossless Coding

« Scalar coding:
— Assign one codeword to one symbol at a time

Problem: could differ from the entropy by up to 1 bit/symbol
Hi(F)< R(F)< H(F)+1.

* Vector coding:

— Assign one codeword for each group of N symbols

R (F):bits for N symbols
Larger N -> Lower Rate, but higher complexity Ry(F)=R, (F)/N: bits per symbol
Hy(F)< RY(F)< HyF)+1 Hyv(F)/N=RyF)=HyF)/N+1/N.
Jim Rv(F)y= H(F).

« Conditional coding (context-based coding)

© Yao Wang, 2016

The codeword for the current symbol depends on the pattern (context) formed
by the previous M symbols

He sl F) < Rem(F) < He gl F )+ 1.
HF)< lim Roy(F)< HF)+ 1.

M-

EL-GY 6123: Image and Video Processing
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Binary Encoding: Requirement

« A good code should be:
— Uniquely decodable

— Instantaneously decodable — prefix code (aka prefix-free code)

Codebook |
(a prefix code)

Symbol Codeword
'sll "()“
a4y 10"
ay “110"
a.‘ AAl I I“
Bitstream:

Decoded string based on codebook 1:

(can decode instantaneously)

Decoded string based on codebook 2:

(must look ahead to decode)

Caodebook 2
(not a prefix code)

Symbol Codeword
'dl “()..
"1: tl() I "
a3 *100™
ay “0117

0O11010110100

001101011 010/0—aa; a;aa;zaya

000110101 1/0[100—a, a,a,a,a, a;

© Yao Wang, 2016 EL-GY 6123: Image and Video Processing
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Huffman Coding

* |dea: more frequent symbols -> shorter codewords
« Algorithm:

Step 1: Arrange the symbol probabilities p(ay). [ =1.2. . ... L, in a decreasing order
and consider them as leaf nodes of a tree.

Step 2: While there is more than one node:

(a) Find the two nodes with the smallest probability and arbitrarily assign 1
and O to these two nodes.

(b) Merge the two nodes to form a new node whose probability is the sum of
the two merged nodes. Go back to Step 1.

Step 3: For each symbol, determine its codeword by tracing the assigned bits from the

corresponding leaf node to the top of the tree. The bit at the leaf node is the
last bit of the codeword.

« Huffman coding generate prefix code ©
« Can be applied to one symbol at a time (scalar coding), or a group of symbols

(vector coding), or one symbol conditioned on previous symbols (conditional coding)

© Yao Wang, 2016 EL-GY 6123: Image and Video Processing 29



Huffman Coding Example:
Scalar Coding

Codeword Codeword
Symbol Probability

length
I
“a” 0.5000 17 I
1
“h” 0.2143 10 “01™ 2
| 0 .
“e” 0.1703 0 0.5000 “001™ 3
2
“d” 0.1154 O 02857 “«000" 3

Bit rate R = |.7857 Entropy H, = 1.7707

© Yao Wang, 2016 EL-GY 6123: Image and Video Processing



Huffman Coding Example:
Vector Coding

— Reordered
Symbol  Probability  symbol  Probability Codeword  Length
“aa” 03125 “a” 03125 ' 11 2
ah™ 00038 Wbt 00938 ' b 011" 3
“ac” 00625 bat 0.0804 ' | —— “l001” 4
“ad” 00313 BhT 00670 ——) J13 o 4046 O “1011” 4
hat 00804 “a” 00639 — W 0 “1010” 4
BhT 00670 “a” 00625 0011 4
bt 00402 o™ 00532 1 1 0001 4
bdt 00268 /N fdam 00433 —] Aoié 0 ol 4
“ed” 00639 “het 00402 — 08D 0100 4
b 00319 A A 00361 —Jl 5 001”5
w032 Afey 00319 — s ST
“ed” 00213 adt 00313 — 20632 “00100° 5
“da” 004330\ “hd” 00268 — 0 000015
“db 00216 “dh 00216 — 20484 “00000" 5
et 00l4f  ed omn—4 “100001° 6
“dd” 00361 “det 00144 — 210357 “l000007 6

Ry = R/2 = 175015,
R? = 35003 H, = 34629

© Yao Wang, 2016 EL-GY 6123: Image and Video Processing



Huffman Coding Example:

