
ar
X

iv
:1

00
8.

11
91

v2
 [

cs
.I

R
]

 1
8

A
ug

 2
01

0

Improved Fast Similarity Search in Dictionaries ⋆

Daniel Karch, Dennis Luxen, and Peter Sanders

Karlsruhe Institute of Technology
danielkarch@gmail.com, {luxen, sanders}@kit.edu

Abstract. We engineer an algorithm to solve the approximate dictio-
nary matching problem. Given a list of words W, maximum distance d

fixed at preprocessing time and a query word q, we would like to re-
trieve all words from W that can be transformed into q with d or less
edit operations. We present data structures that support fault tolerant
queries by generating an index. On top of that, we present a generaliza-
tion of the method that eases memory consumption and preprocessing
time significantly. At the same time, running times of queries are virtu-
ally unaffected. We are able to match in lists of hundreds of thousands
of words and beyond within microseconds for reasonable distances.

1 Introduction and Previous Results

The problem of searching approximate of matches in a dictionary arises in many
fields. Most common is the search for the so called best match. The problem has
many applications. For example, Google’s ’Did you mean’ feature catches typos
in search queries. But in some settings, the uncertainty is higher and therefore
one is not interested in the best match, but also in other matches which are
still within a certain distance from the query. An interesting application is a
geocoding application that maps perhaps misspelled locations descriptions to
geocoordinates.

Each word is represented by a string of characters over a finite alphabet
Σ. The Levenshtein distance [1] ed(a, b) defines a metric between two words
a, b ∈ Σ∗ and is used in this work to compute the distance between two words.

The most trivial algorithm to solve the problem is scanning sequentially
through the input list and noting the best match(es) at each entry. The running
time is obvious and consists of a linear number of distance computations and
searching an entire directory on a standard desktop computer takes only a few
seconds even for dictionaries up to a few hundred thousand or even a million
entries. But in many settings this is too much, because queries arrive in a high
frequency. For example, a web search engine only has a few milliseconds to
process a single request and does not have the time to do exhaustive searching
in a large dictionary.

⋆ Partially supported by DFG Grant 933/5-1. A short version of the paper was pre-
sented at the 17th Symposium on String Processing and Information Retrieval (Spire
2010). The authors would like to thank Johannes Fischer for the fruitful discussions
and the anonymous referees for the detailed reviews.

http://arxiv.org/abs/1008.1191v2

Since these distance computations are rather expensive, it is natural to find
an algorithm that does not compare the input to the entire dictionary, but only
a few entries. A so-called filter represents a criterion to quickly discard large
portions of the search space.

The exploitation of the underlying metric space implied by the edit distance
[2] is easy. The set of words is partitioned by the distance of each element to a
more or less carefully chosen and perhaps random pivot element. By computing
the distance to the pivot, the search space is pruned using the triangle inequality.
However, this approach has limited effect, e.g. in natural language dictionaries.
Distances of most dictionary elements to the pivot lie in a small range and
pruning has a limited effect.

To cope with the limitations, different schemes were introduced from using
multiple pivots to tree-like data structures. The oldest of such trees is the BK-tree
data structure proposed by Burkhard and Keller [3], which is built recursively. A
root is selected whose subtrees are identified by distance values to the root. The
i-th subtree consists of elements of the dictionary at distance i to the root. The
subtrees are recursively built until the number of elements in a subtree is below
some threshold. Again, the triangle inequality is used to branch into or cut any
subtrees. A candidate set of possible matches is built by the union of all leaves
that are reached by the tree traversal. A rather weak result is that BK-trees
and its refinements need O(nα), 0 < α < 1, comparisons and node traversals on
average [2] for a dictionary of n entries. See Chávez et al. ’s publication [4] for a
survey.

