Intel® 64 and IA-32 Architectures
Optimization Reference Manual

Order Number: 248966-039
December 2017

Intel technologies features and benefits depend on system configuration and may require enabled hardware, software, or service ac-
tivation. Learn more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages
resulting from such losses.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel
products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which
includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

This document contains information on products, services and/or processes in development. All information provided here is subject
to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for
informational purposes. Any differences in your system hardware, software or configuration may affect your actual performance.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling 1-800-548-4725, or by visiting http://www.intel.com/design/literature.htm.

Intel, the Intel logo, Intel Atom, Intel Core, Intel SpeedStep, MMX, Pentium, VTune, and Xeon are trademarks of Intel Corporation
in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 1997-2017, Intel Corporation. All Rights Reserved.

http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm

CONTENTS

PAGE
CHAPTER 1
INTRODUCTION
1.1 TUNING YOUR APPLICATION. & . .ttt ettt ettt et et e e et et e et e e e e 1-1
1.2 ABOUT THIS MANUA L. o ettt ettt e et e et e e et e e e e 1-1
13 RELATED INFORMATION ..ttt sttt et ettt e et et e e et et e e et e e e e et aenas 1-3
CHAPTER 2
INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2.1 THE SKYLAKE SERVER MICROARCHITECTURE\ttt ettt e et 2-2
2.1.1 Skylake Server MicroarchiteCture Cacthe. vi i e e ettt 2-3
2.1.1.1 Larger Mid-Level Cathe ..o oottt e 2-3
21.1.2 Non-Inclusive Last Level Cacheo i 2-3
2.1.13 Skylake Server Microarchitecture Cache Recommendationst 2-4
2.1.2 Non-Temporal Stores on Skylake Server Microarchitecture.o e 2-5
2.2 THE SKYLAKE MICROARCHITECTURE. . .ttt ettt ettt e et 2-6
2.2.1 1= o = 2-7
2.2.2 The Out-0f-0rder EXECUTION ENGINE. ..\ ettt e e 2-7
2.2.3 Cache and MemOry SUDSY S MM &ttt ettt ettt e et et e e 2-9
224 Pause Latency in Skylake MicroarchiteCture v e 2-10
23 HASWELL MICROARCHITECTURE. . . . o\ttt ettt et et et e e eens 2-12
2.3.1 T FTONT BN . e e e e e e e 2-14
23.2 The OUt-0f-0rder ENgINE . . o\ttt ettt et e e e et e e ettt aaas 2-14
233 EXECUTION ENGINE .+ vttt ettt et et e e e e e 2-15
234 Cache and Memory SUDSY S M &ttt ittt e e et e ettt e e 2-17
2.34.1 Load and Store Operation ENhanCemMENTSottt e i eaaas 2-18
235 The Haswell-E MiCroarChiteCtUrE.ottt e e e e ee e 2-18
236 The Broadwell MicroarChiteCtUNEt i aenens 2-19
24 INTEL® MICROARCHITECTURE CODE NAME SANDY BRIDGE . ..o vvvie et 2-20
24.1 Intel® Microarchitecture Code Name Sandy Bridge Pipeline OVerviewc.ooovviiiiiiiiiiinnennnns 2-20
24.2 TR FTONT BN . e e e e e e 2-22
24.2.1 Legacy Decode PipEIiNet e 2-22
24.2.2 DECOdEd ICaCNE. . .ttt 2-24
24.23 BranCh PrediCtion. e 2-25
2424 Micro-op Queue and the Loop Stream Detector (LSD)ovuvvre e 2-25
243 The OUt-0f-0rder BNgiNe .. oottt e e e e e e 2-26
24.3.1 RO . e e e 2-27
2432 SR BAUIET .ttt e e 2-27
244 THE EXECULION LM . vttt ettt ettt e et e e e e e 2-28
245 0= T L= =T ool Y P 2-29
24.5.1 Load and Store Operation QVEIVIEWv ittt ettt et eeens 2-30
2452 I 6ol = 2-31
2453 Ring Interconnect and Last Level Cache. e e 2-35
2454 Data PrefetChingo e e 2-35
246 AT (=T 0012V T= 1 2-36
24.7 Intel® Microarchitecture Code Name [Vy Bridgeoviiiiiiii e et i 2-37
25 INTEL® CORE™ MICROARCHITECTURE AND ENHANCED INTEL® CORE™ MICROARCHITECTURE 2-38
2.5.1 Intel® Core™ Microarchitecture Pipeline OVerVIEWt e 2-39
25.2 FrOME BN .o e e e e 2-40
2.5.2.1 Branch Prediction Unito e e e e e e 2-40
2522 INStruction FETCh Unit. ... oo e s 2-41
2523 INSTrUCtion QUEUE (IQ). . v e vttt ettt ettt e e e e 2-41
2524 INStrUCHION DECOME. . v ottt ettt e e e e e e e s 2-42
25.25) = [0 o] (= = Lol (= 2-42
25.26 T 0T 11 (o PP 2-42
253 L= ToL [0 X o = 2-43
25.3.1 Issue Ports and EXeCUtioN UNITS ..o .ve et 2-44

CONTENTS

PAGE
254 INtel® AdVANCEA MmO ACCESS . o v ettt ettt ettt ettt e et e ettt ettt e e e et e aenens 2-45
2541 (I = Ta R [Lo) (o = PP 2-46
254.2 Data Prefetch to L1 Caches. .. .o e e e 2-47
2543 Data PrefetCh LOGiC. . ..ottt e i e e 2-47
2544 I (o] =T o L= a1 2-48
2545 Memory DisambigUation.o ottt s 2-49
255 Intel® Advanced SMart CaChe. ..o v vt e e 2-49
2.5.5.1 0T a3 P 2-51
2552 1) (0] 1= 2-51
2.6 INTEL® MICROARCHITECTURE CODE NAME NEHALEM ...ttt 2-52
26.1 MiICroarCNITECtUrE PIPEINE. . o e e 2-52
26.2 FroNt ENA OV VIBW. . . vttt e e et e e e e et e e e et 2-54
26.3 [Tal U o N = = 2-55
2.6.3.1 Issue Ports and EXeCUtioN UNITSoe it e 2-56
264 Cache and Memory SUDSY S M & ittt e e et e ettt et e 2-57
26.5 Load and Store Operation ENNanCemMENTSttt ettt eaeaes 2-58
2.6.5.1 Efficient Handling of AlIgnment Hazardscovvuiiniii i e 2-58
26.5.2 Store Forwarding ENNanCemIENtottt e 2-58
26.6 REP StriNg ENNAnCemI BNt . . oottt et e et e e e e 2-60
2.6.7 Enhancements for SYStemM SOftWarE. ou it 2-61
26.8 Efficiency Enhancements for Power ConSUMPLioNvu oo e it eneaas 2-61
269 Hyper-Threading Technology Support in Intel® Microarchitecture Code Name Nehalem 2-61
27 INTEL® HYPER-THREADING TECHNOLOGY . . .ttt ittt ettt e et eens 2-61
2.7.1 Processor Resources and HT Technology oo e e e i 2-63
2.7.1.1 REPICAtEA RESOUMCES . . vttt ettt ettt ettt e ettt 2-63
271.2 PartitionNed RESOUMCES ... ittt sttt et et e et e e e e 2-63
2713 SRAMEA RESOUICES . vttt ettt ettt ettt e e e e ettt et e e 2-64
2.7.2 Microarchitecture Pipeline and HT TeChnologyoviniii e aens 2-64
2.7.3 Front BN PIPEINE. . oottt e e e 2-64
274 L= Tol 1o o X 0 = 2-64
275 L2 =T 1= 2-65
2.8 INTEL® 64 ARCHITECTURE ...ttt ettt e et et e e e ens 2-65
29 SIMD TECHNOLOGY L.ttt ittt e ettt e e e e e e e e e e e e e e 2-65
2.10 SUMMARY OF SIMD TECHNOLOGIES AND APPLICATION LEVEL EXTENSIONSoviiii e 2-67
2.10.1 51 G I =T o [To] oo PN 2-68
2.10.2 Streaming SIMD EXTENSIONSttt ittt it e e 2-68
2.10.3 Streaming SIMD EXTENSIONS 2.ttt ettt ettt e e e ettt e e e e 2-68
2.104 Streaming SIMD EXTENSIONS 3. ...ttt ittt ettt et e e e e 2-68
2.105 Supplemental Streaming SIMD EXTENSIONS 3 ...ttt it e e e 2-68
2.10.6 S AT i e e 2-69
2.10.7 S B i e 2-69
2.10.8 AESNIANd PCLMULQDQ . . oottt ettt e e ettt e et et e et e e e 2-69
2.10.9 Intel® Advanced Vector EXTENSIONS ut ittt ettt e et e e e et e e e 2-70
2.10.10 Half-Precision Floating-Point Conversion (F16C)uuitii et 2-70
2.10.11 RO R AN D .ttt ettt e e e 2-70
2.10.12 Fused-Multiply-ADD (FMA) EXTENSIONS ...ttt ettt e e et e et et et ettt e 2-70
2.10.13 el AN X e e 2-71
2.10.14 General-Purpose Bit-Processing INStructionst e i e 2-71
2.10.15 Intel® Transactional Synchronization EXTENSIONS v it e 2-71
2.10.16 Y = = 2-71
2.10.17 ADCX and ADOX INSTITUCTIONS . . .ot e ettt ettt e e et et e e e et ettt e et r e aeas 2-71
CHAPTER 3
GENERAL OPTIMIZATION GUIDELINES
3.1 PERFORMANCE TOOLS . .ttt ittt ettt et et e e et e e e et e e et et a et 3-1
3.1.1 Intel® C++ and FOrtran ComPIlErSttt e 3-1
3.1.2 General Compiler ReCOMMENAatioNS . ..o\ttt e i e et e i 3-2
3.1.3 VTUNE™ PerformanCe ANalYzZer . ..ottt et e et e e 3-2
3.2 PROCESSOR PERSPECTIVES . .ttt ettt ettt e e e e e et 3-2
3.2.1 CPUID Dispatch Strategy and Compatible Code Strategycovviiiiii i e i aa s 3-3
3.2.2 Transparent Cache-Parameter Strategy. .. oo vttt e e it 3-3
3.2.3 Threading Strategy and Hardware Multithreading SUPPOrt.cooir i 3-3
33 CODING RULES, SUGGESTIONS AND TUNING HINTS L.ttt 3-3
34 OPTIMIZING THE FRONT END . ..ottt ettt et e et et et e et et e e e e e 3-4

CONTENTS

PAGE
3.4.1 Branch Prediction Optimizationiuiii i i e e 3-4
3.4.1.1 ElMINAting BranChes. . ..o e 3-5
34.1.2 SPIN-Wait aNd IdlIE LOOPS ..ottt e e e 3-6
3.4.1.3 I) L (ol o =T T o 3-6
3414 INNING, Calls @Nd RETUINSt e e e 3-8
34.15 {000 Ta L= 2 [T 0 1= 3 3-8
34.1.6 Branch Ty SelECtiON e e e e e 3-9
3.4.1.7 LOOP UNTOlING . . . vt e e e e e e e e 3-11
34.1.8 Compiler Support for Branch Prediction ... e 3-11
34.2 Fetch and Decode Optimization.iuiti it e i 3-12
34.2.1 OptimIZING TOr MiCTO-TUSION. . ..ottt e e e ens 3-12
34.2.2 OptimizZINg FOr MaCro-fUSION . ..ottt et e e e e ettt e 3-12
3423 Length-Changing PrefiXes (LOP)t e e 3-16
3424 Optimizing the Loop Stream Detector (LSD)vvvuii i e ens 3-17
34.25 Exploit LSD Micro-op Emission Bandwidth in Intel® Microarchitecture Code Name Sandy Bridge........ 3-18
34.26 Optimization for Decoded ICatheovi i e 3-19
34.2.7 Other Decoding GUIdEIINES . ..o vttt e e e 3-20
35 OPTIMIZING THE EXECUTION CORE ...ttt ettt ettt e e et et 3-20
3.5.1 LISy (T o T Y=Y 1=t o P 3-20
3.5.1.1 LR (=T =Tl YT 3-21
3.5.1.2 USING LA ettt e e e 3-22
3513 ADC and SBB in Intel® Microarchitecture Code Name Sandy Bridge.coovviiiiiiiiinnn.n. 3-23
3514 BItWISE ROTAtION. . .t e 3-24
3515 Variable Bit Count Rotation and Shiftc.viiii i s 3-25
3.5.1.6 AdAress CalCUIBTIONSo vttt ettt et e et e e e e e 3-25
3.5.1.7 Clearing Registers and Dependency Breaking IdiomsS. ..ot e 3-26
35.1.8 {00033 0= =P 3-27
3.5.19 USING N OPS. . .ottt e e e e 3-28
3.5.1.10 MiXiNG SIMD Daata Ty P S, « v vttt ettt ettt et e e e e e e 3-29
3.5.1.11 Sl SCNEAUING . v et e 3-29
35.1.12 Zero-Latency MOV INStrUCTIONS. ... v vttt e e e 3-29
3.5.2 Avoiding Stalls i EXECUTION COME . v\ttt ettt e e e 3-31
3.5.2.1 ROB REAA PO StallS. . o vttt ettt et e e 3-31
3.5.2.2 Writeback Bus ConTliCtS ..o v v e e e 3-32
3523 Bypass between EXeCUTioN DOMainS. ... v vt e 3-32
3524 Partial Register Stalls 3-33
35.25 Partial XMM Register Stalls.o.iuit e e e e 3-34
3.5.26 Partial FIag RegiSTer STalls ...\ttt 3-34
3527 Floating-Point/SIMD Operands. . ..ottt ittt et e e 3-35
353 A= (o4 1 [0 P 3-36
354 Optimization of Partially Vectorizable Code. ..o e 3-37
3.54.1 Alternate Packing TeChNIQUESottt e e e e e 3-38
354.2 SIMPliTYING RESUIT Passing. . ..ottt e e e e e 3-39
3543 STACK OPTIMIZaTiON. .. oot e e 3-40
3544 TUNING CONSIABIAtiONS . ittt it e et e et i e 3-40
3.6 OPTIMIZING MEMORY ACCESSES . .. ittt ettt e e e e 3-42
3.6.1 Load and Store Execution Bandwidth ..o 3-42
3.6.1.1 Make Use of Load Bandwidth in Intel® Microarchitecture Code Name Sandy Bridge 3-42
36.1.2 L1D Cache Latency in Intel® Microarchitecture Code Name Sandy Bridgeocvvvivnnns. 3-43
36.1.3 Handling L1D Cache Bank Conflicto e 3-44
36.2 Minimize Registar SPillS ... v e 3-45
36.3 Enhance Speculative Execution and Memory Disambiguation..........c.ccoviriviiiiii i 3-46
364 Y 00T 3-47
36.5 A0 (0 1 =3 o TV e T 3-48
3.6.5.1 Store-to-Load-Forwarding Restriction on Size and Alignment ...t 3-49
36.5.2 Store-forwarding Restriction on Data Availability............cooii i 3-53
36.6 Data Layout Optimizations ovo it i e e 3-54
3.6.7 1) =T Q0 A 00T 3-56
3.6.8 Capacity Limits and Aliasing in CaChes. vttt e 3-57
3.6.8.1 Capacity Limits in Set-AssoCiative Catheso vt i e 3-57
36.8.2 Aliasing Cases in the Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo and Intel® Core™ 2 Duo Processors3-58
3.6.9 MiXiNg Code and Dataottt e e 3-59
3.6.9.1 Self-MOodifYiNG COURttt e e 3-59
3.6.9.2 Position INdependent COQE\ttt ettt e e e e 3-60
3.6.10 LV Lok (=300 3 3-60

CONTENTS

PAGE
36.11 (I Yot |1 YA] = T=T 03 T=) o 3-61
3.6.12 MINIMIZING BUS LatenCY ... vi ettt e e 3-62
36.13 Non-Temporal Store Bus TraffiCo ettt 3-62
3.7 PREFETCHING ..ttt ettt ettt et e e e et et e e 3-63
3.7.1 Hardware Instruction Fetching and Software Prefetching. ... 3-63
3.7.2 Hardware Prefetching for First-Level Data Cache.ooiiiii i i 3-64
3.7.3 Hardware Prefetching for Second-Level Cache et 3-66
374 Cacheability INSTTUCTIONS e e e 3-66
3.75 REP Prefix and Data MOV, . .. v .ttt ettt e 3-66
3.76 Enhanced REP MOVSB and STOSB Operationc.vuitittttte ittt nneaeenens 3-69
3.7.6.1 MemMCPY CONSIAEIatiONS . . vttt ettt ettt et e e e e 3-69
3.76.2 [1= T T Y= 0o 1 L= o= 1 o L 3-70
3.7.63 MEmMSEt CONSIABIATIONS .« . v\ttt ettt ettt et e e et et e et e e e 3-71
3.8 FLOATING-POINT CONSIDERATIONS ...ttt et e et e es 3-71
3.8.1 Guidelines for Optimizing Floating-point Code ..ottt 3-71
3.8.2 Microarchitecture Specific CoNSIAEratioNSvu ittt e 3-72
38.2.1 LoNg-Latency FP INStrUCTIONS. . ..ottt e e e e 3-72
38.2.2 Miscellaneous INSTIUCTIONS vt e e e enaens 3-72
383 Floating-point Modes and EXCEPTIONS vttt ettt e aeneaas 3-72
3.8.3.1 Floating-POiNT EXCEPTIONS ...ttt ettt e e e 3-72
3.8.3.2 Dealing with floating-point exceptions in X87 FPU COde.vviiiiiii i 3-73
3833 Floating-point Exceptions in SSE/SSE2/SSE3 Code. .. .v v it e 3-73
384 FloatiNg-POINT MOGES. . . o vttt et e e e e e e e 3-73
3.84.1 ROUNAING MOdE . .. o e 3-74
3.84.2 o =T ol] T P 3-76
385 x87 vs. Scalar SIMD Floating-point Trade-0ffs ...t e e 3-76
3.8.5.1 SCAlAM S B S S B . vttt 3-76
3.85.2 Transcendental FUNCHIONSttt e 3-77
39 MAXIMIZING PCIE PERFORMANCE.ottt ettt et et e eens 3-77
3.9.1 Optimizing PCle Performance for Accesses Toward Coherent Memory and Toward MMIO Regions (P2P).. 3-78
CHAPTER 4
CODING FOR SIMD ARCHITECTURES
41 CHECKING FOR PROCESSOR SUPPORT OF SIMD TECHNOLOGIESt 4-1
411 Checking for MMX Technology SUPPOTTttt e 4-2
4.1.2 Checking for Streaming SIMD EXtENSIONS SUPPOIt. . ..o\ ottt ettt ieieeees 4-2
41.3 Checking for Streaming SIMD EXtENSIONS 2 SUPPOIT. . .\t v vttt et 4-2
414 Checking for Streaming SIMD EXteNSIONS 3 SUPPOTT. . ..ottt et 4-3
415 Checking for Supplemental Streaming SIMD EXtensions 3 SUPPOrt.veiiiii it ii i eaanns 4-3
41.6 Checking TOr SSEA. T SUPPOMT .« .\ttt ettt e e e e e e e e 4-4
417 Checking TOr SSEA.2 SUPPOTTttt e et 4-4
418 DetectiON of PCLMULQDQ and AESNIINSTTUCTIONS . .+ oo vt v e ettt et 4-4
419 Detection of AVX INSITUCTIONS . . .ottt et 4-5
41.10 Detection of VEX-Encoded AES and VPCLMULQDQ. vvv ittt ettt 4-7
41.11 Detection Of FTBC INSTIUCTIONS ... v\ttt e e e e 4-7
41.12 DEtECtioN Of FM A L e e 4-8
4113 DEtECtiON OF AV X 2. ottt e e 4-9
4.2 CONSIDERATIONS FOR CODE CONVERSION TO SIMD PROGRAMMING ... vvvveee e cieieeenaaa 4-10
4.2.1 IdentifyiNg HOt SPOTS .ttt e 4-12
422 Determine If Code Benefits by Conversion to SIMD EXECULIONovvvinve i 4-12
43 CODING TECHNIQUES ..ottt ettt e et e et et e e 4-12
4.3.1 CodiNg METNOAOIOGIES . .« v vttt e e e e e e e e 4-13
43.1.1 ASSMIDIY . .t te e e 4-14
43.1.2 0 (o 4-14
43.1.3 0112 T 4-15
4314 AUTOMATIC VBCTOMIZatiION .« oottt ettt e e e e s 4-16
44 STACK AND DATA ALIGNMENT L.ttt ettt sttt et e e 4-17
441 Alignment and Contiguity of Data AcCess Patterns.ovi i e 4-17
44.1.1 Using Padding 1o AlIgn Datao c v ve e 4-17
44.1.2 Using Arrays 1o Make Data ContigUOUS. . ..ottt e e e i e 4-17
442 Stack Alignment For 128-bit SIMD TeChnolOGIeSo vvi sttt ieaes 4-18
443 Data Alignment for MMX TeChNOIOQY v ittt 4-18
444 Data Alignment for 128-bit data.c.voiiiii i 4-19
4441 Compiler-Supported AlIGNMENTt e e e e 4-19

