
IMPROVING COMPILER OPTIMIZATIONS USING MACHINE

LEARNING

by

Sameer Kulkarni

A dissertation submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in Computer and
Information Sciences

Summer 2014

c© 2014 Sameer Kulkarni
All Rights Reserved

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3642324
Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

UMI Number: 3642324

IMPROVING COMPILER OPTIMIZATIONS USING MACHINE

LEARNING

by

Sameer Kulkarni

Approved:
Errol L. Lloyd, Ph.D.
Chair of the Department of Computer and Information Sciences

Approved:
Babatunde A. Ogunnaike, Ph.D.
Interim Dean of the College of Engineering

Approved:
James G. Richards, Ph.D.
Vice Provost for Graduate and Professional Education

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
John Cavazos, Ph.D.
Professor in charge of dissertation

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
James Clause, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Xiaoming Li, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Chengmo Yang, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Mario Wolczko, Ph.D.
Member of dissertation committee

ACKNOWLEDGEMENTS

The work done during my years as a graduate student has been inspired, and

enabled by many people. I am grateful for their support and encouragement and wish

that I am able to emulate their support and kindness at every opportunity available.

First, I would like to thank my advisor John Cavazos whose support and confi-

dence was absolutely instrumental, and evident at every step of this dissertation. His

patience and kindness provided me with the confidence to continue during my most

troubling times, in research as well as personal life.

I want to thank Dr. Mario Wolczko for his inputs and encouragement during

my summers at Oracle, and the opportunities provided that helped me during this

research, Dr. Christian Wimmer and Douglas Simon for their, insights and the freedom

I received from them work on some exciting projects. I am grateful and appreciate the

opportunity offered to me by Elenita Silverstein at JPMC that helped me immensely

in writing the final chapter of this thesis.

I would also like to thank all the present and past members of Cavazos Lab for

the provided help, offered friendships, and the sense of belonging above all. I would also

like to thank my friends from before and during grad school, who helped in helping

me proof read, find and correct a lot of typos and errors. I would like to show my

gratitude with copious amounts of C2H5OH, when we meet.

Finally and most importantly I would like to thank my family, my mother Urmila

Kulkarni and father Col. S. A. Kulkarni, my sister Anagha and my wife Rasika, for

their support and molding me as a person I am today. I would not be here had it not

been for your encouragement and support.

v

Dedicated to:

My late mother,

wish you were with us today...

vi

TABLE OF CONTENTS

LIST OF TABLES . ix
LIST OF FIGURES . xi
ABSTRACT . xiv

Chapter

1 INTRODUCTION . 1

1.1 Motivation . 2
1.2 Compiler Tuning . 7
1.3 Optimization Ordering . 9
1.4 Optimization Tuning . 11
1.5 Structure of the dissertation . 12

2 BACKGROUND AND RELATED WORK 14

2.1 Auto-tuning . 15
2.2 Machine Learning Applied to Compilation 16
2.3 Phase Ordering . 18
2.4 Method Inlining . 20
2.5 Machine Learning . 22
2.6 Markov Property . 25
2.7 Overview of Training and Deployment 26
2.8 Neuro-Evolution Overview . 28
2.9 Decision Tree . 32
2.10 Fitness Function . 35
2.11 Genetic Algorithms using ECJ . 36

3 OPTIMIZATION ORDERING . 38

3.1 Phase-Ordering with Genetic Algorithms 39
3.2 Issues with Current State-of-the-Art 41
3.3 Proposed Solution . 42

vii

3.4 Feature Extraction for Phase Ordering 44
3.5 Experimental Setup . 45
3.6 Optimization Levels . 47
3.7 Results . 52
3.8 Discussion . 58

4 OPTIMIZATION TUNING . 69

4.1 Introduction to Method Inlining . 70
4.2 Importance of Method Inlining . 72
4.3 Present Inlining Methodology . 73
4.4 Areas with Potential for Improvement 74
4.5 Other Proposed solutions . 79
4.6 Search Space of Method Inlining Settings 80
4.7 Approach . 81
4.8 Experimental Setup . 86
4.9 Benchmarks . 87
4.10 Results . 89

5 OPTIMIZATION SELECTION . 104

5.1 Introduction to Optimization Selection 105
5.2 Optimization Levels . 107
5.3 Optimization Flag Filtering . 108
5.4 Benchmark Selection . 115
5.5 Training . 116
5.6 Dynamic Instruction Counts vs. Execution time 119
5.7 Experimental Setup and Terminology 123
5.8 Results . 126

6 CONCLUSION . 134

BIBLIOGRAPHY . 137

viii

LIST OF TABLES

1.1 Table calculating the enormity of phase ordering search space . . . 5

3.1 Source features collected during Phase ordering 46

3.2 Optimizations (and abbreviations) used in present phase ordering
experiments. 48

3.3 Average training time by GA for each benchmark individually. . . . 51

3.4 Time taken in days to train the training set, to provide the results in
Figure 3.7 . 51

3.5 Average number of optimizations, applied by the trained ANN. . . 58

3.6 Best sequences for the hottest methods SPECjvm2008 59

3.7 Genetic Algorithm versus Neural Network 63

4.1 Features used by the default method inlining heuristic in Maxine VM
and the HotSpot VM. 76

4.2 Source Features collected during Method Inlining 80

4.3 List of benchmarks in the Java Grande [1] benchmark suite. 88

4.4 List of benchmarks in the SPECjvm98 benchmark suite. 88

4.5 Default vs tuned heuristic for Maxine VM 95

4.6 Comparison of achieved speedup from ANN, decision tree, and the
GA-tuned heuristic. 97

5.1 List of Optimization levels in the GCC compiler. 108

ix

5.2 List of GCC Optimizations used in optimization selection [2]. . . . 112

5.3 List of GCC Optimizations used in optimization selection [2]. . . . 113

5.4 List of GCC Optimizations used in optimization selection [2]. . . . 114

x

LIST OF FIGURES

1.1 The graph above shows the random inliner 6

1.2 Thesis structure. 13

2.1 General structure of an Artificial Neural Network 23

2.2 Deployment architecture . 26

2.3 Deployment architecture . 28

2.4 Training of the ANN using NEAT 30

2.5 Phase ordering mechanism . 33

2.6 Training of the a chromosome using ECJ (GA) 36

3.1 Performance of a generalized vs. customized sequence 39

3.2 Block diagram of the compiler explaining Phase-ordering setup . . . 44

3.3 Creating and evaluating ANN generated by NEAT 45

3.4 Performance of NEAT in Adaptive Compilation scenario. 53

3.5 Performance of NEAT in Optimizing Compilation scenario. 56

3.6 Speedup based on method importance 65

3.7 Speedup based on method importance 65

3.8 code for scimark.lu.LU.factor, the hottest method for the
SpecJVM2008 lu benchmark . 66

3.9 Effect of optimization ordering in lu benchmark 67

xi

3.10 Pseudo-code for matmult, the hottest method for the SpecJVM2008
sparse benchmark. 67

3.11 Change in machine code using different phase ordering 68

4.1 Diagram explaining an instance of Method Inlining 70

4.2 Performance of the random inliner on the raytrace benchmark . . . 73

4.3 Inlining heuristic of the C1X compiler . 74

4.4 Inlining heuristic of the server compiler 74

4.5 A high level representation of the default inliner on the Java HotSpot
Server VM . 75

4.6 Calculating block weight . 77

4.7 Performance of different benchmarks when using different caller sizes
as thresholds. 79

4.8 Framework used to construct effective inlining heuristics with
machine learning . 81

4.9 Comparative performance of method inlining using GA, Decision Tree
and Neural Networks on MaxineVM 90

4.10 Decision tree generated from the trained ANN 93

4.11 Speedup of DaCapo and Scala Benchmarks in the Java HotspotVM 99

4.12 Speedup of SPECjbb2005 on Java HotSpot VM 102

5.1 Frequency distribution of effect of a compiler optimizations on an
application. 105

5.2 Performance of different optimizations on different benchmarks. . . 109

5.3 Performance of Genetic Algorithm when changing the number of
optimizations in the search space. 110

5.4 Block Diagram describing the use of Genetic Algorithm. 118

xii

5.5 Composite fitness function combining execution time and numerical
accuracy. 119

5.6 Difference in performance when measuring DIC and execution time. 120

5.7 Difference in performance when measuring DIC and execution time. 121

5.8 Chromosome used to control the optimization sequence of the GCC
Compiler. 124

5.9 Representation of the GA cluster architecture. 125

5.10 Evolutionary improvement of optimization configuration over
generations. 126

5.11 Speedup measured in Dynamic Instruction Counts. 128

5.12 Speedup measured in execution time. 129

5.13 Average noise in system when measuring execution time. 131

5.14 Relative importance of optimizations in the best performing
optimization sequences. 132

xiii

ABSTRACT

The increase in the use of computation in every walk of life and its pivotal role in

creating new avenues that were not possible before computers is obvious and does not

warrant proof. This dramatic rise in the use of computers would continue for the

foreseeable future. The hardware has continued to grow in complexity, and

programming languages have evolved to make it easier for a human being to design

and construct more and more complex solutions. The only bridge between the ever

increasing complexity of the underlying hardware and the increasing simplicity of the

language designed to describe the solutions that run on it is the compiler.

Compilers have grown more and more complex in the past, and will continue to grow

in functionality and complexity in two primary directions. One direction is in the

ability of the compiler to increasingly understand languages that are closer and closer

to human language, that would drastically reduce the human effort involved in

designing a solution. The second direction, that is also the primary focus of this

dissertation is in the ability of the compiler to create more and more complex machine

code that can not only run on the underlying hardware, but also take advantage of

the hardware’s ever increasing complexity in improving application performance.

This role of the compiler, to translate the original source code into complex machine

code and squeeze all possible performance from the hardware can be quantized into

discrete steps. These discrete steps that change and transform the code with the goal

of optimizing the final machine code are referred to as optimizations.

The number of optimizations that are available in modern day compilers are in their

hundreds, and would only grow in number in the future. This increase in the number

of optimizations available to the compiler is primarily due to the fact that each

xiv

optimization would try and target specific code constructs and increase their

efficiency by applying specific templates. As the optimizations target increasingly

specific code constructs, increasing number of optimizations that are being applied to

a specific code may have never been intended for the code that is presently being

compiled. At present all compilers apply a given set of optimizations blindly to all

the code being compiled by the compiler, with the assumption that the optimization

would either increase the performance of the code or make no changes. This

assumption would mean that either the optimizations are not aggressive enough to

reach their full potential for fear of having unintended consequences, or mean that in

certain cases even degrade code performance. Knowing which optimizations to apply

from the hundreds available in modern day compilers becomes difficult and important

at the same time. Our research in improving compiler optimization planning aims to

solve this impasse.

Selective application of the optimizations from the vast number of available

optimizations to the compilers is the key to increasing performance of the code being

compiled. This selective application of the optimizations either involves extensive

human involvement that would be (and probably already is) too complex and

unsustainable or involve the use of intelligence embedded in the compiler itself.

Performance improvement achieved using compiler optimizations without any input

from an application developer provides this crucial boost to the application with no

recurring associated cost. Another advantage of such techniques is that it can provide

performance improvement over and above an already optimized code design.

The process of providing the compiler with such intelligence is the primary focus of

this dissertation. The optimization plan of the compiler can be primarily divided into

three different logical parts, Optimization Selection, Optimization Ordering, and

Optimization Tuning ; we would present our research and specific solutions to

improving all three of these steps involved in optimization planning.

Optimization Selection is the processing of selecting the beneficial optimizations from

xv

a given set of optimizations. We present an optimization selection solution on the

widely used GCC compiler used to compile a financial library. The financial library is

used by one of the largest commercial financial firms to model their risk exposure,

and the computational needs of this financial library are a significant chunk of the

total computation needs of the firm. We achieve a speedup of 2% to 4% compared to

the baseline, which could (if implemented) directly impact their extremely large

annual computational budget.

Optimization Ordering is the process of arranging the order in which a set of

optimizations are applied to a given piece of code. The application of multiple

optimizations modify and transform the codes that they are applied to, and thus

indirectly interact with each other, some of the optimizations are clean up

optimizations and others could be enabling optimizations for another set of

optimizations. Such interdependence of optimizations makes it more and more

difficult to understand intuitively the right order to apply these optimizations, and

generates the need for a method to generate good optimization orderings. This

problem is usually referred to as phase ordering, and has been considered to be a

difficult problem to solve in the past. In this dissertation we show that using source

feature analysis in combination with machine learning algorithms can provide us with

a robust heuristic in solving phase ordering. We use the Jikes RVM (Jikes Research

Virtual Machine developed by IBM) to present our results and achieve a 4% to 8%

improvement in the final performance of a given set of benchmarks.

Finally Optimization Tuning is the process of tuning a single optimization to improve

its efficacy. The example of optimization tuning that we study in this dissertation is

method inlining, We use the Java HotSpot Virtual Machine (the most commonly

used Java VM developed by Sun Microsystems and now actively developed and

maintained by Oracle) and Maxine VM (A Java Research VM developed by Oracle)

to present our results in improving the performance of method inlining, and achieve a

10% to 14% improvement in performance. We also show an interesting twist to

xvi

presenting the final machine learning heuristic in the form of a decision tree, and

discuss the advantages of using this over an artificial neural network.

In presenting our research on Optimization Ordering and Optimization Tuning we

use dynamic compilation environments. In a dynamic compilation environment, the

advantages of improving any aspect of the compilation process are compounded as

the compilation of the code is performed in parallel with the application being

executed. Any reduction in the compiler burden would make more resources available

for the executing application, and thus provide a further boost the final performance

of the application. Another interesting study during this research has been in the use

of source code features as a way to discretize and characterize the code being

compiled in the form of a vector, that can be used by the machine learning algorithm

as an input to propose customized recommendations to improve the compiler

optimization plans. We feel that using source code features to characterize the code

being compiled is crucial in the next step of evolving the compiler into providing

intelligent and customizable solutions in the future.

xvii

Chapter 1

INTRODUCTION

For a long time increasing application performance has primarily relied on in-

creasing clock frequencies, and no other change in the underlying code or any major

change in the architecture. This free ride is no longer possible due to energy constraints.

Recent advancements in computer architecture have focused on using multiple cores to

distribute computational workload instead of increasing the speed of a single processor.

Taking advantage of the more recent advancements in architecture requires a concerted

effort on the part of the architecture designer as well as the application developer. This

effort is required as there are more processing cores that are available to perform par-

allel computation, and there could be multiple applications that are competing for a

limited set of resources. In such a situation of resource contention and multi threaded

architectures, the role of a compiler becomes more important.

In order to be able to optimize all kinds of codes being compiled by the compiler,

the compiler writers have added many compiler optimizations. Modern day compilers

have consistently added more and more optimizations for example GCC has more than

200 such optimizations, JikesRVM applies more than 150 total compiler optimization

steps. These compiler optimizations help to increase the performance of specific snip-

pets of code. However these optimizations often may not increase performance of large

portions of codes that they are applied on, this would mean wasting compiler com-

putation time and resources. In some cases the optimization might also degrade the

performance of certain snippets of code being compiled, in such situations not only

are the resources of the compiler wasted, but also the final code would perform worse

that it would have had the compiler not applied the specific optimization. Given the

1

number of optimizations available it is not possible for an application developer or

even the compiler writer to create an exhaustive set of scenarios that could benefit

all possible code combinations that one would encounter in the real world. In order

to mitigate this problem it is imperative that there be a system that can intelligently

create, modify and curate the optimization plan specific to the code being optimized,

and not try have have a globally static plan with the aim to optimize any code that

can possibly be generated.

In this dissertation we use three different Java Virtual Machines (JVMs) and

the GCC compiler (version 4.8). During the rest of the thesis we refer to the VMs as

the compiler, however it should not be confused with the Java Compiler that converts

the Java source code to Java Bytecode. The reason for this is that the VM takes in the

Bytecode as the source code and either uses an interpreter to execute the code directly

or uses the in-built compiler to compile the code into native code and run it directly

on the host. In these experiments and others in which we use the term compiler to

refer to the compilation that happens in the VM when the bytecode is converted to

native machine code, this is the compilation step that we would try to tweak, optimize

and improve.

The primary area of research in this dissertation is the use of source feature

analysis and machine learning in the use of improving the application of compiler

optimizations. Compiler optimizations aim at improving the quality of the final code

being generated. This chapter gives a brief introduction to compiler optimizations and

it’s importance, and then talks about the difference between optimization selection,

optimization tuning, and phase ordering.

1.1 Motivation

Compilers read in source code written by an application developer and translate

it into machine code. During this process of translation the source code goes through

multiple iterations of small translations also called transformations. Some of these

2

transformations are required and mandatory for the correct generation of the final

machine code, and some are optional. The goal of these optional transformations is

to improve quality and performance of the code being generated, the improvement in

quality could be in the form of reducing the running time of the code or reducing the

memory footprint of the code during execution. These optional transformations are

also called compiler optimizations. Most compilers apply many compiler optimizations,

and they apply these compiler optimizations one at a time. The advantage of compiler

optimizations are that they can improve efficiency and code performance over and above

the optimized code written by the application developer. This improvement through

compiler optimizations could be due to the fact that some of the optimizations become

possible during compile time, or the writer may have written some code that could be

made more efficient.

In any modern day compiler that is extensively used the compiler might see a

very large amount of source code. Since this code is written to perform a wide range

of tasks and by a large number of different people, the code that is being compiled

might look very different from one application to the other. Thus in order to be able

to compile and optimize such a large variety of source code the compiler has in its

arsenal a large number of optimizations. However in certain situations a compiler

optimization might leave the application performance unaffected, or even degrade it in

certain circumstances. Another way to put it would be to say:

The compiler optimization can improve the performance of some of the code all

of the time or all of the code some of the time, but not all of the code all of the time.

Compiler optimizations by definition maintain the correctness of the code being

compiled, but provide no guarantees on the efficiency of the code. If the compiler is

smart it might be able to apply the right set of optimizations that have a positive effect

on the code being compiled. The method of selecting the right set of optimizations from

a given set of available optimizations has been an active area of research for multiple

decades and there are still more questions that need to be answered. The ability to

3

apply only beneficial optimizations would not only benefit the code being compiled,

but would also reduce the load on the limited resources of the compiler.

Since optimizations are applied one at a time the order in which they are applied

also affects the performance of the final compiled machine code. Fixing the order in

which these optimizations are applied is a difficult problem and is called phase ordering.

There are three fundamental challenges in most problems that involve compiler

optimizations, exhaustive exploration, sparse search space, and performance evaluation.

Any solution that attempts to solve or mitigate a compiler optimization plan would

need to address these three challenges. In section 1.1, we take an example of each of

these challenges and steps required to mitigate them.

Exhaustive exploration

The number of optimization configurations that generate accurate code is ex-

tremely large. It is not possible for a compiler or the compiler writer to go through

and test out all possible configurations. An easy way to understand the scope of the

size of the search space is when we consider the example of phase ordering. As a stan-

dard practice compiler designers set a limit on the number of optimizations applied

during a specific compilation. For example in the Jikes RVM compiler the number

of optimizations that are applied during O3 optimization level are 67. If we consider

that there are only 40 optimizations that can be applied and our phase ordering is

limited in length to a maximum of 25 optimizations long, then the number of possible

optimization orderings would be 4025. Normally to measure the performance of the

compiler optimization sequence, one would have to compile the source code and then

run the generated machine code, and measure the running time. To compile and run

a piece of code might take a few seconds. If the time needed to execute this code is

reduced by nine orders of magnitude, and take only one nano second to evaluate each

optimization sequence, total time required to evaluate all possible sequence would still

4

be more than million times the age of the universe.1 The rough estimate of the size of

the search space has been calculated in the Table 1.1 below:

Rough Calculations 1

Number of optimizations available for phase ordering = ops = 40
Sequence length of the final phase ordered sequence of optimizations = len = 25
Time to compile and run a piece of code = 1 n sec. = 10−9 sec
Number of unique sequences = opslen = 1.125 ∗ 1034
Time take to evaluate one sequence = 1 ∗ 10−9sec
Total time for all evaluations = 1.125 ∗ 1025sec
Age of the universe = 4.354 ∗ 1017sec

Table 1.1: Table calculating the enormity of phase ordering search space

From the Table 1.1 we can see that the amount of time needed is closer to

million times the age of the universe. The Table 1.1 assumes that we use just one fixed

sequence on all the methods of a benchmark, and past research has shown that each

method would perform best with individually customized sequence of optimizations.

This means that the number of possible combinations would be even larger in the real

world. Thus brute force cannot and never will be an option to iterate the search space

of all available phase orderings. Due to the extremely large size of the search space,

there have been some attempts to find alternate methods to intelligently prune the

search space, and try and make this problem more manageable.

Sparse search space

The previous section gave a rough picture of how big the search space could

get for even small scale problems. Another problem that is common is how sparse the

search space could be. Sparse search space primarily refers to the concentration of

good optimization configuration points in the total possible search space. If there are

1 The values in this table are an pseudo realistic examples based loosely on the com-
pilers being used. The time taken to evaluate one sequence on one benchmark is an
almost unrealistically optimistic value and would certainly be much larger in the real
world.

