

A Concurrent Real-Time White Paper

2881 Gateway Drive

Pompano Beach, FL 33069

(954) 974-1700

www.concurrent-rt.com

Improving Real-Time Performance with

CUDA Persistent Threads (CuPer) on the

Jetson TX2

By: Todd Allen

Consulting Software Engineer

March 2018

http://www.concurrent-rt.com/

Improving Real-Time Performance with CUDA Persistent Threads (CuPer) on the Jetson TX2 Page 2

Overview

Increasingly, developers of real-time software have been exploring the use of graphics

processing units (GPUs) with programming models such as CUDA to perform complex

parallelizable calculations. However, historically, GPUs have suffered from problems of poor

determinism, which hampers their use for real-time applications when constraints on frame

duration are sub-millisecond. This has improved in recent years, but remains a problem for

applications with very tight frames, possibly even in the neighborhood of 100 µs.

The use of the persistent threads style can improve determinism significantly, making modest-

sized workloads viable for such applications. The paper presents a simple CUDA-based API for

this programming style, documents timing results using this API, and makes suggestions on

how best to utilize it. All results are based on the Jetson TX2 platform using the RedHawk

Linux RTOS with CUDA 8.0.

Real-Time Requirements

The primary requirements for hard real-time software are twofold:

 High Performance

 Determinism

The requirement for high performance is shared with most software. But the requirement for

determinism is a particular requirement for real-time software. For any particular

computation, the typical measures for these two requirements are average time and jitter,

respectively. Average time is a straightforward computation. In a large algorithm, this often

would be measured by its inverse, throughput. In real-time code, the computations frequently

are kept deliberately small, and so average time is the more useful value. This often is the

easier metric to optimize in a real-time system! In this paper, the jitter for a computation is the

difference between its maximum time and its average time.

The determination of acceptable values for average time and jitter depend on the duration of

the real-time frame, which is the inverse of the frequency of the application. For a soft real-

time system, common values might be 60 Hz with a frame duration of 16.666 ms, or 100 Hz

with a frame duration of 10 ms. For such applications, the determinism of the standard CUDA

launch/synchronize approach probably is sufficient. For a hard real-time system, common

values may be anywhere between 1 KHz with a frame duration of 1000 µs to 10 KHz with a

Improving Real-Time Performance with CUDA Persistent Threads (CuPer) on the Jetson TX2 Page 3

frame duration of 100 µs. For these systems, and especially as the frame durations become

shorter and shorter, the average time and jitter must be minimized aggressively.

It also is important to consider that the CUDA computation almost certainly will not be the

entirety of the total computation performed within the frame. The portion of the frame that

can be dedicated to a CUDA computation varies by the application.

To achieve these goals, programming methods that otherwise might be considered

undesirable are considered perfectly valid. A few examples are:

 Use of busy waits

 Forcing system resources to remain completely unused when not needed by the real-

time application

 Disabling of power management

CUDA Architecture

Before learning the persistent threads programming style, it first is necessary to understand

some key concepts of the CUDA architecture.

In the CUDA programming model, the smallest parallel computation component is the thread.

Threads are organized into thread blocks, or simply blocks, of user-specified size. Threads within

a block have several mechanisms for fast communication and synchronization between each

other. Blocks are expected to function independently of each other. The blocks are further

organized into a grid, which encompasses the entirety of the parallel computation. The source

and object code that is executed in each of these threads, blocks and grid is called a CUDA

kernel. (Despite having the same name, this has no relationship to the Linux kernel.)

In the CUDA hardware model, the smallest computation component is the lane. Lanes are organized

into groups called warps, of a size fixed in hardware (32 in all CUDA architectures). At this level of the

architecture, the warp functions as a variation of the classic SIMD architecture, with the warp

interpreting instructions and applying them in parallel to all lanes within the warp. However, the CUDA

architecture supports divergence of threads resulting from data dependent execution flow – at a cost of

reduced parallelism – and so the architecture instead is called SIMT.

Each thread is mapped to a single lane. Typically – but not always – a block will comprise more threads

than there are lanes within a warp, so the CUDA hardware subdivides the block into multiple warps. In

the event that a block is smaller than a warp, or a block is not an integer multiple of the warp size, then

some lanes will be inactive.

Improving Real-Time Performance with CUDA Persistent Threads (CuPer) on the Jetson TX2 Page 4

Above the hierarchical layer of the warp is the streaming multiprocessor, or SM. The SM’s operate

mostly independently of each other. Blocks are mapped to individual SM’s by the CUDA hardware and

device driver. Finally, the collection of all SM’s is the device.

An SM can support more warps than are capable of executing simultaneously on that SM at one time.

Take the Jetson TX2 as an example. This architecture has 2 SM’s. Each SM is capable of executing 2

warps simultaneously. Each warp contains 32 lanes. So for the whole device, there are 2*2 = 4 warps,

or 2*2*32 = 128 lanes capable of executing simultaneously. However, the device supports 2*64*32 =

4096 resident threads, or 2*64 = 128 resident warps at once. The reason is its handling of stalls. If an

actively executing warp performs one of certain operations that will require more than a cycle to

complete – typically a global memory load – that warp is stalled and removed from active execution.

On the next cycle, a different warp is executed instead, if one is available. The SM is exploiting the

additional parallelism supplied by the collection of resident warps to hide the stalls. It should be noted

that the context switches are handled entirely within the CUDA hardware, and can happen from one

cycle to the next without performance penalty.

CUDA Kernel Launch/Synchronize

The traditional approach to performing work on the CUDA GPU is first to write a CUDA kernel using

CUDA C, which actually is a variant of C++. The code to be executed on the CUDA device is identified

by a CUDA function qualifier, __global__. The CPU copies data buffers to the device and executes a

C-like call with a special <<<>>> syntax to indicate that it is performing a CUDA launch. A CUDA

launch is asynchronous, and the CPU will continue to execute afterward. This allows it to perform

unrelated work in parallel. When the CPU is ready to wait for the results of the CUDA kernel, it must

perform a synchronize, and then it may copy the result buffers back. The source code might have a

form like this:

__global__ void CudaKernel (float* A) { … }

void cpuFunction (float* h_A)

{

 …

 cudaMemcpy(d_A, h_A, N);

 CudaKernel<<<blocksPerGrid, threadsPerBlock>>>(d_A);

 cudaDeviceSynchronize();

 cudaMemcpy(h_A, d_A, N);

 …

}

However, systems like the Jetson TX2 have a single bank of memory shared between the CPU and GPU,

so the memory copies usually are inefficient. A technique called zero-copy pinned memory may be

used instead. This allows the same buffers to be used by both CPU and GPU. The only caveat is that

Improving Real-Time Performance with CUDA Persistent Threads (CuPer) on the Jetson TX2 Page 5

the memory is uncached. This memory is allocated using cudaHostAlloc with the

cudaHostAllocMapped flag. Using this model, the source code for the launch/synchronize might

have a form like this:

__global__ void CudaKernel (float* A) { … }

cpuFunction (float* h_A)

{

 …

 cudaHostGetDevicePointer(&d_A, h_A);

 CudaKernel<<<blocksPerGrid, threadsPerBlock>>>(d_A);

 cudaDeviceSynchronize();

 …

}

This programming style is simple and powerful. Unfortunately, the launch and synchronize operations

have a level of determinism unacceptable for many hard real-time applications.