The general problem of approximately matching words can be further re-
fined into two categories, namely matching elements from a set of words or
matching arbitrary patterns in strings [2]. As usual, in high dimensional search
problems there is a severe space-time trade-off. Cole et al. [5] give a solution for
the dictionary matching problem using O(n logd n) space and answer a query in
O(m · log logn + occ) for a dictionary of size n, query length m, edit distance
d. Here, occ is the number of occurrences of the pattern. Mihov and Schulz [6]
present a sophisticated but complicated method to solve the problem with uni-
versal Levenshtein automata. Russo et al. [7] propose a compressed index that
performs well for d = 1, 2, 3, but needs several seconds to perform queries for
larger d. The best known linear space solution needs O(md−1 logn log logn+occ)
query time [8] for error d ≥ 2. However, this solution is fairly complicated and
involves large constant factors, and to our knowledge there aren’t any implemen-
tations yet. Furthermore, any of the general-purpose approximate string match-
ing algorithms have to be adapted to perform dictionary matching: Either the
query has to be adapted to ensure that only complete words are found, or special
characters have to be introduced to mark the start and end of a dictionary entry.

More practically oriented work has focused on filtering algorithms that take
linear space, but these do not have strong worst case performance guarantees.
Kärkkäinen and Na [9,10] report on a linear space data structure that sup-
ports substring search, but has much larger query times compared to our result.
Ukkonnen [11] investigated suffix trees as a building block to solve the problem.

2

Likewise, Cobbs [12] gives a data structure based on suffix trees with linear time
preprocessing for a fixed size alphabet for searching fixed patterns. Queries to
the data structure can be answered in time O(mq + occ), where m is the length
of the pattern, q ≤ n and again occ is the number of occurrences.

A technique involving so called q-grams is popular among practitioners. But it
generally works for the Hamming distance only. q-grams are sub-words of length
q and the q-gram distance (or similarity) is defined by the number of q-grams
two words share. A generalization of this technique are gapped q-grams. Taking q
letters from a word as before and introducing don’t care defines a pattern instead
of sub-word. These don’t care positions are then called gaps. In [13] it is shown
that one-gapped q-grams can be extended to obey the edit distance metric. One
of the major difficulties of gapped q-grams is the computation of a threshold
which is the smallest number of matching q-grams between a pattern and a text.
Most experimental work focuses on finding this threshold, e.g. [14,15].

For more information on approximate string matching see [9,16,17,18].
To speed up edit distance computation itself, research focused on simple and

practical bit-vector algorithms [19]. Words of character length n with d or fewer
differences can be matched in O(nmd/w), where w is the word size of the machine
an m the length of a query. This is done by computing the bit representation
of the current state-set of the k-difference automaton. The running time was
further improved to (nm/w) [20] and further refinements [20] yield an O(dn/w)
expected-time algorithm for arbitrary large m.

The remaining parts of this paper are structured as follows. Section 2 gives
an introduction into the neighborhood relation on strings that we exploit. It
is followed by an discussion of our experimental results in Section 4. Finally,
Section 5 draws conclusions and identifies future work.

2 Approximate Dictionary Matching

Our method can be seen as an implementation of a general approach to approx-
imate matching known as (lossless) filtering. This can be formalized as follows:
Given a set S of words over a finite alphabet Σ, a metric δ : Σ∗×Σ∗ → R0, and
an error threshold d, a preprocessing algorithm produces a data structure that
allows fast evaluation of a function F : Σ∗ → P(S). For a query word q ∈ Σ∗,
F (q) computes a set of candidate words from S such that the set of approximate
matches {s ∈ S : δ(q, s) ≤ d} is a subset of F (q).

Deletion Neighborhood. We improve a filtering technique called Fast Similarity
Search (FastSS) [21] which is a generalization of a single error method proposed
by Mor and Fraenkel [22].

For integer d and a word w ∈ Σ∗ the d-(deletion-)neighborhood Nd(w) is
defined as the set of all subwords of w with exactly d deleted positions. Each
element of Nd(w) is called a residual string. Furthermore, a string w is called
originating string for residual r if and only if r ∈ Nd(w). We obtain a lossless
filter for a set of words S by precomputing the d-neighborhoods of strings in S.
As a filtering function, we obtain F (q) = {s ∈ S : Nd(s) ∩ Nd(q) 6= ∅}.

