Improved division by invariant integers

Niels Moller and Torbprn Granlund

Abstract—This paper considers the problem of dividing a imate reciprocal. The main contributions are a new algorith
two-word integer by a single-word integer, together with a few for division using such a reciprocal and new algorithms for

extensions and applications. Due to lack of efficient division compting a suitable reciprocal for 32-bit and 64-bit word
instructions in current processors, the division is performed as a size

multiplication using a precomputed single-word approximation . . L . .
of the reciprocal of the divisor, followed by a couple of adjustmeh The key idea in our new division algorithm is to compute
steps. There are three common types of unsigned multiplication the candidate remainder as a single word rather than a double
instructions; we define full word multiplication (unul’) which word, even though it does not quite fit. We then use a fraction
produces the two-word product of two single-word integers, low 5ccqciated with the candidate quotient to resolve the aritpig

multiplication (unul | 0) which produces only the least significant . L .
word of the product, and high multiplication (urul hi), which The new method is more efficient than previous methods for

produces only the most significant word. We describe an algo- tWO reasons.
rithm which produces a quotient and remainder using oneunul « It uses cheaper multiplication operations, omitting the
and oneunul | 0. This is an improvement over earlier methods, most significant half one of the two products. Computing

since the new method uses cheaper multiplication operations. the | t sianificant d of duct i h
It turns out we also get some additional savings from simpler e least signincant word or a product Is a cheaper

adjustment conditions. The algorithm has been implemented in operation than computing the most significant word (e.g.,
version 4.3 of the GMP library. When applied to the problem on AMD Opteron, the difference in latency is one cycle,
of dividing a large integer by a single word, the new algorithm while on Intel Core 2, the difference is three cycles).

gives a speedup of roughly 30%, benchmarked oamb and Intel

Drocessors in the x8664 family. « The needed adjustment conditions are simpler.

When the division algorithms in this paper are used as build-
ing blocks for algorithms working with large numbers, our
l. INTRODUCTION improvements typically affect the linear term of the exémut
Integer division instructions are either not present at dlme. This is of particular importance for applications ngsi
in current microprocessors, or if they are present, they ardegers of size up to a few dozen words, e.g., on a 64-bit
considerably slower than the corresponding multiplicatiocPu, 2048-bitRSA corresponds to computations on 32-word
instructions. Multiplication instructions in turn are aalkst a numbers.
few times slower than addition instructions, both in ternis o The new algorithms have been implemented in ¢hep li-
throughput and latency. The situation was similar a decabigary [2]. As an example of the resulting speedup, for dorisi
ago [1], and the trend has continued so that dividmtency of a large integer by a single word, the new method gives a
is now typically 5-15 times higher than multiplication laty, speedup of 31% compared to earlier methods, benchmarked
and divisionthroughputis up to 50 times worse than multipli- on AMD Opteron and Intel Core 2.
cation throughput. Another trend is that branches costugrad The outline of this paper is as follows. The rest of this
ally more, except for branches that the hardware can prediection defines the notation we use. Section Il explains how
correctly. But some branches are inherently unpredictable the needed reciprocal approximation is defined, and how it is
Division can be implemented using multiplication, by firstiseful. In Sec. Ill, we describe new algorithms for compgitin
computing an approximate reciprocal, e.g., by Newton iteife reciprocal, and we present our main result, a new algorit
ation, followed by a multiplication that results in a candifor dividing a two-word number by a single word. Analysis of
date gquotient. Finally, the remainder corresponding te thihe probability for the adjustment steps in the latter atbar
candidate quotient is computed, and if the remainder is ti®provided in Appendix A. Section IV describes a couple of
small or too large, the quotient is adjusted. This proceduextensions, primarily motivated by schoolbook divisiohg t
is particularly attractive when the same divisor is used semost important one being a method for dividing a three-word
eral times; then the reciprocal need to be computed ortymber by a two-word number. In Sec. V, we consider an
once. Somewhat surprisingly, a well-tuned Newton recigkocalgorithm that can take direct advantage of the new division
followed by multiplication and adjustments wins over thénethod: Dividing a large integer by a single-word. We déxeri
hardware division instructions even for a single non-irvar the x86 64 implementation of this algorithm using the new
division on modern 64-bipC processors. method, and compare it to earlier results. Finally, Sec. VI
This paper considers the problem of dividing a two-wordummarises our conclusions.
number by a single-word number, using a single-word approx-

N. Moller is a long time member of themp research team. Email: A. Notation and conventions
nisse@ysator. liu.se _ _ _ Let ¢ denote the computer word size, and fiet 2¢ denote
T. Granlund is with the Centre for Industrial and Applied Kenatics, he b . lied by th d si L | d
KTH, Stockholm. Granlund's work was sponsored by the SweBi@mdation tN€ Pase implied by the word size. Lower-case letters denote

for Strategic Research. Emaflege@ada. kt h. se single-word numbers, and upper-case letters represeriiensm

of any size. We use the notatiod = (z,,_1,...,21,29) = A. Previous methods
Tp—1B"" " + -+ 218 + 0, where then-word integerX is The trick of using a precomputed reciprocal to replace

represented by the words, for 0 <i <mn. integer division by multiplication is well-known. The sitest
We use the following multiplication operations: variant is Alg. 1, which uses a quotient approximation based
he fi f EQ. (3).
(p1,po) < umul (a,b) = ad Double word product on the first two terms of Eq. (3)
po < umul | o(a,b) = (abz mod f Low word (q.7) — DIV28Y1((uy, u0), d, v)
p1 — umul hi (a,b) = VJ High word In: 8/2 < d< B, ur<dv= (2 1)/d| - B
p 1 ¢« |vu1/B]+u1 /I Candidate quotientufrul hi)
Our algorithms depend on the existence and efficiency &f (P1,Po) < ¢d /1" unul

these basic multiplication operations, but they do notirequ3 (r1,70) < (u1,u0) — (p1,po) /I Candidate remainder
both unul and urrul hi . These are common operations it While ry >00rro >d /I Repeated at most 3 times
all processors, and very few processors lack hatill and © g—q+l1
umul hi L. 6 (r1,ro) < (r1,m0) —d

