
Volume xx (200y), Number z, pp. 1–11

InK-Compact: In-Kernel Stream Compaction and Its
Application to Multi-Kernel Data Visualization on

General-Purpose GPUs

D. M. Hughes1 I. S. Lim1 M. W. Jones2 A. Knoll3 and B. Spencer2

1Bangor University, Bangor, UK
2Swansea University, Swansea, UK

3University of Texas at Austin, Texas, USA

Abstract
Stream compaction is an important parallel computing primitive that produces a reduced (compacted) output
stream consisting of only valid elements from an input stream containing both invalid and valid elements. Com-
puting on this compacted stream rather than the mixed input stream leads to improvements in performance, load
balancing, and memory footprint. Stream compaction has numerous applications in a wide range of domains:
e.g., deferred shading, isosurface extraction, and surface voxelization in computer graphics and visualization. We
present a novel In-Kernel stream compaction method, where compaction is completed before leaving an operating
kernel. This contrasts with conventional parallel compaction methods that require leaving the kernel and running
a prefix sum kernel followed by a scatter kernel. We apply our compaction methods to ray-tracing-based visu-
alization of volumetric data. We demonstrate that the proposed In-Kernel Compaction outperforms the standard
out-of-kernel Thrust parallel-scan method for performing stream compaction in this real-world application. For
the data visualization, we also propose a novel multi-kernel ray-tracing pipeline for increased thread coherency
and show that it outperforms a conventional single-kernel approach.

Categories and Subject Descriptors (according to ACM CCS):

1. Introduction

In scientific visualization and other computational fields,
a major challenge is data reduction, the process of iden-
tifying and processing interesting subsets of a larger in-
put set. Parallel computing relies heavily on certain com-
putational paradigms for numerous applications, including
prefix-sum [HSO07, SHZO07], parallel sorting [SHG09]
and compaction [HSO07, HS86].

Parallel algorithms typically generate data containing
both wanted and unwanted elements for further processing
steps. It is important to compact the data prior to follow-on
processing in order to reduce the computational working set
and improve load balancing. Stream compaction generates a
smaller output stream containing only wanted elements from
the input data stream consisting of the mixed elements. This
effectively performs parallel data reduction, extracting and
processing the desired subset of data (Fig. 1).

Stream compaction has a wide range of applications in
parallel computing and GPGPU (General-Purpose Graphi-
cal Processing Units) computing. In scientific data visual-
ization, for instance, extracting level sets or isosurfaces from
volume data is a classic data reduction application. A stream
compaction algorithm can identify a working set of voxels
from a domain decomposition structure, compact the output,
and pass that to a separate kernel. Applications of this in-
clude data-parallel mesh extraction, computation of surface
area or volume, data compression, and adaptive volume ren-
dering. In rendering, deferred shading is another example;
one can use stream compaction to obtain the subset of pixels
whose rays intersect geometry. When we send a compacted
stream to the shader, we know exactly which rays require
shading, and that each thread will perform similar action on
the working set. Without compaction, many threads sit idle,
resulting in poor performance.

submitted to COMPUTER GRAPHICS Forum (4/2013).

2 D. M. Hughes, I. S. Lim, M. W. Jones, A. Knoll & B. Spencer / In-Kernel Stream Compaction

This work is motivated by the need for multiple kernels in
optimized GPGPU computing in general and rendering for
visualization in particular. Although it is possible to pack an
entire rendering pipeline into a single kernel [HL09], this
approach suffers from threads being in different states due
to large code branches.

By dividing up a kernel into smaller kernels, multi-kernel
pipelines allow for better concurrent execution on the GPU
and ensure that each kernel is light-weight and modular. To
benefit from these, the output of each kernel needs to be
compacted. However, the conventional compaction methods
must prepare a preliminary output-array, perform a N-wide
prefix sum and then perform a scatter operation [HSO07].
To avoid these extra burdens, we advocate an in-kernel ap-
proach that completes compaction before leaving an oper-
ating kernel (see Fig. 1). We demonstrate the effectiveness
of our in-kernel compaction with a multi-kernel pipeline for
real-time isosurface ray-casting of volumetric data, which
benefits from large reductions in both volume and image do-
mains and employs multiple successive kernels performing
stream compaction.

The paper is organised as follows. In section 2 we detail
our In-Kernel Compaction method (InK-Compact). In sec-
tion 3 we outline our multi-kernel rendering pipeline, reliant
on fast compaction, comprised of a BVH (Bounding Volume
Hierarchy) purpose-built per-frame for the current isovalue,
ray generation, ray traversal of the BVH, ray-isosurface in-
tersection and finally shading of hits to the screen. In section
4 we report the results of our rendering pipeline using the
proposed InK-Compact and compare it against state-of-art
compaction methods. Overall, we find our InK-Compact ap-
proach yields better performance than popular out-of-kernel
libraries, such as Thrust [HB10] and Chag:PP [BOA09].

1.1. Background

Stream compaction takes an input stream X[0...N−1] with
a predicate P[0...N−1] and generates an output stream
Y[0...M−1] that only contains the input elements X[i] where
P[i] is true; the output stream preserves the ordering of the
input elements and M ≤ N.

Implementations of stream compaction usually
consist of two operations, a scan and a scatter
[BOA09, HSO07, HB10, SHZO07]. A scan is a (paral-
lel) exclusive prefix sum that performs on a temporary
stream containing ‘1’ for each valid element in the input
X[0...N−1] and ‘0’ for each invalid element. This results in
a stream containing, for each element, the total number of
valid elements preceding it, which is used as the destination
address by a scatter to copy each valid element into the
output Y[0...M−1]. Scattering is the process of reading (gath-
ering) the input and new output locations then performing
random parallel writes to the output buffer.