3

The correctness of this definition follows from the following Lemma:

Lemma 1. If two words u, v ∈ Σ∗ are within a distance d from each other, then
there exists a word w which has length at least |u|−d and consists of letters from
u and v in their original order. Assume that u is at least as long as v.

We use the concept of Ordered Edit Sequences [16] to show the claim. Our
proof is simpler and more intuitive than the proof from [21].

Proof. Recall that the edit distance is said to be the minimal number of edit op-
erations to transform one word u ∈ Σ∗ into another v ∈ Σ∗. The set of operations
available for any single transformation are op = {ins, del, chg} : Σ∪{ǫ} → Σ∪{ǫ}
with v = opd(opd−1(. . . (op1(u)) . . .)). The sequence ρ(u, v) = (op1, op2, . . . , opd)
is called edit sequence and we call it ordered if the operations are applied from
left to right. We define pos(·) to give the position of an operation within the
edit sequence. In other words ∀i : (pos(opi) ≤ pos(opi+1)). By definition of the
edit distance metric there exists an edit sequence of minimal length. Now, we
can show Lemma 1. Since ed(u, v) ≤ d it follows that the length of a minimal
ordered edit sequence is at most d, which means |ρmin(u, v)| ≤ d is the length
of a minimal edit sequence. This implies that v is changed at no more than d
positions. By deleting these at most d positions from v, we get a string w, which
has length at least |u| − d and preserves the letter ordering from u and v. �

Basic Data Structure. A static index data structure is generated in a precom-
putation phase that can be queried during an on-line phase. We insert a number
of values into a hash table that is part of our data structure. The structure
utilizes the hash table to store pointers to originating dictionary entries at the
hash values of residual strings. If any hash value has more than one originating
dictionary entry then the corresponding pointers are stored in a list. Figure 1
sketches the internal structure of the index.

H
a
sh

ta
b
le

Dictionary

h1

.

.

.

.h2

.

.

.

h4
.

.

.

h5

.

.

d1 d2 dn−1 dn

Fig. 1. Approximate string matching data structure.

4

Query. For an input query q and maximum distance d, the corresponding d-
neighborhood and its hash values are computed. If any element of the query’s
residuals is also an element of the data structure then the pointers to the orig-
inating dictionary entries give a set of candidates. Each of those might be an
approximate match. Once the candidate set is completely built, it is searched
exhaustively by computing the edit distance of each candidate to the query. By
removing all elements from the candidate set whose distance is larger than the
threshold d we get the set of all dictionary members that are at most a distance
d away from query q. Perhaps there exists an additional order on the candidates
stemming from the application. The algorithm can be adapted to not only return
the best match, but also a list of those candidates that are sufficiently close.

Precomputation. We compute the d-neighborhood of each element of the input
dictionary and insert the resulting information into our index data structure.
Doing this precomputation naively and storing all residual strings in a data
structure takes up an enormous amount of space. Instead, we use hashing and
reduce each element of the residual neighborhood into an integer number. We
insert pointers to the originating dictionary entries into the hash table at the
respective hash values of all residual strings. Therefore, only constant space is
needed per residual string regardless of the length of that string. We now present
an improvement to the algorithm.

Algorithmic Generalization. We limit the number of elements that are inserted
into the index while staying lossless. To do so, we split long input words in half,
compute the residual strings with half the number of errors, and adapt the query
algorithm, which will be explained in this Section. See Section 4 for an analysis
of the threshold value m, which indicates whether or not to split a word. Instead
of generating

(

|s|
d

)

hash values we insert only

(

|s|

⌊d
2
⌋

)

+

(

|s|

⌈d
2
⌉

)

values for a split dictionary entry s. The generalized d-neighborhood of w′ ∈ Σ∗

is the set of residuals that is found by computing all combinations of ⌈d
2
⌉ deleted

characters for the first and second half of w′.
The generation of the index is simple. But we have to pay some extra care at

query time, because insertions and deletions that transform words w into w′ can
take place at arbitrary positions. As a consequence, we can not rely on the length
of a query q to decide whether it has been split or not. Instead of splitting a
query q of length l at a fixed position, it is split several times in half at positions
in the interval of ⌈ l

2
⌉ ± ⌈d

2
⌉. Also, the allowed error is halved. If the length of

an input word is within m± d then the index is also searched for the non-split
string.

