

Document Number: 341810-001

Mitigations for Jump Conditional Code

Erratum
White Paper

Revision 1.0

November 2019

Mitigations for Jump Conditional Code Erratum

White Paper November 2019

2 Document Number: 341810-001

Intel provides these materials as-is, with no express or implied warranties.

All products, dates, and figures specified are preliminary, based on current expectations, and are subject to change without notice.

Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the product

to deviate from published specifications. Current characterized errata are available on request.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service

activation. Performance varies depending on system configuration. No product or component can be absolutely secure. Check with

your system manufacturer or retailer or learn more at http://intel.com.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,

operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information

and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products. For more complete information visit www.intel.com/benchmarks.

Some results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling and provided to

you for informational purposes. Any differences in your system hardware, software or configuration may affect your actual
performance.

Intel and the Intel logo are trademarks of Intel Corporation in the United States and other countries.

*Other names and brands may be claimed as the property of others.

© Intel Corporation

http://intel.com/
http://www.intel.com/benchmarks

 Mitigations for Jump Conditional Code Erratum

November 2019 White Paper

Document Number: 341810-001 3

Contents

1.0 Introduction .. 5

1.1 Description of Jump Conditional Code (JCC) Erratum ... 5

1.2 Impact ... 5

2.0 Mitigation Strategy ... 6

2.1 Microcode Update (MCU) to Mitigate JCC Erratum .. 6

2.2 Potential Performance Effects of the MCU ... 6

2.3 Detecting Performance Effects of the MCU ... 7

2.4 Software Guidance and Optimization Methods ... 8

2.4.1 Code Without JCC Mitigation .. 8
2.4.2 Code With JCC Mitigation .. 9

3.0 Software Tools to Improve Performance ..11

3.1 Options for GNU Assembler .. 11

3.1.1 -mbranches-within-32B-boundaries ... 11
3.1.2 -malign-branch-boundary=NUM ... 11
3.1.3 -malign-branch=TYPE[+TYPE...] .. 11
3.1.4 -malign-branch-prefix-size=NUM ... 12

4.0 Affected Processors..13

Mitigations for Jump Conditional Code Erratum

White Paper November 2019

4 Document Number: 341810-001

Revision History

Date Revision Description

Nov 11, 2019 1.0 Initial release.

§

Introduction

 Mitigations for Jump Conditional Code Erratum

November 2019 White Paper

Document Number: 341810-001 5

1.0 Introduction

Starting with second generation Intel® Core™ Processors and Intel® Xeon E3-1200

Series Processors (formerly codenamed Sandy Bridge) and later processor families,

the Intel® microarchitecture introduces a microarchitectural structure called the

Decoded ICache (also called the Decoded Streaming Buffer or DSB). The Decoded

ICache caches decoded instructions, called micro-ops (μops), coming out of the

legacy decode pipeline. The next time the processor accesses the same code, the

Decoded ICache provides the μops directly, speeding up program execution.

1.1 Description of Jump Conditional Code (JCC) Erratum

In some Intel processors there is an erratum (SKX102 in

https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-

scalable-spec-update.html), which may occur under complex microarchitectural

conditions involving jump instructions that span 64-byte boundaries (cross cache

lines).

1.2 Impact

The erratum may result in unpredictable behavior when certain multiple dynamic

microarchitectural conditions are met. Refer to the Affected Processors section for a

full list of processors affected by this erratum. Future processors may include a fix

for this erratum in the hardware.

https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-spec-update.html
https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-spec-update.html
https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-spec-update.html

Mitigation Strategy

Mitigations for Jump Conditional Code Erratum

White Paper November 2019

6 Document Number: 341810-001

2.0 Mitigation Strategy

2.1 Microcode Update (MCU) to Mitigate JCC Erratum

This erratum can be prevented by a microcode update (MCU). The MCU prevents

jump instructions from being cached in the Decoded ICache when the jump

instructions cross a 32-byte boundary or when they end on a 32-byte boundary. In

this context, Jump Instructions include all jump types: conditional jump (Jcc), macro-

fused op-Jcc (where op is one of cmp, test, add, sub, and, inc, or dec), direct

unconditional jump, indirect jump, direct/indirect call, and return.