While this operation appears simple, in a parallel system

(a) Out Of Kernel (b) InK-Compact

Figure 1: A parallel-operation is performed on the input and
the resulting output is compacted (i.e. only contains valid
elements), ready for further processing. (a) The widely used
Thrust-Compact requires leaving the kernel and running a
prefix-sum and scatter kernel. (b) The proposed In-Kernel
Compaction performs the compaction within the operating
kernel.

it is a non-trivial problem, to which scan-scatter approach
has been widely employed [HSO07, SHZO07]. The Thrust
[HB10] library is a collection of implementations for vari-
ous parallel primitive methods, including scan-scatter com-
paction. Given its popularity, we compare our compaction
method against Thrust. Unlike Thrust, we advocate perform-
ing compaction directly in-kernel, as opposed to computing
a prefix sum and scattering within a separate kernel. Fig. 1 il-
lustrates the proposed In-Kernel Compaction in comparison
to the Thrust scan-scatter operation.

1.2. Previous Work

There are many applications of compaction in recent lit-
erature. The work by Dyken et al. [DZTS08] accelerated
isosurface extraction using marching cubes. The work in-
volves traversing a volume pyramid and compacting the ac-
tive traversal paths for the next level of the tree. It is interest-
ing in that not only does this use stream compaction, but also
stream expansion where one thread can output many items.

Stream compaction was used to pack pixels ready for de-
ferred shading in a coherent manner in the work by Hobe-
rock [HLJH09]. Similarly, Garanzha et al. [GL10] used com-
paction and sorting to rearrange similar rays to maximize
traversal coherence. The work was further developed to im-
prove BVH construction [GPBG11].

Harris [HSO07] developed a parallel prefix sum (scan) for
CUDA, allowing compaction to be performed quickly for
general data-parallel GPU tasks. This implementation was
included in the CudPP and Thrust library, and is widely used
as the standard method for compaction and related opera-
tions. The newer library, Thrust, has become more favorable
with researchers and consequently we focus on comparing

submitted to COMPUTER GRAPHICS Forum (4/2013).

D. M. Hughes, I. S. Lim, M. W. Jones, A. Knoll & B. Spencer / In-Kernel Stream Compaction 3

our compaction technique with the compaction method in
the Thrust library.

Nobari [NLKB11] used the scan-scatter method by Horn
[Hor05] to accelerate generation of random graphs from
databases. Stream compaction was used in work by Hissoiny
[HOBD11] to speed up dosimetric computations for radio-
therapy, using Monte Carlo methods; specifically they com-
pacted computations on photons that worked longer than
others. Rather than having threads idle, computations on
photons are limited to a user constant, after which the stream
is compacted to remove completed items.

Schwarz [SS10] used compaction during voxelization of
surfaces and solids. The work is notable for employing a
multiple-kernel pipeline (to alleviate under-utilization of the
GPU) where compaction is used to ensure good ordering of
triangles ready for further processing. Tang et al. [TMLT11]
employed stream compaction in kernel. In their method a
fixed amount of space is reserved, then each block writes to
its own private part of the total array. A second pass com-
pacts the private arrays. This prefix sum can be executed as
part of the second kernel. van Antwerpen [vA11] also in-
corporates the compaction within the kernel, but does not
guarantee order preservation.

Billeter et al. [BOA09] suggested an approach that makes
use of the popcount bit counter and masking on the bit-array
to reduce workload by a factor of 32. However, they did
not completely implement this algorithm, and thus no re-
sults were reported. In contrast, our InK-Compact method
makes use of new functionality that allows each thread in a
warp to know the predicate of all threads in the warp. More
importantly, our approach is to operate compaction in the
same kernel that is outputting a stream, i.e., we complete the
compaction before leaving the kernel. This ensures that no
memory needs to be written/cleared for invalid elements. Fi-
nally, novel use of new synchronization functions leads InK-
Compact to be a simple and optimized compaction method.
At the time of writing, we are unaware of any further devel-
opments with Billeter, et al’s research, nor with their imple-
mentation (Chag::PP) [BOA09].

For isosurface rendering, one approach is extraction via
marching cubes [LC87] and rasterization of the resulting
mesh. Wilhelms and Van Gelder [WVG92] employed a min-
max octree for skipping empty cells, accelerating the ex-
traction process. This approach was improved with sev-
eral extensions, including view-dependent culling [LH98].
Sramek [Sra94] demonstrated direct ray casting of isosur-
faces using a distance field to accelerate via ray jumping.
Parker et al. [PPL∗99] achieved interactive isosurface ren-
dering from large volume data using a parallel ray tracer on
a shared-memory supercomputer, employing a hierarchical
grid acceleration structure. Similar implementations exploit-
ing SIMD arithmetic and packet traversal achieved interac-
tive performance on single desktops and workstations, using
min-max kd-trees [WFM∗05] and octrees [KWH09]. On the

GPU, Hadwiger et al. [HSS∗05] employed a multi-pass ras-
terization pipeline and an efficient secant solver for efficient
isosurface ray casting. Hughes and Lim [HL09] employed an
optimized min-max kd-tree traversal in CUDA, and achieve
real-time rendering rates. The work also raised the issue of
keeping an acceleration structure simple and rely more on
ray stepping and texture caching. Gobbetti et al. [GMIG08]
generate view and isovalue-dependent cuts of an octree out-
of-core, then traverse the cut octree directly within a single-
pass GPU shader. They achieve interactive framerates for a
reduced gigavoxel data.

