
9
Integer encoding

Everything should be made as
simple as possible, but no
simpler
Albert Einstein

9.1 Elias codes: γ and δ . 9-3
9.2 Rice code . 9-4
9.3 PForDelta encoding. 9-5
9.4 Variable-byte codes and (s, c)-dense codes 9-5
9.5 Interpolative coding . 9-7
9.6 Concluding remarks . 9-9

In this chapter we will address a basic encoding problem which occurs in many contexts, and whose

efficient dealing is frequently underestimated for the impact it may have on the total space occu-

pancy and speed of the underlying application [2, 6].

Problem. Let S = s1, . . . , sn be a sequence of positive integers si, possibly repeated. The

goal is to represent the integers of S as binary sequences which are self-delimiting and use

few bits.

We note that the request about si of being positive integers can be relaxed by mapping a positive

integer x to 2x and a negative integer x to −2x+1, thus turning again the set S to a set of just positive

integers.

Let us comment two exemplar applications. Search engines store for each term t the list of

documents (i.e. Web pages, blog posts, tweets, etc. etc.) where t occurs. Answering a user query,

formulated as sequence of keywords t1t2 . . . tk, then consists of finding the documents where all

tis occur. This is implemented by intersecting the document lists for these k terms. Documents are

usually represented via integer IDs, which are assigned during the crawling of those documents from

the Web. Storing these integers with a fixed-length binary encoding (i.e. 4 or 8 bytes) may require

considerable space, and thus time for their retrieval, given that modern search engines index up to

20 billion documents. In order to reduce disk-space occupancy, as well as increase the amount of

cached lists in internal memory, two kinds of compression tricks are adopted: the first one consists

of sorting the document IDs in each list, and then encode each of them with the difference between

it and its preceding ID in the list, the so called d-gap1; the second trick consists of encoding each

d-gap with a variable-length sequence of bits which is short for small integers.

Another example of occurrence for the above problem relates to data compression. We have seen

in Chapter 8 that the LZ77-compressor turns input files into sequence of triples in which the first

two components are integers. Other known compressors (such as MTF, MPEG, RLE, BWT, etc.)

produce as intermediate output one or more sets of integers, with smaller values most probable and

1Of course, the first document ID of a list is stored explicitly.

c© Paolo Ferragina, 2009-2014 9-1

9-2 Paolo Ferragina

larger values increasingly less probable. The final coding stage of those compressors must therefore

convert these integers into a bit stream, such that the total number of bits is minimized.

The main question we address in this chapter is how we design a variable-length binary repre-

sentation for (unbounded) integers which takes as few bit as possible and is prefix-free, namely the

encoding of sis can be concatenated to produce an output bit stream, which preserves decodability,

in the sense that each individual integer encoding can be identified and decoded.

The first and simplest idea to solve this problem is surely that one to take m = max j s j and then

encode each integer si ∈ S by using 1+ blog2 mc bits. This fixed-size encoding is efficient whenever

the set S is not much spread and concentrated around the value zero. But this is a very unusual

situation, in general, m � si so that many bits are wasted in the output bit stream. So why not

storing each si by using its binary encoding with 1 + blog2 sic bits. The subtle problem with this

approach would be that this code is not self-delimiting, and in fact we cannot concatenate the binary

encoding of all si and still be able to distinguish each codeword. As an example, take S = {1, 2, 3}
and the output bit sequence 11011 which would be produced by using their binary encoding. It is

evident that we could derive many compatible sequence of integers from 11011, such as S , but also

{6, 1, 1}, as well as {1, 2, 1, 1}, and several others.

It is therefore clear that this simple encoding problem is challenging and deserves the attention

that we dedicate in this chapter. We start by introducing one of the simplest integer codes known,

the so called unary code. The unary code U(x) for an integer x ≥ 1 is given by a sequence of x − 1

bits set to 0, ended by a (delimiting) bit set to 1. The correctness of the condition that x , 0 is easily

established. U(x) requires x bits, which is exponentially longer than the length Θ(log x) of its binary

code, nonetheless this code is efficient for very small integers and soon becomes space inefficient as

x increases.