5

specific instances was the random inliner able to match or improve on the default

inliner. This means that a vast majority of sampling points in the search space of

possible inlining decisions make a worse decision than the default inliner. The red line

in the Figure 1.1, shows the speedup that one would achieve if the compiler completely

disabled the method inlining. There are almost 170 points that are equal to or worse

than the performance of the code if there was no inlining at all, and only two points

that were better than the default inliner. These numbers present an interesting result,

that the compiler is almost a hundred times more likely to find an optimization point

that is worse than or equal to disabling the method inlining completely, than find a

point that is as good as or better than the default inliner. This result could give us

the rough picture of how futile it would be to perform random sampling as compared

to an intelligent search approach.

Performance prediction

A fundamental problem commonly faced when trying to quantify the benefits

of a compiler optimization is the difficulty in predicting its effects on a piece of code.

The most accurate method to quantify the effects of a particular optimization plan is

to first compile the code and then actually execute it to collect the timing information.

This makes the testing of a given solution very time consuming, and also makes a lot

of machine learning techniques unsuitable.

1.2 Compiler Tuning

There are primarily three different ways of improving the performance of com-
piler optimizations for a given piece of code:

• Optimization Phase Ordering

• Optimization Tuning

• Optimization Selection

7

A very brief introduction to the above three ways is presented below. In order to

understand these methods we use an example of an imaginary compiler C, that has 26

compiler optimizations named A to Z.

Optimization Selection

Optimization selection is the process of selecting the set of optimizations that

have the best chance of improving the quality of the code. For example given a piece

of code being compiled by C the Optimization selection algorithm might pick a subset

of the optimizations available to it, and only apply optimizations B, D, E, and K. Note

that there is no fixed order that is being dictated by the algorithm itself.

Optimization Ordering (Phase Ordering)

In Optimization Ordering the algorithm would select the optimizations to be

applied, and also select the order in which the optimizations are applied. For example,

if the compiler was to apply optimizations B,D,E, and K, the phase ordering algorithm

would control the order by applying optimization E, then applying optimization K

followed by B and D (E → K → B → D). This ordering would potentially give

different results than applying the optimizations in a different order (e.g D → B →
K → E). Optimization ordering is important as some optimizations are clean up

optimizations, only effective when another optimization has already been applied to

the code already. This is a tougher problem to solve and has been the primary area of

study during our research.

Optimization Tuning

Some compiler optimizations are binary optimizations, where the only choice

the compiler has over them is to either apply the optimization or to not apply the

optimization. Other optimizations are more complex optimizations and they can be

finely tuned. Optimization Tuning is the process of modifying and restructuring the

parameters of a mutable optimization in order to increase its efficacy. For example,

if optimization K is the optimization that has multiple parameters that govern its

8

behavior, and is being tuned, the compiler could try multiple settings and levels to try

and find the values that provide the best performance improvement.

1.3 Optimization Ordering

There has been very little effort done on improving the phase ordering problem.

The research during the initial stages of this dissertation aimed at providing a good

solution to compiler phase ordering.

Importance of phase ordering

As stated earlier in Section 1.2, the compiler optimizations interact with each
other. These interactions can be basically be classified into three different kinds,
namely:

Enablers Some optimizations enable other optimizations or create the environment
required for another optimization to execute.

Cleanup An optimization is a clean up optimization if it needs to be applied after a
particular optimization or more commonly after a set of optimizations.

Grouped Optimizations Set of optimizations that need a starting optimization and
end with an ending optimization. All these optimizations in the group must be
applied only between these two starting and ending optimizations, thus can be
called grouped optimizations.

These dependencies need to be respected during the design of the compiler, and

also when the compiler is generating an optimization sequence. Phase-ordering has

been an open problem in compilation research for decades. The only way to know the

effectiveness of a sequence is to apply the optimizations to the code and run the code

either in the simulator or on the actual machine. Another problem is that the number

of possible orderings make it impossible to use brute force on these problems.

Solving the problem of phase-ordering of optimizations has been approached in

many ways. Compiler writers typically use a combination of experience and insight to

construct the sequence of optimizations found in compilers. In this approach, compro-

mises must be made, e.g., should optimizations be included in a default fixed sequence

9

if those optimizations improve performance of some benchmarks, while degrading the

performance of others for example, GCC has around 250 “passes” that can be used, and

most of these are turned off by default. The GCC developers have given up in trying to

include all optimizations and hope that a programmer will know which optimizations

will benefit their code.

In optimizing compilers, it is standard practice to apply the same set of op-

timizations in a fixed order on each method of a program. However, several re-

searchers [3, 4, 5], have shown that the best ordering of optimizations varies within

a program, i.e., it is function-specific. Thus, we would like a technique that selects

the best ordering of optimizations for individual portions of the program, rather than

applying the same fixed set of optimizations for the whole program.

This research develops a new method-specific technique that automatically se-

lects the predicted best ordering of optimizations for different methods of a program.

We develop this technique within the Jikes RVM’s Java Hotspot compiler to automat-

ically determine good phase-orderings of optimizations on a per method basis. Rather

than developing a hand-crafted technique to achieve this, we make use of an artificial

neural network (ANN) to predict the optimization order likely to be most beneficial

for a method. Our ANNs were automatically trained using Neuro-Evolution for Aug-

menting Topologies (NEAT) [6].

We trained our ANNs to use the source features of the method being compiled as

input properties, its current optimized state and to output the optimization predicted

to be most beneficial to the method at that state. Each time an optimization is applied,

it potentially changes the properties of the method. Therefore, after each optimization

is applied, we generate new features of the method to use as input to the ANN. The

ANN then predicts the next optimization to apply based on the current optimized state

of the method. The technique solves the phase-ordering problem by taking advantage

of the Markov property of the optimization problem. That is, the current state of the

method represents all the information required to choose an optimization to be most

10

beneficial at that decision point. We discuss the Markov property and our approach in

more detail in Section 2.6.

The application of machine learning to compilation has received a lot of atten-

tion. However, there has been little effort to “learn” the effect that each optimization

has on the code and to use that knowledge to choose the most appropriate optimiza-

tion to apply. To the best of our knowledge, the technique described here is the first

to automatically induce a heuristic that can predict an overall optimization order-

ing for individual portions of a program. Our technique learns what order to apply

optimizations rather than tuning local heuristics, and it does this in a dynamic com-

pilation setting. This approach can provide performance improvement for even a well

engineered system.

1.4 Optimization Tuning

Optimizations cannot always be considered as binary functions. Some optimiza-

tions can change in aggressiveness or modify their behavior based on certain factors or

changes to the environment. The environment in this case comprised of the code being

compiled and the target machine.

Method inlining is one such optimization that can be extensively tuned. Method

inlining is also one of the optimizations that has the largest impact on the performance

of the application being compiled. Research done during this dissertation extensively

studies this optimization and shows the different parameters that may affect its effi-

ciency.

The Java Hotspot compiler method inlining optimization happens during byte-

code load phase of the compilation. The bytecode is loaded when compilation of the

class is triggered. The triggering mechanism can be specifically tuned, but is usually

after a predetermined number of method invocations of the method. During bytecode

load the compiler reads the bytecode and may recursively invoke method inlining of

methods that are being called in the method being compiled. Since the method might

11

have been executed multiple times in the past, these execution scenarios could be made

available to the compiler to make a better prediction of the relative importance of each

part of the method. It is the presence of this information that can be taken advantage

of by the compiler to make better decisions.

Compilation of Hot methods

The method inlining optimization is studied under the Java Hotspot server

compiler. All code being executed is initially interpreted and only the codes that are

frequently executed are sent for compilation. This method primarily helps in reducing

initial compile time and reduces load on the compiler. Another secondary advantage in

the case of compiler optimizations is in terms of profiling information. When the Hot

Methods are actually compiled there is a vast amount of profiling information that is

available about the method, and this information can be used by the compiler to more

effectively apply the right set of transformations.

1.5 Structure of the dissertation

This thesis has been divided into six chapters. Chapter 2 discusses the related

work that is relevant to the research presented in this dissertation, followed by an in-

troduction to Machine Learning and the theory supporting the methods that were used

during this research. In Chapter 3 we introduce the concept of Optimization Ordering,

the need for phase ordering, our proposed solution, the theory that would support

our solution and the results that we observed using our methods. The next chapter

on method inlining (Chapter 4) discusses a method of tuning a single optimization to

extract the best possible performance from applying the optimization. This chapter

also introduces the concept of using profiling information in combination with source

features to get good performance improvements in method inlining. We also present

a method to convert an Artificial Neural Network into a decision tree, to improve the

12

Chapter 2

BACKGROUND AND RELATED WORK

Compiler optimizations have existed ever since the first compilers that compiled

FORTRAN code. Compiler optimizations are in a way the very foundation stone of the

effort to develop compilers. As the size and the complexity of the applications grew it

became more and more logical to start writing code in a higher level language instead

of the basic but extremely difficult to read machine code. This need for compilers

can be understood from the point of view of the large projects that were becoming

more and more common, however the adoption and the use compilers would only be

possible if the compiler could produce code that was comparable in performance to a

code that was developed by an application developer using machine code. The direct

comparison of the compiled code with hand tuned machine code has been the primary

reason for developing empirical rules and specific templates that the compiler would use

to improve the performance of the application being compiled by the compiler. These

early templates and empirical rules were the first compiler optimizations developed

with the aim to generate code that was better than the one written by the application

developer.

Since that time more and more compiler optimizations have been introduced.

The introduction of a compiler optimization could be primarily for two reasons. The

first, to take advantage of a specific feature in the underlying architecture like instruc-

tion pipelining, cache or the presence of special registers. The second, to improve small

pieces of code that the compiler comes across that can be directly be converted into

a more optimal machine code. The number of different architectures and the amount

of computational power available have exponentially increased following the Moore’s

14

law, so has the amount and kind of code increased due to the wide spread adoption

of computation in all walks of life. This has led to an explosion in the number of

optimizations available or needed. Compiler optimizations can be viewed as a two

sided coin. One side is the research into creating a new optimization that improves a

particular type of code snippet. The other side is to study the already available list of

optimizations and measure their suitability. This chapter describes different techniques

that have been used by researchers in the past for trying to improve the effectiveness

of the optimizations already available.

2.1 Auto-tuning

Auto-tuning is an area that is closely related to this proposal and the study

of automatic code generation and optimization for different computer architectures.

This technique has been used in many optimization scenarios. Work presented in Li et

al. [7] shows a way to use genetic algorithms to partition stored contiguous data using

a hybrid sorting technique to improve sorting performance. A number of library gen-

erators automatically produce high-performance kernel routines [8, 9, 10, 11]. Recent

research efforts [12, 13] expand automatic code generation to routines whose perfor-

mance depends not only on architectural features, but also on input characteristics.

These systems are a significant step toward automatically optimizing code for different

computer architectures. Recently, Ganapathi et al. [14] presented some preliminary

results on the application of machine learning to auto-tuning for multi-cores. They

showed that auto-tuning of stencil codes, with the assistance of machine learning, was

able to surpass performance of tuning by a domain expert. The research displays the

great potential for machine learning and search in an auto-tuning environment. How-

ever, these prior works have all been largely focused on small domain-specific kernels

and still neglect exploring the benefits of learning from a knowledge base of previously

explored applications and architectures. The research mentioned above also did not

tackle the problem of phase-ordering of optimizations.

15

2.2 Machine Learning Applied to Compilation

Machine learning and search techniques applied to compilation have been stud-

ied in many recent projects [15, 16, 17, 18, 19, 20, 21, 22]. These previous studies have

developed machine learning-based algorithms to efficiently search for the optimal selec-

tion of optimizing transformations, the best values for the transformation parameters,

or the optimal sequences of compiler optimizations. Generally these studies customize

optimizations for each program or local code segments, some based on code charac-

teristics. The proposed research is motivated by these studies and makes a significant

step forward: the compiler will not only use program characteristics, but will also learn

to decide the right ordering of optimizations.

Many researchers have also looked at using machine learning to construct heuris-

tics that control compiler optimizations. Cavazos et al. [18] used logistic regression to

control what optimizations to apply in JikesRVM. However did not attempt to con-

trol the order of optimizations and instead only turn on and off optimizations given

the hand-tuned fixed order of optimizations. For the SPECjvm98 benchmarks, they

were not able to achieve significant improvements for running time under both non-

adaptive and adaptive scenarios. The absence of significant improvements might have

been because of the fixed-order of optimizations in Jikes RVM had been highly tuned

and there was little room for improvement on top of this ordering by simply turning

optimizations on and off. In contrast, we achieve good improvements on SPECjvm98

benchmarks by applying method-specific optimization orderings.

Stephenson et al.[15] used genetic programming to tune heuristic priority func-

tions for three compiler optimizations within the Trimaran’s IMPACT compiler. For

one of the optimizations, register allocation, they were only able to achieve on average

a 2% increase over the manually tuned heuristic. Monsifrot et al.[22] used a classifier

based on decision tree learning to determine which loops to unroll showing a few per-

cent improvement on two different machines. This research aims at controlling multiple

optimizations available in the compiler.

16

Agakov et al. [23] describe two models to improve the search for good optimiza-

tion orders to apply to programs. The first model, called the independent identically

distributed model, produces a probability vector corresponding to the probability that

a transformation occurs in a good sequence for a particular program. When optimizing

a new program, a nearest neighbor algorithm is used to choose the probability vector of

the program in the training set closest to the program to be optimized. This probability

vector is then used to choose optimizations for the new program. The second model,

called the Markov model simply creates a probability matrix where the probability of

an optimization being beneficial depends upon the optimizations that have been previ-

ously applied. These models were developed to focus the search for good optimization

orderings during iterative compilation. Therefore, these techniques suffers from the

same limitations as described in Section 3.1. Additionally, these models use simple

nearest neighbor algorithms using the characteristics of the original unoptimized code.

Therefore, these models do not take advantage of important characteristics of the code

as it is being optimized.

Wang et al. [24] have applied machine learning to select the best number of

threads for a parallel program and to determine how these threads should be scheduled.

The authors use neural networks and prior runs of several programs to predict the

number of threads for a new “unseen” program, only requiring a few profiling runs

of this new program. Results presented show excellent performance compared to two

state-of-the-art techniques. We will significantly extend this work by considering the

interplay of optimizations to parallelism and by changing the parallelism configuration

(e.g., the number of threads) at runtime based on dynamic conditions.

Fursin et al. [25] (as part of the MILEPOST project) have integrated machine

learning algorithms in GCC to control these optimizations applied. They show good

results on three different architectures, compared to random search of optimizations

sequences. However, the machine learning algorithms in MILEPOST do not learn good

optimization orderings because as the authors state “this requires detailed information

17

about dependencies between passes to detect legal orders”.

2.3 Phase Ordering

Several researchers have looked at searching for the best sequence of optimiza-

tions for a particular program [26, 27, 19, 28, 29, 30]. Cooper et al. [26] used genetic

algorithms to solve the compilation phase ordering problem. They were concerned

with finding “good” compiler optimization sequences that reduced code size. Their

technique was successful at reducing code size by as much as 40%. Unfortunately,

their technique was application-specific, i.e., a genetic algorithm had to be retrained

to find the best optimization sequence for each new program. Also, Cooper [19] pro-

posed a technique called virtual execution to reduce the cost of evaluating different

optimization orderings. Virtual execution consists of running the program one time

and predicting the performance of different optimization sequences without running the

code again. These approaches give impressive performance improvements, but have to

be performed each time a new application is compiled. While this is acceptable in

embedded environments, it is not suitable for typical compilation.

Kulkarni et al. [30] exhaustively enumerated all distinct function instances for

a set of programs that would be produced from different phase-orderings of 15 op-

timizations. This exhaustive enumeration allowed them to construct probabilities of

enabling/disabling interactions between different optimization passes in general and

not specific to any program. In contrast, this research characterize methods being

optimized; therefore, the techniques described here learn which optimizations are ben-

eficial to apply to “unseen” methods with similar characteristics.

Stephenson et al. [15] used genetic programming to tune heuristic priority func-

tions for three compiler optimizations within the Trimaran’s IMPACT compiler. For

one of the optimizations, register allocation, they were only able to achieve on average

a 2% increase over the manually tuned heuristic. Monsifro et al. [22] used a classifier

18

based on decision tree learning to determine which loops to unroll showing a few per-

cent improvement on two different machines. The results in these papers highlight the

diminishing results obtained when only controlling a single optimization. In contrast,

this research will control numerous optimizations available in the compiler.

Agakov et al. [23] describe two models to improve the search for good optimiza-

tion orders to apply to programs. The first model, called the independent identically

distributed model, produces a probability vector corresponding to the probability that

a transformation occurs in a good sequence for a particular program. When optimizing

a new program, a nearest neighbor algorithm is used to choose the probability vector

of the program in the training set closest to the program to be optimized. This prob-

ability vector is then used to choose optimizations for the new program. The second

model, called the Markov model simply creates a probability matrix where the prob-

ability of an optimization being beneficial depends upon the optimizations that have

been previously applied. These models were developed to focus the search for good

optimization orderings during iterative compilation. Therefore, these techniques suffer

from the same limitations as described in Section 3.1. Additionally, these models use

simple nearest neighbor algorithms using the characteristics of the original unoptimized

code. Therefore, these models do not take advantage of important characteristics of

the code as it is being optimized.

There is also some work on iterative compiler optimizations where the code

is optimized based on predictive modeling based on a machine learning algorithms

(independent and Markov models) [31, 32] or using some other models to decide on

applying or not applying optimizations [33]. Another similar paper by John Cavazos

talks about using logistic regression and using it to predict the best optimizations by

using code feature extraction on each method [18]. This approach is the most similar

to what we hope to achieve in phase ordering.

19

2.4 Method Inlining

Method inlining has been well known to be one of the most important opti-

mizations that can effect the performance of an application being compiled. This

importance has logically attracted a lot of academic as well as industry led research in

trying to get the best method inlining applied by the compiler. Applying good method

inlining has at the same time been a hard problem to solve. The difficulty of good

method inlining fundamentally stems from the fact that each method inlining decision

is interdependent on all the other previous and future method inlining decisions. The

universal set of method inlining decisions is a directed cyclic graph, however to make

it simple to comprehend it could be visualized as a n-ary tree. Each parent in the

tree is the caller, the parent method that can call one or more methods, the callee. In

this entire tree the compiler would need to collapse the tree in such a manner that the

traversal time is reduced from the root to a leaf node. There are two costs associated

with the traversal, the size of the node itself as well as the transition from the parent

node to the child node, or from the caller to the callee. A good compiler would need

to merge the node keeping in mind both these costs.

Cooper et al. [34] present evidence that a “one- size-fits-all” for inlining heuristics

does not perform well. The authors discretized the search space in order to reduce

searching time. They also suggest a way to make inlining adaptive for a given piece of

code. However, the technique requires performing their search on every new program

being compiled. In contrast, we are generating fast heuristics that can improve the

inliner and do not require search. In a much earlier work Cooper et al. [35] also perform

inlining on numerically intense Fortran benchmarks, however inlining certain critical

function calls lead to a degradation in performance. Inlining of certain critical calls lead

to poorer subsequent analysis and less effective instruction scheduling which resulted in

an increased number of floating-point stalls. This study further emphasizes our point

that more intelligent inlining is required and tuning heuristics through empirical search

as opposed to imprecise modeling may be beneficial.

20

Arnold et al. [36] represents the inlining problem as a knapsack problem that

calculates the size/speed trade offs to make inlining decisions. They use code size

and the running time as a measure of the effectiveness of the proposed solution. This

paper however does not talk about inlining enabling other compiler optimizations or

the effects of each inlining decision with subsequent inlining decisions. They achieve

speedups of about 25% on average over no inlining while keeping the code size increase

to at most 10%. Dynamically compiled languages may not have a global view of the

code being executed, and this makes it difficult to directly apply the results to our

environment. Another area of potential problems is the performance degradation due

to overly aggressive inlining.

Hazelwood et al. [37] describe a technique of using context sensitive information

at each call site to control inlining decisions. This information included the sequence

of calling methods that lead to the current call site. Using this context sensitive in-

formation they were able to reduce the code space by 10%, however this resulted in

increase in the running time of the benchmarks. When implementing this approach

one must take care in not using too much context sensitivity which can degrade perfor-

mance. They suggest several different heuristics for controlling the amount of context

sensitivity, but there is no clear winner among them. This technique is similar to our

tuning process, in using context sensitive information.

Dean et al. [38] develop a technique to measure the effect of inlining decisions for

the programming language SELF, called inlining trials, as opposed to predicting them

with heuristics. Inlining trials are used to calculate the costs and benefits of inlining

decisions by examining both the effects of optimizations applied to the body of the

inlined routine by comparing the present code and environment with past experiences.

The results of inlining trials are stored in a persistent database to be reused when

making future inlining decisions at similar call sites. Using this technique, the authors

were able to reduce compilation time at the expense of an average increase in running

time.

21

This work was performed on a language called SELF, which places an even

greater premium on inlining than Java due to its frequently executed method calls. This

technique requires non-trivial changes to the compiler in order to record where and how

inlining enabled and disabled certain optimizations. We assert that better heuristics,

such as the ones found in this paper, can predict the opportunities enabled/disabled

by inlining and may achieve much of the benefit of inlining trials.