Consider these definitions. Let w ∈ Σ∗ be an entry of dictionary D and d the
maximum allowed error. Let u = p(w) and v = s(w) denote the first and second
half of the split word w. Prefixes u and suffix v are indexed, while q is the query.

5

Any query q is split at several positions as explained above and we define P(w)
to be the set of first and S(w) to be the set of second halves. Our method is still
correct since we can show the existence of a common residual string for either
the prefix or the suffix of a split query word by the following Lemma.

Lemma 2. Let q ∈ Σ∗, w = uv with ed(w, q) ≤ d. Consider P(q) (S(q)) to be
the set of ⌈d

2
⌉ many prefixes (suffixes) of q that are generated for each query to

the index. Then there exists at least one pair (p′, s′) with p′ ∈ P(q), s′ ∈ S(q)
and p′ ◦ s′ = q of prefix-suffix-elements for which either ed (u, p′) ≤ ⌈d/2⌉ or

ed (v, s′) ≤ ⌈d/2⌉. It suffices to test the split positions from the interval ⌈ |q|
2
⌉ ±

⌈ |d|
2
⌉ to find that pair.

Proof. Consider the edit sequence S that transforms w into q and that has length

at most d, s.t. ed(w, q) ≤ d. String w is split at position ⌈ |w|
2
⌉ into w = p◦s. Note

that the lengths of p and s differ at most 1. Sequence S is applied to w = p ◦ s
and yields q = p′ ◦ s′. Hence, either ed(p, p′) ≤ ⌈d

2
⌉ or ed(s, s′) ≤ ⌈d

2
⌉ or both.

The algorithm has to split query q exactly into p′ and s′ to guarentee that a

match is found. Assume that it doesn’t suffice to test the interval ⌈ |q|
2
⌉ ± ⌈ |d|

2
⌉

to find the correct splitting position. Then p′ is either shorter than ⌈m
2
⌉ − ⌈d

2
⌉

or longer than ⌈m
2
⌉+ ⌈d

2
⌉. Assume |p′| < ⌈m

2
⌉ − ⌈d

2
⌉. Then

⇒ |s′| > ⌈m
2
⌉+ ⌈d

2
⌉

⇒ |p′|+ ⌈d
2
⌉ < m

2
< |s′| − ⌈d

2
⌉

⇔ |p′|+ ⌈d
2
⌉ < |s′| − d

2
⇔ |p′| < |s′| − 2 · ⌈d

2
⌉ ⇔ |p′| − |s′| < −2 · ⌈d

2
⌉

⇔ |s′| − |p′| > 2 · ⌈d
2
⌉

This implies that the lengths of s′ and p′ differ by more than 2 · ⌈d
2
⌉. But then

edit sequence S has to be longer than 2·⌈d
2
⌉ operations, because length difference

is a lower bound for edit distance. The other case for |p′| > ⌈m
2
⌉ + ⌈d

2
⌉ follows

by the same line of argumentation. ⊓⊔

Wu and Manber [23] use partitioning into d+1 pieces to match one of the pieces
with no error, while Navarro and Baeza-Yates [24] gave a recursive partitioning
scheme for fast on-line approximate string matching.

See Section 4 for an experimental analysis of the generalization that shows
it uses half the space than our implementation of the original algorithm and
maintains stable query performance.

3 Analysis

Our variant makes heavy use of hashing as we argued before and we analyze
the penalty of our approach coming from hash collisions. First, consider the case
that we do not split the input string, which resembles the original method.