Figure 1: Jumps and 32-byte boundary

You can find the MCU that fixes this erratum on GitHub*.

2.2 Potential Performance Effects of the MCU

The JCC erratum MCU workaround will cause a greater number of misses out of the

Decoded ICache and subsequent switches to the legacy decode pipeline. This occurs

since branches that overlay or end on a 32-byte boundary are unable to fill into the

Decoded ICache.

https://github.com/intel/Intel-Linux-Processor-Microcode-Data-Files/releases

Mitigation Strategy

 Mitigations for Jump Conditional Code Erratum

November 2019 White Paper

Document Number: 341810-001 7

Intel has observed performance effects associated with the workaround ranging from

0-4% on many industry-standard benchmarks.1 In subcomponents of these

benchmarks, Intel has observed outliers higher than the 0-4% range. Other workloads

not observed by Intel may behave differently. Intel has in turn developed software-

based tools to minimize the impact on potentially affected applications and workloads.

The potential performance impact of the JCC erratum mitigation arises from two

different sources:

1. A switch penalty that occurs when executing in the Decoded ICache and

switching over to the legacy decode pipeline.

2. Inefficiencies that occur when executing from the legacy decode pipeline that

are potentially hidden by the Decoded ICache.

2.3 Detecting Performance Effects of the MCU

Collect the following events to detect the performance effects of the MCU:

1. CPU_CLK_UNHALTED.THREAD = Core clock cycles in C0.

2. IDQ.DSB_UOPS = μops coming from the Decoded ICache.

3. DSB2MITE_SWITCHES.PENALTY_CYCLES = Penalty cycles introduced into the

pipeline from switching from the Decoded ICache.

4. FRONTEND_RETIRED.DSB_MISS_PS = Precise frontend retired DSB miss will

tag where modules, functions, and branches cause the DSB to miss.

5. IDQ.MS_UOPS = μops coming from the microcode sequencer.

6. IDQ.MITE_UOPS = μops coming from the legacy decode pipeline (also called

the Micro Instruction Translation Engine)

7. LSD.UOPS = μops coming from the Loop Stream Detector (LSD)

Note: The LSD is only available on some cores. The LSD.UOPS event can be

excluded from calculations if not present as an event.

The ratios of interest are the following:

1 Data measured on Intel internal reference platform for research/educational purposes. Server benchmarks include

SPECrate2017_int_base compiler with Intel Compiler Version 19 update 4, SPECrate2017_fp_base compiler with Intel Compiler

Version 19 update 4, Linpack, Stream Triad, FIO (rand7030_4K_04_workers_Q32/seq7030_64K_04_workers_Q32), HammerDB-

Postgres, SPECjbb2015, SPECvirt. Client benchmarks include: SPECrate2017_int_base compiler with Intel Compiler Version 19 update

4, SPECrate2017_fp_base compiler with Intel Compiler Version 19 update 4, SYSmark 2018, PCmark 10, 3Dmark Sky Diver, WebXPRT

v3, Cinebench R20.

Mitigation Strategy

Mitigations for Jump Conditional Code Erratum

White Paper November 2019

8 Document Number: 341810-001

1. Determining the penalty of the switch from the Decoded ICache to the legacy

decode pipeline as a percentage of core clocks:

o IFU_SWITCH_PENALTY% =

100*DSB2MITE_SWITCHES.PENALTY_CYCLES/CPU_CLK_UNHALTED

.THREAD

2. Determining the percentage of μops coming from the Decoded ICache:

Note: Applications with >40% of μops coming from the Decoded ICache will be

more susceptible to performance degradation. The JCC erratum mitigation can

cause the percentage of μops coming from the Decoded ICache to decrease.