This statement can be made more precise by recalling a basic fact coming from the Shannon’s

coding theory, which states that the ideal code length L(c) for a symbol c is equal to log2
1

Pr[c]
bits,

where P[c] is the probability of occurrence of symbol c. This probability can be known in advance,

if we have information about the source emitting c, or it can be estimated empirically by examining

the occurrences of integers si in S . The reader should be careful in recalling that, in the scenario

considered in this chapter, symbols are positive integers so the ideal code for the integer x consists

of log2
1

Pr[x]
bits. So, by solving the equation |U(x)| = log2

1
Pr[x]

with respect to P[x], we derive the

distribution of the sis for which the unary code is optimal. In this specific case it is P[x] = 2−x.

As far as efficiency is concerned, the unary code needs a lot of bit shifts which are slow to be

implemented in modern PCs; again another reason to favor small integers.

FACT 9.1 The unary code of a positive integer x takes x bits, and thus it is optimal for the

distribution P[x] = 2−x.

Using this same argument we can also deduct that the fixed-length binary encoding, which uses

1 + blog2 mc bits, is optimal whenever integers in S are distributed uniformly within the range

{1, 2, . . . ,m}.

FACT 9.2 Given a set S of integers, of maximum value m, the fixed-length binary code repre-

sents each of them in 1+blog2 mc bits, and thus it is optimal for the uniform distribution P[x] = 1/m.

In general integers are not uniformly distributed, and in fact variable-length binary representations

must be considered which eventually improve the simple unary code. There are many proposals in

the literature, each offering a different trade-off between space occupancy of the binary-code and

time efficiency for its decoding. The following subsections will detail the most useful and the most

Integer encoding 9-3

used among these codes, starting from the most simplest ones which use fixed encoding models for

the integers (such as, e.g., γ and δ codes) and, then, moving to the more involved Huffman and Inter-

polative codes which use dynamic models that adapt themselves to the distribution of the integers in

S . It is very well known that Huffman coding is optimal, but few times this optimality is dissected

and made clear. In fact, this is crucial to explain some apparent contradictory statements about these

more involved codes: such as the fact that in some cases Interpolative coding is better than Huff-

man coding. The reason is that Huffman coding is optimal among the family of static prefix-free

codes, namely the ones that use a fixed model for encoding each single integer of S (specifically, the

Huffman code of an integer x is defined according to P[x]). Vice versa, Interpolative coding uses

a dynamic model that encodes x according to the distribution of other integers in S , thus possibly

adopting different codes for the occurrences of x. Depending on the distribution of the integers in

S , this adaptivity might be useful and thus originate a shorter output bit stream.

9.1 Elias codes: γ and δ

These are two very simple universal codes for integers which use a fixed model, they have been

introduced in the ’60s by Elias [3]. The adjective ”universal” here relates to the property that the

length of the code is O(log x) for any integer x. So it is just a constant factor more than the optimal

binary code B(x) having length 1+ blog xc, with the additional wishful property of being prefix-free.

γ-code represents the integer x as a binary sequence composed of two parts: a sequence of |B(x)|−
1 zero, followed by the binary representation B(x). The initial sequence of zeros is delimited by the

1 which starts the binary representation B(x). So γ(x) can be decoded easily: count the consecutive

number of zeros up to the first 1, say they are c; then, fetch the following c+ 1 bits (included the 1),

and interpret the sequence as the integer x.

FIGURE 9.1: Representation for γ(9).

The γ-code requires 2|B(x)|−1 bits, which is 2(1+blog2 xc)−1 = 2blog2 xc+1. In fact, the γ-code

of the integer 9 needs 2blog2 9c + 1 = 7 bits. From Shannon’s condition on ideal codes, we derive

that the γ-code is optimal whenever the distribution of the values follows the formula Pr[x] ≈ 1
2x2 .