7 return q,rg

Il. DIVISION USING AN APPROXIMATE RECIPROCAL Algorithm 1: Simple division of two-word number by a single-

Consider the problem of dividing a two-word numtér= Word number, using a precomputed single-word reciprocal.
(u1,up) by a single-word numbed, computing the quotient

and remainder To see how it works, lelV = (uj,up) and letq denote
the true quotientU/d|. We have(3 + v) d = 3% — k, where

q= {UJ r=U — qd. 1 < k < d. Let ¢’ denote the candidate quotient computed
d at line 1, and letgy = vu; mod 8 denote the low, ignored,

half of the product. LeR’ denote the corresponding candidate

Clearly,r is a single-word number. We assume that< d, remainder, computed on line 3. Then

to ensure that also the quotienfits in a single word. We also

restrict attention to the case thatis a “normalised” single- R =U-¢d

word number, i.e,3/2 < d < . This is equivalent to the word u1 (B +v) — qo

d having its most significant bit set. It follows thag/d < 2, =up +wf — 3 d
and one can get a r_eas_onable guotient approximation from urk + qod

alone, without considering,. = ugp + 5

We havel/f < 1/d < 2/8. We represent the reciprocal . .
. A . . : e see thakr’ > 0, which corresponds t¢ < ¢. Sincek < d,
1/d using a fixed-point representation, with a single word anWe also get the upper bourddl < f-+2d < 4d, which implies

an additional implicit one bit at the most significant end. W

' . . that¢ > ¢ — 3. Since R’ may be larger thar, it must be
fine the precom reciprocal he in r 4 .
define the precomputed reciprocal ©&s the intege computed as a two-word number at line 3 and in the loop, at

3% -1 line 5, which is executed at most three times.
- d — . @) The problem is that in the two-word subtractiéh— ¢'d,
most, but not all, bits in the most significant word cancel.

The constraints od imply that0 < v < f, in particular,v is Hence, we must use the expensiveul operation rather than
a single word number. We hav@ + v)/3% ~ 1/d, or more the cheapeunul | o.

precisely, The quotient approximation can be improved. By checking
1 1 < B+ < } @) if up > d, and if so, incrementing’ before computing’, one
d p*— p d getsR’ < 3d andq’ > g — 2. The method in [1], Sec. 8, is

more intricate, guaranteeing th&t < 2d, so thatg’ > ¢ — 1.
However, it still computes the full produgtd, so this method
needs onainul and oneunul hi .

For the borderline casé = 3/2, we have the true reciprocal
1/d = 2/3, which equalg3+wv)/3? for v = 3. Our definition
instead gives the single-word numhee= S — 1 in this case.

The usefulness of comes from Eq. (2) which implies 1. NEW ALGORITHMS
U B+v wY Uy UV In this section, we describe our new algorithms. We first
7~ b+ “0)? Sttt () give efficient algorithms for computing the approximate re-

ciprocal, and we then describe our new algorithm for divisio
Since (6 + v)/3% < 1/d, the integer part of the right handof a double-word number by a single word.
side is at most, and hence a single word. Since the terms on
the right hand side are non-negative, this bound is stiidvalA. Computing the reciprocal
if some of the terms are omitted or truncated. From the definition ofy, we have

2
1The spARC V9 architecture is a notable exception, making high perfor- v = pm—1 - 8= <5 —1-d,5— 1>
mance arithmetic on large numbers very challenging. d d

so for architectures that provide an instruction for dimglia Each step involves a truncation, and wedef §; < 1 denote
two-word number by a single word, that instruction can béae truncation error in each step. Start with (6). ld&t=

used to compute the reciprocal straightforwardly. dao — 231d,, thenl < d’ < 231, We have
If such a division instruction is lacking or if it is slow, the 219 _ 3y 98

reciprocal can be computed using the Newton iteration Vo = de do

_ . 219 _ 3 x 28

Tpr1 = xp + 2 (1 — z4d). 4) ep = 290 —) X (231d9 ') + Sodao
9
This equation implies that . 219 _ 3 « 98
=3 X 239+50d407 dixd/
9

1 —zp1d = (1 — zpd)?. (5)
From this, we get
Consider one iteration, and assume that the accuraay. ©§

39
roughlyn bits. Then the desired accuracyxof, is about2n €0 <3 X 27 + dody

bits, and to achieve that, only abdlt bits of d are needed in <3x2%9 4210 =5 2%

Eq. (4). Ifx, is represented usingbits, matching its accuracy, 59 219 -3x28
then the computation of the right hand side yieddsbits. In €o =3 X 27 — Td
a practical implementation, the result should be truncéed S 3% 239 942 _ 5 939

match the accuracy dfn bits. The resulting error iy 1 iS
the combination of the error according to Eq (5), the truiocat ~ For (7), we get