Cavazos et al. [39] presents a way to perform fast search over the possible val-

ues used to tune inlining heuristics by using genetic algorithms. The paper presents

evidence towards the fact that each code might require different settings and “one-

size-fits-all” may not be accurate in fine tuning inlining heuristics. Leupers et al. [40]

experiment with obtaining the best running time possible through inlining while main-

taining code bloat under a particular limit. They use this technique for C programs

targeted at embedded processors. In the embedded processor domain it is essential

that code size be kept to a minimum. They use a search technique called branch-and-

bound to explore the space of functions that could be inlined. However, this search

based approach requiring multiple executions of the program must be applied each

time a new program is encountered. This makes sense in an embedded scenario where

the cost of this search is amortized over the products shipped but is not practical for

non-embedded applications.

2.5 Machine Learning

In this section we give a detailed overview of different machine learning ap-

proaches used during the course of this research. The three different algorithms that

we used were Artificial Neural Networks(ANN), Genetic Algorithms(GA), and Decision

Trees. We use an evolutionary approach to training the ANN as well as the GA, and

use the C4.5 algorithm to train the Decision Tree.

22

Artificial Neural Network

Artificial Neural Networks fundamentally are weighted directed graphs that have

a set of input nodes and a set of output nodes. The Figure 2.1 shows a rough structure

of a simple ANN. The green nodes to the left are input nodes that take in parameters

as inputs, these inputs are then propagated across the graph in conjunction with the

weights of the connection between two nodes and in the end we are provided with a

set of outputs. These outputs can then be used by the engine to make or perform

decisions. The internal nodes that are neither input nodes nor output nodes are called

internal nodes and are used encode and emulate complex behaviors. The graph could

possibly have cycles that represent a cyclic dependencies of a set of parameters on each

other, however in our set of experiments we discourage the generation of ANNs that

have cyclic dependencies to reduce the computational complexity of the final ANN that

is generated after training.

input
nodes

output
nodes

hidden
nodes

Figure 2.1: General structure of an Artificial Neural Network

During the course of this research we train ANNs in an evolutionary manner

using an evolutionary engine named NEAT (Neuro Evolution of Augmented Topologies)

explained in more detail in Section 2.8. We used the trained ANN to control the phase

23

ordering in JikesRVM and the method inlining decision in the Java Hotspot VM and

the Maxine VM.

Genetic Algorithm

Genetic algorithms are used in this research to compare the effectiveness of GA

in performing phase ordering and optimization tuning in the form of method inlining.

GAs are also used to tune GCC in improving the performance of the Financial Library.

A disadvantage of using GA is the fact that it can not take into account any inputs,

and thus cannot be used to emulate a system that would need to change and adapt

dynamically.

Decision Tree

We use the decision trees in order to increase readability of a machine learning

heuristic. The decision tree is generated using the C4.5 algorithm and used to make

method inlining decisions. The method of generating the decision tree is presented in

more detail in Section 2.9.

Primarily discussed here in this research is a neuro-evolutionary approach to

training neural networks, learning is used to construct a good optimization heuristic

for the optimizer within the compiler. In the next section we describe the Markov

Property, and our reasons for modeling our solution in a way that it posses the Markov

property. The Section 2.7 outlines the different activities that take place when training

and deploying a machine learning heuristic. This is followed by Section 2.8 describing

how we use NEAT to construct an ANN, how we extract features from methods, and

how these features and ANNs allow us to learn a heuristic that determines the order

of optimizations to apply. Figure 3.3 outlines our technique.

24

2.6 Markov Property

Most compilers apply optimizations in a fixed order, and this order is tuned for a

particular set of benchmarks. This tuning process is performed manually and is tedious

and relatively brittle. Also, the tuning procedure needs to be repeated each time the

compiler is modified for a new platform or when a new optimization is added to the

compiler. Most importantly, we have empirical evidence that each method within a

program requires the application of a specific order of optimizations to achieve the best

performance. This research proposes to use machine learning to mitigate the compiler

optimization phase-ordering problem.

Determining the correct phase ordering of optimizations in a compiler is a dif-

ficult problem to solve. In the absence of an oracle to determine the correct ordering

of optimizations, we must use a heuristic to predict the best optimization to use. A

drawback of training a neural network that can perform phase ordering is the added

difficulty if the ANN would need to remember state. If the ANN is asked to remember

the last applied optimization, the compiler designer might want the ANN to remember

two previously applied optimizations. There is no limit to the number of optimizations

that the ANN might need to remember. In such a situation it is not possible to create

an elegant solution.

We formulate the phase-ordering problem as a Markov Process. In a Markov

Process, the heuristic makes a decision on what action to perform (i.e., optimization to

apply) based on the current state of the environment (i.e., the method being optimized).

In order to perform learning, the state must conform to the Markov Property, which

means that the state must represent all the information needed to make a decision of

what action to perform at that decision point. In our framework, the current state of the

method being optimized serves as our Markov state because it succinctly summarizes

the important information about the complete sequence of optimizations that led to

it.

25

spent on tuning the compiler. During this phase the AI engines present different ANNs,

or GAs that need to be evaluated. The evaluation is done by compiling a given set

of benchmarks using the AI to guide the optimization process. The compiled code is

then run and the performance of the code is measured and compared to the baseline.

This is a process that is trivial to parallelize and thus the training process can be

distributed over multiple machines. Each machine in the cluster can independently

compile and evaluate the ANN/GA provided by the AI engine and report back the

result to the engine. This parallelization is shown in the Figure 2.2. The training

phase is performed only once and once completed the compiler is ready to be shipped

out to the consumers, the application developers in this case.

Modifications in the compiler

During the training phase, NEAT generates an ANN that is used to control the

order of optimizations within Jikes RVM. The ANN is evaluated by applying different

optimization orderings to each method within each training program and recording the

performance of the optimized program. The ANN takes as input a characterization

(called feature vector or source features) of current state of the method being opti-

mized and outputs a set of probabilities corresponding to the benefit of applying each

optimization. The optimization with the highest probability is applied to the method.

After an optimization is applied, the feature vector of the method is updated and fed

into the network for another round of optimization. One output of the network corre-

sponds to “stop optimizing,” and the optimization process continues until this output

has the highest probability.

Deployment

Once the best Machine Learning algorithm is evolved, it is planted into the com-

piler that can make use of the decisions provided by the machine learning algorithm.

During the execution phase the compiler would use the source code generator to gener-

ate source features that would be needed as inputs to the machine learning algorithm.

27

uses a process of natural selection to construct an effective neural network to solve

a particular task. This process starts by randomly generating an initial population

(or generation) of neural networks and evaluating the performance of each network at

solving the specific task at hand. The advantage of using an evolutionary approach

to a static and traditional approach is the ability of the NEAT engine to produce

ANNs that are smaller and less complex, another great advantage is in the ability of

the NEAT engine to reduce the training time by multiple orders of magnitude. The

Figure 3.2 shows the process of training in greater detail. The first generation of the

ANNs that are generated by the engine are completely random. These are tested and

their relative fitness is recorded. Only the best performing ANNs are propagated to the

next generation, and used to generate the ANNs in the next generation. This process

is repeated multiple times over many generations until we find an ANN that has the

desirable fitness.

The number of neural networks present in each generation is set to 60 for our

experiments. Each of these 60 neural networks is evaluated by using them to optimize

the benchmarks in the training set. A fitness is associated with each network as

described in Section 4.7. Once the initial set of generated neural networks are evaluated,

ten best neural networks from this set are propagated to the next generation and are

also used to produce new neural networks in the next generation.

This process continues and each successive generation of neural networks pro-

duces networks that performs better than the networks from the previous generation.

New networks are created using mutation and crossover of the best networks from the

previous generation. During the process of constructing new networks, we mutate the

topology of a progenitor network. Mutation can involve adding a neuron to an exist-

ing edge in a network’s hidden layer. We set the probability of adding a neuron to a

low value (.1%) to keep our networks small and efficient. Mutation can also involve

adding a new edge (probability .5%) or deleting an existing edge (probability .9%).

These probabilities are within the ranges suggested by the authors of NEAT. Neurons

29

weights of the connections to achieve a trained ANN. In this process the person gen-

erating the initial ANN would initially provide an overly simplistic ANN or an overly

complex one. If the initial ANN is too simple in its structure, the ANN structurally be

incapable of emulating the system that it is designed to emulate. If the initial structure

of the ANN is more complex than required, it would exponentially increase the training

time required to train the neural network.

NEAT overcomes this challenge as it evolves the networks of unbounded com-

plexity from a minimal starting point. The NEAT engine can add and remove neurons

as well as connections with the aim to keep the structure as small as possible. This

method has been shown to outperform the best fixed-topology method on challenging

reinforcement learning tasks [41]. The reasons that NEAT is faster and better than

typical reinforcement learning can be summarized as:

1. it incrementally grows networks from a minimal structure

2. it protects structural innovation using natural selection

3. it employs a principled method of crossover of different topologies

Neural networks traditionally have been trained using supervised learning algo-

rithms, which require a labeled training set. A labeled training set consists of a feature

vector that is used as input, which characterizes a particular decision point and the

correct label or desired output the network should produce when given this input. In

our case of the phase ordering problem, we would need a feature vector corresponding

to the code being optimized and the desired output would be the sequence of optimiza-

tions to apply to that code. Generating this labeled dataset requires knowing the right

sequence of optimizations to apply to a method is difficult as discussed in Section 3.3.

Structure of the network

In our neural networks, each feature or characteristic of the method is fed to

an input node, and the layers of the network can represent complex ”nonlinear” in-

teraction between the features. Each output node of the network controls a particular

31

optimization that could be applied. The outputs are numbered between 0 or 1 de-

pending on whether the optimization is predicted to be beneficial to the state of the

code currently being optimized. We apply the optimization pertaining to the output

that is closest to 1 indicating the optimization that the network predicts will be most

beneficial. One of the outputs of the ANN tells the optimizer to stop optimizing. When

the probability of this output is highest, the optimizer stops applying optimizations to

the method. Figure 2.5 represents the phase-ordering process. The process of phase

ordering starts when the Jikes RVM optimizer receives a method to optimize. We

iterate over the instructions of the method to generate the feature vector, and then

provide these features to the neural network. The neural network then provides a set

of outputs, which represent the probabilities of each optimization being beneficial. The

optimization with the highest probability is applied to the code. Once the optimiza-

tion is applied the code could potentially have changed. This would mean that the

ANN would need to be consulted again, and a new target optimization is generated by

the ANN. This optimization is then again applied tot the code being compiled. This

process is done multiple time until the code reaches the lowermost part of Figure 2.5

where the optimization to be applied is the stop optimization optimization. When the

probability of this output is highest, the optimizer stops applying optimizations to the

method.

2.9 Decision Tree

Past work and motivation

During the course of this research we have taken an unusual step to convert the

trained ANN into a decision tree. This choice of presentation has primarily guided by

the ease of readability of the finding and the inner workings by a compiler writer or an

application developer, and the ability to debug the compiler decisions if and when such

a need arises. The place where this has been presented is during method inlining where

we attempted to perform single optimization tuning. The problem at hand could not

32

generate a labeled dataset (explained in Section 4.7), and thus all normal methods of

training decision trees were not available. This problem was solved by using a trained

neural network to produce a pseudo labeled dataset. This dataset is then used to

generate a decision tree.

Alexander et al.[42] presented the mathematical model to convert directed cyclic

graph of a neural network with a time complexity of O(n2) for non-recursive graphs

and O(n3) for recursive graphs. In our research we selectively limited our ANNs to

non-recursive graphs, but the methods in this paper can be treated as the mathematical

proof for algorithmic conversion of ANNs into Decision Trees.

There has been some research in converting ANNs into Decision trees in the

past. Lu et al. [43] present a formal way to convert parts of a neural network into

rules that can be combined into a decision tree. In this paper the authors de-construct

the neural network and try to convert small portions of the graph that presents the

neural network to if-then-else clauses mathematically and then combine multiple such

if-then-else clauses to a decision tree.

Another approach that comes closest to our approach is is proposed by Craven et

al.in [44] where they use the neural network as an oracle that can be used to a decision

tree as an inductive learning problem. The difference between this work and ours is

the way the tree is generated. The authors use a best-first approach to tree expansion

as opposed to the conventional depth-first approach. Another difference between the

methods used in this paper when compared to our method is in the stopping criteria.

The leaf nodes are designed in a similar manner but the paper relies on limiting the

total number of internal nodes as opposed to using the max-depth parameter that we

used in our technique.

A similar approach is also presented in [45], where they use decision trees and

ANNs to extract simple rules that can be used at a later time. This approach however

deals with extracting symbolic rules from Decision Trees and ANNs, while we are

trying to convert ANNs into Decision trees. This approach of using a Artificial Neural

34

Network as the oracle to generate a dataset can be used universally and has provided

us with a very good approximation of more than 98.4% accuracy.

Creating training data

Artificial Neural Networks(ANNs) can be trained to understand complex tasks,

however ANNs are difficult to understand for a human reader. Another disadvantage

of using ANNs is the fact that they are by design black boxes and it is not possible

to perform any debugging. In order to address this issue we attempted to convert the

ANNs into decision trees. There has been some past research [44, 45, 43] in converting

ANNs to decision trees that is described briefly in Section 2.9.

The traditional method of generating a decision tree is not available in our

situation due to the absence of labeled dataset, explained in greater detail in Section 4.7.

in order to get around this situation we just embed the ANN into the compiler and

record each decision taken by the neural network. We also record the corresponding

inputs that are provided to the compiler. Each of these input and output pairs is used

as a single entry in the labeled training set for generating the decision tree. We used

the standard C4.5 algorithm to generate the decision tree. Once the decision tree was

generated we used static height tree pruning to reduce the max height. Doing this

reduces the time complexity to O(1), instead of being O(h) where h is the height of

the tree. The final generated decision tree is shown in the Figure 4.10.

2.10 Fitness Function

The fitness value we used for the NEAT algorithm is the arithmetic mean of

the performance of the benchmarks in the training set. That is, the fitness value for a

particular performance metric is:

Fitness(S) =

∑
s∈S Speedup(s)

|S|

35

to search for a good optimization configuration when we were tuning the performance

of FLib when compiled using customized optimizations flags on GCC 4.8.

We used ECJ a Java-based Evolutionary Computation Research System, that

provides a framework. This library like NEAT uses an evolutionary approach to finding

and improving a specific heuristic. The Figure 2.6 shows the rough skeleton used during

the training cycle. The ECJ generates a set of random chromosomes, and then tests

out the fitness of each of the chromosomes. The fittest chromosomes are allowed to

propagate and evolve the next generation. The goal of the ECJ engine would be to then

mix two or more well performing chromosomes and create another chromosome that

works better than all of the parents. This kind of evolutionary approach has proved to

be demonstrably faster than exhaustive search or random sampling in complex search

spaces.

37

Chapter 3

OPTIMIZATION ORDERING

Optimization ordering is the process of ordering a given set of optimizations in

a specific order with the goal to increasing the performance of the code being compiled.

This Optimization Ordering is also commonly called Phase ordering and we would use

this phrase to reffer to Optimization ordering in this chapter.

During the compilation of a code from the original source code to machine

code the compiler converts the source code to an intermediate representation. The

compiler might work with multiple different intermediate representations(IRs) during

the compilation process. During the compilation process the compiler applies different

transformations to the IR. These transformations (or optimizations) take in the IR and

modify the code and output code again in IR. This transformed code is again presented

as input to another code optimization. This would mean that the two different opti-

mizations would indirectly interact with each other as the output of one optimization

is used an input for another optimization, thus the application of each optimization

potentially affects the benefit of downstream optimizations.

There are different kind of optimizations, some are cleanup optimizations that

are used regularly to clean up the code and perform basic housekeeping of the code after

a specific optimization is applied, some might be enabling optimizations that would

modify and transform the code in such a manner that another optimization might be

able to work with the code in a more efficient manner. Another set of optimizations

could be interdependent optimizations that might need to be applied multiple times

in succession as the application of one optimization might create the need for the next

optimization to be applied and vice a versa. It is easiest to visualize such optimizations

38

specifically customized to a single application as compared to a single optimization se-

quence used for all possible applications. We used the Java Grande [46] and SPEC

JVM 98 benchmarks for this example.1 Genetic algorithm was used to chose the com-

piler optimization to be applied at each step for a given set of benchmarks acting as the

training set. The “Best Overall Sequence” is generated by having all the benchmarks

shown in Figure 3.1 in the training set, this created a optimization sequence that

gave the best performance for all the benchmarks on average. The bar shown in the

light grey color labeled “Best Sequence per benchmark” was obtained by performing a

similar search space exploration on each of the benchmarks individually. This gave us

an optimization sequence unique to each of the benchmarks being studied at that time.

We see that this step provides a better performance by allowing the genetic algorithm

to cater to each benchmark individually and thus increasing the performance of the

complete set of benchmarks as a whole. This case can be logically extrapolated to

searching for the best sequence of optimizations for each method in a particular bench-

marks, but is a much harder problem we propose to address in this proposal. The

results of these experiments confirm two hypotheses. First, significant performance

improvements can be obtained by finding good optimization orders versus the well-

engineered fixed order in Jikes RVM. The best order of optimizations per benchmark

gave us up to a 20% speedup (FFT) and on average 8% speedup over optimization level

O3. Second, as shown in previous work, each of our benchmarks requires a different

optimization sequence to obtain the best performance. One ordering of optimizations

for the entire set of programs achieves decent performance speedup compared to O3.

However, the “Best Overall Sequence” degrades the performance of three benchmarks

(LUFact, Series, and Crypt) compared to O3. Furthermore, searching for the best

custom optimization sequence for each benchmark, “Best Sequence for Benchmark”,

allows us to outperform both O3 and the best overall sequence.

1 We choose these benchmarks because they run for a short time. This allowed us to
evaluate thousands of different optimization sequences using GAs.

40

Generating an optimization sequence using GAs: In our Genetic Algorithm,

we create a population of strings (called chromosomes), where each chromosome cor-

responds to an optimization sequence. Each position (or gene) in the chromosome

corresponds to a specific optimization from Table 3.2, and each optimization can ap-

pear multiple times in a chromosome. For each of the experiments below, we configured

our GAs to create 50 chromosomes (i.e., 50 optimization sequences) per generation and

to run for 20 generations.

Calculating the fitness function: We evaluate each optimization sequence (i.e.,

chromosome) by compiling all our benchmarks with each sequence. We recorded their

execution times and calculated their speedup by normalizing their running times with

the running time observed by compiling the benchmarks at the O3 level. We used av-

erage speedup of our benchmarks (normalized to opt level O3) as our fitness function

for each chromosome. For the bars labeled “Best Overall Sequence” in Figure 3.1. For

the second set of bars the fitness function for each chromosome was the speedup of that

optimization sequence over O3 for one specific benchmark. This result corresponds to

the “Best Sequence per Benchmark” bars in Figure 3.1. This represents the perfor-

mance that we can get by customizing an optimization ordering for each benchmark

individually.

3.2 Issues with Current State-of-the-Art

While the current state-of-the-art in phase-ordering of using genetic algorithms

can bring significant performance improvements for some programs, this technique has

several issues that impede its widespread adoption in traditional compilers.

Expensive Search

GAs and other search techniques are inherently expensive because they evaluate

a variety (typically hundreds) of different optimization orders for each program and

are therefore only applicable when compilation time is not an issue, e.g., in an iterative

41

compilation scenario. And, because there is typically no transfer of knowledge, the

search space corresponding to the potential optimization orders has to be explored

anew for each new benchmark or benchmark suite.

Method-specific difficulty

Using GAs to find a custom orderings of optimizations for code segments with

a program (e.g., for each method) is non-trivial. An order of optimization specific to

each piece of code requires a separate exploration of the optimization ordering space

for that code. This requires obtaining fine-grained execution times for each piece of

code after it is optimized with a specific phase-ordering. Fine-grained timers produce

notoriously noisy information and can be difficult to implement. 2

Note that exhaustive exploration to find the optimal order of optimizations is not

practical. For example, if we consider 15 optimizations and an optimization sequence

length of 20, the number of unique sequences exhaustive exploration would have to

evaluate is enormous (1520). Thus, the current state-of-the -art is to intelligently

explore a small fraction of this space using genetic algorithms or some other search

algorithm.

3.3 Proposed Solution

Instead of using expensive search techniques to solve the phase-ordering prob-

lem, we use propose to use a machine-learning based approach which automatically

learns a good heuristic for phase-ordering. This approach incurs a one-time expensive

training process, but is inexpensive to use when being applied to new programs. There

are two potential techniques we could use to predict good optimization orders for code

being optimized.

2 Evaluating optimization orders for a method outside of an application context [47]
can simplify fine-grained timing, but has the potential to identify optimization se-
quences that do not perform well when the method is used in its original context.

42

1. Predict the complete sequence: This technique requires a model to predict the
complete sequence of optimizations that needs to be applied to the code just by
looking at characteristics of the initial code to be optimized. This is a difficult
learning task as the model would need to understand the complex interactions of
each optimization in the sequence.

2. Predict the current best optimization: This method would use a model to predict
the best single optimization (from a given set of optimizations) that should be
applied based on the characteristics of code in its present state. Once an opti-
mization is applied, we would reevaluate characteristics of the code and again
predict the best optimization to apply given this new state of the code.

We focus on the second approach, which we believe is an easier learning problem

to solve.