o DECODED_ICACHE_UOPS% =

100*(IDQ.DSB_UOPS/(IDQ.MS_UOPS+IDQ.MITE_UOPS+IDQ.DSB_

UOPS+LSD.UOPS))

The FRONTEND_RETIRED.DSB_MISS_PS event tags Decoded ICache misses to the

module, function, and source lines including misses caused by the branches that

overlay or end on a 32-byte boundary. This precise event is guaranteed to tag in the

vicinity of decoded instruction cache misses and usually to the beginning of

execution entry to an aligned 64-byte chunk.

Figure 2: Identification of the branch which overlays the 32-byte 0x80 boundary with
a macro-fused test->conditional jump

2.4 Software Guidance and Optimization Methods

Software can compensate for the performance effects of the workaround for this

erratum with optimizations that align the code such that jump instructions (and macro-

fused jump instructions) do not cross 32-byte boundaries or end on a 32-byte

boundary. Such aligning can reduce or eliminate the performance penalty caused by

the transition of execution from Decoded ICache to the legacy decode pipeline.

In the following code example, the two-byte jump instruction jae starting at offset

1f spans a 32-byte boundary and can cause a transition from the Decoded ICache to

the legacy decode pipeline.

2.4.1 Code Without JCC Mitigation

0000000000000000 <fn1>:

 0: 55 push %rbp

Mitigation Strategy

 Mitigations for Jump Conditional Code Erratum

November 2019 White Paper

Document Number: 341810-001 9

 1: 41 54 push %r12

 3: 48 89 e5 mov %rsp,%rbp

 6: c5 f8 10 04 0f vmovups (%rdi,%rcx,1),%xmm0

 b: c5 f8 11 04 0a vmovups %xmm0,(%rdx,%rcx,1)

 10: c5 f8 10 44 0f 10 vmovups 0x10(%rdi,%rcx,1),%xmm0

 16: c5 f8 11 44 0a 10 vmovups %xmm0,0x10(%rdx,%rcx,1)

 1c: 48 39 fe cmp %rdi,%rsi

 1f: 73 09 jae 2a <fn1+0x2a>

 21: e8 00 00 00 00 callq 26 <fn1+0x26>

 26: 41 5c pop %r12

 28: c9 leaveq

 29: c3 retq

 2a: e8 00 00 00 00 callq 2f <fn1+0x2f>

 2f: 41 5c pop %r12

 31: c9 leaveq

 32: c3 retq

The advice to software developers is to align the jae instruction so that it does not

cross a 32-byte boundary. In the example, this is done by adding the benign prefix

0x2e four times before the first push %rbp instruction so that the cmp instruction,

which started at offset 1c, will instead start at offset 20. Hence the macro-fused cmp

+ jae instruction will not cross a 32-byte boundary.

2.4.2 Code With JCC Mitigation

0000000000000000 <fn1>:

 0: 2e 2e 2e 2e 55 cs cs cs cs push %rbp

 5: 41 54 push %r12

 7: 48 89 e5 mov %rsp,%rbp

 a: c5 f8 10 04 0f vmovups (%rdi,%rcx,1),%xmm0

 f: c5 f8 11 04 0a vmovups %xmm0,(%rdx,%rcx,1)

 14: c5 f8 10 44 0f 10 vmovups 0x10(%rdi,%rcx,1),%xmm0

Mitigation Strategy

Mitigations for Jump Conditional Code Erratum

White Paper November 2019

10 Document Number: 341810-001

 1a: c5 f8 11 44 0a 10 vmovups %xmm0,0x10(%rdx,%rcx,1)

 20: 48 39 fe cmp %rdi,%rsi

 23: 73 09 jae 2e <fn1+0x2e>

 25: e8 00 00 00 00 callq 2a <fn1+0x2a>

 2a: 41 5c pop %r12

 2c: c9 leaveq

 2d: c3 retq

 2e: e8 00 00 00 00 callq 33 <fn1+0x33>

 33: 41 5c pop %r12

 35: c9 leaveq

 36: c3 retq

Software Tools to Improve Performance

 Mitigations for Jump Conditional Code Erratum

November 2019 White Paper

Document Number: 341810-001 11

3.0 Software Tools to Improve Performance

Intel is working with the community on tools that will help developers align the

branches and has observed that recompilation with the updated tools can help recover

most of the performance loss that might be otherwise observed in selected

applications.