Vi

CONTENTS

PAGE
45 IMPROVING MEMORY UTILIZATION .ottt et e e et e e e e et e e et es 4-20
451 Data StrUCTUNE LayOUL . .ottt et ettt et et et 4-20
452 ST D MINING .« ottt e e e e e 4-23
453 LOOP BlOCKING. « .« vttt e e e e e e e 4-24
46 INSTRUCTION SELECTION L.ttt ettt ettt et ettt e et et et et e e es 4-26
4.6.1 SIMD Optimizations and MiCroarChiteCtUrES. . ..o vt i e e e et aaas 4-27
4.7 TUNING THE FINAL APPULICATION. © vttt ettt et e et e e e e e e e e 4-28
CHAPTER 5
OPTIMIZING FOR SIMD INTEGER APPLICATIONS
5.1 GENERAL RULES ON SIMD INTEGER CODEottt e et ettt et ettt e e 5-1
5.2 USING SIMD INTEGER WITH X87 FLOATING-POINT . . .ttt ettt et et e 5-2
5.2.1 USING the EMMS INSTrUCTION .« ..o v ettt e e e e e e aas 5-2
522 Guidelines for Using EMMS INSTTUCTION . ..o vttt e 5-2
53 DAT A AL GNMENT Lottt ettt e e e e e e e 5-3
54 DATA MOVEMENT CODING TECHNIQUESttt ettt e s 5-5
5.4.1 UNSIGNEA UNPACK . . vttt et ettt et e et et e e e e 5-5
54.2 SIGNEA U PaCK. .« oot e e e e 5-5
543 Interleaved Pack With Saturationoui i e e 5-6
544 Interleaved Pack WithoUt SatUMGtioN v it e i aaes 5-7
545 NoN-INterleaVed UNPacK.ot e e e e 5-8
54.6 EXTrACt Data ElEmMENt ..ot e 59
54.7 =T D= = = =T 03T PP 5-10
548 Non-Unit Stride Data MOVEMENTottt et e e 5-11
549 MoVE Byte Mask 10 IMtEgEttt 5-12
5410 Packed Shuffle Word for 64-bit RegiStersoviiiii s 5-12
54.11 Packed Shuffle Word for 128-bit REGISTErS.ot et aaeaas 5-13
54.12 SUTTIE BY TS, .ottt e e 5-13
54.13 Conditional Data MOVemMIENTttt ettt e e e e e 5-14
5414 Unpacking/interleaving 64-bit Data in 128-bit RegiSters ...t e 5-14
5415 D = 0 (o =T 1< P 5-14
54.16 (000 p 1Y =T Y Fo I Y o N oo 13 5-14
55 GENERATING CONS T AN T S, ettt ettt e et et e e e e e e et e e 5-14
56 BUILDING BLOCKS ...ttt e et et et et e e et et et et e et e e e 5-15
5.6.1 Absolute Difference of Unsigned NUMbDErSoooiii i e 5-15
56.2 Absolute Difference of Signed NUMDETS.ttt ettt eaees 5-16
56.3 ADSOIULE ValUE . .t e e 5-16
564 D= I o = L A 8o 1Y7= £ (o PP 5-17
56.5 LT 1= T 00 31V o o 5-18
56.6 Clipping to an Arbitrary Range [High, LOW]vnini e 5-19
5.6.6.1 Highly Efficient ClipPing ov e e e 5-19
56.6.2 Clipping to an Arbitrary Unsigned Range [High, LOW]. ...t 5-21
5.6.7 Packed Max/Min of Byte, Word and DWOrdovvii e 5-21
56.8 Packed MUIIPIY INTEGETS ... vt 5-21
56.9 Packed SUm of ADSOIUTE DiffEreNCES. . .o\ttt e 5-22
56.10 MPSADBW and PHMINPOSUWottt ettt et e et et 5-22
56.11 Packed Average (BYte/WOrd)o .vrie ettt e e 5-22
56.12 Complex Multiply By @ CONSTant.o i i e i e e e 5-22
56.13 Packed B4-bit Add/SUDTraCTottt e e 5-23
56.14 128Dt SIS ot 5-23
56.15 PTEST and Conditional BranCh.ouini i i nnenenas 5-23
56.16 Vectorization of Heterogeneous Computations across Loop Iterations.coovvvviviiiniiininnnnn, 5-24
56.17 Vectorization of Control Flows in Nested LOOPSvuoiiinii e 5-25
57 MEMORY OPTIMIZATIONS . ittt et e e e e e e et e e 5-27
5.7.1 Partial MEMOTY ACCES S S . v vttt ettt ettt e ettt ettt e e ettt e e e e e 5-28
5711 Supplemental Techniques for Avoiding Cache Line SplitS.ovv v e 5-29
57.2 Increasing Bandwidth of Memory Fills and Video Fills i 5-30
5.7.2.1 Increasing Memory Bandwidth Using the MOVDQ INStruction.........c.ovvvviiiniiniiiiiinii e, 5-30
5722 Increasing Memory Bandwidth by Loading and Storing to and from the Same DRAM Page 5-30
5.7.23 Increasing UC and WC Store Bandwidth by Using Aligned Stores.covoviiiiiiiiiiieienanns. 5-31
573 REVEISE MEMIOTY COPY & v ittt ittt ettt ettt e e e et a e ettt e e e 5-31
5.8 CONVERTING FROM 64- BIT TO 128-BITSIMDINTEGERS ...\ttt 5-34
581 SIMD Optimizations and MiCroarChiteCtUrES. . ..ot e i e i e aaas 5-34
5.8.1.1 Packed SSE2 Integer versus MMX INSTrUCTIONSouir it e e 5-34

vii

CONTENTS

PAGE
58.1.2 Work-around for False DependenCY ISSUEv ittt e 5-35
59 TUNING PARTIALLY VECTORIZABLE CODE ...t oittet ettt et e ettt e e e et e et e 5-35
5.10 PARALLEL MODE AES ENCRYPTION AND DECRYPTION. . ..ottt ittt ea s 5-38
5.10.1 AES Counter Mode 0f OPeration ... o.vui ittt e e 5-38
5.10.2 AES Key EXPaNSion AEMMGTIVEo .ttt et e e e 5-46
5.10.3 Enhancement in Intel Microarchitecture Code Name Haswello 5-48
5.10.3.1 AES and Multi-Buffer Cryptographic Throughput. i 5-48
5.103.2 0L 00 0 o707 01V 7=T 1 1T 5-48
511 LIGHT-WEIGHT DECOMPRESSION AND DATABASE PROCESSING ...\ v vt 5-48
511.1 Reduced Dynamic RANGE Datasets v vttt ettt ettt 5-49
511.2 Compression and Decompression Using SIMD INSTructions.vvvtvitiiii it iieii e 5-49
CHAPTER 6
OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS
6.1 GENERAL RULES FOR SIMD FLOATING-POINT CODE. .. .ottt ettt et e 6-1
6.2 PLANNING CONSIDERATIONS . . . ettt et ettt e et ettt e e et e e et e a e a s 6-1
6.3 USING SIMD FLOATING-POINT WITH X87 FLOATING-POINT. ...\ttt ettt ieas 6-2
6.4 SCALAR FLOATING-POINT CODE .. ottt ettt et ettt e e e e 6-2
6.5 S N L B 6-2
6.5.1 [| Vo =T 1= 0= 0 6-2
6.5.1.1 Vertical versus Horizontal CompuUIationoiiii i i e et 6-3
6.5.1.2 Data SWIZZING. . oo e 6-5
6.5.1.3 Data DESWIZZING . . vttt e e 6-7
6514 HOriZontal ADD USING SSE ...ttt it ettt e i e e 6-8
6.5.2 Use of CVTTPS2PI/CVTTSS2SIINSIIUCTIONS ..\ vv vttt et eens 6-10
6.5.3 Flush-to-Zero and Denormals-are-Zero MOGeS. v vttt e 6-10
6.6 SIMD OPTIMIZATIONS AND MICROARCHITECTURESottt et 6-11
6.6.1 SIMD Floating-point Programming Using SSE3 ittt 6-11
6.6.1.1 SSE3 and ComplexX ArtNMETICS v e 6-12
6.6.1.2 Packed Floating-Point Performance in Intel Core DUO Processor.ovvvviii i iiiieieenan, 6-14
6.6.2 Dot Product and Horizontal SIMD INSTrUCLIONS vv vttt 6-14
6.6.3 VECtor NOTMAliZation ... v e e e e e 6-16
6.64 Using Horizontal SIMD Instruction Setsand Data Layout ...t e 6-18
6.64.1 SOA and Vector Matrix MURIPICaTIoNvvuui i i 6-20
CHAPTER 7
OPTIMIZING CACHE USAGE
7.1 GENERAL PREFETCH CODING GUIDELINES . . oottt 7-1
7.2 PREFETCH AND CACHEABILITY INSTRUCTIONS . . . oottt ettt 7-2
73 o = 1 7-3
7.3.1 Software Data Prefetth. .. o 7-3
73.2 Lo 0= 1= ol [(ot o P 7-3
733 Prefetch and Load INSTIUCTIONS v et e e 7-5
7.4 CACHEABILITY CONTROL . . 4ttt vtt ettt ettt et et e et e e et e e e e e e e 7-5
741 The Non-temporal Store INStrUCTiONSot e et aens 7-5
74.1.1 L= o T 7-6
74.1.2 Streaming Non-1emMPOral STOrESttt i e e e 7-6
7413 Memory Type and Non-teMpPoral STOMES.v ittt ettt eaens 7-6
7414 - GO . « ot vttt ettt e e e e e e e 7-6
74.2 Streaming Store Usage MOGeISt i i e e e 7-7
74.2.1 000 =T =Y A (=T [0 3 7-7
74.22 NON-CONE BN T QUESTS .\ vttt ettt et e e e e e e e e 7-7
743 Streaming Store INStruCtion DeSCriPtiONS.ttt i e i e e e 7-8
744 The Streaming Load INStrUCTION e e e et e e 7-8
7.4.5 L N 0 Ty T 1 o L 7-8
7451 Y = A 0 S 1 ot T 7-8
745.2 LI N o T o 7-9
7453 MEENCE NS U ON . . ettt ettt e e et et e e et e 7-9
746 O B0 A 0y ot T 7-9
747 CLRLUSHO P T INStIUCHION .« ot ettt ettt et e e st et e e ettt e e e e 7-10
7.5 MEMORY OPTIMIZATION USING PREFETCH . ..ttt ens 7-12
7.5.1 Software-Controlled Prefetch 7-12

viii

CONTENTS

PAGE
752 HardWare Prefetth ..o e 7-12
753 Example of Effective Latency Reduction with Hardware Prefetch..............cooiiiiii s 7-13
754 Example of Latency Hiding with S/W Prefetch Instruction. ... 7-14
755 Software Prefetching Usage Checklistooiiiii i e e 7-15
756 Software Prefetch Scheduling DistanCe.o. vt e 7-16
757 Software Prefetch Concatenationovu vt e 7-16
758 Minimize Number of Software Prefetches. ... 7-17
759 Mix Software Prefetch with Computation INSTrUCtionSovei i s 7-19
7.5.10 Software Prefetch and Cache Blocking Techniques ... e 7-19
7511 Hardware Prefetching and Cache Blocking TeChNIQUES.o it e eeas 7-23
7512 Single-pass versus Multi-pass EXECULION v. vttt e 7-24
76 MEMORY OPTIMIZATION USING NON-TEMPORAL STORESottt ettt 7-25
76.1 Non-temporal Stores and Software Write-Combiningoi i e 7-25
76.2 (00Tl T i = T F= T =T 1 =T 7-26
76.2.1 LA =T o N oo T =T 7-26
76.2.2 L 16 T B =Yoo T TP 7-26
76.2.3 Conclusions from Video Encoder and Decoder Implementationcovvvviviiiiiiiiiinnnnnnen. 7-27
76.24 Optimizing Memory CopY ROUTINES. ov ittt i e e ettt i e 7-27
76.2.5 L = 8 1T 7-28
76.26 Using the 8-byte Streaming Stores and Software Prefetchcooiii i, 7-29
76.2.7 Using 16-byte Streaming Stores and Hardware Prefetch ..., 7-29
76.28 Performance Comparisons of Memory Copy ROUTINESo.ov it i e 7-30
763 Deterministic Cache Parameterso vt e 7-31
7.6.3.1 Cache Sharing Using Deterministic Cache Parameters.ot 7-32
76.3.2 Cache Sharing in Single-Core or MURICOrEovivit i e ens 7-32
7633 Determine Prefetch Strideo 7-32
CHAPTER 8
INTRODUCING SUB-NUMA CLUSTERING
8.1 SUB-NUMA CLUSTERING .ottt ettt ettt et et e et et e e et et e e et e 8-1
8.2 COMPARISON WITH CLUSTER-ON-DIEottt e e e 8-1
83 SN USAGE . ..ttt e e e e e e 8-2
8.3.1 How to Check NUMA Configurationcc.iuiriri ittt et e it eaeneanns 8-2
8.3.2 MPI OptimIzZations fOr SNC.ttt e e e e e 8-7
833 SNC Performance COMPATiSONttt et e e et e et et et e et et e et et e it a e e e 8-8
CHAPTER 9
MULTICORE AND HYPER-THREADING TECHNOLOGY
9.1 PERFORMANCE AND USAGE MODELS ...\ttt ettt e et e et e e et e e e e e s 9-1
9.1.1 MURIEREEAAING . . . oot e e e e 9-1
9.1.2 MUIITASKING ENVITONMIEN L ottt e et e et et e 9-2
9.2 PROGRAMMING MODELS AND MULTITHREADINGot e ettt e et e e e e et e e e eeanes 9-3
9.2.1 Parallel Programming MOQelS vttt e e 9-4
9.2.1.1 DOMAIN DECOMIPOS O, . .o\ttt ittt et e e e 9-4
9.2.2 FUNCEIONAl DECOMIPOSITION . o\ vttt ettt e et e ettt e ettt e e e e 9-4
9.2.3 Specialized Programming MOdelSvviiii e 9-4
9.2.3.1 Producer-Consumer Threading Modelst e i e e e e i aas 9-5
9.24 Tools for Creating Multithreaded AppPliCatioNSov ittt et 9-7
9.24.1 Programming with OpenMP DireCtiVeS v ettt i 9-8
9.24.2 Automatic Parallelization 0f COe. vvvti it 9-8
9.24.3 Supporting DevelopmMENT TOOISt e e e 9-8
93 OPTIMIZATION GUIDELINES. . . ottt et e e e e e et e e s 9-8
9.3.1 Key Practices of Thread Synchronization.oiiii it ittt aieiaaas 9-8
93.2 Key Practices of System Bus Optimizationoouiiiir e et 9-9
933 Key Practices of Memory Optimizationo.uuiuu i e 9-9
934 Key Practices of Execution Resource Optimization.uuiuiirii e 9-9
935 Generality and Performance IMpPact. e e e 9-10
9.4 THREAD SYNCHRONIZATION . . oo v ettt et e et et e e e e e e ee s 9-10
9.4.1 Choice of Synchronization Primitives.o. o e 9-10
94.2 Synchronization for SROMt Periodsouirii i e e e e 9-11
9453 Optimization With SPIN-LOCKS\ttt e e 9-13
94.4 Synchronization for LoNger Periods.oviii e 9-13