of the result, and any truncation of tlkinput. v = 2%y — 274002d,0 — (1— 61)
e = 260 _ (2111)0 — 2_40U3d40) dgo + (1 — 51)d40
v+ RECIPROCAL WORD(d) = 27102 1 (1~ §))dao
In: 263 < d < 264
1 dy <« dmod?2 /I Least significant bit 't follows thate; > 0 and that
2 dg L2_,55ZZJ /I Most _sig_n?ficant 9 bi_ts 5 2 Sit 10 _ 29 543
3 dy— [27%4d] +1 /I Most significant 40 bits e1 < X +27 = 32~
4 dgz — [d/2] /I Most significant 63 bits) o
5 v — (219 — 3 x 28)/dy| /I By table lookup For (8), we first note that the produet (2% — vy dyp) fits in
6 v — 2Myy — |271002dyg) — 1 // 2unmul | o 64 bits, since the first factor is 21 bits and the second fastor
7wy e 2By, 4 (27479 (290 —uidyg)] M 2unmullo €1, Which fits in 43 bits. Letd’ = 224dyy — d, thenl < d’' <
8 e 29 _ uydgs + |va/2]do /l umul 1o 2% We get
9 w3« (28uy + |27%%vze]) mod 264 I umul hio) — 918, 4 97475 (250 4y dyg) — 6
10 vy« (v3 — [27%(vg3 + 254 +1)d]) mod 25 // umul 007 2, 7
11 return vy ez =27 —v3(27dyo — d')

= 297 — 224(213’01 + 2_47’()1(260 — ’U1d40))d40 + ’Uzd/ + 52d
Algorithm 2: Computing the reciprocal3? —1)/d| — g, for = 2723 + vod' + 02d

_hi ; _ 964
64-bit machines { = 2°%). It follows thate, > 0 and that

Algorithm 2 gives one variant, fog = 264, Here, v, is oy < 29 ? w263 4 958 L g 873 963 +d
represented as 11 bits, as 21 bitsp, as 34 bits, ands and 32 1024
vy @s 65-bit values where the most significant bit, which igy, (9), first note that the value computed at line 8, equals

always one, is implicit. Note that sineg, andds; are rounded |, /5| Then (8) implies that this value fits in 64 bits. Let
upwards, they may be equal 2° and2° respectively, and genote the least significant bit ef, so thate = (es — €)/2.

hence not quite fit in 40 and 63 bits. Define
Theorem 1 (64-bit reciprocal)With 3 = 254, the outputv ‘ \
of Alg. 2 satisfies) < 52 — (3 +v)d < d. vy = 280y + 270y (er — €
Proof: We will prove that the errors in each iteration are ey =212 —old

bounded as follows: . .
(We will see in a moment that, = 254 + v3, and hence also

eq = 950 _ vodao ‘60| < g w 942 (6) eé = 63). We get
2 ‘ ey = 2" — (2%Mwy + 27005 (2%7 — vad — €)) d + 63d
e1 =20 —widyg 0<e < 2 x 243 (7) ’ —66 2< —266 2 i) ’
32 = 2 62 + (2 U26+53)d
873
e =277 —vod 0<er < g7 % 2% +d (8) It follows thate} > 0 and that

e3 =22 — (2% 4 u3)d 0<ez<2d 9 . 873 \ 2 560 873 1 1 e oa
e =2"— (2% +u)d 0<es<d (10) e3<<1024> x +<4096+4+232+> <

v +— RECIPROCAL WORD(d)
In: 231 < d < 232

1 dop+— dmod?2

2 dip+ [27%d] /I Most significant 10 bits
3 dy — [271d] 41 /I Most significant 21 bits
4 ds < [d/2] /I Most significant 31 bits
5 wo« [(224 — 2 +29)/dyo] /I By table lookup
6 v «— 241)0 — L27321)8d21J —1 /I umull o + unul hi

7 e« (248 —vids + |_'U1/2Jd0) /I umul | o
8 vy« 2Mu; + [27% e /I umul hi

9 w3« (vg — [27%2(vy + 232 + 1) d]) mod 232 /[umul
10 return ws

Algorithm 3: Computing the reciprocal 3? —1)/d| — (3, for
32-bit machines § = 23?).

It remains to show tha® < v} < 2 x 264, The upper bound
follows from e} > 0. For the borderline casé= 254 — 1, one
can verify thatv} = 264, and ford < 25* — 2, we get

,U/ _ 2128—€é - 2128_eg
3 d = 2642
2x 264 ¢
__ ob4 3 64
Tt w7

For the final adjustment step, we have

[27% vy + 2% + 1)d] = [27(2"° — e3 + d)
=204 4 |27%%(d — e3)]

o 264 eggd
264 —1 ey >d

(¢,7) < DIV2BY1({u1,up),d,v)

In: B/2<d< B, u <d, v=|(B*-1)/d] -8
(q1,q0) < vua Il urul
(91, 90) < (a1, 90) + (u1,u0)
@1 < (@ +1) mod 3
r — (up — ¢1d) mod 3
if 7> qo

¢ — (@ —1) mod 3
r— (r+d) mod 8
if r>d
=@+l
re—r—d
return g1, r

/I umul 1 o
/I Unpredictable condition

/I Unlikely condition

RPOOWOOO~NOUITA, WNE

[

Algorithm 4: New algorithm for dividing a two-word number
by a single-word number, using a precomputed single-word
reciprocal.

are non-negative, and exploit that a certain number of the
high bits of v,d are know a-priori to be all ones.

o The execution time of Alg. 2 is roughly 48 cycles on
AMD Opteron, and 70 cycles on Intel Core 2.

