Recap: Search Engine Query Processing

+ Basically, to process a query we need to traverse the
inverted lists of the query terms

+ Lists are very long and are stored on disks
+ Challenge: traverse lists as quickly as possible

» Tricks: compression, caching,
parallelism, early termination (“pruning”)

polytechnic| 127 312 678 946 ... |

university |34 168 188 312 467 787 946 \

brooklyn |25 38 95 127 178 188 203 296 ... |

Recap: Search Engine Query Processing

+ Parallel query processing: divide docs between
many machines, broadcast results to all

+ Caching of results at query integrator
+ Caching of compressed lists at each node

Memory | List Cache |
Disk |Invermed Index| |Inverted Index| |Inverted Indexl
Server Server Server

Chunked Compression

armadillo [127 312 678 946| ...

alligator [34 68 131 241|268 312 414 490] ...

dog [12 20 a1 87 |[111 143 189 234 |[267 312 333 378

« In real systems, compression is done in chunks
« Each chunk can be individually decompressed

« This allows nextGEQ to jump forward without uncompressing all
entries, by skipping over entire blocks

« This requires an extra auxiliary table containing the doclID of the last
posting in each chunk (and maybe another one with the size of each chunk)

» Chunks may be fixed size or fixed number of postings

(e.g, each chunk 256 bytes, or each chunk 128 postings)
Issues: compression technique, posting format, cache line alignment, wasted space

Index Structure Layout

Inverted List Inverted List Inverted List
Inverted 3 3 1 4
Index | ?Iock | Block: | Block | Block I Block I Block;: I |
ove el o T e e o]
Block { q |Doc] d
e e

List [—==
chunk [23:2510,3,.][2,3,6,2,1, . |[25,12, 189, 3,18, 101, 3,.r- |

128 Doc IDs 128 Frequencies All Positions for 128 Docs

« Data blocks, say of size 64KB, as basic unit for list caching

« List chunks, say of 128 postings, as basic unit of decompression
« Many chunks are skipped over, but very few blocks are

« Also, may prefetch the next, say 2MB of index data from disk

Inverted List Compression Techniques

* Inverted lists:
- consist of doclIDs, frequencies, positions (also context?)
- basically, integer values
- most lists are short, but large lists dominate index size

* How to compress inverted lists:
- for doclIDs, positions: first “compute differences” (gaps)
- this makes doclIDs, positions smaller (freqs already small)
- problem: “compressing numbers that tend to be small”
- need to model the gaps, i.e., exploit their characteristics

« And remember: usually done in chunks

* Local vs. global methods
 Exploiting clustering of words: book vs. random page order

Techniques Covered in this Class

- Simple and OK, but not great:
- vbyte (var-byte): uses variably number of bytes per integer
- Better compression, but slower than var-byte:
- Rice Coding and Golomb Coding: bit oriented
- use statistics about average or median of numbers (gap size)
* Good compression for very small numbers, but slow:
- Gamma Coding and Delta Coding: bit oriented
- or just use Huffman?
- Better compression than VByte, and REALLY fast:

- Simple9 (Anh/Moffat 2001): pack as many numbers as
possible in 32 bits (one word)
- PFOR-DELTA (Heman 2005): compress, e.g., 128 number
at a time. Each number either fixed size, or an exception.

Distribution of Integer Values

0.

probability

1 2 3 4 5 6 7 8 9 10 11

* many small values means better compression

Recap: Taking Differences

armadillo | 127 312 678 946 ...

alligator [34 68 131 241][268 312 414 490 ...

dog [12 29 41 87 |[111 143 189 234 |[267 312 333 378 | ...

- idea: use efficient coding for doclIDs, frequencies, and positions in index
« first, take differences, then encode those smaller numbers:
- example: encode alligator list, first produce differences:
- if postings only contain doclID:
(34) (68) (131) (241) ... becomes (34) (34) (43) (110) ...
- if postings with docID and frequency:
(34,1) (68,3) (131,1) (241,2) ... becomes (34,1) (34,3) (43,1) (110,2) ...
- if postings with doclD, frequency, and positions:
(34,1,29) (68,3,9,46,98) (131,1,46) (241,2,45,131) ...
becomes (34,1,29) (34,3,9,37,52) (43,1,46) (110,2,45,86) ...
- afterwards, do encoding with one of many possible methods

Recap: var-byte Compression
« simple byte-oriented method for encoding data
« encode number as follows:

- if < 128, use one byte (highest bit set to 0)
- if < 128*128 = 16384, use two bytes (first has highest bit 1, the other 0)
- if < 1283, then use three bytes, and soon ...
- examples: 14169 = 110*128 + 89 =[11101110]01011001]
33549 = 2*128*128 + 6*128 + 13 =
« example for a list of 4 doclDs: after taking differences
(34) (178) (291) (453) ... becomes (34) (144) (113) (162)
« this is then encoded using six bytes total:
34 =00100010
144 =[10000001//00010000
113 =(01110001
162 ={10000001{00100010
* not a great encoding, but fast and reasonably OK
 implement using char array and char* pointers in C/C++