Persistent Threads

The persistent threads model avoids these determinism problems by launching a CUDA kernel

only once, at the start of the application, and causing it to run until the application ends.

There are some drawbacks to this approach:

 It is not possible to launch heterogeneous kernels throughout the application. The

kernel is running at all times. However, it is possible to use a switch to select from

multiple predefined operations. This will be covered in Heterogeneous GPU Behavior on

page 26.

 The kernel must perform a busy wait when waiting for a workload from the CPU. In

hard real-time systems, this is not an uncommon solution, but it still is worth noting. It

is likely to consume more power than allowing the CUDA GPU to become idle.

 Similarly, the CPU must perform a busy wait when waiting for completion of the GPU.

 The number of blocks and threads used by the kernel is limited to the number of

resident threads supported by the device. (This is 4096 on the Jetson TX2.)

The persistent threads concept is very broad and allows for multiple methods of coordination

between CPU and GPU, and for allocating work on the GPU1. The method described here

1
 Kshitij Gupta, Jeff A. Stuart, John D. Owens. “A study of Persistent Threads Style GPU Programming for GPGPU

Workloads” in Innovative Parallel Computing, 2012, pp. 1-14, IEEE, 2012.

Improving Real-Time Performance with CUDA Persistent Threads (CuPer) on the Jetson TX2 Page 6

closely mirrors that of the launch/synchronization method. It is intentionally simple to provide

the best determinism.

Without the explicit launch to start a workload and synchronization to detect when the

workload has been completed, other synchronization primitives are needed. It is possible to

implement this manually. However, the RedHawk CUDA Persistent Threads (CuPer) API

provides a simple API to abstract the primitive operations.

RedHawk CUDA Persistent Threads (CuPer) API

The standard interfaces are provided in the <cuper.h> header file. All elements are declared

within the Cuper::Std namespace. There are three classes defined therein: Cpu, Cuda1Block,

and CudaMultiBlock. An object of the Cpu class is created in CPU source code. A typical

usage would have a form similar to this:

void cpuFunction (…)

{

 Cuper::Std::Cpu p;

 cudaHostGetDevicePointer(&d_A, h_A);

 Persistent<<<blocksPerGrid, threadsPerBlock>>>(p.token(), d_A);

 for (…) {

 … initialize h_A …

 p.startCuda();

 … possibly do unrelated CPU work …

 p.waitForCuda();

 … use results in h_A …

 }

 p.terminateCuda();

}

The CUDA kernel in this example is called Persistent. It is launched only once before entering the

main loop. Any buffer(s) that will be used to pass user data back and forth during normal operation

must be specified at that time. In addition, the Cuper::Std::Cpu object provides a token(), the

value of which also must be passed.

The object, p, of the Cuper::Std::Cpu class is used to control the execution of workloads within the

CUDA kernel. Within the main loop, p.startCuda informs the CUDA GPU that the input buffers are

prepared and that it should begin performing its workload. This is analogous to a CUDA kernel launch.

p.waitForCuda causes the CPU to wait for the work on the GPU to be completed. This is analogous

to a CUDA synchronize.

If it is desired for the main loop ever to exit, p.terminateCuda may be called to request that.

Improving Real-Time Performance with CUDA Persistent Threads (CuPer) on the Jetson TX2 Page 7

Meanwhile, the Persistent kernel in this example might have a form similar to this:

__global__ void Persistent (Cuper::Std::Token token, float* A)

{

 Cuper::Std::Cuda1Block p(token);

 for (…) {

 p.waitForWork();

 if (p.isTerminated()) break;

 … perform workload …

 p.completeWork();

 }

}

Upon entry to the CUDA kernel, it creates object p, a Cuper::Std::Cuda1Block, and associates it

with its Cuper::Std::Cpu counterpart using the token value passed from the CPU. This object

receives commands from the Cpu counterpart and coordinates execution within the CUDA kernel. The

kernel calls p.waitForWork, which causes the CUDA GPU to wait for a workload from the CPU. Upon

return from that, it is safe to execute the workload with consistent user buffers. Once the computation

is complete, it calls p.completeWork to indicate this to the CPU.

In addition, if the ability to terminate the kernel is desired, a call to p.isTerminated can be made to

determine whether or not the CPU has requested termination.

The work flow can be visualized with this diagram:

Improving Real-Time Performance with CUDA Persistent Threads (CuPer) on the Jetson TX2 Page 8

The diagonal arrows show that:

 The Persistent<<<>>> launch starts the CUDA kernel

 p.startCuda releases the blocked p.waitForWork

 p.completeWork releases a blocked p.waitForCuda

This example shows the use of the Cuda1Block class. It is suitable for any CUDA workload

which can be performed with only 1 block in the grid. As will be covered in Large Workloads on

page 19, this can even include workloads which are arbitrarily large. The 1 block approach

often is more efficient than multi-block solutions. However, if multiple blocks are required,

Cuda1Block can be replaced with CudaMultiBlock.

CUDA kernel

CPU thread

Cuper::Std::Cpu constructor

Cuper::Std::Cuda1Block constructor

Persistent<<<>>> launch

p.waitForWork

p.startCuda

p.completeWork

p.waitForCuda

Perform computation

Initialize buffers for CUDA

Perhaps perform

unrelated CPU work here

Use results from CUDA

Improving Real-Time Performance with CUDA Persistent Threads (CuPer) on the Jetson TX2 Page 9

One of the major goals of this approach is the avoidance of CUDA library calls within the main

loop, including cudaMemcpy. So, zero-copy pinned memory is used in all cases using CuPer.

Performance

To measure the performance of CuPer persistent threads, there are a number of aspects to be

considered:

 CuPer API overhead (i.e. the synchronization and fence times)

 GPU Memory I/O

 CPU Memory I/O

 Algorithm (beyond the scope of this paper, but some examples are provided in 1-Block

Workloads on page 17)

Note, however, that to calculate the time for a complete workload, it is not a simple matter of adding

each of these times together. Because of CUDA’s use of resident warps to hide stalls, the times from

many of these aspects will be intermingled.