For each dictionary entry of length ℓ, we insert at most
(

ℓ

d

)

constant size
entries into the hash table. The hash table needs O(1) space per element since
the bit size of each entry is of constant size. Note that for d = 1 we obtain

6

overall linear space because O(ℓ) constant size hash table entries are stored for
a dictionary entry of size ℓ.

We resort to average case analysis for the query time using the following
model: Consider a dictionary of n words drawn uniformly at random from Σℓ

and an arbitrary query word q of length ℓ. In real world inputs, we have a mix
of words with different lengths. However, a query of length ℓ will mostly return
candidates of length ℓ for random inputs. Hence, there is no need to postulate
anything on the distribution of lengths – we just analyze the system for each
length separately.

Assume an order in which the residuals of a word can be generated. Consider
the 0/1 random variable Xijk that has value one iff the i-th residual of query q
is equal to the j-th residual of the input word k. The total number of residuals
that need to be considered is bounded by

X :=

(ℓd)
∑

i=1

(ℓd)
∑

j=1

n
∑

k=1

Xijk.

This is an overestimation of the actual number of residuals to be considered
since by deleting different sets of characters we might arrive at the same residual.
However, for not too small Σ this only happens rarely Let σ denote the size of
the alphabet actually used. We have P [Xijk = 1] = 1/σℓ−d = σd−ℓ. Hence, using
the linearity of expectation, we get an expected value of

E[X] = n

(

ℓ

d

)2

σd−ℓ (1)

This gives the number of residuals we have to consider. The number of actual
distance computations may be smaller since several residuals of q may match
several residuals of a dictionary entry sk, but we will compute the distance
d(sk, q) only once.

An interesting consequence of (1) is that, on average, we can expect a speedup
over the naive algorithm that is independent of the size of the input dictionary.
By applying the Markov inequality, we can estimate an upper bound of the
probability that the expected number is not a fraction of n. Let c be a constant
> 0.

P
[

X ≥
n

c

]

≤ c−1

(

ℓ

d

)2

σd−ℓ . (2)

See Section 4, where we experimentally analyze the behavior of the algorithm
for varying splitting parameters.

4 Experimental Results

Implementation Details. We implemented the data structure, the construction
and query algorithms in C++ using GCC Compiler version 4.3.2. We hashed all

7

dictionary no. elements avg. length size [MiB]

mobydick 37 924 9 0.31

town 47 339 10 0.49

english 213 557 10 2.20

wikipedia 1 812 365 9 17.06

Table 1. Basic information on our dictionaries.

residual strings with the built-in hash function of the Boost library v1.36 to a
32-Bit Integer and chained with a simple linear congruence.

The exhaustive search of the candidate set is done by a simple implementation
of the Levenshtein distance. It computes a band of width 2d+ 1 only. This way
we compute the distance exactly only if it is smaller than d and return otherwise
as soon as we get a certificate that the distance is larger than d. Since we need
O(1) to fill a cell in the distance table, we can verify a candidate in O(d · l),
where l is the length of the shorter word. In the experiments it took less than a
microsecond to verify any single candidate.

Environment. All of our tests were conducted on a single core of a Intel Xeon
X5550 CPU, running a version 2.6.27 Linux kernel. We compare the performance
of our optimizations against our own implementation only for reasons of fairness.

Test Instances. The sizes of the dictionaries used in the experiments range be-
tween about 38 000 and 1.8 million entries (see Table 4). All results were averaged
over a number of queries of perturbed dictionary entries. The word list mobydick
consists of the distinct words from Melvilles classic novel, the town dictionary
consists of German town names extracted from the OpenStreetMap project1 in
February 2009, the english dictionary is an extract of words from Webster’s En-
glish Dictionary and the wikipedia dictionary is the list of pairwise distinct words
from all english Wikipedia2 titles as of February 2009. Table 4 lists element count
and average word length of each test data set.