FACT 9.3 The γ-code of a positive integer x takes 2blog2 xc + 1 bits, and thus it is optimal for

the distribution P[x] ≈ 1
2x2 , and it is a factor of 2 from the length of the optimal binary code.

The inefficiency in the γ-code resides in the unary coding of the length |B(x)| which is really

costly as x becomes larger and larger. In order to mitigate this problem, Elias introduced the δ-code,

which applies the γ-code in place of the unary code. So δ(x) consists of two parts: the first encodes

γ(|B(x)|), the second encodes B(x). Notice that, since we are using the γ-code for B(x)’s length,

the first and the second parts do not share any bits; moreover we observe that γ is applied to |B(x)|
which guarantees to be a number greater than zero. The decoding of δ(x) is easy, first we decode

γ(|B(x)|) and then fetch B(x), so getting the value x in binary.

As far as the length in bits of δ(x) is concerned, we observe that it is (1+ 2blog2 |B(x)|c)+ |B(x)| ≈
1 + log x + 2 log log x. This encoding is therefore a factor 1 + o(1) from the optimal binary code,

9-4 Paolo Ferragina

FIGURE 9.2: Representation for δ(14).

hence it is universal.

FACT 9.4 The δ-code of a positive integer x takes about 1 + log2 x + 2 log2 log2 x bits, and thus

it is optimal for the distribution P[x] ≈ 1
2x(log x)2 , and it is a factor of 1 + o(1) from the length of the

optimal binary code.

In conclusion, γ- and δ-codes are universal and pretty efficient whenever the set S is concentrated

around zero; however, it must be noted that these two codes need a lot of bit shifts to be decoded

and this may be slow if numbers are larger and thus encoded in many bits. The following codes

trade space efficiency for decoding speed and, in fact, they are preferred in practical applications.

9.2 Rice code

There are situations in which integers are concentrated around some value, different from zero;

here, Rice coding becomes advantageous both in compression ratio and decoding speed. Its special

feature is to be a parametric code, namely one which depends from a positive integer k, which

may be fixed according to the distribution of the integers in the set S . The Rice code Rk(x) of an

integer x, given the parameter k, consists of two parts: the quotient q = b (x−1)

2k c and the remainder

r = x − 2kq − 1. The quotient is stored in unary using q + 1 bits, the remainder r is stored in binary

using k bits. So the quotient is encoded in variable length, whereas the remainder is encoded in

fixed length. The closer 2k is to the value of x, the shorter is the representation of q, and thus the

faster is its decoding. For this reason, k is chosen in such a way that 2k is concentrated around the

mean of S ’s elements.

FIGURE 9.3: Representation for R4(83)

The bit length of Rk(x) is q + k + 1. This code is a particular case of the Golomb Code [6], it is

optimal when the values to be encoded follow a geometric distribution with parameter p, namely

Pr[x] = (1 − p)x−1 p. In this case, if 2k ' ln(2)

p
' 0.69mean(S), the Rice and all Golomb codes

generate an optimal prefix-code [6].

FACT 9.5 The Rice code of a positive integer x takes b (x−1)

2k c + 1 + k bits, and it is optimal for

the geometric distribution Pr[x] = (1 − p)x−1 p.

Integer encoding 9-5

9.3 PForDelta encoding

This method for compressing integers supports extremely fast decompression and achieves a small

size in the compressed output whenever S ’s values follow a gaussian distribution. In detail, let us

assume that most of S ’s values fall in an interval [base, base + 2b − 1], we translate the values in

the new interval [0, 2b − 1] in order to encode them in b bits; the other values outside this range

are called exceptions and they are represented in the compressed list with an escape symbol and

also encoded explicitly in a separate list using a fixed-size representation of w bits (namely, a whole

memory word). The good property of this code is that all values in S are encoded in fixed length,

either b bits or w + b bits, so that they can be decoded very fast and possibly in parallel by packing

few of them in a memory word.

FIGURE 9.4: An example for PForDelta, with b = 3 and base = 0. The values in the range (blue

box) are encoded using 3 bits, while the out-of-range values (green box) are encoded separately and

an escape symbol� is used as a place-holder.