Configuration using RedHawk Linux

The usual collection of real-time features is employed to improve determinism:

 Use of SCHED_FIFO scheduler

 Use of real-time priority: 80

 Binding process to a specific CPU: 3

 Shielding of CPU 3 from all processes, interrupts, and ltmr interrupts

(this is a features specific to RedHawk Linux)

 The timing for the first iteration of every test is discarded, because it is expected to take overly

long, while loading various text pages and data objects into caches. Timings begin after this

stabilization occurs.

In addition, a couple specific features are used:

 The following Jetson TX2 clocks are set to their maximum allowed values (as is the system fan):

o CPU

o GPU (gp10b)

o Memory (emc)

 The X server (Xorg / lightdm) was disabled.

 For the cases involving CUDA launch/synchronization, a call is made to cudaSetDeviceFlags

with cudaDeviceScheduleSpin. This flag is unnecessary with the persistent threads

approach, as it would affect only termination.

Improving Real-Time Performance with CUDA Persistent Threads (CuPer) on the Jetson TX2 Page 10

To simulate non-real-time overhead, the open source stress-1.0.4 package was used with 5 CPU

workers, 5 VM workers, 5 I/O workers, and 5 HDD workers (i.e. stress -c 5 -m 5 -i 5 -d 5).

In all cases, timings were performed for at least 2 hours to ensure that average values

stabilized and to have reasonable confidence in the maximum values. For certain noted CuPer

persistent threads cases, runs were significantly longer to gain even higher confidence in the

maximum values.

API Overhead

The first performance tests are measuring only the overhead of the CuPer mechanisms in

isolation. For this purpose, the workload is Nil. For the CUDA launch/synchronization cases, it

is a CUDA kernel that does nothing. The timing is performed from the CPU using

clock_gettime with the CLOCK_REALTIME clock, and measures the duration from just before

the CUDA kernel launch to just after the cudaDeviceSynchronize completes.

 For the persistent threads cases, it is a kernel that has a main loop that performs only the

p.waitForWork, p.isTerminated, and p.completeWork calls, with no actual workload. The

timing again is performed from the CPU and measures the duration from just before the

p.startCuda to just after the p.waitForCuda completes.

The first results cover only 1-block cases, with a range of values for threadsPerBlock. On all

current CUDA architectures, the maximum number of threads per block allowed is 1024:

Average Max Jitter Average Max Jitter

1 2.4 µs 6.6 µs 4.2 µs 17.7 µs 49.0 µs 31.3 µs

64 2.6 µs 5.8 µs 3.2 µs 17.7 µs 47.7 µs 30.0 µs

128 3.2 µs 6.8 µs 3.6 µs 17.8 µs 45.9 µs 28.1 µs

256 4.4 µs 7.6 µs 3.2 µs 18.0 µs 47.2 µs 29.2 µs

512 6.9 µs 11.3 µs 4.4 µs 17.8 µs 46.8 µs 29.0 µs

1024 11.8 µs 16.9 µs 5.1 µs 17.9 µs 45.5 µs 27.6 µs 2

Threads

CuPer persistent threads launch/sync

TABLE 1: API OVERHEAD, 1 BLOCK (NIL)2

2
 The 1024-thread CuPer timing was performed for at least 24 hours.

Improving Real-Time Performance with CUDA Persistent Threads (CuPer) on the Jetson TX2 Page 11

FIGURE 1: API OVERHEAD, 1 BLOCK (NIL)

As can be seen, the CUDA launch/synchronization maximum times essentially are fixed,

whereas the CuPer startCuda/waitForCuda times scale with the number of threads in the

block. However, the launch/synchronization times suffer from substantial jitter, which is

greatly reduced in the CuPer times.

Moving beyond the 1-block cases, further timings were performed for 2- and 4- block

configurations. These values, along with the 1-block values above are presented here:

Average Max Jitter Average Max Jitter

128 1 3.2 µs 6.8 µs 3.6 µs 17.8 µs 45.9 µs 28.1 µs

2 4.2 µs 19.9 µs 15.7 µs

4 6.7 µs 24.2 µs 17.5 µs

256 1 4.4 µs 7.6 µs 3.2 µs 18.0 µs 47.2 µs 29.2 µs

2 5.4 µs 19.3 µs 13.9 µs

4 8.3 µs 25.7 µs 17.4 µs

512 1 6.9 µs 10.7 µs 3.8 µs 17.8 µs 46.8 µs 29.0 µs

2 7.8 µs 21.7 µs 13.9 µs

4 10.4 µs 27.6 µs 17.2 µs

1024 1 11.8 µs 16.0 µs 4.2 µs 17.6 µs 45.4 µs 27.8 µs

2 12.8 µs 26.1 µs 13.3 µs

4 15.4 µs 25.8 µs 10.4 µs

2048 2 22.6 µs 39.8 µs 17.2 µs 17.9 µs 45.5 µs 27.6 µs

4 25.0 µs 30.3 µs 5.3 µs

4096 4 44.8 µs 52.2 µs 7.4 µs 17.9 µs 45.0 µs 27.1 µs

Total

Threads

CuPer persistent threads launch/sync zero-copy

Blocks

TABLE 2: API OVERHEAD, MULTI-BLOCK (NIL)

0

10

20

30

40

50

60

1 64 128 256 512 1024

threads

CuPer average

CuPer maximum

launch/sync average

launch/sync maximum

Improving Real-Time Performance with CUDA Persistent Threads (CuPer) on the Jetson TX2 Page 12

These timings demonstrate that using multiple blocks, even if the total number of threads remains

constant, imposes a significant overhead penalty in CuPer. A large part of this is because of a necessary

grid-wide synchronization in CuPer::Std::CudaMultiBlock::completeWork. In fact, if using the

full set of resident threads (4096), the CuPer average performance actually degrades to the point where

the launch/synchronize approach outperforms it. So, for small workloads, it is recommended to use a 1-

block configuration and CuPer::Std::Cuda1Block. For larger workloads, it is possible to perform

the entire workload within 1 block. But the best results depend on the particular algorithm. This is

discussed in Large Workloads on page 19.

GPU Memory I/O

Performing timings in this parallel CUDA architecture is not a simple matter of adding

overhead times to I/O times and to computation times, because portions of the CuPer

processing will overlap with those of the computation and memory I/O. So it is necessary to

perform more timings of increasing completeness. The next level of completeness

incorporates the additional time for memory I/O in the CUDA GPU. As mentioned previously,

zero-copy memory is uncached. Yet the GPU ameliorates this by exploiting parallelism to hide

memory stalls.