2. In-Kernel Stream Compaction

Modern GPGPU applications make use of Compute Lan-
guages (for example CUDA) that significantly simplify pro-
gramming for massively-parallel systems. Code executes in
parallel within kernels. Each kernel is divided up into blocks
of warps, where each block is automatically (and indepen-
dently) scheduled by the hardware to run on one of the
many multi-processor cores. A warp is defined as a group
of threads (typically 32) that operate at the same time on
the hardware, i.e. they are implicitly synchronized at each
instruction. For this work we assume each thread will have
one input (e.g. pixel, ray, data-element), perform an action
and produce an output. For a Kernel K we define it to have
B number of blocks, where each block has T threads.

Stream compaction is the process of producing (in par-
allel) an output array Y[0...M−1], after an operation on
X[0...N−1] inputs, of which only M elements are valid. In
ray-tracing, for example, there will be M valid rays which
hit geometry and only these M valid rays will need to be
shaded. We typically define valid elements as those that pass
a predicate test. For each valid element, the main challenge
is determining the offset in the output array in relation to
other valid elements. In other words an offset into the array
is needed for each thread, which is equal to the number of
prior threads with a valid element.

Conceptually, our InK-Compact method consists of three
steps: computation of the thread offset t(u) within its warp,
the warp offset w(u) within its block, and the block offset
b(u) within its kernel. Our approach to per-warp prefix is the
same as discussed in Billeter [BOA09] and Harris [Hwu11].
Unlike Harris [Hwu11], however, we use bit-decomposition
and balloting to achieve the inter-warp scan, rather than use
shared memory scan. Finally, our main original contribu-
tion is computing the block-offset through the use of block-
sections, while maintaining the input-output data-ordering,
and without leaving the operating kernel.

2.1. Thread Offset

Within a block, currently 32 threads are grouped together to
make a warp. The threads in a warp run in lock-step with
one another and special warp-vote functions are available to

submitted to COMPUTER GRAPHICS Forum (4/2013).

4 D. M. Hughes, I. S. Lim, M. W. Jones, A. Knoll & B. Spencer / In-Kernel Stream Compaction

them as a result. Warp-vote functions enable a single thread
to find information about the other threads in the same warp.
The most important addition to the CUDA framework for
this work has been the _ballot() function, introduced in
the Fermi architecture. We expect in time a similar function
will be available to other compute languages.

Calling _ballot() with the thread’s own predicate
condition will enable each thread to know the predicate state
of all w(s) threads in the warp. For CUDA 4.0, the warp size
w(s) is 32 and the returned value of _ballot() is a 32-
bit integer where the bits represent the predicates of the 32
threads. By masking the result of _ballot() such that bits
representing threads after the current thread are set to zero,
and counting the set-bits, we get the number of threads prior
to the current thread (in the warp) that will write an output.

Firstly we define w(i) = t(i)

w(s) to calculate the warp index

w(i) from the thread identifier number t(i), where w(s) is the
size of a warp. We next define the thread’s warp lane w(l) =

t(i) mod w(s), i.e. the thread index within warp. Finally, we
compute the thread mask t(m) = MAXINT shr (w(s)−w(l)),
which is a binary bit-mask with bit locations less-than w(l)

set to 1 and all others set to 0. We define the number of warps
within the block as w(n).

Next we can find the output-offset tu for a thread within
its warp as

b = ballot(t(p)) and t(m) (1)

t(u) = popc(b) (2)

The total number of writes within warp w(i) can be found
by the last thread within it (i.e, where w(l) = w(s) − 1) as
w(c) = t(u)+ p(t), where the predicate p(t) ∈ [0,1]. Finally,
each warp w(i) stores its total w(c) within a shared memory
array w(c)

w(i) ; performed by the last thread (in the warp) only.
To allow other threads to read the values correctly a memory
fence and a synchronisation is required.

2.2. Warp Offset

The next stage is to find the total number of writes prior
to warp w(i), which serves as the output-offset w(u) for
the warp. This is performed by a scan operation on all the
warp counts w(c). To ensure this information is visible for
the next stage we perform a synchronization. By calling
_syncthreads_count() and passing the predicate of
each thread, we can also gather the total number of writes
within the block, which will be used at a later stage.

A solution for computing the write offset w(u)
i for each

warp, which also does not require more shared memory than
the total number of warps, is to again use bit manipulation.
The maximum possible value of w(c)

i is equal to w(s). This
means that the problem can be decomposed into log2(w

(s))

separate binary-bit scan operations. Assuming the maximum
number of warps equals the warp size, this operation can be
performed by the first w(n) threads of a single warp.

The warp offset w(u)
i , for warp w(i), is computed as

w(u)
i =

log2(w
(s))

∑
j=0

popc(b(j) and t(m)) shr i (3)

b(j) = ballot(w(c)
i and 2 j) (4)

With the thread offset within the warp and the warp offset
within the block now known, the final problem is how to
determine the offset within the kernel.

2.3. Order-Preserving Compaction

Achieving an in-kernel order-preserving compaction is chal-
lenging due to the various difficulties of block scheduling:

• While a kernel may have hundreds of blocks, only several
may be active at the same time.

• There is no guarantee that blocks are activated linearly.
• A block must completely terminate before a new block

can begin execution.

To achieve an order-preserving compaction under these
difficulties, we use only guaranteed GPU behaviors outlined
as follows. First, as a preprocess we divide a kernel into
S sections, where each section represents S(N) blocks. A
section size of S(N) = 32 is chosen so that the final bit-
decomposition can fit into a warp of 32-threads. Each section
Si has a boolean S(f)

i , an offset value S(u)i and counter value

S(c)i . In addition we allocate an intermediate output buffer
Ŷ[0...M−1] and a buffer B(c) to store the block counts. It is

important that the arrays S(f) and S(c) are zero-cleared be-
fore the main kernel is executed.

