
Information Retrieval
INFO 4300 / CS 4300

!  Indexing
–  Inverted indexes
– Compression
–  Index construction
– Ranking model

But first...

!  Simple in-memory indexer

Compression
!  Inverted lists are very large

–  e.g., 25-50% of collection for TREC collections using
Indri search engine

–  Much higher if n-grams are indexed
!  Compression of indexes saves disk and/or memory

space
–  Typically have to decompress lists to use them
–  Best compression techniques have good

compression ratios and are easy to decompress
!  Lossless compression – no information lost

Compression

!  Basic idea: Common data elements use
short codes while uncommon data
elements use longer codes
– Example: coding numbers

» number sequence:

» possible encoding:

» encode 0 using a single 0:

» only 10 bits, but...

Compression Example

!  Ambiguous encoding – not clear how to
decode

» another decoding:

» which represents:

» use unambiguous code:

» which gives:

Delta Encoding

!  Word count data is good candidate for
compression
– many small numbers and few larger numbers
–  encode small numbers with small codes

!  Frequency of document numbers in
inverted lists is less predictable
–  but differences between numbers in an ordered

list (e.g. an inverted list) are smaller and more
predictable

!  Delta encoding:
–  encodes differences between document numbers

(d-gaps)

Delta Encoding

•  Inverted list (doc #s without counts)

•  Differences between adjacent numbers

•  Differences for a high-frequency word are easier
to compress (many small d-gaps), e.g.,

•  Differences for a low-frequency word are large,
e.g.,

Bit-Aligned Codes

!  Breaks (i.e. spaces) between encoded
numbers can occur after any bit position

!  Unary code (base-1 encoding)

– Encode k by k 1s followed by 0
– 0 at end makes code unambiguous

Unary and Binary Codes

!  Unary is very efficient for small numbers
such as 0 and 1, but quickly becomes very
expensive
– 1023 can be represented in 10 binary bits, but

requires 1024 bits in unary
!  Binary is more efficient for large numbers,

but is ambiguous

Elias-! Code

!  To encode a number k, compute

»  kd is # of binary digits needed to encode offset
! Represent in unary code

»  kr
! Represent in binary

length of offset

offset

k = 13
kd = 3
kr = 5

kd (unary) 1110
kr (binary) 101

1110 101

Elias-! Code

!  To encode a number k, compute
length of offset

offset

Elias-! Code: alternate explanation

!  To encode a number k,
–  Encode k in binary
–  Compute a length – offset pair
–  Offset: (for k>0) drop initial 1 from binary form of k
–  Length: # of bits needed to represent offset

k = 13

k (binary) 1101
kr (binary) 101
kd= 3 (unary) 1110

1110 101

Decoding

!  Read the unary code up to the 0
– Tells us how long the offset is

!  Read the offset
!  Append a 1 to the front
!  Convert to base-10

Elias-" Code
!  Elias-! code uses no more bits than unary,

many fewer for k > 2
–  1023 takes 19 bits instead of 1024 bits using unary

!  In general, takes 2�log2k�+1 bits
!  To improve coding of large numbers, use

Elias-" code
–  Instead of encoding kd in unary, we encode kd + 1

using Elias-!
– Takes approximately 2 log2 log2 k + log2 k bits

Elias-" Code

!  Split kd into:

– encode kdd in unary, kdr in binary, and kr in
binary

(kd + 1) – 2floor (log_2 (k_d + 1))