Symbol Probability

“a/th” 0.3750
“b7/*b” 0.3125
tethT 0.1875
“dbh” 0.1250

Conditional Coding

Codeword

-sl“

.T u(] l "

l 0
T 6250 “001”
of 62
0] 3125
“000"

Re oy = 19375 He o = 1.8829

RC’"a" = 1 .5625, RC,"bH = RC,"C" = RC’"d" = 1 .93 75, RC,I - 1-7500
Heg =1.5016,H oy = He o = He g =1.8829, H . =1.6922

© Yao Wang, 2016

EL-GY 6123: Image and Video Processing

Length

I

()

'

32



Arithmetic Coding (Not Required)

 Basic idea:

Represent a sequence of symbols by an interval with length d equal to its
probability p

The interval is specified by its lower boundary (/), upper boundary (u) and
length d (=probability)

The codeword for the sequence is the common bits in binary representations of
[and u

Theoretically, no. bits (B) = ceiling( -log, d)=ceiling (- log, p)

A more likely sequence=a longer interval=fewer bits

« The interval is calculated sequentially starting from the first symbol

© Yao Wang, 2016

The initial interval is determined by the first symbol

The next interval is a subinterval of the previous one, determined by the next
symbol

dp = dy_ * Pt ln=ln_1 + dn-) *¥qi-1. Up= ln+ dy.

EL-GY 6123: Image and Video Processing 33



P(a)=1/2 Input a b " c a”
P(b)=1/4 symbols
P(c)=1/4 1 3 5 5
_ ! T aki i T
Encoding: B .
C ac “abc abac “abacc
I N S T 3 3 19
B T ] T
b ab *abb “abah™ “abach”™
s 5 30
-+ 1 T T8 | 128
“a” “aa” “aba” “abaa” “abaca”
Ly : Iy — y
: : : : :
I 0=(P0O0000) 1/4=(D100000) 1 /4=(010P000) 19/64=(01C0110)  19/64=(010D11j0)
I I I I I
@/u", 1=(1000000) 3/8=(110000)  5/16=(011000) 5/M6=(0101000)  39/128=(010p111)
[ [ | | [
Output - — “011™
bits 01 0
(a)
DeCOding: Received bits ~ Interval Decoded symbol
=0 [0.1/2) “a”
“01” [1/4.112) —
“0107 [1/4.3/8) “h”
“0100™ [1/4.5/16) "a”
“01001™ [9/32.5/16) —
uC"

“0100117 [19/64.5/16)

© Yao Wang, 2016 EL-GY 6123: Image and Video (Iggocessing



Implementation of Arithmetic Coding

* Previous example is meant to illustrate the algorithm in
a conceptual level
— Require infinite precision arithmetic

— Can be implemented with finite precision or integer precision
only

— Efficient implementation for coding binary symbols

 For more details on implementation, see

— Witten, Neal and Cleary, “Arithmetic coding for data
compression”, J. ACM (1987), 30:520-40

— Sayood, Introduction to Data Compression, Morgan Kaufmann,
1996

© Yao Wang, 2016 EL-GY 6123: Image and Video Processing

35



Binary Arithmetic Coding

* Only two possible input symbols: MPS (More probably
symbol, p,,) and LPS (less probable symbol, p=1-p,,)

* Recursively split an interval to 2

« Simplified implementation
— Instead of using exact probability, consider a finite

predetermined set. Quantize the actual probability into one of
those in the set.

— Instead of using multiplication to calculate the new interval
length, use table look up.

© Yao Wang, 2016 EL-GY 6123: Image and Video Processing 36



Context Based Binary Arithmetic Coding
(CABAC)

* Instead of using the probability of the current binary symbol, use
the conditional probability, conditioned on its context

 When coding a 2D binary image, the context can be the previously
coded pixels in a causal neighborhood. If the context includes N
pixels, there will be 2N possible contexts. Use a look up table to
store p,, or p, of each context.

« The probability under each context is recursively updated after
coding each new symbol

“causal half-plane” N® +n

“Coding
context”

N+n x[n]

http://web.stanford.edu/class/ee398a/handouts/lectures/03-ArithmeticCoding.pdf

© Yao Wang, 2016 EL-GY 6123: Image and Video Processing 37



What if the source symbols are not binary?