We used a technique called Neuro-Evolution for Augmenting Topologies to au-

tomatically construct a heuristic that can generate customized optimization orderings

for each method in a program. The process of developing this heuristic is depicted in

Figure 3.2 and described in detail in Section 2.8. The figure 3.2 represents the frame-

work used to evolve and apply a neural network using NEAT to guide the compilation

of a given method. The Figure 2.5 describes the way the neural network was used to

guide the compilation process. This approach involves continually interrogating a neu-

ral network to predict which optimization would produce the best results as a method

is being optimized. Our network uses as input features characterizing the current state

of the code being optimized and correlates those features with the best optimization to

use at particular point in the optimization process. As we are considering dynamic JIT

compilation, the neural network and the feature generator must incur a small overhead,

otherwise the cost of applying the network to perform phase-ordering might outweigh

any benefits of the improved optimization orders.

Another approach would be to handcraft a heuristic based on experimentation

and analysis. This is undesirable because it is an arduous task and specific to a com-

piler, the platform and the code being compiled. If any of these three parameter change,

the entire tuning of the heuristic would have to be repeated.

43

1. NEAT constructs an ANN

(a) Integrate the ANN into Jikes RVM’s optimization driver

2. Evaluate ANN at the task of phase-ordering optimizations

(a) For each method dynamically compiled, repeat the following two steps

i. Generate a feature vector of current method’s state

ii. Use ANN to predict the best optimization to apply

3. Run benchmarks and obtain feedback for NEAT

(a) Record execution time for each benchmark optimized using the ANN

(b) Obtain speedup by normalizing each benchmark’s running time to running
time using default optimization heuristic (e.g., opt level O3)

Figure 3.3: Creating and evaluating ANN generated by NEAT

we chose features that are efficient to calculate and which we thought were relevant.

Computing these features requires a single pass over the instructions of the method.

Table 3.1 shows the 26 features used to describe the current state of each method being

optimized. The values of each feature will be an entry in the 26−element feature vector

x associated with each method. The first 2 entries are integer values defining the size

of the code and data of the method. The next 6 are simple boolean properties (repre-

sented using 0 or 1) of the method. The remaining features are simply the percentage

of byte codes belonging to a particular category (e.g., 30% loads, 22% floating point,

5% yield points, etc.).

3.5 Experimental Setup

In this chapter we describe the platform, the benchmarks, and the methodology

employed in our experiments.

45

Feature Meaning

byte codes Number of byte codes in the method

locals space Number of words allocated for locals

synch Method is synchronized

exceptions Method has exception handling code

leaf Method is a leaf (contains no calls)

final Method is declared final

private Method is declared private

static Method is declared static

Category Fraction of byte codes that are...

aload, astore Array Loads and Stores

primitive, long Primitive or Long computations (e.g., iadd, fadd)

compare Compares (e.g., lcmp, dcmpl)

branch Branches (forward/backward/cond/uncond)

jsr a JSR

switch a SWITCH

put/get a PUT or GET

invoke an INVOKE

new a NEW

arraylength an ArrayLength

athrow,checkcast,monitor are an Athrow, checkcast, or monitor

multi newarray are a Multi Newarray

simple, long, real are a Simple,Long, or Real Conversions

Table 3.1: Source features collected during Phase ordering

Hardware and Operating System

Due to the large training time involved we used a cluster of Linux nodes to

distribute the task among multiple machines. The total number of machines being

used at any given time changed according to availability, but it ranged between 5 to

26. Each of the machine was a Intel Xeon X5680 CPUs running at 2.33 GHz with

8GBs of RAM.

Compiler

For our experiments in this research, we modified version 3.1.1 of the Jikes

Research Virtual Machine [48]. The VM was run on an Intel x86 based machine,

46

supporting two AMD Opteron 2216 dual core processors running at 2.6GHz with an

L1 and L2 cache and RAM of 128K, 1M and 8GB, respectively. The operating system

on the machine was Linux, running kernel 2.6.32. We used the FastAdaptiveGenMS

configuration of Jikes RVM, indicating that the core virtual machine was compiled by

the optimizing compiler at the most aggressive optimization level and the generational

mark-sweep garbage collector was used.

Benchmarks

For the present set of experiments we used four benchmark suites. For our

training set, we used seven benchmarks from the Java Grande benchmark suite [49].

These benchmarks were used for training primarily due to their short execution times.

For the test set, we used the SPECjvm98 [50], the SPECjvm2008 [51], and the

DaCapo benchmark [52] suites. We used all the benchmarks from SPECjvm98 and

the subset of benchmarks from SPECjvm2008 and DaCapo that we could correctly

compile with Jikes RVM. We used the largest inputs for all benchmarks. 3 The SPEC

JVM benchmarks have been designed to measure the performance of the Java Runtime

Environment (JRE) and focus on core Java functionality. The DaCapo benchmark suite

is a collection of programs that were designed for various different Java performance

studies. The results in Section 3.7 come from the benchmarks in our test set.

3.6 Optimization Levels

We ran our experiments in two scenarios, first using only the optimizing com-

piler in a non-adaptive scenario and second using the adaptive compilation mode. In

the optimizing compilation scenario, we set the initial compiler to be the optimizing

compiler and disable any recompilation. This forces the compiler to compile all the

3 Note that for the benchmark FFT in SPECjvm2008, we used the small input size
because the large input size required more memory than was available on our experi-
mental platform.

47

OptKey Meaning

Optimization Level O0

CSE Local common sub expression elimination

CNST Local constant propagation

CPY Local copy propagation

SA CFG Structural Analysis

ET Escape Transformations

FA Field Analysis

BB Basic block frequency estimation

Optimization Level O1

BRO Branch optimizations

TRE Tail recursion elimination

SS Basic block static splitting

SO
Simple optimizations like Type prop,
Bounds check elim, dead-code elim, etc.

Optimization Level O2

LN Loop normalization

LU Loop unrolling

CM Coalesce Moves

Table 3.2: Optimizations (and abbreviations) used in present phase ordering experi-
ments.

loaded methods at the highest optimization level. Under the adaptive scenario, all

dynamically loaded methods are first compiled by the baseline compiler that converts

byte codes straight to machine code without performing any optimizations. The re-

sultant code is slow, but the compilation times are fast. The adaptive optimization

system then uses online profiling to discover the subset of methods where a significant

amount of the program’s running time is being spent. These “hot” methods are then

recompiled using the optimizing compiler. During this process these methods are first

compiled at optimization level O0, but if they continue to be important they are re-

compiled at level O1, and finally at level O2 if warranted. Available optimizations are

divided into different optimization levels based on their complexity and aggressiveness.

When using the neural network in the adaptive scenario, we disabled the optimizations

that belonged to a higher level than the present optimization level being used.

48

Measurement

In a dynamic compiler like Jikes RVM, there are two types of execution times

that are of interest, total time and running time. The total time of a program is the

time that the dynamic compiler takes to compile the code from byte codes to machine

code, and then to actually run the machine code. The running time of a program

is considered to be just the time taken to run the machine code after it has been

compiled by the dynamic compiler during a previous invocation. For programs with

short running times the total time is of interest, as the compilation process itself is the

larger chunk of the execution time. However for programs that are likely to run for

longer duration, e.g. programs that perform heavy computation or server programs

that are initialized once and remain running for a longer period of time, it is important

to highly optimize the machine code being generated. This is true even at the expense

of potentially greater compile time, as the compilation time is likely to be overshadowed

by the execution of the machine code that has been generated by the dynamic compiler.

The time taken to execute the benchmark for the first invocation is taken as the total

time. This time includes the time taken by the compiler to compile the byte codes

into machine code and the running of the machine code itself. The running time is

measured by running the benchmark over five iterations and taking the average of the

last three execution times, this ensures that all the required methods and classes had

been preloaded and compiled. To compare our performance we normalize our running

times and total times with the default optimization setting. This default compilation

scenario acts as our baseline, which is the average of twenty running times and twenty

total times for each benchmark. The noise for all benchmarks was less that 1.2% and

the average noise was 0.7%.

Evaluation Methodology

As is standard practice, we evolve our neural network over one suite of bench-

marks, commonly referred to in the machine learning literature as the training set. We

49

then test the performance of our evolved neural network over another “unseen” suite

of benchmarks, that we have not trained on, referred to as the test set.

Network Evaluator

The Neural network evaluator basically reads in the network generated by NEAT

[53], and activates it with the inputs that are provided by the code feature generator.

The inputs are then propagated through the edges connecting the neurons and the

final output is generated in the form of an array. This array represents the relative

probabilities of each of the optimizations controlled by the neural network. The output

that is the largest is considered to be the best, and is applied to the code being

compiled. Once compiled and executed the running time of the benchmark is collected

and normalized by the baseline. This provides us with the speedup of the benchmark

compared to the default compilation scenario. We use this speedup to provide feedback

about the effectiveness of the neural network we had used.

Noise in measured running times

The benchmarks that we were using had inconsistent running times, this was

a major problem since our complete approach relied on the accuracy of the running

times. Our immediate solution was to run the benchmarks more number of times and

then average the result. Doing this just smoothed out the problems but it also had the

effect of hiding the effect (bad or good) of the phase ordering proposed by the neural

network. Another approach was to try and use the minimum time of a benchmark run

and consider it to be the most accurate time. We do this based on the assumption

that the minimum time represents the best placement in the cache/heap of the hot

methods of a benchmark, thus limiting the noise only to the cold or the non essential

50

methods,providing better results when compared to taking the average times.

noise =
stdev

tavg
∗ 100

stdev =

√∑n
i=0 (tavg − ti)2

n

ti = time of ith run

tavg = average time of i runs

(3.1)

Program
Training

time (Days)

SPECjvm98
javac 2.2
mpegaudio 0.8
jess 1.3
compress 1.1
raytrace .9
jack 1.6

SPECjvm2008
fft 10.4
lu 5
monte

8
carlo

Program
Training

time (Days)

SPECjvm2008 contd.
sparse 6
sor 5.1

DaCapo
avrora 7.3
luindex 3.1
lusearch 3.3
pmd 3.6
sunflow 3.1
xalan 5.6
Average 3.9
Total 70

Table 3.3: Average training time by GA for each benchmark individually.

Program GA NEAT

Java Grande 4.4 4.91
Jolden 7 8.3

Total 11.4 13.2

Table 3.4: Time taken in days to train the training set, to provide the results in Figure
3.7

Training Time

This section discusses the rough training time involved in the method inlining

experiments that we conducted for this proposal. The reasons for us to use machine

51

learning is primarily because of the impracticality of exhaustive enumeration. Time

taken for an experiment to complete played an important part in modeling the experi-

ments, and this section gives a brief overview of the same. During training our machine

learning heuristic requires us to provide fitness values to each of the heuristics being

tested. This fitness value can only be generated by running the benchmark with the

heuristic being tested and comparing the running time with the baseline.

This makes the execution time of the benchmark the bottleneck in our exper-

iments. In order to give a clearer picture we calculated the rough training time that

was required to train a phase-ordering sequence for each benchmark individually when

using genetic algorithm. This is shown in the Table 3.3. Given the number of days

that it can take to train each benchmark we feel that it would be impractical to use

GA’s for phase-ordering, especially within a dynamic compilation scenario.

3.7 Results

In performing the phase ordering experiments we trained a neural network on

a set of training benchmarks viz. Java Grande and the jolden benchmarks and testing

the performance of the neural network on a different set of benchmarks called the test

set. The benchmarks in the test set were, SPECjvm98 and the DaCapo benchmarks.

The JikesRVM compiler was invoked in two different modes, as an adaptive compiler

and as an optimizing compiler.

Adaptive Compiler

The graph above represents the speedup achieved by using NEAT when used by

Jikes RVM in adaptive mode to optimize each benchmark in the test set. We compare

our result with the performance of each of the benchmarks when using the default

adaptive compilation scenario.

In the adaptive compilation scenario, we allowed the adaptive compiler to decide

the level of optimization to be used to optimize methods as described in Section 3.6.

52

However, at each optimization level we used the induced neural network to decide to

order of optimizations to apply at that level. In this scenario, we obtained an average

speedup of 8% in running time and 4% improvement in the total execution time over

all the benchmarks versus the default adaptive mode in Jikes RVM.

SPECjvm98

Running time

Using our neural network for phase-ordering, we were able to obtain an average

speedup of 10% across the seven benchmarks of the SPECjvm98 benchmark suite on

the running time. We got significant improvements over default on mpegaudio (20%),

compress (14%), and javac (11%).

Total time

We observed a modest increase in performance of 3% on average on the SPECjvm98

benchmarks. However, it is important to note that we achieved these speedups despite

of the overhead of feature extraction and the execution of the neural network. The

javac program gave us the best total time speedup at around 7%.

SPECjvm2008

Running Time

We achieved an average running time speedup of 6.4% on the SPECjvm2008

benchmarks. The fft benchmark did give us a slowdown of a little less than 5%.

Interestingly, we discovered that the neural network used very short optimization se-

quences to optimize that benchmark. This helps to explain the improvement in the

total time for this benchmark as described in the next section.

54

Total Time

Our average performance improvement over all five SPECjvm2008 benchmarks

was around 4%. We achieved a performance improvement of up to 7% on the bench-

mark sor with our ANNs.

DaCapo

The running time performance improvement of the programs in the DaCapo

benchmark suite (at 6.8%) was not as high as the other two benchmark suites, but

their performance on the total time of 6% was much better than the average of the

other two SPECjvm benchmark suites.

Optimizing Compiler

When running Jikes RVM in a non-adaptive mode, all the methods are compiled

directly at the highest optimization level. The average speedup when just measuring

running time was 8.2%, and we improved the total time by over 6%. In our experiments

fft of the SPECjvm2008 suite did not perform as good, but after looking at performance

in detail we realized that the network only applied 11 transformation on average to

the methods in fft. The sequence length of the default optimizing compiler was 23

transformations. This could explain the speedup obtained by fft in Figure 3.5.

SPECjvm98

Running time

In SPECjvm98, we achieve up to a speedup of 24% on mpegaudio. On average,

we improved the running time performance of this benchmark suite by 10%, which is

a significant improvement.

55

Total time

When measuring total time, we observed a modest increase in performance of

around 3.4%. The best performing benchmark was again mpegaudio at 11% speedup.

SPECjvm2008

Running Time

We achieved an average running time speedup of 7% over all the five benchmarks

of the SPECjvm2008 benchmark suite. The best performing benchmark from the

SPECjvm2008 suite was sor with a speedup of almost 12%.

Total Time

An interesting observation here is the performance of the fft benchmark. In

all other cases this benchmark had a minor slowdown. We realized that the average

optimization sequence length suggested by the neural network was 11. This is very

short compared to the default fixed order sequence length of 23. This reduction in

the sequence length helped to reduce the amount of compilation required, and thus

improves total time performance.

DaCapo

Running Time

Using the Jikes RVM in a non-adaptive mode, we were able to get some sig-

nificant speedups of 17% for pmd and 10.6% for lusearch. There were no significant

slowdowns and on average we observed a speedup of 7.3% on the DaCapo benchmark

suite.

57

Total Time

We saw significant speedups across DaCapo with 14% speedups on xalan,

luindex and lusearch, and speedups of 5%, 8%, and 9% on the three other pro-

grams. On average, we had an improvement 11%.

3.8 Discussion

In this section, we briefly describe the neural network that we used for the exper-

iments and discuss some observations (e.g., the reduction in the optimization sequence

length, a case of repeated optimizations, and handling of relatively flat profiles.)

Neural Network

We used one neural network for all the results shown in Table 3.6 and Figures 3.4

and 3.5. This network had 30 inputs, 14 outputs, 24 hidden nodes, and 503 total

connections.

Program
Avg. Seq.

length

SPECjvm98
javac 18
mpegaudio 19
jess 16
compress 19
raytrace 18
jack 17

SPECjvm2008
fft 11
lu 18
monte carlo 17

Program
Avg. Seq.

length

SPECjvm2008 contd.
sparse 20
sor 16

DaCapo
avrora 19
luindex 16
lusearch 16
pmd 18
sunflow 16
xalan 17
Average 17
Default 23
Reduction 6

Table 3.5: Average number of optimizations, applied by the trained ANN.

58

B
en
ch
m
ar
k

H
ot

P
er
ce
n
t
of

S
iz
e

O
p
ti
m
iz
at
io
n

m
et
h
o
d

T
ot
al

C
al
ls

S
eq
u
en
ce

S
P
E
C
jv
m

20
08

ff
t(
sm

al
l)

F
F
T
.t
ra
n
sf
or
m

in
te
rn
al
()

86
.9
3%

39
0

C
N
S
T
,C
P
Y
,C
P
Y
,L
U
,B
B
,S
S
,B
B
,C
S
E
,L
N
,C
N
S
T
,L
N

lu
L
U
.f
ac
to
r(
)

72
.5
9%

27
7

T
R
E
,C
N
S
T
,C
P
Y
,S
S
,S
S
,B
R
O
,S
A
,E
T
,S
O
,

E
T
,L
U
,S
S
,L
U
,T
R
E
,S
S
,S
S
,S
O
,C
N
S
T
,F
A
,F
A

m
on

te
ca
rl
o

M
on

te
C
ar
lo
.i
n
te
gr
at
e(
)

25
.3
1%

68
B
B
,C
P
Y
,B
B
,T
R
E
,C
N
S
T
,B
B
,C
S
E
,

C
S
E
,L
U
,C
S
E
,S
S
,S
A
,L
U
,F
A

sp
ar
se

S
p
ar
se
C
om

p
R
ow

.
80
.7
9%

16
1

S
O
,B
B
,L
U
,C
N
S
T
,T
R
E
,L
N
,C
P
Y
,T
R
E
,S
S
,C
P
Y
,

m
at
m
u
lt
()

S
O
,S
O
,S
S
,F
A
,B
B
,C
N
S
T
,C
P
Y
,T
R
E
,C
N
S
T

so
r

S
O
R
.e
x
ec
u
te
()

86
.5
1%

18
4

S
O
,S
O
,B
B
,S
O
,S
S
,C
P
Y
,E
T
,T
R
E
,C
P
Y
,L
N
,C
S
E
,

C
S
E
,S
O
,L
N
,S
A
,S
A
,S
A
,B
B
,T
R
E
,C
N
S
T

T
ab

le
3.
6:

B
es
t
se
q
u
en
ce
s
fo
r
th
e
h
ot
te
st

m
et
h
o
d
s
S
P
E
C
jv
m
20
08

59

Reduction of optimization sequence length

From our experiments, we were able to demonstrate two achievements. Intelli-

gent ordering of the sequences provided us with significant speedups. We also show that

intelligently applying the right optimizations helps in improving the compile time by

not having to apply optimizations that have little impact on a method’s performance.

This would reduce the compilation burden on the system, and directly improve the

system performance in terms of total execution time.

A detailed analysis of the phase orderings suggested by the ANN is shown in

the Table 3.6. We typically applied 16-20 optimizations while the default optimizing

compiler applied 23. We believe that this is significant. That is, we were able to apply

the right optimizations and thus more effectively utilize the optimization resources

available to us.

Repeating optimizations

In some cases the optimizations get repeated back to back. For example, the

sequence shown in the fourth row of Table 3.6, the network predicted to apply Static

Splitting twice in succession. This situation arises when applying a particular optimiza-

tion does not change the feature vector. We could potentially be stuck in an infinite

loop where the feature vector remains the same, thus inadvertently causing the neural

network to apply the same optimization, which causes an infinite loop. In order to

overcome this situation, if the network predicts that applying the same optimization

again would be beneficial, we allow for a maximum of 5 such repetitions, and then

instead apply the second best optimization.

Improvements from present state of art

At present the best way to tune phase ordering is to use GA to optimize in

the search. There are a few problems with this approach, each benchmark has to be

tuned individually, if we use a training set and a test set, the results are not as good

60

as shown in Figure 3.7. Figure 3.7 compares the present state of the part in phase

ordering with our approach. The first bar is by training GA on a training set and

testing it on the test set, similar to the second bar where we used NEAT. The last

bar is when we individually searched for the best phase ordering using GA for each

benchmark. Even with the advantage of being trained on each benchmark individually,

the performance GA per benchmark is not much better than using NEAT, which does

not require individual training runs.

Flat-profiled benchmarks

Most code written in normal applications and compiled by a compiler usually

follow the Pareto Principal (also known as the 80-20 rule). The Pareto Principal states

that as a thumb rule 80% of the execution time is spent in execution of 20% of the

code base. This is an important inference in performing code optimizations, as the

application developer can concentrate their efforts on optimizing just the important

pieces of code and achieve good speedups with little effort. Some benchmarks however,

the running time of the benchmark is equally divided among multiple methods (i.e., a

flat profile), while other benchmarks have the majority of the execution time is spent in

just one or a few methods. Finding a good phase ordering in case of benchmarks with

one single “hot” method is relatively straight-forward. We would simply be searching

for an optimization sequence that was beneficial for the one important method of

the benchmark. We would just have to find a sequence that is beneficial for that

one method and apply it to all the methods during that compilation instance, in our

case it would be applied to all the methods that are loaded and or compiled during

the execution of that benchmark. Since the execution time is dominated by a single

method, we would see an overall improvement in the performance of the benchmark

even if the method-specific phase ordering negatively affects the performance of the

other methods.

For example, let us consider the example of the lu benchmark in the SPECjvm2008

61

benchmark suite. Looking at the profiling information, we realized that roughly 72%

of the execution time was spent inside the measureLU() method. Now consider that a

random search was to find a phase ordering sequence that improved the performance

of this method by 10 percent, but this sequence also reduced the performance of all the

other methods by 15%, we would still see a total improvement of 2.5-3%. So in cases

where there is a dominance of a single method, we do not always have to worry about

the impact of our phase ordering sequence on all the other methods. This method

of finding the sequence that benefit just a few methods cannot be useful in all sit-

uations especially if work is evenly divided among multiple methods. for example if

similar effects of the phases ordering sequence were true in the case of mpegaudio in

the SPECjvm2008 benchmark suite, we would actually see a slowdown of almost 11%.