4.1 Splitting Parameter

Preprocessing Space. We analyze the amount of distinct residuals that are gen-
erated for each value of m ∈ 1, . . . , 30 and the average duration of a single query
against this index. To do so, we averaged over 1 000 randomized queries. Both
value m = 1 and m = 30 resemble worst cases. We present the results in the
plots of Figure 2 for edit distance 3. Other distances show similar behavior. Note
that we omitted the lower and upper values of m for clearer arrangement, be-
cause for the values 1, . . . , 5 (20, . . . , 30) nearly all (none) strings get split. We
present selected plots that show the experiments. Note the logarithmic scales for
query times. In all the experiments we see that there is a trade-off between the

1 http://www.openstreetmap.org/
2 http://www.wikipedia.org

8

101

102

103

 4 6 8 10 12 14 16 18 20
 2

 4

 6

 8

 10

 12

 14
T

im
e

[µ
s]

sp
ac

e
[M

B
]

split parameter

Town

query time [mic]
memory used

query time without split [mic]
memory used without split

101

102

103

 4 6 8 10 12 14 16 18 20

 2

 3

 4

 5

 6

T
im

e
[µ

s]

sp
ac

e
[M

B
]

split parameter

Moby Dick

101

102

103

 4 6 8 10 12 14 16 18 20
 10

 20

 30

 40

 50

 60

T
im

e
[µ

s]

sp
ac

e
[M

B
]

split parameter

English

102

103

104

105

 4 6 8 10 12 14 16 18 20

 100

 150

 200

 250

T
im

e
[µ

s]

sp
ac

e
[M

B
]

split parameter

Wikipedia

Fig. 2. Analysis of the Splitting Parameter for d = 2

memory consumption and average query time. The split parameter functions as
an adjusting value to choose between size of the index and query performance.
Our analysis shows that the index size can be halved by degrading the speed
of an average query within acceptable limit only. Especially, when splitting is
restricted to those dictionary entries whose length is larger than the average,
we can halve the memory consumption of the index. The query performance is
virtually unaffected.

Preprocessing Time. We investigated preprocessing times with and without split-
ting parameter set. The preprocessing was run for values d = 0, . . . , 4 on all of
our data sets. Figure 3 reports on the numbers.

The preprocessing is roughly ten times faster for reasonable values of the
splitting parameter than without any splitting. Mainly this is because we do not
store any additional information besides pointers to dictionary entries.

Query Performance. We conducted experiments on each list for maximum dis-
tances of d = {0, . . . , 4} to test the query performance for varying number of
allowed errors. For natural language dictionaries a distance of d = 3 is already
large and larger distances deliver matches that already look arbitrary. During
each query we generated the candidate set, verified each member of the set and
reported a best match found. Each test run picked 1 000 elements from the dic-
tionary and introduced up to d errors at random. The splitting parameter is set

9

102

103

104

105

 4 6 8 10 12 14 16 18 20

pr
ep

ro
ce

ss
in

g
[m

s]

split parameter

Town

d=2
d=3
d=4

102

103

104

105

 4 6 8 10 12 14 16 18 20

pr
ep

ro
ce

ss
in

g
[m

s]

split parameter

Moby Dick

103

104

105

106

 4 6 8 10 12 14 16 18 20

pr
ep

ro
ce

ss
in

g
[m

s]

split parameter

English

104

105

106

107

 4 6 8 10 12 14 16 18 20

pr
ep

ro
ce

ss
in

g
[m

s]

split parameter

Wikipedia

Fig. 3. Analysis of the preprocessing in relation to the splitting parameter.

to m = 10. The query times and search space sizes are averaged. Tables 2 and 3
report on these experiments.

The query column shows the time for the actual query in microseconds and
cand set is the number of elements in the candidate set on average. We see
the expected rise in the number of candidates that have to be verified by the
algorithm. We briefly compared the observed number of collisions against the
expected number from our analysis in Section 3. The observed number was
always lower as the expected one since our analysis is an overestimate of the
actual collision rate. In some cases we observed the order of a magnitude less
collisions than expected.