2.3.1. Management of Sections in a Kernel

Here we describe how to manage the sections in a kernel
to complete order-preserving compaction in four stages (see
Fig. 2):

Stage 1: Each block in the section Si performs a local-block
compaction; the thread and warp offsets are computed. All
valid thread outputs are then stored in the intermediate
buffer Ŷ, offset by the block-id multiplied by the number
of threads-per-block, plus the computed thread and warp
offsets. In addition, the total number of writes, k(c), for the
block is computed as a by-product of the initial thread-
warp synchronisation.

Stage 2: A single thread in the block then atomically incre-
ments the section counter S(c)i by one. All blocks within
the section, except for the section controller block, are al-
lowed to exit the compaction function. This behaviour al-
lows the majority of blocks in the section to finish and

submitted to COMPUTER GRAPHICS Forum (4/2013).

D. M. Hughes, I. S. Lim, M. W. Jones, A. Knoll & B. Spencer / In-Kernel Stream Compaction 5

(a) Stage 1 (b) Stage 2 (c) Stage 3

(d) Stage 4

Figure 2: Overview of section management in a kernel. (a) Stage 1. The blocks compact the thread data and output to an interme-
diate buffer, offset by blockId×blockDim. (b) Stage 2. When blocks complete, they atomically increment a blocks–completed
counter. The last block (the section controller) waits for blocks–completed to equal the number of blocks in the section. All
block counts are then loaded and a bit-wise prefix sum is performed to get the total number of writes in the section. (c) Stage
3. Section Si waits for the section–completed flag in section Si−1 to go true. (d) Stage 4. The global offset is moved up by the
section offset (number of writes in the section), the section–completed flag is set to true, which allows section Si+1 to proceed.
Finally, the compacted data from the intermediate buffer for section i are moved to the final output array.

free up resources for other blocks to start commencing
without delay. It also allows blocks to do additional work
and/or additional compactions. The section controller is
designated as being the block within the section that in-
crements the section-counter S(c)i to the number of blocks
within a section S(N). The block-counts within the section
are loaded into shared memory, by the section-controller,
and a scan operation is performed to find the offset of each
block. If we limit the number of blocks within a section
to the warp size w(s), the scan operation can be performed
by a single warp using bit-decomposition, as in Eq.3. The
number of scans we must perform is log2(w

(s)w(n)) and
while we have implemented this in a single warp, there is
no reason why this work could not be spread among the
other warps. Through the scan operation we also compute
the total number of output elements t.

Stage 3: The last block in section Si waits for the flag S(f)
i−1

in section Si−1 to go true. The first section S0 progresses
immediately to the next stage.

Stage 4: Once the total number of valid elements t is known
for the section, we set S(u)i = S(u)i−1+t, wait for the memory
to be set (using a memory fence operation) and set the
flag S(f)

i = true. The flag will then allow the next section
Si+1 to proceed. Finally, the last block in section Si moves
the already block-compacted data from the intermediate
output array S(y)i to the final output array Y.

2.4. In-Kernel Collation

It is commonly defined in literature that stream compaction
will preserve the ordering of elements in the final output.
However, strictly abiding the ordering constraint is not nec-
essary for some algorithms.

Indeed the ordering of elements in the input or output ar-
rays is contextual and spending time preserving the order-
ing may be wasteful especially if the resulting output is to
be sorted. For example, a multi-kernel ray-casting pipeline
might only require valid ray-indices as input and in theory
it doesn’t matter in which order, only that they are valid. In
practice, rays that traverse the scene close to one another
should be grouped together as much as possible, however,
overall the ordering of the groups is not important. InK-
Collate (In-Kernel Collation) is a compromise between en-
suring local ordering within a block of threads, but not global
ordering of kernel blocks. Within a block, the output location
of threadN is guaranteed to be after threadN−x whereas the
output location of blockN is not guaranteed to be after that
of blockN−x. However, the order of blocks will be generally
close to each other for natural cache-hits to occur. This ap-
proach allows InK-Collate not to rely on other prior blocks
to complete their output first.

Unlike InK-Compact, there is no intermediate process,
rather the blocks immediately determine an output location
in the final output as a kernel offset ku. This kernel offset is

submitted to COMPUTER GRAPHICS Forum (4/2013).

6 D. M. Hughes, I. S. Lim, M. W. Jones, A. Knoll & B. Spencer / In-Kernel Stream Compaction

computed by a single thread within each block, as

k(u) = atomicAdd(global_counter,kc), if t = 0 (5)

where k(u) is the kernel offset stored in shared memory,
global_counter is a single integer in global device memory
and k(c) is calculated in Stage 1.

A memory fence and a synchronisation is required such
that the array s(u) and variable k(u) are visible to all threads in
the block. Then the offset for each thread can be computed,

t f = k(u)+ s(u)w(i) + t(u), (6)

where t f is the final output location for the thread t, k(u) is
the block offset, s(u)w(i) is the warp offset and t(u) is the offset
of the thread within the warp. The final process is to store
the desired output into the final buffer at t f and exit.

3. Multi-Kernel Isosurface Ray-casting Pipeline

Although it is possible to pack an entire rendering pipeline
into a single kernel on current GPGPUs [HL09], it is still
good practice to divide kernels up into smaller lightweight
kernels to increase thread coherency and to achieve high per-
formance optimization.

While this avoids having threads in different states due
to large code branches, each kernel output must now be
compacted. To demonstrate and stress-test our InK-Compact
method we create a multiple-kernel rendering pipeline for
ray casting iso-surfaces.

3.1. Rendering Pipeline Overview

Our per-frame isosurface ray-tracing pipeline consists of
four kernels; ray creation, BVH traversal, leaf intersection,
and shading. Each kernel benefits from compacted input,
and/or needs to compact their output (see Fig. 3).