CONTENTS

PAGE
9.4.4.1 Avoid Coding Pitfalls in Thread Synchronizationoi i e 9-14
945 Prevent Sharing of Modified Data and False-Sharing...... ..ot 9-14
9.4.6 Placement of Shared Synchronization Variable ... i 9-15
95 SYSTEM BUS OPTIMIZATION. .o vttt ettt ettt et e et e e et e e e e e e n e 9-16
9.5.1 Conserve Bus Bandwidth.o o 9-17
9.5.2 Understand the Bus and Cache INteractionsvuiuiein i ie e 9-17
953 Avoid Excessive Software PrefetCheso 9-17
954 Improve Effective Latency of Cache MiSSES vv et i 9-18
955 Use Full Write Transactions to Achieve Higher DataRate ...t i 9-18
96 MEMORY OPTIMIZATION ..ttt ettt ettt e et et e e e e et et et e e et eees 9-19
96.1 Cache Blocking TeCNMIQUEottt e e e e 9-19
9.6.2 Shared-Memory Optimization. i e e e 9-19
96.2.1 Minimize Sharing of Data between Physical ProCeSSOorsSo.vvitiiiii i ci i eaans 9-19
96.2.2 Batched Producer-Consumer Model.ouiei i 9-20
96.3 Eliminate 64-KByte Aliased Data ACCESSES . ..t vttt ittt ettt ettt et ettt et i 9-21
9.7 FRONT END OPTIMIZATION. . .ottt ettt et e et e e et e e e e et e e et et et e e ees 9-21
9.7.1 Avoid EXcessive Loop UNrolliNg . .. o.vu e e 9-21
9.8 AFFINITIES AND MANAGING SHARED PLATFORM RESOURCES. .. .ottt et 9-22
9.8.1 Topology Enumeration of Shared RESOUMCES viritti ittt i i eanas 9-23
9.8.2 NON-UNi O MmO Y ACCESS . v vttt ettt ettt e et et e e e e e ae e 9-23
99 OPTIMIZATION OF OTHER SHARED RESOURCESttt ettt e 9-25
9.9.1 Expanded Opportunity for HT Optimization.couiuir ittt eaes 9-25
CHAPTER 10
64-BIT MODE CODING GUIDELINES
10.1 INTRODUCTION . ottt ettt ettt e e et e e et e e e et e e e 10-1
10.2 CODING RULES AFFECTING B4-BIT MODE. . ..ttt ettt ittt e 10-1
10.2.1 Use Legacy 32-Bit Instructions When Data Size IS 32 BitS.......vvirirviiiiii i i 10-1
10.2.2 Use Extra Registers 1o Reduce RegiSter PreSSUevuir i 10-1
10.2.3 Effective Use of 64-Bit by 64-Bit MUIPIESc.ooii i et 10-2
10.2.4 Replace 128-bit Integer Division with 128-bit Multiplieso s 10-2
1025 Sign EXTENSION 10 FUILB4-BitSt 10-4
10.3 ALTERNATE CODING RULES FOR B4-BIT MODEttt ettt e ettt i e et et et 10-5
10.3.1 Use 64-Bit Registers Instead of Two 32-Bit Registers for 64-Bit ArithmeticResult...................... 10-5
10.3.2 CVTSIZSS ANd CV TS 2D v vttt ettt et e e e e e e e e e e 10-6
1033 Using Software Prefetch e 10-6
CHAPTER 11 SSE4.2 AND SIMD PROGRAMMING FOR TEXT-
PROCESSING/LEXING/PARSING
11.1 SSE4.2 STRING AND TEXT INSTRUCTIONS. . . . ottt ettt e 11-1
11.1.1 1 7 11-4
11.2 USING SSE4.2 STRING AND TEXT INSTRUCTIONS . ..ottt ettt et 11-5
11.2.1 Unaligned Memory Access and Buffer Size Managemento.vuviiiiiiiiii i iiineas 11-5
11.2.2 Unaligned Memory Access and String Libraryo 11-6
11.3 SSE4.2 APPLICATION CODING GUIDELINE AND EXAMPLES.ottt 11-6
11.3.1 Null Character Identification (Strlen equivalent). e 11-6
11.3.2 White-Space-Like Character Identification. ... i 11-9
1133 SUDSTIING SEAMCNES . ..ttt e e e 11-11
1134 String Token Extraction and Case Handling.ovuiniii et 11-18
1135 Unicode Processing and POMP XS T RY . ..o v vttt i e e et i e 11-22
11.36 Replacement String Library FUNCioN USING SSE4.2ottt 11-26
114 SSE4.2 ENABLED NUMERICAL AND LEXICAL COMPUTATION. . ..ottt 11-28
115 NUMERICAL DATA CONVERSION TO ASCH FORMAT .ottt ettt 11-34
11.5.1 Large Integer NUmMeric CompPUTaTioNo.vuititi e et eaens 11-48
11.5.1.1 MULX Instruction and Large Integer Numeric Computation..........c.ccoviviiiiiiiiiiininieenns 11-48
CHAPTER 12
OPTIMIZATIONS FOR INTEL® AVX, FMA AND AVX2
12.1 INTEL® AVX INTRINSICS CODING . .o vttt e e ettt e e et e e e e et e e e e aeens 12-2
12.1.1 INtel® AVX ASSEMBIY COINg . ..o\ vttt ettt et e e et e 12-4
12.2 NON-DESTRUCTIVE SOURCE (NDS). .+ vttt vttt ettt e e ettt e e e et et e et e e 12-5

CONTENTS

PAGE
123 MIXING AVX CODE WITH SSE CODE . ..ottt ettt et e e e e e ettt et es 12-7
12.3.1 Mixing Intel® AVX and Intel SSEin FUNCLioN CallS. e 12-9
124 128-BIT LANE OPERATION AND AV X ottt ettt ettt ettt e e et e 12-10
12.4.1 Programming With the Lane ConCePTvvit ittt e et eees 12-11
124.2 Strided Load TECRNIGUEt et 12-11
1243 The Register Overlap TeChNMIQUE. .. .ottt i e e e i e e e 12-14
125 DATA GATHER AND SCAT T ER ettt e e e e e e 12-15
12.5.1 D 1 1 = 1 =T 12-15
12.5.2 D | T or= 1 (=T 12-17
126 DATA ALIGNMENT FOR INTEL® AV X 1t ettt ettt et e 12-19
12.6.1 AlIgN Data 10 32 By O . oottt vttt ettt e e 12-19
126.2 Consider 16-Byte Memory Access when Memory isUnaligned.............ccoiii e 12-20
1263 Prefer Aligned Stores Over AlIgned Loads.ovvuiiiii i e 12-22
12.7 LTD CACHE LINE REPLACEMENT S, Lttt e e e e 12-22
12.8 B AL ASING. .« . ottt e e e e 12-22
129 CONDITIONAL SIMD PACKED LOADS AND STORES .. .o\ttt 12-23
12.9.1 CONAItIONAl LO0PS . v vttt ettt e e e e e 12-24
1210 MIXING INTEGER AND FLOATING-POINT CODE. ...ttt ettt ettt et e et et et 12-25
12,17 HANDUING PORT 5 PRESSURE. . .. ettt ittt ettt ettt et e 12-28
12111 Replace Shuffles With Blends.o e 12-28
12.11.2 Design Algorithm With Fewer Shuffles.o it 12-30
12113 Perform Basic Shuffles on Load POrtS. ovvui e e 12-32
12.12 DIVIDE AND SQUARE ROOT OPERATIONS . ..ottt ettt e 12-34
12121 SINGIE-PreciSion DIVide . ..ot e e 12-35
12.12.2 Single-Precision Reciprocal SQUare ROOT.i it e i 12-37
12123 SiNgle-Precision SQUAME ROOT\ttt e e 12-39
12.13 OPTIMIZATION OF ARRAY SUB SUM EXAMPLE ...\ttt ittt e 12-41
12.14 HALF-PRECISION FLOATING-POINT CONVERSIONS. . ..ottt 12-43
12.14.1 Packed Single-Precision to Half-Precision CoNVErsionvuvririiii i eiineens 12-43
12.14.2 Packed Half-Precision to Single-Precision CONVErsionvuieiiii it ici it eeaenens 12-44
12.14.3 Locality Consideration for using Half-Precision FP to Conserve Bandwidth 12-45
12.15 FUSED MULTIPLY-ADD (FMA) INSTRUCTIONS GUIDELINES.ttt 12-46
12.151 Optimizing Throughput with FMA and Floating-Point Add/MUL ...t 12-47
12.15.2 Optimizing Throughput with Vector Shifts ... e 12-48
1216 AVX2 OPTIMIZATION GUIDELINESottt et et e 12-49
12.16.1 MUHt-BUTTEMING ANd AV X2 . . ottt et e e e 12-54
12.16.2 Modular MUHPlICation @nd AV X2 ...t e e 12-54
12.16.3 Data Movement CoNSIQErationS. vu ettt sttt e e e e 12-54
12.16.3.1 SIMD Heuristics to implement MEmMCPY(). -« v v v vveeee et 12-55
12.16.3.2 Memcpy() Implementation Using Enhanced REP MOVSB.oiiiiiii i 12-55
12.16.3.3 Memset() Implementation CoNSIdErationsvuvr ittt i 12-56
12.16.34 Hoisting Memcpy/Memset Ahead of Consuming Code.........coviiiiiii it eieeeaas 12-57
12.16.3.5 256-bit Fetch versus Two 128-bit Fetches.ov v e 12-57
12.16.3.6 Mixing MULX and AV X2 INStrUCTIONS . . oot v vttt eas 12-57
12.16.4 Considerations for Gather INSTTUCTIONS\t v et e 12-64
12.16.4.1 I) 1 L= I - T L 12-67
12.16.4.2 | ol = - Lo 12-68
12.16.5 AVX2 Conversion Remedy to MMX Instruction Throughput Limitation ...t 12-69
CHAPTER 13
INTEL® TSX RECOMMENDATIONS
13.1 INTRODUCTION . 1ottt ettt e et e e et e e e et e e et et et et e et e e e 13-1
13.1.1 OptiMIZatioN OULINE . ..ot e e e e e 13-2
13.2 APPLICATION-LEVEL TUNING AND OPTIMIZATIONS . o ettt e e 13-2
13.2.1 Existing TSX-enabled Locking LiDraries.o.vvi i e e 13-3
13.2.1.1 Libraries allowing lock elision for unmodified programscovviviiiiiiiii i 13-3
13.2.1.2 Libraries requiring program modifications e 13-3
13.2.2 Il CNBCKS vttt ettt e e 13-3
1323 Run and Profile the Applicationoe i e 13-3
13.24 Minimize TransaCtional AD OIS, v ettt et e e e e e 13-4
13.24.1 Transactional Aborts due to Data Conflicts. . ..o vv vt e 13-5
13.24.2 Transactional Aborts due to Limited Transactional RESOUMCES v vvvr vt ieieeaaas 13-6
13.24.3 Lock Elision Specific Transactional ADOrtSvit it ettt 13-7
13.244 HLE Specific Transactional ADOMTSv .ttt et ettt eaees 13-7

CONTENTS

PAGE
13.24.5 Miscellaneous Transactional ADOITS. v vttt e e 13-8
13.25 Using Transactional-Only Code Pathsooieii e 13-9
13.26 Dealing with Transactional Regions or Paths that AbortataHighRateocinll 13-9
13.26.1 Transitioning to Non-Elided Execution without ADOrtingcoovviiiii it i 13-9
13.26.2 Forcing an Barly ADOrT e 13-10
13.26.3 Not Eliding Selected LoCKS. . ..o e e e e 13-10
133 DEVELOPING AN INTEL TSX ENABLED SYNCHRONIZATION LIBRARY .. .ottt 13-10
13.3.1 AdAING HLE PrefiXeS vttt ettt ettt e e e e e e e 13-10
13.3.2 Elision Friendly Critical SECtion LOCKS. vttt i i ettt i i 13-10
1333 Using HLE or RTM Tor LOCK EliSION. . ..o\ v ettt e e enens 13-11
1334 An example wrapper for lock elision Using RTM.o e 13-11
1335 Guidelines for the RTM fallback handlerovuii i e s 13-12
1336 Implementing Elision-Friendly Locks using Intel TSX ... e 13-13
13.3.6.1 Implementing a Simple Spinlock USING HLE. ot e 13-13
13.3.6.2 Implementing Reader-Writer Locks using Intel TSX ... e 13-15
13.3.6.3 Implementing Ticket Locks Using Intel TSXt e 13-15
13364 Implementing Queue-Based Locks using Intel TSX ... i 13-15
13.3.7 Eliding Application-Specific Meta-Locks using Intel TSX. i 13-16
13.3.8 Avoiding Persistent Non-Elided EXECUTION.ottt e 13-17
13.3.9 Reading the Value of an Elided Lock in RTM-based libraries ..o 13-19
13.3.10 INtermiXing HLE @nd RTM ..o i i e i e e iy 13-19
134 USING THE PERFORMANCE MONITORING SUPPORT FORINTEL TSX ..ttt ieee 13-20
13.4.1 Measuring TranSaCTioNal SUCCESS . . vttt ettt e e e nens 13-21
13.4.2 Finding locks to elide and verifying all locks are elided.t e 13-21
1343 Sampling Transactional ADOIES. v vttt ettt e et e e e 13-21
1344 Classifying Aborts using a Profiling TOOL.v et e 13-21
13.4.5 XABORT Arguments for RTM fallback handlers i e ieas 13-22
1346 Call Graphs for Transactional ADOTTS u vttt ettt e ettt nenanaaas 13-23
1347 Last Branch Records and Transactional ADOTTSvui it 13-23
13.4.8 Profiling and Testing Intel TSX Software usingthe Intel®SDE ...t 13-23
13.4.9 HLE Specific Performance Monitoring EVENTS.ottt et eens 13-24
13.4.10 Computing Useful Metrics Tor Intel TSX ..o e 13-25
135 PERFORMANCE GUIDELINESottt ettt e e e e e e e e e ety 13-25
136 DEBUGGING GUIDELINES ...ttt ittt ettt e a s 13-26
13.7 COMMON INTRINSICS FOR INTEL TOX . vttt ittt et e et eenas 13-26
13.7.1 O {0 T ok 13-26
13.7.1.1 Emulated RTM intrinsics on older gcc compatible compilers. ... 13-27
13.7.2 HLE intrinsics on gcc and other Linux compatible cCOMpilers. ... i 13-28
13.7.2.1 Generating HLE intrinsics With @CC4.8. oot et e e 13-28
13.7.2.2 (0 I T (o (ol U 0o 13-29
13.7.23 Emulating HLE intrinsics with older gcc-compatible compilers. ... 13-29
13.7.3 HLE intrinsics on WIindows C/C++ COMPIIEIS ..ottt i e it ienaas 13-29
CHAPTER 14
POWER OPTIMIZATION FOR MOBILE USAGES
14.1 OV RV B .t e e e e e e e 14-1
14.2 MOBILE USAGE SCENARIDS . . .ttt ettt e e e e e et e e 14-1
14.2.1 Intelligent Energy Efficient SOftWAreccirii i e 14-2
14.3 AP G- T AT ES ittt e e e e e e 14-3
14.3.1 Processor-Specific C4 and Deep C4 STatest 14-4
14.3.2 Processor-Specific Deep C-States and Intel® Turbo Boost Technology..............coooviiiiiiiinnt, 14-4
1433 Processor-Specific Deep C-States for Intel® Microarchitecture Code Name Sandy Bridge 14-5
1434 Intel® Turbo Boost TEChNOIOGY 2.0. vt 14-6
144 GUIDELINES FOR EXTENDING BATTERY LIFE .. vttt e e 14-6
14.4.1 Adjust Performance to Meet Quality 0f FEatUrESvvt it e 14-6
144.2 Reducing AMOUNt OF WOTK. e 14-7
14.4.3 Platform-Level Optimizations.ot e s 14-7
1444 Handling Sleep State TransSitionsvui ittt ettt 14-8
1445 Using Enhanced Intel SpeedStep® TeChNOIOGY c. . ve i 14-8
14.4.6 Enabling Intel® ENhanced DeePer SIEEP. .. it i e e 14-9
14.4.7 MUILICOTE CONSIEIATIONS . v\t vttt ettt ettt e et e et et e e e e e e ne s 14-10
14.4.7.1 Enhanced Intel SpeedStep® TEChNOIOGYt v et 14-10
144.7.2 Thread Migration ConSiderationsouii it i i i i i e 14-10
144.7.3 Multicore Considerations for C-States. vu vt et 14-11

Xii

CONTENTS

PAGE
145 TUNING SOFTWARE FOR INTELLIGENT POWER CONSUMPTIONottt et ieieias 14-12
14.5.1 Reduction Of ACtIVE CYCIES v e e e 14-12
145.1.1 Multi-threading to reduce Active CYClES. ... oot e e e e 14-12
145.1.2 K=ot o3 =« o] P 14-13
145.2 PAUSE and Sleep(0) Loop Optimization.ovirie et 14-14
1453 Y 0] = [0 Yo L 14-15
1454 Using Event Driven Service Instead of Pollingin Code...........ooviiiiiiii i i 14-15
1455 RedUCing INterTUPT R, . ..ot e e 14-15
1456 Reducing Privileged Time. . ..ot e e e 14-15
14.5.7 Setting Context Awareness inthe Code.ovi it et 14-16
14.5.8 Saving Energy by Optimizing for Performance.ovvuiuir et 14-17
146 PROCESSOR SPECIFIC POWER MANAGEMENT OPTIMIZATION FOR SYSTEM SOFTWAREvvvvvvivnn 14-17
14.6.1 Power Management Recommendation of Processor-Specific Inactive State Configurations 14-17
14.6.1.1 Balancing Power Management and Responsiveness of Inactive To Active State Transitions.......... 14-19
CHAPTER 15
SKYLAKE SERVER MICROARCHITECTURE AND SOFTWARE OPTIMIZATION FOR INTEL®
AVX-512
15.1 BASIC INTEL® AVX-5T2 VS, INTEL® AVX2 CODING. . .+ttt et et et e e e e es 15-2
15.1.1 T (ol o T 15-2
15.1.2 ASSEMDIY COTiNG. . ot v ittt e e e e 15-5
15.2 MASKING . ettt e e e 15-7
15.2.1 MasKiNg EXAMIDIE ..ottt et e e e e 15-8
15.2.2 1= T T 0 P 15-11
15.2.3 Masking VS. BIENdingo .o i e e e 15-12
15.2.4 Nested Conditions / Mask AQaregationouuuiiii it 15-14
15.2.5 Memory Masking Microarchitecture IMprovVemMENTS.t e 15-15
15.26 Peeling and Remainder Maskingvuiiiiiitii i i i i et e et 15-16
153 FORWARDING AND UNMASKED OPERATIONS ..ttt ettt 15-17
154 FORWARDING AND MEMORY MASKING . . . vttt e e 15-18
155 DAT A COMP RESS ..ottt ettt et e e e e e 15-18
15.5.1 Data ComMIPIESS EXAMIDIE. . .ottt ettt ettt ettt e e e e e e 15-19
156 DAT A EXPAN . . .ttt e e e e 15-21
15.6.1 Data EXPaNd EXamMI DI . . oottt e e 15-21
15.7 TERNARY LOGIC ..ottt ettt et e e et e et e e e et e e e 15-22
15.7.1 Ternary LoGIC EXAmMIPIE ..ttt sttt e 15-22
15.7.2 Ternary LOgiC EXamIDIE 2. .ottt i e e 15-24
15.8 NEW SHUFFLE INSTRUCTIONS . . .ottt ettt et et et et e e e r e e n e 15-25
15.8.1 TWO SOUMCE PermMUEE EXaMIDIE. . ottt e e 15-26
159 BROAD A T . ettt ettt et et e e e e 15-28
15.9.1 EMDEded Broadtast o. ittt ettt e 15-28
15.9.2 Broadcast Executed 0N Load POrtS. vu ittt e 15-28
15,10 EMBEDDED ROUNDING . . .ot te vt ettt et et e ettt et e e et et e e et e e e 15-29
15.10.1 Static ROUNAING MOQE. . .ottt ettt e e 15-29
1577 SCATTERINSTRUCTION . . ettt e e et e et e e e 15-30
15111 Data SCatter EXAMIPIE . . .ttt e e 15-31
15.12 STATIC ROUNDING MODES, SUPPRESS-ALL-EXCEPTIONS (SAE). ..ttt 15-33
15,13 QWORD INSTRUCTION SUPPORT ...\ttt ittt ettt et et e e et e e et et eaes 15-33
15.13.1 QUADWORD Support in Arithmetic INStrUCTIONS.ot e eens 15-34
15.13.2 QUADWORD Support in ConVert INSTIUCTIONS .. .o\ v ittt ettt ennes 15-37
15.13.3 QUADWORD Support for Convert with Truncation INSTructionsvvvii it 15-38
15,14 VECTOR LENGTH ORTHOGON AL Y L oottt ettt et ettt e et e e e 15-38
15.15 NEW INTEL® AVX-512 INSTRUCTIONS FOR TRANSCENDENTAL SUPPORTvvvvvi i 15-38
15.15.1 VRCP14, VRSQRT14 - Software Sequences for 1/X, X/V, SQrt(X) . .. ovvvvviin it ciciciciieas 15-38
15.15.1.1 APPlICAtioN EXAMIPIES ottt e e e 15-38
15.15.2 VGETMANT VGETEXP - Vector Get Mantissa and Vector Get Exponentcoovviiiviiininnanns 15-39
15.15.2.1 APPlICATioN EXAMIPIES . . ittt 15-39
15.15.3 VRNDSCALE - Vector ROUNA SCalE ... vttt ettt et eaas 15-39
15.15.3.1 APPIICATION EXAMPIES ..ttt e e 15-39
15.15.4 VREDUCE - VECTOr REAUCE ...ttt ettt et e eens 15-40
15.15.4.1 APPIICAtioN EXAMPIESo e 15-40
15.15.5 VS CALEF - VBCEOT SCaIE . .ottt ettt et e e e e e e e e e 15-40
15.15.5.1 APPlICATioN EXAMIPIES . ottt 15-40