Rice Coding:

- consider the average or median of the numbers (i.e., the gaps)
« simplified example for a list of 4 docIDs: after taking differences
(34) (178) (291) (453) ... becomes (34) (144) (113) (162)
* so average is g =(34+144+113+162) / 4=113.33
« Rice coding: round this to smaller power of two: b =64 (6 bits)
« then for each number x, encode x-1 as
(x-1)/b in unary followed by (x-1) mod b binary (6 bits)

33=0%64+33=0 100001
143 = 2*64+15 =110 001111
112 = 1*64+48 = 10 110000
161 = 2*64+33 = 110 100001

« note: there are no zeros to encode (might as well deduct 1 everywhere)
« simple to implement (bitwise operations)
« better compression than var-byte, but slightly slower

Golomb Coding:

« example for a list of 4 doclDs: after taking differences
(34) (178) (291) (453) ... becomes (34) (144) (113) (162)

©so average is g =(34+144+113+162) / 4 = 113.33
* Golomb coding: choose b ~ 0.69*g = 78 (usually not a power of 2)
« then for each number x, encode x-1 as

(x-1)/b in unary followed by (x-1) mod b in binary (6 or 7 bits
* need fixed encoding of number 0 to 77 using 6 or 7 bits
« if (x-1) mod b <50: use 6 bits else: use 7 bits
-e.g.,50=1100100 and 64 =1100101

33=0"78+33 = 0 100001

143 = 1*78+65 = 10 1100111
112=1*78+34 = 10 100010
161 =2*78+5 = 110 000101

- optimal for random gaps (dart board, random page ordering)

Rice and Golomb Coding:

- uses parameters b - either global or local

« local (once for each inverted list) vs. global (entire index)

« local more appropriate for large index structures

« but does not exploit clustering within a list

« compare: random doclDs vs. alpha-sorted vs. pages in book
- random doclDs: no structure in gaps, global is as good as local
- pages in book: local better since some words only in certain chapters
- assigning doclIDs alphabetically by URL is more like case of a book

- instead of storing b, we could use N (# of docs) and f; :

g=(N-f)/(fe+1)
- idea: e.g., 6 docIDs divide 0 to N-1 into 7 intervals

| | | | | |
T T T T T T
0 N-1

Gamma and Delta Coding:

* no parameters such as b: each number coded by itself
« simplified example for a list of 4 docIDs: after taking differences
(34) (178) (291) (453) ... becomes (34) (144) (113) (162)
- imagine each number as binary with leading 1: 34 =100010
« then for each number x, encode x-1 as
1 + floor(log(x)) in unary followed by floor(log(x)) bits
ethus, 1=0 and 5=11001

33=111110 00001
143 = 11111110 0001111
112=1111110 110000
161 =11111110 0100001

- note: good compression for small values, e.g., frequencies
* bad for large numbers, and fairly slow
« Delta coding: Gamma code; then gamma the unary part

Simpleg (Sg) Codingi (continued)

« store and retrieve numbers using fixed bit masks
« algorithm:
- do the next 28 numbers fit into one bit each?
- if yes: use that case
- if no: do the next 14 numbers fit into 2 bits each?
- if yes: use that case
- if no: do the next 9 numbers fit into 3 bits each?
...andsoon...
- fast decoding: only one if-decision for every 32 bits
- compare to varbyte: one or more decisions per number
- decent compression: can use < 1 byte for small numbers
- related techniques: relate10 and carryover12
- Simple16 (S16): contains several optimizations over S9

Simple9 (59) Codingi (Anh/Moffat 2004)

- idea: produce a word-aligned code — basic unit 32 bits
« try to pack several numbers into one word (32 bits)

« each word is split into 4 control bits and 28 data bits

» what can we store in 28 bits?

-1 28-bit number

-2 14-bit numbers

-3 9-bit numbers (1 bit wasted)
-4 7-bit numbers

-5 5-bit numbers (3 bits wasted)
-7 4-bit numbers

-9 3-bit numbers (1 bit wasted)
-14 2-bit numbers

-28 1-bit numbers

« then use other 4 bits to store which of these 9 cases is used
ion for simplicity: all that we need at most 28 bits)

PFOR-DELTA: ()

« there may sometimes be “forced exceptions”:
in example: if there are more than 2P consecutive numbers < 2", then encode
the 2P-th number as exception so we can keep a simple linked list structure
« very simple and fast decoding

- first, copy the 128 b-bit numbers into integer array (very fast per element)
- then traverse linked list and patch the exceptions (slower per element)