In order to demonstrate our point, we conducted an experiment where we allowed

the genetic algorithm to search for the best optimization sequence to be applied to

each benchmark. The Figure 3.7 shows the comparison of using Genetic Algorithm to

search for a single optimization sequence that would be applied to all the methods of

a benchmark.

This approach of directed search of good optimization sequences for the hottest

method was the method proposed by Cooper etal. [26] and was shown to find good

optimization sequences for a program. Figure 3.6 shows the speedup achieved by both

GAs and neural networks on each benchmark as it relates to the number of “hot”

methods that constitute 60% of the running time for a particular benchmark. In

this figure, we see that the GA is better at finding good speedups when the 60% of

the execution time is concentrated in just one method. However, our NEAT-evolved

networks are able to achieve good speedup when the execution time is distributed over

multiple methods. Another set of results that reaffirm this conclusion is in Figure 3.7,

if you look at the results for javac and mpegaudio, both benchmarks have relatively

flat profiles, and in both cases the individually training GA phase ordering did not do

as well as the Neural network.

62

This particular property of the ANN to search for good optimization sequences

even for relatively flat profiled benchmarks is even more important for newer archi-

tectures. Increasing number of cores would incentivize the application developer to

divide the workload to multiple cores. The easiest way to achieve this would be to

perform multiple different tasks on multiple cores, and in such situations we see that

the solution based on NEAT would perform more reliably.

Exploration of Phase ordering benefit

In this section we try to analyze the optimization orderings that our neural

network came up with. We ran the benchmarks and collected the profiling runs, which

gave us an idea of which methods were most important. Looking at the neural network

does not typically give any intuition of the phase-ordering heuristic, however it may

help to understand the rough complexity of the final solution.

The first example that we look into is the sparse.lu benchmark in the SpecJVM2008

benchmark suite.

The neural network found interesting combinations of transformations that

helped in improving the performance of some of the benchmarks. For example, the

code shown in Figure 3.8 is the hottest method in the scimark.lu.small benchmark.

The listing 3.1 shows code after applying Branch Optimization before CFG Structural

Analysis (i.e., the ordering obtained from the default optimization level) and the code

in listing 3.2 is obtained when applying these two optimizations in the reverse order

(i.e., the ordering obtained from our neural network). We looked at the machine code

being generated in both cases and realized that when CFG Structural Analysis was

applied before Branch Optimization, the code that was generated had more branch

statements. In the slower code, the loops are represented as “while loops”, and the

code that worked best had loops that are represented as do-while loops. This small dif-

ference in the machine code gave an improvement of approximately 8% in the running

time of the scimark.lu benchmark. Because the original code had a large fraction of

64

LABEL1
in i f cmp <CONDITION> GOTO LABEL2
. . .
GOTO LABEL1
LABEL2

Listing 3.1: Slow Code (SA applied before
BRO): generated by the default O3 com-
piler

i n i f cmp <!CONDITION> GOTO LABEL2
LABEL1
. . .
i n i f cmp <CONDITION> GOTO LABEL1
LABEL2

Listing 3.2: Fast Code (BRO applied before
SA): suggested by our neural network.

Figure 3.9: Effect of optimization ordering in lu benchmark

unconditional branch statements, it triggered the neural network to apply CFG Struc-

tural Analysis. This kind of fine-grained optimization can be achieved when using a

our method of phase ordering.

matmul ()
{

for (. . .) {
ar i thmat i c ope ra t i on over an array
for (. . .) {

for (. . .) {
ar i thmat i c ope ra t i on over an array

}
}

}
. . .
i f (. . .) {

for (. . .) {
ar i thmat i c ope ra t i on over an array

}
}

}

Figure 3.10: Pseudo-code for matmult, the hottest method for the SpecJVM2008 sparse
benchmark.

Analyzing another benchmark, scimark.sparse, which performs sparse matrix

multiplication, we see another similar phenomena. We looked at the

sparse.SparseCompRow.matmul method, which is the hottest method in the bench-

mark and has multiple nested loops as represented in Table 3.8. Considering the

67

LABEL1
. . .
i n t i f cmp
<CONDITION> GOTO LABEL3
goto LABEL2
LABEL2
goto LABEL4
LABEL3
goto LABEL1
LABEL4

Listing 3.3: Slow Code (LU applied before
SA):generated by the default O3 compiler.

unrolling

LABEL1
. . .
i n t i f cmp
<CONDITION> GOTO LABEL1

Listing 3.4: Fast Code (SA applied before
LU): suggested by our neural network.

Figure 3.11: Change in machine code using different phase ordering

number of nested loops in this method, Loop Unrolling could potentially be an opti-

mization to this method. However we realized that our neural network applied CFG

Structural Analysis before it applied Loop Unrolling. This ordering helped in improving

the quality of the code, improving the total running time by almost 14%. Again, this

particular ordering is not present in the default ordering present in the JikesRVM com-

piler. There were some other differences in the machine code that were generated and

the exact change in the machine that caused this huge speedup cannot be pinpointed,

however we found a few instances of machine code that were less than optimal. Figure

3.3 shows a piece of machine code that is less than optimal. When looking at this par-

ticular instance we quickly realized that the code placement was needlessly complex.

For example, if only the target of the first conditional jump was set to LABEL1, we

would not need the last three unconditional jumps. Intuitively, a compiler writer would

try to fix the problem by applying another optimization like Branch Optimization or

applying CFG Structural Analysis once more. But, in this particular case repeating

CFG Structural Analysis or applying another instance of Branch optimization did not

improve the performance of the code, but instead applying static analysis before loop

unrolling produced a better code as found by our neural network.

68

Chapter 4

OPTIMIZATION TUNING

Some compiler optimizations are more than just binary off/on operations. The

non binary optimizations internally have one or more parameters that govern their

behavior and how these optimizations effect the code that it is given to transform.

Such parameters that can effect the performance of the code, and thus tuning these

parameters can in turn affect the performance of the application being compiled. Op-

timization tuning is the process of tuning the parameters that effect the behavior of

specific optimizations by the compiler in order to improve the performance of the code

being compiled. We mention this in the Section 1.2, as one of the ways of performing

compiler tuning. This chapter deals with tuning the compiler optimization ”method

inlining”.

In the past there has been a lot of research done on improving method inlining.

The list of parameters that have traditionally been used to tune method inlining can

be divided into two streams, the first deals with controlling the aggressiveness of the

method inlining that is applied to the code being compiled and the second set of

parameters check the environmental factors that are present around the code that is

being inlined. Most of the research that has been done on tuning method inlining

has primarily focused on tuning the aggressiveness of the optimization itself and not

necessarily on linking the aggressiveness to the environmental factors governing the

code being optimized in itself.

Research presented in this chapter attempts to change this and presents a mech-

anism that characterizes the code being compiled and use this characterization as a

means to guide the method inlining process. This chapter also gives a brief study on

69

method inlining decision is unique and depends not only on the caller and the callee

but also on the specific invocation.

Advantages of Inlining

If the method inliner decides to inline a specific method invocation, the invoke

instruction is replaced by the actual code of the method being invoked. This internally

means that the code used to save the execution context before invoking a new method

and the piece of code that would load back the previously saved execution context once

the execution of the new method ends is no longer needed, thus saving the context

switching time. Another indirect benefit of inlining a method is that the compiler get

to work on a longer piece of code, which might lead to other optimizations in the later

stages of compilation. Most optimizations are only intra method optimizations being

able to combine multiple methods would make it possible for the compiler to apply

more aggressive optimizations to the code.

Disadvantages of Inlining

Aggressive inlining can also cause some performance degradation. When the

compiler inlines aggressively, the body of the caller becomes large, this puts more

pressure on the usage of the registers and leads to more memory spills. Another

disadvantage of over ambitious method inlining is the increased memory footprint of

the caller method, which also causes degradation in performance.

Method inlining is a balancing act, where too little inlining could leave perfor-

mance improvements on the table underutilized, and too much inlining could cause

sluggish performance due to memory spills or increased memory footprint. Getting

the right balance is difficult but can provide a good boost to the performance of the

application.

71

4.2 Importance of Method Inlining

Method inlining is one of the most important optimizations that effect the per-

formance of an application, and has been a widely researched problem. In this chapter

we would study and propose modifications to the method inliner on the Java HotSpot

Server VM. The HotSpot VM is the most popular and widely used Java VM, any im-

provements on this production level server would present the most robust modifications

towards method inlining.

Initial Study

There were two primary questions that we wanted to answer in order to under-
stand the present state of the method inliner better.

1. The effectiveness of the present inliner

2. The density or sparseness of good method inlining configurations.

The execution time of SpecJVM benchmarks on the HotSpot Server VM with
optimization level O3 was considered the baseline. We studied two different types of
method inliners:

1. No Inlining Inliner This value was the relative performance of the benchmarks
when the method inlining optimization was completely disabled.

2. Random Inliner In this set we used a random number generator to control the
inlining decision.

We used the random inliner to run the set of benchmarks 1000 times and

recorded the relative performance for each time, and the results are presented in the

Figure 4.2. The red dotted line marks the performance achieved by completely dis-

abling the inliner. This No Inlining Inliner achieved around 62% performance of the

baseline. The blue line is the set of performances obtained by using the Random In-

liner and then arranged in increasing order. What we see is that only two optimization

configurations out of a thousand were as good as or better than the baseline method in-

liner, at the same time almost 10% of the configurations created by the random inliner

were worse than actually not having any inliner at all. Based on this experiment there

72

Default Inlining Heuristic for two compilers
inliningHeuristic
(calleeSize, inlineDepth, callerSize){

if (calleeSize > ALWAYS INLINE SIZE)
if (calleeSize > CALLEE MAX SIZE)
return NO;

if (inlineDepth > MAX INLINE DEPTH)
return NO;

if (currentGraphSize >
CALLER MAX GRAPH SIZE)
return NO;

// Passed all tests so we inline
return YES;

}

Figure 4.3: Inlining heuristic of the C1X com-
piler

inliningHeuristic
(calleeSize, inlineDepth, callerSize){

if (calleeSize > ALWAYS INLINE SIZE)
if (calleeSize > CALLER MAX SIZE)
return NO;

if (inlineDepth > MAX INLINE DEPTH)
return NO;

if (callWarmth >
CALL WARMTH THRESHOLD)
return NO;

// Passed all tests so we inline
return YES;

}

Figure 4.4: Inlining heuristic of the server com-
piler

Table 4.1 gives a brief introduction to the features that are being used by the two

compilers. The algorithm used by default is simple to understand, and sets thresholds

that keep the inliner in check. The method inliner looks at the callee method and the

caller to make a customized decision about inlining, by collecting some information

about each. Once this information is collected, the inliner uses the algorithms described

in Figures 4.3 and 4.4, if the result is a yes, then the compiler would inline the callee

method at the call site. For example if the callee size is less than trivial, which means

that the code size of the callee is smaller than the context switching code, then method

inlining would guarantee a reduction in the total code size as well as the elimination

of the context switching time, such a case has all the advantages and none of the

disadvantages and is a sure bet for inlining. However if the callee size is just a little

larger than trivial size, the caller size is just about the max size, but the callee is

extremely warm in such a situation the call on weather or not to inline is no longer as

clear cut or simple to make.

4.4 Areas with Potential for Improvement

As shown in the Figure 4.2, the present inliners do a pretty good job at making

a large set of the method inlining decisions. However there are some areas where

74

Inlining Features Description

ALWAYS INLINE SIZE Callee methods less than this size are always inlined

CALLEE MAX SIZE Maximum callee size allowable to inline

MAX INLINE DEPTH Maximum inlining level at a particular call site

CALLER MAX GRAPH SIZE Max size of graph (number of IR nodes), which gives an estimate
of the size of the root method plus methods already inlined

HotSpot Only Feature

CALL WARMTH A compound heuristic that is a combination of call invocation
counts, estimated profit from inlining and estimated amount of
work done in the callee

Table 4.1: Features used by the default method inlining heuristic in Maxine VM and
the HotSpot VM.

that is called every time. In such a situation inlining the method that is called every

time would provide a better return on investment than inlining a method that might

rarely be called. Another example could be method called during error handling.

Loops

Method inlining of a particular method call happens just once at each call site.

If this call site is present in a loop that is going to be executed multiple times the

application can take advantage of the performance benefits multiple times, and pay for

the inlining overhead only once. Here inlining overhead would mean the computational

cost of the actual inlining process and also the cost in terms of the increase in the

memory footprint of the method.

Profiling based information

Dynamic compilers have another advantage of availability of profiling based

information. During the initial code loading stage the methods are executed using the

interpreter. During this phase the virtual machine can record the number of times

each branch is taken. This information can provide a good platform for a branch

predictor. In Figure 4.6 we show an example of using this branch prediction information

to prioritize the basic blocks based on the probability of being called. During the

76

Memory intensive or CPU intensive code

Memory intensive code does benefit with code motion or instruction scheduling

that might happen in the future. Inlining methods that are memory intensive increases

the chance that the compiler is able to hide memory latency better with instruction

scheduling at a later point in the compilation process.

Other Source code features

Each of the parameters that we saw above can effect the method inlining de-

cision. Also since each code is different there can be no single threshold that would

work for all the code that is to be compiled by any compiler. In such a situation the

compiler needs to make a decision at runtime to get the maximum possible perfor-

mance. An example of just such a situation is shown in Figure 4.7. On the y-axis we

plot the speedup normalized to the baseline, which in this case is the O3 optimization

level with the default inliner. On the x axis we plot different max caller size values.

The different lines on the graph represent different benchmarks from the SPECjvm

benchmark suite. In this graph we see that there is no specific point at which the

inlining oracle can create a threshold that would give the best performance over all the

given benchmarks. This potential trade-off is inevitable if the method inliner uses one

static limit or threshold for all possible permutations and combinations of code being

compiled. However in case the method inliner is intelligent enough to understand the

needs of the code based on characterization of the code it would be possible to have

an optimal threshold set for each piece of code individually.

It is very likely that settings that are optimal for one set of applications might

not be optimal for another set of applications. It might make sense to instead let the

compiler decide which settings should be used based on the code being compiled and

not some static set of rules that were fixed at the factory.

In order to be able to react favorably to these situations we collected the some

information about the code being compiled just before the method inlining process.

78

Feature Description
Caller and Callee Features

Simple Instr. A static count of instructions that are typically CPU bound and do not
require a memory access,

Method Call Instr. Method calls (invoke instructions)
Cond. Br. Instr Conditional branch instructions in a method
Uncond. Br. Instr Unconditional branch statements in a method
Memory Op. Instr. Load or store instructions
New Obj. Instr. Instructions that create a new objects
Default Instr. Instructions that did not fit in any of the above categories
Size Total number of instructions.

Calling Context Features
InLoop Is the current call site in a loop?
R-InlineDepth Inlining depth of a recursive call
InlineDepth Inlining depth of a non-recursive call
currentGraphSize Number of HIR nodes. Gives an estimate of caller method, including all

methods already inlined
Synchronized Is the called method synchronized?

HotSpot Only Features
Loop Depth if the block is a part of a loop, how deep is the loop.
Block Weight Probability of the execution reaching the block

Table 4.2: Source Features collected during Method Inlining

approach creates a better heuristic that provides speedups for new code (benchmarks

in the test set) as well as the benchmarks in the training set.

4.6 Search Space of Method Inlining Settings

The search space of potential good method inlining point can become extremely

large even for really small applications. In this section we present rough calculations

to explain this situation in more detail. Consider a sample very application dummy-

application that has a total of 1000 methods. assuming that each method depends on

at least calling 2 other methods, and there are no methods that are dead code, the

total number of method calls is just 2000. This is a fairly simple situation, however

the search space increases a great deal when you take into account that each method

inlining decision changes the code that is being compiled. This leads the structure of

the code to change itself, due to this mutation of code each inlining decision would

implicitly effect all future inlining decisions that the inliner would need to make. The

80

1. Source Feature Extraction The source feature extractor was added just before
the inlining decision needs to be made, as shown in the Figure 4.8 labeled by
the block named ”Generate Features”. During the source feature extraction the
feature extractor does one pass over the code of the two methods in question,
profiling information is also collected during this stage.

2. Method inlining Oracle The method inlining heuristic that is generated by the
machine learning algorithm is used as the inlining oracle. This heuristic needs to
make all the inlining related decisions, and added into the compiler.

Training Infrastructure

The inlining decisions are taken by the inlining heuristic, all the parameters that

are collected can be provided to the heuristic. There are many characteristics (i.e.,

features) that can influence the inlining decision, and these factors may have complex

interdependencies between them.The number of parameters that effect method inlining

is too large for a human being to construct a good inliner. To solve this problem we

need to use machine learning to automatically generate a good inlining heuristic. We

used two different machine learning algorithms (NEAT and ECJ) and compare the

effectiveness of each of the techniques.

The NEAT and ECJ are both evolutionary approaches to generating Artificial

Neural Networks(ANN) and Genetic algorithm respectively for the length of this section

we refer to both of them as the heuristic. To training carried out to generate both are

similar. The engines use a process of natural selection to construct an effective neural

network to solve a particular task. This process starts by randomly generating an initial

population (or generation) of neural networks and evaluating the performance of each

network at solving the specific task at hand. The number of neural networks present

in each generation is set to 60 for our experiments. Each of these 60 neural networks

is evaluated by using them to compile and execute the benchmarks in the training set.

Once all the randomly generated neural networks are evaluated, we use the best neural

networks from this initial set (more than one may be chosen) to produce the next

generation of neural networks. This process continues and each successive generation

82

of neural networks produces a network that performs better than the networks from

the previous generation. The neural network uses as inputs the features described in

Table 4.2 and produces an output indicating if inlining should be performed for a given

call site. This process is repeated for a set number of generations and at the end of

this evolutionary process we get a single heuristic that performs best. This heuristic is

then used as the final heuristic to be used as the inliner.

Structure of the ANN

In order to effectively model the nonlinear behavior of features that effect the

inlining process, the neural networks are modeled as multi-layer perceptrons. Each

feature or characteristic of an inlining decision is fed to an input node, and the layers

of the network can represent complex “nonlinear” interaction between the features.

The output node of the network produces a number between 0 or 1 to depending on

the decision that should be made at the particular inlining decision. If the output is

greater than 0.5 we inline the particular call, else we don’t inline. We use an unsuper-

vised machine learning algorithm called Neuro-Evolution of Augmenting Topologies

(NEAT) [54, 55] to construct an effective neural network to be used as an inlining

heuristic. Figure 4.8 depicts the process of constructing a neural network using NEAT

to replace the inlining heuristic in the Java Virtual Machines.

It is important to note that training and tuning a heuristic with machine learning

happens off-line. Once the tuned heuristic is constructed, we can replace the default

inlining heuristic with this new heuristic. Also, the final heuristic constructed by our

machine learning approaches are as fast as any manually-constructed heuristics. Thus,

there is no overhead incurred by using heuristics constructed with machine learning,

nor are there any major code changes.

We show in Section 4.10 that NEAT can construct neural networks that are ef-

fective at solving the inlining decision problem. However, the induced NEAT heuristics

(i.e., neural networks) are often unreadable which does not give the compiler writer

83

much insight or confidence in their utility.

Decision trees

There is one disadvantage of using ANNs. The ANN is basically a black box to

a human reader, it is not possible to infer any information from looking at the network

itself, this makes it very difficult to perform any debugging or manual fine tuning

extremely difficult. However, there are other machine learning techniques, such as

decision trees, that can generate learned models that are easy to read and understand.

A decision tree can be described as an n-ary tree where each internal node represents

a single feature or a collection of features that can effectively distinguish between a

positive or negative instance. The leaf nodes represent final decisions provided by

the tree. Decision trees are typical constructed using supervised learning methods.

Supervised learning methods require a labeled training set, however, this labeled training

set does not exist for the inlining decisions. A labeled training set consists of a set

of input features characterizing a specific decision point and a labeled output that

describes the correct decision (“label”) to make for that particular decision point. For

the problem of inlining, it is difficult to construct a labeled training set because knowing

the correct output for a inlining decision point cannot be determined in isolation.One

must consider an inlining decision point in the context of many other decision points.

We use NEAT as discussed in the previous paragraph to overcome this difficulty. We

thus use the heuristics generated by NEAT as a proxy for an oracle, because the

heuristics generated by NEAT perform well at the task of deciding when and when

not to inline.We discuss the creation of labeled training sets using NEAT heuristics in

greater detail in Section 4.10.

Using NEAT networks to Construct Decision Tree Training Data

A labeled training set consists of input data representing a set of features that

can characterize the decision point. We want to use the same set of features that are

84

used by NEAT to construct a readable decision tree heuristic. Along with the input

features, an important component of the train set are the labeled outputs. These

labeled outputs represent the decision that is thought to be optimal for a particular

inlining decision.

We use the best neural network constructed by NEAT to predict the right

label for a particular inlining decision. We give the neural network the input features

corresponding to a single decision point, and record the network’s output. This output

is then used as the final label for that particular decision point. The tuple of the input

features and output labels are then used as our training set to create a decision tree.