B. Dividing a two-word number by a single word

To improve performance of division, it would be nice if we
could get away with usingnul | o for the multiplicationg’d
in Alg. 1 (line 2), rather than a fullmul . Then the candidate
remainderU — ¢'d will be computed only modulg3, even
though the full range of possible values is too large to be
represented by a single word. We will need some additional

Hence, the effect of the adjustment is to increment the recipformation to be able to make a correct adjustment. It turns

rocal approximation if and only i#; > d. The desired bound,

Eq. (10), follows.]
Algorithm 3 is a similar algorithm for3 = 232. In this
algorithm, vy is represented as 15 bits, as 18 bits, and

out that this is possible, if we take the fractional part of th
guotient approximation into account. Intuitively, we egpthe
candidate remainder to be roughly proportional to the gubti
fraction.

andvs as 33-bit values where the most significant bit, always Our new and improved method is given in Alg. 4. It is based
one, is implicit. The correctness proof is analogous, with t on the following theorem.

following error bounds:

33
— 935 _4od 29 926
€0 Vod21 leo| < 64 X
c 2113
61:24)—1}1d 0<€1<mx231+d
€eo = 264 — (232 + ’Ug)d 0<ey<2d
632264—(232—|—1}3)d 0<ey <d

Remarks:

Theorem 2:Assumefg/2 < d < 3,0 < u; < d, and
0 <wup < fB. Putv = (8% —1)/d] — . Form the two-word
number

(q1,90) = (B + v) uy + ug.

Form the candidate quotient and remainder

g=q +1
7= (u1,up) — qd.

« The final step in the algorithm is not a Newton iterationThen 7 satisfies
but an adjustment step which adds zero or one to the

reciprocal approximation.

« We gain precision in the first Newton iteration by choo

ing the initial valuevy so that the range for the erreg
is symmetric around zero.

« Inthe Newton iteration:+xz(1—2zd), there is cancellation

in the subtraction(1 — zd), sincezd is close to 1. In
Alg. 2 and 3 we arrange so that the erregs for k > 1,

ma’X(ﬂ - da 4o + 1) - ﬂ S T < Inax(ﬂ - da QO)

SHencer is uniquely determined given mod S, d and q.

Proof: We have(3 + v)d = 3 — k, wherel < k < d.
Substitution in the expression fergives
urk + ’U,U(,B — d) + qod B
5

r=uf+u —qd—d=

d.

For the lower bound, we clearly have (¢, (r1,70)) < DIV3BY2({us, u1, uo), (d1, do), v)

F> Qd In: 8/2 < dy < B, (ug,u1) < (dy,do),
s v=[(B*-1)/d| -8
This bound implies that both these inequalities hold: 1 (q1,q0) < vuy /I umul
7> _d 2 (q1,90) < {q1,q0) + (u2,u1)
= . 3 7<"1 — >(u1 —dqldl) mod [I /L/Irrul I :)
> (an — B2 _3 4 (t1,to) — doq unmu
r2 (- Pfg>w-F 5 (ri,r0) < ((r1,u0) — (t1,t0) — (d1, do)) mod 3°
The desired lower bound of now follows. 6 ¢ (@ +1)modp
For the upper bound, we have ; if 71 > qo (1) mod 8
2 q1 < (g1 — 1) mo
7 < d +ﬁ(/6_d)+QOd_d 9 <7‘1,7“0><—(<7‘1,7“0>—|-<d1,d0>) modﬁQ
5 s . 10 if (r1,m0) > (dy,do) /I Unlikely condition
e B —qo < max(3 — d, 11 q —q1+1
B (8)+ ﬁqo - G) 12 (r1,r0) < (r1,7r0) — {dy,dp)
where the final inequality follows from recognising the exd3 return g, (r1,7o)
pression as a convex combination. |
Remark: The lower bound for7 is attained if and only if Algorithm 5: Dividing a three-word number by a two-word
ug = u; = 0. Theng; = go = 0, and7 = —d. The upper number, using a precomputed single-word reciprocal.

bound is attained if and only ify = u; = f—1 andd = /2.
Thenv=p—-1, 1 =08—-2,q = /2, and7 = /2 — 1.

In Alg. 4, denote the value computed at line 48y Then is 3/2-division, i.e., dividing a three-word number by a two
r = 7mod . A straightforward application of Theorem 2word number. This is described next. Later on in this section
would compare this value tmax(3 — d,q). In Alg. 4, we We will also look into variations that produce more than one
instead compare’ to ¢o. To see why this gives the correctquotient word.
result, consider two cases:

o Assumer > 0. Thenr’ =7 < max(8 — d,qo). Hence, A. Dividing a three-word number by a two-word number

whenever the condition at line 5 is true, we havec 5~ por schoolbook division with a large divisor, the simplest
d, so that the addition at the next line does not overflowheihod is to compute one quotient word at a time by divid-
The second adjustment condition, at line 8, reduces thy the most significant two words of the dividend by the
remainder to the proper range< r < d. single most significant word of the divisor, which is a direct
* O'therwllse,r <0. Thenr' =r+p 2 ma?‘(ﬁ_d’ q0+1),' application of Alg. 4. Assuming the divisor is normalisele t
S/II’ICET > qo, the gqndltllon at line 5 is tr/ue, and sinC&egylting quotient approximation is at most two units tagéa
r' > —d, the addition(r’ +d) mod 5 =" +d - f = Next, the corresponding remainder candidate is computdd an
7 +d yields a correct remainder in the proper range. Thgyisted if necessary. A drawback with this method is that
condition at line 8 is false. the probability of adjustment is significant, and that each
Of the two adjustment conditions, the first one is inherentg{djustment has to do an addition or a subtraction of large
unpredictable, with a non-negligible probability for &th numbers. To improve performance, it is preferable to comput
outcome. This means that branch prediction will not bg quotient approximation based on one more word of both
effective. For good performance, the first adjustment mest Bividend and divisor, three words divided by two words. With
implemented in a branch-free fashion, e.g., using a camditi 3 normalised divisor, the quotient approximation is at noost
move instructions. The second conditiot,> d, is true with off, and the probability of error is small. For more details o

very low probability (see Appendix A for analysis of thisthe schoolbook division algorithm, see [3, Sec. 4.3.1, Alp.
probability), and can be handled by a predicated branch grid [4].