CONTENTS

PAGE

15.15.6 VFPCLASS - Vector FIoating Point Classo vttt 15-41
15.15.6.1 APPlICation EXAMPIESt e 15-41
15.15.7 VPERM, VPERMIZ, VPERMTZ - Small Table Lookup Implementation ..., 15-41
15.15.7.1 APPlICATioN EXAMIPIES . ittt e e 15-41
1516 CONFLICT DETECTION. vttt ettt e et et e e et et e e et e e e e e e e 15-41
15.16.1 Vectorization with Conflict Detection ... vvvvu it e e 15-42
15.16.2 Sparse Dot Product With VPCONFLICT ...ttt e et ettt eneaaaas 15-46
15,17 FMA LATENCY ittt e e e e e 15-48
15.18 MIXING INTEL® AVX EXTENSIONS OR INTEL® AVX-512 EXTENSIONS WITH INTEL® STREAMING SIMD EXTENSIONS

(INTEL® SSE) CODE . . vttt ettt ettt et et e e e et e e e et e e et a e a e 15-49
15.19 MIXING ZMM VECTOR CODE WITH XMM/YMM.. . ..ottt et e 15-50
1520 SERVERS WITH A SINGLE FMA UNIT Lttt et e e e e e 15-51
1521 GATHER/SCATTER TO SHUFFLE (G2S/STS) .t vttt ittt ittt et e 15-54
15.21.1 Gather to Shuffle in Strided Loadso et 15-54
15.21.2 Scatter 1o Shuffle iIn STHdEd STOMES . ..ttt 15-56
15.21.3 Gather to Shuffle in Adjacent Loads.vviiiii i e i et 15-57
15.22 DATA AL GNMENT ..ottt e e e e e et e e e e e 15-58
15.22.1 AlIGN Data 10 B4 BY S . ..ttt ittt e e e e e e 15-58
15.23 DYNAMIC MEMORY ALLOCATION AND MEMORY ALIGNMENT ... oot 15-59
15.24 DIVISION AND SQUARE ROOT OPERATIONS ...ttt 15-60
15.24.1 Divide and Square Root Approximation Methods. ...ttt e e i 15-61
15.24.2 Divide and Square ROOt PerformanCeou v ittt e e 15-62
15.24.3 AP OXIMATION LAt OIS . . ot vttt ettt e e e e e e e e 15-62
15.24.4 L0000 LI 31 0] 0= 15-64
15.24.4.1 Single Precision, Divide, 24 Bits (IEEE).o vii i 15-64
15.244.2 Single Precision, Divide, 23 Bits.vviii i 15-64
15.244.3 Single Precision, Divide, T4 Bits.viu i i e e e e 15-65
15.2444 Single Precision, Reciprocal Square Root, 22 Bits ...t e 15-65
15.244.5 Single Precision, Reciprocal Square Root, 23 Bitsovviiiii i 15-65
15.24.4.6 Single Precision, Reciprocal Square Root, T4 Bits ...ttt e e 15-66
15.24.4.7 Single Precision, Square Root, 24 Bits (IEEE).ovuviiii i 15-66
15.244.8 Single Precision, Square RO0t, 23 BitS.vu ittt e 15-66
15.2449 Single Precision, SQUare RO0t, 14 BitS.oviiii i i e e e 15-67
15.24.4.10 Double Precision, Divide, 53 Bits (IEEE). vvve ettt e 15-67
15.24.4.11 Double Precision, Divide, 52 Bits.vvuiiii e 15-67
15.244.12 Double Precision, Divide, 26 BitS.ovii e 15-68
15.24.4.13 Double Precision, Divide, T4 Bits. ... vvuur ettt e e 15-68
15.244.14 Double Precision, Reciprocal Square Root, 51 Bitsovvviiiii e 15-69
15.24.4.15 Double Precision, Reciprocal Square Root, 52 Bits ...t e 15-69
15.244.16 Double Precision, Reciprocal Square Root, 50 BitScoiiiiiiii i e 15-70
15.24.4.17 Double Precision, Reciprocal Square Root, 26 Bitsovviiiitii e 15-70
15.24.4.18 Double Precision, Reciprocal Square Root, 14 Bits ...t e e e 15-71
15.24.4.19 Double Precision, Square Root, 53 BitS (IEEE).ovvvviir 15-71
15.24.4.20 Double Precision, Square Root, 52 BitS.oviii i 15-71
15.24.4.21 Double Precision, Square Root, 26 BitS.ot i 15-72
15.244.22 Double Precision, Square Root, 14 BitS.ovvi i e 15-72
1525 TIPSONCOMPILER USAGEttt et ettt e e 15-72
1526 SKYLAKE SERVER POWER MANAGEMENT ..ottt it e 15-76
CHAPTER 16
SOFTWARE OPTIMIZATION FOR GOLDMONT PLUS, GOLDMONT, AND SILVERMONT
MICROARCHITECTURES
16.1 MICROARCHITECTURES OF RECENT INTEL ATOM PROCESSOR GENERATIONS . ..o 16-1
16.1.1 Goldmont Plus MiCroarChiteCIUrE ... o. vttt e e e 16-1
16.1.2 GoldmMONt MICrOarCNI B O UNE . . ettt e e e e 16-4
16.1.3 YLVl a Loy A ol o = ol T =Ton (= 16-7
16.1.3.1 INEEGEr PIPEIINE. L vttt e 16-10
16.1.3.2 Floating-Point PIpelineo e 16-10
16.2 CODING RECOMMENDATIONS FOR GOLDMONT PLUS, GOLDMONT AND SILVERMONT

MICROARCHITECTURES ..ottt e e e e e e e e e 16-10
16.2.1 Optimizing The FrONt ENGo e 16-10
16.2.1.1 NS ETUCHION DBCOET . v vttt ettt ettt e e e e e e 16-10
16.2.1.2 Front End High IPC ConSIErationso v vt vttt ettt iaaas 16-11

Xiv

CONTENTS

PAGE
16.2.1.3 Branching Across 4GB BOUNGary.ovueieti ittt et it 16-13
16.2.1.4 Loop Unrolling and Loop Stream Detector.vvu et 16-13
16.2.1.5 MiXing Code and Data. . ..o.i it i i e e e 16-13
16.2.2 Optimizing The EXECUTION O . .. v\ttt ettt ettt et e ettt anenaanas 16-14
16.2.2.1 SCRBAUING vttt e e e e 16-14
16.2.2.2 AdArESS GENMEIATION. o ottt et e e et e e e e e e e 16-14
16.2.2.3 FP Multiply-Accumulate-Store EXECUTION v 'ttt ieaas 16-14
16224 Integer MUItIply EXECULIONt e e 16-15
16.2.2.5 ZEr0INg IS, . oottt e e e e 16-16
16.2.2.6 1[0 o o 3 L 16-16
16.2.2.7 Move Elimination and ESP FOldiNg.vv et e 16-16
16.2.2.8 Stack Manipulation INStrUCTION.o e e e 16-16
16.2.2.9 T U 16-17
16.2.2.10 SIMD Floating-Point and X87 INStrUCTIONS\ v vttt e i 16-17
16.2.2.11 SIMD INteger INSTTUCTIONS .\ o ittt e et e e e et i e 16-17
16.2.2.12 Vectorization CoNSIAEratioNS\ttt ettt ettt e e e e e 16-17
16.2.2.13 Other SIMD INStrUCTIONS . . o v vttt et ettt et e e e e et e 16-18
16.2.2.14 ISy oo IY=1 =Ton 1 o 16-18
16.2.2.15 RN (=T =T Y7 (o 16-20
16.2.2.16 D=0 L= Y T i P 16-20
16.2.2.17 e TR N [y {1 oy o 16-21
16.2.3 OpTiMIZING MEMOTY ACCESS S . . v vttt ettt ettt et e e et ettt e e et e ettt e e e neneneanas 16-21
16.2.3.1 Reduce Unaligned Memory Access With PALIGNR. ... i 16-21
16.2.3.2 Minimize Memory EXECULION ISSUBSttt i e e et e et eaas 16-21
16.2.3.3 A0 (o =N o 1= o« 16-21
16234 PrefetChW INSTrUCTION. . . .o e e e e 16-22
16.2.3.5 Cache Line Splits and AlIgNmentot i e e e e 16-23
16.2.3.6 I YT 01T = = L= 16-23
16.2.3.7 COPY AN STFING COPY v vt vttt ettt e e e 16-23
163 INSTRUCTION LATENCY AND THROUGHPUT ...ttt 16-23
CHAPTER 17
KNIGHTS LANDING MICROARCHITECTURE AND SOFTWARE OPTIMIZATION
17.1 KNIGHTS LANDING MICROARCHITECTURE . . .t ettt ettt es 17-2
17.1.1 0] 1 = PP 17-3
17.1.2 [T 0} 0=l = T T 17-3
1713 UN Tl et e e e 17-6
17.2 INTEL® AVX-512 CODING RECOMMENDATIONS FOR KNIGHTS LANDING MICROARCHITECTURE.............. 17-7
17.2.1 Using Gather and Scatter INStrUCiONS. . ..o i vt e e e i i e 17-8
17.2.2 Using Enhanced Reciprocal INStrUCTIONS . ..o\ v vttt e eieas 17-8
1723 USiNg AVX-5T2CD INSTTUCTIONS . ..o v ettt et et et e s 17-9
17.24 Using Intel® Hyper-Threading Technologyc.oviiii i i e et e ieaaas 17-10
17.25 Front ENd CoNSIAErationsS.o vttt ettt et e et e e e 17-11
17.2.5.1 INSTTUCHION DECOUET . .o vttt e e e e e e e 17-11
17.25.2 Branching Indirectly Across @ 4GB BoUNarycovvriiiii i e e 17-11
17.26 Integer EXecUtion CoNSIAerationS v. ittt e e e 17-12
17.26.1 IS USA0E .ottt ettt et e e e e e 17-12
17.26.2 1 (T 0 L= 1Y/ T 17-12
17.2.7 Optimizing FP and Vector EXECUTION . ..o vttt ettt eaas 17-12
17.2.7.1 Instruction Selection CoNSIAErationS v ettt 17-12
17.2.7.2 Porting Intrinsic From Prior GENerationiiii i i e i it 17-14
17.2.7.3 Vectorization Trade-Off EStimation.cooiirii i e 17-14
1728 Memory OpPTIMIZAtIONo v ettt e e e e 17-17
17.28.1 D=1 = I A 1= P 17-17
17.28.2 Hardware PrefetCher .. .o 17-18
17283 SOTtWArE PrefEtCN. ..o 17-18
17284 MemOory EXECUTION ClUS O « .ttt i i it e ettt e et 17-18
17.2.8.5 A0 (o I8 o 1= o« 17-19
17.286 WaY, Set ConTliCES ... e 17-19
17.28.7 Streaming Store Versus Regular STOre.o i e e e i e e 17-20
17.2.8.8 Compiler SWitches and DireCTIVES. v .ttt et e it 17-20
17.289 Direct Mapped MCDRAM CaChE . ..ottt e e 17-20

XV

CONTENTS

PAGE
APPENDIX A

APPLICATION PERFORMANCE TOOLS

Al COMPILERS . . ottt s e e e e A-2
A1 Recommended Optimization Settings for Intel® 64 and IA-32 ProCessors.vvvviviiiiennenenenennn. A-2
Al1.2 Vectorization and Loop Optimization.c.ueee et A-3
A1.2.1 Multithreading With OpenMP* e e e A-3
Al122 Automatic MUITRrEadingo e e e A-3
A13 Inline Expansion of Library FUNCLioNS (/O0, /00-) v et e A-3
Al14 Interprocedural and Profile-Guided Optimizations.t i A-3
A1.4.1 Interprocedural Optimization (IPO)c.vitit e e A-3
A14.2 Profile-Guided Optimization (PGO)viuittt e A-4
A15 0= O TP A-4
A2 PERFORMANCE LIBRARIES ...ttt ettt e et e e ettt e e e n e A-4
A2l Intel® Integrated Performance Primitives (INtel® IPP)o e A-5
A2.2 Intel® Math Kernel Library (INTeI° MKL)o .onin e A-5
A23 Intel® Threading Building Blocks (INTEI° TBB)t v v vttt et A-5
A24 BENE TS SUMIMIANY . .ottt e e e e A-5
A3 PERFORMANCE PROFILERS . . .t ottt ettt ettt e e et e e e e e e e e e e A-5
A3.1 INtel® VTUNE™ AMPITIEr XE ..o e e e A-6
A3.1.1 Hardware Event-Based Sampling ANalySis. v vttt e e A-6
A3.1.2 AlGOrtRm ANy SIS . o oottt e e e A-6
A3.1.3 PlaT O M ANl SIS . . ottt et e e A-6
A4 THREAD AND MEMORY CHECKERS . . .ttt e e A-6
A4 0 =] Al Tt () A-7
A5 VECTORIZATION ASS S T AN T .ottt ettt e e e e e e e e e e e A-7
A.5.1 1= ¥ V7o A-7
A6 CLUSTER TOOLS . .ottt ettt et ettt e e e e e e e e e e e e e e A-7
A6.1 Intel® Trace Analyzer and CollBCtOr. v vttt e et A-7
AG6.1.1 MPI Performance SNaPSNOT. . ..t e A-7
AB.2 0 =] Al | I = Y A-7
A6.3 INTEl® MPI BENCRMAIKS & . vttt ettt et e e e et e e e e A-8
A7 INTEL® ACADEMIC COMMUNITY L.ttt ettt e et e ettt e e e et e et aenas A-8
APPENDIX B

USING PERFORMANCE MONITORING EVENTS

B.1 TOP-DOWN ANALYSIS METHOD. .. ottt ettt e e et e e e e B-1

B.1.1 0T B-2
B.1.2 Front ENd BOUNG. .. .ot e e e e e B-3
B.1.3 Back ENA BOUNM e ittt e ettt e e e e B-4
B.14 MEMIOTY BOUNA ..ottt e e e e e e e e e e B-4
B.1.5 {000 r =1 o 0 T B-5
B.1.6 Bad SPECUIATION ..\ e e B-5
B.1.7 RETIT NG oot e e e e e B-6
B.1.8 TMAM and Skylake MiCroarChiteCIUMt e B-6
B.1.8.1 I I T 0] B-6
B.2 PERFORMANCE MONITORING AND MICROARCHITECTUREttt B-7
B3 INTEL® XEON® PROCESSOR 5500 SERIES ...\ttt et B-13
B4 PERFORMANCE ANALYSIS TECHNIQUES FOR INTEL® XEON® PROCESSOR 5500 SERIEScovvivivnnnn B-14
B.4.1 Cycle Accounting and Uop FIOW ANaIYSIS . ..o v vttt e B-15

B.4.1.1 Cycle Drill Down and Branch Mispredictions.ouii i i B-16
B4.1.2 BasiC BIOCK Drill DOWN. . . vttt et et e e e e e e e B-19
B4.2 Stall Cycle Decomposition and Core MemOry ACCESSES ... vuvrvr ittt nnee e enees B-20
B4.2.1 Measuring Costs of Microarchitectural Conditions.vvvv et B-20
B4.3 COre PMU PraCise B eNES. o .ottt ettt et e e e et e e B-21

B.4.3.1 Precise Memory ACCESS EVENMESttt e e B-22

B4.3.2 Load LatenCy BVENt. ..o e B-23

B4.3.3 Precise EXECULION BVBNTS ...\ttt et e e e B-25

B4.34 Last Branch RECOT (LBR) ... v vttt ettt e ettt e e e B-26
B.4.3.5 Measuring Core Memory ACCESS LatenCyvvuve ittt B-28
B.4.3.6 Measuring Per-Core Bandwidth. e B-30
B4.3.7 Miscellaneous L1 and L2 Events for Cache MiSSESvviiviiin it B-31

B.4.3.8 TUB IS SS L vttt ettt ettt ettt e e e e B-31

B4.3.9 I 7= = Tl 1= B-32

XVi

CONTENTS

PAGE
Front ENd MonitOriNg BEVeNTSottt e e e e B-32
Branch MisprediCtions. ettt e e e B-32
Front End Code Generation MetriCS . ..o .vv et e B-32
Uncore Performance Monitoring EVeNtS.iu it i B-33
GIODAl QUEUE OCCUPANECY .+« e vttt ettt ettt et e et et et e et et et e et e e e e e e B-33
GlODal QUEUE POMt BVBNTS o\ vttt ettt ettt et e e e e e e B-35
Global QUEUE SNOOP BVENMTS & ..ttt t ettt ettt et e e e e e e B-35
LIRS T £ B-36
Intel QuickPath Interconnect Home Logic (QHL). ovne e B-36
Measuring Bandwidth From the UNCOreovve i et B-41
PERFORMANCE TUNING TECHNIQUES FOR INTEL® MICROARCHITECTURE CODE NAME SANDY BRIDGE. B-42
Correlating Performance Bottleneck to Source Location ...t B-42
Hierarchical Top-Down Performance Characterization Methodology and Locating Performance
BOTENECKS vttt e B-43
Back End Bound CharaCterizationvuee e et B-44
Core Bound CharaCterization vv v v et e ettt e e e B-44
Memory Bound Charatterization.vuvui e e B-44
Back ENA STallS .ot e e B-45
MemMOrY SUD-SYSTEM STallSottt e e e B-46
Accounting Tor Load LatenCy ..o vv vttt e e e e B-47
Cache-line Replacement ANaly SIS . . v vttt i i e e e i e i e B-48
LOCK CONTeNTION ANy SIS, . o\ttt ettt ettt e e e e B-49
OthEr MEMOTY ACCESS SSUBS . . v vttt vttt ettt s et e et e e e ens B-49
EXECUTION STallS. . . e e s B-52
Longer INSTrUCTION LatBnCiES . ..o .ottt ettt et e ettt e e B-52
L] LY £ B-52
Bad SPECUItION .\ttt e B-53
BranCh MiSPrEaiCTS. . ..ottt e e B-53
FrONt ENA STallS. . ..ot e B-53
Understanding the Micro-op Delivery Rateo e e B-53
Understanding the Sources of the Micro-op QUEUEvvvviiit e B-55
The Decoded ICaChe ...t e e e e B-56
Issues in the Legacy Decode Pipelineo.oiiiii i e B-57
INSEITUCTION CaCNE . . vttt e e B-57
USING PERFORMANCE EVENTS OF INTEL® CORE™ SOLO AND INTEL® CORE™ DUO PROCESSORS.............. B-58
Understanding the Results in @ Performance CoUNTer.iuiriii i i aeaeaas B-58
RaATio IO P ETATION. . ..o\ttt e e e e B-58
NOTES 0N SelECIEd EVBNTS . . ettt B-59
DRILL-DOWN TECHNIQUES FOR PERFORMANCE ANALYSIS . ..ot B-59
Cycle CompoSITion @t ISSUB POmt. . ..ttt ettt e e aaaas B-61
Cycle Composition 0f 000 EXECUTION. .. v\ttt ittt et a e B-61
Drill-Down on Performance Stalls vttt B-62
EVENT RATIOS FOR INTEL CORE MICROARCHITECTURE. . ..ottt sttt et B-63
Clocks Per Instructions Retired Ratio (CPI). vvvu it e B-63
Front BN RATIOS. . . oot e e B-64
{000 T[N 0 T 11 Y B-64
Branching and Front ENd e e e e B-64
I = Lo Q8 o =] I o (= B-64
3 Tol o T T o B-64
Length Changing Prefix (LCP) Stalls. v v et B-65
Self Modifying Code Detection.ve ittt e e B-65
Branch Prediction Ratiosvv ittt e B-65
BranCh MispradiCTioNS. . .o\ttt e e e B-65
Virtual Tables and INAireCt CallS.o v et e B-65
1Y =T o =T (= 0 L B-66
EXECUTION RATIOS. . . o vttt ettt e e et e e e e e B-66
RESOUICE STallS . . ettt e e e e B-66
ROB REAA PO StallS. . vt e ettt e e e e e B-66
Partial Register STallSttt B-66
Partial FIag STallSo e B-66
Bypass Between EXeCUtion DOMains.uuei ettt B-66
Floating-Point Performance Ratiosvviiii e B-66
Memory Sub-System - Access Conflicts RAtioS.v.vu v e e B-67
Loads Blocked by the LT Data Cache.ovei ittt B-67
4K Aliasing and Store Forwarding Block Detection.covvr i e B-67