To begin with, consider what is perhaps the simplest possible workload: vector increment.

This code takes an array of floating-point values, and increments each of them by 1.0,

returning the results in the same array used to pass the initial values. This requires only 1

buffer, and the workload is perfectly parallelizable. The computation time is negligible, and is

just enough to actually require reading from and writing different values to the buffer. So this

serves as a measure of the performance of the CuPer API coupled with GPU Memory I/O. The

timings measure performance in exactly the same way as for the Nil workload.

Improving Real-Time Performance with CUDA Persistent Threads (CuPer) on the Jetson TX2 Page 13

For this workload, because there is an actual data buffer involved, the CUDA

launch/synchronize timings can be performed using a number of memory approaches: zero-

copy pinned memory, the original cudaMemcpy approach, and also UVM (also called managed

memory). To begin with, the following are 1-block timings:

64 128 256 512 1024

Average 4.0 µs 4.7 µs 6.1 µs 8.5 µs 13.3 µs 3

Max 7.6 µs 8.3 µs 9.4 µs 12.2 µs 18.0 µs 3

Jitter 3.6 µs 3.6 µs 3.3 µs 3.7 µs 4.7 µs
3

Average 19.6 µs 19.4 µs 20.2 µs 20.8 µs 22.0 µs

Max 48.5 µs 45.6 µs 50.8 µs 49.6 µs 52.5 µs

Jitter 28.9 µs 26.2 µs 30.6 µs 28.8 µs 30.5 µs

Average 53.2 µs 51.8 µs 54.8 µs 56.1 µs 55.3 µs

Max 100.3 µs 102.0 µs 98.9 µs 113.6 µs 92.5 µs

Jitter 47.1 µs 50.2 µs 44.1 µs 57.5 µs 37.2 µs

Average 39.1 µs 39.2 µs 39.3 µs 40.1 µs 41.6 µs

Max 80.4 µs 140.7 µs 81.5 µs 81.8 µs 125.4 µs

Jitter 41.3 µs 101.5 µs 42.2 µs 41.7 µs 83.8 µs

CuPer persistent threads

launch/sync zero-copy

launch/sync cudaMemcpy

 launch/sync UVM

Threads

TABLE 3: API OVERHEAD + GPU MEMORY I/O, 1 BLOCK (VECTOR INCREMENT)
 3

FIGURE 2: API OVERHEAD + GPU MEMORY I/O, 1 BLOCK, MAXIMUM (VECTOR INCREMENT)

These results demonstrate that, when including the GPU memory I/O times, the persistent threads

approach still performs well in terms of average time, and very well in terms of jitter.

3
 The 512- and 1024-thread CuPer timings were performed for at least 24 hours.

0

20

40

60

80

100

120

140

160

64 128 256 512 1024

threads & floats

CuPer

launch/sync
zero-copy

launch/sync
cudaMemcpy

launch/sync
UVM

Improving Real-Time Performance with CUDA Persistent Threads (CuPer) on the Jetson TX2 Page 14

Regarding UVM, it appears to suffer from long period jitter. The timings here did not all capture

instances of this, and so probably do not precisely capture the true maximums. To do so would require

days of run time, but that is not the focus of this paper.

CPU Memory I/O

As was previously mentioned, both CuPer and the CUDA launch/synchronize approaches use zero-copy

pinned memory. But a consequence of this memory is that it is uncached. Measurement of the GPU

memory I/O is performed automatically as part of any timing, because the GPU loads and stores occur

within the timed region. However, CPU memory I/O does not. It generally is interspersed with

initialization code of varying complexity, and with interpretation code of differently varying complexity.

Therefore it is difficult to isolate. Yet, it still is worthwhile to provide some guidance on these times.

The approximation used here is memcpy. The initial values are written first to staging buffers, and then

copied via memcpy to the actual input buffers shared between the CPU and CUDA. Likewise, after

completion of the workload, the output buffers are copied via memcpy to staging buffers, and then they

are validated from the staging buffers. This is not meant to suggest that using memcpy is appropriate in

user code. It is just present to represent the stores and loads that user could would perform naturally.

That said, there may be certain memory usage patterns where memcpy calls for some or all buffers

might be beneficial.

Timings are performed using the trivial vector increment workload. The timing is performed from just

before the start of the memcpy call until just after it returns. One timing is performed for storing to the

input buffers, and another for loading from the output buffers.

Timings are performed on these types of memory:

1. Stores and loads from dummy buffers allocated via malloc. The purpose of this is to establish

a baseline for stores and loads to an appropriate amount of memory which is cached normally.

2. Stores and loads to a buffer allocated via malloc and referenced via cudaMemcpy in a CUDA

launch/synchronize implementation which does not use zero-copy pinned memory.

3. Stores and loads to UVM memory allocated via cudaMallocManaged used with a CUDA

launch/synchronize approach.

4. Stores and loads to a zero-copy pinned memory buffer used with a CUDA launch/synchronize

approach.

5. Stores and loads to a zero-copy pinned memory buffer used with CuPer persistent threads.

Improving Real-Time Performance with CUDA Persistent Threads (CuPer) on the Jetson TX2 Page 15

As one would expect, the timings scale with the size of the buffers, so a few buffer sizes are presented:

Average Max Jitter Average Max Jitter

64 Ordinary memory .1 µs .8 µs .7 µs .1 µs 1.0 µs .9 µs

cudaMemcpy buffer .1 µs 1.7 µs 1.6 µs .1 µs 2.1 µs 2.0 µs

cuda UVM buffer .1 µs 1.7 µs 1.6 µs 2.4 µs 14.0 µs 11.6 µs

Zero-copy: launch/synchronize .1 µs 1.5 µs 1.4 µs .5 µs 5.0 µs 4.5 µs

Zero-copy: CuPer .1 µs 1.5 µs 1.4 µs .4 µs 4.3 µs 3.9 µs

256 Ordinary memory .1 µs 1.0 µs 1.0 µs .1 µs .8 µs .7 µs

cudaMemcpy buffer .1 µs 1.5 µs 1.4 µs .2 µs 3.0 µs 2.8 µs

cuda UVM buffer .1 µs 1.6 µs 1.5 µs 2.9 µs 18.0 µs 15.1 µs

Zero-copy: launch/synchronize .7 µs 3.6 µs 2.9 µs 1.7 µs 8.8 µs 7.1 µs

Zero-copy: CuPer .7 µs 3.1 µs 2.4 µs 1.5 µs 7.5 µs 6.0 µs

1024 Ordinary memory .3 µs 1.4 µs 1.1 µs .3 µs 1.7 µs 1.4 µs

cudaMemcpy buffer .3 µs 1.7 µs 1.4 µs .6 µs 5.3 µs 4.7 µs

cuda UVM buffer .4 µs 3.0 µs 2.6 µs 3.9 µs 15.9 µs 12.0 µs

Zero-copy: launch/synchronize 1.3 µs 9.4 µs 8.1 µs 6.1 µs 16.0 µs 9.9 µs

Zero-copy: CuPer 1.3 µs 7.2 µs 5.9 µs 6.0 µs 14.2 µs 8.2 µs

Size Memory type

Store to Input buffer Load from Output buffer

TABLE 4: CPU MEMORY I/O

FIGURE 3: CPU MEMORY I/O: STORE TO INPUT BUFFER, MAXIMUM

0

1

2

3

4

5

6

7

8

9

10

64 floats 256 floats 1024 floats

Ordinary

cudaMemcpy

UVM

Zero-copy
launch/sync

Zero-copy
CuPer

Improving Real-Time Performance with CUDA Persistent Threads (CuPer) on the Jetson TX2 Page 16

FIGURE 4: CPU MEMORY I/O: LOAD FROM OUTPUT BUFFER, MAXIMUM

Not surprisingly, the two tests that used memory allocated via malloc fared well and similarly to each

other. The UVM test was inconsistent, performing well on storing inputs, but poorly on loading outputs

(on the first memory access only, though). The two tests that used the uncached zero-copy pinned

memory fared less well and similarly to each other. In a user application, it is likely that these time costs

will be spread throughout the code that initializes the CUDA input buffers and in the code that reads

the results from the CUDA output buffers.

Although this additional time cost is an artefact of using zero-copy memory, and not caused by the

persistent threads approach per se, it still is important to understand that it is present and to account

for it in when determining the overall performance of a real-time application.

Because of the problem of characterizing and isolating the CPU Memory I/O, and because nearly all

subsequent timings will suffer similarly, subsequent timings do not include it. In a couple cases where

cudaMemcpy times are measured, they are noted as not suffering from significant additional CPU

Memory I/O time.

CUDA Dynamic Parallelism

There is one other approach to using persistent kernels that differs substantially from the previous

examples. In this approach, the persistent kernel executes only a single thread. After that thread

returns from p.waitForWork, it does not actually perform the workload itself at all. Instead, it

launches another kernel using CUDA dynamic parallelism (CDP), waits for that kernel to complete, and

then calls p.completeWork.

This is very similar to the traditional CUDA launch/synchronize programming model. The major

difference is that it moves the launch and synchronize operations to the CUDA GPU. Unfortunately, it

suffers from long period jitter spikes. So for 1-block workloads, it is not competitive with the persistent

threads approaches described above. Note that it takes this approach a bit longer than normal before

0

5

10

15

20

64 floats 256 floats 1024 floats

Ordinary

cudaMemcpy

UVM

Zero-copy
launch/sync

Zero-copy
Cuper

Improving Real-Time Performance with CUDA Persistent Threads (CuPer) on the Jetson TX2 Page 17

its timing behavior stabilizes. In results presented in the next section, the timings for the first 2

iterations are discarded.

Code to use this approach would have a form like the following:

__global__ void Algorithm (float* Result, float* A) { … }

__global__ void Persistent (Cuper::Std::Token token,

 float* Result, float* A)

{

 for (…) {

 p.waitForWork();

 Algorithm<<<16, 1024>>>(Result, A);

 cudaDeviceSynchronize();

 p.completeWork();

 }

}

void cpuFunction (…)

{

 Persistent<<<1, 1>>>(p.token(), d_Result, d_A);

 for (…) {

 …

 p.startCuda();

 p.waitForCuda();

 …

 }

}

1-Block Workloads

A couple common workloads are presented to show their performance with 1-block implementations:

 Matrix multiplication of a 32x32 matrix, which fits neatly into 32*32 = 1024 threads in 1 block.

This is a standard shared-memory implementation.

Note that, in the launch/synchronize cases, its takes a very long time for the performance to

stabilize. So, for those cases, instead of discarding the first iteration, they discard the first 512

iterations.

 Vector sum of a 1024-element vector, which is an example of a reduction algorithm. This is a

standard algorithm using successively smaller strides, but which switches to using warp-level

primitives when the strides are small enough to fit within the 32 lanes of a warp.

Improving Real-Time Performance with CUDA Persistent Threads (CuPer) on the Jetson TX2 Page 18

The results of these timings are as follows:

Average Max Jitter

CuPer persistent threads 14.6 µs 18.7 µs 4.1 µs 4

CuPer CDP 22.2 µs 70.0 µs 47.8 µs

launch/sync zero-copy 34.6 µs 78.8 µs 44.2 µs

launch/sync cudaMemcpy 90.5 µs 152.0 µs 61.5 µs 5

launch/sync UVM 66.4 µs 126.0 µs 59.6 µs

TABLE 5: 32X32 4MATRIX MULTIPLICATION + API OVERHEAD + GPU MEMORY I/O5

FIGURE 5: 32X32 MATRIX MULTIPLICATION + API OVERHEAD + GPU MEMORY I/O

4
 The CuPer 32x32 Matrix Multiplication timing run was performed for at least 24 hours.

5
 The cudaMemcpy approach will not suffer from additional CPU Memory I/O time cost. See CPU Memory I/O on

page 14.

0

20

40

60

80

100

120

140

160

CuPer
persistent

threads

CuPer CDP launch/sync
zero-copy

launch/sync
cudaMemcpy

launch/sync
UVM

Jitter

Average

Improving Real-Time Performance with CUDA Persistent Threads (CuPer) on the Jetson TX2 Page 19

Average Max Jitter

CuPer persistent threads 13.4 µs 17.5 µs 4.1 µs 6

CuPer CDP 19.6 µs 69.1 µs 49.5 µs

launch/sync zero-copy 27.2 µs 61.1 µs 33.9 µs

launch/sync cudaMemcpy 60.9 µs 108.9 µs 48.0 µs 5

launch/sync UVM 47.0 µs 101.0 µs 54.0 µs

TABLE 6: 1K VECTOR SUM + API OVERHEAD + GPU MEMORY I/O6

FIGURE 6: 1K VECTOR SUM + API OVERHEAD + GPU MEMORY I/O

As demonstrated by these timings, the CuPer persistent threads approach yields much better

performance, in terms of both average time and jitter, than launch/sync approach or the CuPer CDP

approach for 1-block workloads. However, do bear in mind that these timings do not include the

distributed CPU Memory I/O overhead discussed in CPU Memory I/O on page 14.