using conditional move. We therefore consider the following problem: Divide
(ua,u1,up) by (d1, do), computing the quotient and remain-
IV. EXTENSIONS FOR SCHOOLBOOK DIVISION der (r1,70). To ensure thag fits in a single word, we assume

The key idea in Alg. 4 can be applied to other smathat (us,u;) < {(di,do), and like for 2/1 division, we also
divisions, not just two-word divided by single word (whichassume that the divisor is normalised,> 3/2.
we call a “2/1” division). This leads to a family of algoritten Algorithm 5 is a new algorithm for 3/2 division. The adjust-
all which compute a quotient approximation by multiplicament condition at line 7 is inherently unpredictable, anolsth
tion by a precomputed reciprocal, then omit computing theerefore be implemented in a branch-free fashion, whige th
high, almost cancelling, part of the corresponding candidesecond one, at line 10, is true with very low probability. The
remainder, and finally, they perform an adjustment stepgusialgorithm is similar in spirit to Alg. 4. The correctness aet
a fraction associated with the quotient approximation. algorithm follows from the following theorem.

We will focus on extensions that are useful for schoolbook Theorem 3:Consider the division of the three-word number
division with a large divisor. The most important extensiolV = (us, u1,ug) by the two-word numbeD = (d;,dp).

Assume that3/2 < dy < 8 and (uz,u1) < (d1,do) Put v < RECIPROCAL WORD_38BY2({dy, do))

@:{@‘1J_g In: /2 < dy < 3

D v «— RECIPROCAL WORD(d;)
which is in the rang® < v < 3. Form the two-word number Il We haves® —dy < (8 +v)dy < (°.

=

2 p<«—divmodf /I umul 1 o
(91, 90) = (B + v)uz +uz. 3 pe (p+dy) mod 3
Form the candidate quotient and remainder 4 if p <dy /I Equivalent to carry out
- 5 ve—uv—1
(=q+1 6 if p>d
?:<U2,’1L1,U0>—a<d1,d0>. 7 ve—ov—1
Then7 satisfies 8 p—p—d
c-pB*<r<ec 9 p < (p—di) mod
Il We haveB? —d; < (B +v)dy +do < B2
with 10 (t1,to) — vdy /I umul
c= max(ﬁ2 — D, qop). 11 p« (p+t1) mod
Proof: We have(5 +v) D = 8% — K, for someK in the 12 ifp<ity /I Equivalent to carry out
rangel < K < D. Substitution gives 13 vev—l
. . 14 if <p, to> > <d1,d0>
r=U-gqD 15 ve—v—1
us K + ui (8% — D) + uofB + qoD 16 return v

- D.
g

The lower bounds” > —D and7 > g3 — 32 follow in the Algorithm 6: Computing the reciprocal whichiv3BY2 ex-

same way as in the proof of Theorem 2, proving the low&€CtS:v = [(3* = 1)/(d1,do)] — 8. This is a single word
bound7 > ¢ — 32. For the upper bound, the borderline casd§ciProcal based on a two-word divisor.
make the proof more involved. We need to consider several
cases.
sl s en h | needed by Al hough still |
2 2 The reciprocal needed by Alg. 5, even though still a single
s -DD+(B-1)(5 — D)+ 5"~ 5D+ gD word, is slightly different from the reciprocal that is need
A by Alg 4. One can use Alg. 2 or Alg. 3 (depending on word

2 2
— (6% = D)” + qofiD — doD size) to compute the reciprocal of the most significant word

B. Computing the reciprocal for 3/2 division

B dy, followed by a couple of adjustment steps to take into
_ P D(52 _ D)+ D, doD account the least significant worg. We suggest the following
I ek 32 strategy:
< ec. Start with the initial reciprocab, based ond; only, and

the corresponding produ€t + v) d; 5, where only the middle

o It up = dy, thenu, < do — 1, by assumption. In this s represented explicitly (the high wordds- 1, and the

case, we get low word is zero). We then add firgtdy and thenuvdy to this
= diD + (do — 1)(8* — D) + 3* — 8D + qoD product. For each addition, if we get a carry out, we cancel
Ié; that carry by appropriate subtractions &f and d, to get an
82 —D D underflow. The details are given in Alg. 6.
= (8* = D)+ Z5 03 in i
e 32 do Remark: The productd;v mod 3, computed in line 2, may
(8 — do) ((ﬁ+ 1)D — 53) be available cheaply, without multiplication, from thednt
+ 5 mediate values used in the final adjustment stepeEfIPRG
A 3 CAL_WORD (Alg. 2 or Alg. 3).
oy (B—do) (B+1)D - %)
— ﬂ2 .

Under the additional assumption that< (5 — 1), we C. Larger quotients

get(3+1)D — 3 < —3 <0, and it follows thatF < c. The basic algorithms for 2/1 division and 3/2 division can
« Finally, the remaining borderline case is = d; and €asily be extended in two ways.

D > p(f—1). We then haveu, =d; = 3—-1,0 < « One can substitute double-words or other fixed-size units
uy < do, andv = 0 since(3* —1)/D — 3 < 1. It follows for the single words in Alg. 4 and Alg. 5. This way, one
thatgq; = us = 5 — 1. We get can construct efficient algorithms that produce quotients

of two or more words. E.g., with double-word units, we
get algorithms for division of sizes 4/2 and 6/4.

Hence the upper bound< c¢ is valid in all cases. « In any of the algorithms constructed as above, one can
[] fix one or more of the least significant words of both

T=u—pFD=0(u —dp) +up<0<e.

|l oop: nmov (np, un, 8), % ax

(Q,r) < DIV_NBYL(U,d) div d

IN: U = (un—1...uo), B/2<d <3 nmov % ax, (gp, un, 8)

Oout: Q@ = (gn-1---90) dec un
1 v+ RECIPROCAL WORD(d) jnz 1oop
2 0 o . . .
3 :orj —n_1 0 Example 1: Basic division loop using tha&i v instruction,

R running at 71 cycles per iteration oxsmp Opteron, and 116

4 (gj,7) < DIV2BY1((r,u;),d,v) S
5 retun Q,r cycles on Intel Core 2. Note thatax andr dx are implicit

input and output arguments to tlok v instruction.