« First represent each symbol using binary bits
(binarization)
« Then apply BAC to the sequence of binarized bits

* We may use different probability for the binary bits
based on their positions.

© Yao Wang, 2016 EL-GY 6123: Image and Video Processing 38



Simple Binarization

 When all symbols are equally likely
« Simple binary code: N possible values represented by
[log, N] bits ([ ] represents “ceiling”)

* Truncated binary code: use on average less than [log,
N] when N is not power of 2
— 2k< N < 2k+1’ U=2k+1_N

— First U symbols coded using k bits, remaining N-U symbols
using k+1 bits

© Yao Wang, 2016 EL-GY 6123: Image and Video Processing
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Truncated Binary Coding Example (N=5)

Truncated i Standard
binary Encoding binary
06 0 0 O
16 0 1 1
2. 86 1 0 2

UNUSED &6 4+ 4+ 3

UNUSED 4+ © © 4

UNUSED 4+ © 4 5/UNUSED
3 1 1 0 6/UNUSED

4 1 1 1  7/UNUSED

From: http://en.wikipedia.org/wiki/Truncated_binary_encoding

© Yao Wang, 2016 EL-GY 6123: Image and Video Processing
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Unary Coding

n (non-negative) n (strictly positive) Unary code Alternative

0

—

© 0o N O O b~ WO DN

1 0 1

2 10 01
3 110 001

4 1110 0001

5 11110 00001

6 111110 000001

7 1111110 | 0000001

8 11111110 | 00000001

9 111111110 | 000000001 http://en.wikipedia.org/wiki/
10 1111111110 0000000001 Unary_coding

Unary coding is optimal for probability distribution P(n)=2", n=1,2,..

When the actual symbol does not following this distribution, to further reduce
the bit rate, we can apply BAC to the sequences of bits, with probability
depending on the position of the bit in a symbol. In this case, we are using the
position as the context of CABAC.

© Yao Wang, 2016 EL-GY 6123: Image and Video Processing 41



Example: Unary Code + BAC

* Input sequence: {1,3, 5, 1, ...}
 Binarization: 0,110,11110, O, ...

* P1=probability of “0” in the first bin

« P2=probability of “0” in the second bin

. BAC(0,P1),BAC(1,P1), BAC(1,P2),BAC(0,P3),
BAC(1,P1), ...

© Yao Wang, 2016 EL-GY 6123: Image and Video Processing
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Golomb-Rice Coding

« Useful for the possible number of symbols is large and
smaller numbers are more likely

* Divide all possible symbols into groups of M symbols,
represent a symbol by its group number (quotient) and
its position in the group (remainder).

* N=gM+r
« Represent q using unary code (followed by BAC)

* Represent r using simple binary (if M=power of 2) or
truncated binary

© Yao Wang, 2016 EL-GY 6123: Image and Video Processing 43



Huffman vs. Arithmetic Coding

« Huffman coding (assuming vector coding of N symbols together)

Convert a fixed number of N symbols into a variable length codeword
Efficiency: Hy(F)/N = RN(F) = Hy(F)/N+1/N.

To approach entropy rate, must code a large number of symbols together
Used in all earlier image and video coding standards

* Arithmetic coding

© Yao Wang, 2016

Convert a variable number of symbols into a variable length codeword
Efficiency: :
clency Hyv(F)/N<R< HyF)/N+2/N.  Nis sequence length

Can approach the entropy rate by processing one symbol at a time
Easy to adapt to changes in source statistics

Integer implementation is available, but still more complex than Huffman coding
with a small N

Used as advanced options in earlier image and video coding standards (JPEG,
H264 and before)

Standard options in newer standards (JPEG2000, HEVC)
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LZW coding (Not Required)

 LZW coding (Lempel, Ziv, and Welsh)

— Assign fixed-length codewords to variable length sequences of
source symbols

— Does not require priori knowledge of the symbol probabilities.
(universal code)

— Not as efficient as Huffman for a given distribution

© Yao Wang, 2016 EL-GY 6123: Image and Video Processing

45



Summary on Binary Coding

* Coding system:
— original data -> model parameters -> quantization-> binary encoding
Waveform-based vs. content-dependent coding
« Characterization of information content by entropy
— Entropy, Joint entropy, conditional entropy
Mutual information
* Lossless coding
Bit rate bounded by entropy rate of the source
Huffman coding:

© Yao Wang, 2016

Scalar, vector, conditional coding
can achieve the bound only if a large number of symbols are coded together
Huffman coding generates prefix code (instantaneously decodable)

Arithmetic coding

Can achieve the bound by processing one symbol at a time
More complicated than scalar or short vector Huffman coding

EL-GY 6123: Image and Video Processing
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Lossy Coding

« Qriginal source is discrete
— Lossless coding: bit rate >= entropy rate
— One can further quantize source samples to reach a lower rate

 Qriginal source is continuous
— Lossless coding will require an infinite bit rate!
— One must quantize source samples to reach a finite bit rate

— Lossy coding rate is bounded by the mutual information
between the original source and the quantized source that

satisfy a distortion criterion

* Quantization methods
» Scalar quantization
* Vector quantization

© Yao Wang, 2016 EL-GY 6123: Image and Video Processing
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Scalar Quantization

« (General description
« Uniform quantization
« MMSE quantizer

* Lloyd algorithm

© Yao Wang, 2016
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SQ as Line Partition

e OO

I
by

,.’ min

© Yao Wang, 2016

Quantization levels: L
Boundary values: b,

Partition regions: B, =[b,_;,b;)
Reconstruction values: g,

Quantizer mapping: QO(f)=g;, if fe€ B,

EL-GY 6123: Image and Video Processing
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Function Representation

£1

O(f)=g;, if feB
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Distortion Measure

General measure:

D, = Eld(F. Q(F)} = [ di(f Qfp(fHdf

feB

s Z P(151) Dy 4

lel

Dy = /l di(f.enp f|febndf
Jfely

Mean Square Error (MSE): d,(f,g2)=(f-g)’

by
(f—a)’p(f|Bndf
1

(rq: = E{|F — Q(F)|*} = Z P(Bp) /
lel o

© Yao Wang, 2016 EL-GY 6123: Image and Video Processing
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Uniform Quantization

~
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I

© Yao Wang

bg b b by

—
~
-
—
=
=l
T~
~
=)

’ min

Qf)= {%J *q+q

2

T | e e o e e o - —— —— ——— -

+ ﬁn'm s

Uniform source:

pif)= { /B f & (fuin. fmax)

0 otherwise

gl = q— = (r%- 22K
q 12 )
5
(17-
r=
Tq

= (20log,,2) R:

= 6.02R (dB)

Each additional bit provides 6dB gain!
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Truncated uniform quantization
for sources with infinite range

Q(f) overload
4 region
r7= max'q/2

fp =-c fin B b 3ty 5t b fla tg =
overload
region
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Example

« Suppose the signal has the following distribution. We use a uniform
quantizer with three levels, as indicated below. What is the quantization
MSE?

4 Pe(f)

1

e | '®) | O >

1 2313 01/3 2/3 1 f
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Minimum MSE (MMSE) Quantizer

Determine b;,g; to minimize MSE

)l

by
(rqz = E{|F — Q(F))*} = Z Pil5;) [ (f —g,_)3p< 18 df.
lel V-l

. do, _do, ,
Setting ——=0,—— =0 yields:
b, 8i
8+ g+ > ) " , i
by==———. or Bi={f:di(fg)=d(fg)vVI'#Il}. (NearestNeighbor
i} Condition)
g = E{F|F eb}= /l fpiflfebndf (Centroid Condition)

» Special case: uniform source
— MSE optimal quantizer = Uniform quantizer
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Example

« Going back to the previous example. What is the MMSE quantizer
(partition levels, reconstruction levels) and corresponding MSE?

4 Px()
1

/N

-1 1Vf
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High Resolution Approximation of MMSE
Quantizer

* For a source with arbitrary pdf, when the rate is high so
that the pdf within each partition region can be
approximated as flat:

(r{f = 2 Q—ER
1 x :

e? = F( / peHidf ) . Py =opplogf)
L J o ’ T i i

Uniformsource: £° =1
i.i.d Gaussian source : £ =2.71(w/o VLC)

: 2
Bound for Gaussian source: € =1
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Lloyd Algorithm

In general, one may not
be able to find closed-
form optimal solution
given the signal pdf.

