
Xinmin Tian, Robert Geva, and Bob Valentine
Intel Corporation
September 11, 2016

PACT 2016 Tutorial, Haifa, Israel

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Agenda
Section I - AVX-512 Architecture Insights

Section II - Intel® Compiler: Putting SIMD Vectorization to Work

Section III - Code Modernization: Best Practices for Vector Programming

2

Robert Valentine – Senior Principal Engineer
Intel Corporation
September 11, 2016

PACT 2016 Tutorial, Haifa, Israel

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Section I: Agenda
 Introduction: Intel® ISA Roadmap

 Deep dive: AVX1/2/AVX512 ISA

 AVX-512 F: Common ISA Extension

 AVX-512 ERI & PRI: Intel® Xeon Phi™ Product Only

 Xeon additions to AVX-512 F

 Summary

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® Advanced Vector Extensions

Since 2001:

128-bit Vectors

AVX 1.0: 2X flops: 256-bit wide floating-point vectors

Half-float support, Random Numbers

AVX2: FMA (2x peak flops)

256-bit integer SIMD. “Gather” Instructions.

Sandy Bridge

(32 nm Tock)

P
e

rf
o

rm
a

n
ce

 /
 c

o
re

2010 2011 2012 2013

Ivybridge

(22nm Tick)

Haswell

(22 nm Tock)

Knights Landing

Future Xeon

512- bit Vectors

32 registers

Masking, BroadcastGoal: 8X peak FLOPs over 4 generations

2016

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Consistent Developer Tools and Programming Models

Code Base

Many-core

Intel® Xeon Phi™
Coprocessor

Multicore

Intel® Xeon
Processors

6

Standards Parallel Programming Models Vectorize, Parallelize, & Optimize

Xeon PhiXeon

No

Am I running an
ISV

or in-house
application?

Can my workload
scale to over 100

threads?

Can my
workload benefit

from large
vectors?

Can my workload
benefit from more

memory
bandwidth?

Contact ISV to find
out if and when

they will support
Xeon Phi.

In-house

No

Not ready

or suitable

No

ISV

Ready

Yes Yes

No

Am I capable &
motivated to pursue

high levels of
parallelism?

Is my application
ready for high
parallelism?

Yes

No

Yes Yes

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® AVX Technology
Haswell

512b AVX512

Server: 64SP / 32 DP
Client: 32 SP / 16 DP

Flops/Cycle (FMA)

256b AVX2

32 SP / 16 DP
Flops/Cycle (FMA)

Future (in planning, subject to change)Sandy Bridge

256b AVX1

16 SP / 8 DP
Flops/Cycle

AVX512

512-bit FP/Integer

32 registers

8 mask registers

Embedded rounding

Embedded broadcast

Scalar/SSE/AVX “promotions”

Native media additions

HPC additions

Transcendental support

Gather/Scatter

AVX AVX2

256-bit basic FP

16 registers

NDS (and AVX128)

Improved blend

MASKMOV

Implicit unaligned

Float16 (IVB 2012)

256-bit FP FMA

256-bit integer

PERMD

Gather

SNB-2011 HSW-2013 Future Processor (Knight
Landing & future Xeon)

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

AVX512 Big Picture

 Deep dive: AVX1/2/AVX512 ISA

 AVX-512 F: Common ISA Extension

 AVX-512 ERI & PRI: Intel® Xeon Phi™ Product Only

 Xeon additions to AVX-512 F

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

AVX512 big picture
AVX512F

 ‘Foundation’ of architecture, required for any AVX512 implementation

– Many D/Q/SP/DP promotions from AVX2 with AAVX512 features
– Masking, 32 registers, embedded broadcast or rounding, 512-bit Vector Length

– New instructions added to accelerate HPC workloads

 Implementations add features to AVX512F “base”

– “base” will grow as MIC/Xeon converge on features

AVX512CD Conflict Detect : instructions tailored for vectorizing loops with potential address conflicts

AVX512ER Exponential and Reciprocal : 'wide' approximateion of Log (22 bits) and RCP/RSQRT (28 bits)

AVX512PF Prefetch : Multi-address prefetch instructions using gather/scatter semantics

AVX512DQ Additional D/Q/SP/DP instructions (converts, transcendental support, etc)

AVX512BW 512-bit Byte/Word support (promotions from AVX2, some additions)

AVX512VL Vector Length Orthogonality : ability to operate on sub-512 vector sizes

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Xeon & Xeon PhiTM New ISA: What Is Where?

Complex & versatile big cores

•Big focus on latency and single-thread

•State-of-the-art SIMD support for HPC and Enterprise

•Best balance of performance for any workload

Small & efficient cores

•Big focus on throughput and many-threads

•State-of-the-art SIMD support for HPC

•Industry performance-per-watt leadership

KNL
Xeon Phi

SSE*

AVX

AVX2

Future
Xeon

SSE*

AVX

AVX2

SNB

SSE*

AVX

HSW

SSE*

AVX

AVX2

NHM

SSE*

KNL and Xeon are the first
“unification” platforms:

AVX512F is the common
SIMD foundation for HPC
software development

AVX512F AVX512F

AVX512CD AVX512CD

AVX512ER

AVX512PF

Pftchwt1

AVX512DQ

AVX512BW

AVX512VL

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

AVX-512 features (I): More & Bigger Registers

AVX: VADDPS YMM0, YMM3, [mem]

 Up to 16 AVX registers

– 8 in 32-bit mode

 256-bit width

– 8 x FP32

– 4 x FP64

AVX-512: VADDPS ZMM0, ZMM24, [mem]

 Up to 32 AVX registers

– 8 in 32-bit mode

 512-bit width

– 16 x FP32

– 8 x FP64

But you need many more features
to use all that real estate effectively…

float32 A[N], B[N];

for(i=0; i<8; i++)
{

A[i] = A[i] + B[i];
}

float32 A[N], B[N];

for(i=0; i<16; i++)
{

A[i] = A[i] + B[i];
}

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

AVX-512 Mask Registers
8 Mask registers of size 64-bits

 k1-k7 can be used for predication

– k0 can be used as a destination or source for mask manipulation
operations

4 different mask granularities.
For instance, at 512b:

 Packed Integer Byte use mask bits [63:0]

– VPADDB zmm1 {k1}, zmm2, zmm3

 Packed Integer Word use mask bits [31:0]

– VPADDW zmm1 {k1}, zmm2, zmm3

 Packed IEEE FP32 and Integer Dword use mask bits [15:0]

– VADDPS zmm1 {k1}, zmm2, zmm3

 Packed IEEE FP64 and Integer Qword use mask bits [7:0]

– VADDPD zmm1 {k1}, zmm2, zmm3

a7 a6 a5 a4 a3 a2 a1 a0a7 a6 a5 a4 a3 a2 a1 a0zmm1

b7 b6 b5 b4 b3 b2 b1 b0b7 b6 b5 b4 b3 b2 b1 b0zmm2

zmm3

k1

b7+c7 a6 b5+c5 b4+c4 b3+c3 b2+c2 a1 a0zmm1

+ + + + + + + +

1 0 1 1 1 1 0 0

c7 c6 c5 c4 c3 c2 c1 c0c7 c6 c5 c4 c3 c2 c1 c0

128 256 512

Byte 16 32 64

Word 8 16 32

Dw ord/SP 4 8 16

Qw ord/DP 2 4 8

Vector Length

element

size

VADDPD zmm1 {k1}, zmm2, zmm3

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

AVX-512 Features (II): Masking

VADDPS ZMM0 {k1}, ZMM3, [mem]

 Mask bits used to:

1. Suppress individual elements read from memory

– hence not signaling any memory fault

2. Avoid actual independent operations within an
instruction happening

– and hence not signaling any FP fault

3. Avoid the individual destination elements being
updated,

– or alternatively, force them to zero (zeroing)

for (I in vector length)
{

if (no_masking or mask[I]) {
dest[I] = OP(src2, src3)

} else {
if (zeroing_masking)

dest[I] = 0
else

// dest[I] is preserved
}

}

Caveat: vector shuffles do not suppress memory fault exceptions
mask refers to “output” not to “input”

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Why True Masking?
Memory fault suppression

 Vectorize code without touching
memory that the correspondent scalar code would not
touch

– Typical examples are if-conditional statements or loop
remainders

– AVX is forced to use VMASKMOV* (risc)

MXCSR flag updates and fault handlers

 Avoid spurious floating-point exceptions without having to
inject neutral data

Zeroing/merging

 Use zeroing to avoid false dependencies in OOO
architecture

 Use merging to avoid extra blends in if-then-else clauses
(predication) for great code density

float32 A[N], B[N], C[N];

for(i=0; i<16; i++)
{

if(B[i] != 0) {
A[i] = A[i] / B[i];

else {
A[i] = A[i] / C[i];

}
}

VMOVUPS zmm2, A
VCMPPS k1, zmm0, B
VDIVPS zmm1 {k1}{z}, zmm2, B
KNOT k2, k1
VDIVPS zmm1 {k2}, zmm2, C
VMOVUPS A, zmm1

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Embedded Broadcasts and Masking Support
VFMADD231PS zmm1, zmm2, C {1to16}

 Scalars from memory are first class citizens

– Broadcast one scalar from memory into all vector
elements before operation

 Memory fault suppression avoids fetching the scalar
if no mask bit is set to 1

Other “tuples” supported

 Memory only touched if at least one consumer lane
needs the data

 For instance, when broadcast a tuple of 4 elements,
the semantics check for every element being really
used

– E.g.: element 1 checks for mask bits 1, 5, 9, 13, …

float32 A[N], B[N], C;

for(i=0; i<8; i++)
{

if(A[i]!=0.0)
A[i] = A[i] + C* B[i];

}

VBROADCASTSS zmm1 {k1}, [rax]
VBROADCASTF64X2 zmm2 {k1}, [rax]
VBROADCASTF32X4 zmm3 {k1}, [rax]
VBROADCASTF32X8 zmm4, {k1}, [rax]
…

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

AVX-512 Features:
Embedded Rounding Control & SAE (Suppress All Exceptions)

 MXCSR.RC can be overridden on a per instruction basis (Embedded Rounding Control)

– VADDPS ZMM1 {k1}, ZMM2, ZMM3 {rne-sae}

– VADDSS XMM1 {k1}, XMM2, XMM3 {rrtz-sae}

 “Suspend All Exceptions” (always implied by using Embedded Rounding Control)

NO MXCSR updates / exception reporting for any element

Expected usage of this feature

 Library codes can control effect of rounding and updates to MXCSR until the end stages of complex SW routines

– E.g.: avoid spurious overflow/underflow reporting in intermediate computations

– E.g: make sure that RM=rne regardless of the contents of MXCSR

 Saving, modifying and restoring MXCSR is generally slower and more and cumbersome

– Must use LDMXCSR to change fault masks, clear sticky bits or set a default rounding mode

– Do not need to use MXCSR OR embedded rounding for truncating FP conversion to int (use CVTT* instructions)

Restricted to :
FP instructions

512-bit or scalar
Reg-reg operands

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

AVX-512 F:
Common Xeon Phi (KNL) and Xeon Vector ISA Extension

AVX-512 Foundation is the common SIMD foundation
for HPC software development
First on KNL
Planned on a future Xeon

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

AVX-512 F Designed for HPC

Quadword
integer

arithmetic

Including
gather/scatter
with D/Qword

indices

Math support

IEEE division
and square root

DP
transcendental

primitives

New
transcendental

support
instructions

New
permutation
primitives

Two source
shuffles

Compress &
Expand

Bit
manipulation

Vector rotate

Universal
ternary logical

operation

New mask
instructions

• Promotions of many AVX and AVX2 instructions to AVX-512

32-bit and 64-bit floating-point instructions from AVX

Scalar and 512-bit

32-bit and 64-bit integer instructions from AVX2

• Many new instructions to speedup HPC workloads

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Quadword Integer Arithmetic

Instruction Description

VPADDQ zmm1 {k1}, zmm2, zmm3 INT64 addition

VPSUBQ zmm1 {k1}, zmm2, zmm3 INT64 subtraction

VP{SRA,SRL,SLL}Q zmm1 {k1}, zmm2, imm8 INT64 shift (imm8)

VP{SRA,SRL,SLL}VQ zmm1 {k1}, zmm2, zmm3 INT64 shift (variable)

VP{MAX,MIN}Q zmm1 {k1}, zmm2, zmm3 INT64 max, min

VP{MAX,MIN}UQ zmm1 {k1}, zmm2, zmm3 UINT64 max, min

VPABSQ zmm1 {k1}, zmm2, zmm3 INT64 absolute value

VPMUL{DQ,UDQ} zmm1 {k1}, zmm2, zmm3 32x32 = 64 integer multiply

Long int and packed pointer manipulation
64-bit integer trending towards becoming a first class citizen
Removes the need for expensive SW emulation sequences

