Information Retrieval

INFO 4300 / CS 4300

- Indexing
 - Inverted indexes
- Compression
 - Index construction
 - Ranking model

But first...

Simple in-memory indexer

```
\mathbf{procedure} BuildIndex(D)
                                                       \triangleright D is a set of text documents
   I \leftarrow \mathsf{HashTable}()
                                                                 ▷ Inverted list storage
                                                               ▷ Document numbering
    for all documents d \in D do
       n \leftarrow n + 1
       T \leftarrow \operatorname{Parse}(d)
                                                        ▶ Parse document into tokens
        Remove duplicates from T
        for all tokens t \in T do
            if I_t \notin I then
                I_t \leftarrow \text{Array}()
            end if
            I_t.append(n)
       end for
    end for
    return I
end procedure
```

Compression

- Inverted lists are very large
 - e.g., 25-50% of collection for TREC collections using Indri search engine
 - Much higher if n-grams are indexed
- Compression of indexes saves disk and/or memory space
 - Typically have to decompress lists to use them
 - Best compression techniques have good compression ratios and are easy to decompress
- Lossless compression no information lost

Compression

- Basic idea: Common data elements use short codes while uncommon data elements use longer codes
 - Example: coding numbers

```
» number sequence:
```

0, 1, 0, 3, 0, 2, 0

» possible encoding:

00 01 00 10 00 11 00

» encode 0 using a single 0:

0 01 0 10 0 11 0

» only 10 bits, but...

Compression Example

- Ambiguous encoding not clear how to decode
 - » another decoding:

» which represents:

» use unambiguous code:

Number	Code
0	0
1	101
2	110
3	111

» which gives:

Delta Encoding

Inverted list (doc #s without counts)

Differences between adjacent numbers

 Differences for a high-frequency word are easier to compress (many small d-gaps), e.g.,

$$1, 1, 2, 1, 5, 1, 4, 1, 1, 3, \dots$$

• Differences for a low-frequency word are large, e.g., 109, 3766, 453, 1867, 992, ...

Delta Encoding

- Word count data is good candidate for compression
 - many small numbers and few larger numbers
 - encode small numbers with small codes
- Frequency of document numbers in inverted lists is less predictable
 - but differences between numbers in an ordered list (e.g. an inverted list) are smaller and more predictable
- Delta encoding:
 - encodes differences between document numbers (*d-gaps*)

Bit-Aligned Codes

- Breaks (i.e. spaces) between encoded numbers can occur after any bit position
- Unary code (base-1 encoding)
 - Encode k by k 1s followed by 0
 - 0 at end makes code unambiguous

Number	Code
0	0
1	10
2	110
3	1110
4	11110
5	111110

Unary and Binary Codes

- Unary is very efficient for small numbers such as 0 and 1, but quickly becomes very expensive
 - 1023 can be represented in 10 binary bits, but requires 1024 bits in unary
- Binary is more efficient for large numbers, but is ambiguous

Elias-γ Code

- To encode a number k, compute
 - $k_d = \lfloor \log_2 k \rfloor$

length of offset

•
$$k_r = k - 2^{\lfloor \log_2 k \rfloor}$$
 offset

- » k_d is # of binary digits needed to encode offset
 - ◆ Represent in unary code
- » k
 - Represent in binary

$$k = 13$$

 $k_d = 3$ k_d (unary) 1110
 $k_r = 5$ k_r (binary) 101

Elias-y Code

- To encode a number k, compute
 - $k_d = \lfloor \log_2 k \rfloor$ length of offset
 - $k_r = k 2^{\lfloor \log_2 k \rfloor}$ offset

Number (k)	k_d	k_r	Code
1	0	0	0
2	1	0	10 0
3	1	1	10 1
6	2	2	110 10
15	3	7	1110 111
16	4	0	11110 0000
255	7	127	11111110 1111111
1023	9	511	11111111110 1111111111

Elias-y Code: alternate explanation

- To encode a number k.
 - Encode k in binary
 - Compute a length offset pair
 - Offset: (for k>0) drop initial 1 from binary form of k
 - Length: # of bits needed to represent offset

1110 101

▶ Table 5.5 Some examples of unary and γ codes. Unary codes are only shown for the smaller numbers. Commas in γ codes are for readability only and are not part of the actual codes.

nie actual		length	offset	o, codo
number	unary code	iengtn	onset	γ code
0	0			
1	10	0		0
2	110	10	0	10,0
3	1110	10	1	10,1
4	11110	110	00	110,00
9	1111111110	1110	001	1110,001
13		1110	101	1110,101
24		11110	1000	11110,1000
511		111111110	11111111	111111110,11111111

Decoding

- Read the unary code up to the 0
 - Tells us how long the offset is
- Read the offset
- Append a 1 to the front
- Convert to base-10

Elias-δ Code

- Elias-γ code uses no more bits than unary, many fewer for k > 2
 - 1023 takes 19 bits instead of 1024 bits using unary
- In general, takes 2 ^Llog₂k^J +1 bits
- To improve coding of large numbers, use Elias-δ code
 - Instead of encoding k_d in unary, we encode k_d + 1 using Elias- γ
 - Takes approximately 2 log₂ log₂ k + log₂ k bits

Elias-δ Code

• Split k_d into:

•
$$k_{dd} = \lfloor \log_2(k_d + 1) \rfloor$$

•
$$k_{dr} = (k_d + 1) - 2^{\text{floor (log_2 (k_d + 1))}}$$

– encode k_{dd} in unary, k_{dr} in binary, and k_r in binary

Number	(k)	k_d	$ k_r $	k_{dd}	k_{dr}	Code
	1	0	0	0	0	0
	2	1	0	1	0	10 0 0
	3	1	1	1	0	10 0 1
	6	2	2	1	1	10 1 10
	15	3	7	2	0	110 00 111
	16	4	0	2	1	110 01 0000
	255	7	127	3	0	1110 000 1111111
	1023	9	511	3	2	1110 010 111111111