3.1.1. BVH Tree Setup

To accelerate isosurface ray-tracing of a volume, we employ
a median-split BVH (balanced) tree, like the kd-tree by Wald
[WFM∗05] and Hughes [HL09]. By using a BVH tree rather
than implicit splits, we can incorporate some simple tree-
manipulation (condensation) with very little overhead. Over-
all, this results in simpler ray traversal and is more optimized
for GPU application.

We found a leaf size of 163 voxels to be optimal due to
good texture caching on the current GPUs. The min/max is
found for each sub-volume and is uploaded to the GPU ready
for use in the BVH update stage. The tree memory amounts
to less than 2.3MB for a 5123 8-bit volume with 163 leafs.

Figure 3: The pipeline of our per-frame multi-kernel isosur-
face ray-tracing. Each arrow represents a compaction of the
work being fed into the next stage. Traversal and intersec-
tions kernels swap work back and forth several times.

(a) Implicit BVH Setup (b) Explicit BVH Update

Figure 4: Before rendering commences we first create a
min/max sub-volume, with 163 leafs. We then create enough
BVH nodes to create a balanced (implicit) BVH. During
each frame, this implicit BVH is made into an explicit BVH
specific to the current isovalue.

3.1.2. BVH Update Kernel

For each frame, we update the BVH tree to optimize it for
the current isovalue. This firstly involves updating the leaves
to test the isovalue against their min/max values available
from the min/max sub-volume. If valid, a flag is set true in
the node. The process is performed by multiple threads, one
for each leaf. Fig. 4 illustrates this.

With the leaf validity flags set, we propagate up to the next
level above to update the nodes. For each level, we deter-
mine the largest dimension and split along it. Subsequently,
the child node offsets are computed; with an x-split, for ex-
ample, they are 2x+[0,1],y,z. If a parent node has no valid
children, its flag is set to invalid. If the parent node has only
one child, the details of the child are copied into the parent

submitted to COMPUTER GRAPHICS Forum (4/2013).

D. M. Hughes, I. S. Lim, M. W. Jones, A. Knoll & B. Spencer / In-Kernel Stream Compaction 7

(tree-compaction). Finally, if both children are valid, the par-
ent’s validity is set to true. During the node update, we also
compute the bounds which encompass the child nodes.

3.1.3. Ray Generation Kernel

We create one ray per pixel and we immediately test it
against the volume bound. We use stream compaction to re-
move any rays that do not intersect the volume at all. The
compacted output is a list of ray indices ready for use in the
first traversal kernel.

3.1.4. Traverse BVH Kernel

Traversal uses the standard BVH traversal method, where
both children of the current node are loaded up and we test
the ray against both axis-aligned bounding boxes. The child
with the closest tnear is traversed into first, while the other
child is pushed to the stack.

If the current node is a leaf, it is pushed to the stack, traver-
sal stops and a call to the InK-Compact method is made. The
traversal kernel has only one work output, which will be sent
to the intersection kernel after compaction. Once the kernel
completes and code returns to the CPU, the total number of
ray indices in the work-list is accessed and we know how
many threads will be needed.

3.1.5. Iso-Intersection Kernel

The intersection kernel takes an input list of indices of rays
that need to perform an intersection test. The kernel execu-
tion will first access the ray information and pop the ray
stack; this is a way of passing ray states from one kernel
to another. The ray tnear and t f arvalues for the leaf bound
are recomputed and then a loop commences to step along
the ray incrementally. Once a crossing of the isovalue is de-
tected, we perform linear-interpolation to find the intersec-
tion location. Finally, the normal is computed and stored.
Additionally, the output-to-shader predicate is set.

Once it is known the Intersection-Kernel has failed to find
an isosurface, we first peek the top of the ray stack to see if
the next item is also a leaf. If so, we pop the stack and re-
turn the thread to the intersection loop. Doing the stack peek
enables us to avoid the situation where the intersection ker-
nel passes the ray to the traversal kernel, only for it to be
returned back again to the intersection kernel. However, the
drawback is that this can lead to many threads waiting a con-
siderable amount of time while some threads retest for the
new leaf. If intersection fails, the ray stack is not empty and
the top stack item is not a leaf, then the output-to-traversal
predicate is set.

Finally, two compactions are performed/required, firstly
for the output-to-shader predicate and then for the output-to-
traversal; What is actually performed here will be different,
depending on the compaction method used.

3.2. Inter-Kernel Work Compaction

There are several compaction stages in our pipeline;
Generation-Traversal, Traversal-Intersection, Intersection-
Traversal, and Intersection-Shade.

When using our InK-Compact methods, the compaction is
performed by calling either the InK-Compact or InK-Collate
methods at the end of each kernel just prior to leaving the
kernel. For the intersection kernel, this is performed twice
for each output case.

When using Thrust and Chag::PP, however, the kernels
will simply output the ray index to the output array in the
same location as was read from the input array. The output
array also requires non-valid elements be set to zero/null.
Once the kernel completes, compaction is achieved by
calling Thrust’s copy-if method, or the Chag::PP.compact
method, to compact (at most) the same number of input
items.

Note that we do not wait for the kernels to complete (sync)
before calling Thrust or Chag::PP, as this allows the CPU
to add the compaction kernels to the CUDA work-list and
minimize delays, thus allowing those approaches to achieve
their optimal performance for comparison with ours.

4. Results and Analysis

We have tested the proposed In-Kernel Compaction method
(InK-Compact) and compared it against the widely used
compaction methods of Thrust [HB10] and Chag:PP
[BOA09], while using them in our multi-kernel isosurface
ray-tracer. All tests were carried out on a standard NVidia
480 GTX graphics card. Furthermore, we compared our
multiple-kernel rendering pipeline against a single-kernel
pipeline. The single-kernel pipeline uses the same ray-
tracing code as with the multiple-kernel pipeline, except that
it has been split into three kernels and that there is additional
work to initialise-from/output-to the compacted work-lists.