Note: VPMULQ and int64 <-> FP converts not in AVX-512 F

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Math Support

Instruction

VGETXEXP{PS,PD,SS,SD}

VGETMANT{PS,PD,SS,SD}

VRNDSCALE{PS,PD,SS,SD}

VSCALEF {PS,PD,SS,SD}

VFIXUPIMM{PS,PD,SS,SD}

VRCP14{PS,PD,SS,SD}

VRSQRT14{PS,PD,SS,SD}

VDIV{PS,PD,SS,SD}

VSQRT{PS,PD,SS,SD}

zmm1 {k1}, zmm2 Obtain exponent in FP format

zmm1 {k1}, zmm2 Obtain normalized mantissa

zmm1 {k1}, zmm2, imm8 Round to scaled integral number

zmm1 {k1}, zmm2, zmm3 X*2y , X <= getmant, Y <= getexp

zmm1, zmm2, zmm3, imm8 Patch output numbers based on inputs

zmm1 {k1}, zmm2 Approx. reciprocal() with rel. error 2-14

zmm1 {k1}, zmm2 Approx. rsqrt() with rel. error 2-14

zmm1 {k1}, zmm2, zmm3 IEEE division

zmm1 {k1}, zmm2 IEEE square root

30

Package to aid with Math library writing
• Good value upside in financial applications
• Available in PS, PD, SS and SD data types
• Great in combination with embedded RC

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

New 2-Source Shuffles
2-Src Shuffles

VSHUF{PS,PD}

VPUNPCK{H,L}{DQ,QDQ}

VUNPCK{H,L}{PS,PD}

VPERM{I,D}2{D,Q,PS,PD}

VSHUF{F,I}32X4

H’ G’ F’ E’ D’ C’ B’ A’ H G F E D C B A

zmm2 zmm3
15 0 10 11 2 2 0 9

zmm1

H’ A C’ D’ C C A B’zmm1

Long standing customer request
• 16/32-entry table lookup (transcendental support)

• AOS  SOA support, matrix transpose
• Variable VALIGN emulation

10 9 8 7 6 5 4 3 2 1 0…

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Gather & Scatter

VMOVDQU64 zmm1, Q[rsi]

VMOVDQU64 zmm2, R[rsi]

VGATHERQQ zmm0 {k2}, [rax+zmm1*8]

VSCATTERQQ [rax+zmm2*8] {k3}, zmm0

D/Q/SP/DP element types
D/Q indices
Instruction can partially execute

k-reg Mask used as completion mask

for(j=0, i=0; i<N; i++)

{

B[R[i]] = A[Q[i]];

}

Q RA B

G/S implementation attempts to ‘max out’ DCU BW

Performance gains come from vectorizing REST of algorithm

Algorithm shown could get some gain (24 load dispatches  10 per 8 elements)

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Expand & Compress

VEXPANDPS zmm0 {k2}, [rax]

Moves compressed (consecutive) elements in register or memory to sparse
elements in register (controlled by mask), with merging or zeroing

[rax]

YY7Y 4Y56 12Y3 0YYYzmm0
0010 1011 1101 1000k2 = 0x4DB1

0123456781415 …mem lsb

lsb

Allows vectorization of conditional loops
• Opposite operation (compress) in AVX512F
• Similar to FORTRAN pack/unpack intrinsics
• Provides mem fault suppression
• Faster than alternative gather/scatter

for(j=0, i=0; i<N; i++)

{

if(C[i] != 0.0)

{

B[i] = A[i] * C[j++];

}

}

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Bit Manipulation

Instruction Description

KUNPCKBW k1, k2, k3 Interleave bytes in k2 and k3

KSHIFT{L,R}W k1, k2, imm8 Shift bits left/right using imm8

VPROR{D,Q} zmm1 {k1}, zmm2, imm8 Rotate bits right using imm8

VPROL{D,Q} zmm1 {k1}, zmm2, imm8 Rotate bits left using imm8

VPRORV{D,Q} zmm1 {k1}, zmm2, zmm3/mem Rotate bits right w/ variable ctrl

VPROLV{D,Q} zmm1 {k1}, zmm2, zmm3/mem Rotate bits left w/ variable ctrl

Basic bit manipulation operations on mask and vector operands
• Useful to manipulate mask registers
• Have uses in cryptography algorithms

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

VPTERNLOG – Ternary Logic Instruction

 Take every bit of three sources to obtain a 3-bit index N

– Obtain Nth bit from imm8

Imm8[7:0]

Dest[i]

Src0[i]
Src1[i]

Src2[i]

Any arbitrary truth table of 3 values can be implemented
andor, andxor, vote, parity, bitwise-cmov, etc

each column in the right table corresponds to imm8

S1 S2 S3 ANDOR VOTE (S1)?S3:S2
0 0 0 0 0 0
0 0 1 1 0 1
0 1 0 0 0 0
0 1 1 1 1 1
1 0 0 0 0 0
1 0 1 1 1 0
1 1 0 1 1 1
1 1 1 1 1 1

VPTERNLOGD zmm0 {k2}, zmm15, zmm3/[rax], imm8

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

AVX-512 ERI & AVX-512 PRI: Xeon Phi Only

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Xeon Phi Only Instructions
Set of segment-specific instruction extensions

 First appear on KNL

 Will be supported in all future Xeon Phi processors

 May or may not show up on a later Xeon processor

Address two HPC customer requests

 Ability to maximize memory bandwidth

– Hardware prefetching is too restrictive

– Conventional software prefetching results in instructions overhead

 Competitive support for transcendental sequences

– Mostly division and square root

– Differentiating factor in HPC/TPT

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

KNL AVX512 additions

CPUID Instructions Motivation

A
V

X
-5

1
2

 P
R

I PREFETCHWT1
Reduce ring traffic in core-to-core data communication

VGATHERPF{D,Q}{0,1}PS
Reduce overhead of software prefetching:
dedicate side engine to prefetch sparse structures while devoting
the main CPU to pure raw flops

VSCATTERPF{D,Q}{0,1}PS

A
V

X
-5

1
2

 E
R

I

VEXP2{PS,PD}
Speed-up key FSI workloads: Black-Scholes, Montecarlo

VRCP28{PS,PD}
Key building block to speed up most transcendental sequences
(in particular, division and square root):
Increasing precision from 14=>28 allows to reduce one complete
Newton-Raphson iterationVRSQRT28{PS,PD}

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Summary of AVX512 on KNL

AVX-512 F: new 512-bit vector ISA extension

 Common between Xeon and Xeon Phi (KNL)

AVX-512 CDI Conflict detection instructions

 Improves autovectorization of Histogram data patterns

 On Xeon Phi first

AVX-512 ERI & PRI

 28-bit transcendentals and new prefetch instructions

 On Xeon Phi only

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Xeon additions to AVX512F

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

AVX512DQ
Complete Qword support

 VPMULLQ packed 64x64  64

 Packed/Scalar converts of signed/unsigned to SP/DP

 Arithmatic shift right

 Etc

Extend mask architecture to word and byte

 Byte masks are natural for packed Qword operands

Minor additions to transcendental support

Convert AVX512 mask  ‘SSE/AVX’ mask

‘aggregate datatype’ support

 Broadcast/insert/extract complex singles etc

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

AVX512DQ : additional HPC focus

New Instr
VBROADCAST{F32X8,F64X2,I32X8,I64X2}

VBROADCAST{I32X2}

VEXTRACT{F32X8,F64X2,I32X8,I64X2}

VINSERT{F32X8,F64X2,I32X8,I64X2}

VCVT{,T}{PS,PD}2{QQ,UQQ}

VCVT{QQ,UQQ}2{PS,PD}

VCVT{,T}{PS,PD}2{QQ,UQQ}

VFPCLASS{PS,PD}

VRANGE{PS,PD}

VREDUCE{PS,PD}

VPMULLQ

K{AND,ANDN,OR,XNOR,XOR,NOT}B

K{MOV,ORTEST,SHIFR,SHIFTL}B

K{ADD,TEST}{B,W}

VPMOV{D2M,Q2M}, VPMOV{M2D,M2Q}

64

Tuple support: 32X8, 64X2, 32X2

Int64  FP conversions

Both unsigned and signed

Int64  FP conversions

Both unsigned and signed

Transcendental package v2

INT64 arithmetic support

Byte support for mask instructions

Expanded mask functionality

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

AVX512BW

Full support for Byte/Word operations

 MMX/SSE2/AVX2 re-promoted to AVX512 semantics

Mask operations extended to 32/64 bits

 32-bit mask refers to AVX512 ‘short’ operands

 64-bit mask refers to AVX512 byte operands

Loads/Stores/Broadcastsfor AVX512 semantics

Permute architecture extended to words

 Vpermw, vpermi2w, vpermt2w

New PSAD instruction,etc

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

AVX512BW : Byte and Word Support

AV512BW
VPBROADCAST{B,W}

VPSRLDQ, VPSLLDQ

VP{SRL,SRA,SLL}{V}W

VPMOV{WB,SWB, USWB}

VPTESTM{B,W}

VPMADW

VPTESTNM{B,W}

VDBPSADBW

VPERMW, VPERM{I,T}2W

VMOVDQU{8,16}

VPBLENDM{B,W}

{KAND,KANDN}{D,Q}

{KOR,KXNOR,KXOR}{D,Q}

KNOT{D,Q}

KORTEST{D,Q}

AV512BW
KTEST{D,Q}

KSHIFT{L,R}{D,Q}

KUNPACK{WD,DQ}

KADD{D,Q}

VPMOV{B2M,W2M,M2B,M2W}

VPCMP{,EQ,GT}{B,W,UB,UW}

VP{ABS,AVG}{B,W}

VP{ADD,SUB}{,S,US}{B,W}

VPALIGNR

VP{EXTR,INSR}{B,W}

VPMADD{UBSW,WD}

VP{MAX,MIN}{S,U}{B,W}

VPMOV{SX,ZX}BW

VPMUL{HRS,H,L}W

VPSADBW

AV512BW
VPSHUFB, VPSHUF{H,L}W

VP{SRA,SRL,SLL}{,V}{W}

VPUNPCK{H,L}{BW,WD}

131

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

AVX512VL : Vector Length Orthogonality

Allow AVX512 instructions to operate on sub-vectors (lower 256/128 bits)

 Eases code generation for mixed data types

– Partial masks are functionally correct, why not use them?

– VL is in static in opcode, provides information EARLY in pipeline

– Clock gating of unneeded execution elements / buses

– Disabling RF read ports

– Preventing ‘false overlap/forwarding’ from being detected in memory

– Creating partial masks wastes instruction BW

AVX512VL is NOT a “list of instructions”

 “orthogonal feature’ applying to “all” AVX512 instructions

– obvious caveats when instruction has implicit 256/512 width

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

AVX512VL : Down-promotions

VL orthogonality
V{ADD,MUL,SUB}{PS,PD}

VALIGN{D,Q}

VBLENDM{PS,PD}, VPBLENDM{D,Q}

VBROADCAST{SS,SD,F32X4,I32X4}

VCMP{SS,SD}

VCOMPRESS{PS,PD}, VPCOMPRESS{D,Q}

VCVT{DQ,UDQ}2{PS,PD}

VCVT{,T}{PS,PD}2{DQ,UDQ}

VCVT{PS2PD,PD2PS}

VCVT{PS2PH,PH2PS}

VDIV{PS,PD}

VEXPAND{PS,PD}, VPEXPAND{D,Q}

VEXTRACT{F32X4,I32X4}

V{MAX,MIN}{PS,PD}

Out of 450 AVX512 Instructions

VF{N}MADD{132,213,231}{PS,PD}

VF{N}MSUB{132,213,231}{PS,PD

VFMADDSUB{132,213,231}{PS,PD}

VFMSUBADD{132,213,231}{PS,PD}

VGATHER{D,Q}{PS,PD}

VPGATHER{D,Q}{D,Q}

V{MAX,MIN}{PS,PD}

VMOV{APS,UPS,DQA32,DQA64}

VMOV{DDUP,SHDUP,SLDUP}

VMOVNT{DQ,DQA,PS,PD}

VP{ABS,ADD,SUB}{D,Q}

VP{AND,ANDN,OR,XOR}{D,Q}

VPCMP{,EG,GR}{D,Q,UD,UQ}

VPERM{D,Q,PS,PD}

318

VPERMIL{PS,PD}, VSHUF{PS,PD}

VP{MAX,MIN}{D,Q,UD,UQ}

VPMOX{SX,ZX}{B,W}{D,Q}

VPMOX{SX,ZX}DQ

VPMUL{DQ,UDQ,LD}

VP{SLL,SRL,SRA}{,V}{D,Q}

VPTESTM{D,Q}

VPUNPCK{H,L}{DQ,QDQ}

V{RCP,RSQRT}14{PS,PD}

VUNPCK{H,L}{PS,PD}

VPTERNLOG{D,Q}

VPMOVQ{,S,US}Q{QB,QW,QD,DB,DW}

VSHUF{F32X4,F64X2,I32X4,I64X2}

VPERM{T,I}2{D,Q,PS,PD}

Etc probably more than are shown

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Summary of Xeon AVX512 Additions

More Qword support

 Packed converts, VPMULLQ etc

Support for mixing AVX and AVX512 style masks

 VPMOVM2*, VPMOV*2M

All HLL datatypes at maximum SIMD width

 # elements = VL / element_size

VL aids mixing datatypes

 VL = # elements * element_size

VL specifies memory access sizes exactly

 Masks provide architectural support, but HW prefers a ‘static’ knowledge

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Summary

AVX512 is a comprehensive addition to intels SIMD Instruction set

~2x performance on BLAS routines

new features to increase the vectorization coverage (masks, VPCOMRESS)

embedded rounding and new instructions accelerate math libraries

Knights Landing emphasis on HPC

support for D/Q/SP/DP and additional specialized instructions

Xeon adds support for all HLL datatypes

AVX512 is designed for compilers as well as programmers

Xinmin Tian – Senior Principal Engineer
Intel Compiler and Languages, SSG, Intel Corporation
September 11, 2016

PACT 2016 Tutorial, Haifa, Israel

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Section II: Agenda
Seamless Vectorization and Parallelization Integration Showcase

Learnings: Cray*, Intel® Pentium® 4 (90nm) SSE3 and SIMD Vectorization Hurdles

Successes: Putting SIMD Vectorization to Work

 Mixed data type Vectorization

 Function vectorization

 Outer loop vectorization

 SIMD Loop Vectorization with Cross-iteration Dependency

 Less-than-full-vector Vectorization

 Predication and Masking

 Gather/Scatter Optimization

Advances: Tackle C++ Challenges and Beyond C/C++/Fortran

Summary: Close to Metal Performance

2

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Mandelbrot: ~2698x Speedup on Xeon Phi™--Isn’t it Cool?