When looking at our result and the original experiments of Bocek et al. [21]
in Table 4 we see that our implementation performs better by about an order
of magnitude in all important areas. Although we know that our numbers were
measured on different hardware, they give an impression on the performance.
The experiments were run on the same random dictionary of 10 000 words. Note
that the case of m = ∞ corresponds to Bocek et al. ’s algorithm. They proposed
several improvements that either perform fast or have low space consumption
but not both at the same time. Since the results of the experiments are only
available as plots we have to estimate the values. We did so in a benevolent way
and compare the best of their values in each category against our implementation
with and without splitting. We see one potential source of performance problems
with our experiments as we tested on dictionaries with rather short words that

10

Mobydick Town English Wikipedia
d mem proc mem proc mem proc mem proc

0 0.25 0.061 0.46 0.156 2.36 0.886 14.41 7.131

1 1.33 0.320 1.79 0.576 8.55 3.450 55.84 32.287

2 4.57 1.272 6.91 2.483 30.49 12.596 170.79 107.289

3 9.78 4.044 15.18 7.458 61.37 36.309 342.18 270.506

4 16.09 14.647 27.20 28.144 105.75 117.970 603.35 922.521

Table 2. Preprocessing: Mem is the size of the index in [MiB], proc the duration [s].

Mobydick Town English Wikipedia
query cand query cand query cand query cand

d [µs] set [µs] set [µs] set [µs] set

0 2 1 0 2 0 1 1 1

1 5 5 8 9 8 6 34 25

2 84 61 99 99 122 46 502 702

3 553 606 644 613 644 502 7 019 9 900

4 2 974 3 376 7 250 3 720 7 250 4 520 55·103 65·103

Table 3. Query: query is the average time for a single query in microseconds, cand

set the average cardinality of the candidate set.

m = ∞ m = 10 Best of Bocek et al. BK-tree

preprocessing [ms] 2 649 349 5 000 - 7500 183
avg. query [µs] 114 18 100–200·103 935

dictionary size [MiB] 9.8 1.5 20 0.25

Table 4. Comparison Against Existing Experiments, best results bold and BK-tree
for reference.

have similar sizes. The higher the allowed error distance d is, the shorter residual
strings get. This leads to longer indices lists in the hash table, because it is
more likely that two distinct words will have common residual strings. This also
explains the larger number of candidates for higher values of d.

An experimental evaluation of BK-trees [25] and several variants reports
on the size of the search space that is visited depending on the allowed error
distance. Those experiments were conducted on a set of 100 000 English words
and report on a nearly linear growth of the visited search space going up from
5% for edit distance 0 to slightly more than 40% for a distance of 4. The size
of the visited search space in our experiments is always less than 1% and much
less than the search space size for the best BK-tree variant [25]. We were able to
confirm the high number of candidates with our own BK-tree implementation.
Table 5 reports on selected numbers of those experiments for the largest and
smallest of the dictionaries.

11

Mobydick Wikipedia
query cand query cand

d [µs] set [µs] set

1 198 197 1 258 1 184

2 3 586 4 127 94·103 116·103

3 8 722 10·103 374·103 486·103

4 13 083 15·103 862·103 802·103

Table 5. Selected numbers on the performance of BK-trees.

The number of candidates in BK-trees is high even for small allowed error
distances. Thus the filtering effect of the metric space is quite low.

5 Conclusions and future work

We improved a method for approximate string matching in a dictionary. We
developed algorithmic optimizations that provide a tuning parameter to choose
between space consumption and running time while having overall lower prepro-
cessing duration. Additionally, the performance has been validated experimen-
tally by comparison against BK-trees and the baseline version of FastSS.

We see possibilities to speed up the verification of the candidate set using
bit-parallelism [26] and SIMD instructions of current processors. This technique
has been successfully used by [27]. However, only about half of the time of the
algorithm is actually spent in the verification phase with the computation of the
edit distance. Likewise there might be opportunities to speed up the precom-
putation, in particular, using fast, incremental computations of hash functions
and using parallelization. On the other hand, it might be interesting to use data
compression techniques to further reduce the storage requirements.