- if we keep exceptions < 10%, this will be extremely fast

- first phase: unroll loops for best performance — hardcode for each b

* note: always uncompress next 128 posts into temp array

- do not uncompress entire list into one long array: slower since out of cache
- simple effective improvement: do not use 32 bits / except

- use maximum among next 128 numbers to choose number of bits

- 10-20% better compression with basically same speed (if done properly

[1]23[37 8 12[30]a J18[2]22[0 [| [... [a5 e8] a1
R

stores location Space for 128 5-bit numbers space for exceptions
of 1°* exception (32 bits each)

PFOR-DELTA: (Heman 2005)

« idea: compress/decompress many values at a time (e.g., 128)
* how many bits per number?
- different choice for each number? (decoding slow due to branches)
- or one size fits all? (bad compression)

- good compromise: choose size such that 90% fit, code the
other 10% as exceptions

* suppose in next 128 numbers, 90% are < 32 : choose b=5
- allocate 128 x 5 bits, plus space for exceptions

- exceptions stored at end as ints (using 4 bytes each)

- example: b=5 and sequence 23, 41, 8, 12, 30, 68, 18, 45, 21, 9, ..

[1]23[378]12[30]2[18]2]21]o [| | ... [Ja5]es 41

stores location Space for 128 5-bit numbers space for exceptions

of 1°* exception (4 bytes each, back to front,
- exceptions (grey) form linked list within the locations (e.g., 3 means “next except. 3 away”|
- one extra slot at beginning points to location of first exception (or store in separate array)

Some Experimental Numbers

« results from Witten/Moffat/Bell book
« includes golomb, gamma, delta, but not others above
- data with “locality”: books, or web pages sorted by URL
- word occurrences not uniform within
a book, but often clustered in one part P ITTEN/HOFFIT [RELL « Wawieg R
- in this case, interpolative better il lsiudfiisuinie v o

- see book for details aa e
B OMBD Comct TREC

Globalmethods

§ Stsisof oeomentcoleions, Uray oW oW

Binay L.] L]

a_® Collection Bamodi W nw ny

B GNbD Comat TR ! woow W oW

T 8 (+] 8 [|
Documents N a0 LU 11 T) Obsrved fguency W ow s
Niberoltems — F @O 5096 285 Xam ol S
Disinctterns LTI I N:p'"::; ; 2 u w
Index pointers f 042 22630 12976418 13499414 Stawed Bamauli 56 m “m :2
Total size (Mbytes) 3 1405 1318 my Batche raquency [T " I

Inerolaie LI] L]

Some Newer Experimental Numbers

« by Xiaohui Long, 2006
« includes golomb, rice, gamma, delta, S9 and its variants
- lists weighted by frequency in queries

- not total index size, but size of compressed data fetched per query
- but also tracks index size reasonably well

- bytes per compressed integer in list

« var-byte bad for frequency
- always at least one byte

+ 89 and variants much better
« but not as good as others

Some Experimental Numbers (ctd)

« another perspective: index data access in GB / 1000 queries

* note: position data much larger than docID and frequency
reason: several positions/posting, and larger r b on

g

- relative differences in cost smaller if we have positions

W ganma m

Rice
[variable-byte
simple-9

B relate-10
B carryover-12

dociD e pos al

Some Experimental Numbers (ctd)

* CPU cost for uncompression (Xiaohui Long, 2006)

« cost per 1000 queries on 8 million pages (not fully optimized)
« var-byte MUCH faster than the others

* later: other newer techniques (S9, PFORDELTA, etc.) also fast

W gamma

[Rice
W variable-byte

seconds

doclD req oos al

Hacking up Rice Coding:

- can we implement Rice coding much faster than known?
* note similarity to PFORDELTA: unary part == exception
* more bits for binary part == fewer exceptions
- idea: when compressing 128 integers:

- store 128 binary parts followed by 128 unary parts

- during decompression, first retrieve the 128 binary parts

- use same bit-copy routines as in PFORDELTA

- then apply unary parts to patch things up

- of course, more exceptions as in PFORDELTA
- second idea: process 8 bits of the unary data at once

- switch statement with 256 cases and 2000 lines of code - but fast!

Experimental Setup:

« set of 7.4 million web pages
- Excite query trace from 1999

Trace Queries Unique Queries [Query Length | List Length

Excite 1,500,005 536,239 2.59 220,331
AOL(time) | 1,861,054 536,239 2.75 208,426
AOL(user) 1,920,154 536,239 2.80 204,663

- remove duplicate queries (to take result caching into account)
- select 1000 consecutive queries, run in main memory

* 3.2 Ghz Pentium 4, gcc compiler, ...