#pragma omp parallel for schedule(guided)
for (int32_t y = 0; y < ImageHeight; ++y) {

float c_im = max_imag - y * imag_factor;
#pragma omp simd simdlen(32)
for (int32_t x = 0; x < ImageWidth; ++x) {

fcomplex in_vals_tmp = (min_real + x * real_factor) + (c_im * 1.0iF);
count[y][x] = mandel(in_vals_tmp, max_iter);

}
}

#pragma omp parallel for schedule(guided)
for (int32_t y = 0; y < ImageHeight; ++y) {

float c_im = max_imag - y * imag_factor;
#pragma omp simd simdlen(32)
for (int32_t x = 0; x < ImageWidth; ++x) {

fcomplex in_vals_tmp = (min_real + x * real_factor) + (c_im * 1.0iF);
count[y][x] = mandel(in_vals_tmp, max_iter);

}
}

#pragma omp declare simd uniform(max_iter), simdlen(32)
uint32_t mandel(fcomplex c, uint32_t max_iter)
{ uint32_t count = 1; fcomplex z = c;

while ((cabsf(z) < 2.0f) && (count < max_iter)) {
z = z * z + c; count++;

}
return count;

}

#pragma omp declare simd uniform(max_iter), simdlen(32)
uint32_t mandel(fcomplex c, uint32_t max_iter)
{ uint32_t count = 1; fcomplex z = c;

while ((cabsf(z) < 2.0f) && (count < max_iter)) {
z = z * z + c; count++;

}
return count;

}

3

1.00 1.00 1.00 1.00 1.00 1.00 1.001.00 7.77 15.54 33.19 65.18 114.10 141.54
29.99 29.97 29.99 29.98 29.98 29.98 29.9831.01

241.92

480.26

1,026.36

2,017.62

2,586.15
2,697.98

0.00

500.00

1,000.00

1,500.00

2,000.00

2,500.00

1 Thread 8 Threads 16 Threads 32 Threads 64 Threads 128 Threads 256 Threads

Mandelbrot Normalized Speedup with OMP PAR+SIMD on Xeon Phi(TM)

Serial OpenMP PAR OpenMP SIMD OpenMP PAR+SIMD

Intel Xeon Phi™ system, Linux64, 64 cores running 256 threads at 1.30GHz,
32 KB L1, 1024 KB L2 per core. Intel C/C++ Compiler 16.0 Update 2 build.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

CACM 1978

Compiler vectorization “solved” in 1978

Learnings: Compiler Vectorization in 1978

c
c***
c*** KERNEL 1 HYDRO FRAGMENT
c***
c
cdir$ ivdep
1001 DO 1 k = 1,n

1 X(k)= Q + Y(k) * (R * ZX(k+10) + T * ZX(k+11))
c

Livermore loop #1
Small loop, simple data and

control flow

Compiler auto-vectorization
becomes reality through

dependency analysis

4

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Learnings: 2004 Intel® Pentium® 4 SSE3 on 90nm

Memory

Ops:
3 SIMD loads

1 SIMD store

3 Arithmetic Ops

1 shuffle Ops

Ops not available in SSE2

movddup

addsubpd

Memory

a db c

a b

ac bc

c c d d

b a

bd ad

ac - bd ad + bc

ac - bd ad + bc

movapd
movddup movddup

mulpd shufpd

mulpd

addsubpd

movapd

Complex Multiplication with SSE3: (a + ib)(c + id) = (ac – bd) + i (ad + bc)

4 Scalar loads, 6 Arithmetic Ops, 2 Scalar stores
Performance can be improved up to ~75%, SPEC2000FP/168.wupwise 10-15%

5

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

44

Learnings: Program Factors Impact on Vectorization

Loop-carried dependencies

for (i = 1; i < nx; i++) {
x = x0 + i * h;
sumx = sumx + func(x, y, xp);

}

Function calls

struct _x { int d; int bound; };
void doit(int *a, struct _x *x)
{

for(int i = 0; i < x->bound; i++)
a[i] = 0;

}

Unknown loop iteration count

Indirect memory access

Outer loops
Pointer aliasing

for(j = 0; j <= MAX; j++) {
for(i = 0; i <= MAX; i++) {

D[i][j] += 1;
}

}

void scale(int *a, int *b)
{

for (int i = 0; i < 1000; i++)
b[i] = z * a[i];

}

for (i=0; i<N; i++)
A[B[i]] += C[i]*D[i]

DO I = 2, N
A(I) = A(I-1) + B(I)

ENDDO

many ……
6

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Learnings: SIMD Vectorization Hurdles

Vector code generation has become a more difficult problem increasing need for user guided
explicit vectorization that maps concurrent execution to simd hardware

Two fundamental problems:
 Data divergence
 Control divergence

p=0

2

Are all
lanes done?

p=0..1

Function call

x1

y1

Vector Function call

x1, x2

y1, y2

#pragma omp simd reduction(+:….)
for(p=0; p<N; p++) {

// Blue work
if(…) {

// Green work
} else {

// Red work
}
while(…) {

// Gold work
// Purple work

}
y = foo (x);
Pink work

}

p=1

3

Function call

x2

y2

7

Successes:
Putting SIMD
Vectorization to Work

Intel brings ICC Vectorization
Technology to LLVM
Vectorizer

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Mixed Data Type Vectorization

void foo(int n, float *A, double *B) {

int i;

float t = 0.0f;

#pragma omp simd

for (i=0; i<n; i++) {

A[i] = t;

B[i] = t;

t += 1.0f;

}

}

Match the number of elements.

 A[i] = … for 2 or 4 elements at a time

 B[i] = … for 2 or 4 elements at a time

mixed.c(5) (col. 3): remark: LOOP WAS VECTORIZED.

a0a1a2a3

b0b1

a0a1a2a3

b0b1

b2b3

Naïve: use full vectors
4 != 2. Give up (bad)

Match: 2=2. Good

Match: 4=2x2. Good

47

a0a1a2a3

b0b1

9

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Function Vectorization
#pragma omp declare simd

float sfoo(float x)

{ … …

}

Scalar C function

sfoo(x0)->r0

sfoo(x1)->r1

sfoo(x2)->r2

sfoo(x3)->r3

sfoo(x4)->r4

… …

Scalar execution

__m128 vfoo(__m128 vx)

{….

}

Vector C function

Compiler created

Vector execution

vfoo(x0…x3)->r0…r3

vfoo(X4…X7)->r4…r7

… …

sfoo(x0)->r0 sfoo(x1)->r1 sfoo(x2)->r2 sfoo(x3)->r3

sfoo(x4)->r4 sfoo(x5)->r5 sfoo(x6)->r6 sfoo(x7)->r7

sfoo(x8)->r8 sfoo(x9)->r9 … … … …

… …

10

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Recursive Function Vectorization
#pragma omp declare simd [processor(cpu-id)]
int binsearch(int key, int lo, int hi) {

int ans;
if (lo > hi) {

ans = -1;
}
else {

int mid = lo + ((hi - lo) >> 1);
int t = sortedarr[mid];
if (key == t) {

ans = mid;
}
else if (key > t) {

ans = binsearch(key, mid + 1, hi);
}
else {

ans = binsearch(key, lo, mid - 1);
}

}
return ans;

}

#pragma omp simd
for (int i=0; i<M; i++) {

ans[i] = binsearch(keys[i], 0, N-1);
}

11

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

OpenMP* SIMD PROCESSOR Clause

New PROCESSOR clause extension to #pragma omp declare simd (to
define a SIMD routine) to target a specific processor

• Similar to Intel® Cilk™ Plus extensions for declaring SIMD functions

• Available for C/C++ and Fortran

• Intel extension – NOT part of official OpenMP specification

• Helpful to allow programmers to leverage e.g. Intel® AVX-2 and Intel® AVX-
512 beyond default Intel® SSE2 support (YMM+ZMM registers/operands
additionally to XMM)

12

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Processor Name Identifiers
 pentium_4
 pentium_m
 pentium_4_sse3
 core_2_duo_ssse3
 core_2_duo_sse4_1
 atom
 core_i7_sse4_2
 core_aes_pclmulqdq
 core_2nd_gen_avx
 core_3rd_gen_avx

 future_cpu_18 // KNF
 mic
 future_cpu_19 // KNC
 future_cpu_20 // HSW - no TSX
 core_4th_gen_avx // HSW – no TSX
 core_4th_gen_avx_tsx // HSW - TSX
 future_cpu_21 // BDW - NO TSX
 future_cpu_21_tsx // BDW - TSX
 future_cpu_22 // KNL
 future_cpu_23 // SKL 29

13

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Vortex Code: Outer Loop Vectorization
#pragma omp simd // simd pragma for outer-loop at call-site of SIMD-function
for (int i = beg*16; i < end*16; ++i) {

particleVelocity_block(px[i], py[i], pz[i], destvx + i, destvy + i, destvz + i, vel_block_start, vel_block_end);
}

#pragama omp declare simd linear(velx,vely,velz) uniform(start,end) aligned(velx:64, vely:64, velz:64)
static void particleVelocity_block(const float posx, const float posy, const float posz,

float *velx, float *vely, float *velz, int start, int end) {
for (int j = start; j < end; ++j) {

const float del_p_x = posx - px[j];
const float del_p_y = posy - py[j];
const float del_p_z = posz - pz[j];
const float dxn= del_p_x * del_p_x + del_p_y * del_p_y + del_p_z * del_p_z +pa[j]* pa[j];
const float dxctaui = del_p_y * tz[j] - ty[j] * del_p_z;
const float dyctaui = del_p_z * tx[j] - tz[j] * del_p_x;
const float dzctaui = del_p_x * ty[j] - tx[j] * del_p_y;
const float dst = 1.0f/std::sqrt(dxn);
const float dst3 = dst*dst*dst;
*velx -= dxctaui * dst3;
*vely -= dyctaui * dst3;
*velz -= dzctaui * dst3;

}
}

KNC performance improvement
over 2X going

from inner to outer-loop vectorization

14

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SIMD Loops with Cross-Iteration Dependencies
OpenMP* 4.5: Extend ordered Blocks in SIMD Contexts

Semantics:
 The ordered with simd clause construct specifies a structured block in the simd loop or SIMD function that

will be executed in the order of the loop iterations w.r.t to dependency constraints or sequence of call to
SIMD functions.

Rules:
 #pragma omp ordered simd is only allowed inside a SIMD loop or SIMD-enabled function.
 #pragma omp ordered simd region must be a single-entry and single-exit code block

 The strict ordered execution is only guaranteed for the block itself
 Execution remains weakly ordered w.r.t. to outside of the block or other ordered blocks

 Data dependencies between statements of the same block will be correctly resolved
 Other non-vector dependencies originating in ordered block still lead to undefined behavior

#pragma omp ordered [simd]
structured code block

!$omp ordered [simd]
structured code block

!$omp end ordered

C and C++: Fortran:

15

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Ordered SIMD Examples

#pragma omp simd
for (i = 0; i < N; i++)
{
...
#pragma omp ordered simd
{
a[indices[i]] += b[i]; // index conflict

}
...
#pragma omp ordered simd
{
if (c[i] > 0)
q[j++] = b[i]; // compress pattern

}
...
#pragma omp ordered simd
{

lock(L) // atomic update
if (x > 10) x = 0;

unlock(L)
}
...