References

1. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady 10 (1966) 707–710

2. Baeza-Yates, R., Navarro, G.: Fast approximate string matching in a dictionary.
In: SPIRE. (1998)

3. Burkhard, W.A., Keller, R.M.: Some approaches to best-match file searching.
Commun. ACM 16 (1973) 230–236

4. Chávez, E., Navarro, G., Baeza-Yates, R., Marroquín, J.L.: Searching in metric
spaces. ACM Comput. Surv. 33 (2001) 273–321

5. Cole, R., Gottlieb, L.A., Lewenstein, M.: Dictionary matching and indexing with
errors and don’t cares. In: 36th ACM Symposium on Theory of Computing. (2004)

6. Mihov, S., Schulz, K.U.: Fast approximate search in large dictionaries. Comput.
Linguist. 30 (2004) 451–477

7. Russo, L.M.S., Navarro, G., Oliveira, A.L., Morales, P.: Approximate string match-
ing with compressed indexes. Algorithms 2 3 (2009) 1105–1136

12

8. Chan, H.L., Lam, T.W., Sung, W.K., Tam, S.L., Wong, S.S.: Compressed indexes
for approximate string matching. Algorithmica (2008)

9. Kärkkäinen, J., Na, J.C.: Faster filters for approximate string matching. In:
ALENEX, SIAM (2007)

10. Ukkonen, E.: Approximate string-matching with q-grams and maximal matches.
Theor. Comput. Sci. 92 (1992) 191–211

11. Ukkonen, E.: Approximate string matching over suffix trees. In: CPM 1993. Volume
684 of LNCS., Springer-Verlag (1993) 228–242

12. Cobbs, A.L.: Fast approximate matching using suffix trees. In: Proceedings of the
6th Annual Combinatorial Pattern Matching Symposium (CPM’95). (1995)

13. Burkhardt, S., Kärkkäinen, J.: One-gapped q-gram filters for levenshtein distance.
In: CPM. Volume 2373 of LNCS., Springer (2002)

14. Kärkkäinen, J.: Computing the threshold for q-gram filters. In: Proceedings of the
8th Scandinavian Workshop on Algorithm Theory, Springer (2002)

15. Burkhardt, S., Kärkkäinen, J.: Better filtering with gapped q-grams. In: Funda-
menta Informaticae. (2001)

16. Maaß, M.G., Nowak, J.: Text indexing with errors. Journal of Discrete Algorithms
5 (2007) Selected papers from CPM 2005.

17. Maaß, M.G., Nowak, J.: A new method for approximate indexing and dictionary
lookup with one error. Inf. Process. Lett. 96 (2005) 185–191

18. Gollapudi, S., Panigrahy, R.: A dictionary for approximate string search and
longest prefix search. In: CIKM, ACM (2006)

19. Wu, S., Manber, U.: Agrep – a fast approximate pattern-matching tool. In: Pro-
ceedings USENIX Winter 1992 Technical Conference. (1992)

20. Myers, G.: A fast bit-vector algorithm for approximate string matching based on
dynamic programming. J. ACM 46 (1999) 395–415

21. Bocek, T., Hunt, E., Stiller, B.: Fast similarity search in large dictionaries. Tech-
nical report, Universität Zürich (2007) http://fastss.csg.uzh.ch/.

22. Mor, M., Fraenkel, A.S.: A hash code method for detecting and correcting spelling
errors. Commun. ACM 25 (1982) 935–938

23. Wu, S., Manber, U.: Fast text searching: allowing errors. Commun. ACM 35
(1992) 83–91

24. Navarro, G., Baeza-Yates, R.: Improving an algorithm for approximate pattern
matching. Algorithmica 30 (1998) 473–502

25. Motwani, G., Nair, S.G.: Search efficiency in indexing structures for similarity
searching. CoRR cs.DB/0403014 (2004)

26. Hyyrö, H., Fredriksson, K., Navarro, G.: Increased bit-parallelism for approximate
string matching. ACM Journal of Experimental Algorithmics 10 (2005)

27. Fredriksson, K.: Engineering efficient metric indexes. Pattern Recogn. Lett. 28
(2007) 75–84

13