CONTENTS

PAGE
B.8.5.3 Load Block by Preceding STOresS.o vu ittt e B-67
B854 Memory DisambigUation. u et e B-68
B.8.5.5 Load Operation Address Translationt i e i B-68
B.8.6 Memory Sub-System - Cache MiSSES RAti0S. . ..t v vttt i ettt a s B-68
B.8.6.1 Locating Cache Misses iNthe Code.o . i B-68
B.8.6.2 LT Data Cathie MiSSS . vttt ettt et ettt et e e e B-68
B.8.6.3 O ol o L] Y=L B-68
B.8.7 Memory Sub-system - Prefetching. B-69
B.8.7.1 LT Data PrefetChingt e e e e B-69
B.8.7.2 L2 Hardware PrefetChing i e et B-69
B.8.7.3 Software PrefetChing v B-69
B.8.8 Memory Sub-system - TLB Miss Ratiosoviiiii i e i e i e B-69
B.8.9 Memory Sub-system - Core INTeraCtion.uu ittt e e e e e B-70
B.8.9.1 Modified Data SNaming.o vttt e B-70
B.8.9.2 Fast SYNChroNIiZation Penalty. oo i e e e B-70
B.8.9.3 Simultaneous Extensive Stores and Load MiSSESvv it it vt B-70
B.8.10 Memory Sub-system - Bus CharaCterizationovuvririt e B-70
B.8.10.1 BUS UiliZationt e e B-70
B.8.10.2 Modified Cache LINeS EVICTION v ettt e e e B-71
APPENDIX C
INSTRUCTION LATENCY AND THROUGHPUT
C1 OV RV IE W sttt e e e e e e e C-1
C2 DEFINITIONS . ottt ettt e e e e e c-2
C3 LATENCY AND THROUGHPUT ..ottt ettt et et e e s C-2
€31 Latency and Throughput with Register Operandsouviiiiiiii i C-3
C3.2 I 10 N oo 1 01 (= c-18
C33 INStructions With MemOry OPErandsvu ittt e enaas c-19
C3.3.1 Software Observable Latency of Memory References ..o C-20
APPENDIX D
INTEL®* ATOM™ MICROARCHITECTURE AND SOFTWARE OPTIMIZATION
D.1 OV RV B ettt e e e e e e e e e D-1
D.2 INTEL® ATOM™ MICROARCHITECTUREottt ettt e e e D-1
D.2.1 Hyper-Threading Technology Support in Intel® Atom™ Microarchitecture...............cooiiiii it D-3
D3 CODING RECOMMENDATIONS FOR INTEL® ATOM™ MICROARCHITECTURE. . ..ot v D-3
D.3.1 Optimization for Front End of Intel® Atom™ Microarchitecturecoovviii i e D-3
D3.2 Optimizing the EXECUTION QoM. .. .ttt it e e e et e i r it aees D-5
D.3.2.1 Integer INSTrUCtioN SElECTIONt e e D-5
D3.2.2 a7 =T T=T o= 1o D-6
D.3.23 INtEgEr MURIDIY . . o i i i e D-6
D324 INteger Shift INSTTUCTIONS. . .. ot e e e e e D-7
D.3.25 Partial REGISTEI ACCESS. o vttt ettt ettt e ettt e e e e e e e e e D-7
D.3.26 FP/SIMD INStruction SEIECHIONttt e e e D-7
D33 (0] Yo i T o Yol =L D-9
D.3.3.1 STOME FOMAIAING . o ettt ettt ettt e e e D-9
D33.2 First-level Data Cache.o e e e e D-9
D333 S OMIENE BaS . ..ottt vttt e D-10
D334 SHTING MOV S L ittt e e D-10
D.3.35 ParamME O PaSSiNg. . .ottt t ittt e e e e D-11
D.3.3.6 FUNCEION CallS. . et D-11
D.33.7 Optimization of Multiply/Add Dependent Chainsovuiititir e ens D-11
D338 Position Independent Code. . ..o .i it e D-13
D4 INSTRUCTION LATENCY .ottt ettt et ettt e e ettt e et ettt e eees D-13
EXAMPLES
Example 2-1. Dynamic Pause LOOP EXaMPIE e 2-11
Example 2-2. Contended Locks with Increasing Back-off Example. 2-12
Example 3-1. Assembly Code with an Unpredictable Branch ... e 3-5
Example 3-2. Code Optimization to Eliminate Branches. ... e e 3-5

Xviii

Example 3-3.
Example 3-4.
Example 3-5.
Example 3-6.
Example 3-7.
Example 3-8.
Example 3-9.

Example 3-10.
Example 3-11.
Example 3-12.
Example 3-13.
Example 3-14.
Example 3-15.
Example 3-16.
Example 3-17.
Example 3-18.
Example 3-19.
Example 3-20.
Example 3-21.
Example 3-22.
Example 3-23.
Example 3-24.
Example 3-25.
Example 3-26.
Example 3-27.
Example 3-28.
Example 3-29.
Example 3-30.
Example 3-31.
Example 3-32.
Example 3-33.
Example 3-34.
Example 3-35.
Example 3-36.
Example 3-37.
Example 3-38.
Example 3-39.
Example 3-40.
Example 3-41.
Example 3-42.
Example 3-43.
Example 3-44.
Example 3-45.
Example 3-46.
Example 3-47.
Example 3-48.
Example 3-49.
Example 3-50.
Example 3-51.
Example 3-52.
Example 3-53.
Example 3-54.
Example 3-55.
Example 3-56.
Example 3-57.
Example 3-58.

Example 4-1.
Example 4-2.
Example 4-3.

CONTENTS

PAGE

Eliminating Branch with CMOV INStrUCTION.o v v et ae e 3-6
Use Of PAUSE INSTTUCTION .. .o v ettt e e e e e 3-6
Static Branch Prediction AlQOrithm. . ..o 3-7
Static TaKen PrediCtionttt e e e 3-7
Static NOt-Taken PrediCtionoue e e et 3-7
Indirect Branch With Two Favored Targets.c.vviiii e aeens 3-10
A Peeling Technique to Reduce Indirect Branch Mispredictioncccoiiiiiiiiiiiinn, 3-10
LOOP UNMOIlNG . v ettt e e e e e e 3-11
Macro-fusion, Unsigned Iteration CouNTvu ittt 3-14
MaCro-fUSioN, [STatemMIENt 3-14
Macro-fusion, Signed Variable e 3-15
o Tal o B WIS o] T =Ta o T = o 3-15
Additional Macro-fusion Benefit in Intel Microarchitecture Code Name Sandy Bridge.............. 3-16
Avoiding False LCP Delays with OXF7 Group INSTructions.o.vvvvviiiiiiii e ieiiei e 3-17
Unrolling Loops in LSD to Optimize Emission Bandwidth. ..o, 3-18
Independent Two-Operand LEA EXamMple. 3-22
Alternative to Three-0perand LEA. e e e et 3-23
Examples of 512-bit Additions.ot e 3-24
Clearing Register to Break Dependency While Negating Array Elementscovvent. 3-27
SPIll SChEdUING COTE. . . ot ottt e e 3-29
Zero-Latency MOV INSTrUCHIONS. . ..o v vttt e e e 3-30
Byte-Granular Data Computation TEChNIQUE.ot 3-30
Re-ordering Sequence to Improve Effectiveness of Zero-Latency MOV Instructions.............. 3-31
Avoiding Partial Register Stallsin Integer Code. ..ot e e 3-33
Avoiding Partial Register Stalls in SIMD Codeoiii i e 3-34
Avoiding Partial Flag Register Stalls.covii e 3-35
Partial Flag Register Accesses in Intel Microarchitecture Code Name Sandy Bridge 3-35
Reference Code Template for Partially Vectorizable Programcooiiiiiiinnnns, 3-38
Three Alternate Packing Methods for Avoiding Store Forwarding Difficulty 3-39
Using Four Registers to Reduce Memory Spills and Simplify Result Passing 3-39
Stack Optimization Technique to Simplify Parameter Passingcoviiiiiiiiiiiiiinann 3-40
Base Line Code Sequence to Estimate Loop Overheadccovviiiiiiiiii i 3-41
Optimize for Load Port Bandwidth in Intel Microarchitecture Code Name Sandy Bridge 3-43
Index versus Pointers in Pointer-Chasing Codeooviiiii i 3-44
Example of Bank Conflicts in L1D Cacheand Remedy ...ttt 3-45
Using XMM Register in Lieu of Memory for Register Spills. ..., 3-46
Loads Blocked by Stores of UnKnown Addressvviriiiiiiiiii it eienenans 3-47
Code That Causes Cache Line SPlit. vt e e e 3-48
Situations Showing Small Loads After Large Store.ov it 3-51
Non-forwarding Example of Large Load After Small Store.oovvviviiiii i 3-51
A Non-forwarding Situation in Compiler Generated Code............coviiiiiiii i iiieanns 3-51
Two Ways to Avoid Non-forwarding Situation in Example 3-43..........ccoiiiiiiiiiiiiieenn, 3-52
Large and Small Load Stalls.o v e 3-52
Loop-carried Dependence Chain ... o.ouiui i 3-54
Rearranging @ Data StrUCTUMEo vttt e 3-55
DECOMPOSING @M ATTAY .o .o ettt et et e e e et e e e et et e e e 3-55
Examples of Dynamical Stack Alignment.t 3-57
Aliasing Between Loads and Stores Across Loop Iterations.coiiiiii i, 3-59
Instruction Pointer QUery TeChNiQUES.ot i e e 3-60
Using Non-temporal Stores and 64-byte Bus Write Transactionscccovvviiivinininns. 3-63
On-temporal Stores and Partial Bus Write Transactions...........vvviiiiiiiiiiiiiiiiiiiiaanns 3-63
Using DCU Hardware Prefetch. ... e 3-64
Avoid Causing DCU Hardware Prefetch to Fetch Un-needed Linescocovvviinnnn. 3-65
Technique For Using L1 Hardware Prefetch. ... e 3-66
REP STOSD with Arbitrary Count Size and 4-Byte-Aligned Destination.....................oo.ee. 3-68
Algorithm to Avoid Changing Rounding Mode.o.ii i i 3-75
Identification of MMX Technology With CPUIDiuirii e 4-2
Identification of SSE WIth CPUIDttt e e 4-2
Identification of SSE2 With cpuidooeie i 4-3

Xix

CONTENTS

Example 4-4.
Example 4-5.
Example 4-6.
Example 4-7.
Example 4-8.
Example 4-9.

Example 4-10.
Example 4-11.
Example 4-12.
Example 4-13.
Example 4-14.
Example 4-15.
Example 4-16.
Example 4-17.
Example 4-18.
Example 4-19.
Example 4-20.
Example 4-21.
Example 4-22.
Example 4-23.
Example 4-24.
Example 4-25.
Example 4-26.

Example 5-1.
Example 5-2.
Example 5-3.
Example 5-4.
Example 5-5.
Example 5-6.
Example 5-7.
Example 5-8.
Example 5-9.

Example 5-10.
Example 5-11.
Example 5-12.
Example 5-13.
Example 5-14.
Example 5-15.
Example 5-16.
Example 5-17.
Example 5-18.
Example 5-19.
Example 5-20.
Example 5-21.
Example 5-22.
Example 5-23.
Example 5-24.
Example 5-25.
Example 5-26.
Example 5-27.
Example 5-28.
Example 5-29.
Example 5-30.
Example 5-31.
Example 5-32.
Example 5-33.
Example 5-34.
Example 5-35.
Example 5-36.

XX

Identification of SSE3 WIth CPUID.ottt i 4-3
Identification of SSSE3 With CpUIdovi it 4-3
Identification of SSE4.T With CpUId.oeie 4-4
Identification of SSE4.2 With CpUId.ooie i 4-4
Detection of AESNIINSITUCTIONS ..o\ v vttt ettt 4-5
Detection of PCLMULQDQ INSTIUCTION . . o vt v vt ettt et et e e ae e 4-5
Detection of AVX INSTTUCTIONttt e e 4-6
Detection of VEX-Encoded AESNIINSTTUCTIONSo vttt 4-7
Detection of VEX-Encoded AESNI INSTTUCTIONSo v vttt 4-7
Simple FOUr-Ieration LOOPottt i 4-14
Streaming SIMD Extensions Using Inlined Assembly Encodingcoivviiiiiiiiiiinns. 4-14
Simple Four-Iteration Loop Coded with INTANSICSoovvi i e 4-15
C++ Code Using the Vector Classesv i ittt ettt e enas 4-16
Automatic Vectorization for a Simple LoOpvvvi i 4-16
C Algorithm for 64-bit Data AlIGNMENTv i e 4-18
LYo A B =) 1 on (1 = 4-21
B Y TN B 1 = I 1 on (1 = 4-21
A0S aNd SOA Code SaMIPIES. . .ottt e e 4-21
Hybrid SOA Data StrUCTUME . ..ottt e e et et anas 4-22
Pseudo-code Before Strip Miningoovvii i e e e 4-23
SEID MINEA COQE. . vttt e 4-24
LOOP BIOCKING. .+« v ettt e e e e 4-24
Emulation of Conditional MOVES. v vt e e 4-26
Resetting Register Between __m64 and FP Data TypesCode.........ccovviiiiiiiiiiiiniiiennnn, 5-3
FIR Processing Example in C1language Codeo.vviiiii i e eaaas 5-4
SSEZ2 and SSSE3 Implementation of FIR Processing Code.ovvvvvviiii it 5-4
Zero Extend 16-bit Values into 32 Bits Using Unsigned Unpack Instructions Code.................. 5-5
SIgNEd UNPack COoAeo e 5-5
Interleaved Pack with Saturation Code.ooie it i 5-7
Interleaved Pack without Saturation Codevriii e 5-7
Unpacking Two Packed-word Sources in Non-interleaved Way Codeoovviiiiiiinnnn, 5-9
PEXTRW INSTrUCTION COQE . . vttt ettt e e eens 5-10
PINSRW INSTrUCtioN COAB. ..o v vttt ettt ettt e e et e e e eeens 5-10
Repeated PINSRW INStruction Code.vvir it 5-11
Non-Unit Stride Load/Store Using SSE4.T INStructions ..ot ae 5-11
Scatter and Gather Operations Using SSE4.1 INStructionscoviiiii it 5-11
PMOVMSKB INSTrUCHION COQE . . vttt te et ettt et ettt e e e e e aeens 5-12
Broadcast a Word Across XMM, Using 2 SSE2 INSTructions.vvviiiiiiii i iiniiiananns 5-13
Swap/Reverse words in an XMM, Using 3 SSE2 InStructions.covviiiiiiiiiiniiiiiiianns 5-13
GENEratiNg CONSTANTS . . .ottt ettt et et 5-15
Absolute Difference of Two Unsigned NUMDErscciiiiiiii i ieaeaas 5-15
Absolute Difference of Signed NUMDETS.ot i 5-16
Computing ADSOIUTE ValUE . ..ot e e e e e 5-16
Basic C Implementation of RGBA t0 BGRA CONVEISION. ...\ vvit vttt i i inieenas 5-17
Color Pixel Format Conversion USiNg SSE2ttt 5-17
Color Pixel Format Conversion USINg SSSE3o e 5-18
Big-Endian to Little-Endian ConVerSionv it e e e 5-19
Clipping to a Signed Range of Words [High, LOW]. ...t eeaas 5-20
Clipping to an Arbitrary Signed Range [High, LOW] ... i 5-20
Simplified Clipping to an Arbitrary Signed Range.ovviiii i e 5-20
Clipping to an Arbitrary Unsigned Range [High, Low]. ... 5-21
Complex MUItiply BY @ CONSTaNT. oot e 5-23
Using PTEST to Separate Vectorizable and non-Vectorizable Loop Iterations..................... 5-24
Using Variable BLEND to Vectorize Heterogeneous LOOPS.o v ittt cieiieiieieas 5-24
Baseline C Code for Mandelbrot Set Map Evaluation. ...t 5-25
Vectorized Mandelbrot Set Map Evaluation Using SSE4.T INTrinsicsvvvviviiiiiiiinnnnnnss 5-26
A Large Load after a Series of Small Stores (Penalty) ...t 5-28
Accessing Data WithoUt Delayo v s 5-28
A Series of Small Loads After a Large Storeoveee it s 5-28

Example 5-37.
Example 5-38.
Example 5-39.
Example 5-40.
Example 5-41.
Example 5-42.
Example 5-43.
Example 5-44.
Example 5-45.
Example 5-46.
Example 5-47.
Example 5-48.
Example 5-49.
Example 5-50.
Example 6-1.
Example 6-2.
Example 6-3.
Example 6-4.
Example 6-5.
Example 6-6.
Example 6-7.
Example 6-8.
Example 6-9.
Example 6-10.
Example 6-11.
Example 6-12.
Example 6-13.
Example 6-14.
Example 6-15.
Example 6-16.
Example 6-17.
Example 6-18.
Example 6-19.
Example 6-20.
Example 6-21.
Example 6-22.
Example 6-23.
Example 6-24.
Example 7-1.
Example 7-2.
Example 7-3.
Example 7-4.
Example 7-5.
Example 7-6.
Example 7-7.
Example 7-8.
Example 7-9.
Example 7-10.
Example 7-11.
Example 7-12.
Example 9-1.
Example 9-2.
Example 9-3.
Example 9-4.
Example 9-5.
Example 9-6.
Example 9-7.
Example 9-8.
Example 9-9.