}

#pragma omp simd
for (i = 0; i < N; i++) {
...
#pragma omp ordered simd
{
if (c[i] > 0)
q[j++] = b[i]; // 1st compress

}
...

#pragma omp ordered simd
{ // 2nd compress
if (c[i] > 0) // Order of stores will
q[j++] = d[i]; // be changed w.r.t

// to serial execution
}

}

Compiler
won’t

complain!

OK: Not OK w.r.t serial:

16

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

+-

ORDERED SIMD not always best Approach

#pragma omp simd
for(int i=0; i < VL; i++) {

…
val = values[i];
grp = groups[i];

#pragma omp ordered simd // conflict
{ g_total[grp] += val; }
…

}

0 3 2 3 0 2 1 2

5 7 8 9 3 6 5 3

5 0 0 0 3 0 0 0

0 0 0 0 0 0 5 0

0 0 8 0 0 6 0 3

0 7 0 9 0 0 0 0

8

5

17

16g
_

to
ta

l
P

ri
v

a
te

 c
o

p
ie

s

re
d

u
ce

Solution: array reductions

grp :

val :

+=

#pragma omp simd reduction(+:g_total)
for(int i=0; i < VL; i++) {

…
val = values[i];
grp = groups[i];
g_total[grp] += val;
…

}

0 0 0

0 0

0 0 0 0

00 0

0 3 2 3 0 2 1 2grp
(indices):

5 7 8 9 3 6 5 3v (values):

8 5 17 16g_total:

+= +=

? ? ?814 75

17

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Less-Than-Full-Vector Vectorization
float foo(float *y, int n)

{ int k; float x = 10.0f;

#pragma omp simd

for (k = 0; k < n; k++) {

x = x + fsqrt(y[k])

}

return x

}

misalign = &y[0] & 63

peeledTripCount = (63 – misalign)/sizeof(float)

x = 10.0f;

do k0 = 0, peeledTripCount-1 // peeling loop

x = x + fsqrt(y[k0])

enddo

x1_v512 = (m512)0

x2_v512 = (m512)0

mainTripCount = n – ((n – peeledTripCount) & 31)

do k1 = peeledTripCount, mainTripCount-1, 32

x1_v512 = _mm512_add_ps(_mm512_fsqrt(y[k1:16]),x1_v512)

x2_v512 = _mm512_add_ps(_mm512_fsqrt(y[k1+16:16]), x2_v512)

enddo

// perform vector add on two vector x1_v512 and x2_v512

x1_v512 = _mm512_add_ps(x1_v512, x2_512);

// perform horizontal add on all elements of x1_v512, and

// the add x for using its value in the remainder loop

x = x + _mm512_hadd_ps(x1_512)

do k2 = mainTripCount, n // Remainder loop

x = x + fsqrt(y[k2])

enddo

18

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Less-Than-Full-Vector Vectorization
misalign = &y[0] & 63

peeledTripCount = (63 – misalign) / sizeof(float)

x = 10.0f;

// create a vector: <0,1,2,…15>

k0_v512 = _mm512_series_pi(0, 1, 16)

// create vector: all 16 elements are peeledTripCount

peeledTripCount_v512 =

_mm512_broadcast_pi32(peeledTripCount)

x1_v512 = (m512)0

x2_v512 = (m512)0

do k0 = 0, peeledTripCount-1, 16

// generate mask for vectorizing peeling loop

mask = _mm512_compare_pi32_mask_lt(k0_v512,

peeledTriPCount_v512)

x1_v512 = _mm512_add_ps_mask(

_mm512_fsqrt(y[k0:16]), x1_v512, mask)

enddo

mainTripcount = n – ((n – peeledTripCount) & 31)

do k1 = peeledTripCount, mainTripCount-1, 32

x1_v512 = _mm512_add_ps(_mm512_fsqrt(y[k1:16]), x1_v512)

x2_v512 = _mm512_add_ps(_mm512_fsqrt(y[k1+16:16]), x2_v512)

enddo

// create a vector: <mainTripCount, mainTripCount+1 … mainTripCount+15>

k2_v512 = _mm512_series_pi(mainTripCount, 1, 16)

// create a vector: all 16 elements has the same value n

n_v512 = _mm512_broadcast_pi32(n)

step_v512 = _mm512_broadcast_pi32(16)

do k2 = mainTripCount, n, 16 // vectorized remainder loop

mask = _mm512_compare_pi32_mask_lt(k2_v512, n_v512)

x1_v512 = _mm512_add_ps_mask(

_mm512_fsqrt(y[k2:16]), x1_v512, mask)

k2_v512 = _mm512_add_ps(k2_v512, step_v512)

enddo

x1_v512 = _mm512_add_ps(x1_v512, x2_512);

// perform horizontal add on 8 elements and final reduction sum to write

// the result back to x.

x = x + _mm512_hadd_ps(x1_512)
19

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Predication and Masking
No conditional execution inside SIMD vector loop

 Except special vector conditions

 Conditions transformed to vector predicates

 Control flow is flattened

Predicated execution

 Masking

 Blending with speculation

Masking on loads/stores

 Available on AVX512

 Limited availability in Intel® MIC Arch, AVX2, and AVX

 Emulated on SSE

Blending

 Safety to be proved

 Only reverse conditions

#pragma omp simd
for (i=0; i<n; i++) {

if (A[i]>0) {
B[i] = C[i] + 20;

}
else {

B[i] = C[i] + 100;
}

}
M = (A[i:i+3] > 0);

B[i:i+3]{M}= C[i:i+3]{M}+{M}20;

B[i:i+3]{~M}= C[i:i+3]{~M}+{~M}100;

M = (A[i:i+3] > 0);
B[i:i+3] = (C[i:i+3]+20)&M | (C[i:i+3]+100)&~M;

Before vectorizer

Flattened
masked

Flattened
masked

lucky

Blended if
you are
lucky

Avoid Branchy Code  Improve SIMD Vector EfficiencyAvoid Branchy Code  Improve SIMD Vector Efficiency

20

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Neighboring Gather/Scatter Optimization
for (int i = 0; i < size; ++i) {

#pragma omp simd
for (int j = i + 1; j < size; ++j) {

pij = pi - data[5 * j];
qij = qi - data[5 * j + 1];
rij = ri - data[5 * j + 2];
...

Before:
3 gathers

data[5*j]

data[5*j+1]

data[5*j+2]

After:
loads + “the magic”

data[5*j]

data[5*j+1]

data[5*j+2]

...

...

2x kernel speed-up on HSW2x kernel speed-up on HSW

...

21

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Optimization of neighboring Gathers
• Complete support for unmasked strided (d[i]) and

indexed (d[ind[i]]) loads of 1, 2, 4, 8 and 16-byte
elements for SSE2-AVX512

• Provides more effective CPU resources usage for
cases with data locality

• May require additional source changes to enable
the pattern recognition (e.g. restrict, base/index
hoisting, loads grouping)

• Also reflected in optimization report:

remark #34030: adjacent sparse (strided) loads
optimized for speed.
Details: stride { 12 }, types { F32-V512, F32-
V512, F32-V512 }, number of elements { 16 },
select mask { 0x000000007 }.

struct {
TYPE f0;
…
TYPE fN;

} d[];

for (int i = 0; i < size; ++i)
tmp += d[i].f0 + … + d[i].fN;

vgatherdps 0(%rcx,%zmm0,4), %zmm6{%k1}
vgatherdps 4(%rcx,%zmm0,4), %zmm7{%k2}
vgatherdps 8(%rcx,%zmm0,4), %zmm9{%k3}

Before (TYPE=FLOAT, N=2)

Now (TYPE=FLOAT, N=2)

vmovups (%rcx), %zmm10
vmovups 64(%rcx), %zmm9
vmovups 128(%rcx), %zmm14
vpermi2ps %zmm9, %zmm10, %zmm7
vpermi2ps %zmm9, %zmm10, %zmm8
vpermt2ps %zmm9, %zmm1, %zmm10
vpermi2ps %zmm7, %zmm14, %zmm11
vpermi2ps %zmm8, %zmm14, %zmm12
vpermt2ps %zmm10, %zmm0, %zmm14

60

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

OpenMP SIMD Linear(ref/val/uval)
Rationale:

 For implicitly reference linear parameters
it is nice to have reference as linear

OpenMP 4.5 syntax:

 Linearity specification for references vs. values

 linear(val(var):[step]) – the value is linear even if passed by
reference

 If passed by reference the vector of references is
passed

 linear(uval(var):[step]) – value passed by
reference is linear

 The reference to the first lane is passed,
other values constructed using step

 linear(ref(var):step) – for parameters passed by
reference the underlying reference is linear

 Access will be sequential or strided
depending on step

 Original linear(var:[step]) – the same as
linear(val(var):[step])

!$omp declare simd
REAL FUNCTION FOO(X, Y)
REAL, VALUE :: Y << by reference
REAL, VALUE :: X << by reference
FOO = X + Y << gathers!!!!
END FUNCTION FOO
…
!omp$ simd private(X,Y)
DO I= 0, N

Y = B(I)
X = A(I)
C(I) += FOO(X, Y)

ENDDO

!$omp declare simd linear(ref(x),ref(y))
REAL FUNCTION FOO(X, Y)
REAL, VALUE :: Y << by reference
REAL, VALUE :: X << by reference
FOO = X + Y << sequential reads
END FUNCTION FOO
…
!omp$ simd private(X,Y)
DO I= 0, N

Y = B(I)
X = A(I)
C(I) += FOO(X, Y)

ENDDO

61

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Linear(ref/val/uval) Examples
Things to remember:

 linear(ref(x:[step])) matches to unit/non-unit stride arguments if step match

 linear(ref(x)) matches to private arguments: these are allocated sequentially

 linear(uval(x)) is preferred to linear(val(x)) for by-reference passed read-only linears: uval facilitates more efficient parameter
passing. If both specified uval is matched

Linear(val)/linear(uval):
interface

real function func1(x, i)
!$omp declare simd(func1) uniform(x) linear(val(i):1)

real(8), intent(inout) :: x(*)
integer, intent(in), value :: i

end function func1
real function func2(x, i)

!$omp declare simd(func2) uniform(x) linear(uval(i):1)
real(8), intent(inout) :: x(*)
integer, intent(in), value :: i

end function func2
end interface
…
!$omp simd linear(k:1)
do i=1, n

x(i) = func1(x, k) << k passed as vector of refs
x(i) = func2(x, k) << k passed as single ref
k = k + 1

enddo

linear(ref):

#pragma omp declare simd linear(ref(p))
void add_one(int& p) { p += 1; }

int a[NN];

#prgma omp simd linear(p)
for (i = 0; i < NN; i++) {
add_one(*p); <<< unit-stride load
p++;

}

#prgma omp simd private(p)
for (i = 0; i < NN; i++) {
p = a[i];
add_one(p); <<< private
b[i] = p;

}

#prgma omp simd
for (i = 0; i < NN; i++) {
add_one(i); <<< match, incorrect

}

62

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SIMD Data Layout Template (SDLT) Library
#include <stdio.h>
#include <iostream>

#define N 1024
typedef struct RGBs {

float r; float g; float b;
} RGBTy;

void main()
{
RGBTy a[N];

#pragma omp simd
for(int k=0; k<N; k++) {

a[k].r = k*1.5; a[k].g = k*2.5; a[k].b = k*3.5;
}
std::cout << "k =" << 10 <<

", a[k].r =" << a[10].r <<
", a[k].g =" << a[10].g <<
", a[k].b =" << a[10].b << std::endl;

}

#include <stdio.h>
#include <sdlt/primitive.h>
#include <sdlt/soa1d_container.h>
#define N 1024
typedef struct RGBs {

float r; float g; float b;
} RGBTy;
SDLT_PRIMITIVE(RGBTy, r, g, b)
void main()
{
sdlt::soa1d_container<RGBTy> aContainer(N);
auto a = aContainer.access();
#pragma omp simd
for(int k=0; k<N; k++) {

a[k].r() = k*1.5; a[k].g() = k*2.5; a[k].b() = k*3.5;
}
std::cout << "k =" << 10 <<

", a[k].r =" << a[10].r() <<
", a[k].g =" << a[10].g() <<
", a[k].b =" << a[10].b() << std::endl;