In our tests, we used four data sets which have differ-
ent data characteristics and sizes (see Fig. 5). For example,
the Bonsai and Aneurysm have thin features and large gaps
between them; after high number of traversal-intersection
steps, many rays end up hitting nothing. On the other hand,
with the Head and LLNL data sets, most rays will definitely
hit the surface after a small number of traversal-intersection
steps.

Fig. 6 shows frame rates for rendering each interesting
(i.e., non-empty and little noisy) isosurface in the four data
sets. The rendering resolution is set at 10242. The pro-
posed InK-Compact consistently outperforms other com-
paction methods; on average, 90% and 28% improvements
over Thrust and Chag::PP, respectively.

In this work, we assume that the iso-surface changes each
frame regardless of whether it actually does and our render-
ing results presented in this paper include the cost of the

submitted to COMPUTER GRAPHICS Forum (4/2013).

8 D. M. Hughes, I. S. Lim, M. W. Jones, A. Knoll & B. Spencer / In-Kernel Stream Compaction

(a) Bonsai (2563) (b) Aneurysm (5123) (c) Head (2563) (d) LLNL (5123)

Figure 5: The test data sets which have different data characteristics and sizes.

(a) Bonsai (2563) (b) Aneurysm (5123)

(c) Head (2563) (d) LLNL (5123)

Figure 6: FPS (Frames Per Second) averaged over various view angles for each interesting (not-noisy/not-empty) isovalue; the
higher, the better. The multi-kernel rendering pipeline using the proposed In-Kernel Compaction consistently outperforms the
other alternatives based on conventional compaction methods. On average, our In-Kernel Methods are 99% faster than Thrust
and 28% faster than Chag::PP when used in the ray-tracing pipeline tests.

BVH update. In practice, we could choose to only update the
BVH upon isovalue changes and gain a minor speed boost.

Although it is designed for in-kernel compaction, we
tested the out-of-kernel effectiveness of our InK-Compact
as well. We performed this by wrapping the InK-Compact
methods in a global kernel and calling the kernel when we
wanted to compact data. We then applied this compaction
method in the same code used for Thrust and Chag::PP. The
results in Table 1 show that, when InK-Compact is used in an
out-of-kernel fashion, it runs on par with Chag::PP. With this

result we can surmise the main advantage of InK-Compact
over Chag::PP and Thrust is that compaction and scatter
operations are performed immediately within the operating
kernels, which results in fewer bottlenecks. We do not re-
quire leaving the kernel after preparing temporary arrays and
calling two or more kernels unlike other compaction meth-
ods such as Thrust and Chag::PP. By including the com-
paction routines within the kernel, there is a small regis-
ter cost, but modern GPU architectures facilitate a larger
amount of register space and it is not of concern. Note that it

submitted to COMPUTER GRAPHICS Forum (4/2013).

D. M. Hughes, I. S. Lim, M. W. Jones, A. Knoll & B. Spencer / In-Kernel Stream Compaction 9

Data InK-Compact OfK-Compact Thrust Chag::PP Single-Kernel Kd-Jump
Aneurysm (5123) 122.8 (±46.6) 100.8 (±44.4) 69.7 (±39.7) 101.9 (±39.7) 115.2 (±49.8) 52.1 (±20.0)
Bonsai (2563) 79.6 (±22.6) 62.7 (±18.6) 43.0 (±11.8) 63.0 (±18.4) 70.0 (±27.2) 48.0 (±18.2)
Head (2563) 73.2 (±6.0) 56.8 (±4.8) 38.7 (±2.5) 57.2 (±4.7) 61.7 (±6.8) 35.3 (±5.1)
LLNL (5123) 49.7 (±6.6) 38.1 (±5.2) 26.8 (±3.4) 38.5 (±5.2) 37.2 (±6.5) 27.2 (±4.1)

Table 1: Mean FPS (± Standard Deviation) for each data set using our In-Kernel Compaction (InK-Compact) and its Out-Of-
Kernel implementation (OfK-Compact), compared against Thrust, Chag:PP, the Single-Kernel rendering pipeline and Kd-Jump
[HL09]; which is also a single-kernel iso-surface ray caster. The proposed In-Kernel Compaction outperforms all the other
alternatives of the multi-kernel or single-kernel rendering pipelines.

(a) Bonsai (2563) (b) Aneurysm (5123)

(c) Head (2563) (d) LLNL (5123)

Figure 7: Our In-Kernel Compaction used in the the Multi-Kernel ray-tracing pipeline, compared against the same ray-tracing
code in a Single-Kernel pipeline. We also show our compact method used in the same fashion (used out-of-kernel) as Thrust
and Chag::PP. See Fig. 8 for the rendered images at sample isovalues.

is not feasible to test Thrust or Chag::PP as In-Kernel since
they are not designed nor implemented to run in kernel and
require at least two or more additional kernel calls.

Our InK-Compact additionally reduces the overhead of
compaction, so it encourages more use of compaction
throughout the application pipeline, particularly encourag-
ing multiple kernel applications. Consequently, this enables
faster computation because it allows better concurrency on
the GPU through the regular compaction. Our multi-kernel
ray-tracing pipeline demonstrates this advantage when com-
pared against the single-kernel pipeline that incorporated the
same ray-tracing code; on average, 15% speed-up over the
single-kernel (see Table 1).