FACT 9.6 The PForDelta code of a positive integer x takes either b bits or b+w bits, depending

on the fact that x ∈ [base, base + 2b − 1] or not, respectively. This code is proper for a gaussian

distribution of the integers to be encoded.

The design of a PForDelta code needs to deal with two problems:

• How to choose b: in the original work, b was chosen such that about the 90% of the

values in S are smaller than 2b. An alternative solution is to trade between space wasting

(choosing a greater b) or space saving (more exceptions, smaller b). In [5] it has been

proposed a method based on dynamic programming, that computes the optimal b for

a desired compression ratio. In particular, it returns the largest b that minimizes the

number of exceptions and, thus, ensures a faster decompression.

• How to encode the escape character: a possible solution is to assign a special bit se-

quence for it, thus leaving 2b − 1 configurations for the values in the range.

In conclusion PForDelta encodes blocks of k consecutive integers so that they can be stored in

a multi-word (i.e. multiple of 32 bits). Those integers that do not fit within b bits are treated as

exceptions and stored in another array that is merged to the original sequence of codewords during

the decoding phase (thus paying w+b bits). PForDelta is surprisingly succinct in storing the integers

which occur in search-engine indexes; but the actual positive feature which makes it very appealing

for developers is that it is incredibly fast in decoding because of the word-alignment and the fact that

there exist implementations which do not use if-statements, and thus avoid branch mispredictions.

9.4 Variable-byte codes and (s, c)-dense codes

9-6 Paolo Ferragina

Another class of codes which trade speed by succinctness is the one of the so called (s, c)-dense

codes. Their simplest instantiation, originally used in the Altavista search engine, is the variable-

byte code which uses a sequence of bytes to represent an integer x. This byte-aligned coding is

useful to achieve a significant decoding speed. It is constructed as follows: the binary representation

B(x) is partitioned into groups of 7-bits, possibly the first group is padded by appending 0s to its

front; a flag-bit is appended to each group to indicate whether that group is the last one (bit set to 0)

or not (bit set to 1) of the representation. The decoding is simple, we scan the byte sequence until

we find a byte whose value is smaller than 128.

FIGURE 9.5: Variable-byte representation for the integer 216

The minimum amount of bits necessary to encode x is 8, and on average 4 bits are wasted because

of the padding. Hence this method is proper for large values x.

FACT 9.7 The Variable-byte code of a positive integer x takes d |B(x)|
7
e bytes. This code is optimal

for the distribution P[x] ≈ 7
√

1/x.

The use of the status bit induces a subtle issue, in that it partitions the configurations of each

byte into two sets: the values smaller than 128 (status bit equal to 0, called stoppers) and the values

larger or equal than 128 (status bit equal to 1, called continuers). For the sake of presentation we

denote the cardinalities of the two sets by s and c, respectively. Of course, we have that s + c = 256

because they represent all possibly byte-configurations. During the decoding phase, whenever we

encounter a continuer byte, we go on reading, otherwise we stop.

The drawback of this approach is that for any x < 128 we use always 1 byte. Therefore if the set

S consists of very-small integers, we are wasting bits. Vice versa, if S consists of integers larger

than 128, then it could be better to enlarge the set of stoppers. Indeed nobody prevents us to change

the distribution of stoppers and continuers, provided that s + c = 256. Let us analyze how changes

the number of integers which can be encoded with one of more bytes, depending on the choice of s

and c:

• One byte can encode the first s integers;

• Two bytes can encode the subsequent sc integers.

• Three bytes can encode the subsequent sc2 integers.

• k bytes can encode sck−1 integers.

It is evident, at this point, that the choice of s and c depends on the distribution of the integers

to be encoded. For example, assume that we want to encode the values 1, . . . , 15 and they have

decreasing frequency; moreover, assume that the word-length is 3 bits (instead of 8 bits), so that

s + c = 23
= 8 (instead of 256).