Large Workloads

1-Block workloads provide good performance that can be integrated into tight real-time frame

requirements. However, there will be cases where larger workloads are necessary, and the frame

requirements can accommodate them. There are a number of persistent thread techniques that can be

employed for larger workloads:

6
 The CuPer 1K Vector Sum timing run was performed for at least 24 hours.

0

20

40

60

80

100

120

CuPer
persistent

threads

CuPer CDP launch/sync
zero-copy

launch/sync
cudaMemcpy

launch/sync
UVM

Jitter

Average

Improving Real-Time Performance with CUDA Persistent Threads (CuPer) on the Jetson TX2 Page 20

 Multi-block kernel

 Single-block kernel with thread groups

 Hybrid: Multi-block kernel with thread groups

 Single-thread kernel which performs CUDA dynamic parallelism (CDP) launch/synchronize

Multi-block kernel

The multi-block kernel approach has been explored in a few cases earlier. It merely involves configuring

the kernel with more than 1 block. However, with the persistent threads approach, there exists a hard

upper limit on the number of threads: the maximum number of resident threads, which is 4096 on the

Jetson TX2. So, if a block is configured to use its maximum size, 1024, the number of blocks can be no

more than 4. So this approach necessarily is limited. Also, it comes with performance penalties,

depending on the configuration. Code using this technique would have an arrangement like the

following:

__global__ void Algorithm (Cuper::Std::Token token,

 float* Result, float* A)

{

 int index = blockIdx.x * blockDim.x + threadIdx.x;

 for (…) {

 p.waitForWork();

 …

 p.completeWork();

 }

}

void cpuFunction (…)

{

Algorithm<<<4, 1024>>>(p.token(), d_Result, d_A);

for (…) {

 …

p.startCuda();

p.waitForCuda();

…

}

}

Single-block kernel with Thread Groups

Another approach is to use 1 block, but instead partition the workload into multiple thread groups. A

thread group is a software concept which replaces the CUDA hardware block concept. And, whereas a

Improving Real-Time Performance with CUDA Persistent Threads (CuPer) on the Jetson TX2 Page 21

collection of CUDA blocks would be scheduled by the CUDA hardware scheduler, each thread group

must be executed manually by the single running block. Although more complex scheduling methods

could be implemented, they incur performance overhead, so the simplest way for a real-time

application to do this is to iterate over the thread groups. Using thread groups, for a 16K example, the

code would have an arrangement like the following:

__global__ void Algorithm (Cuper::Std::Token token,

 float* Result, float* A)

{

 for (…) {

 p.waitForWork();

 for (unsigned int group = 0; group < 16; group++) {

 int index = group * blockDim.x + threadIdx.x;

 …

 }

 p.completeWork();

 }

}

void cpuFunction (…)

{

 Algorithm<<<1, 1024>>>(p.token(), d_Result, d_A);

 for (…) {

 …

 p.startCuda();

 p.waitForCuda();

 …

 }

}

Improving Real-Time Performance with CUDA Persistent Threads (CuPer) on the Jetson TX2 Page 22

Hybrid: Multi-block kernel with Thread Groups

A hybrid approach is one where the persistent kernel is configured with multiple blocks, but those

blocks are insufficient to handle the entire workload. So, thread groups are used as well. In this case,

each thread group contains all the blocks in the grid. So, for a 16K example, the configuration might be

1024 threads/block * 2 blocks/group * 8 groups = 16K. There are a couple different ways of dividing up

the blocks amongst the groups but, using this configuration, the code might have an arrangement like

the following:

__global__ void Algorithm (Cuper::Std::Token token,

 float* Result, float* A)

{

 for (…) {

 p.waitForWork();

 for (unsigned int group = 0; group < 8; group++) {

 int pseudoBlock = group * gridDim.x + blockIdx.x;

 int index = pseudoBlock * blockDim.x + threadIdx.x;

 …

 }

 p.completeWork();

 }

}

void cpuFunction (…)

{

 Algorithm<<<2, 1024>>>(p.token(), d_Result, d_A);

 for (…) {

 …

 p.startCuda();

 p.waitForCuda();

 …

 }

}

Single-thread kernel with CUDA Dynamic Parallelism

Although the use of CUDA dynamic parallelism approach described in CUDA Dynamic Parallelism on

page 16 was not competitive for 1-block workloads, it can be effective for larger workloads, even

though it suffers from long period jitter spikes.

In this case, the CUDA hardware scheduler is responsible for scheduling all the blocks of the child

kernel.

Improving Real-Time Performance with CUDA Persistent Threads (CuPer) on the Jetson TX2 Page 23

Performance of Large Workload approaches

The best of the above approaches differs from workload to workload, and so timings for a few familiar

ones are presented.

To begin, consider the trivial vector increment workload, scaled up to 32K elements:

Average Max Jitter

CuPer: Multi-group (1 block) 29.8 µs 34.3 µs 4.5 µs

CuPer: Hybrid: 2 blocks 33.9 µs 38.4 µs 4.5 µs

CuPer: Hybrid: 4 blocks 54.4 µs 59.9 µs 5.5 µs

CuPer: CDP 28.8 µs 81.6 µs 52.8 µs

launch/sync zero-copy 43.9 µs 77.4 µs 33.5 µs

TABLE 7: 32K VECTOR INCREMENT + API OVERHEAD + GPU MEMORY I/O

FIGURE 7: 32K VECTOR INCREMENT + API OVERHEAD + GPU MEMORY I/O

The best average performance and determinism in this case comes from the CuPer multi-group (1

block) kernel. The CuPer CDP approach looked quite promising at first with its good average time, but,

as mentioned earlier, it suffers from long period jitter spikes.

Next, consider a more significant workload, but one which is well-understood: matrix multiplication.