Lloyd algorithm is an
iterative algorithms for
determining MMSE

quantizer parameters

Can be based on a pdf
or training data

lterate between
centroid condition and
nearest neighbor
condition

Given samples fg. &£ = 1, 2, ... . K. ina training set and
the quantization level L. set by = fine 21 = foox

Y
Choose initial reconstruction values:

gnlel

!

Find initial partition regions based on the nearest-neighbor criterion:
general distortion: 5; = {fy r d)( fro gp) = dy(fp. g VI # 1} le L
MSE: By = {fy 1 fre by . bp ). with by = (g, + g541)/2

!

Calculate initial distortion:

_1 >y 1(F
Dy =g Zier Zfep & fi 81

!

Find the new reconstruction values based on the centroid condition:
general distortion: g; = urglnlni,{r‘E,-‘:b-, d\(fr. 2 ]}. lel

T RPN -
MSE: &= 2.5 fi

y

Find new partition regions based on the nearest-neighbor condition:
general distortion: 5; = {fg:d(frogp =d\(fr. g . VI # 1L le L
MSE: 5, = {fy : fy € |1 bp) with by = (g, + g, )72

EL-GY 6123: Image and Video Processing
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Calculate new distortion:

Dy =g 2ec 2pem Ui 20

!

| Dy~ 1)|||(_.. T No

[ ).: )
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Vector Quantization

» (General description

* Nearest neighbor quantizer
« MMSE quantizer

« Generalized Lloyd algorithm

© Yao Wang, 2016
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Vector Quantization:
General Description

« Motivation: quantize a group of samples (a vector) together, to
exploit the correlation between these samples

« Each sample vector is replaced by one of representative vectors
(or patterns) that often occur in the signal

« Applications:
— Color quantization: Quantize all colors appearing in an image to L
colors for display on a monitor that can only display L distinct colors at
a time — Adaptive palette
— Image quantization: Quantize every NxN block into one of the L typical
patterns (obtained through training). More efficient with larger block
size, but block size are limited by complexity.
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VQ as Space Partition

Original vector: fe R"
Quantization levels: L

Partition regions: B,

» /] Reconstruction vector (codeword): g,
Quantizer mapping: Q(f)=g,, if fe B,
Codebook: C={g,,[=12,.., L}

1
Bitrate: R=—Ilog, L
N 25

Every point in a region (B)) is replaced by
(quantized to) the point indicated by the

circle (g,)

© Yao Wang, 2016
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Distortion Measure

General measure:

D, = E{ldn(F. Q(F )} = / pady(E. Qf ) df
B
I
- Z P(B) Dy
[=1
D, ;= E{dny(F.QUF )| F e 5} = pait|fe Bdyt. g df.
JIel
|
MSE: dy(f. g) = N Z‘- fn - gn-"z-
n=1|
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Nearest Neighbor (NN) Quantizer

Codebook
C=1{g). 8. 81}
L §
Inpul. Find g,
\cufml — dy(f. g;)— min

Quantized
vector

b

L))

By ={fe RN 1dy(f. g) < dn(f. g) VI #1).

Challenge: How to determine the codebook?

EL-GY 6123: Image and Video Processing
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Complexity of NN VQ

» Complexity analysis:

— Must compare the input vector with all the codewords

— Each comparison takes N operations

— Need L=2"NR} comparisons

— Total operation = N 2*{NR}

— Total storage space = N 2*{NR}

— Both computation and storage requirement increases exponentially with N!
 Example:

— N=4x4 pixels, R=1 bpp: 16x2*16=2"20=1 Million operation/vector

— Apply to video frames, 720x480 pels/frame, 30 fps: 2420*(720x480/16)*30=6.8

E+11 operations/s !
— When applied to image, block size is typically limited to <= 4x4

* Fast algorithms:
— Structured codebook so that one can conduct binary tree search
— Product VQ: can search subvectors separately

© Yao Wang, 2016 EL-GY 6123: Image and Video Processing
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MMSE Vector Quantizer

* Necessary conditions for MMSE

© Yao Wang, 2016

Nearest neighbor condition

-

By = {f:dn(f.g) < dn(E, g). V' #1}.

Generalized centroid condition:

g = argmin, E{dn(F. g) | F € By).
MSE as distortion:

- / pt|f e Botdf = E{F | F < By).
J5

EL-GY 6123: Image and Video Processing
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Caveats ®

>/ ol

Both quantizers satisfy the NN and centroid condition, but the
quantizer on the right is better!