The multi-kernel ray-tracing based on the proposed InK-
Compact outperforms the single-kernel ray-tracing at most
isovalues, especially when the isosurfaces are complex. Only
when the isosurface becomes simple, i.e., little to be ren-
dered, does the single-kernel outperform the multi-kernel;
because there is so little work (the majority of rays terminate
quickly) and the CPU-side overhead for the multi-kernel be-
comes a burden. However, even in these cases, the multi-
kernel is highly competitive, returning well over 100 fps (see
Fig. 7 and Fig. 8). The overall average of 15% speed-up is
thus the under-estimate in the sense that higher speed-ups
are obtained for the complex isosurfaces which are computa-
tionally more demanding to render. In Fig. 7 we additionally
provide a comparison for our non-order preserving In Ker-

submitted to COMPUTER GRAPHICS Forum (4/2013).

10 D. M. Hughes, I. S. Lim, M. W. Jones, A. Knoll & B. Spencer / In-Kernel Stream Compaction

nal Collation (InK-Collate) which for this ray-tracing appli-
cation shows little difference from InK-Compact.

5. Limitations

Our InK-Compact is designed to run as a device function
of an operation kernel and as such causes a register burden.
However, with recent changes to GPU architecture (Fermi
for example), this burden is not great. For example, once the
main work of a kernel is complete and it moves onto the
compaction, those registers used in the main work are no
longer required and are reallocated for the compaction code.

Another possible limitation is the fact that we require an
intermediate buffer in order to store block outputs, which
allows blocks to exit and not lock up GPU resources. In
theory, if the data type being compacted is large, this inter-
mediate buffer would cause more memory usage than other
compaction libraries. Our method will use a memory amount
equivalent to the number of elements multiplied by the ele-
ment size, whereas Chag::PP avoids this by storing a small
prefix sum with one element per warp.

6. Future Work

A logical extension of this work is to combine in-core com-
paction with out-of-core reduction techniques. With careful
design, concurrent kernel access can be achieved to better
increase GPU occupancy at all times. It would also be inter-
esting to trial more applications for In-Kernel Compaction.
Mesh extraction and geometric analysis, for example, could
be of interest. Finally, our immediate goal is to expand the
multi-kernel rendering pipeline to incorporate mixed primi-
tives, where specialized kernels handling different overlap-
ping geometries would require heavy use of stream com-
paction.

Another interesting question is how to organise the work-
load in-between kernels. In our pipeline we used ray indices
as it seems logical to keep the amount of memory transac-
tions per-frame to a minimum. However, eventually memory
access to gather the actual ray information will be incoher-
ent. An interesting hypothesis is that by actually reorganiz-
ing the ray information itself, per iteration, all memory ac-
cess will be coherent and would offset the extra cost. How-
ever, such a system would only be feasible with stackless
traversal.

7. Conclusion

We have proposed InK-Compact, a novel in-kernel order-
preserving compaction method for GPGPU applications. We
have also presented a multi-kernel ray-tracing pipeline that
makes effective use of stream compaction to organise ray
work in between kernel calls. The proposed InK-Compact

approach consistently outperforms the multi-kernel ray-
tracing pipelines based on the state-of-art compaction meth-
ods such as Thrust and Chag:PP. Our multi-kernel ray-
tracing pipeline based on InK-Compact also outperforms a
single-kernel rendering pipeline except for simple cases of
mostly empty rendering. We believe that many computa-
tionally intensive GPGPU applications (in addition to com-
puter graphics and visualization) requiring compaction, es-
pecially those at multiple stages and those with multiple out-
puts, will benefit from the proposed In-Kernel Stream Com-
paction method.

8. Acknowledgments

The work presented in this paper was supported by RIVIC
(the Wales Research Institute of Visual Computing) funded
by HEFCW (Higher Education Funding Council for Wales).

References

[BOA09] BILLETER M., OLSSON O., ASSARSSON U.: Efficient
stream compaction on wide SIMD many-core architectures. In
Proceedings of the Conference on High Performance Graphics
(2009), ACM, pp. 159–166. 2, 3, 7

[DZTS08] DYKEN C., ZIEGLER G., THEOBALT C., SEIDEL H.:
High-speed Marching Cubes using HistoPyramids. Computer
Graphics Forum 27, 8 (2008), 2028–2039. 2

[GL10] GARANZHA K., LOOP C.: Fast Ray Sorting and Breadth-
First Packet Traversal for GPU Ray Tracing. Computer Graphics
Forum 29, 2 (2010), 289–298. 2

[GMIG08] GOBBETTI E., MARTON F., IGLESIAS GUITIÁN J.:
A single-pass GPU ray casting framework for interactive out-of-
core rendering of massive volumetric datasets. The Visual Com-
puter 24, 7 (2008), 797–806. 3

[GPBG11] GARANZHA K., PREMOZE S., BELY A., GALAK-
TIONOV V.: Grid-based SAH BVH construction on a GPU. Vis.
Comput. 27, 6-8 (June 2011), 697–706. 2

[HB10] HOBEROCK J., BELL N.: Thrust: A parallel template
library, 2010. Version 1.3.0. 2, 7

[HL09] HUGHES D. M., LIM I. S.: Kd-Jump: a Path-Preserving
Stackless Traversal for Faster Isosurface Raytracing on GPUs.
IEEE Transactions on Visualization and Computer Graphics 15
(2009), 1555–1562. 2, 3, 6, 9

[HLJH09] HOBEROCK J., LU V., JIA Y., HART J.: Stream com-
paction for deferred shading. In Proceedings of the Conference
on High Performance Graphics (2009), pp. 173–180. 2

[HOBD11] HISSOINY S., OZELL B., BOUCHARD H., DESPRÉS
P.: GPUMCD: a new GPU-oriented Monte Carlo dose calcula-
tion platform. arXiv:1101.1245v1 [physics.med-ph], 2011. 3

[Hor05] HORN D.: Stream reduction operations for GPGPU ap-
plications. In GPU Gems 2 (2005), Addison-Wesley, pp. 573–
589. 3

[HS86] HILLIS W. D., STEELE JR. G. L.: Data parallel algo-
rithms. Communications of the ACM 29, 12 (1986), 1170–1183.
1

[HSO07] HARRIS M., SENGUPTA S., OWENS J.: Parallel prefix
sum (scan) with CUDA. In GPU Gems 3 (2007), pp. 851–876.
1, 2

submitted to COMPUTER GRAPHICS Forum (4/2013).