}

r r r r …

g g g g …

b b b b …

r g b r g b r g b …

25

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SDLT: AOS vs. SOA

..B1.5: # Preds ..B1.5 ..B1.4
vpaddd %zmm4, %zmm3, %zmm12 #19.3
vcvtdq2ps %zmm3, %zmm7 #21.17
vcvtdq2ps %zmm12, %zmm10 #21.17
vmulps %zmm7, %zmm2, %zmm5 #21.19
vmulps %zmm7, %zmm1, %zmm6 #22.19
vmulps %zmm7, %zmm0, %zmm8 #23.19
vmulps %zmm10, %zmm2, %zmm3 #21.19
vmulps %zmm10, %zmm1, %zmm9 #22.19
vmulps %zmm10, %zmm0, %zmm11 #23.19
vmovups %zmm5, (%rsi,%rcx,4) #21.15
vmovups %zmm6, (%rdx,%rcx,4) #22.15
vmovups %zmm8, (%rax,%rcx,4) #23.15
vmovups %zmm3, 64(%rsi,%rcx,4) #21.15
vmovups %zmm9, 64(%rdx,%rcx,4) #22.15
vmovups %zmm11, 64(%rax,%rcx,4) #23.15
vpaddd %zmm4, %zmm12, %zmm3 #19.3
addq $32, %rcx #21.6
cmpq $1024, %rcx #21.6
jb ..B1.5 # Prob 82% #21.6

..B1.3: # Preds ..B1.3 ..B1.2
vcvtdq2ps %zmm5, %zmm11 #18.15
lea (%rsp,%rax), %rcx #18.6
vcvtdq2ps %zmm4, %zmm12 #18.15
vpaddd %zmm6, %zmm5, %zmm5 #16.3
vpaddd %zmm6, %zmm4, %zmm4 #16.3
vmulps %zmm11, %zmm3, %zmm7 #18.17
vmulps %zmm12, %zmm3, %zmm8 #18.17
vmulps %zmm11, %zmm2, %zmm9 #19.17
vmulps %zmm12, %zmm2, %zmm10 #19.17
vmulps %zmm11, %zmm1, %z #20.17
vmulps %zmm12, %zmm1, %zmm1 #20.17
kxnorw %k0, %k0, %k1 #18.6
kxnorw %k0, %k0, %k2 #18.6
kxnorw %k0, %k0, %k3 #19.6
kxnorw %k0, %k0, %k4 #19.6
kxnorw %k0, %k0, %k5 #20.6
kxnorw %k0, %k0, %k6 #20.6
vscatterdps %zmm7, (%rcx,%zmm0,4){%k1} #18.6
vscatterdps %zmm8, 192(%rcx,%zmm0,4){%k2} #18.6
addl $32, %edx #17.12
lea 4(%rsp,%rax), %rsi #18.6
vscatterdps %zmm9, (%rsi,%zmm0,4){%k3} #19.6
lea 8(%rsp,%rax), %rdi #18.6
vscatterdps %zmm10, 192(%rsi,%zmm0,4){%k4} #19.6
vscatterdps %zmm13, (%rdi,%zmm0,4){%k5} #20.6
vscatterdps %zmm14, 192(%rdi,%zmm0,4){%k6} #20.6
addq $384, %rax #17.12
cmpl $1024, %edx #17.12
jb ..B1.3 # Prob 82% #17.12

AOS AVX512 ASM Code SOA / SDLT AVX512 ASM Code: scatter instructions are all gone

26

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Programmer Friendly Optimization Report

30

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

 Significant improvement in variable names and memory references reporting
16.0: remark #15346: vector dependence: assumed ANTI dependence between line 108 and line 116

17.0: remark #15346: vector dependence: assumed ANTI dependence between *(s1) (108:2) and *(r+4) (116:2)

 More precise non-vectorization reasons

o E.g.: “exception handling for function call prevents vectorization”

 Gather and partial scalarization reasons reporting (-qopt-report:5)
16.0: remark #15328: vectorization support: gather was emulated for the variable xyBase: indirect access
[scalar_dslash_fused.cpp(334,27)]

17.0: remark #15328: vectorization support: gather was emulated for the variable
<xyBase[xbOffset][c][s][1]>, indirect access, part of index is conditional
[scalar_dslash_fused.cpp(334,27)]

Other reasons are:
o read from memory
o nonlinearly computed
o is result of a call to function
o is linear but may overflow  either in unsigned indexing or in address computation

o is private  memory privatization in explicit vectorization or serialized computation

31

Optimization Report Improvements

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

67

Vectorization Advisor
Assist code vectorization for Intel® SIMD (Zakhar A. Matveev)
 All the data you need in

one place

 Combines Intel Compiler opt-report
with dynamic profile.

 Detects “hot” un-
vectorized or “under
vectorized” loops.

 Identify performance
penalties and recommend
fixes

 Explicit advices with “true intelligence”
including OpenMP4.x

 Memory layout (stride)
analysis

 Increase the confidence
that vectorization is safe

32

Advances:
Tackle C++ Challenges
and Beyond

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

 Syntax

o Exactly same syntax as for usual vector functions

 Inheritance:

o Set of versions inherited and cannot be altered in
overrides

o Implication: SIMDness should be introduced along
with virtual method, not in overrides

 Things to remember:

o Performance depends on divergence:

o uniform(this) fastest: single call per chunk

o Different overrides in lanes slowest: loop for each unique
call target

o Limitations:

o Multiple inheritance is not supported

o Pointers to virtual vector methods are not supported

class A {
public:
#pragma omp declare simd linear(X)
#pragma omp declare simd uniform(this) linear(X)

virtual int foo(int X);
};

#pragma omp declare simd uniform(this) linear(X)
int A::foo(int X){ return X+1; }

class B : public A {
public:

// #pragma omp declare simd linear(X) - inherited
// #pragma omp declare simd uniform(this) linear(X)
int foo(int X) { return (X*X); }

};

int main() {
A* b[N], a = new B();
int sum=0;

for (int i=0; i < N; i++) {
b[i] = (i % 6) < 2 ? new A() : new B();

}

#pragma omp simd reduction (+:sum)
for (int i=0; i < N; i++) {

sum += a->foo(i); // uniform(this) matched
} // one call per chunk

#pragma omp simd reduction (+:sum)
for (int i=0; i < N; i++) {

sum += b[i]->foo(i); // linear(X) matched
} // 1 or 2 calls per chunk

Virtual SIMD Functions

69 34

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

// SIMD vector pointer declaration annotation

#pragma omp declare simd // universal but slowest definition matches the use in all three loops

#pragma omp declare simd linear(in1), linear(ref(in2)), uniform(mul) // matches the use in the first loop

int (*funcptr)(int* in1, int& in2, int mul);

70

SIMD Function Pointers

int *a, *b, mul, *c;
int *ndx, nn;
...

// loop examples
#pragma omp simd
for (int i = 0; i < nn; i++) {

c[i] = func(a + i, *(b + i), mul); // in the loop, the first arg is changed linearly,
// the second reference is changed linearly too
// the third parameter is not changed

}

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
71

Vector Function Pointers
Enable: -simd-function-pointers/ -Qsimd-function-pointers

The syntax:

 Apply usual vector function declaration to a function pointer variable or function pointer
typedef

 Assign address of compatible SIMD-enabled function to a pointer or pass as parameter

Things to remember

 Performance depends on divergence

 Scalar function pointers and vector function pointers are binary incompatible

 Vector specifications are not part of a type (at least not in current implementation)

 They may not be used for function overloading or template instantiation. No specific
name mangling done for e.g. parameters of such types.

 Situations that may lead to run-time ambiguities are caught and error “Error #3757: this use
of a vector function type is not fully supported” reported

 If you are sure that no ambiguity possible (e.g. function accepting vector function pointer has
distinct name and fully declared before all uses) you may override the error via –wd3757
command line switch

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Vectorizing Loop with vcompress/vexpand

72

Compress

count = 0;
#pragma omp simd
for(i){

if (cond(i)){
#pragma omp ordered simd
{

count++;
A[count] = B[i];//compress

}
}

}

Expand

count = 0;
#pragma omp simd
for(i){

if (cond(i)){
#pragma omp ordered simd

{
count++;
A[i] = B[count];//expand

}
}

}

A[0] A[1] A[2] A[3]

B[0] B[1] B[2] B[3]

A[0] A[1] A[2] A[3]

B[0] B[1] B[2] B[3]

When cond(i) is
[F T F T]

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Compress/Expand with Monotonic Semantics

73

count = 0; inc = 1;
#pragma omp simd
for(i=0; i<N; i++) {
#pragma omp ordered simd monotonic(count: inc) // proposed clause

{
if (cond(i)) {

A[count] += B[i]; // compress
count+=inc
B[i] = C[count]; // expand

}
}

}

Vector Operation with compress/expand

{
st1 = count
vt2 = maskload(B[i], cond(i))
compressstore(A[st1], cond(i), vt2)
count += popcount(cond(i))
st1 += inc
vt3 = expandload(C[st1], cond(i))
maskstore(B[i], cond(i), vt3)

}

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
74

Integral part of Intel® Parallel Studio XE

As a software developer, I care about:
…and my challenges

are:
Intel compilers offer:

Performance – I develop
applications that need to

execute FAST

Taking advantage of the
latest hardware

innovations

Developers the full power
of the latest x86-

compatible processors
and instruction sets

Productivity – I need
productivity and ease of use

offered by compilers

Finding support for the
leading languages and
programming models

Support for the latest
Fortran, C/C++, and
OpenMP* standards;

compatibility with leading
compilers and IDEs

Scalability – I develop and
debug my application locally,

and deploy my application
globally

Maintaining my code as
core counts and vector
widths increase at a fast

pace

Scalable performance
without changing code as

newer generation
processors are introduced

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Summary: Close to Metal Performance via Explicit
SIMD Programming
The reality:

 There is no one single solution that would make all programmers happy after
decades of trying.

 There is no free lunch for effectively utilizing SIMD HW in multicore CPUs,
accelerators and GPUs.

 There are many emerging programming models for multicore CPUs, accelerators
and GPUs.

 Programming languages and compilers are driven by hardware and application

 The incremental approach of applying the learnings from HPC and graphics is
working

Simple programming language extensions for computational use of SIMD Hardware

Portable and consistent SIMD programming model across CPU, Coprocessors and GPUs

40

Robert Geva – Senior Principal Engineer
Intel Corporation
September 11, 2016

PACT 2016 Tutorial, Haifa, Israel

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Section III: Agenda
•HW support growing over time
•Performance impact of SIMD
•Vector programming as part of parallel programming

Introduction

•Based on joint projects with Intel’s customers
•Myth debunking: vectorization is about adding #pragma to the right loops

Case studies

•Why OpenMP is inadequate
•What stays similar to OpenMP
•How it is different
•Future extensions to the proposal

The proposal being
processed at the

C++ standard

•Best practices in using the vector syntax in algorithms
•AVX512 specific patterns

Design patterns

•How to write GPGPU kernels in OpenMP
•Myth debunking: why the same code for CPU ad GPU cannot be optimal for the CPU
•Performance data: methodology, case studies and results

Performance
portability

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
78

0.00

50.00

100.00

150.00

200.00

250.00

300.00

X2007 X2009 X2010 X2012 X2013 X2014 X2016

Th
o

u
sa

n
d

s

Binomial Options

(1) Incremental growth in CPU resources

(2) Improvements in compilers and parallel
frameworks

(3) Better Parallelization techniques

Cores SIMD LANES
X2007 8 128 32
X2009 8 128 32
X2010 12 128 48
X2012 16 256 128
X2013 24 256 192
X2014 36 256 288
X2016 44 256 352 0

50

100

150

200

250

300

350

400

X2007 X2009 X2010 X2012 X2013 X2014 X2016

vector lanes

Parallel computing with Intel Architecture

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Parallel performance over time

0

20

40

60

80

100

HTN NHM WSM SNB IVB HSW

LIBOR Market Model normalized

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

HTN 3.0 NHM 2.9 WSM 3.3 SNB 2.9 IVB 2.7 HSW 2.2

O
p

ti
o

n
s

P
ro

ce
ss

ed
 P

er
 S

ec
, i

n

B
ill

io
n

s

H
ig

h
er

 is
 B

et
te

r

Black Scholes DP

0

50

100

150

200

250

HTN NHM WSM SNB IBV HSW BDW

Monte Carlo Asian Options

SS VS SP VP

0

50

100

150

200

X2007 X2009 X2010 X2012 X2013 X2014 X2016

Monte Carlo American Options

SS VS SP VP

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Parallel Programming for Intel® Architecture
(or, in general, for normal CPUs)

Cores

Vectors

Memory,
caches

Data layout
and

alignment

OpenMP TBB Cilk plus

Vector
loops

Vector
functions

Blocking
algorithms

Manual
layout, ugly

code

AoS  SoA
library

4 considerations to take care of when writing
an efficient, unconstrained parallel program

Array
notations

Threads,
locks

Intrinsics

Directives
for

alignment

Aligned
allocators

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

#1 Best Practice in Parallelizing a Loop Hierarchy

If still not enough parallelize try to add more
work or increase the problem size

Otherwise parallelize an additional inner level

If that provides sufficient parallelism stop, don’t
oversubsribe

Parallelize at the outermost level, seek maximal
amount of work to execute in parallel