NN and centroid conditions are necessary but NOT sufficient for
MSE optimality!
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Example

(15 pt) Consider coding a 2-D random vector that is uniformly distributed over the region illustrated in Fig.
1(a). Suppose you want to design a codebook with 2 codewords. One possible codebook construction
(codeword locations and region partition) is illustrated in Figure 1(b).
a. Determine the value of y* in the upper triangle in Fig. 1(b) that will minimize the mean square error of
the quantizer. Also determine the corresponding minimal mean square error.
b. Another possible codebook configuration is shown in Fig. 1(c). Is this codebook better or worse than
that in Fig. 1(b)? why?

|
(8]

(a) (b) (c)
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Given sample vectorsf, & = 1.2, ..., K, ina

G e n e ra I ized L I Oyd training set, and quantization level L.

Algorithm '

Choose initial codewords:

LRG Algasitho) R‘

Find initial partition regions based on the nearest-neighbor condition:
L;’ - {'k . (1‘\/([&. L'\’) = (!N'('Ak ;."v’). V[' #* I}. I | — L‘

e Start with initial ]
codewords Calculate initial distortion:

* lterate between finding Do =g =

S I
el Sty Ayl g)

best partition using NN !

vy . Find new codewords based on the centroid condition:
condition, and updating
codewords using MSE: g~ 1 5,1

. A . 1 . .
general distortion: g, = ‘"'3""":{IT,E!¢=!<.- dp(fy, g)}.l =

centroid condition I

Find new partition regions based on the nearest-neighbor condition:
By =ty dy(f. g) = dy (. g).VI'#1},iel

Y

Calculate new distortion:

1 .
Dy =5 Zper Zypep dy (e &)

Y

[Py — Dol o NO

l )ljl

Yes

© Yao Wang, 2016 EL-GY



Example

© Yao Wang, 2016

Initial solution

=

Afler two ilerations

» [

EL-GY 6123: Image and VideoProcessing

Afler one iteration

After three iteralions
(final solution)
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Rate-Distortion Characterization
of Lossy Coding

« Operational rate-distortion function of a quantizer:

Relates rate and distortion: R(D)

— A vector quantizer reaches a different point on its R(D) curve by using a

different number of codewords
Can also use distortion-rate function D(R)

 Rate distortion bound for a source
Minimum rate R needed to describe the source with distortion <=D

R(D)= lim min RyniD:gnig|f))

Noocgnig|HeOp w

Opn=lgnig|f): EldyF.G)} < D)

 RD optimal quantizer:

© Yao Wang, 2016

Minimize D for given R or vice versa

EL-GY 6123: Image and Video Proces
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D(R) (a given quantizer)

D(R) (bound)




Lossy Coding Bound
(Shannon Lossy Coding Theorem, Not required)

R(D)= lim min RyniD: gnig|f))
Noocgaiz|MeOp n
Opn=1gng|f): EldyF.G)} = D}

_ |
R(D)y= lim min —IN(F: G

Nooognieg|HeOp N

Iy(F,G): mutual information between F and G, information provided by G about F
Qp n: all coding schemes (or mappings q(g|f)) that satisfy distortion criterion d,(f,g)<=D

RI.‘.D) = RI,D) = R(,‘IDI,

_ _ |
Ri(D)y=hJF)— 5 log,27eD =

h(F): differential entropy of source F
Rs(D): RD bound for Gaussian source with the same variance

i.i.d. Gaussian source requires highest bit rate!
© Yao Wang, 2016 EL-GY 6123: Image and Video Processing 72



RD Bound for Gaussian Source (Not required)

 |.i.d. 1-D Gaussian:
DRy =a22R

* Ii.d. N-D Gaussian with independent components:
I/N

D(R) = (Hn,;’) 272K
« N-D Gaussian with covariance matrix C:

I/N
D(R) = (H ,) 272K = |det[C]| VN2 2R,

n

« Gaussian source with power spectrum (FT of correlation function) S(e/®)

- | T Sie’™)
RD)=— log, =— - d.
[ - 0g, D

—

JL, 14

© Yao Wang, 2016 EL-GY 6123: Image and Video Processing
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Summary on Quantization