Table 9.1 shows how the integers smaller than 15 are encoded by using two different choices for s

and c: in the first case, the number of stoppers and continuers is 4; in the second case, the number of

Integer encoding 9-7

Values s = c = 4 s = 6, c = 2

1 001 001

2 010 010

3 011 011

4 100 000 100

5 100 001 101

6 100 010 110 000

7 100 011 110 001

8 101 000 110 010

9 101 001 110 011

10 101 010 110 100

11 101 011 110 101

12 110 000 111 000

13 110 001 111 001

14 110 010 111 010

15 110 011 111 011
TABLE 9.1 Example of (s, c)-encoding using two different values for s and c.

stoppers is 6 and the number of continuers is 2. Notice that in both cases we correctly have s+c = 8.

We point out that in both cases, two words of 3 bits (i.e. 6 bits) are enough to encode all the 15

integers; but, while in the former case we can encode only the first four values with one word, in

the latter the values encoded using one word are six. This can lead to a more compressed sequence

according to the skewness of the distribution of {1, . . . , 15}.
This shows, surprisingly, that can be advantageous to adapt the number of stoppers and continuers

to the probability distribution of S ’s values. Figure 9.6 further details this observation, by showing

the compression ratio as a function of s, for two different distributions ZIFF and AP, the former is

the classic Zipfian distribution (i.e. P[x] ≈ 1/x), the latter is the distribution derived from the words

of the Associated-Press collection (i.e. P[x] is the frequency of occurrence of the x-th most frequent

word). When s is very small, the number of high frequency values encoded with one byte is also

very small, but in this case c is large and therefore many words with low frequency will be encoded

with few bytes. As s grows, we gain compression in more frequent values and loose compression

in less frequent values. At some later point, the compression lost in the last values is larger than the

compression gained in values at the beginning, and therefore the global compression ratio worsens.

That point give us the optimal s value. In [1] it is shown that the minimum is unique and the authors

propose an efficient algorithm to calculate that optimal s.

9.5 Interpolative coding

This is an integer-encoding technique that is ideal whenever the sequence S shows clustered occur-

rences of integers, namely subsequences which are concentrated in small ranges. This is a typical

situation which arises in the storage of posting lists of search engines [5]. Interpolative code is

designed in a recursive way by assuming that the integer sequence to be compressed consists of

increasing values: namely S ′ = s′
1
, . . . , s′n with s′

i
< s′

i+1
. We can turn the original problem to this

one, by just setting s′
i
=
∑i

j=1 s j.

At each iteration we know, for the current subsequence S ′
l,r

to be encoded, the following 5 pa-

rameters:

• the left index l and the right index r delimiting the subsequence S ′
l,r
= {s′

l
, s′

l+1
, . . . , s′r};

9-8 Paolo Ferragina

FIGURE 9.6: An example of how compression rate varies according to the choice of s, given that

c = 256 − s.

• the number n of elements in subsequence S ′
l,r

;

• a lower-bound low to the lowest value in S ′
l,r

, and an upper-bound hi to the highest value

in S ′
l,r

, hence low ≤ s′
l

and hi ≥ s′r.

Initially we have n = |S |, l = 1, r = n, low = s′
1

and hi = s′n. At each step we first encode the mid-

dle element s′m, where m = b l+r
2
c, given the information available for the quintuple 〈n, l, r, low, hi〉,

and then recursively encode the two subsequences s′
l
, . . . , s′

m−1
and s′

m+1
, . . . , s′r, by using a properly

recomputed parameters 〈n, l, r, low, hi〉 for each of them.

In order to succinctly encode s′m we deploy as much information as possible we can derive from

〈n, l, r, low, hi〉. Specifically, we observe that it is s′m ≥ low + m − l (in the first half of S ′
l,r

we

have m − l distinct values and the smallest one is larger than low) and s′m ≤ hi − (r − m) (via a

similar argument). Thus s′m lies in the range [low + m − l, hi − r + m] so we can encode the value

s′m − (low +m − l) by using dlog2 le bits, where l = hi − low − r + l is the size of that interval. In this

way, interpolative coding can use very few bits per value whenever the sequence S ′
l,r

is dense.