CONTENTS

PAGE

Eliminating Delay for a Series of Small Loads afteralargeStore.............c.covviiiivienen.s. 5-29
An Example of Video Processing with Cache Line Splits........ovvivi i i 5-29
Video Processing Using LDDQU to Avoid Cache Line SpIitscooovviiiiiii e 5-30
Un-optimized Reverse Memory Copy in C. ...t 5-31
Using PSHUFB to Reverse Byte Ordering 16 BytesataTime............cooviiiiii it 5-33
PMOVSX/PMOVZX Work-around to Avoid False Dependencyvvveveieiiinennnnnnenennn. 5-35
Table Look-up Operations in C Code. ... vvv ittt ettt eaas 5-35
Shift Techniques on Non-Vectorizable Table LOOK-UP ..o 5-36
PEXTRD Techniques on Non-Vectorizable Table LOOK-UP.........ccovviiviiiiiiiiii i 5-37
Pseudo-Code Flow of AES Counter Mode Operation.oouviiiiiiiiiii e 5-39
AES128-CTR Implementation with Eight Block inParallel..................cooi i 5-39
AEST 28 KBY EXPaNSION vttt ittt ittt ettt ettt e e et e e e 5-46
Compress 32-bit Integers into 5-bit BUCKETSt e 5-49
Decompression of a Stream of 5-bit Integers into 32-bitElementscccovvvvninns. 5-51
Pseudocode for Horizontal (Xyz, A0S) Computationovvviti it 6-4
Pseudocode for Vertical (xxxx, yyyy, zzzz, SOA) Computationc.oooviiiiiiiiiiiinennn. 6-5
Swizzling Data Using SHUFPS, MOVLHPS, MOVHLPSt 6-5
Swizzling Data Using UNPCKXXX INStrUCtioNS. . ..o v vttt v i eeas 6-6
Deswizzling Single-Precision SIMD Datavi it 6-7
Deswizzling Data Using SIMD Integer INStructionsovvvvviii i 6-8

Horizontal Add Using MOVHLPS/MOVLHPS.t e 6-9

Horizontal Add Using Intrinsics with MOVHLPS/MOVLHPS.o 6-10
Multiplication of Two Pair of Single-precision Complex Number..............cooiviiiiiinninnn.n. 6-12
Division of Two Pair of Single-precision Complex Numbers ..., 6-12
Double-Precision Complex Multiplication of Two Pairs. ..o 6-13
Double-Precision Complex Multiplication Using Scalar SSE2..........ccoviviiiiii i, 6-13
Dot Product of Vector Length 4 Using SSE/SSE2 vttt it 6-14
Dot Product of Vector Length 4 Using SSE3.ot 6-15

Dot Product of Vector Length 4 Using SSE4.1 ittt ns 6-15

Unrolled Implementation of Four Dot Productscoviiiiiiiiii i ae e 6-15
Normalization of an Array Of VeCtOrSttt 6-16
Normalize (x, y, z) Components of an Array of Vectors UsingSSE2coviiiiiinininns. 6-17

Normalize (x, y, z) Components of an Array of Vectors Using SSE4.T..........oovviiiiiinninns. 6-18

Data Organization in Memory for AOS Vector-Matrix Multiplicationccoovivinints. 6-19
AQS Vector-Matrix Multiplication with HADDPS. e 6-19
AQS Vector-Matrix Multiplication With DPPS.o e 6-20
Data Organization in Memory for SOA Vector-Matrix Multiplicationcooviints. 6-21
Vector-Matrix Multiplication with Native SOA Data layout ..o 6-22
Pseudo-code Using CLELUSHttt i 7-10
Flushing Cache Lines Using CLFLUSH or CLFLUSHOPTottt eieieneens 7-12
Populating an Array for Circular Pointer Chasing with Constant Stride 7-13
Prefetch Scheduling DiSTanCe.o.ori it ettt e e aens 7-16
Using Prefetch Concatenationouiuirii i it ns 7-17
Concatenation and Unrolling the Last Iteration of INNer Loop.......c.ovvvvviiiiiii i 7-17
Data Access of a 3D Geometry Engine without Strip-mining. ..o 7-21
Data Access of a 3D Geometry Engine with Strip-mining ... 7-22
Using HW Prefetch to Improve Read-Once Memory Traffic..........c.oviiiiiii e, 7-23
Basic Algorithm of @ Simple Memory CopPYuvui ettt ettt eaeaens 7-27
A Memory Copy Routine Using Software Prefetch. ... 7-28
Memory Copy Using Hardware Prefetch and Bus Segmentation...............coviiiivnininns. 7-29
Serial Execution of Producer and Consumer Work [tems. ..o 9-5
Basic Structure of Implementing Producer Consumer Threads.oovviiiiiiiiiieinininnns 9-6
Thread Function for an Interlaced Producer Consumer Model.covviiiiiiiiiiininnen. 9-7
Spin-wait Loop and PAUSE INStrUCTiONS oot i e i et 9-12
Coding Pitfall using Spin Wait LOOP.o v vt e e 9-14
Placement of Synchronization and Regular Variables ... 9-15
Declaring Synchronization Variables without Sharinga Cache Line...............coviiiivnines. 9-16
Batched Implementation of the Producer Consumer Threads.oovvviviiiiiiiiinnnnennn. 9-20
Parallel Memory Initialization Technique Using OpenMP and NUMAooviiiiiiints, 9-24

XXi

CONTENTS

Example 10-1. Compute 64-bit Quotient and Remainder with 64-bit Divisor.............ccoiviiii i 10-3
Example 10-2. Quotient and Remainder of 128-bit Dividend with 64-bit Divisorccoviviiiiiiiiinn, 10-4
Example 11-T. A Hash FUNCLION EXGMPIESt e e 11-4
Example 11-2. Hash FUNction USING CRCB2o ettt e 11-4
Example 11-3. Strlen() Using General-Purpose INStruCtionsovii i e eens 11-6
Example 11-4. Sub-optimal PCMPISTRI Implementation of EOShandlingcociiiiiii i, 11-8
Example 11-5. Strlen() Using PCMPISTRI without Loop-Carry Dependencyovvvvvvierieniiiiiienaeannns 11-8
Example 11-6. WordCnt() Using C and Byte-Scanning Technique ... e e 11-9
Example 11-7. WordCnt() Using PCMPISTRM e 11-10
Example 11-8. KMP Substring Searchin C. . ..o e 11-12
Example 11-9. Brute-Force Substring Search Using PCMPISTRIINtriNSIiC 11-13
Example 11-10.Substring Search Using PCMPISTRIand KMP Overlap Table. ..., 11-15
Example 11-11.1 Equivalent Strtok_s() Using PCMPISTRIINTIANSIC ..o vv v vt 11-19
Example 11-12.1 Equivalent Strupr() Using PCMPISTRM INTNSIC . ..o v vv vt neiaaes 11-21
Example 11-13.UTF16 VerStrlen() Using C and Table Lookup Technique ... 11-22
Example 11-14.Assembly Listings of UTF16 VerStrlen() Using PCMPISTRI. ..o 11-23
Example 11-15.ntrinsic Listings of UTF16 VerStrlen() Using PCMPISTRIo 11-25
Example 11-16.Replacement String Library Strcmp USiNg SSE4.2. . ..ot 11-27
Example 11-17.High-level flow of Character Subset Validation for String Conversion........................... 11-29
Example 11-18.Intrinsic Listings of atol() Replacement Using PCMPISTRI. ... 11-29
Example 11-19.Auxiliary Routines and Data Constants Used in sse4i_atol() listing...............cocovviiininns, 11-31
Example 11-20.Conversion of 64-bit Integer to ASCIlot e 11-34
Example 11-21.Conversion of 64-bit Integer to ASCIl without Integer Divisioncooviiiin.s. 11-35
Example 11-22.Conversion of 64-bit Integer to ASCILUSING SSE4o e 11-37
Example 11-23.Conversion of 64-bit Integer to Wide Character String UsingSSE4.............ccovviiininints. 11-43
Example 11-24. MULX and Carry Chainin Large Integer NUMEriCovviiii it en e 11-48
Example 11-25. Building-block Macro Used in Binary Decimal Floating-point Operations.................cooovves. 11-49
Example 12-1. Cartesian Coordinate Transformation with INtrinSicS.oov i e 12-3
Example 12-2. Cartesian Coordinate Transformation with Assembly i i 12-4
Example 12-3. Direct Polynomial Calculation . ..ot i i i et 12-6
Example 12-4. Function Calls and AVX/SSE transitionsovvuiiiii i et 12-10
Example 12-5. AoS to SoA Conversion of Complex Numbers in CCode.vvvvviiiiiiii it iiniaans 12-12
Example 12-6. Aos to SoA Conversion of Complex Numbers Using AVX 12-13
Example 12-7. Register Overlap Method for Median of 3NuUmbers........c.oviiiiii i e 12-15
Example 12-8. Data Gather - AVX versus SCalar Codeovvv ittt 12-16
Example 12-9. Scatter Operation Using AV X i i e e e et i 12-18
Example 12-T0.SAXPY Using INtel AV X, ..o e e e 12-19
Example 12-11.Using 16-Byte Memory Operations for Unaligned 32-Byte Memory Operation................... 12-21
Example 12-12.SAXPY Implementations for Unaligned Data Addressesovvvviiiiiiiiiiiiiiiiiiinenannns 12-21
Example 12-13.Loop with Conditional EXPreSSION.ttt aens 12-24
Example 12-14.Handling Loop Conditional with VMASKMOVo e 12-24
Example 12-15.Three-Tap FIlter iN CCO0e.ottt i e e et e et ae e 12-25
Example 12-16.Three-Tap Filter with 128-bit Mixed Integerand FPSIMD..............ccciiiiiiiiiiiiiiieees. 12-26
Example 12-17.256-bit AVX Three-Tap Filter Code with VSHUFPS i e 12-26
Example 12-18.Three-Tap Filter Code with Mixed 256-bit AVX and 128-bit AVX Code..............cvvvvvnnnn, 12-27
Example 12-19.8x8 Matrix Transpose - Replace Shuffles with Blends. ... 12-29
Example 12-20.8x8 Matrix Transpose Using VINSRTPS i e 12-31
Example 12-21.Port 5 versus Load Port Shuffles e 12-33
Example 12-22.Divide Using DIVPS for 24-bit ACCUMACY . ..o\ vviri ittt 12-36
Example 12-23.Divide Using RCPPS 11-bit ApproXimation.uviiii it 12-36
Example 12-24.Divide Using RCPPS and Newton-Raphson [teration..........cooovviiiiiiiiiii i 12-36
Example 12-25.Reciprocal Square Root Using DIVPS+SQRTPS for 24-bit Accuracyccoovvvvivininennnn. 12-38
Example 12-26.Reciprocal Square Root Using RCPPS 11-bit Approximationcocoviiiiiiiiniiennen. 12-38
Example 12-27.Reciprocal Square Root Using RCPPS and Newton-Raphson Iteration........................... 12-38
Example 12-28.Square Root Using SQRTPS for 24-Dit ACCUMBCY . v\ vt vttt 12-39
Example 12-29. Square Root Using RCPPS 11-bit Approximation ...t eeens 12-40
Example 12-30. Square Root Using RCPPS and One Taylor Series EXPansionvvviiiiirinvenenenenennn. 12-40
Example 12-31. Array Sub Sums AlGOrithmo e 12-42
Example 12-32. Single-Precision to Half-Precision CONVersioncovviiiiiiiiiiiiiiii i, 12-43

XXii

CONTENTS

PAGE
Example 12-33. Half-Precision to Single-Precision CoNVErsionottt ieieaeen 12-44
Example 12-34. Performance Comparison of Median3 using Half-Precision vs. Single-Precision.................. 12-45
Example 12-35. FP MUI/FP Add Versus FMA L ..ot 12-47
Example 12-36. Unrolling to Hide Dependent FP Add LatenCyc.vvriiniiii e 12-47
Example 12-37. FP MUI/FP Add Versus FM A ..o e e et 12-49
Example 12-38. Macros for Separable KLT Intra-block Transformation Using AVX2............ovoviiiiinnenns, 12-50
Example 12-39. Separable KLT Intra-block Transformation Using AVX2.ottt 12-51
Example 12-40. Macros for Parallel Moduli/Remainder Calculation ..o 12-57
Example 12-41. Signed 64-bit Integer Conversion ULilityoovviii i e 12-58
Example 12-42. Unsigned 63-bit Integer Conversion Utility ... e 12-60
Example 12-43. Access Patterns Favoring Non-VGATHER Techniques ... 12-64
Example 12-44. Access Patterns Likely to Favor VGATHER Techniques. ...t 12-65
Example 12-45. Software AVX Sequence Equivalent to Full-Mask VPGATHERD.ccovviiiiiinnennn. 12-66
Example 12-46.A0S to SOA Transformation AErNativeso.vuiuiii i e 12-67
Example 12-47. Non-Strided ADS 10 SOA. .. ittt e e e e 12-68
Example 12-48. Conversion to Throughput-Reduced MMX sequence to AVX2 Alternativeovvee. 12-70
Example 13-1. Reduce Data Conflict with Conditional Updatescooiiiiiiiii e iieeens 13-6
Example 13-2. Transition from Non-Elided Execution without Aborting. ...t 13-10
Example 13-3. Exemplary Wrapper Using RTM for Lock/Unlock Primitives..............cccoiiiiiiiiiiiinnnns. 13-12
Example 13-4. Spin Lock Example Using HLE iN GCC 4.8 and Later........ovviiiiiii it 13-14
Example 13-5. Spin Lock Example Using HLE in Intel and Microsoft Compiler Intrinsic...............coovvvenns 13-14
Example 13-6. A Meta Lock EXAMPIe.t e 13-16
Example 13-7. A Meta Lock Example Using RTM. ... i e e et 13-17
Example 13-8. HLE-enabled Lock-Acquire/ Lock-Release Sequence.coovvviiiiiiii i i iieaen 13-18
Example 13-9. A Spin Wait Example USINGHLEt e 13-19
Example 13-10. A Conceptual Example of Intermixed HLEaNd RTM. ... e 13-20
Example 13-11. Emulated RTM intrinsic for Older GCC compilers.ovvii i e 13-27
Example 13-12. C++ Example of HLE INTMNSIC v vt 13-29
Example 13-13. Emulated HLE Intrinsic with Older GCCcompiler. ... e 13-29
Example 13-14. HLE Intrinsic Supported by Intel and Microsoft Compilers.............coooiiiiiiiiiiiineaanns. 13-30
Example 14-1. Unoptimized SIEeP LOOP.t i ittt ettt et et e e 14-14
Example 14-2. Power Consumption Friendly Sleep Loop USingPAUSE.coiiiiiiiiiii i 14-14
Example 15-1. Cartesian Coordinate System Rotation with INTrinSiCS.vvv i e 15-4
Example 15-2. Cartesian Coordinate System Rotation with Assemblyo 15-6
Example 15-3. Masking With INtrinSiCSo e i e e et e 15-10
Example 15-4. Masking With ASSEmIDIY ... ui i i i e et e 15-10
Example 15-5. Masking vs. Blending EXample T ... e 15-13
Example 15-6. Masking vs. Blending EXample 2 e 15-14
Example 15-7. Multiple Condition EXECUTION u vttt e e 15-15
Example 15-8. Peeling and Remainder Maskingovuiiniiiii e 15-16
Example 15-9. Comparing Intel® AVX-512 Data Compress with Other Alternatives...............ccocvvinnn.. 15-20
Example 15-10.Comparing Intel® AVX-512 Data Expand Operation with Other Alternatives..................... 15-22
Example 15-11.Comparing Ternary Logic to Other ARernatives.ovviiiii i 15-23
Example 15-12.Comparing Ternary Logic to Other ARerNatives.ovvi i i 15-27
Example 15-13.Broadcast Executed on Load Ports Aternativesovvv v 15-28
Example 15-14.16-bit Broadcast Executed On POrt Sottt e 15-29
Example 15-15.Embedded vs Non-embedded ROUNINGccov it et 15-30
Example 15-16.Embedded vs Non-embedded RoUNdiNg. ..ot e i 15-32
Example 15-17.QWORD Example, Intel® AVX2 vs. Intel® AVX-512. ..o 15-34
Example 15-18.Scatter Implementation ARErNatiVeS.v. it e e 15-45
Example 15-19.Scalar vs. Vector Update Using AVX-5120Diviiii e i 15-47
Example 15-20.256-bit Code vs. 256-bit Code Mixed with 512-bitCodecoviiiiiiiii i, 15-50
Example 15-21.Identifying One or Two FMA Units in a Processor Based on Skylake Microarchitecture........... 15-51
Example 15-22.Gather to Shuffle in Strided Loads EXamplevviriiii it ae e 15-55
Example 15-23.Gather to Shuffle in Strided Stores EXample.o e 15-56
Example 15-24.Gather to Shuffle in Adjacent Loads EXample.ooviiiii i 15-57
Example 16-1. Unrolled Loop Executes In-Order Due to Multiply-Store Port Conflict....................ooevtt 16-14
Example 16-2. Grouping Store Instructions Eliminates Bubbles and Improves IPCcoovvviiininns. 16-15
Example 17-1. Gather Comparison Between AVX-512F and AVX2ot it 17-8

XXiii

CONTENTS

Example 17-2.
Example 17-3.
Example 17-4.
Example 17-5.
Example 17-6.
Example 17-7.
Example 17-8.

Example D-1.
Example D-2.
Example D-3.
Example D-4.
Example D-5.
Example D-6.

XXiv

Gather Comparison Between AVX-512F and KNC Equivalent............ccoviiiiiiiiiiiiiiinnnn, 17-8
Using VRCP28SS for 32-bit Floating-Point Division ... 17-9
Vectorized Histogram Update USing AVX-512CD . ..o vvitiii it 17-9
Replace VCOMIS* with VCMPSS/KORTESTttt ittt e 17-12
Using Software Sequence for Horizontal Reduction...............cooiiiiii i 17-13
Optimized Inner Loop of DGEMM for Knights Landing Microarchitecture......................... 17-14
Ordering of Memory Instruction Tor MECot i 17-19
Instruction Pairing and Alignment to Optimize Decode Throughput on Intel® Atom™ MicroarchitectureD-4
Alternative to Prevent AGU and Execution Unit Dependency........o.vvviiiiiiiiiiininiiiiinanns D-6
Pipeling Instruction Execution in Integer Computationcoviiriiiiiii i D-7
Memory CopY Of B4-DYEe. . ..ottt e e D-11
Examples of Dependent Multiply and Add Computationccooiiiiiii i D-12
Instruction Pointer Query TeChniQUES. v vt e D-13

FIGURES

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 2-8.
Figure 2-9.
Figure 2-10.
Figure 2-11.
Figure 2-12.
Figure 2-13.
Figure 2-14.
Figure 2-15.
Figure 2-16.
Figure 2-17.
Figure 2-18.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 5-6.
Figure 5-7.
Figure 5-8.
Figure 5-9.
Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.
Figure 6-6.
Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure 7-4.
Figure 7-5.
Figure 7-6.
Figure 7-7.
Figure 7-8.
Figure 7-9.
Figure 7-10.
Figure 8-1.
Figure 8-2.
Figure 8-3.
Figure 8-4.
Figure 8-5.