Scalar quantization:
— Uniform quantizer
— MMSE quantizer (Nearest neighbor and centroid condition)
» Closed-form solution for some pdf
 Lloyd algorithm for numerical solution
Vector quantization
— Nearest neighbor quantizer
— MMSE quantizer (Nearest neighbor and centroid condition)
— Generalized Lloyd alogorithm

— Uniform quantizer
« Can be realized by lattice quantizer (not discussed here)
Rate distortion characterization of lossy coding (not required)
— Bound on lossy coding
— Operational RD function of practical quantizers

© Yao Wang, 2016 EL-GY 6123: Image and Video Processing
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* Reading assignment:

— [Wang2002] Sec. 8.1-8.4 (Sec. 8.3.2,8.3.3 optional)
— [Wang2002] Sec. 8.5-8.7

— Optional: [Woods2012] Sec. 9.3, 9.4, Appendix on Information Theory
« Optional reading on arithmetic coding and CABAC
— Witten, Radford, Neal, Cleary, “Arithmetic Coding for Data
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520-540, June 1987.
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adaptive-binary-arithmetic-coding-m-coder.html
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Written Assignment (1)

* Problems from [Wang2002] Prob. 8.1,8.6, 8.11, 8.14
« Additional problems in the following slides

© Yao Wang, 2016 EL-GY 6123: Image and Video Processing
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Written assignment (2)

(15 pt) Consider coding a 2-D random vector that is distributed over a triangular region

illustrated in Fig. (a) with the following distribution function: p(x,y) = Aexp(—|x|— ‘ y‘)
where A 1s some constant to normalize the distribution function. Suppose you want to design
a codebook with 2 codewords. Figures (b) and (c) illustrate two possible codebooks with
their corresponding region partitions.
a. Which codebook will likely yield less quantization error? Why?
b. Does either codebook and associated partition satisfy the nearest neighbor condition?
c. For the codebook in Fig. (b), determine the x- and y- coordinate of each codeword
(indicated by a and b, respectively) that will minimize the mean square error.
Determine the minimal mean square error. If you run out of time, you can leave your
solution in terms of some integrals, without getting the explicit solution. You should
make use of the symmetry to simplify your solution.

v

\

-1 0 1 -1 -a 0 a 1 -1 0

Fig. (a) Fig. (b) Fig. (¢)
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Written assignment (3)

(15 pt) Vector Quantization
a. (5 pt) What is the operation count of a nearest neighbor vector quantizer with vector dimension /N and bit rate

R bits/sample? Consider one addition, one subtraction, one multiplication each as one operation.
b. (10 pt) In order to reduce the complexity, we can code the norm (or gain) of an input vector using a scalar
quantizer and the normalized vector (or shape vector) using a vector quantizer. This method is called gain-shape

vector quantizer. Suppose an input vectoris f = [ fi , f:,. yenes f N]-' its norm (called gain factor) 1s defined as
2

\/
G= Z f;12 , the normalized vector is f = éf . If we use Rl bits to quantize the gain factor G, and R2
n

bits/sample to quantize the normalized vector f , where Rl and R2 are chosen such that the total bit rate
(bits/sample) is the same as in (a) (that is, R1 BE ]VY?Z = NNR), what will be the total operation count for this

method? What is the saving factor compared to direct vector quantization? (Consider square root as one operation,
also assume the scalar quantizer is in general non-uniform, and you need to use the nearest neighbor rule to
determine the quantized level.)
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Computer assignment (Optional!)

« Do one of the two

— Option 1: Write a program to perform vector quantization on a gray scale image
using 4x4 pixels as a vector. You should design your codebook using all the
blocks in the image as training data, using the generalized Lloyd algorithm.
Then quantize the image using your codebook. You can choose the codebook
size, say, L=128 or 256. If your program can work with any specified codebook
size L, then you can observe the quality of quantized images with different L.

— Option 2: Write a program to perform color quantization on a color RGB image.
Your vector dimension is now 3, containing R,G,B values. The training data are
the colors of all the pixels. You should design a color palette (i.e. codebook) of
size L, using generalized Lloyd algorithm, and then replace the color of each
pixel by one of the color in the palette. You can choose a fixed L or let L be a
user-selectable variable. In the later case, observe the quality of quantized
images with different L.
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