
1

• Basically, to process a query we need to traverse the
 inverted lists of the query terms
• Lists are very long and are stored on disks
• Challenge: traverse lists as quickly as possible
• Tricks: compression, caching,
 parallelism, early termination (“pruning”)

Recap: Search Engine Query Processing
• Parallel query processing: divide docs between
 many machines, broadcast results to all
• Caching of results at query integrator
• Caching of compressed lists at each node

Recap: Search Engine Query Processing

Chunked Compression

• In real systems, compression is done in chunks
• Each chunk can be individually decompressed
• This allows nextGEQ to jump forward without uncompressing all
 entries, by skipping over entire blocks
• This requires an extra auxiliary table containing the docID of the last
 posting in each chunk (and maybe another one with the size of each chunk)
• Chunks may be fixed size or fixed number of postings
 (e.g, each chunk 256 bytes, or each chunk 128 postings)
 Issues: compression technique, posting format, cache line alignment, wasted space

Index Structure Layout

• Data blocks, say of size 64KB, as basic unit for list caching
• List chunks, say of 128 postings, as basic unit of decompression
• Many chunks are skipped over, but very few blocks are
• Also, may prefetch the next, say 2MB of index data from disk

• Inverted lists:
 - consist of docIDs, frequencies, positions (also context?)
 - basically, integer values
 - most lists are short, but large lists dominate index size

• How to compress inverted lists:
 - for docIDs, positions: first “compute differences” (gaps)
 - this makes docIDs, positions smaller (freqs already small)
 - problem: “compressing numbers that tend to be small”
 - need to model the gaps, i.e., exploit their characteristics

• And remember: usually done in chunks
• Local vs. global methods
• Exploiting clustering of words: book vs. random page order

Inverted List Compression Techniques
• Simple and OK, but not great:
 - vbyte (var-byte): uses variably number of bytes per integer

• Better compression, but slower than var-byte:
 - Rice Coding and Golomb Coding: bit oriented
 - use statistics about average or median of numbers (gap size)

• Good compression for very small numbers, but slow:
 - Gamma Coding and Delta Coding: bit oriented
 - or just use Huffman?

• Better compression than VByte, and REALLY fast:
 - Simple9 (Anh/Moffat 2001): pack as many numbers as
 possible in 32 bits (one word)
 - PFOR-DELTA (Heman 2005): compress, e.g., 128 number
 at a time. Each number either fixed size, or an exception.

Techniques Covered in this Class

2

Distribution of Integer Values

1 2 3 4 5 6 7 8 9 10 11

probability

0.1

• many small values means better compression

Recap: Taking Differences

• idea: use efficient coding for docIDs, frequencies, and positions in index
• first, take differences, then encode those smaller numbers:
• example: encode alligator list, first produce differences:
 - if postings only contain docID:
 (34) (68) (131) (241) … becomes (34) (34) (43) (110) …

 - if postings with docID and frequency:
 (34,1) (68,3) (131,1) (241,2) … becomes (34,1) (34,3) (43,1) (110,2) …

 - if postings with docID, frequency, and positions:
 (34,1,29) (68,3,9,46,98) (131,1,46) (241,2,45,131) …
 becomes (34,1,29) (34,3,9,37,52) (43,1,46) (110,2,45,86) …

 - afterwards, do encoding with one of many possible methods

Recap: var-byte Compression
• simple byte-oriented method for encoding data
• encode number as follows:
 - if < 128, use one byte (highest bit set to 0)
 - if < 128*128 = 16384, use two bytes (first has highest bit 1, the other 0)
 - if < 128^3, then use three bytes, and so on …
• examples: 14169 = 110*128 + 89 = 11101110 01011001
 33549 = 2*128*128 + 6*128 + 13 = 10000010 10000110 00001101

• example for a list of 4 docIDs: after taking differences
 (34) (178) (291) (453) … becomes (34) (144) (113) (162)

• this is then encoded using six bytes total:
 34 = 00100010
 144 = 10000001 00010000
 113 = 01110001
 162 = 10000001 00100010
• not a great encoding, but fast and reasonably OK
• implement using char array and char* pointers in C/C++

Rice Coding:

• consider the average or median of the numbers (i.e., the gaps)
• simplified example for a list of 4 docIDs: after taking differences
 (34) (178) (291) (453) … becomes (34) (144) (113) (162)
• so average is g = (34+144+113+162) / 4 = 113.33

• Rice coding: round this to smaller power of two: b = 64 (6 bits)
• then for each number x, encode x-1 as
 (x-1)/b in unary followed by (x-1) mod b binary (6 bits)
 33 = 0*64+33 = 0 100001
 143 = 2*64+15 = 110 001111
 112 = 1*64+48 = 10 110000
 161 = 2*64+33 = 110 100001
• note: there are no zeros to encode (might as well deduct 1 everywhere)