Once this training set is created, we use the Weka toolkit [56] to generate a decision

tree. This decision tree replaces the inlining heuristic in Maxine and is human-readable

as well as easy to understand.

Fitness Functions

The fitness value we used for the NEAT and GA algorithms is the arithmetic

mean of the performance of the benchmarks in the training set. That is, the fitness

value for a particular performance metric is:

Fitness(S) =

∑
s∈S Speedup(s)

|S|
where S is the benchmarks in the training suite and Speedup(s) is the metric

to maximize for a particular benchmark s.

Speedup(s) = Runtime(sdef)/Runtime(s)

where sdef is a run of benchmark s using the default heuristic. The goal of the

learning process is to create an inlining heuristic that reduces the running time of the

suite of benchmarks in the training set.

85

4.8 Experimental Setup

In this section we talk about the various decisions that we made in order to run

the experiments and the set of assumptions that made to run the experiments.

Hardware and Operating System

Due to the large training time involved we used a cluster of Linux nodes to

distribute the task among multiple machines. The total number of machines being

used at any given time changed according to availability, but it ranged between 5 to

26. Each of the machine was a Intel Xeon X5680 CPUs running at 2.33 GHz with

8GBs of RAM.

For Maxine VM

We conducted our experiments on a collection of SunFire 4150 machines. Each

machine had two quad core Intel Xeon E5345 CPUs running at 2.33 GHz with 40GBs

of RAM.

For Java HotSpot VM

We conducted our experiments on machines with Intel Xeon X5680 CPUs run-

ning at 2.33 GHz with 8GBs of RAM.

Compiler

We used compilers from two different VMs. The first compiler was the C1X

compiler from the Maxine VM. The Maxine VM is an open source research VM devel-

oped by Oracle Inc. and is almost entirely written in Java. The second compiler was

the server compiler from the Java HotSpot VM. The Java HotSpot VM is the most

commonly used Java Virtual machine in the real world as is also the most commonly

used in production environments. The VM internally comes with the client compiler

86

and the server compiler. The server compiler, is the version that is used when the same

code is to be executed more number of times. In situations where the loading time of

a code is less important than the steady state running time of a specific code.

4.9 Benchmarks

We used a total of five benchmarks suites for training and testing: the Java

Grande benchmarks [57, 1], SPECjvm98 [50], SPECjvm2008 [51], SPECjbb2005 and

DaCapo [58], and Scala Benchmarks [52, 59, 60]. The Training Set, is the set of

benchmarks that are used during the training run of the machine learning algorithm.

During this phase the neural network is being trained and the benchmarks would need

to be executed many thousands of times. This means that the benchmarks would need

to me small and quick in execution in order to create run through enough number of

simulations. The Test Set, is the set of benchmarks that the machine learning algorithm

has never seen before, and is used for actually evaluating the efficacy of the final solution

proposed by the machine learning algorithm. This set is kept different from the training

set in order to avoid over fitting. Another way of dividing the training set and the

test set is called as the n fold cross validation, this is also discussed in greater detail

in Chapter 2.

Java Grande

We use the Java Grande suite of benchmarks in the training set of the method

inlining experiments on the Maxine VM. The Java Grande benchmarks that were used

are listed in the Table 4.3 below.

The Java Grande benchmarks take in three input sizes, SizeA, SizeB, and SizeC

which are in the increasing order of the amount of computation required. In our

experiments we use SizeB, as it provided the right mix or quick execution and low

noise.

87

Benchmark Name Description
JGFCryptBench Encryption and decryption library
JGFFFTBench Performs Fast Fourier Transform
JGFHeapSortBench Provides the implementation of Heap Sort for integers.
JGFLUFFactBench Calculated Factorial
JGFSeriesBench Fourier coefficient analysis
JGFSORBench Successive over-relaxation
JGFSparseMatmulBench Performs sparse matrix multiplication

Table 4.3: List of benchmarks in the Java Grande [1] benchmark suite.

SPECjvm98

We used the SPECjvm98 suite of benchmarks as the training sets for both the

Maxine VM as well as the HotSpot VM. The SPECjvm98 suite is comprised of multiple

set of individual benchmarks or applications presented in Table 4.4

Benchmark Name Description
jess an implementation of the Expert System Shell in Java
jack A parser generator
raytrace Provides an implementation of the raytrace algorithm.
db A small implementation of a database with CRUD functionality
javac Compiles a given piece of Java code into bytecode.
compress performs compression
mpegaudio Provides an implementation of the audio codec

Table 4.4: List of benchmarks in the SPECjvm98 benchmark suite.

TODO add the rest of the benchmark suites.

For Maxine VM

We divided the benchmark suites into two sets, a training set and a test set. The

Java Grande and the SPECjvm98 benchmark suites have the shortest execution times,

making them most suitable for use as the training set. The average training time for

NEAT was around four days making other machine learning techniques like leave one

out cross-validation (88 days) or n-fold cross-validation (40 days, assuming 10 folds)

impractical. For our Test Set we used a all the benchmarks from the SPECjvm2008

88

and DaCapo benchmark suites that we could successfully compile and run with Maxine

VM.

For Java HotSpot VM

We use the benchmarks SPECjvm98 and SPECjvm2008 as our training set and

the benchmarks DaCapo, SPECjbb2005, and Scala for our test set. Scala benchmarks

are primarily used in the Java HotSpot set of experiments as Scala can be compiled

to bytecode that can be executed by the VM, however since the bytecode was initially

generated by a non Java source code, the bytecode that is eventually generated might

look very different than the standard Java bytecode.

4.10 Results

In this section, we discuss the results of our experiments using various machine

learning approaches applied to the problem of constructing method inlining heuristics

and discuss their relative advantages and disadvantages. The Figure 4.9 shows the effect

of using the three heuristics Genetic Algorithm, Decision Trees and Neural Networks

in Maxine Research VM. The heuristic tuned by the genetic algorithm is the present

state of the art technique available as an option to a performance driven application

developer. The results shown in the experiments present an convincing argument to

use decision trees and neural networks instead at the factory by the compiler developer.

Here the SPECjvm2008 and the DaCapo benchmarks were used as the training set.

The SPECjvm98, Java Grande and Java Jolden benchmarks were used as the test set.

89

Results on Maxine VM

In our training experiments, the best network constructed in the first generation

was 3% slower than the default inlining heuristic. However, NEAT quickly constructed

effective neural networks to use as the inlining heuristic and in 50 generations the

average speedup on our training benchmarks was around 25%. The performance of

the networks constructed by NEAT stabilized after 250 generations and no significant

performance gains were found after 250 generations.

The neural network that performed best on the training set was then used as

the inlining heuristic in Maxine to compile the benchmarks in our test set, i.e., the

subset of SPECjvm2008 and DaCapo benchmarks we could compile with Maxine VM.

Figure 4.9 shows that the best NEAT network achieved dramatic improvement

for some benchmarks, up to 2.08 on signverify and 1.49 on compress. Note that none

of the benchmarks tested had any significant slowdowns over the default heuristic. On

average, the best NEAT neural network improved over the default inlining heuristic in

Maxine by 11%.

Constructing Inlining Heuristics using Decision Trees

Though the neural networks constructed by NEAT perform well at inlining,

it is difficult to obtain intuition from these networks. In order to construct more

readable heuristics using machine learning, we decided to investigate the use of decision

trees. We used the best NEAT network to construct the training data for the decision

tree algorithm as described in Section 4.7. Once the training data was generated, we

used the C4.5 decision tree algorithm in the Weka toolkit [56] to construct decision

trees. We also automatically pruned the decision tree by limiting the height of the

original decision tree. Note the heuristic constructed by the decision tree algorithm is

significantly different from the default inlining heuristic shown in Figures 4.3 and 4.4.

In particular, the decision tree algorithm found that it was important to use different

91

instruction types (e.g., conditional and unconditional branches) when deciding which

methods to inline. The performance of the decision tree on the test set was 10%

over the default inlining heuristic, which is comparable to the performance of the

best NEAT neural network. This was an encouraging result, because our attempt at

knowledge extraction from the neural network was successful. Figure 4.9 shows that

we achieved significant improvement on several benchmarks in our test set using our

pruned decision tree heuristic. In particular, we achieved improvements of 20% or more

on SPEC:sunflow, compress, and signverify. There was no performance degradation

for any of the benchmarks, except for fft which saw a degradation of 5%.

Unfortunately, the original decision tree generated by the Weka toolkit was very

large and did not provide the concise and intuitive heuristic we were seeking. From

information provided in the decision tree, we noticed that the original tree had over-fit

our training set and a large number of branches were only being used to cover a small

fraction of the training examples. We then pruned the decision tree to a fixed depth,

and on evaluating over the training set we measured no major performance difference.

The final decision tree is shown in Figure 4.10

The performance of the network when provided with three different types of

inputs. The first bar labeled “Original Features” includes features used in the default

inlining heuristic, the second bar shows the performance when the neural network is

provided with all source code features mentioned in Table 4.2 except for Block Weight.

The third bar is the performance when we used source code features as well as Block

Weight. We used SpecJVM98 and SpecJVM2008 as our training set and DaCapo

benchmarks and Scala Benchmarks as our test set.

92

Insights from Decision Tree

Similar to the insights that were found in the phase ordering experiments, using

the neural network to generate a decision tree in the method inliner some useful insights.

The decision tree generated for the Java HotSpot VM using static features and block

weight is shown in Figure 4.10. From the decision tree that was generated, we could

understand which features were most important for a very good inliner while making

inlining decisions. The most important feature in our case was the block weight.

This makes intuitive sense since the higher the probability of a method to be called

the greater the advantage from inlining it. An interesting situation that we find is

that if the method is nearing a threshold of not being inlined due to its size, the

decision tree checks to see if there are a lot of memory operations. If there are a lot of

memory operations, it still inlines the call perhaps assuming that inlining would help

in improving instruction scheduling. Another source feature that seems to be fairly

important is the number of other method calls in the method. This would predictably

seems to adjust the importance of the present inlining decision. The importance of the

present size of the method in making an inlining decision is fairly well established and

can also be seen in the decision tree shown. The next most important factor in making

and inlining decision was if the method call was present in a nested loop. Another

parameter that seemed to be important is the concentration of memory operations.

These particular parameters were never used to the best of our knowledge. Using the

number of memory operations could suggest that it is more likely to see performance

benefits if there are a lot of memory operations that might benefit from instruction

scheduling at a later stage. Concentration of conditional statements could probably

suggest that the machine learning algorithm was trying to put a weight on how probable

a particular execution path would be in a method. More number of conditional branch

statements in a caller would point to the fact that there is less probability of a given

branch to be taken, thus making an inlining decision less effective. Given the height of

the tree, we also see that the factors and the thresholds are dependent on other factors

94

Features Feature Values
Default GA-tuned
Values Values

ALWAYS INLINE SIZE 6 6
CALLEE MAX SIZE 35 63
MAX INLINE DEPTH 9 11
CALLER MAX GRAPH SIZE 8000 1888

Table 4.5: Default vs tuned heuristic for Maxine VM

and their thresholds. This is different from the present inlining heuristics that typically

make decisions by considering one factor at a time. For example, it might make more

sense for a medium-sized method to be inlined into a relatively large caller, if there are

less number of conditional branches. On the other hand, the same might not be true if

the caller has multiple if-else statements. Another situation could be that it might still

be beneficial to inline if the callee has very simple code with few conditional branches.

Tuning Inlining Heuristics using Genetic Algorithms

Cavazos et al. [39] describe a method of tuning an existing inlining heuristic

in a Java JIT compiler using genetic algorithms (GAs). We compared this technique

with the approach introduced in this paper. Namely, we use GAs to tune the existing

inlining heuristic in Maxine VM and compared this tuned heuristic to the new inlining

heuristic constructed using decision trees. We used the ECJ toolkit [61] to tune the

Maxine inlining heuristic using GAs. In order to fairly compare the results obtained

with GAs with those obtained with NEAT, we used the same number of generations

(250 generations) and generation size (60 individuals) for the GAs as was used with

NEAT.

The best values found with the GAs provided an average speedup of 19.64%

over the default inlining heuristic. These GA-tuned values are shown in Table 4.5.

Figure 4.9 shows the performance of the GA-tuned heuristic on the test set. The

average performance of the GA-tuned heuristic on the entire test set was 7% over

95

the default inlining heuristic. This is compared to the heuristics to the decision trees

and NEAT, which achieved speedups over the default heuristics of 10% and 11%,

respectively. Note that the GA-tuned heuristic performed poorly on two DaCapo

benchmarks. It degraded the performance of fop by -27% and DaCapo:sunflow by

-9% compared to the default inliner giving an average of -5% on DaCapo over the

default.

However, a significant disadvantage of genetic algorithms is that it can only

tune thresholds of features used in an existing heuristic and cannot construct a “new”

inlining heuristic, or propose compound relations based two or more features. Com-

paring the results of NEAT and decision trees to GAs show that there is potential for

improved performance when constructing an entirely new heuristic versus tuning an

existing manually-constructed heuristic.

Results on the Java HotSpot VM

The Java HotSpot server compiler is one of the best tuned Java JIT compilers

used in most production environments. We modified the HotSpot VM to perform

similar machine learning experiments to show that our approach would be useful for

even VMs that are highly tuned. We also experimented with different types of features.

For the first set of experiments we used the same set of features that were being used

by the default inliner. For the second set of experiments we added static source code

features, and for the final set of experiments we added a profiling-based feature, which

we call the “BlockWeight”. For the work on the Java HotSpot VM we used SPECjvm98

and SPECjvm2008 as the training set and then tested the final neural network on the

DaCapo benchmark suite. We experienced a marked speedup on the DaCapo:jython

of almost 90% when we used both profiling information as well as the static features.

At present the Java HotSpot VM just like the Maxine VM uses a small subset static

features to make inlining decisions as shown in Figure 4.4. In order to understand

how good these features are we constructed three different NEAT heuristics using the

96

Benchmark
Neural Pruned Genetic

Network Decision Algorithm
Tree

DaCapo

luindex 0.99 1 1

fop 1.00 1 0.73

sunflow 1.02 1 0.91

pmd 1.02 1.07 1.03

avrora 1.06 1 0.97

eclipse 1.06 1.06 1.04

h2 1.08 1 1

Avg. DaCapo 1.03 1.02 0.95

SPECjvm2008

aes 0.99 1.026 1.007

fft 0.99 0.96 1.0

rsa 1.0 0.99 1.0

sor 1.0 1.0 1.0

monte carlo 1.0 1,0 1.0

sunflow 1.0 1.20 1.03

xml.transform 1.000 1.0 1.07

serial 1.00 1.10 1.03

sparse 1.00 1.00 1.00

mpegaudio 1.02 1.00 1.02

lu 1.06 1.04 1.06

comp.sunflow 1.12 1.08 1.07

xml.validation 1.37 1.12 1.02

compress 1.49 1.46 1.49

signverify 2.08 2.14 2.03

Avg. SPECjvm2008 1.14 1.14 1.12

Cumulative Average 1.11 1.10 1.07

Table 4.6: Comparison of achieved speedup from ANN, decision tree, and the GA-tuned
heuristic.

97

three different feature sets. The first bar labeled “Original Features” includes features

used in the default inlining heuristic, the second bar shows the performance when the

neural network is provided with all source code features mentioned in Table 4.2 except

for Block Weight. The third bar is the performance when we used source code features

as well as Block Weight. We used SPECjvm98 and SPECjvm2008 as our training set

and DaCapo benchmarks and Scala Benchmarks as our test set.

98

Scala Benchmarks

Though originally the Java HotSpot VM was developed to run just Java pro-

grams, there are now several programming languages that compile the code to Java

bytecode. Programming languages like Ada, Clojure, Groovy, JRuby and Scala target

their code to run on the Java VM to take advantage of its portability and stability.

Though the code being executed is still bytecode, the characteristics of these codes

tend to be very different from bytecode generated for normal Java code. Scala Bench-

marks is a collection of benchmarks based on the DaCapo benchmark suite. Using our

method to compile these codes would test how our ANN reacts to code that might be

completely different. The results are shown in Figure 4.11.

Original Features

The first bar in Figure 4.11 shows the final speedups found by the NEAT frame-

work when using only the features that were used by the default Inliner. We were still

able to get a small amount of speedup of 2.4% and 7.9% on the DaaCapo and Scala

benchmarks, respectively. This suggests that the VM was better tuned for compiling

normal Java code than code that was originally written in Scala. We see the same

trend repeated for the other sets of features.

Static Source Code Features

This experiment utilized all the features listed in Table 4.2 except, for Block

weight. When using these additional source features speedups were a little over 5% and

15% for the DaCapo and Scala benchmarks, respectively. This is shown by the second

bar in Figure 4.11. Benchmarks DaCapo:luindex and DaCapo:jython improved by

26% and 63%, respectively. Scala:kiama had a slowdown of 67% but Scala:scalac

and

Scala:scalariform also had very good speedups of 79.9% and 67.2%, respectively.

100

Static Source Code Features with Block Weight

This experiment included the block weight for the basic block of the call site.

The Block weight present the Profiling based information that we talk in the para-

graph 4.4 Profiling Based Information. This intuitively provides the best indication

to the method inliner about the actual relative importance of each basic block of a

method, which can me most valuable to the inliner as shown in the example shown in

the Figure 4.6.

The best results amoung the different experiments were also were achieved

when using block weight as one of the inputs to the method inliner. The average

speedup over all the DaCapo benchmarks was just below 9%. Multiple Scala bench-

marks have high speedups of more than 50%, like Scala:scalac, Scala:scaladoc,

and Scala:scalariform, which improved by 58%, 54%, and 80%, respectively. The

average improvement over all the Scala benchmarks were a little more than 20% of the

baseline.

Performance on SPECjbb2005

The compiler compiles any source code provided to it to be compiled, and there

is no possible superset of source code that can represent the set of possible codes that

a compiler may be asked to compile. Benchmark suites are created with the goal of

being able to emulate most common source code that the compiler might be asked

to compile and generate binaries for. In the previous sections we divided a set of

benchmarks into a training set and a test almost at random. The training set is used

to train our machine learning algorithms, and the test set is never seen by our learning

engine to tweak the final heuristic so that it may in any way customize the heuristic

specifically towards the code seen in the test set. By creating this division we can,

with reasonable confidence propose that the fitness achieved on the test set would

correspond to performance improvements in the real world as well.

In this section we look at a special case of the SPECjbb2005 benchmark, and

101

used all the source features shown in Table 4.2 including Block Weight. The short

runs of the benchmark is run for 30 seconds for warm up and then run 16 times for 30

seconds each. The score provided by the benchmark is used as the actual result. For

the longer runs the warm-up time is 240 seconds and then it is 16 time for 240 seconds

each. The results for the experiment mentioned here is shown in Figure 4.12. The

higher speedup of 8% above the baseline in the shorter runs could point to the fact

that our method can method inlining decisions faster than the default inliner, and the

default inliner would take longer to reach its optimum inlining settings. Even in the

longer running tests we were able to achieve a small but very significant improvement

of 3.5% which would still present huge saving over the extremely large number of the

VM installations.

103

Chapter 5

OPTIMIZATION SELECTION

The final kind of compiler optimization discussed in this dissertation that could

be used in proving optimization planning is optimization selection. In optimization

selection, the compiler would select the right set of optimizations that could improve

the performance of the code being compiled. During this research we use the GCC

compiler and try an optimize a financial library being used by a commercial firm to

model most of their quantitative needs.

We refer to the library in this chapter by the name FLib (Financial Library)

and any regression tests or computational models that are used in the study are called

BM1, BM2...BMn. The computational needs of this library at present also constitute

a sizable portion of their total computational needs. The goal of the dissertation was

be to study the complete financial library and understand the computational needs.

We looked at different machine learning techniques that could be used to optimize this

library to provide a performance improvement. During this research we did not be use

any source feature analysis as inputs to the machine learning algorithm, but instead

used a more direct method of search space exploration using genetic algorithms.

During the course of this research we break the problem into four basic steps:

• optimization flag analysis

• search space exploration

• verifying the correctness of the best optimization sequences found

• creating a recommendation engine that can perform this search space exploration
automatically

104

5.1 Introduction to Optimization Selection

Optimization selection is the process of selecting the most beneficial set of com-

piler optimizations that provide the most amount of benefit to the code being compiled.

This selection of the optimizations that need to be applied to the compiler can be done

at the time the compiler is designed (at the factory) or it could be done by the ap-

plication developer at the point when the compiler is being used by the application

developer to compile and create the application being developed.

Figure 5.1: Frequency distribution of effect of a compiler optimizations on an applica-
tion.

As discussed in the previous chapter modern compilers have a large selection

of optimizations that are available to the compiler writer. There are three primary

factors that effect the optimization selection process, and in the next paragraphs we

talk briefly about all three of them.

Figure 5.1 shows the rough frequency distribution of difference in the perfor-

mance of an applications as an effect of a specific optimization. On the y-axis is the log

(base 2) of the number of optimizations that caused a specific shift in the performance

of the code. The x-axis quantifies the amount of difference the optimization made in the

performance of the code. For example if there are 32 optimizations that would make no

difference in the performance characteristics of the code being compiled, corresponding

105

point is plotted at (0,5) on the Cartesian plane in the Figure 5.1. As we can see a large

number of optimizations have no effect on the performance of the code. There is a very

very small portion of optimization that has a large effect (either positive of negative)

on the performance of the code being compiled. It is the job of the compiler writer and

the application developer to select the right set of optimizations such that code that

the compiler is most likely to see would be well compiled and performance would not

be adversely effected.