A shallow hierarchy may result in a loop that has to be both parallelized
and vectorized. In that case, it needs to both provide sufficient amount

of work and uniform control flow and memory access

If vectorization of innermost loop
is not profitable try to vectorize an

outer loop

Try to vectorize the innermost loop(s).
Ensure minimal control flow divergence and

memory access uniformity

Make sure the algorithm is cache
efficient

Vectorize Innermost, Parallelize Outermost (VIPO)

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

robert.geva@intel.com

Performance with vector parallelism

9/18/2016

0

2

4

6

8

10

12

MC Binomial BS

Serial, single prec

0

2

4

6

8

10

MC Binomial BS

parallel, single prec

0

1

2

3

4

5

6

MC Binomial LMM

serial, double prec

0

1

2

3

4

5

MC Binomial LMM

parallel, double prec

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions.
Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products. See backup slides for configuration details. For more information go to http://www.intel.com/performance

SOURCE: INTEL MEASURED RESULTS AS OF March, 2014Configuration

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Vector Programming (Part of Parallel Programming)

Language
specification

Compiler(s)
implementation

Algorithmic Best
Practices

Socialize

Effective use of the new syntax

Efficient design level considerations

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Capabilities in Vector Programming

1. Vector Loops

a) The syntax means that a loop is a vector loop

b) Used mostly at the application level

c) Syntax can look like OpenMP*, Intel® Cilk™, Intel® Threading Building
Blocks, etc.

d) The loop is single threaded and consistent with SIMD execution

e) Additional syntax for more capabilities

2. Vector Functions

a) The function is compiled as if it is part of the body of a vector loop

b) For use in larger projects and for libraries

c) Organizations interested in methodological
parallel programming

d) Additional syntax for more capabilities
#pragma omp declare simd
vec_add (float *a,float *b,float *c int i)
{

a[i] = b[i]+c[i] ;
}

#pragma omp simd
for(i = 0; i<N; ++i)
{

a[i] = b[i]+c[i] ;
}

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Case studies

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Case Study: Trinomial options

Vectorize the inner loop

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions.
Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,

sec How was it done

31 GCC Baseline

28.7 1.1X ICC Baseline

19.0 1.6X Vectorize critical loop.

14.3 2.2X Use AVX

11.6 2.7X Add aligned vectors

0.84 37X Parallelize with OMP

0.60 51X Move to Intel® Xeon
Phi coprocessor

#pragma omp simd
for (int n = 0; n < 2*m + 1; n++)
{

vCurrent[n] = fmax(BsAnalyticIntrinsicValue(TreeGetAdjustedSpot(m, n, params), kMod, isCall),
discount*(ExpectedValue(vCurrent[n], vCurrent[n + 1], vCurrent[n + 2], params)));

}

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Asian Options example: Vectorize an outer loop

#pragma omp parallel for simd reduction(+:val) reduction(+:val2)
for(int pos = 0; pos < RAND_N; pos++)
{

__declspec(align(64)) tfloat simStepResult[SIMSTEPS+1];
simStepResult[0] = 1.0;
tfloat avgMean = 0.0;
for (int simStep =0; simStep < SIMSTEPS; simStep++)
{

location = pos*SIMSTEPS + simStep;
simStepResult[simStep+1] = simStepResult[simStep]*EXP(MuByT + VBySqrtT*l_Random[location]);
avgMean += simStepResult[simStep+1];

}

//Use Arithmetic Mean
avgMean *= Sval/SIMSTEPS;
tfloat callValue = max((avgMean - Xval), 0);
val += callValue;
val2 += callValue * callValue;

}

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

LIBOR case study: Vectorize an outer loop with function calls

#pragma omp declare simd
static void path_calc_b1(REAL *z, REAL *L, REAL *L2, const REAL* lambda)
{

int i, n;
REAL sqez, lam, con1, v, vrat;
memcpy(L2, L, NN*sizeof(REAL));
for (n = 0; n < NMAT; n++) {
sqez = SQRT_DELTA * z[n];
v =REAL(0);
for (i=n+1; i<NN; i++) {
lam = lambda[i-n-1];
con1 = DELTA * lam;
v += con1 * L[i] / (REAL(1) + DELTA * L[i]);
vrat = std::exp(con1 * v + lam * (sqez - REAL(0.5) * con1));
L[i] = L[i] * vrat;
L2[i+(n+1)*NN] = L[i];

}
}

}

#pragma omp simd reduction(+: sumv) reduction(+: sumlb)
for (path=0; path<numPaths; path++) {

path_calc_b1(ptrZ, L, L2, lambda);
path_calc_b2(L_b, L2, lambda);

}

A few lines of code
removed to fit into
the page

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Myth: To vectorize, I have
to find the suitable loops
and add #pragmas to
them.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

OpenMP parallelism: wrong way
nbnds=jend-jstart+1 ! [jstart,jend)
!$OMP PARALLEL FOR collapse(2)
DO j=1,nbnds
DO ir=1,nrxxs
rho(ir,j)=CONJG(exxbuff(ir,j+jstart))*temppsi(ir)/Omega

ENDDO
ENDDO
FFTm(rho) ! Batch 3D FFT

!$OMP PARALLEL FOR collapse(2)
DO j=1,nbnds
DO ir=1,nrxxs
vc(ir,j)=facb(ir)*rho(ir,j)*x(j+jstart)*y

ENDDO
ENDDO

invFFTm(vc) ! Batch 3D FFT
!some more on vc
!$OMP PARALLEL FOR
Do ir=1,nrxxs
Do j=1,nbnds
result(ir)=result(ir)+vc(ir,j)*exxbuff(ir,j+jstart)

ENDDO
ENDDO

collapse(2) introduced to expose
parallelism over nbnds*nrxxs, but
• temppsi shared by j
• cannot be linearlized
• poor cache use

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Blocking: Parallelism, SIMD and Cache
blocking

nbnds=jend-jstart+1 ! [jstart,jend)
nblocks=2048
!$OMP PARALLEL FOR collapse(2)
DO irb=1,nrxxs,nblocks

DO j=1,nbnds
irmax=min(nrxxs,irb+nblocks)

!DIR$ vector nontemporal(rho)
DO ir=irb,irmax

rho(ir,j)=CONJG(exxbuff(ir,j+jstart))*temppsi(ir)/Omega
ENDDO

ENDDO
ENDDO

Empirically determined for this loop
• irb-j loop better than j-irb
• nblocks=2048
• streaming stores (to be explored further later after dungeon)
Other seemingly similar loops favor j-irb
Reduction kernels benefit from blocking

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
92

STAC-A2: breaking dependencies

void sum(const int* in1, const int* in2, std::size_t
size, int* out)
{

#pragma omp simd
for(int i=0; i<size; ++i){

out[i] = in1[i] + in2[i];
}

}

for (unsigned p = 0; i < nPaths; ++p)
{

double mV[nTimeSteps];
double mY[nTimeSteps];

…..
for (unsigned int t = 0; t < nTimeSteps; ++t){

double currState = mY[t] ; // Backward dependency
….
double logSpotPrice = func(currState, …);
mY[t+1][p] = logSpotPrice * A[t];
mV[t+1][p] = logSpotPrice * B[t] + C[t] * mV[t][p];
price[t][p] = logSpotPrice*D[t] +E[t] * mV[t][p];

}
}

double mV[nTimeSteps][nPaths];
double mY[nTimeSteps][nPaths];
…
for (unsigned int t = 0; t < nTimeSteps; ++t){

#pragma omp simd
for (unsigned p = 0; i < nPaths; ++p)
{

double currState = mY[t][p] ;
….
double logSpotPrice = func(currState, …);
mY[t+1][p] = logSpotPrice * A[t];
mV[t+1][p] = logSpotPrice * B[t] + C[t] * mV[t][p];
price[t][p] = logSpotPrice*D[t] +E[t] * mV[t][p];

}
}

Original Code Modified Code

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
93

Intel® TBB parallel blocks, using ranges

tbb::parallel_for(blocked_range<int>(0, nPaths),
[&](const blocked_range<int>& r) {

cosnt int block_size = r.size();
double mV[nTimeSteps][block_size];
double mY[nTimeSteps][block_size];
…
for (unsigned int t = 0; t < nTimeSteps; ++t){

#pragma omp simd
for (unsigned p = 0; i < block_size; ++p)
{

double currState = mY[t][p] ;
….
double logSpotPrice = func(currState, …);
mY[t+1][p] = logSpotPrice * A[t];
mV[t+1][p] = logSpotPrice * B[t] + C[t] * mV[t][p];
price[t][r.begin()+p] = logSpotPrice*D[t] +E[t] * mV[t][p];

}
}

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
94

PDE solver

void solve_tridigonal (double* x, const int N, double* a, double* b, double
c, double cprime)
{
cprime[0] = c[0] / b[0];
x[0] = x[0] / b[0];

for (int in = 1; in < N; in++) {
REAL m = REAL(1.0) / (b[in] - a[in] * cprime[in - 1]);
cprime[in] = c[in] * m;
x[in] = (x[in] - a[in] * x[in - 1]) * m;

}

for (int in = N - 2; in-- > 0;)
x[in] = x[in] - cprime[in] * x[in + 1];

}

Most of the time is in the Thomas
algorithm, solving a tridiagonal matrix

Efficient and serial

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
95

But there is not a single matrix, there are many of
them.
//Solve 2D PDE
for(int j=1; j<OUTER-1; j++)
{

for(int i=1; i<INNER-1; i++)
{
//Create RHS
H[i] = v1[i][j];

}
h[1] = h[1] - a[1]*v2[0][j];
h[INNER-2] = h[INNER-2] - c[INNER-2]*v2[INNER-1][j];;

//Solve Tridiagonal system using Thomas Algorithm
solve_tridigonal (&h[1], INNER-2, &a[1], &b[1], &c[1], &scratch[1]);
//copy RHS to v2
for(int i=1; i<INNER-1; i++)
{
v2[i][j] = h[i];

}
}

There is a loop of calls to the solver

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
96

Widen the outer loop stride – add a dimension -
make space for a new inner loop

//Solve 2D PDE
for(int j=1; j<OUTER-1; j+=DIMNSZ)
{
for(int i=1; i<INNER-1; i++)
{

#pragma simd
for(int j1=0; j1<DIMNSZ; j1++)
{
int cntJ = j+j1;
h[i][j1] = v1[i][cntJ];

}
}
#pragma simd
for(int j1=0; j1<DIMNSZ; j1++)
{
int cntJ = j+j1;
h[1][j1] = h[1][j1] - a[1]*v2[0][cntJ];
h[INNER-2][j1] = h[INNER-2][j1] - c[INNER-2]*v2[INNER-1][cntJ];

}
//Solve Tridiagonal system using Thomas Algorithm
solve_tridigonal_simd(&h[1], INNER - 2, &a[1], &b[1], &c[1], &scratch[1]);

for(int i=1; i<INNER-1; i++)
{

#pragma simd
for(int j1=0; j1<DIMNSZ; j1++)
{
int cntJ = j+j1;
v2[i][cntJ] = h[i][j1];

}
}

}

Add a
dimension

Add a
dimension

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
97

The new inner loop can vectorize a the new
dimension, where there are no dependencies

void solve_tridigonal_simd (double x[][DIMNSZ], const int N, double* a, double* b, double *c, double *
cprime)
{

cprime[0] = c[0] / b[0];

#pragma simd
for(int j=0; j<DIMNSZ; j++)
{

x[0][j] = x[0][j] / b[0];
}
/* loop from 1 to N - 1 inclusive */
for (int in = 1; in < N; in++)
{

double tmpA = a[in];
double tmpB = b[in];
double tmpC = c[in];
double m = REAL(1.0) / (tmpB - tmpA * cprime[in - 1]);
cprime[in] = tmpC * m;

#pragma simd
for (int j =0; j<DIMNSZ; j++)
{
x[in][j] = (x[in][j] - tmpA * x[in - 1][j]) *m;

}
}
for (int in = N - 2; in-- > 0;)
{

double cPrime = cprime[in];
#pragma simd
for (int j =0; j<DIMNSZ; j++)
{

x[in][j] = x[in][j] - cPrime * x[in + 1][j];
}

}

}

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

FX LSV Monte Carlo case study

Citi | Market Quantitative Analysis

Thomas Trenner

Robert Geva

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Loop interchange leads to canonical loop hierarchy

blocks loop

path loop

time loop

blocks loops – data independent
path loop – data independent
time loop – value at t depends

on value at t-1

blocks loop

time loop

path loop

Parallelize the outer loop
keep the middle loop sequential
vectorize the inner loop:
This works best!

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Results

100

Step Thread

count

Time

(Secs)

Measurements were taken on an E5-2697 Haswell with

 ICC v 15.0.1

 RHEL 6.5

1 1 82.6 Baseline Results

2 1 24.6 Loop interchange

3 1 11.3 With vectorization

2.2x Vectorization Speedup.
4 1 9.9 +MKL RNG.