• simple to implement (bitwise operations)
• better compression than var-byte, but slightly slower

Golomb Coding:
• example for a list of 4 docIDs: after taking differences
 (34) (178) (291) (453) … becomes (34) (144) (113) (162)

• so average is g = (34+144+113+162) / 4 = 113.33

• Golomb coding: choose b ~ 0.69*g = 78 (usually not a power of 2)

• then for each number x, encode x-1 as
 (x-1)/b in unary followed by (x-1) mod b in binary (6 or 7 bits)

• need fixed encoding of number 0 to 77 using 6 or 7 bits
• if (x-1) mod b < 50: use 6 bits else: use 7 bits
• e.g., 50 = 110010 0 and 64 = 110010 1
 33 = 0*78+33 = 0 100001
 143 = 1*78+65 = 10 1100111
 112 = 1*78+34 = 10 100010
 161 = 2*78+5 = 110 000101
• optimal for random gaps (dart board, random page ordering)

Rice and Golomb Coding:
• uses parameters b – either global or local
• local (once for each inverted list) vs. global (entire index)
• local more appropriate for large index structures
• but does not exploit clustering within a list
• compare: random docIDs vs. alpha-sorted vs. pages in book
 - random docIDs: no structure in gaps, global is as good as local
 - pages in book: local better since some words only in certain chapters
 - assigning docIDs alphabetically by URL is more like case of a book

• instead of storing b, we could use N (# of docs) and f :
 g = (N - f) / (f + 1)

• idea: e.g., 6 docIDs divide 0 to N-1 into 7 intervals

t

t

0 N-1

t

3

Gamma and Delta Coding:
• no parameters such as b: each number coded by itself
• simplified example for a list of 4 docIDs: after taking differences
 (34) (178) (291) (453) … becomes (34) (144) (113) (162)

• imagine each number as binary with leading 1: 34 = 100010
• then for each number x, encode x-1 as
 1 + floor(log(x)) in unary followed by floor(log(x)) bits
• thus, 1 = 0 and 5 = 110 01
 33 = 111110 00001
 143 = 11111110 0001111
 112 = 1111110 110000
 161 = 11111110 0100001
• note: good compression for small values, e.g., frequencies
• bad for large numbers, and fairly slow
• Delta coding: Gamma code; then gamma the unary part

Simple9 (S9) Coding: (Anh/Moffat 2004)

• idea: produce a word-aligned code – basic unit 32 bits
• try to pack several numbers into one word (32 bits)
• each word is split into 4 control bits and 28 data bits
• what can we store in 28 bits?
 - 1 28-bit number
 - 2 14-bit numbers
 - 3 9-bit numbers (1 bit wasted)
 - 4 7-bit numbers
 - 5 5-bit numbers (3 bits wasted)
 - 7 4-bit numbers
 - 9 3-bit numbers (1 bit wasted)
 - 14 2-bit numbers
 - 28 1-bit numbers

• then use other 4 bits to store which of these 9 cases is used
 (assumption for simplicity: all numbers that we encounter need at most 28 bits)

Simple9 (S9) Coding: (continued)

• store and retrieve numbers using fixed bit masks
• algorithm:
 - do the next 28 numbers fit into one bit each?
 - if yes: use that case
 - if no: do the next 14 numbers fit into 2 bits each?
 - if yes: use that case
 - if no: do the next 9 numbers fit into 3 bits each?
 … and so on …

• fast decoding: only one if-decision for every 32 bits
• compare to varbyte: one or more decisions per number
• decent compression: can use < 1 byte for small numbers
• related techniques: relate10 and carryover12
• Simple16 (S16): contains several optimizations over S9

PFOR-DELTA: (Heman 2005)

• idea: compress/decompress many values at a time (e.g., 128)

• how many bits per number?
 - different choice for each number? (decoding slow due to branches)
 - or one size fits all? (bad compression)
• good compromise: choose size such that 90% fit, code the
 other 10% as exceptions
• suppose in next 128 numbers, 90% are < 32 : choose b=5
• allocate 128 x 5 bits, plus space for exceptions
• exceptions stored at end as ints (using 4 bytes each)
• example: b=5 and sequence 23, 41, 8, 12, 30, 68, 18, 45, 21, 9, ..

 - exceptions (grey) form linked list within the locations (e.g., 3 means “next except. 3 away”)
 - one extra slot at beginning points to location of first exception (or store in separate array)

23 83 12 30 1 18 2 21 9 4168451 …
space for 128 5-bit numbers space for exceptions

(4 bytes each, back to front)
stores location
of 1st exception

PFOR-DELTA: (ctd.)

