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!  Indexing 
–  Inverted indexes 
– Compression  
–  Index construction 
– Ranking model 

But first... 

!  Simple in-memory indexer 

Compression 
!  Inverted lists are very large 

–  e.g., 25-50% of collection for TREC collections using 
Indri search engine 

–  Much higher if n-grams are indexed 
!  Compression of indexes saves disk and/or memory 

space 
–  Typically have to decompress lists to use them 
–  Best compression techniques have good 

compression ratios and are easy to decompress 
!  Lossless compression – no information lost 

Compression 

!  Basic idea: Common data elements use 
short codes while uncommon data 
elements use longer codes 
– Example: coding numbers 

» number sequence: 

» possible encoding: 

» encode 0 using a single 0: 

» only 10 bits, but... 



Compression Example 

!  Ambiguous encoding – not clear how to 
decode 

» another decoding: 

» which represents: 

» use unambiguous code: 

» which gives: 

Delta Encoding 

!  Word count data is good candidate for 
compression 
– many small numbers and few larger numbers 
–  encode small numbers with small codes 

!  Frequency of document numbers in 
inverted lists is less predictable 
–  but differences between numbers in an ordered 

list (e.g. an inverted list) are smaller and more 
predictable 

!  Delta encoding: 
–  encodes differences between document numbers 

(d-gaps) 

Delta Encoding 

•  Inverted list (doc #s without counts) 

•  Differences between adjacent numbers 

•  Differences for a high-frequency word  are easier 
to compress (many small d-gaps), e.g., 

•  Differences for a low-frequency word are large, 
e.g., 

 

Bit-Aligned Codes 

!  Breaks (i.e. spaces) between encoded 
numbers can occur after any bit position 

!  Unary code (base-1 encoding) 

– Encode k by k 1s followed by 0 
– 0 at end makes code unambiguous 



Unary and Binary Codes 

!  Unary is very efficient for small numbers 
such as 0 and 1, but quickly becomes very 
expensive 
– 1023 can be represented in 10 binary bits, but 

requires 1024 bits in unary 
!  Binary is more efficient for large numbers, 

but is ambiguous 

Elias-! Code 

!  To encode a number k, compute 

»  kd is # of binary digits needed to encode offset  
! Represent in unary code 

»  kr  
! Represent in binary  

length of offset 

offset 

k  = 13 
kd   = 3 
kr   =  5 
 

 
kd (unary)          1110 
kr (binary)           101 
 

1110 101 

Elias-! Code 

!  To encode a number k, compute 
length of offset 

offset 

Elias-! Code: alternate explanation 

!  To encode a number k,  
–  Encode k in binary 
–   Compute a length – offset pair 
–  Offset:  (for k>0) drop initial 1 from binary form of k 
–  Length: # of bits needed to represent offset 

k  = 13 
 

k (binary)          1101 
kr (binary)           101         
kd= 3 (unary)     1110 
 

1110 101 



Decoding 

!  Read the unary code up to the 0 
– Tells us how long the offset is 

!  Read the offset 
!  Append a 1 to the front 
!  Convert to base-10 

Elias-" Code 
!  Elias-! code uses no more bits than unary, 

many fewer for k > 2 
–  1023 takes 19 bits instead of 1024 bits using unary 

!  In general, takes 2�log2k�+1 bits 
!  To improve coding of large numbers, use 

Elias-" code 
–  Instead of encoding kd in unary, we encode kd + 1 

using Elias-! 
– Takes approximately 2 log2 log2 k + log2 k bits 

Elias-" Code 

!  Split kd into: 

– encode kdd in unary, kdr in binary, and kr in 
binary 

(kd + 1) – 2floor (log_2 (k_d + 1)) 