5 1 9.4 +TBB allocator

8.8x Single Threaded Speedup.
6 28 0.47 +TBB Threads

7 28 0.45 +Turbo mode enabled.

183x Multi threaded Speedup.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Vectorization

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Concepts used in vectorising the loop
#pragma simd:

• semantically correct to re-associate the order of evaluation, leading to vectorization

First private:

• each iteration gets a private copy of the object, initialized by the value it has prior to the loop

Assert:

• abort compilation with an error message if the loop is not vectorized

Vectorlengthfor(type):

• The size of type determines how many loop iteration to vectorize across

declspec(vector):

• A vector function. Compiled and execute as if a body of a vector loop

Uniform(parameter):

• All values of parameter in one vector invocation of the function are the same

Processor(code_4th_gen_avx):

• use YMM to pass arguments, (the default is XMM)

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Reality: in most of real life
cases, the loop that ended
up vectorized, did not
exist in the original code.
It resulted due to one of
the restructuring best
practices

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Design patterns

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

A simple patterns

#prgma omp declare simd
void BlackScholesBodyCPU(

float* call, //Call option price
float* put, //Put option price
float Sf, //Current stock price
float Xf, //Option strike price
float Tf, //Option years
float Rf, //Riskless rate of return
float Vf //Stock volatility

){
float S = Sf, X = Xf, T = Tf, R = Rf, V = Vf;
float CNDD1, CNDD2, sqrtT, expRT
sqrtT = sqrtf(T);
d1 = (logf(S / X) + (R + 0.5f * V * V) * T) / (V * sqrtT);
d2 = d1 - V * sqrtT;
CNDD1 = CND(d1);
CNDD2 = CND(d2);
expRT = expf(- R * T);
*call = (FTYPE)(S * CNDD1 - X * expRT * CNDD2);
*put = (FTYPE)(X * expRT * (1.0f - CNDD2) - S * (1.0f -

CNDD1));
}

#pragma omp parallel simd for
for (int i = 0; i < m_optionCount; i++)

BlackScholesBodyCPU(&resultCallGen[i], &resultPutGen[i],
stockPrice[i], optionStrike[i], optionYears[i],R,m_V);

A loop with no data dependencies
No control flow
Simple memory access
Could also be parallelized
Scales well

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

A loop with forward dependence

float stepsArray[STEPS_CACHE_SIZE];
#pragma omp simd
for (int j = 0; j < STEPS_CACHE_SIZE; j++) {

float profit = s * expf(vsdt * (2.0f * j - numSteps)) - x;
stepsArray[j] = profit > 0.0f ? profit : 0.0f;

}
for (int j = 0; j < numSteps; j++) {

#pragma omp simd
for (int k = 0; k < NUM_STEPS_ROUND; ++k) {

stepsArray[k] = pdByr * stepsArray[k + 1] + puByr * stepsArray[k];
}

}

The vector loops propagates values from root to leaves
Looks very similar to original, sequential loop
stepArray[k] depends on stepArray[k+1], vector programming supports it
SIMD != SIMT
Parallelization is at an outer level.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Parameter Qualifiers
#pragma omp declare simd
void foo (float &a, int i)
{

x = a[i];

}

Compiling the vector variant will generate
multiple expressions of x = a[i] – what are the
relationship between the memory accesses?

If the compiler doesn't know better,
then they are unrelated.

#pragma omp declare simd uniform (a)
void foo(float *a, int i);

a is a pointer

i is a vector of integers

a[i] becomes gather/scatter

#pragma omp declare simd linear(i)
void foo(float *a, int i);

a is a vector of pointers

i is a sequence of integers
[i, i+1, i+2…]

a[i] becomes gather/scatter

#pragma omp declare simd
uniform(a),linear(i))
void foo(float *a, int i);

a is a pointer

i is a sequence of integers [i, i+1, i+2…]

a[i] is a unit-stride load/store

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Multiple Variants of a Vector Function

#pragma omp declare simd
#pragma omp declare simd uniform(r,op1,op2) linear (i)
Void
vec_add (float *r, float *op1, float *op2, int i)
{

r[i] = op1[i] + op2[i];
}

Two vector variants
and one scalar

#pragma omp simd
for (int i = 0; i<N; ++i) {

vec_add(a,b,c,i);
}

#pragma omp simd
for (int i = 0; i<N; ++i) {

vec_add(a[x1[[i]],b[x2[i]],c[x3[i]],i);
}

Call matches the
variant w/o the
uniforms

Call matches the
variant with the
uniforms

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Multiple Variants of a Vector Function

#pragma omp declare simd
#pragma omp declare simd uniform(r,op1,op2) linear (i)
Void
vec_add (float *r, float *op1, float *op2, int i)
{

r[i] = op1[i] + op2[i];
}

Two vector variants
and one scalar

#pragma omp simd
for (int i = 0; i<N; ++i) {

vec_add(a,b,c,i);
}

#pragma omp simd
for (int i = 0; i<N; ++i) {

vec_add(a[x1[[i]],b[x2[i]],c[x3[i]],i);
}

Call matches the
variant w/o the
uniforms

Call matches the
variant with the
uniforms

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Multiple Variants of a Vector Function

#pragma omp declare simd
#pragma omp declare simd uniform(r,op1,op2) linear (i)
Void
vec_add (float *r, float *op1, float *op2, int i)
{

r[i] = op1[i] + op2[i];
}

Two vector variants
and one scalar

#pragma omp simd
for (int i = 0; i<N; ++i) {

vec_add(a,b,c,i);
}

#pragma omp simd
for (int i = 0; i<N; ++i) {

vec_add(a[x1[[i]],b[x2[i]],c[x3[i]],i);
}

Call matches the
variant w/o the
uniforms

Call matches the
variant with the
uniforms

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Additional SIMD specific capabilities

111

Scatter write: a[b[x]] = d[x];

Histogram: a[b[x]]++;

Expand: if (c[i]) a[i] = b[i] * d[j++];

Compress: if (c[i]) a[j++] = b[i] * d[i];

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

A lopsided loop
Assume execution where expensive calc is
called once per vector loop.

All lanes that execute inexpensive calc are
held back, and execute as slow as the
expensive calc.

Optimization: rewrite so that all expensive
calcs are consecutive, and inexpensive
calcs are consecutive.

The main loops speed-up for all HW
targets.

The overhead is vectorizeable using
compress / expand.

#pragma omp simd
for (int x = 0; x < N; ++x) {
double val = in[x];
if (val == 0.0){
results[x] = expensive_calc(val);

}
else
results[x] = inexpensive_calc(val);

}

112

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Partition By Weight

for (int x = 0; x < N; ++x) {
double val = in[x];
int mask_local = val == 0.0;
mask[x] = mask_local;
if(mask_local){

vecX[cnt] = val; //compressed
cnt++;

}
}

#pragma omp simd
for (int y = 0; y < cnt; ++y) {

vecX[y] = expensive_calc(vecX[y]);
}
cnt = 0;

for (int x = 0; x < N; ++x) {
double val = in[x];
if(__builtin_expect(mask[x],0))
results[x] = vecX[cnt++]; //expand

else
results[x] = inexpensive_calc(val);

}

113
With vector length of 8, gains of 8.3X using AVX512

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Performance portability

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Myth: I’d like to write the
same code for a CPU and
a GPU and have it
perform within 5% of
optimal.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Questions related to performance portability

A. Interest in maintaining a single source base across CPUs
and GPUs

B. Interest in languages that provide good support for both

C. Interest in OpenCL

D. Interest in conversion of CUDA code to CPUs / Xeon Phi

116

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Multiple parallelization related consideration are different, with potentially
significant impact, limiting the potential for performance portability

Wider fan out vs more work / worker

Account for memory and cache efficiency, tiling, blocking

Account for cores per socket, hyper threads per core, NUMA effects

Today’s focus: difference in vectorization.

117

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Rationale
SIMT- style kernels are too restrictive

 There are many parallel algorithms and design patterns

 In many cases, the kernel is not the optimal design pattern

 Then, a kernel- only language or a kernel only algorithmic design locks you out of a solution

A trivial case: Black Scholes

Example of kernels being inadequate: Binomial options

Data: writing kernels in OpenMP vs. writing loops in OpenMP,

 same language

 Same compiler

 Same HW

 Large performance impact

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

GPU kernels and CPU loop hierarchies

__device__
void BlackScholesBodyGPU(

float& CallResult,
float& PutResult,
float S, //Stock price
float X, //Option strike
float T, //Option years
float R, //Riskless rate
float V //Volatility rate

){
float sqrtT, expRT;
float d1, d2, CNDD1, CNDD2;
sqrtT = sqrtf(T);
d1 = (__logf(S / X) + (R + 0.5f * V * V) * T) / (V * sqrtT);
d2 = d1 - V * sqrtT;
CNDD1 = cndGPU(d1);
CNDD2 = cndGPU(d2);
expRT = __expf(- R * T);
CallResult = S * CNDD1 - X * expRT * CNDD2;
PutResult = X * expRT * (1.0f - CNDD2) - S * (1.0f - CNDD1);

}

#prgma omp declare simd
void BlackScholesBodyCPU(

float* call, //Call option price
float* put, //Put option price
float Sf, //Current stock price
float Xf, //Option strike price
float Tf, //Option years
float Rf, //Riskless rate of return
float Vf //Stock volatility

){
float S = Sf, X = Xf, T = Tf, R = Rf, V = Vf;
float CNDD1, CNDD2, sqrtT, expRT
sqrtT = sqrtf(T);
d1 = (logf(S / X) + (R + 0.5f * V * V) * T) / (V * sqrtT);
d2 = d1 - V * sqrtT;
CNDD1 = CND(d1);
CNDD2 = CND(d2);
expRT = expf(- R * T);
*call = (FTYPE)(S * CNDD1 - X * expRT * CNDD2);
*put = (FTYPE)(X * expRT * (1.0f - CNDD2) - S * (1.0f -

CNDD1));
}

BlackScholesGPU<<<256, 128>>>(
d_CallResult, d_PutResult, d_OptionStrike, d_StockPrice,
d_OptionYears, RISKFREE, VOLATILITY, OPT_N);

#pragma omp parallel simd for
for (int i = 0; i < m_optionCount; i++)

BlackScholesBodyCPU(&resultCallGen[i], &resultPutGen[i],
stockPrice[i], optionStrike[i], optionYears[i],R,m_V);

CUDA OpenMP

The “kernel” is the same as the body of a parallel and vector loop

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Vectorize the inner loop independently of the outer loop.
Vectorising with FORWARD dependencies

float stepsArray[STEPS_CACHE_SIZE];
#pragma omp simd
for (int j = 0; j < STEPS_CACHE_SIZE; j++) {

float profit = s * expf(vsdt * (2.0f * j - numSteps)) - x;
stepsArray[j] = profit > 0.0f ? profit : 0.0f;

}
for (int j = 0; j < numSteps; j++) {

#pragma omp simd
for (int k = 0; k < NUM_STEPS_ROUND; ++k) {

stepsArray[k] = pdByr * stepsArray[k + 1] + puByr * stepsArray[k];
}

}

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

CUDA version
//Calculations within shared memory
for(int k = c_start - 1; k >= c_end;){

//Compute discounted expected value
__syncthreads();
if(tid <= k)

callB[tid] = puByDf * callA[tid + 1] + pdByDf * callA[tid];
k--;
//Compute discounted expected value
__syncthreads();
if(tid <= k)

callA[tid] = puByDf * callB[tid + 1] + pdByDf * callB[tid];
k--;

}

since the order of thread scheduling is complex and best viewed as simply
undefined, the reduction primitive is double-buffered, ensuring by means of __syncthreads()
that results from the previous stage are ready before they are used in the next,

Source: http://www.andrew.cmu.edu/user/dayoonc/binomialOptions.pdf

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Significant and complex changes required
when no vector programming available
Original loop split to 2, array split to 2,
barriers required.