Two examples of this are provided. The first is scaled up to 64x64, which would require 2*2 = 4 blocks

of 32*32 = 1024 threads each. The second is scaled up to 128x128, which would require 4*4 = 16 blocks

of 32*32 = 1024 threads each. The various techniques described here yield the following timings:

0

20

40

60

80

100

CuPer: Multi-
group (1 block)

CuPer: Hybrid:
2 blocks

CuPer: Hybrid:
4 blocks

CuPer: CDP launch/sync
zero-copy

Jitter

Average

Improving Real-Time Performance with CUDA Persistent Threads (CuPer) on the Jetson TX2 Page 24

Average Max Jitter

CuPer: Multi-group (1 block) 29.6 µs 33.7 µs 4.1 µs

CuPer: Hybrid: 2 blocks 41.5 µs 54.2 µs 12.7 µs

CuPer: Multi-block (2x2 blocks) 71.4 µs 82.3 µs 10.9 µs

CuPer: CDP 30.6 µs 75.8 µs 45.2 µs

launch/sync zero-copy 54.3 µs 92.3 µs 38.0 µs

TABLE 8: 64X64 MATRIX MULTIPLICATION + API OVERHEAD + GPU MEMORY I/O

FIGURE 8: 64X64 MATRIX MULTIPLICATION + API OVERHEAD + GPU MEMORY I/O

In the 64x64 case, the CuPer Multi-group (1 block) implementation also performed the best, and did

significantly better than either hybrid approach.

Average Max Jitter

CuPer: Multi-group (1 block) 147.2 µs 158.1 µs 10.9 µs

CuPer: Hybrid: 2 blocks 156.6 µs 169.0 µs 12.4 µs

CuPer: Hybrid: 4 blocks 238.0 µs 259.0 µs 21.0 µs

CuPer: CDP 92.8 µs 133.8 µs 41.0 µs

launch/sync zero-copy 361.7 µs 396.8 µs 35.1 µs

TABLE 9: 128X128 MATRIX MULTIPLICATION + API OVERHEAD + GPU MEMORY I/O

0

10

20

30

40

50

60

70

80

90

100

CuPer: Multi-
group (1 block)

CuPer: Hybrid:
2 blocks

CuPer: Multi-
block (4 blocks)

CuPer: CDP launch/sync
zero-copy

Jitter

Average

Improving Real-Time Performance with CUDA Persistent Threads (CuPer) on the Jetson TX2 Page 25

FIGURE 9: 128X128 MATRIX MULTIPLICATION + API OVERHEAD + GPU MEMORY I/O

The 128x128 case is an interesting example because the CUDA dynamic parallelism approach, despite

having the worst determinism, has very good average performance, resulting in the lowest maximum

observed time!

Finally, consider vector sum, a reduction algorithm. This example is scaled up to 32K elements:

Average Max Jitter

CuPer: Multi-group (1 block) 61.6 µs 66.4 µs 4.8 µs

CuPer: Hybrid: 2 blocks 52.5 µs 57.6 µs 5.1 µs

CuPer: Hybrid: 4 blocks 63.8 µs 70.1 µs 6.3 µs

CuPer: CDP 46.6 µs 90.5 µs 43.9 µs

launch/sync zero-copy 308.3 µs 339.4 µs 31.1 µs

TABLE 10: 32K VECTOR SUM + API OVERHEAD + GPU MEMORY I/O

FIGURE 10: 32K VECTOR SUM + API OVERHEAD + GPU MEMORY I/O

0

50

100

150

200

250

300

350

400

CuPer: Multi-
group (1 block)

CuPer: Hybrid:
2 blocks

CuPer: Hybrid:
4 blocks

CuPer: CDP launch/sync
zero-copy

Jitter

Average

0

10

20

30

40

50

60

70

80

90

100

CuPer: Multi-
group (1 block)

CuPer: Hybrid:
2 blocks

CuPer: Hybrid:
4 blocks

CuPer: CDP launch/sync
zero-copy

Jitter

Average

Improving Real-Time Performance with CUDA Persistent Threads (CuPer) on the Jetson TX2 Page 26

In this case, the hybrid 2 block implementation performed the best, beating out both the pure 1-block

multi-group implementation, and its 4 block hybrid counterpart. This demonstrates that it is not

always obvious in advance which implementation will perform the best. In this case, the hybrid 2-block

approach’s ability to use the 2nd SM provided enough performance benefit to outweigh the increased

overhead and jitter costs of using multiple blocks.

Heterogeneous GPU Behavior

Earlier, it was pointed out that one drawback of the persistent threads approach is that, because a

single kernel is launched at application start and runs until application end, it is not possible to launch a

variety of heterogeneous kernels. However, it is possible to launch a persistent kernel which is capable

of a variety of different behaviors, and to command it to perform a specific behavior. Code to

accomplish this could look something like the following:

enum Command { MatMul_32x32x32, VecSum_32K };

__global__ void Persistent (Cuper::Std::Token token,

 unsigned int* Command,

 float* Buf0, float* Buf1, float* Buf2);

{

for (…) {

 p.waitForWork();

 unsigned int cmd = *Command;

 switch (cmd) {

 case MatMul_32x32x32:

 // C = Buf0, A = Buf1, B = Buf2

 dim3 twoDimIdx(thread.Idx.x & 0x1f, threadIdx.x>>5);

 matrixMultiply(twoDimIdx, Buf0, Buf1, Buf2);

break;

 case VecSum_32K:

 // Result = Buf0, Vector = Buf1

 vectorSum(Buf0, Buf1);

 break;

 }

 p.completeWork();

}

}

Improving Real-Time Performance with CUDA Persistent Threads (CuPer) on the Jetson TX2 Page 27

coid cpuFunction (…)

{

 Persistent<<<1, 1024>>>(p.token(),

 d_Command, d_Buf0, d_Buf1, d_Buf2);

 for (…) {

 …

 initializeMatrixA(h_Buf1);

 initializeMatrixB(h_Buf2);

 *h_Command = MatMul_32x32x32;

 useMatrixC(h_Buf0);

 p.startCuda();

 p.waitForCuda();

 …

 initializeVector(h_Buf1);

 *h_Command = VecSum_32K;

 p.startCuda();

 p.waitForCuda();

 useResult(h_Buf0[0]);

 …

}

}

Restrictions of this approach are:

 The persistent kernel can have only one block and grid configuration. If a particular function

expects something else, glue code must be used to perform the translation. In the above

example, matrixMultiply expects 2-dimensional thread threadIdx coordinates. The

twoDimIdx translates from the persistent kernel’s 1-dimensional coordinates. And then

matrixMultiply must use that instead of the ordinary threadIdx.

 The buffers must be able to accommodate all possible behaviors of the persistent kernel. For

example, in the above case, 3 buffers are required, and the size for each is the maximum of the

requirements for each behavior. For the above:

o Buf0: MatMul_32K requires 32*32 = 1024 floats; VecSum_32K requires 1 float.

o Buf1: MatMul_32K requires 32*32 = 1024 floats; VecSum_32K requires 32K floats.

o Buf2: MatMul_32K requires 32 floats; VecSum_32K requires none.

Alternatively, independent sets of buffers could have been used.

 If any of the behaviors require dynamically-allocated shared memory using the 3rd parameter in

the CUDA <<<>>> launch configuration, it must be the maximum required by any of the

behaviors.