Algorithm 7: Dividing a large integet/ = (u,,—1...ug) by a

normalised single-word intege. corresponding quotient word [3, Sec. 4.3.1, exercise 16 T
variant shown in Alg. 7 computes a reciprocaldfand hence
dividend and divisor to zero. This gives us aIgorithmgeqUI.reS thati is normalised), and applies our new 2/1 division
for division of sizes such as 3/1 and 5/3 (and appl inalgorlthm in each step.
PPYING 1 yse Alg. 7 directlyd must be normalised. To also handle

this procedure to 3/2 would recover the good old 2/&nnormalised divisors, we select a shift countsuch that

(.ZIIVISIOI’]). o) (/2 < 2¥d < 3. Alg. 7 can then be applied to the shifted
Details and applications for some of these variants are CE‘p‘erandstU and 2*d. The quotient is unchanged by this
scribed in [4]. transformation, while the resulting remainder has to béeshi

k bits right at the end. Shifting o/ can be done on the fly

V. CASE STUDY. X86_64 IMPLEMENTATION OF n/1 in the main loop. In the code examples, registerholds the

DIVISION normalisation shift counk.

Schoolbook division is the main application of 3/2 division
as was described briefly in the previous section. We now tug) N&ve implementation

to a more direct application of 2/1 division using Alg. 4. . : S .
.) : : . The main loop of an implementation in x84 assembler is
In this section, we describe our implementation of

- . shown in Example. 1. Note that tldg v instruction in the x86
DIV_NBY1, dividing a large number by a single word numbep,_ . : . R

: : . family appear to be tailor-made for this loop: This instiaos
for current processors in the x864 family. We use condi-

tional move €mov) to avoid branches that are difficult totakes a divisor as the explicit argument. The two-word input

- - . dividend is placed with the most significant word in theéx
handle efficiently by branch-prediction. Besidesov, the ; . . .

L . ; register and the least significant word in thex register. The
most crucial instructions used arall , i mul , add, adc,

sub andl ea. Detailed latency and throughput measuremeanUtpUt quotient is produced imax and the remainder indx.

of these instructions, for 32-bit and 64-bit processorshia t 0 qther |pstruct|on in the IOOD. negd to touchix as th?
: . . remainder is produced by each iteration and consumed in the
x86 family, are given in [5].

. - ’ n Next.
We discuss the t|m|ng“only fo‘:\M.D O_pteron_ ("K8/K3") However, the dependency between iterations, via the re-
and Intel Core 2 (65 nm “Conroe”) in this section. TR®D . ; . . .
. : mainder inrdx, means that the execution time is lower
Opteron results are valid also for processors with the bral o : o
. “bounded by the latency of thdi v instruction, which is
names Athlon and PhendnOther recent Intel processors giv
:) 1 cycles onamD Opteron [5] (and even longer, 116 cycles,
results slightly different from the 65 nm Core 2 results we .
describa on Intel Core 2). Thanks to parallelism and out-of-order

. . . execution, the rest of the instructions are executed while
Our results focus mainly oambD chips since they are better =~ o . .
. . : . waiting for the result from the division. This loop is morath
optimised for scientific integer operations, i.e., the ones

depend on. If we don't specify host architecture, we ardriglk an order of magmtude slower than the loop for multiplying a
large number by a single-word number.
aboutamp Opteron.

C. Old division method

The earlier division method from [1] can be implemented
with the main loop in Example 2. The dependency between op-
Erations, via the ax register, is still crucial to understand the
p}érformance. Consider the sequence of dependent insingcti
in the loop, from the first use afax until the output value of
the iteration is produced. This is what we call tlegurrency

2phenom has the same multiplication latencies, but slighgié() latency Chainof the loop. The assembler listing is annotated with cycle
for division. numbers, fommb Opteron and Intel Core 2. We let cycle 0 be

*The 45 nm Core 2 has somewhat lower division latency, and thesathe cycle when the first instructions on the recurrency chain
multiplication latencies. The Core iprocessorsa = 3, 5, 7, 9) have lower

starts executing, and the following instructions in theigha

division latency, and foumnul , they have lower latency for the low product . .
word, but higher(!) latency for the high product word. are annotated with the cycle number of the earliest cycle the

A. Dividing a large integer by a single word

Consider division of am-word numberJ by a single word
numberd. The result of the division is am-word quotient
and a single-word remainder. This can be implemented
repeatedly replacing the two most significant words (of
by their single-word remainder modulf and recording the

| oop: nov (up, un, 8), % dx | oop: nop
shid %!, %Wdx, %14 nmov (up,un, 8), % 10
| ea (d, % 14), %12 0 0 | ea 1(%wax), %w1ll
bt $63, % 14 shid 9%l, %10, % bp
cmovne % 14, % 12 0 0 mul di nv
0 0 nmov % ax, % 10 4 8 add % bp, % ax
0 0 adc $0, % ax 5 9 adc % 11, 9% dx
1 2 mul di nv nmov % ax, % 11
5 10 add % 12, % ax nov % dx, % 13
nov d, % ax 6 11 i mul d, % dx
6 11 adc % 10, % dx 10 16 sub % dx, % bp
7 13 not % dx nov d, % ax
8 14 nmov % dx, % 12 11 17 add % bp, % ax
8 14 mul % dx 11 17 cnp % 11, % bp
12 22 add % ax, % 14 12 18 cnovb % bp, % ax
13 23 adc % dx, 9% 10 AMD Intel adc $-1, %13
14 25 sub d, % 10 cnp d, % ax
13 23 | ea (d, % 14), % ax j ae fix
14 26 cnovnc 9% 14, % ax ok: nmov % 13, (qp)
AMD Intel sub % 12, % 10 sub $8, qp
nmov (up,un, 8), % 14 dec un
nmov % 10, 8(gp, un, 8) nov % 10, % bp
dec un j nz | oop
jnz | oop jmp done
Example 2: Previous method using a precomputed reciprocal, i
running at 17 cycles per iteration oxmb Opteron, and 32 fix: _SUb d, % ax
cycles on Intel Core 2. inc %13
jm ok
done:

instruction can start executing, taking its input depewcideEn Example 3: Division code (fromcmpP-4.3) with the new
into account. division method, based on Alg. 4. Running at 13 cycles per

To create the annotations, one needs to know the latendtesation onAMD Opteron, and 25 cycles on Intel Core 2.
of the instructions. Most arithmetic instructions, indiugl
cnov andl ea have a latency of one cycle. The cruciall
instruction has a latency of four cycles until the low word ofycle numbers in the same way, we see that the latency of the
the product is available inax, and one more cycle until the recurrency chain is 13 cycles. Note that the rarely takendira
high word is available irr dx. Thei mul instructions, which does not belong to the recurrency chain. The loop actualy al
produces the low half only, also has a latency of four cyclegins at 13 cycles per iteration; all the remaining instari
These numbers are favb, the latencies are slightly longerare scheduled for execution in parallel with the recurrency
on Intel Core 2 (2 cycles foadc and cnov, 5 cycles for chairf. For Intel Core 2, the latency of the recurrency chain
i mul and 8 fornul). See [5] for extensive empirical timingis 20 cycles, with an actual running time of 25 cycles per
data. iteration.

Using these latency figures, we find that the latency of the Comparing the old and the new method, first make the
recurrency chain in Example 2 is 15 cycles. This is a low@&ssumption (which is conservative in the Opteron caseihat
bound on the execution time. It turns out that the loop runs the loops can be tuned to get their running times down to the
17 cycles per iteration; the instructions not on the recqwaye respective latency bounds. We then get a speedup of 15% on
chain are mostly scheduled for execution in parallel with thraMD Opteron and 40% on Intel Core 2. If we instead compare
recurrency instructions, and there’s plenty of time, 8 eggcl actual cycle counts, we see a speedup of 31% on both Opteron
when thecpu is otherwise just waiting for the results fromand Core 2. On Opteron, we gain one cycle from replacing
the multiplication unit. This is a four time speedup compiareone of themul instructions by the faster mul , the other
to the 71-cycle loop based on thk v instruction. For Intel cycle shaved off the recurrency chain are due to the simpler
Core 2, the latency of the recurrency chain is 28 cycles,avhidjustment conditions.
the actual running time is 32 cycles per iteration. In this application, the code runs slower on Intel Core 2

than onAmMD Opteron. The IntecpPu loses some cycles due
D. New division method

4It's curious that if thenop instruction at the top of the loop is removed,

Th in | ; . | . f th divisi the loop runs one cycle slower. It seems likely that similadman changes
e main loop of an implementation of the new diVISIO, e instruction sequence in Example 2 can reduce its rgrtitine by one

method is given in Example 3. Annotating the listing withor even two cycles, to reach the lower bound of 15 cycles.

Implementation Recurrency chain latency

and real cycle counts APPENDIXA
AMD Opteron Intel Core 2 PROBABILITY OF THE SECOND ADJUSTMENT STEP
Naive di v loop (Ex. 1) | 71 71 116 116 : . .
OIdee{hvod (é)x.(2);) 15 17 o8 32 In this appendix, we analyse the probability of the second
New method (Ex. 3) 13 13 20 25 adjustment step (line 8 in Alg. 4), and substantiate oumtlai
TABLE | that the second adjustment is unlikely. We use the notation

SUMMARY OF THE LATENCY OF THE RECURRENCY CHAIN AND ACTUAL from Sec. IlI-B. We also use the notation tHfevent is the
CYCLE COUNTS FOR TWO X86_64 PROCESSORSTHE LATENCY NUMBERS probability of a given event, anE[X] is the expected value
ARE LOWER BOUNDS FOR THE ACTUAL CYCLE COUNTS)
of a random variableX.
We will treats as a random variable, but we first need to

investigate for which values aof that the second adjustment
to higher latencies for multiplication and carry propagafi step is done. There are two cases:
resulting in a higher overall latency of the recurrency ohai , |f 7 > 4, then¥ < max(3 — d, o) andd > 3 — d imply
And then it Ioses_ some additional cycl_es due to th_e fa<_:t that that7 < ¢o. The first adjustment is skipped, the second
the code was written and scheduled with Opteron in mind. is done.

o If 7> qp, then™ < max(8—d, qo) implies thatr < 5—d
VI. CONGLUSIONS andd < 7+ d < . The first adjustment is done, then
We have described and analysed a new algorithm for undone by the second adjustment_

dividing & two-word number by a single-word number ("2/1°rg jnequalities > d and7 > ¢, are thus mutually exclusive,

division). The key idea is that when computing a candidajfe former possible only wheq, > d and the latter possible
remainder where the most significant word almost cancels, Whly wheng, < 4 — d.