Code being compiled

Optimizations are targeted at specific snippets of code. Only very rarely does

one have an optimization that can produce performance improvement in all situations

regardless of the code being presented. Newer optimizations are specific pinhole opti-

mizations that take advantage of certain specific situations produced in the code. In

most other cases the optimization would either have no visible effect on code being

compiled or might even degrade performance for some codes. Effect of the optimiza-

tions present in the compiler vary with the code that is being compiled. This makes it

important to change the optimization plan based on the code being compiled.

Optimization interactions

The compiler optimizations are applied on the code by the compiler one at a

time, thus making it possible for indirect interactions between different compiler opti-

mizations. Some optimizations are also dependent on each other, e.g. some are enabling

optimizations that are designed to be applied after a specific set of other optimizations,

or some could be clean up optimizations that need to be applied either periodically

or based on past compiler optimizations applied. Due to such varied interactions that

compiler optimizations have with each other, selection of optimizations are extremely

interdependent. This makes the problem of optimization selection more difficult.

106

Architectural effects

Some optimizations take advantage of architectural shortcuts or architecture

specific queues or caches to improve the performance of the code being compiled. In

case the target architecture does not have these niche abilities, the tuned code might

either have no effect on the code being produced or might produce code that might be

worse than the original code. This dependence on the underlying architecture would

need to be taken into account by the application developer when the software is being

developed.

5.2 Optimization Levels

Optimization Levels in a compiler are the most basic form of optimization se-

lection provided by the compiler. Setting different optimizations levels provide the

application developer the ability to tune the code that is being developed to various

degrees of aggressiveness. Optimization levels are flags that control the collective en-

abling or disabling of a group of optimizations. In GCC there are a few optimization

levels O0, O1, O2, and O3 that are mentioned in more detail in Table 5.1. These

optimization levels control more aggressive optimizations.

Looking at the optimization levels we see that the optimization levels are based

on the probability of the optimization benefiting the code being compiled, this is the

rudimentary way of performing a cost-benefit analysis of applying optimizations to a

code.

One serious drawback of this approach is that the cost benefit analysis is done

on the universal set of code that can be compiled by the compiler or the frequency with

which the code might be seen by the compiler. Such assumptions would need to be

made by the compiler writer at the time of compiler design or compiler development.

This is a serious drawback, as the super set of all possible code is a lot more restrictive

a constraint, and given a particular situation, or code or a library we can tailor the

optimization selection to create a better performing code.

107

Optimization Description
Level
-O0 No code tuning optimizations are applied. Primarily

used for initial development or debugging of code
-O1 Basic optimizations are performed
-O2 Most optimizations are enabled, optimizations

that might not produce IEEE compliant
approximations are not enabled.

-O3 Turns all all optimizations that can produce safe
repeatable code, including inlining, vectorization etc.

-Os Optimize for size, collection of all O2 optimizations
that do not increase code size.

-Ofast most aggressive optimization level that enables
all optimizations, even the once that are not valid for
standard compliant programs.

Table 5.1: List of Optimization levels in the GCC compiler.

5.3 Optimization Flag Filtering

The compiler that we used for the optimization selection experiments was the

GCC compiler version 4.8. The GCC 4.8 compiler has large selection of optimization

flags that could be used to optimize and tune the code being compiled.

In order to reduce or filter out the most effective optimizations we hypothesized

that the effect of a single optimization could be a good approximation for the effective-

ness of the same optimization in a group of optimization. This hypothesis does have

flaws in ignoring the inter-optimization interactions, but we felt that it was a good way

to reduce the total number of optimizations that we control. Reducing the number of

optimizations under our control would reduce the search space of possible optimization

configurations considerably.

The Figure 5.2 shows the result of just such an experiment. On the Y axis we

plot the speedup normalized to O3, this is explained in the formula below.

Sn =
tO3

topt1

108

h

Figure 5.3: Performance of Genetic Algorithm when changing the number of optimiza-
tions in the search space.

Where Sn is the speedup normalized over O3, topt1 is the execution time of the

binary when compiled with the optimization opt1, and tO3 is the execution time when

the benchmark is compiled with default O3 optimization level.

On the X axis we show the speedup that each version of the binary achieved when

compiled by the optimization labeled on the X axis. The red bar is the performance

when no optimization was applied to compile the binary, so each bar on the right of the

red bar did better than having no optimization, and bars on the left actually degraded

the performance of the application being compiled.

We used Genetic Algorithm to search for good optimization configurations. A

more detailed explanation about Genetic Algorithm and the different parameters that

we could use to tune it are explained in Section 2.11. Based on this experiment we

were able to compile a list of 71 optimizations that were most effective.

The Figure 5.3 shows the different number of optimizations that we used in

110

the Genetic Algorithm. Initial experiment was done with a set of 33 optimizations

and used Genetic Algorithm to find the optimization configurations that gave the best

speedup or performance. The speedup achieved with 33 optimizations remained around

the 95% of the baseline performance after 10 generations as shown in the blue line in

the Figure 5.3. Increase in the number of optimizations increased the effectiveness of

the GA by allowing it to control more optimizations, with 39 optimizations after ten

generations the speedup was almost 99% of the baseline. We further increased the

number of optimizations that were controlled by the GA to 71 different optimizations

and the speedup achieved by the GA over ten generations increased to 101% of the

baseline. This means that we had a 1% reduction in the average running time of all the

benchmarks used in the GA. Based on this speedup we decide to use 71 optimizations

for the GA experiments.

The final set of optimizations that were used for the GA experiments are pre-

sented in the Tables 5.2, 5.3, and 5.4. The first column of the table gives the name of

the flag as used to activate it as a command line argument. The second column gives

a short description of the optimization and what it aims to do. If the optimization

almost always improves the performance of the code it is likely to be turned on in the

lower optimization levels. However if the optimization has some side effects or may

cause certain performance regressions in certain cases then it is not likely to be turned

on by default.

111

Optimization Description
-falign-functions aligns function to optimal byte boundary
-falign-jumps aligns jumps to optimal byte boundary
-falign-labels aligns labels to optimal byte boundary
-falign-loops aligns loops to optimal byte boundary
-fcaller-saves saves register values to improve context switching
-fconserve-stack minimize stack usage
-fcrossjumping combines equivalent code to reduce code size
-fcse-follow-jumps Continues CSE beyond if-else jumps
-fcse-skip-blocks Continues CSE over basic blocks
-fdelete-null-pointer-checks Removes null point checks improving code flow and

branch prediction
-fdevirtualize Convert calls to virtual function to direct calls when pos-

sible.
-fexpensive-optimizations Perform minor optimizations them might be expensive in

running time.
-fgcse Global common subexpression elimination
-fgcse-after-reload another load elimination pass to remove redundant

spilling
-fgcse-lm rearranges load-store combinations around loop bound-

aries to improve performance
-fhoist-adjacent-loads Moves load operations to improve memory performance.
-findirect-inlining perform inlining after tr
-finline-atomics governs the inlining of atomics routines.
-finline-functions enables inlining
-finline-functions-called-
once

modifies inlining aggressiveness for methods called only
once.

-finline-small-functions Enables inlining of small functions
-fipa-cp perform intra-procedural(ipa) copy propagation
-fipa-cp-clone Performs function cloning to create multiple images of

functions with customized inputs
-fipa-sra performs scalar replacement of aggregates
-fivopts perform induction variable optimizations (e.g. strength

reduction)

Table 5.2: List of GCC Optimizations used in optimization selection [2].

112

Optimization Description
-fsched-critical-path-
heuristic

Enable the critical-path heuristic in the scheduler.

-fsched-group-heuristic Use the group heuristic for scheduling
-fsched-interblock schedule instructions across blocks.
-fsched-spec Move non-load instructions to improve code performance
-fsched-spec-load Move load instructions to improve code performance
-fschedule-insns Reorder instructions to eliminate execution stalls due to re-

quired data being unavailable
-fschedule-insns2 Similar to -fschedule-insns, but requests an additional pass

of instruction scheduling after register allocation has been
done.

-fshort-enums Allocate just enough space to enums as required to store data
regardless of binary compatibility of final code

-fshort-wchar treat a wchar as a short unsigned int
-fstrict-aliasing Assume strictest aliasing rules.
-fstrict-overflow Assume strictest overflow rules.
-fthread-jumps Checks if multiple consecutive if-else statements can be com-

bined and or compounded.
-ftrapping-math Compile code assuming that floating-point operations cannot

generate user-visible traps.
-ftree-dce Perform dead code elimination on trees
-ftree-lrs Performs live range splitting in SSA trees
-ftree-partial-pre Make partial redundancy elimination (PRE) more aggressive
-ftree-pre Perform partial redundancy elimination (PRE)
-ftree-slp-vectorize Perform basic block vectorization on trees
-ftree-sra performs scalar replacement of aggregates in trees
-ftree-switch-conversion Perform conversion of simple initializations in a switch to

initializations from a scalar array.
-ftree-tail-merge Search and replace identical code sequences
-ftree-ter Perform temporary expression replacement
-ftree-vectorize Perform loop vectorization on trees
-ftree-vrp Perform Value Range Propagation on trees.
-funswitch-loops Move branches with loop invariant conditions out of the loop,

with duplicates of the loop on both branches
-fvar-tracking-assignments-
toggle

Annotate assignments to improve debug information while
optimizing.

-fvect-cost-model Enable cost model for vectorization.
-fwrapv integer signed overflow wraps

Table 5.3: List of GCC Optimizations used in optimization selection [2].

113

Optimization Description
-fjump-tables generate jump tables for switch statements
-fnothrow-opt modifies throw statement handling to improve performance
-foptimize-register-move Optimizes register motion
-foptimize-sibling-calls Optimizes sibling and tail recursion
-fpartial-inlining in-line small parts of a function, instead of the whole function
-fpeel-loops Uses profiling information to flatten of peel loops when pos-

sible.
-fpeephole2 Control machine specific peephole optimizations.
-fpredictive-commoning Tries to reuse memory loads/stores or previous computa-

tions.
-fprefetch-loop-arrays Generate instructions to prefetch memory to improve per-

formance.
-fregmove move register numbers to improve register tying.
-frename-registers Reduce false dependencies by improving register allocation
-freorder-blocks Performs reordering of blocks to improve code performance
-freorder-blocks-and-
partition

Performs reordering of blocks and partitions to improve code
performance

-freorder-functions Performs reordering of functions to improve code perfor-
mance

-frerun-cse-after-loop Performs another parse of CSE after a loop code to improve
code performance

-freschedule-modulo-
scheduled-loops

Use modulo scheduling for code in loops

-frounding-math Performs number approximation to reduce running time.
-frtti Enables support for run-time type information

Table 5.4: List of GCC Optimizations used in optimization selection [2].

114

5.4 Benchmark Selection

Compiler optimizations can just modify the way the final machine code is gen-

erated, however to quantify the effectiveness of the compilation it is important to have

a set of codes that can be used to test and record the improvements. In the phase

ordering and method inlining optimization experiments the assumption was such that

the compiler would be modified at the factory and used in the real world. In this kind

of environment the compiler could need to be tuned and fixed before the compiler gets

a chance to see the real world code. In such situations the best way to optimizing the

compiler and quantify the improvements would be to use a training set and a test set.

In the present situation the compiler being tuned is actually being tuned to specifically

compile one particular library. Quantifying the improvements on this library no longer

need a training set and a test set, instead we just use the code from the library to

create the baseline and compare it to the optimized code.

The library being studied has a very large number of test scenarios (more than

70,000) we could use a set of these to generate performance characteristics. We used

three different criteria for selecting the benchmarks:

• Short running benchmarks

• Important benchmarks

• Low Noise

Short Running benchmarks

In order to quantify the performance of the optimization configuration, the

genetic algorithm needs to compile and then run the compiled code. This process

is repeated many thousands of times. If the benchmarks are long running then this

approach of search space exploration would no longer be practical. In order to make

the experiments short running and easy to run we limited the running time of the

benchmarks to under 30 secs.

115

Important Benchmarks

Another important factor in selecting the benchmarks was the importance of

the benchmarks. There is little to be gained form optimizing a piece of code that is no

longer being used or is used infrequently, at the same time increasing the efficiency of

a code that is frequently called would lead to bigger performance gains.

The library writers and the application developers that use the financial library

were asked to point to the pieces of code that were important or slow running. We

used this input to narrow our search to the more beneficial areas of the library.

Low Noise

Having low noise is critical in the accurate measurement of the performance

gains achieved due to an optimization configuration. If the noise in the execution time is

larger than the gain produced by the optimization configuration, it would be impossible

to isolate the effect of the optimization configuration from the noise. Another way to

look at this problem is if the noise of a particular benchmark is extremely low then

it makes it easy for the Genetic Algorithm to attribute any performance gains or

slowdowns to the compiler optimization configuration.

The final set of benchmarks that we selected were 11 in total from different parts

of the library. The actual names of the benchmarks have been obfuscated to keep some

of the information confidential.

5.5 Training

In this section we talk about the training of the chromosomes that encode the

Genetic algorithm and the search space. The fitness of the GA is measured by mea-

suring the performance of the benchmarks being compiled. The performance of the

benchmarks are in turn measured using Dynamic Instruction Counts (DIC) instead

of execution time, we talk about the advantages of using DIC over execution time in

116

Section 5.6.

Search Space

The search space that is presented by the application depends on the compiler

as well as the code being compiled. Since we are trying to optimize a single library

with static codes we do not have to worry about the search space being modified by

the source code but just the optimizations available from the GCC compiler. In these

set of experiments we use the optimizations provided by the GCC compiler. There are

two primary types of optimizations:

1. Binary Optimization A binary optimization is an atomic optimization that can
be turned on or turned off. There are no more fine grained used controllable
parameters that can tune the behavior of the optimization e.g. Common Sub-
expression Elimination.

2. Tunable Optimization Tunable optimizations are optimizations that can be tuned
or modified by the user. This can be done to modify or tweak the aggressiveness
of the optimization or it could be used to modify the behavior of the optimization
in some other way, e.g. Method Inliing or Loop Unrolling. These optimizations
are more complex and may contain small search spaces in themselves.

The magnitude of entire compiler optimization search space is extremely large,

which is a common problem in compiler optimization planning. In order to understand

the scale of the search space let us take the example of the GCC compiler. GCC has over

260 tunable compiler optimization flags. Tunable optimizations add extra complexity.

So for the sake of this example we consider all optimizations to be just binary. If

we assumed all the optimizations to be binary there would be a total 2260 possible

optimization settings. With such a large set of possible optimization configurations,

using brute force is not practical. Even sampling the search space does not provide

us with a good coverage of the search space, and thus machine learning becomes the

only option available to us. It is imperative that any search strategy used performs

intelligent search space exploration. We perform this search space exploration using a

117

the DIC as the training parameter is likely to also result in performance gaines when

measured using execution time.

Random vs. Intelligent optimizations

Figure 5.7: Difference in performance when measuring DIC and execution time.

Another concern that we had when presenting the results in Figure 5.6 was the

fact that we were using random optimization configurations. There is a possibility that

good optimizations might change the library in such a way that the machine code takes

advantage of the underlying architecture of the machine in the form of vectorization or

better use of the cache that might not be emulated accurately when using the valgrind

toolkit.

In order to confirm our assumptions still remained accurate we used the best

chromosomes found in each generation during the GA training to compile the library

and run it in production environment just measuring the execution time. This would

be an extremely accurate representation of the real world problem that we are trying

to solve.

121

The Figure 5.7 represents this particular data. The x-axis represents the best

performing chromosomes of each generation, and the y-axis shows the percentage rel-

ative speedup normalized over the baseline. Looking at the graph we can see that

the performance gains measured using DIC (the red line in Figure 5.7) are in the in-

creasing order, which points to the fact that the machine learning algorithm is in fact

able to search for good optimization configurations, and also that over generations the

configurations that it does find are progressively better than the previous optimiza-

tion configurations when using DIC or execution time as the standard of measuring

performance. This could be treated as conclusive proof for the environment of the

present experiments, using DIC instead of execution time still provides us with good

optimization configurations.

Reasons for choosing DIC

There are certain advantages of using DIC over execution time, that are ex-

plained in the paragraphs below.

Low noise

The machine learning algorithm is very sensitive to noise during training. The

sole criteria to choose one optimization configuration over another is based on the

measurement of performance characteristics. This is done by making very small changes

and adjustments to the already existing configuration and measuring the difference

in the performance. If the noise in the system is higher than the difference in the

performance due to the change in the optimization selection, the machine learning

algorithm would not be able to attribute the change correctly to the right factor. It

is the ability to track and remember small performance changes and combine multiple

such changes in the optimization plan that make it possible to use machine learning.

It is absolutely critical that we use the method with least noise profile for this reason.

122

Multiple instances on one machine

The machines that we used as slave nodes in the cluster were dual processor

machines with 16 cores in each processor. The benchmarks that we used to test the

library were essentially single threaded applications that do not take advantage of multi

cores. In order to take advantage of all the cores available on the system one would need

to run multiple tests at the same time. Doing this had no effect on the performance

numbers collected using DIC however the noise profile using execution time increased

in direct relation to the number of tests running in parallel.

5.7 Experimental Setup and Terminology

The optimization selection experiments on the GCC compiler and the financial

library were performed on a cluster of machines, governed by the master node that

performed the genetic exploration. The master node would generate the chromosomes

that needed to be evaluated, and these chromosomes would be shipped out to the slave

nodes for further evaluation. The terms used here are explained below.

Chromosome

The term chromosome is used to refer to a vector that essentially encodes the

optimization configuration. The chromosome is generated and evolved by the Genetic

algorithm engine which uses the optimization configuration as genetic material that

is evolved over multiple generations to improve the fitness of the configuration. This

similarity to genetic material has lead to it being referred to as the chromosome. The

chromosome as shown in the Figure 5.8 is an array of flags that are encoded using

numbers. All the optimizations can be divided into three types.

1. Optimizations encoded in Binary These optimizations are just on/off flags that
represent the presence of the absence of a specific optimization.

2. Optimizations encoded in Integer Optimizations that can be encoded into a spe-
cific tunable discretized value.

123

Figure 5.10: Evolutionary improvement of optimization configuration over generations.

5.8 Results

In this section we describe the effect of performing optimization selection on the

financial library FLib.

Effectiveness of Machine Learning

The GA used for the search space exploration was very effective in searching for

good optimization configurations. Over a period of 40 generations the ECJ engine was

able to achieve a 2% speedup over baseline. We continued the search to give the ECJ

engine a chance to find a better optimization configuration.

Graph shown in Figure 5.10 represents the evolution of the optimization config-

urations as searched by the ECJ engine. The x-axis represents each generation during

the evolutionary cycle. The y-axis shows the speedup compared to the baseline. The

baseline in this situation is the performance of the application when compiled using

the O3 optimization setting.

126

Performance Gains

The performance measurement criteria provided during the learning phase using

the ECJ engine was the Dynamic Instruction Counts (DIC). This gave the machine

learning algorithm an accurate low noise parameter to perform the search space ex-

ploration. However the library developers and the library users would actually prefer

to understand the performance difference in terms of execution time. Keeping this in

mind the performance numbers are presented in both, execution time as well as DIC.

Section 5.6 talks about the reasons for choosing DIC over execution count in detail.

The Figure 5.11 shows the performance improvements of the three best per-

forming chromosomes during the evolutionary search during the last few generations.

The chromosomes achieve an average of 2% improvements, and in few cases as much

as a 5% improvement. On the y-axis we have the performance improvement of the

benchmarks shown using the speedup normalized over baseline. The baseline used

in this case is the binaries obtained by compiling the source code using -O3 as the

optimization level. On the x-axis we have the obfuscated names of the benchmarks

that were used to measure the performance. The name of the benchmarks have been

obfuscated in accordance with the wishes of the financial library developers at J. P.

Morgan.

The Figure 5.12 similarly show the performance improvements of the three best

performing chromosomes when measured using execution time. The x-axis and the

y-axis are similar to the graph in Figure 5.11. We use execution time as the matrix

to confirm that the improvements that we gained from using DIC during training did

infact carry forward to the real world situation of measuring execution time. We see

an average improvement of a little more than 4%, and in the case of benchmarks bm5

and bm11 we get 15% and 16% improvement respectively. We show the error bars in

black.

127

Noise

The noise profile for the benchmarks when using execution time are represented

by the noise bars in the Figures 5.11. The average noise when measuring execution

time was 1.15%. The benchmark bm3 was the noisiest with the noise of 3.11%. Figure

5.11 does not have any error bars as the measured noise levels were 4 to 6 orders of

magnitude smaller than the noise when the performance is measured using execution

time.

noise =
stdev

tavg
∗ 100

stdev =

√∑n
i=0 (tavg − ti)2

n

ti = time of ith run

tavg = average time of i runs

(5.1)

The Figure 5.13 represents the noise in the system when we measured the per-

formance of the system using execution time. The noise is measured by running the

benchmarks 20 times and calculating the average running time of the benchmark. Once

the average running time is calculated the standard deviation is calculated using the

formula presented in Equation 5.1. The ratio of the standard deviation to the average

running time gives use the percentage noise in the benchmark being used.This noise

is also dependent on the load on the system as well, and thus when using execution

time for performance measurement we only ran one timed experiment at a time to keep

the noise to a minimum. In case of the GCC experiments when referring to average

speedup we used the geometric mean of the values being collected.