With the exception of the values of the first iteration, which must be known to both the encoder

and the decoder, all values for the subsequent iterations can be easily derived from the previous

ones. In particular,

• for the subsequence s′
l
, . . . , s′

m−1
, the parameter low is the same of the previous step,

since s′
l

has not changed; and we can set hi = s′m − 1, since s′
m−1
< s′m given that we

assumed the integers to be distinct and increasing;

• for the subsequence s′
m+1
, . . . , s′r, the parameter hi is the same as before, since s′r has not

changed; and we can set low = s′m + 1, since s′
m+1
> s′m;

• the parameters l, r and n are recomputed accordingly.

The following figure shows a running example of the behavior of the algorithm:

We conclude the description of Interpolative coding by noticing that the encoding of an integer s′
i

is not fixed but depends on the distribution of the other integers in S ′. This reflects onto the original

sequence S in such a way that the same integer x may be encoded differently in its occurrences.

This code is therefore adaptive and, additionally, it is not prefix-free; these two specialties may turn

it better than Huffman code, which is optimal among the class of static prefix-free codes.

Integer encoding 9-9

FIGURE 9.7: The blue and the red boxes are, respectively, the left and the right subsequence of each

iteration. In the green boxes is indicated the integer s′m to be encoded. The procedure performs, in

practice, a preorder traversal of a balanced binary tree whose leaves are the integers in S . When it

encounters a subsequence of the form [low, low+1, . . . , low+n−1], it doesn’t emit anything. Thus,

the items are encoded in the following order (in brackets the actual number encoded): 9 (3), 3 (3), 5

(1), 7 (1), 18 (6), 11 (1), 15 (4).

9.6 Concluding remarks

We wish to convince the reader about the generality of the Integer Compression problem, because

more and more frequently other compression problems, such as the classic Text Compression, boil

down to compressing sequences of integers. An example was given by the LZ77-compressor in

Chapter 8. Another example can be obtained by looking at any text T as a sequence of tokens,

being them words or single characters; each token can be represented with an integer (aka token-

ID), so that the problem of compressing T can be solved by compressing the sequence of token-IDs.

In order to better deploy one of the previous integer-encoding schemes, one can adopt an interesting

strategy which consists of sorting the tokens by decreasing frequency of occurrence in T , and then

assign as token-ID their rank in the ordered sequence. This way, the more frequent is the occurrence

of the token in T , the smaller is the token-ID, and thus the shorter will be the codeword assigned to it

by anyone of the previous integer-encoding schemes. Therefore this simple strategy implements the

golden rule of data compression which consists of assigning short codewords to frequent tokens. If

the distribution of the tokens follows one of the distributions indicated in the previous sections, those

codewords have optimal length; otherwise, the codewords may be sub-optimal. In [4] it is shown

that, if the i-th word follows a Zipfian distribution, such as P[i] = c(1/i)α where c is a normalization

constant and α is a parameter depending on the input text, then the previous algorithm using δ-

coding achieves a performance close to the entropy of the input text.

References

9-10 Paolo Ferragina

[1] Nieves R. Brisaboa, Antonio Farina, Gonzalo Navarro, José R. Paramá. Lightweight

natural language text compression. Information Retrieval, 10:1-33, 2007.

[2] Alistair Moffat. Compressing Integer Sequences and Sets. In Encyclopedia of Algorithms.

Springer, 2009.

[3] Peter Fenwick. Universal Codes. In Lossless Data Compression Handbook. Academic

Press, 2003.

[4] Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze. Introduction to

Information Retrieval. Cambridge University Press, 2008.

[5] Hao Yan, Shuai Ding, Torsten Suel. Inverted Index Compression and Query Processing

with Optimized Document Ordering. In Procs of WWW, pp. 401-410, 2009.

[6] Ian H. Witten, Alistair Moffat, Timoty C. Bell. Managing Gigabytes. Morgan Kauffman,

second edition, 1999.