omit computing the most significant word. To enable correct 5,4 example of each kind, fat = 2° = 32:

adjustment of the quotient and the remainder, we work with a

slightly more precise quotient approximation than in poesi U d q r ‘ v kG q T

algorithms, and an associated fractional word. 414 18 23 0| 24 16 22 30 18
Like previous methods, we compute the quotient via an 504 18 28 0/ 24 16 28 0 O

approximate reciprocal of the divisor. We describe new,enor

efficient, algorithms for computing this reciprocal for th@st g find the probabilities, in this section, we treatas a

common cases of a word size of 32 or 64 bits. random variable. Consider the expressionor
The new algorithm for 2/1 division directly gives a speedup

of roughly 30% on current processors in the x86 family, ~_wktu(f-d)+tqd

for the application of dividing a large integer by a singlerdio B

It is curious that on these processors, the combination of ouwe assume we have a fixetl= £3, with 1/2<¢ <1,
reciprocal algorithm (Alg. 2) and division algorithm (Ald) and consider; andu, as independent uniformly distributed
is significantly faster than the built in assembler instiartt random variables in the rangés< u; < d and0 < ug < 8.
for 2/1 division. This indicates that the algorithms may lie aye also make the simplifying assumptions thaand ¢, are
interest for implementation icPu microcode. independent and uniformly distributed, in the ranges k <

We have also described a couple of extensions of theando < ¢, < 3, and that all these variables arentinuous
basic algorithm, primarily to enable more efficient schaolk ather than integer-valuéd.

division with a large divisor. . . Lemma 4:Assume thatl /2 < ¢ < 1, thatuy, ug, k andqq
~ Most of the algorithms we describe have been implementggk independent random variables, continuously and unior
in the GmP library [2]. distributed with range$ < u;, k < &4, 0 < ug, qo < 3. Let
ACKNOWLEDGEMENTS ~_ wkt+u(-8+l ¢,
The authors wish to thank Stephan TolksdorfomBj Tere- p

lius, David Harvey and Johand&stad for valuable feedbackThen
on draft versions of this paper. As always, the respongbili

for any remaining errors stays with the authors. P[> £3 or 7 > qo]
2-1/¢° 2-1/¢ 1
= lo =
REFERENCES 6(1 — &) g ¢ + 6
[1] T. Granlund and P. L. Montgomery, “Division by invariamtégers using 1 1 11 11
multiplication,” in Proceedings of the SIGPLAN PLDI'94 Conference +(1-9 (— tarmom T) (11)
June 1994, 18 26 12¢ 363
[2] T. Granlund, “GNU multiple precision arithmetic libraryersion 4.3,

May 2009, http://gmplib.org/. 5These assumptions are justified for large word-size. Strégteaking, with
[3] D.E. Knuth,Seminumerical Algorithmsrd ed., ser. The Art of Computer fixed d, the variablek is of course not random at all. To make this argument
Programming. Reading, Massachusetts: Addison-Wesley,, M882. strict, we would have to treat as a random variable with values in a small
[4] T. Granlund and N. Mller, “Division of integers large and small,” August range aroundt3, e.g., uniformly distributed in the range3 + 83/4, and
2009, to appear. consider the limit as3 — oco. Then the modulo operations involved in

[5] T. Granlund, “Instruction latencies and throughput D and Intel , and k make these variables behave as almost independent and ugiforml
x86 processors,” 2009, http://gmplib.orgége/x86-timing.pdf. distributed.

Furthermore, if we define

297 15 5 17

f(g):1—6—4(17§)+?(1—§) *Z(1*§)3
then . 6
P gporiz alx G (12)

with an absolute error less than 0.01 percentage pointsaand

relative error less than 5%.
Proof: Define the stochastic variables

10

Probability [%]

X:&I; R:ulk+UO(21 §)p 0=2
£6 &6 B
Now, &
7
573 =R+Q-1 Fig. 1. Probability of the unlikely adjustment step, as a fiorcof the ratio
£=4d/p.

By assumptiong) is uniformly distributed, whileR has a more
complicated distribution. Conditioning o = s, we get the

probabilities for ¢ close to1/2. The coefficients off are chosen to give
L the same asymptotics. The error bounds for Eq. (12) are found
P[r > ¢0] = / P[R > 2 — s]ds numerically. ™
3—6—1/¢ In Fig. 1, the adjustment probability of Eq. (11) is plotted

E+1/6-2
= / P[R> 1+ s]ds
0

as a function of the rati9 = d/3. This is a rapidly decreasing
function, with maximum value fo€ = 1/2, which gives the

worst case probability of /36 for d close to3/2. This curve

is based on the assumptions on continuity and independence
of the random variables. For a fixedl and word size, the
adjustment probability for randomy, andug will deviate some
from this continuous curve. In particular, the borderlirese

d = /2 actually gives an adjustment probability of zero, so

it is not the worst case.

1-¢
PEzal = [PIR>1+(/6-1sds
1 E+1/6-2
:W/o P[R>1+ s]ds.

Adding the probabilities (recall that the events are milyual
exclusive), we get the probability of adjustment as

1 E+1/E—2
7/ P[R > 1+ s]ds. (13)
1-¢&Jo

We next need the probabilitieB[R > s] for 1 < s <
¢+ 1/¢ — 1. By somewhat tedious calculations, we find

P[ng]—ﬁ(;(llogﬂds>
PIR > o] = g Blmax(0,X — (s = (1/§ 1))
B (s+1—1/§)21 s+1-1/¢
T a1y P
€2 —4(s+1—-1/6)+3(s+1—1/£)?
" (19 ’

where the latter equation is valid only farin the interval
of interest. Substituting in Eq. (13) and integrating yseld
Eq. (11). To approximate this complicated expression, veg fir
derive its asymptotics:

(1-9°/24+0((1-9))

for ¢ close to 1, and

1/36 — 13/18(¢€ — 1/2) + 34/3(¢ — 1/2)?
+0((€ - 1/2)°log(€ — 1/2))