D. M. Hughes, I. S. Lim, M. W. Jones, A. Knoll & B. Spencer / In-Kernel Stream Compaction 11

[HSS∗05] HADWIGER M., SIGG C., SCHARSACH H., BÜHLER
K., GROSS M.: Real-Time Ray-Casting and Advanced Shading
of Discrete Isosurfaces. Computer Graphics Forum 24, 3 (2005),
303–312. 3

[Hwu11] HWU W.-M. W.: GPU Computing Gems Emerald Edi-
tion, 1st ed. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2011. 3

[KWH09] KNOLL A., WALD I., HANSEN C.: Coherent Mul-
tiresolution Isosurface Ray Tracing. The Visual Computer 25, 3
(2009), 209–225. 3

[LC87] LORENSEN W., CLINE H.: Marching cubes: A high res-
olution 3D surface construction algorithm. ACM Siggraph Com-
puter Graphics 21, 4 (1987), 163–169. 3

[LH98] LIVNAT Y., HANSEN C. D.: View dependent isosurface
extraction. In Proceedings of IEEE Visualization 1998 (1998),
pp. 175–180. 3

[NLKB11] NOBARI S., LU X., KARRAS P., BRESSAN S.: Fast
random graph generation. In Proceedings of the 14th Inter-
national Conference on Extending Database Technology (New
York, NY, USA, 2011), ACM, pp. 331–342. 3

[PPL∗99] PARKER S., PARKER M., LIVNAT Y., SLOAN P.-P.,
HANSEN C., SHIRLEY P.: Interactive Ray Tracing for Volume
Visualization. Computer Graphics and Applications 5, 3 (1999),
238–250. 3

[SHG09] SATISH N., HARRIS M., GARLAND M.: Designing ef-
ficient sorting algorithms for manycore GPUs. In Proceedings
of the 2009 IEEE International Symposium on Parallel & Dis-
tributed Processing (2009), pp. 1–10. 1

[SHZO07] SENGUPTA S., HARRIS M., ZHANG Y., OWENS
J. D.: Scan Primitives for GPU Computing. In Proceedings of
Symposium on Graphics Hardware (2007), pp. 97–106. 1, 2

[Sra94] SRAMEK M.: Fast Surface Rendering from Raster Data
by Voxel Traversal Using Chessboard Distance. Proceedings of
IEEE Visualization 1994 (1994), 188–195. 3

[SS10] SCHWARZ M., SEIDEL H.: Fast parallel surface and solid
voxelization on GPUs. ACM Transactions on Graphics 29, 6
(2010), 179(1–9). 3

[TMLT11] TANG M., MANOCHA D., LIN J., TONG R.:
Collision-streams: fast gpu-based collision detection for de-
formable models. In Symposium on Interactive 3D Graphics and
Games (2011), I3D ’11, pp. 63–70. 3

[vA11] VAN ANTWERPEN D.: Improving SIMD Efficiency for
Parallel Monte Carlo Light Transport on the GPU. In High-
Performance Graphics 2011 (2011), Dachsbacher C., Mark W.,
Pantaleoni J., (Eds.), pp. 41–50. 3

[WFM∗05] WALD I., FRIEDRICH H., MARMITT G.,
SLUSALLEK P., SEIDEL H.-P.: Faster Isosurface Ray Tracing
Using Implicit KD-Trees. IEEE Transactions on Visualization
and Computer Graphics 11, 5 (2005), 562–573. 3, 6

[WVG92] WILHELMS J., VAN GELDER A.: Octrees for faster
isosurface generation. ACM Transactions on Graphics (TOG)
11, 3 (1992), 201–227. 3

submitted to COMPUTER GRAPHICS Forum (4/2013).

12 D. M. Hughes, I. S. Lim, M. W. Jones, A. Knoll & B. Spencer / In-Kernel Stream Compaction

(a) I=36, MK: 26.3 fps, SK: 15.1 fps (b) I=72, MK: 65.8 fps, SK: 5.3 fps (c) I=160, MK: 158.3 fps, SK: 181.3 fps

(d) I=32, MK: 53.8 fps, SK: 42.2 fps (e) I=70, MK: 70.2 fps, SK: 57.1 fps (f) I=165, MK: 113.6 fps, SK: 119.3 fps

(g) I=40, MK: 72.5 fps, SK: 60.3 fps (h) I=120, MK: 72.2 fps, SK: 57.9 fps (i) I=200, MK: 124.8 fps, SK: 92.1 fps

(j) I=20, MK: 56.2 fps, SK: 44.9 fps (k) I=120, MK: 46.9 fps, SK: 31.6 fps (l) I=220, MK: 33.2 fps, SK: 22.1 fps

Figure 8: Comparison of Multi-Kernel vs. Single-Kernel ray-tracing pipelines at various isovalues. The multi-kernel ray-tracing
based on the proposed In-Kernel Compact outperforms the single-kernel ray-tracing at most isovalues, especially when the
isosurfaces are complex. Only when the isosurfaces become simple, i.e., little to be rendered as in (c) and (f), the single-kernel
outperforms the multi-kernel; even in this case, however, the multi-kernel is highly competitive, returning well over 100 fps.

submitted to COMPUTER GRAPHICS Forum (4/2013).

