Information Retrieval
INFO 4300/ CS 4300

= Indexing
— Inverted indexes
mm) — Compression
— Index construction
— Ranking model

But first...

= Simple in-memory indexer

procedure BUILDINDEX(D) > D is a set of text documents

I — HashTable() > Inverted list storage
n—0 > Document numbering
for all documents d € D do

ne—n+1

T « Parse(d) > Parse document into tokens

Remove duplicates from T
for all tokens t € T do
if I; ¢ I then
I; — Array()
end if
I;.append(n)
end for
end for
return /
end procedure

Compression

= |nverted lists are very large

— e.g., 25-50% of collection for TREC collections using
Indri search engine

— Much higher if n-grams are indexed

= Compression of indexes saves disk and/or memory
space
— Typically have to decompress lists to use them

— Best compression techniques have good
compression ratios and are easy to decompress

= [ossless compression — no information lost

Compression

= Basic idea: Common data elements use
short codes while uncommon data
elements use longer codes
— Example: coding numbers

» number sequence:
0,1,0,3,0,2,0

» possible encoding:
00 01 00 10 00 11 00

» encode 0 using a single 0:
0010100110

» only 10 bits, but...

Compression Example

= Ambiguous encoding — not clear how to
decode
» another decoding:

0010100110
» which represents:
0,1,1,0,0,3,0
. Number | Code
» use unambiguous code: 0 0

1 101
110

2
» which gives: 3 111

0101011101100

Delta Encoding

= Word count data is good candidate for
compression
— many small numbers and few larger numbers
— encode small numbers with small codes

= Frequency of document numbers in
inverted lists is less predictable

— but differences between numbers in an ordered
list (e.g. an inverted list) are smaller and more
predictable

= Delta encoding:

— encodes differences between document numbers
(d-gaps)

Delta Encoding

* Inverted list (doc #s without counts)
1,5,9,18,23,24, 30, 44, 45, 48

+ Differences between adjacent numbers
1,4,4,9,5,1,6,14,1,3

« Differences for a high-frequency word are easier

to compress (many small d-gaps), €.9.,

1,1,2,1,5,1,4,1,1,3, ...

+ Differences for a low-frequency word are large,

e.q.,
9 109, 3766, 453, 1867, 992, ...

Bit-Aligned Codes

= Breaks (i.e. spaces) between encoded
numbers can occur after any bit position

» Unary code (base-1 encoding)
— Encode k by k 1s followed by 0
— 0 at end makes code unambiguous

Number | Code
0

10

110
1110
11110
111110

Tl W N~ O

Unary and Binary Codes

= Unary is very efficient for small numbers
such as 0 and 1, but quickly becomes very
expensive
— 1023 can be represented in 10 binary bits, but
requires 1024 bits in unary
= Binary is more efficient for large numbers,
but is ambiguous

Elias-y Code

* To encode a number k, compute

o kg = |log, k] length of offset

o k., =k —2Uos2k]l offset
» kg is # of binary digits needed to encode offset
@ Represent in unary code
» K

,
@ Represent in binary

]
—
a1 W

Ky (Unary) 1110
k. (binary) 101

~ X X
a

<

1110 101

Elias-y Code

* To encode a number k, compute
o kg = |log, k] length of offset

o k., =k —2Uos2k]l offset

Number (k) | kq k. | Code
1 0 00
2 1 0100
3 1 1101
6 2 2 | 110 10
15 3 711110 111
16 4 0 | 11110 0000
255 7127 | 11111110 1111111
1023 9| 511 | 1111111110 111111111

Elias-y Code: alternate explanation

= To encode a number k,
— Encode k in binary
— Compute a length — offset pair
— Offset: (for k>0) drop initial 1 from binary form of k
— Length: # of bits needed to represent offset

k =13 k (binary) 1101
k. (binary) 101
k=3 (unary) 1110

1110 101

Decoding
» Table 5.5 Some examples ufunary and 7 codes. Una:r?' codes are only shown for - Read the unary COde up to the O
tthhe smal'ler nu@bers. Commas in 7y codes are for readability only and are not part of — Tells us how |Ong the offset is
e actual codes.
gumber gnary code length offset -y code - Rea d the Offset
1 10 0 0
2 110 10 0 10,0 = Append a 1 to the front
3 1110 10 1 10,1
4 11110 110 00 110,00 = Convert to base-10
9 1111111110 1110 001 1110,001
13 1110 101 1110,101
24 11110 1000 11110,1000
511 111111110 11111111 111111110,11111111
Elias-0 Code Elias-0 Code
= Elias-y code uses no more bits than unary, = Split k, into:
many fewer for k >.2 | | o kaq = |logy(ka +1)]
— 1023 takes 19 bits instead of 1024 bits using unary o oy = (ky + 1) — 2fo0r(og 2 (k 4+ 1)
= In general, takes 2 “log,k- +1 bits
= To improve coding of large numbers, use — encode Ky, in unary, k. in binary, and ; in
Elias-6 code binary
. . Number (k) /Cd k,- kdd kdr Code
- Ins_tead o_f encoding k, in unary, we encode k, + 1 ot o o o0To
using Elias-y 2| 1] 0| 1| 0]1000
. H 3 1 1 1 01001
— Takes approximately 2 log, log, k + log, k bits sl ol 21 11 1li0110
15 3 7 2 0| 110 00 111
16 | 4 0 2 1 | 110 01 0000
255 71127 3 0| 1110 000 1111111
1023 9 | 511 3 2 | 1110 010 111111111