CONTENTS

PAGE
Processor Core Pipeline Functionality of the Skylake Server Microarchitecture.................c.ovvtes 2-3
Broadwell Microarchitecture and Skylake Server Microarchitecture Cache Structures................... 2-5
CPU Core Pipeline Functionality of the Skylake Microarchitecture.................ccoiiiiiiiiiinn.s. 2-6
CPU Core Pipeline Functionality of the Haswell Microarchitectureccooviiiiiinat,. 2-13
Four Core System Integration of the Haswell Microarchitecture...............ooiiiiiiiiiiiinnnnn 2-14
An Example of the Haswell-E Microarchitecture Supporting 12 Processor Corescovvvv.n. 2-19
Intel Microarchitecture Code Name Sandy Bridge Pipeline Functionality...............covoviiiinns. 2-21
Intel Core Microarchitecture Pipeline Functionality.o s 2-39
Execution Core of Intel Core MIicroarChiteCture v vt e 2-45
Store-Forwarding Enhancements in Enhanced Intel Core Microarchitecturecoovvint, 2-49
Intel Advanced Smart Cache ArChiteCIUrE. v it e e 2-50
Intel Microarchitecture Code Name Nehalem Pipeline Functionalitycocoviviiiiiniinnnn, 2-53
Front End of Intel Microarchitecture Code Name Nehalem ... 2-54
Store-Forwarding Scenarios of 16-Byte Store Operations.covveiiiiiii s 2-59
Store-Forwarding Enhancement in Intel Microarchitecture Code Name Nehalem...................... 2-60
Hyper-Threading Technology 0N an SMP i e e et 2-62
B0 o= IS 1 7= o 2-66
SIMD INStruCtion REGISTEN USagB. . .o\ttt t ittt et e e e e 2-67
Generic Program Flow of Partially Vectorized Codeoviiiiiiii i 3-37
Cache Line Splitin Accessing EIemMeNtS N @ ATTayvrtin et 3-48
Size and Alignment Restrictions in Store Forwarding ...t 3-50
Memcpy Performance Comparison for Lengths upto 2KB.........ccooiiiiiii e 3-69
General Procedural Flow of Application Detection of AVX.o i 4-6
General Procedural Flow of Application Detection of Float-16..........coi i 4-8
Converting to Streaming SIMD Extensions Chart.o e 4-11
Hand-Coded Assembly and High-Level Compiler Performance Trade-offscoivivninns, 4-13
LoOP BIOCKING ACCESS Pattern .ottt e it e et e 4-26
PACKSSDW mm, mm/MmMGE4 INSTIUCTIONv ettt e e 5-6
Interleaved Pack With Saturationvuret e e 5-7
Result of Non-Interleaved Unpack LOW N MMOouiuitii e 5-8
Result of Non-Interleaved Unpack High in MM 1. ... i i 5-8
PEXTRW IS rUCTION v ottt et et e e e e e et e e 5-9
PINSRW INSTrUCTION . . .ottt e e e e e e st neneaes 5-10
o OV A = Sy o 1 ot o 5-12
Data Alignment of Loads and Stores in Reverse Memory COpYvvvvviiiiiiiiiieiiiiineienannns 5-32
A Technique to Avoid Cacheline Split Loads in Reverse Memory Copy Using Two Aligned Loads. 5-33
Homogeneous Operation on Parallel Data Elements.ovvv e 6-3
Horizontal Computation MOdEL.t e 6-3
DOt ProdUCT O P atioN . . oottt it e e e e e 6-4
Horizontal Add Using MOVHLPS/MOVLHPSo e 6-9
Asymmetric Arithmetic Operation of the SSE3 Instruction ...t 6-11
Horizontal Arithmetic Operation of the SSE3 Instruction HADDPDcoviiiiii i 6-11
CLFLUSHOPT versus CLFLUSH In Skylake Microarchitecture.........ooviiiiiii i iiienans 7-11
Effective Latency Reduction as a Function of Access Stride.ovvvrvii i 7-14
Memory Access Latency and Execution Without Prefetch. ... 7-14
Memory Access Latency and Execution With Prefetchco i 7-15
Prefetch and Loop UNrolling.ouvni ittt e ettt 7-18
Memory Access Latency and Execution With Prefetch ... 7-18
Spread Prefetch INStrUCIONSo vt e e e 7-19
Cache Blocking - Temporally Adjacent and Non-adjacent Passes.ovvvvvviiiiii i 7-20
Examples of Prefetch and Strip-mining for Temporally Adjacent and Non-Adjacent Passes Loops 7-21
Single-Pass V/s. Multi-Pass 3D Geometry ENGINeSviuitiit it e i eieaens 7-25
Example of SNC ConfigUrationcuiu it e et e 8-1
NUMA DISaDIOa . . oottt e ettt et e e e e e e e e e 8-5
SN G OFf e e e 8-6
1) 0 8-7
Domain Example with One MPI Process Per DOmain.vuiiiii i 8-8

XXV

CONTENTS

Figure 9-1.
Figure 9-2.
Figure 9-3.
Figure 9-4.
Figure 9-5.
Figure 11-1.
Figure 11-2.
Figure 11-3.
Figure 11-4.
Figure 12-1.
Figure 12-2.
Figure 12-3.
Figure 12-4.
Figure 12-5.
Figure 14-1.
Figure 14-2.
Figure 14-3.
Figure 14-4.
Figure 14-5.
Figure 14-6.
Figure 14-7.
Figure 14-8.
Figure 14-9.
Figure 14-10.
Figure 15-1.

Figure 15-2.
Figure 15-3.
Figure 15-4.
Figure 15-5.
Figure 15-6.
Figure 15-7.
Figure 15-8.
Figure 15-9.
Figure 15-10.
Figure 15-11.
Figure 15-12.
Figure 15-13.
Figure 15-14.
Figure 15-15.
Figure 15-16.
Figure 15-17.
Figure 15-18.
Figure 16-1.
Figure 16-2.
Figure 16-3.
Figure 17-1.
Figure 17-2.
Figure B-1.
Figure B-2.
Figure B-3.
Figure B-4.
Figure B-5.
Figure B-6.
Figure B-7.
Figure B-8.
Figure B-9.
Figure B-11.
Figure B-10.

XXVi

PAGE
AmMdahl's Law and MP SPEEA-UDttt i e 9-2
Single-threaded Execution of Producer-consumer ThreadingModel...............coiiiiiiiiiinns. 9-5
Execution of Producer-consumer Threading Model on a Multicore Processorc.ocovvvvnnnn. 9-5
Interlaced Variation of the Producer Consumer Model......... ..o 9-6
Batched Approach of Producer Consumer Model. e 9-20
SSE4.2 String/Text Instruction Immediate Operand CONtroloviiiiii i 11-2
Retrace Inefficiency of Byte-Granular, Brute-Force Search..........cooiiiii i 11-12
SSE4.2 Speedup of SUBSTIING SEArChESo 11-18
Compute Four Remainders of Unsigned Short IntegerinParallel. ...t 11-37
AVX-SSE Transitions in the Broadwell, and Prior Generation Microarchitectures....................... 12-8
AVX-SSE Transitions in the Skylake Microarchitecture ... s 12-8
4x4 Image Block Transformation.ouii i et 12-50
Throughput Comparison of Gather INStrUCTIONS.o v it e 12-65
Comparison of HW GATHER Versus Software Sequence in Skylake Microarchitecture................ 12-66
Performance History and State Transitionsovuvtititii e 14-2
Active Time Versus Halted Time 0f @ ProCessorvvvui e 14-3
Application of C-states to Idle TiMEottt e e et 14-4
Profiles of Coarse Task Scheduling and Power Consumptioncovuiiiiiiiiiiiiiiiieieiananns 14-9
Thread Migration in @ MUICOre ProCESSOr. . ..o\ttt e eaes 14-11
Progression 10 DEEPEr SIBEP ...\ttt e e 14-11
Energy Saving due to Performance Optimizationovviiiiiiii i 14-13
Energy Saving due to Vectorization.v. v 14-13
Energy Saving Comparison of Synchronization Primitivesccco i 14-16
Power Saving Comparison of Power-Source-Aware Frame Rate Configurations 14-17
Intel® AVX-512 Extensions Supported by Skylake Server Microarchitecture and Knights Landing
ol o= o a1 (=Tt U] = 15-1
CarteSian ROTaTION . . .ottt e e e 15-2
Data FOrWarding Cases.o v vttt ettt ettt e e e e 15-17
Data ComPress OParatioN ... v ittt ittt ittt et e i e 15-19
Data EXPaNd OPerationvit ittt ittt e e e 15-21
Ternary Logic Example 1 Truth Table e 15-22
Ternary Logic Example 2 Truth Table ov vttt e 15-25
1Y/ 0L 1P w0 0 T=T - o P 15-25
vscatterdpd INStruction OPerationo..ir ittt 15-31
VPCONFLICTD INSTruction EXECUTION . . .o\ v v ettt e et anenens 15-43
VPCONFLICT D MErGIiNg PrOCESS. vttt ittt ittt ettt et ettt e e et e ettt ene e 15-44
VPCONFLICTD Permute CONTrol.ottt ns 15-44
VPCONFLICTD ZMM2 RESUIL. . v ettt ettt ettt et e et e et et et eas 15-45
SPArSE VIO EXAMIPIE ottt e e 15-46
Fast Bypass When All Sources Come from FMAURIT ..o 15-48
Mixing Intel AVX Instructions or Intel AVX-512 Instructions with Intel SSE Instructions.............. 15-49
MIXEA WOTKIOAAS. . . vttt e e e e e 15-76
I O Q=T o 1 = o 15-77
CPU Core Pipeline Functionality of the Goldmont Plus Microarchitecturecooviiininnnn. 16-2
CPU Core Pipeline Functionality of the Goldmont Microarchitecture............cccovvviiiiiiiiiinnn.s 16-5
Silvermont Microarchitecture Pipeline.o e 16-8
Tile-Mesh Topology of the Knights Landing Microarchitecture.................cooiiiiiiiiiiiinnn.s. 17-1
Processor Core Pipeline Functionality of the Knights Landing Microarchitecture....................... 17-2
General TMAM Hierarchy for Out-of-Order Microarchitectures.cocoiiiiviiii i, B-2
TMAM's Top Level Drill Down FIOWChart. . ..o e B-3
TMAM Hierarchy Supported by Skylake Microarchitecture............coov it B-7
System Topology Supported by Intel® Xeon® Processor 5500 Series.ovvvvriiviiiiiiiinnnnns B-14
PMU Specific Event Logic Within the Pipeline e B-16
LBR Records and BasiC BIOCKS. vttt e B-27
Using LBR Records to Rectify Skewed Sample Distribution ..o B-27
RdData Request after LLC Miss to Local Home (Clean RSP). vvvvviiiii i B-38
RdData Request after LLC Miss to Remote Home (Clean RSp)vvvvviiiiiiii i i B-38
RdData Request after LLC Miss to Local Home (Hitm Response)c..covviiiiiiiiiiiiinannn, B-39
RdData Request after LLC Miss to Remote Home (Hitm Response)..........coovvvviiiiiiiiinininnn, B-39

Figure B-12.
Figure B-13.
Figure B-15.
Figure B-14.
Figure B-16.

Figure D-1.

CONTENTS

PAGE
RdData Request after LLC Miss to Local Home (HIt RESPONSE) . ..o vvvvvi e B-40
RdInvOwn Request after LLC Miss to Remote Home (Clean Res) ... B-40
RdInvOwn Request after LLC Miss to Local Home (HitRes)c.coovvviiiiii i B-41
RdInvOwn Request after LLC Miss to Remote Home (HitmM ReS).c.covvviiiiiiiii e B-41
Performance Events Drill-Down and Software Tuning Feedback Loopcccvviiiiiniiiiennn, B-60
Intel Atom Microarchitecture Pipeline. ...t e e D-2

XXVii

CONTENTS

TABLES

Table 2-1.
Table 2-2.
Table 2-3.
Table 2-4.
Table 2-5.
Table 2-6.
Table 2-7.
Table 2-8.
Table 2-9.
Table 2-10.
Table 2-11.
Table 2-12.
Table 2-13.
Table 2-14.
Table 2-15.
Table 2-16.
Table 2-17.
Table 2-18.
Table 2-19.
Table 2-20.
Table 2-21.
Table 2-22.
Table 2-23.
Table 2-24.
Table 2-25.
Table 2-26.
Table 2-27.
Table 2-28.
Table 2-29.
Table 2-30.
Table 2-31.
Table 2-32.
Table 2-33.
Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4.
Table 3-5.
Table 3-6.
Table 5-1.
Table 6-1.
Table 7-1.
Table 7-2.
Table 7-3.
Table 9-1.
Table 9-2.
Table 9-3.
Table 11-1.
Table 11-2.
Table 11-3.
Table 11-4.
Table 11-5.
Table 12-1.
Table 12-2.
Table 12-3.
Table 12-4.
Table 12-5.

XXViii

PAGE
Cache Comparison Between Skylake Microarchitecture and Broadwell Microarchitecture 2-4
Dispatch Port and Execution Stacks of the Skylake Microarchitecture. ..o, 2-7
Skylake Microarchitecture Execution Units and Representative Instructions ..., 2-8
Bypass Delay Between Producer and Consumer MiCrO-0PS vvvvvttiietii it ieneneieienannns 2-9
Cache Parameters of the Skylake Microarchitecturecooo i e 2-10
TLB Parameters of the Skylake MicroarchiteCture e e e 2-10
Dispatch Port and Execution Stacks of the Haswell Microarchitecturecooviviiiiiiiiinnn, 2-15
Haswell Microarchitecture Execution Units and Representative Instructionscovvvvnnn, 2-16
Bypass Delay Between Producer and Consumer Micro-ops (CYcles)ovvvvviiiiiiiiiiiiieiaanns 2-17
Cache Parameters of the Haswell MicroarchiteCtureoovvv v 2-17
TLB Parameters of the Haswell Microarchitectureo.vve v 2-18
TLB Parameters of the Broadwell Microarchitecture. ..o 2-19
Components of the Front End of Intel Microarchitecture Code Name Sandy Bridge 2-22
ICache and ITLB of Intel Microarchitecture Code Name Sandy Bridge.coviiiiiiiininnn 2-22
Dispatch Port and EXECULION STacKs. ... ov vttt e i e i e e 2-28
Execution Core Writeback LatenCy (CYCIES) . .. v v v ettt e s 2-29
L0 Tol L= o T T 1= (= P 2-29
Lookup Order and Load LatenCyv vt ettt e sttt et e 2-30
LT Data Cache ComPOnENTS © .. vttt ettt ettt et et 2-31
Effect of Addressing Modes on Load LatenCy.c.vvrieiiniii e 2-32
DTLB @nd STLB Parameters . .. v v ettt e et e e et e e et e e nn e ne e anns 2-32
Store Forwarding Conditions (T and 2 byte StOres)vovv i i 2-33
Store Forwarding Conditions (4-16 DYte STOMES) ... v v v vttt 2-33
32-byte Store Forwarding Conditions (0-15 byte alignment)ccoviiiiii it 2-34
32-byte Store Forwarding Conditions (16-31 byte alignment).........c..oviiii it 2-34
Components of the FTONt BN ... e 2-40
Issue Ports of Intel Core Microarchitecture and Enhanced Intel Core Microarchitecture................. 2-44
Cache Parameters of Processors based on Intel Core Microarchitecture...........covvvviiiiiininn. 2-50
Characteristics of Load and Store Operations in Intel Core Microarchitecture..................o.oovut 2-51
Bypass Delay Between Producer and Consumer Micro-ops (CYCles)vvvviiniiiiiiinii i 2-56
Issue Ports of Intel Microarchitecture Code Name Nehalemcoviiiii i 2-56
Cache Parameters of INtel Core i7 PrOCESSOTS ... v vttt ettt ettt eaees 2-57
Performance Impact of Address Alignments of MOVDQU from LTcoviviiiiiiiiiiiiiiiiinnnnns 2-58
Macro-Fusible Instructions in Intel Microarchitecture Code Name Sandy Bridge........................ 3-13
Small Loop Criteria Detected by Sandy Bridge and Haswell Microarchitectures 3-18
Store Forwarding Restrictions of Processors Based on Intel Core Microarchitecture 3-53
Relative Performance of Memcpy() Using Enhanced REP MOVSB and STOSB Vs. 128-bit AVX.......... 3-70
Effect of Address Misalignment on Memcpy() Performance. ..o 3-70
Intel Processor CPU RP Device IDs for Processors Optimizing PCle Performance....................... 3-78
PSHUF BNCOOING . .ottt e e e e e e e e 5-13
SoA Form of Representing Vertices Data.vv vt 6-4
Software Prefetching Considerations into Strip-mining Code ...t 7-23
Relative Performance of Memory COpYy ROUTINESovvuirii e 7-30
Deterministic Cache Parameters Leaf.vuii i e e 7-31
Properties of SYNchronization ODJECTSo\ vttt e 9-11
Design-Time Resource Management ChoiCeSttt et i e 9-22
Microarchitectural Resources Comparisons of HT Implementationscooovviiiiiiiiiiienanns 9-25
SSE4.2 String/Text Instructions Compare Operation on N-elementscovvviiiiiiiiinnnnnn.s 11-2
SSE4.2 String/Text Instructions Unary Transformationon IntResTcoviviiiiiiiiiiinnnnn. 11-3
SSE4.2 String/Text Instructions Output Selection IMmM[6] ..ot 11-3
SSE4.2 String/Text Instructions Element-Pair Comparison Definition. ..., 11-3
SSE4.2 String/Text Instructions Eflags BEhavior. e 11-3
Features between 256-bit AVX, 128-bit AVX and Legacy SSE EXtensionsc..ovvveiviinennn, 12-2
State Transitions of Mixing AVX and SSECOTEvviiiii i e 12-9
Approximate Magnitude of AVX-SSE Transition Penalties in Different Microarchitectures.............. 12-9
Effect of VZEROUPPER with Inter-Function Calls Between AVX andSSECodet. 12-10
Comparison of Numeric Alternatives of Selected Linear Algebra in Skylake Microarchitecture........ 12-34

Table 12-6.
Table 12-7.
Table 12-8.
Table 12-9.
Table 12-10.
Table 12-11.
Table 13-1.
Table 14-1.

Table 14-2.

Table 14-3.
Table 14-4.
Table 14-5.
Table 14-6.

Table 15-1.
Table 15-2.
Table 15-3.
Table 15-4.
Table 15-5.
Table 15-6.
Table 15-7.
Table 15-8.
Table 15-9.
Table 15-10.
Table 15-11.
Table 15-12.
Table 15-13.
Table 15-15.

Table 15-14.

Table 15-16.
Table 16-1.
Table 16-2.
Table 16-3.
Table 16-5.
Table 16-6.
Table 16-4.
Table 16-7.
Table 16-8.
Table 16-9.
Table 16-10.
Table 16-11.
Table 16-12.
Table 16-13.
Table 16-14.
Table 16-15.
Table 16-16.

Table 16-17.

Table 17-1.
Table 17-2.
Table 17-3.
Table 17-4.
Table 17-5.
Table A-1.
Table B-1.
Table B-2.