• there may sometimes be “forced exceptions”:
 in example: if there are more than 2 consecutive numbers < 2 , then encode
 the 2 -th number as exception so we can keep a simple linked list structure

• very simple and fast decoding
 - first, copy the 128 b-bit numbers into integer array (very fast per element)
 - then traverse linked list and patch the exceptions (slower per element)
 - if we keep exceptions < 10%, this will be extremely fast
 - first phase: unroll loops for best performance – hardcode for each b

• note: always uncompress next 128 posts into temp array
 - do not uncompress entire list into one long array: slower since out of cache

• simple effective improvement: do not use 32 bits / except
 - use maximum among next 128 numbers to choose number of bits
 - 10-20% better compression with basically same speed (if done properly)

23 83 12 30 1 18 2 21 9 4168451 …
space for 128 5-bit numbers space for exceptions

 (32 bits each)
stores location
of 1st exception

bb
b

Some Experimental Numbers
• results from Witten/Moffat/Bell book
• includes golomb, gamma, delta, but not others above
• data with “locality”: books, or web pages sorted by URL
 - word occurrences not uniform within
 a book, but often clustered in one part
• in this case, interpolative better
• see book for details

4

Some Newer Experimental Numbers

• by Xiaohui Long, 2006
• includes golomb, rice, gamma, delta, S9 and its variants
• lists weighted by frequency in queries
 - not total index size, but size of compressed data fetched per query
 - but also tracks index size reasonably well
• bytes per compressed integer in list
• var-byte bad for frequency
 - always at least one byte
• S9 and variants much better
• but not as good as others

Some Experimental Numbers (ctd.)

• another perspective: index data access in GB / 1000 queries
• note: position data much larger than docID and frequency
 reason: several positions/posting, and larger numbers on average

• relative differences in cost smaller if we have positions

Some Experimental Numbers (ctd.)

• CPU cost for uncompression (Xiaohui Long, 2006)
• cost per 1000 queries on 8 million pages (not fully optimized)

• var-byte MUCH faster than the others
• later: other newer techniques (S9, PFORDELTA, etc.) also fast

Hacking up Rice Coding:

• can we implement Rice coding much faster than known?
• note similarity to PFORDELTA: unary part == exception
• more bits for binary part == fewer exceptions
• idea: when compressing 128 integers:
 - store 128 binary parts followed by 128 unary parts
 - during decompression, first retrieve the 128 binary parts
 - use same bit-copy routines as in PFORDELTA
 - then apply unary parts to patch things up
 - of course, more exceptions as in PFORDELTA

• second idea: process 8 bits of the unary data at once
 - switch statement with 256 cases and 2000 lines of code - but fast!

Experimental Setup:
• set of 7.4 million web pages
• Excite query trace from 1999

• remove duplicate queries (to take result caching into account)

• select 1000 consecutive queries, run in main memory
• 3.2 Ghz Pentium 4, gcc compiler, …
• used var-byte for very short lists

Compressed Size:

5

Bytes per Integer:

docIDs frequencies

Decompression Times:

Decompression Speeds: (millions of integers / second)

Index Caching - Algorithms

• study of replacement policies for list caching
• most common algorithm: LRU (Least Recently Used)

• alternative: LFU (Least Frequently Used)

• discussion: LRU vs. LFU
 - LRU good for changing hot items, LFU for more static
 - out of cache, out of mind ?
• Landlord: generalization of weighted caching
 - analyzed for weighted caching (Cao/Irani/Young)
 - modification: give longer leases to repeat tenants
• Multi-Queue (MQ) (Zhou/Philbin/Li 2001)

• Adaptive Replacement Policy (Megiddo/Modha 2003)

Comparison of Caching Policies: Impact of Compression:

6

Total Cost for Fixed Disk Speed:

10 MB/s disk 50 MB/s disk

Effect of Disk Speed:

Conclusions
• Great differences in speed and compression
• Old story: var-byte is not as good in compression, but
 much faster and thus used in practice
• New story (last 2-3 years): there are other techniques
 that are faster and also compress much better
• Decompression speeds: GBs per second !
• Bit- versus byte-alignment is not the issue
• But you need to be able to use fixed masks and
 avoid branch mispredicts (simple ideas, long code)

• LRU not a good caching policy
• Compression has caching consequences …
• Better compression gives higher cache hit ratio

Index Compression in Google (1998)
• see paper for details
• forward barrel: postings during sorting, before final index constructed
• inverted barrels: inverted index structure: 27 bits / docID, 5 bits / freq
• plus extra context data about each hit (each occurrence)
• was replaced by newer technique …