« used var-byte for very short lists

Compressed Size:

B
&

~index with Pos ® ~Towalw/oPos -Totalw Pos
— 120 =Index w/o Pos g 40 ~+DoclDs +=Frequencies
B 12 ~+-DociDs g . -
£ ~~Frequencies e Positions
3 100 —~positions S 30 -
% -
2 X k’\
I g2
g T 15
g a0 2
E . . . g 10
X i — e 5
S 20 \W £ o5
S S

3

Vbyte 9 s16 . Worbah.: Rice. Entropy Vbyte 9 $16 PForDelta Rice Entropy
Compression Algorithm Compression Algorithm

Bytes per Integer:

~VByte =59

z 16 ~PForDelta T 10
3 12 —rice Entropy 3 ~veye w59
14 £ o8 -516 +-PForDelta
& 10 €
< 3 Rice Entropy.
5 os 3 os
- 3 [————
E 2 o4 S —
3 oa 3 S —
g £ o2
£ o 4

£
§ oo § oo

shortest shorter middie longer longest shortest shorter

midi
Length of Inverted List

doclIDs

e Tong
Length of Inverted List

ger longest

frequencies

Decompression Times:

Decompression Time (Secs)

5.0
~-Index with Pos » A Totalwlopos
o index wfo Pos P “Total w Pos
35.0 ~+DoclDs A e DodDs
~~Frequencies & o }
300 —Positions e requencies
E ~positions.
25.0 £ §
= 5
200 s
$
150 £,
100 R - . £,
8 v
. v S ~='=-\/
00 R

PRorDelta Rice Vbyte s s16 PForDelta Rice

Vbyte 59 16 P
Compression Algorithm Compression Algorithm

Decompression Speeds:

(millions of integers / second)

Algorithm | Total w/o Pos | Total w Pos | DocID Freq Pos
VByte 416.32 183.66 381.90 | 457.56 | 132.86
S9 439.49 285.27 391.73 [500.51 | 230.04
S16 433.78 296.53 376.92 510.86 | 243.76
PForDelta 868.70 803.11 855.79 | 882.01 763.67
Rice 185.39 194.20 190.44 180.59 | 200.72

Index Caching - Algorithms

« study of replacement policies for list caching

* most common algorithm: LRU (Least Recently Used)
- alternative: LFU

« discussion: LRU vs. LFU

- LRU good for changing hot items, LFU for more static
- out of cache, out of mind ?

» Landlord: generalization of weighted caching
- analyzed for weighted caching (Caol/lrani/Young)
- modification: give longer leases to repeat tenants

* Multi-Queue (MQ) (zhou/Philbin/Li 2001)
» Adaptive Replacement Policy (Megiddo/Modha 2003)

(Least Frequently Used)

Comparison of Caching Policies:

1.0
09
08
097
=
Sos
3
T os ~+LRU
o
204 =ARC
8., -+LD (0.5)
- seMQ
0.2 “<LFU
01
0.0

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
Cache Size as Percentage of Index Size

Impact of Compression:

1.0
0.9
0.8
° 0.7
Bos ~+VByte
£ o0s 59
o
£ 04 -+516
a =«PForDelta
© o3
- =Rice
0.2 Entropy
0.1
0.0

128 256 512 768 1024 1280 1536 1792 2048
Cache Size (MB)

Total Cost for Fixed Disk Speed:

Effect of Disk Speed:

3

- ~+-S16
#-PForDelta

8

-+Rice

8

Query Processing Time (Secs)
S 8

[
1)

10 20 30 80 9 100

40 50 60 70
Disk Speed (MB/S)

5 7 us16
i s g1 arroneta
¢ g 00 i
o 5 80
§ 60
3 & 40
z
é 20
128 512 768 1024 1280 1536 1792 2048 L
Cache Size (MB) 128 256 512 7¢ 1024 1280 1536 1792 2048
Cache Size (MB)
10 MB/s disk 50 MB/s disk
Conclusions

+ Great differences in speed and compression

+ Old story: var-byte is not as good in compression, but
much faster and thus used in practice

* New story (last 2-3 years): there are other techniques
that are faster and also compress much better

+ Decompression speeds: GBs per second !
+ Bit- versus byte-alignment is not the issue

+ But you need to be able to use fixed masks and
avoid branch mispredicts (simple ideas, long code)

* LRU not a good caching policy
+ Compression has caching consequences ...
+ Better compression gives higher cache hit ratio

Index Compression in Google (1998)

- see paper for details

« forward barrel: postings during sorting, before final index constructed
« inverted barrels: inverted index structure: 27 bits / doclID, 5 bits / freq
- plus extra context data about each hit (each occurrence)

- was replaced by newer technique ...

ITRRET 8T hit hit e
| nhits, 8] t hit hit et

Figure 3. Forward and Reverse Indexes
‘and the Lexicon