Improving Real-Time Performance with CUDA Persistent Threads (CuPer) on the Jetson TX2 Page 28

Double Buffering

Recall from the earlier section that introduced CuPer that it is possible to perform an unrelated CPU

workload while performing the GPU work. That extra degree of parallelization is useful. However, the

CUDA GPU remains idle when not explicitly running a workload assigned by the CPU. This can be

improved upon by double buffering, if a 1-frame delay in response is acceptable to the application.

The idea behind double buffering is that the CPU initially starts one workload on the GPU. Then, for

each frame, it starts a workload and then uses the results of the previous workload. For example, in the

CPU’s 101st iteration, it starts workload 101, and uses the results from workload 100. This can be

thought of as a 2-stage pipeline.

CuPer provides an alternate interface to support this within the Cuper::DoubleBuffer namespace.

It closely mirrors the interface under Cuper::Std, but with some additional functions. The workload

can be visualized with this diagram for the flow near workloads 102 and 103:

Improving Real-Time Performance with CUDA Persistent Threads (CuPer) on the Jetson TX2 Page 29

CUDA

CUDA

CUDA

CUDA

CPU

CPU

CPU

p.waitForWork for workload 102

p.startCuda for workload 102

p.completeWork for workload 102

p.waitForCuda for workload 101

Perform computation for

workload 102

Initialize for workload 102

unrelated CPU work

Use workload 101

p.completeWork for workload 101

Perform computation for

workload 101

p.startCuda for workload 103

p.waitForCuda for workload 102

Initialize for workload 103

unrelated CPU work

Use workload 102

p.waitForWork for workload 103

p.completeWork for workload 103

Perform computation for

workload 103

p.startCuda for workload 104

p.waitForCuda for workload 103

Initialize for workload 104

unrelated CPU work

Use workload 103

p.waitForWork for workload 104

Improving Real-Time Performance with CUDA Persistent Threads (CuPer) on the Jetson TX2 Page 30

The diagonal arrows in the diagram demonstrate the flow of work between CPU and GPU. Each

workload is assigned a color, so it is possible to see how it progresses through the diagram. Important

points about the approach:

 The GPU can be kept busy, so long as the CPU is able to keep up with completed workloads.

 On the CPU, each workload is started in one frame and used in the subsequent frame.

 On the GPU, each workload is handled normally.

 To support this, there must be 2 sets of each buffer, and use of them alternates from one frame

to the next. (This is the source of the term double buffering.) The Cuper::DoubleBuffer

implementation keeps track of the correct buffer automatically.

An example usage of Cuper::DoubleBuffer might look like the following, with differences from

Cuper::Std highlighted:

__global__ void Persistent (Cuper::DoubleBuffer::Token token,

 float* A0, float* A1)

{

Cuper::DoubleBuffer::Cuda1Block p(token);

for (…) {

 p.waitForWork();

 unsigned int which = p.claimBuffer();

 float* A = which ? A1 : A0;

 …

 p.completeWork();

}

}

Improving Real-Time Performance with CUDA Persistent Threads (CuPer) on the Jetson TX2 Page 31

void cpuFunction (…)

{

Cuper::DoubleBuffer::Cpu p;

…

Persistent<<<…>>>(p.token(), d_A0, d_1);

// Start pipeline with an initial workload

unsigned int which = p.claimBuffer();

float* h_A = which ? h_A1 : h_A0;

… initialize h_A for workload 0…

p.startCuda();

for (unsigned int i = 1; …; i++) {

 which = p.nextBuffer();

 float* h_A = which ? h_A1 : h_A0;

 … initialize h_A for workload i…

 p.startCuda();

 … possibly do unrelated CPU work here …

p.waitForCuda();

 which = p.claimBuffer();

 float* h_A = which ? h_A1 : h_A0;

 … consume results in h_A for workload (i-1)…

}

// Flush last workload from pipeline

p.waitForCuda();

which = p.claimBuffer();

float* h_A = which ? h_A1 : h_A0;

… consume results in h_A for workload i…

p.terminateCuda();

}

Conclusion

The results presented in this paper demonstrate that the persistent threads programming model is a

viable method for the usage of CUDA in hard real-time applications with tight sub-millisecond frame

duration requirements. The CuPer API provides an easy way of accomplishing this. Integration of this

approach with CPU code using the features of RedHawk Linux provides an application with strong

determinism characteristics.

Improving Real-Time Performance with CUDA Persistent Threads (CuPer) on the Jetson TX2 Page 32

About Concurrent Real-Time

Concurrent Real-Time is the industry’s foremost provider of high-performance real-time

Linux® computer systems, solutions and software for commercial and government markets.

The Company focuses on hardware-in-the-loop and man-in-the-loop simulation, data

acquisition, and industrial systems, and serves industries that include aerospace and defense,

automotive, energy and financial. Concurrent Real-Time is located in Pompano Beach, Florida

with offices through North America, Europe and Asia.

Concurrent Real-Time's RedHawk Linux is an industry standard, real-time version of the open

source Linux operating system for Intel x86 and ARM64 platforms. RedHawk Linux provides

the guaranteed performance needed in time-critical and hard real-time environments.

RedHawk is optimized for a broad range of server and embedded applications such as

modeling, simulation, data acquisition, industrial control and medical imaging systems.

RedHawk guarantees that a user-level application can respond to an external event in less than

5 microseconds on certified platforms.

For more information, please visit Concurrent Real-Time at www.concurrent-rt.com.

 ©2018 Concurrent Real-Time, Inc.. Concurrent Real-Time and its logo are registered trademarks of Concurrent Real-

Time. All other Concurrent Real-Time product names are trademarks of Concurrent Real-Time while all other product

names are trademarks or registered trademarks of their respective owners. Linux
®
 is used pursuant to a sublicense

from the Linux Mark Institute.

http://www.concurrent-rt.com/

	Overview
	Real-Time Requirements
	CUDA Architecture
	CUDA Kernel Launch/Synchronize
	Persistent Threads
	RedHawk CUDA Persistent Threads (CuPer) API
	Performance
	Configuration using RedHawk Linux
	API Overhead
	GPU Memory I/O
	CPU Memory I/O

	CUDA Dynamic Parallelism
	1-Block Workloads
	Large Workloads
	Multi-block kernel
	Single-block kernel with Thread Groups
	Hybrid: Multi-block kernel with Thread Groups
	Single-thread kernel with CUDA Dynamic Parallelism
	Performance of Large Workload approaches

	Heterogeneous GPU Behavior
	Double Buffering
	Conclusion
	About Concurrent Real-Time