The release schedule of individual tools can vary, but Intel expects the updated tools to

be released in the next few months.

3.1 Options for GNU Assembler

3.1.1 -mbranches-within-32B-boundaries

This is the recommended option for affected processors.2 This option aligns

conditional jumps, fused conditional jumps, and unconditional jumps within a 32-byte

boundary with up to 5 segment prefixes on an instruction. It is equivalent to the

following:

• -malign-branch-boundary=32

• -malign-branch=jcc+fused+jmp

• -malign-branch-prefix-size=5

The default doesn't align branches.

3.1.2 -malign-branch-boundary=NUM

This option controls how the assembler should align branches with segment prefixes or

NOP. NUM must be a power of 2. It should be 0 or at least 32. Branches will be aligned

within the NUM byte boundary. The default -malign-branch-boundary=0 doesn't

align branches.

3.1.3 -malign-branch=TYPE[+TYPE...]

This option specifies types of branches to align. TYPE is combination of the following:

• jcc, which aligns conditional jumps

• fused, which aligns fused conditional jumps

• jmp, which aligns unconditional jumps

• call, which aligns calls

• ret, which aligns returns

2 Note that some processors which are not affected may take longer to decode instructions with more than 3 or 4 prefixes (for

example Silvermont and Goldmont processors as noted in the Intel® 64 and IA-32 Architectures Optimization Reference Manual).

Software Tools to Improve Performance

Mitigations for Jump Conditional Code Erratum

White Paper November 2019

12 Document Number: 341810-001

• indirect, which aligns indirect jumps and calls

The default is -malign-branch-boundary=jcc+fused+jmp.

3.1.4 -malign-branch-prefix-size=NUM

This option specifies the maximum number of prefixes on an instruction to align

branches. NUM should be between 0 and 5. The default NUM is 5.

Affected Processors

 Mitigations for Jump Conditional Code Erratum

November 2019 White Paper

Document Number: 341810-001 13

4.0 Affected Processors

To find the mapping between a processor's CPUID and its Family/Model number,

refer to the Intel® Software Developer's Manual, Vol 2A, table 3-8 and the INPUT EAX

= 01H: Returns Model, Family, Stepping Information section.

Family_Model Stepping Processor Families/Processor Number series

06_8EH 9 8th Generation Intel® Core™ Processor Family based on

microarchitecture code name Amber Lake Y

06_8EH C 8th Generation Intel® Core™ Processor Family based on

microarchitecture code name Amber Lake Y

06_55 7 2nd Generation Intel® Xeon® Scalable Processors based

on microarchitecture code name Cascade Lake (server)

06_9EH A 8th Generation Intel® Core™ Processor Family based on

microarchitecture code name Coffee Lake H

06_9EH A 8th Generation Intel® Core™ Processor Family based on

microarchitecture code name Coffee Lake S

06_8EH A 8th Generation Intel® Core™ Processor Family based on

microarchitecture code name Coffee Lake U43e

06_9EH B 8th Generation Intel® Core™ Processor Family based on

microarchitecture code name Coffee Lake S (4+2)

06_9EH B Intel® Celeron® Processor G Series based on

microarchitecture code name Coffee Lake S (4+2)

06_9EH A 8th Generation Intel® Core™ Processor Family based on

microarchitecture code name Coffee Lake S (6+2) x/KBP

06_9EH A Intel® Xeon® Processor E Family based on

microarchitecture code name Coffee Lake S (6+2)