C++ AMP Sample Code for binomial options

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

GPGPU: only kernels

One-Size-Fits-All design pattern:
Write a kernel function, serial code
Then: Invoke many instances in parallel
(not minimizing that a lot of hard work still required, including tiling, etc)

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

#1 Best Practice in Parallelizing a Loop Hierarchy

If still not enough parallelize try to add more
work or increase the problem size

Otherwise parallelize an additional inner level

If that provides sufficient parallelism stop, don’t
oversubsribe

Parallelize at the outermost level, seek maximal
amount of work to execute in parallel

A shallow hierarchy may result in a loop that has to be both parallelized
and vectorized. In that case, it needs to both provide sufficient amount

of work and uniform control flow and memory access

If vectorization of innermost loop
is not profitable try to vectorize an

outer loop

Try to vectorize the innermost loop(s).
Ensure minimal control flow divergence and

memory access uniformity

Make sure the algorithm is cache
efficient

Vectorize Innermost, Parallelize Outermost (VIPO)

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Methodology

Write a few algorithms in two ways:

• Parallelize and vectorize the outer loop – the kernel pattern

• Parallelize the outer loop and vectorize the inner loop – VIPO

Express both patterns in OpenMP® 4.0 and C++

Use the same compiler – ICC

Use the same Hardware, OS, etc

The only difference – the parallelization and vectorization pattern

Compare performance

125

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Skeleton of sequential Binomial Code

Binomial()
{

__declspec(align(1024)) REAL Call[NUM_STEPS + 1];
//Forward Pass
for (int i = 0; i <= NUM_Nodes; i++)
{

double d = Sx * Exp(vDt * (2.0f* i - NUM_STEPS)) - Xx;
Call[i] = (d > 0) ? d : 0;

}
//Backward pass
for(int i = NUM_STEPS; i > 0; i--)
{

int Num_Nodes = i-1;
for(int j = 0; j <= Num_Nodes; j++)

Call[j] = puByDf * Call[j + 1] + pdByDf * Call[j];
}

}
main()
{

#pragma omp parallel for
for (int i=0; i<Nopt; i++)

Binomial();
}

Nopt = 131072 and NUM_STEPS = 1024

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Binomial Code Comparison
__attribute__((vector(vectorlength(DIMNSZ)))

Binomial(…..)

{

__declspec(align(1024)) double call[NUM_STEPS + 1];

for (int i = 0; i <= NUM_Nodes; i++) {

double d = sx * exp(t * (2.0f * i - NUM_STEPS)) - xx;

call[i] = (d > 0) ? d : 0;

}

for(int i = NUM_STEPS; i > 0; i--) {

int Num_Nodes = i-1;

for(int j = 0; j <= Num_Nodes; j++)

call[j] = puByDf * Call[j + 1] + pdByDf * call[j];

}

}

main()

{

#pragma omp parallel for

for (int n=0; n<Nopt; n+= DIMNSZ)

{

…….

#pragma simd

for (int i = 0; i < DIMNSZ; ++i) {

Binomial(…);

}

}

Binomial(…..)

{

__declspec(align(1024)) REAL Call[NUM_STEPS + 1];

#pragma simd

for (int i = 0; i <= NUM_Nodes; i++) {

double d = sx * exp(t * (2.0f * i - NUM_STEPS)) - xx;

Call[i] = (d > 0) ? d : 0;

}

for(int i = NUM_STEPS; i > 0; i--) {

int Num_Nodes = i-1;

#pragma simd

for(int j = 0; j <= Num_Nodes; j++)

call[j] = puByDf * call[j + 1] + pdByDf * call[j];

}

}

main()

{

#pragma omp parallel for

for (int i=0; i<Nopt; i++)

Binomial(….);

}

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Monte Carlo Pseudo Code Pattern

for(opt=0; opt< NumOptions ; opt++)

{

for(path=0; path<NumPaths; path++)

{

for (ts=1; ts<NumSteps; ts++)

{

S[ts] = S[ts-1] *exp(…)

}

}

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Results

MC reference Kernel loops KDR

time speedup time speedup

KNC 4.19 2.59 1.62 0.86 4.87 3.01

KNL 3.99 2.48 1.61 0.82 4.87 3.02

IVB 3.35 1.23 2.72 1.06 3.16 1.16

BO reference Kernel loops

time speedup time speedup

KNC 0.92 1.37 0.67 0.85 1.08 1.61

KNL 0.36 0.79 0.46 0.36 1.01 2.22

IVB 0.91 1.00 0.91 0.90 1.01 1.11

LMM reference kernel loops

time speedup time speedup

KNC 2223.35 2340.60 0.95 380.10 5.85 6.16

KNL 882.00 898.00 0.98 102.90 8.57 8.73

IVB 1302.29 1414.00 0.92 478.10 2.72 2.96

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

MC BO LMM

Kernel deficiency ratio

KNC KNL IVB

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Reality: writing the code
preferred by CPU is not
possible for GPU. The HW
doesn’t support it and the
languaes do not provide
syntax for it. Writing the
GPU preferred code for
CPU is possible, with
significant performance
loss

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

A proposal for c++

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
132

The OpenMP syntax – a good solutions for loops

#pragma omp parallel for
for(int opt = 0; opt < OPT_N; opt++)
{

float VBySqrtT = VOLATILITY * sqrtf(T[opt]);
float MuByT = (RISKFREE - 0.5f * VOLATILITY * VOLATILITY) * T[opt];
float Sval = S[opt];
float Xval = X[opt];
float val = 0.0f, val2 = 0.0f;

#pragma omp simd reduction(+:val) reduction(+:val2)
for(int pos = 0; pos < RAND_N; pos++){

float callValue = expectedCall(Sval, Xval, MuByT, VBySqrtT,
l_Random[pos]);

val += callValue;
val2 += callValue * callValue;

}

float exprt = expf(-RISKFREE *T[opt]);
h_CallResult[opt] = exprt * val / (float)RAND_N;
float stdDev = sqrtf(((float)RAND_N*val2 - val*val) /

((float)RAND_N*(float)(RAND_N – 1.f)));
h_CallConfidence[opt] =(float)(exprt * 1.96f * stdDev/sqrtf((float)RAND_N));

}

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
133

Not so much for standard algorithms

void my_tranform(std::vector<int>& src, std::vector<int>& dst, std::function< int(int) > _func) {
vec::transform(src.begin(), src.end(), dst.begin(), _func);

}

Std::transform(inp.begin, inp.begin + inp.size(), out.begin(), ptr_fun<double, double>(sqrt));

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

The Parallelism TS in C++

134

// Serial sort

std::sort(std::seq, x.begin(), x.end());

// Parallel sort

std::sort(std::par, x.begin(), x.end());

// Dynamically-selected policy

std::execution_policy e = std::seq();

if(x.size()>1024)

e = std::par();

std::sort(e, x.begin(), x.end());

std::transform(std::par, b, e, o, ptr_fun(<double,
double>(sqrt));

Many STL algorithms are in the
proposal:

copy, transform, replace,
generate, for_each, all_of, copy_if,
find_if, is_sorted, inner_product,
remove_if, rotate, binary_search …

These will help with parallelization,
Not with vectorization.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Indexed loops

for_loop(par, 0, n, [&](int i) {

A[i] = A[i] + B[i];

C[i] -= 2*A[i];

});

135

#pragma omp parallel for

for(int i=0; i<n; ++i) {

A[i] = A[i] + B[i];

C[i] -= 2*A[i];

}

OpenMP Equivalent

First, we proposed Indexed loops, even for the parallel execution policy

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Reduction
extern float s; extern int t;

for_loop(par, 0, n,

reduction_plus(s),

reduction_bit_and(t),

[&](int i, float& s_, int& t_) {

s_ += A[i]*B[i];

t_ &= C[i];

});

// s and t have final reduction values here.

extern float s; extern int t;

#pragma omp parallel for reduction(+:s) reduction(&:t)

for(int i=0; i<n; ++i) {

s += A[i]*B[i];

t &= C[i];

}

OpenMP Equivalent

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Vector execution policy

for_loop(vec, 0, n, [&](int i) {

A[i] = A[i+1] + B[i];

C[i] -= 2*A[i];

});

137

#pragma omp simd for

for(int i=0; i<n; ++i) {

A[i] = A[i+1] + B[i];

C[i] -= 2*A[i];

}

OpenMP Equivalent

A single threaded vector loops
Allow vectorization of loops that cannot be parallelized (forward dependencies)
Allow vectorization when multi-threading is undesired
Useful for CPUs with SIMD, not so much for GPUs with SIMT

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Induction Variables

extern int j, k;

for_loop(vec, n, 0,

induction(j, jstep),

induction(k, -kstep),

[&](int i, int j_, int k_) {

A[i] = B[j_]*C[k_];

});

// j and k have correct final values
here.

138

extern int j, k;

#pragma omp simd linear(j:jstep, k:-kstep)

for(int i=0; i<n; ++i) {

A[i] = B[j]*C[k];

j += jstep;

k -= kstep;

}

OpenMP 4.5 Equivalent

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Extensions to the vec Policy

struct my_policy: vector_execution_policy {

static const int safelen = 8;

static const bool vectorize_remainder = true;

};

for_loop(my_policy(), 0, 1912, [&](int i) {

Z[i+8] = Z[i]*A;

});

#pragma omp simd safelen(8)

for(int i=0; i<1912; ++i) {

Z[i+8] = Z[i]*A;

});

OpenMP Equivalent
(without vectorize_remainder)

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Both parallel and vector

for_loop(parvec, 0, n, [&](int i) {

A[i] = A[i] + B[i];

C[i] -= 2*A[i];

});

140

#pragma omp parallel simd for

for(int i=0; i<n; ++i) {

A[i] = A[i] + B[i];

C[i] -= 2*A[i];

}

OpenMP Equivalent

Undefined behavior if there is a data race
Undefined behavior if there is a critical section (deadlock)
The loop is both parallelized and vectorized
Same semantics as a “kernel” in GPGPU languages

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Less trivial vectorizeable algorithms

Algorithms with certain dependence patterns
do not prevent vectorization of enclosing algorithms

And depending on the target architecture

May themselves be vectorized (may or may not be
profitable)

Account for future direction of SIMD HW: these are
made possible by AVX512

141

// Histogram
a[b[i]]++;

// compress / expand
if (cond(i)) {

a[i] = b[i] * c[j++];

}

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
142

0.00

50.00

100.00

150.00

200.00

250.00

300.00

X2007 X2009 X2010 X2012 X2013 X2014 X2016

Th
o

u
sa

n
d

s

Binomial Options

(1) Incremental growth in CPU
resources

(2) Improvements in compilers
and parallel frameworks

(3) Parallelization techniques
0

50

100

150

200

250

300

350

400

X2007 X2009 X2010 X2012 X2013 X2014 X2016

SP vector lanes

The end

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Configuration

Hardware configuration

 Processor:

– Intel(R) Xeon(R) CPU E5-2697 @ 2.7 GHz (IVT)

– 2 sockets/24 cores/48 Threads; Turbo Off

 Memory:

– 128GB @ 1600 MHz

Software Configuration

 OS: Linux: RHEL 6.1

 Compiler:

– Gcc 4.8

– Intel Composer XE 2013 Sp1

Swap Pricer:

 Default : Number of scenarios 100

 Number of Swaps 100,000: parallelize at this level

 26 time steps

144

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL
PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,
INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT.
• A "Mission Critical Application" is any application in which failure of the Intel

Product could result, directly or indirectly, in personal injury or death. SHOULD
YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL
APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES,
SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND
EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND
EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR
INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH
ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER
OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN,
MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

• Intel may make changes to specifications and product descriptions at any time,
without notice. Designers must not rely on the absence or characteristics of any
features or instructions marked "reserved" or "undefined". Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them. The information here is
subject to change without notice. Do not finalize a design with this information.

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-
Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSE3
instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Configuration for parallel speed-up

Platform
Unscaled Core
Frequency

Cores/S
ocket

Num
Sockets

Process
or

L1 Data
Cache

L1 I
Cache

L2
Cache

L3
Cache Memory

Memory
Frequen
cy

Memory
Access

H/W
Prefetch
ers
Enabled

HT
Enabled

Turbo
Enabled C States

O/S
Name Operating SystemCompiler Version

HarperTown -EP 3.0 GHZ 4 2X5472 32K 32K 12 MB None 32 GB
800
MHZ UMA Y N N Disabled

Fedora
20 3.11.10-301.fc20 icc version 14.0.1

Nehalem -EP 2.93 GHZ 4 2x 5570 32K 32K 256K 8 MB 48 GB
1333
MHZ NUMA Y Y Y Disabled

Fedora
20 3.11.10-301.fc20 icc version 14.0.1

Westmere-EP 3.33 GHZ 6 2X 5680 32K 32K 256K 12 MB 48 MB
1333
MHZ NUMA Y Y Y Disabled

Fedora
20 3.11.10-301.fc20 icc version 14.0.1

SandyBridge-EP 2.9 GHZ 8 2E5 2690 32K 32K 256K 20 MB 64 GB
1600
MHZ NUMA Y Y Y Disabled

Fedora
20 3.11.10-301.fc20 icc version 14.0.1

Ivy Bridge-EP 2.7 GHZ 12 2
E5 2697
v2 32K 32K 256K 30 MB 64 GB

1867
MHZ NUMA Y Y Y Disabled

Fedora
20 3.11.10-301.fc20 icc version 14.0.1

Haswell-EP Beta 2.2 GHZ 14 2Beta 32K 32K 256K 35 MB 64 GB
2133
MHZ NUMA Y Y Y Disabled

Fedora
20 3.13.5-202.fc20 icc version 14.0.1

Platform Hardware and Software
Configuration

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products.

Copyright © 2016, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

41