Relative importance of optimizations

Not all optimizations are created equal. Some optimizations could be more

effective in providing performance improvements than others. Also the effect of the

130

F
ig
u
re

5.
14
:
R
el
at
iv
e
im

p
or
ta
n
ce

of
op

ti
m
iz
at
io
n
s
in

th
e
b
es
t
p
er
fo
rm

in
g
op

ti
m
iz
at
io
n
se
q
u
en
ce
s.

132

them in the final set of optimizations. The optimizations that were most useful were

reused and kept in the final set of optimizations. The optimizations that reduced

the performance of the code would be actively removed by the genetic algorithm. This

ability of the genetic algorithm to increase the probability of a useful optimization being

present in the final set of optimizations and actively trying to reduce the probability of

a harmful optimization can help us gain an insight on which optimizations are useful

and which optimizations are not useful.

The Figure 5.14 shows the relative probabilities of different optimizations when

selected by the genetic algorithm. The optimizations that were very useful are on the

extreme left, and have a near 100% chance of being picked up by the ML algorithm.

The optimizations that were not beneficial to the benchmarks but at the same did not

cause any harm in reduced performance and in general did not statistically affect the

performance of the application were neither removed nor actively added to the opti-

mization selection, these optimization comprise the middle section of the figure 5.14.

On the right side is the set of optimizations that statistically reduced the performance

of the benchmarks and the application in general. These optimization were actively

avoided and thus were not present in the final optimization sequences found by ECJ.

133

Chapter 6

CONCLUSION

During the course of this research we were able to demonstrate the use of ma-

chine learning on a broad range of compiler optimization problems. We looked at phase

ordering, optimization tuning as well as optimization selection. These three forms of

optimization customizations represent the complete range of modifications that one

can perform using a compiler short of introducing a new compiler optimization.

In this thesis we have shown that using source code features in combination with

different machine learning techniques provide a significant performance improvement

for code being compiled. We present our results on improving method inlining and

phase ordering in three different compilers, Maxine Research VM, Java Hotspot, and

JikesRVM.

The primary focus of this research has been to use propose an method to provide

customized recommendation of optimizations individually tailored to the code being

compiled at each instance. We create customized optimization plan recommendations

for source code being compiled by using the source code as a decision making factor

in the machine learning algorithm. The source code is distilled into source features

that try and represent the source code in a manner that would be useful as inputs

to the machine learning heuristic. To the best of our knowledge, this is the first

research to demonstrate that source features as inputs to machine-learning models

can be successfully used to tune optimization parameters and dynamically choose a

good ordering of optimizations for previously unseen methods. The present study is

promising as it provides a fresh prospective to the problems of method inlining and

phase ordering which have been studied for decades.

134

The research done in customizing phase ordering in Chapter 3 provided cus-

tomized compiler optimization plans for a method using source features as inputs to

an Artificial Neural Network. Using ANNs we were able to show an average of 8%

improvement in the adaptive compilation scenario and 8.2% improvement in the op-

timizing compilation scenario. We achieved a maximum speedup of around 24% in

mpegaudio. We were also able to reduce the average optimization sequence length by

25% presented in Table 3.5 which is a great result in a dynamic compilation environ-

ment where the compiler and the application being executed share the same resource

pool. In Listings 3.1 and 3.2 we also take an example of a piece of code that was

compiled using the traditional optimization compilation plan and compared it with

the code generated using the plan generated using the ANN.

When using machine learning to tune Method Inlining on the Java HotSpot VM

and the Maxine VM we achieved a 14% and 10% speedup respectively (in Section 4.10).

We also explain in Section 4.7 our method of converting an unreadable ANNs into a

much more understandable format of a decision tree. There are two more interesting

results that we should highlight from this research. First we were able to achieve

a small but a very significant speedup of 3% on the SPECjbb2005 benchmark (in

Figure 4.12)using the Java HotSpot VM. The HotSpot VM is the most tuned and

the most popular Java VM and the benchmark that is used primarily used to tune

the VM is the SPECjbb2005 benchmark. Being able to achieve any speedup on this

VM(Compiler) and benchmark combination we feel was a very promising result for our

methodology. Secondly we were able to achieve significantly better results on the Scala

benchmarks (in Figure 4.11)than the default compiler, which points to the robustness

of the heuristic proposed by the machine learning algorithm. Our use of source features

and profiling information in combination with different machine learning techniques to

customize method inlining decisions is novel. The use of decision trees in choosing

the right compiler optimization parameters is also new and holds a lot of potential for

practical use in the real world.

135

Work in Chapter 5 provides a great example of how a machine learning and

compiler optimizations can be combined to improve performance of a real world large

scale library. We were also be able to study and document the different steps involved

from selecting a good set of benchmarks to finding good optimization sequences. We

were able to achieve an improvement of 2% to 4% speedup using optimization selec-

tion techniques presented in this thesis. Since we were optimizing a financial library,

numerical accuracy was extremely important to the final user of the application, we

implemented an automatic feedback mechanism that would evaluate and adapt the

fitness of the final heuristic based on the numerical accuracy as well as the speedup of

the final compiled code.

Based on the research done here we feel that the use of source features in sug-

gesting customized optimization compilation plan is very promising and could be used

more often in most real world compilation scenarios.

136

BIBLIOGRAPHY

[1] J. A. Mathew, P. D. Coddington, and K. A. Hawick, “Analysis and
Development of Java Grande Benchmarks,” in In Proc. of the ACM
1999 Java Grande Conference, 1999, pp. 72–80. [Online]. Available: http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2608

[2] “GCC Optimization flags.” [Online]. Available: http://gcc.gnu.org/onlinedocs/
gcc-4.8.2/gcc/Optimize-Options.html

[3] M. Haneda, P. M. W. Knijnenburg, and H. A. G. Wijshoff, “Automatic Selection
of Compiler Options Using Non-parametric Inferential Statistics,” in 14th Interna-
tional Conference on Parallel Architecture and Compilation Techniques (PACT),
2005, pp. 123–132.

[4] L. Almagor, K. D. Cooper, A. Grosul, T. J. Harvey, S. W. Reeves, D. Subrama-
nian, L. Torczon, and T. Waterman, “Finding effective compilation sequences,”
in Proceedings of the 2004 ACM SIGPLAN/SIGBED conference on Languages,
compilers, and tools for embedded systems, ser. LCTES ’04. ACM, 2004, pp.
231–239.

[5] P. A. Kulkarni, D. B. Whalley, G. S. Tyson, and J. W. Davidson, “Exhaustive
Optimization Phase Order Space Exploration,” in Fourth Annual IEEE/ACM
Interational Conference on Code Generation and Optimization, New York City,
NY, March 2006, pp. 306–318.

[6] J. Gauci and K. O. Stanley, “Autonomous Evolution of Topographic Regularities
in Artificial Neural Networks,” Neural Computation, vol. 22, no. 7, pp. 1860–1898,
2010.

[7] X. Li, M. J. Garzaran, and D. Padua, “Optimizing sorting with genetic algo-
rithms,” in Code Generation and Optimization, 2005. CGO 2005. International
Symposium on. IEEE, 2005, pp. 99–110.

[8] M. Püschel, J. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer, J. Xiong,
F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo,
“SPIRAL: Code Generation for DSP Transforms,” In Proc. of the IEEE, special
issue on Program Generation, Optimization, and Platform Adaptation, vol. 93,
no. 2, pp. 232–275, February 2005.

137

[9] R. C. Whaley, A. Petitet, and J. J. Dongarra, “Automated Empirical Optimiza-
tions of Software and the ATLAS Project,” Parallel Computing, vol. 27, no. 1-2,
pp. 3–35, 2001.

[10] R. Vuduc, J. W. Demmel, and K. A. Yelick, “OSKI: A Library of Automatically
Tuned Sparse Matrix Kernels,” Journal of Physics Conference Series, vol. 16, pp.
521–530, Jan. 2005.

[11] A. Epshteyn, M. J. Garzarán, G. DeJong, D. Padua, G. Ren, X. Li, K. Yotov, and
K. Pingali, “Analytic models and empirical search: A hybrid approach to code
optimization,” in Languages and Compilers for Parallel Computing. Springer,
2006, pp. 259–273.

[12] X. Li, M. J. Garzarán, and D. Padua, “Optimizing Sorting with Genetic Algo-
rithms,” in In Proc. of the International Symposium on Code Generation and
Optimization (CGO), March 2005, pp. 99–110.

[13] S.-C. Han, F. Franchetti, and M. Püschel, “Program Generation for the All-pairs
Shortest Path Problem,” in PACT ’06: Proceedings of the 15th international con-
ference on Parallel architectures and compilation techniques. New York, NY,
USA: ACM Press, 2006, pp. 222–232.

[14] A. Ganapathi, K. Datta, A. Fox, and D. Patterson, “A Case for Machine Learning
to Optimize Multicore Performance,” First USENIX Workshop on Hot Topics in
Parallelism (HotPar ’09), 2009.

[15] M. Stephenson, S. Amarasinghe, M. Martin, and U.-M. O’Reilly, “Meta Opti-
mization: Improving Compiler Heuristics with Machine Learning,” in Proc. of
Programing Language Design and Implementation, June 2003.

[16] P. Kulkarni, S. Hines, J. Hiser, D. Whalley, J. Davidson, and D. Jones, “Fast
Searches for Effective Optimization Phase Sequences,” in PLDI ’04: Proceedings
of the ACM SIGPLAN 2004 conference on Programming language design and
implementation. ACM Press, 2004, pp. 171–182.

[17] M. Stephenson and S. Amarasinghe, “Predicting Unroll Factors Using Supervised
Classification,” in CGO ’05: Proceedings of the international symposium on Code
generation and optimization. Washington, DC, USA: IEEE Computer Society,
2005, pp. 123–134.

[18] J. Cavazos and M. F. P. O’Boyle, “Method-specific Dynamic Compilation Us-
ing Logistic Regression,” in OOPSLA ’06: Proceedings of the 21st annual ACM
SIGPLAN conference on Object-oriented programming systems, languages, and
applications. New York, NY, USA: ACM Press, 2006, pp. 229–240.

138

[19] K. Cooper, A. Grosul, T. Harvey, S. Reeves, D. Subramanian, L. Torczon, and
T. Waterman, “ACME: adaptive compilation made efficient,” in LCTES ’05: Pro-
ceedings of the 2005 ACM SIGPLAN/SIGBED conference on Languages, compil-
ers, and tools for embedded systems, vol. 40. ACM, 2005, pp. 69–77.

[20] K. D. Cooper, A. Grosul, T. J. Harvey, S. Reeves, D. Subramanian, L. Torczon,
and T. Waterman, “Exploring the Structure of the Space of Compilation Sequences
Using Randomized Search Algorithms,” J. Supercomputing, vol. 36, no. 2, pp. 135–
151, 2006.

[21] K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong, M. Garzaran, D. Padua, K. Pin-
gali, P. Stodghill, and P. Wu, “A Comparison of Empirical and Model-driven Op-
timization,” in Proc. of Programing Language Design and Implementation, June
2003, pp. 63–76.

[22] A. Monsifrot, F. Bodin, and R. Quiniou, “A Machine Learning Approach to Au-
tomatic Production of Compiler Heuristics,” in AIMSA ’02: Proceedings of the
10th International Conference on Artificial Intelligence: Methodology, Systems,
and Applications. London, UK: Springer-Verlag, 2002, pp. 41–50.

[23] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P. O’Boyle,
J. Thomson, M. Toussaint, and C. K. I. Williams, “Using Machine Learning to
Focus Iterative Optimization,” in CGO ’06: Proceedings of the International Sym-
posium on Code Generation and Optimization. Washington, DC, USA: IEEE
Computer Society, 2006, pp. 295–305.

[24] Z. Wang and M. F. O’Boyle, “Mapping parallelism to multi-cores: a machine
learning based approach,” in PPoPP ’09: Proceedings of the 14th ACM SIGPLAN
symposium on Principles and practice of parallel programming. New York, NY,
USA: ACM, 2009, pp. 75–84.

[25] G. Fursin, C. Miranda, O. Temam, M. Namolaru, E. Yom-Tov, A. Zaks,
B. Mendelson, P. Barnard, E. Ashton, E. Courtois, F. Bodin, E. Bonilla, J. Thom-
son, H. Leather, C. Williams, and M. O’Boyle, “MILEPOST GCC: machine learn-
ing based research compiler,” in Proceedings of the GCC Developers’ Summit, June
2008.

[26] K. Cooper, P. Schielke, and D. Subramanian, “Optimizing for reduced code space
using genetic algorithms,” in Proceedings of the ACM SIGPLAN 1999 workshop
on Languages, compilers, and tools for embedded systems. ACM, 1999, pp. 1–9.

[27] K. Cooper, D. Subramanian, and L. Torczon, “Adaptive optimizing compilers for
the 21st century,” The Journal of Supercomputing, vol. 23, no. 1, pp. 7–22, 2001.

[28] M. R. Jantz and P. A. Kulkarni, “Eliminating false phase interactions to reduce
optimization phase order search space,” in CASES. ACM, 2010, pp. 187–196.

139

[29] P. A. Kulkarni, D. B. Whalley, and G. S. Tyson, “Evaluating Heuristic Optimiza-
tion Phase Order Search Algorithms,” in CGO. IEEE Computer Society, 2007,
pp. 157–169.

[30] P. A. Kulkarni, D. B. Whalley, G. S. Tyson, and J. W. Davidson, “Practical
exhaustive optimization phase order exploration and evaluation,” TACO, vol. 6,
no. 1, 2009.

[31] E. V. B. Felix V. Agakov and J. C. et al. et al., “Using Machine Learning to Focus
Iterative Optimization,” in CGO, 2006, pp. 295–305.

[32] C. Dubach, J. Cavazos, B. Franke, G. Fursin, M. F. P. O’Boyle, and O. Temam,
“Fast compiler optimisation evaluation using code-feature based performance pre-
diction,” in Conf. Computing Frontiers. ACM, 2007, pp. 131–142.

[33] M. Zhao, B. R. Childers, and M. L. Soffa, “A Model-Based Framework: An Ap-
proach for Profit-Driven Optimization,” in Proceedings of the the International
Symposium on Code Generation and Optimization (CGO), 2005, pp. 317–327.

[34] K. Cooper, T. Harvey, and T. Waterman, “An Adaptive Strategy for Inline Sub-
stitution,” in Compiler Construction, ser. Lecture Notes in Computer Science,
L. Hendren, Ed. Springer Berlin / Heidelberg, 2008, vol. 4959, pp. 69–84,
10.1007/978-3-540-78791-4 5.

[35] K. D. Cooper, M. W. Hall, and L. Torczon, “An experiment with inline substitu-
tion.”

[36] M. Arnold, S. Fink, V. Sarkar, and P. F. Sweeney, “A Comparative Study of Static
and Profile-Based Heuristics for Inlining,” in 2000 ACM SIGPLAN Workshop on
Dynamic and Adaptive Compilation and Optimization (DYNAMO ’00), Boston,
MA, Jan. 2000.

[37] K. Hazelwood and D. Grove, “Adaptive Online Context-Sensitive Inlining,”
in First Annual IEEE/ACM Interational Conference on Code Generation and
Optimization, San Francisco, CA, March 2003, pp. 253–264. [Online]. Available:
http://citeseer.ist.psu.edu/hazelwood03adaptive.html

[38] J. Dean and C. Chambers, “Towards Better Inlining Decisions Using Inlining
Trials,” in LISP and Functional Programming, 1994, pp. 273–282. [Online].
Available: http://citeseer.ist.psu.edu/195684.html

[39] J. Cavazos and M. F. P. O’Boyle, “Automatic Tuning of Inlining Heuristics,” in
IN ACM/IEEE CONFERENCE ON SUPERCOMPUTING, 2005, p. 14.

[40] R. Leupers and P. Marwedel, “Function inlining under code size constraints for
embedded processors,” in ICCAD ’99: Proceedings of the 1999 IEEE/ACM in-
ternational conference on Computer-aided design. Piscataway, NJ, USA: IEEE
Press, 1999, pp. 253–256.

140

[41] K. O. Stanley and R. Miikkulainen, “Efficient Reinforcement Learning Through
Evolving Neural Network Topologies,” in Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2002). San Francisco: Morgan
Kaufmann, 2002, p. 9. [Online]. Available: http://nn.cs.utexas.edu/?stanley:
gecco02b

[42] J. A. Alexander and M. Mozer, “Template-Based Algorithms for Connectionist
Rule Extraction.” in NIPS, G. Tesauro, D. S. Touretzky, and T. K.
Leen, Eds. MIT Press, 1994, pp. 609–616. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/nips/nips1994.html#AlexanderM94

[43] H. Lu, R. Setiono, and H. Liu, “Effective data mining using neural networks,”
Knowledge and Data Engineering, IEEE Transactions on, vol. 8, no. 6, pp. 957–
961, 1996.

[44] M. W. Craven and J. W. Shavlik, “Extracting tree-structured representations of
trained networks,” Advances in neural information processing systems, pp. 24–30,
1996.

[45] ——, “Learning Symbolic Rules Using Artificial Neural Networks,” in Proceedings
of the Tenth International Conference on Machine Learning. Morgan Kaufmann,
1993, pp. 73–80.

[46] L. A. Smith, J. M. Bull, and J. Obdrzálek, “A Parallel Java Grande Benchmark
Suite,” in SC2001: High Performance Networking and Computing. Denver, CO,
November 10–16, 2001, ACM, Ed. ACM Press and IEEE Computer Society
Press, 2001.

[47] C. Liao, D. J. Quinlan, R. W. Vuduc, and T. Panas, “Effective Source-to-Source
Outlining to Support Whole Program Empirical Optimization.” in LCPC’09, 2009,
pp. 308–322.

[48] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P.Cheng, J.-D. Choi,
A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov,
M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd,
S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley, “The Jalapeño Virtual
Machine,” IBM Systems Jounrnal, vol. 39, no. 1, 2000.

[49] Website, “Java Grande Benchmarks.” [Online]. Available: http://www2.epcc.ed.
ac.uk/computing;http://sequential.html

[50] T. Li, L. K. John, N. Vijaykrishnan, A. Sivasubramaniam, J. Sabarinathan, and
A. Murthy, “Using complete system simulation to characterize SPECjvm98 bench-
marks,” in ICS, 2000, pp. 22–33.

141

[51] K. Shiv, K. Chow, Y. Wang, and D. Petrochenko, “SPECjvm2008
Performance Characterization,” in Proceedings of the 2009 SPEC Benchmark
Workshop on Computer Performance Evaluation and Benchmarking. Berlin,
Heidelberg: Springer-Verlag, 2009, pp. 17–35. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-540-93799-9 2

[52] “Dacapo Benchmark Suite.” [Online]. Available: http://dacapobench.org/
benchmarks.html

[53] K. O. Stanley, “Efficient evolution of neural networks through complexifica-
tion,” Ph.D. dissertation, The University of Texas at Austin, 2004, supervisor-
Miikkulainen, Risto P.

[54] X. Yao, “Evolving Artificial Neural Networks,” 1999.

[55] K. O. Stanley and R. Miikkulainen, “Evolving Neural Network through
Augmenting Topologies.” Evolutionary Computation, vol. 10, no. 2, pp. 99–127,
2002. [Online]. Available: http://dblp.uni-trier.de/db/journals/ec/ec10.html#
StanleyM02

[56] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The WEKA data mining software: an update,” SIGKDD
Explor. Newsl., vol. 11, pp. 10–18, November 2009. [Online]. Available:
http://doi.acm.org/10.1145/1656274.1656278

[57] L. A. Smith, J. M. Bull, and J. Obdrzálek, “A Parallel Java Grande Benchmark
Suite,” in Supercomputing ’01: Proceedings of the 2001 ACM/IEEE conference
on Supercomputing (CDROM). New York, NY, USA: ACM, 2001, pp. 8–8.
[Online]. Available: http://portal.acm.org/citation.cfm?id=582034.582042;http:
//www.bibsonomy.org/bibtex/2c43a9020f22de7cdb6608093a3074ea6/gron

[58] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosk-
ing, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen,
D. von Dincklage, and B. Wiedermann, “The DaCapo Benchmarks: Java Bench-
marking Development and Analysis.”

[59] S. M. Blackburn et al., “The DaCapo Benchmarks: Java Benchmarking Devel-
opment and Analysis,” in 21st Object-Oriented Prog. Syst., Lang., & Appl.
Conf. Proc. (OOPSLA), Oct. 2006, pp. 169–190.

[60] A. Sewe, M. Mezini, A. Sarimbekov, and W. Binder, “Da capo
con scala: design and analysis of a scala benchmark suite for
the java virtual machine.” in OOPSLA 2011, C. V. Lopes and
K. Fisher, Eds. ACM, 2011, pp. 657–676. [Online]. Available:
http://dblp.uni-trier.de/db/conf/oopsla/oopsla2011.html#SeweMSB11;http:

142

//doi.acm.org/10.1145/2048066.2048118;http://www.bibsonomy.org/bibtex/
23b9b03b5a29dc0a46fa0f4fd7e6b96f6/dblp

[61] S. Luke, “A Java-based Evolutionary Computation Research System,” ECJ 11: A
Java evolutionary computation library. http://cs.gmu.edu/∼eclab/projects/ecj/,
2004.

143