06_9EH A Intel® Xeon® Processor E Family based on

microarchitecture code name Coffee Lake S (6+2)

06_9EH A Intel® Xeon® Processor E Family based on

microarchitecture code name Coffee Lake S (6+2)

06_9EH A Intel® Xeon® Processor E Family based on

microarchitecture code name Coffee Lake S (4+2)

https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-2a-manual.html

Affected Processors

Mitigations for Jump Conditional Code Erratum

White Paper November 2019

14 Document Number: 341810-001

Family_Model Stepping Processor Families/Processor Number series

06_9EH A Intel® Xeon® Processor E Family based on

microarchitecture code name Coffee Lake S (4+2)

06_9EH A Intel® Xeon® Processor E Family based on

microarchitecture code name Coffee Lake S (4+2)

06_9EH D 9th Generation Intel® Core™ Processor Family based on

microarchitecture code name Coffee Lake H (8+2)

06_9EH D 9th Generation Intel® Core™ Processor Family based on

microarchitecture code name Coffee Lake S (8+2)

06_8EH C 10th Generation Intel® Core™ Processor Family based on

microarchitecture code name Comet Lake U42

06_A6H 0 10th Generation Intel® Core™ Processor Family based on

microarchitecture code name Comet Lake U62

06_9EH 9 8th Generation Intel® Core™ Processor Family based on

microarchitecture code name Kaby Lake G

06_9EH 9 7th Generation Intel® Core™ Processor Family based on

microarchitecture code name Kaby Lake H

06_AEH A 8th Generation Intel® Core™ Processor Family based on

microarchitecture code name Kaby Lake Refresh U (4+2)

06_9EH 9 7th Generation Intel® Core™ Processor Family based on

microarchitecture code name Kaby Lake S

06_8EH 9 7th Generation Intel® Core™ Processor Family based on

microarchitecture code name Kaby Lake U

06_8EH 9 7th Generation Intel® Core™ Processor Family based on

microarchitecture code name Kaby Lake U23e

06_9EH 9 Intel® Core™ X-series Processors based on

microarchitecture code name Kaby Lake X

06_9EH 9 Intel® Xeon® Processor E3 v6 Family Kaby Lake Xeon E3

06_8EH 9 7th Generation Intel® Core™ Processor Family based on

microarchitecture code name Kaby Lake Y

06_55H 4 Intel® Xeon® Processor D Family based on

microarchitecture code name Skylake D, Bakerville

Affected Processors

 Mitigations for Jump Conditional Code Erratum

November 2019 White Paper

Document Number: 341810-001 15

Family_Model Stepping Processor Families/Processor Number series

06_5E 3 6th Generation Intel® Core™ Processor Family based on

microarchitecture code name Skylake H

06_5E 3 6th Generation Intel® Core™ Processor Family based on

microarchitecture code name Skylake S

06_55H 4 Intel® Xeon® Scalable Processors based on

microarchitecture code name Skylake Server

06_4E 3 6th Generation Intel® Core™ Processors based on

microarchitecture code name Skylake U

06_4E 3 6th Generation Intel® Core™ Processor Family based on

microarchitecture code name Skylake U23e

06_55H 4 Intel® Xeon® Processor W Family based on

microarchitecture code name Skylake W

06_55H 4 Intel® Core™ X-series Processors based on

microarchitecture code name Skylake X

06_55H 4 Intel® Xeon® Processor E3 v5 Family based on

microarchitecture code name Skylake Xeon E3

06_4E 3 6th Generation Intel® Core™ Processors based on

microarchitecture code name Skylake Y

06_8EH B 8th Generation Intel® Core™ Processors based on

microarchitecture code name Whiskey Lake U

06_8EH C 8th Generation Intel® Core™ Processors based on

microarchitecture code name Whiskey Lake U