CONTENTS

PAGE
Single-Precision Divide and Square Root ARErNatives. vttt 12-35
Comparison of Single-Precision Divide ARErNativesvvvvrii i e 12-37
Comparison of Single-Precision Reciprocal Square Root Operation.............coovviiiiiiiiinenn... 12-39
Comparison of Single-Precision Square Root Operationc.vvviiiiiiiiiieiii e, 12-41
Comparison of AOS to SOA with Strided Access Patterncooiiiiiii it 12-68
Comparison of Indexed AOS t0 SOA Transformationoviiiiii i neaaans 12-69
RTM Abort Status Definition.ov e e 13-23
ACPI C-State Type Mappings to Processor Specific C-State for Mobile Processors Based on Intel
Microarchitecture Code Name Nehalemt s 14-5
ACPI C-State Type Mappings to Processor Specific C-State of Intel Microarchitecture Code Name Sandy
Bridge. . oo e e 14-5

C-State Total Processor Exit Latency for Client Systems (Core+ Package Exit Latency) with Slow VR. 14-18
C-State Total Processor Exit Latency for Client Systems (Core+ Package Exit Latency) with Fast VR. 14-18

C-State Core-Only Exit Latency for Client Systems withSlow VR. ... 14-19
POWER_CTL MSR in Next Generation Intel Processor (Intel® Microarchitecture Code Name Sandy

5T 0 14-19
MaSKING EXAMIPIE ..ttt e e e 15-12
Cache Comparison Between Skylake Server Microarchitecture and Broadwell Microarchitecture 15-15
Static Rounding Mode FUNCTIONSo vt e e e e 15-29
Vector QUAdWOTd EXTENSIONS. . . .ttt e sttt ettt et e et e e e e 15-37
Scalar QUAdWOTA EXTENSIONSttt ettt ettt e e e e e e 15-37
Vector QUAdWOTd EXTENSIONS. .\ttt t ettt et ettt et e et et e et 15-38
Scalar QUAdWOTd EXTENSIONS . ..ottt sttt ettt e ettt et e e et 15-38
FMA Uit LatOn0Y . . oottt et et et e e e 15-49
Data Alignment Effects on SAXPY Performance vs. Speedup Value...............cccoviviiiiiiinn, 15-59
Skylake Microarchitecture Recommendations for DIV/SQRT Based Operations (Single Precision) 15-61
Skylake Microarchitecture Recommendations for DIV/SQRT Based Operations (Double Precision) 15-61
256-bit Intel AVX2 Divide and Square Root Instruction Performanceccocovvviviiiniiinnn, 15-62
512-bit Intel AVX-512 Divide and Square Root Instruction Performance.......................ooet 15-62
Latency/Throughput of Different Methods of Computing Divide and Square Root on Skylake
Microarchitecture for Different Vector Widths, on Double Precision..............ccovvvviiiiinnnnn, 15-63
Latency/Throughput of Different Methods of Computing Divide and Square Root on Skylake
Microarchitecture for Different Vector Widths, on Single Precisionc.cocviiiiiiiiniiinn 15-63
Maximum Intel® Turbo Boost Technology Core Frequency Levels..............cooiiiiiiiiiiiinnns, 15-76
Comparison of Front ENd ClUSter FEATUMES vt e et ie e aeas 16-2
Comparison of Distributed Reservation Stations on SchedulingUopscooiiiiiiiiiiiinnn, 16-3
Function Unit Mapping of the Goldmont Plus Microarchitecture............cooviiiiii i 16-3
Comparison of Distributed Reservation Stations on Scheduling Uopscovviiiiiiiniiiiinnnn, 16-6
Function Unit Mapping of the Goldmont Microarchitecturecooovviii it 16-6
Comparison of Front End Cluster FEatUresovuiii i s 16-6
CompPariSON Of MEC RESOUICES. . . vttt ettt ettt e e e e et ettt e e e ettt e e neneananns 16-7
Function Unit Mapping of the Silvermont Microarchitecture ...t 16-9
Alternatives t0 MSROM INSTIUCTIONS ... v vttt ettt et e eans 16-11
Comparison of Decoder Capabilities. ovvue i e 16-13
Integer Multiply Operation LatenCyvvue ittt e 16-15
Floating-Point and SIMD Integer LatenCyvuvurve e e 16-18
Unsigned Integer Division Operation LatenCyco.vvvriii it eeas 16-20
Signed Integer Division Operation LatenCyoviiiii i e e 16-20
Store Forwarding Conditions (1 and 2 BYte STOreS)uvvvvtvi e 16-22
Store Forwarding Conditions (4-16 BYte StOreS). .. vvviii it 16-22
Instructions Latency and Throughput Recent Microarchitectures for Intel Atom Processors......... 16-24
Integer Pipeline Characteristics of the Knights Landing Microarchitecture..................cooovvintt. 17-4
Vector Pipeline Characteristics of the Knights Landing Microarchitecturecooovvviiniinnn.. 17-5
Characteristics 0f Caching RESOUMCES\ v ittt ittt ettt e ettt a e ieieaaas 17-6
Alternatives t0 MSROM INSTIUCTIONS . ..o v vttt et e e e eans 17-11
Cycle Cost Building Blocks for Vectorization Estimate for Knights Landing Microarchitecture......... 17-15
Recommended Processor Optimization Options.ovuuitiiii et A-2
Performance Monitoring TaXONOMY vttt ettt et et e ettt e et ennes B-8
Cycle Accounting and Micro-0ps FIOW RECIPE. vu vt B-15

CONTENTS

Table B-3.
Table B-4.
Table B-5.
Table B-6.
Table B-7.
Table B-8.
Table B-9.

Table B-10.
Table B-11.
Table B-12.
Table B-13.
Table B-14.
Table B-15.
Table B-16.

Table C-1.
Table C-2.
Table C-3.
Table C-4.
Table C-5.
Table C-6.
Table C-7.
Table C-8.
Table C-9.

Table C-10.
Table C-11.
Table C-12.
Table C-13.
Table C-14.
Table C-15.
Table C-16.
Table C-17.
Table C-18.

Table D-1.
Table D-2.

XXX

PAGE
CMask/Inv/Edge/Thread Granularity of Events for Micro-op Flow ... B-16
Cycle Accounting of Wasted Work Due to Mispredictionc.oviuiiiiiii it iiianns B-17
Cycle Accounting of INSTruCtion STArVaTioN.o vt e B-18
CMask/Inv/Edge/Thread Granularity of Events for Micro-op Flow ... B-19
Approximate Latency of L2 Misses of Intel Xeon Processor 5500............cccoviiiiiiiiiiniinnanns B-21
Load Latency EVeNt Programimingouueet et e e ettt e e et et n i B-24
Data Source Encoding for Load Latency PEBS Record.ooiviiiiii it iiii i e B-24
Core PMU Events to Drill DOWN L2 MISSES ... v v v vttt ettt ettt eeens B-28
Core PMU Events for Super QUeUE OPeration.ouvuuui i e e aees B-29
Core PMU Event to Drill Down OFFCOre RESPONSES viieiiee et B-29
OFFCORE_RSP_O MSR Programming . ..o v ovv e tteeit et ie it et e e ittt e ettt e e et ie e eenees B-29
Common Request and Response Types for OFFCORE_RSP_OMSR. B-30
Uncore PMU Events for OccupanCy CYCIeS.ttt ettt B-35
Common QHL Opcode Matching Facility Programming.oviviiiiiii i ieaes B-37
CPUID Signature Values of Of Recent Intel Microarchitectures. ... C3
Instruction Extensions Introduction by Microarchitectures (CPUID Signature)...............covvivvnnn. C-4
BMI1, BMI2 and General PUrpose INStrUCTIONS ...ttt et it i e C4
256-Dit AVXZ INSTIUCTIONS .. vttt e e e e et C-5
Gather Timing Data from LT D™ ... e e e ettt eaens C-6
BMI1, BMIZ2 and General PUrpose INStIUCTIONS ... vv vttt c-7

F16C,RDRAND InstructionsC-7

256-bit AVX InstructionsC-7

AESNI and PCLMULQDAQ InstructionsC-9

SSE4.2 InstructionsC-10

SSE4.1 InstructionsC-10

Supplemental Streaming SIMD Extension 3 InstructionsC-11

Streaming SIMD Extension 3 SIMD Floating-point InstructionsC-12

Streaming SIMD Extension 2 128-bit Integer InstructionsC-12

Streaming SIMD Extension 2 Double-precision Floating-point InstructionsC-14
Streaming SIMD Extension Single-precision Floating-point InstructionsC-15
General Purpose InstructionsC-17

Pointer-Chasing Variability of Software Measurable Latency of L1 Data Cache LatencyC-20
Instruction Latency/Throughput Summary of Intel® Atom™ MicroarchitectureD-7
Intel® Atom™ Microarchitecture Instructions Latency DataD-14

CHAPTER 1
INTRODUCTION

The Intel® 64 and 1A-32 Architectures Optimization Reference Manual describes how to optimize soft-
ware to take advantage of the performance characteristics of IA-32 and Intel 64 architecture processors.
Optimizations described in this manual apply to processors based on the Intel® Core™ microarchitec-
ture, Enhanced Intel® Core™ microarchitecture, Intel® microarchitecture code name Nehalem, Intel®
microarchitecture code name Westmere, Intel® microarchitecture code name Sandy Bridge, Intel®
microarchitecture code name lvy Bridge, Intel® microarchitecture code name Haswell, Intel NetBurst®
microarchitecture, the Intel® Core™ Duo, Intel® Core™ Solo, Pentium® M processor families.

The target audience for this manual includes software programmers and compiler writers. This manual
assumes that the reader is familiar with the basics of the 1A-32 architecture and has access to the Intel®
64 and 1A-32 Architectures Software Developer’s Manual (five volumes). A detailed understanding of Intel
64 and IA-32 processors is often required. In many cases, knowledge of the underlying microarchitec-
tures is required.

The design guidelines that are discussed in this manual for developing high-

performance software generally apply to current as well as to future 1A-32 and Intel 64 processors. The
coding rules and code optimization techniques listed target the Intel Core microarchitecture, the Intel
NetBurst microarchitecture and the Pentium M processor microarchitecture. In most cases, coding rules
apply to software running in 64-bit mode of Intel 64 architecture, compatibility mode of Intel 64 archi-
tecture, and 1A-32 modes (I1A-32 modes are supported in 1A-32 and Intel 64 architectures). Coding rules
specific to 64-bit modes are noted separately.

1.1 TUNING YOUR APPLICATION

Tuning an application for high performance on any Intel 64 or 1A-32 processor requires understanding
and basic skills in:

®* Intel 64 and IA-32 architecture.

® C and Assembly language.

® Hot-spot regions in the application that have impact on performance.
® Optimization capabilities of the compiler.

®* Techniques used to evaluate application performance.

The Intel® VTune™ Performance Analyzer can help you analyze and locate hot-spot regions in your appli-
cations. On the Intel® Core™ i7, Intel® Core™2 Duo, Intel® Core™ Duo, Intel® Core™ Solo, Pentium®
4, Intel® Xeon® and Pentium® M processors, this tool can monitor an application through a selection of
performance monitoring events and analyze the performance event data that is gathered during code
execution.

This manual also describes information that can be gathered using the performance counters through
Pentium 4 processor’s performance monitoring events.

1.2 ABOUT THIS MANUAL

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200 and 7300 series, Intel® Pentium® dual-core,
Intel® Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2 Extreme processors are based on Intel®
Core™ microarchitecture. In this document, references to the Core 2 Duo processor refer to processors
based on the Intel® Core™ microarchitecture.

The Intel® Xeon® processor 3100, 3300, 5200, 5400, 7400 series, Intel® Core™2 Quad processor
Q8000 series, and Intel® Core™2 Extreme processors QX9000 series are based on 45 nm Enhanced
Intel® Core™microarchitecture.

INTRODUCTION

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm
Intel® microarchitecture code name Nehalem. Intel® microarchitecture code name Westmere is a 32 nm
version of Intel® microarchitecture code name Nehalem. Intel® Xeon® processor 5600 series, Intel Xeon
processor E7 and various Intel Core i7, i5, i3 processors are based on Intel® microarchitecture code
name Westmere.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor
E7-8800/4800/2800 product families, Intel® Core™ i7-3930K processor, and 2nd generation Intel®
Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Intel®
microarchitecture code name Sandy Bridge.

The 3rd generation Intel® Core™ processors and the Intel Xeon processor E3-1200 v2 product family are
based on Intel® microarchitecture code name lvy Bridge. The Intel® Xeon® processor E5 v2 and E7 v2
families are based on the lvy Bridge-E microarchitecture, support Intel 64 architecture and multiple
physical processor packages in a platform.

The 4th generation Intel® Core™ processors and the Intel® Xeon® processor E3-1200 v3 product family
are based on Intel® microarchitecture code name Haswell. The Intel® Xeon® processor E5 26xx v3
family is based on the Haswell-E microarchitecture, supports Intel 64 architecture and multiple physical
processor packages in a platform.

The Intel® Core™ M processor family and 5th generation Intel® Core™ processors are based on the
Intel® microarchitecture code name Broadwell and support Intel 64 architecture.

The 6th generation Intel® Core™ processors are based on the Intel® microarchitecture code name
Skylake and support Intel 64 architecture.

In this document, references to the Pentium 4 processor refer to processors based on the Intel NetBurst®
microarchitecture. This includes the Intel Pentium 4 processor and many Intel Xeon processors based on
Intel NetBurst microarchitecture. Where appropriate, differences are noted (for example, some Intel
Xeon processors have third level cache).

The Dual-core Intel® Xeon® processor LV is based on the same architecture as Intel® Core™ Duo and
Intel® Core™ Solo processors.

Intel® Atom™ processor is based on Intel® Atom™ microarchitecture.
The following bullets summarize chapters in this manual.
® Chapter 1: Introduction — Defines the purpose and outlines the contents of this manual.

* Chapter 2: Intel® 64 and 1A-32 Processor Architectures — Describes the microarchitecture of
recent 1A-32 and Intel 64 processor families, and other features relevant to software optimization.

® Chapter 3: General Optimization Guidelines — Describes general code development and optimi-
zation techniques that apply to all applications designed to take advantage of the common features
of the Intel Core microarchitecture, Enhanced Intel Core microarchitecture, Intel NetBurst microar-
chitecture and Pentium M processor microarchitecture.

® Chapter 4: Coding for SIMD Architectures — Describes techniques and concepts for using the
SIMD integer and SIMD floating-point instructions provided by the MMX™ technology, Streaming
SIMD Extensions, Streaming SIMD Extensions 2, Streaming SIMD Extensions 3, SSSE3, and SSE4.1.

® Chapter 5: Optimizing for SIMD Integer Applications — Provides optimization suggestions and
common building blocks for applications that use the 128-bit SIMD integer instructions.

® Chapter 6: Optimizing for SIMD Floating-point Applications — Provides optimization
suggestions and common building blocks for applications that use the single-precision and double-
precision SIMD floating-point instructions.

® Chapter 7: Optimizing Cache Usage — Describes how to use the PREFETCH instruction, cache
control management instructions to optimize cache usage, and the deterministic cache parameters.

® Chapter 8: Introducing sub-numa clustering — Describes Sub-NUMA Clustering (SNC), a mode
for improving average latency from last level cache (LLC) to local memory.

® Chapter 9: Multicore and Hyper-Threading Technology — Describes guidelines and techniques
for optimizing multithreaded applications to achieve optimal performance scaling. Use these when

1-2

INTRODUCTION

targeting multicore processor, processors supporting Hyper-Threading Technology, or multiprocessor
(MP) systems.

Chapter 10: 64-Bit Mode Coding Guidelines — This chapter describes a set of additional coding
guidelines for application software written to run in 64-bit mode.

Chapter 11: SSE4.2 and SIMD Programming for Text-Processing/Lexing/Parsing—
Describes SIMD techniques of using SSE4.2 along with other instruction extensions to improve
text/string processing and lexing/parsing applications.

Chapter 12: Optimizations for Intel® AVX, FMA and AVX2— Provides optimization suggestions
and common building blocks for applications that use Intel® Advanced Vector Extensions, FMA, and
AVX2.

Chapter 13: Optimizations for Intel® AVX-512— Provides optimization suggestions and
common building blocks for applications that use Intel® Advanced Vector Extensions 512.

Chapter 14: Intel Transactional Synchronization Extensions — Tuning recommendations to
use lock elision techniques with Intel Transactional Synchronization Extensions to optimize multi-
threaded software with contended locks.

Chapter 15: Power Optimization for Mobile Usages — This chapter provides background on
power saving techniques in mobile processors and makes recommendations that developers can
leverage to provide longer battery life.

Chapter 16: Silvermont Microarchitecture and Software Optimization — Describes the micro-
architecture of processor families based on the Silvermont microarchitecture, and software optimi-
zation techniques targeting Intel processors based on the Silvermont microarchitecture.

Chapter 17: Knights Landing Microarchitecture and Software Optimization — Describes the
microarchitecture of processor families based on the Silvermont Knights Landing microarchitecture,
and software optimization techniques targeting Intel processors based on the Knights Landing micro-
architecture.

Appendix A: Application Performance Tools — Introduces tools for analyzing and enhancing
application performance without having to write assembly code.

Appendix B: Using Performance Monitoring Events — Provides information on the Top-Down
Analysis Method and information on how to use performance events specific to the Intel Xeon
processor 5500 series, processors based on Intel microarchitecture code name Sandy Bridge, and
Intel Core Solo and Intel Core Duo processors.

Appendix C: 1A-32 Instruction Latency and Throughput — Provides latency and throughput
data for the 1A-32 instructions. Instruction timing data specific to recent processor families are
provided.

Appendix D: Intel® Atom™ Microarchitecture and Software Optimization — Describes the
microarchitecture of processor families based on Intel Atom microarchitecture, and software optimi-
zation techniques targeting Intel Atom microarchitecture.

1.3 RELATED INFORMATION

For more information on the Intel® architecture, techniques, and the processor architecture terminology,
the following are of particular interest:

Intel® 64 and 1A-32 Architectures Software Developer’'s Manual
Developing Multi-threaded Applications: A Platform Consistent Approach
Intel® C++ Compiler documentation and online help

Intel® Fortran Compiler documentation and online help

Intel® VTune™ Amplifier documentation and online help

Using Spin-Loops on Intel Pentium 4 Processor and Intel Xeon Processor MP

1-3

https://software.intel.com/en-us/c-compilers/ipsxe-support
https://software.intel.com/en-us/fortran-compilers-support/
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applications.pdf
https://software.intel.com/en-us/intel-vtune-amplifier-xe-support
https://software.intel.com/sites/default/files/22/30/25602

INTRODUCTION

More relevant links are:

1-4

Developer Zone:

https://software.intel.com/en-us/all-dev-areas

Processor support general link:
https://www.intel.com/content/www/us/en/products/processors.html
Intel Multi-Core Technology:
https://software.intel.com/en-us/articles/multi-core-introduction
Hyper-Threading Technology (HT Technology):

http://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-
threading-technology.html

SSE4.1 Application Note: Motion Estimation with Intel® Streaming SIMD Extensions 4:

https://software.intel.com/en-us/articles/motion-estimation-with-intel-streaming-simd-extensions-
4-intel-sse4

Intel® SSE4 Programming Reference:
https://software.intel.com/sites/default/files/m/8/b/8/D9156103.pdf

Intel® 64 Architecture Processor Topology Enumeration:
https://software.intel.com/en-us/articles/intel-64-architecture-processor-topology-enumeration
Multi-buffering techniques using SIMD extensions:

http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/communications-
ia-multi-buffer-paper.pdf

Parallel hashing using Multi-buffering techniques:
http://www.scirp.org/journal/Paperinformation.aspx?paperlD=23995
http://eprint.iacr.org/2012/476.pdf

PCMMULQDQ resources:

https://software.intel.com/en-us/articles/intel-carry-less-multiplication-instruction-and-its-usage-
for-computing-the-gcm-mode

Modular exponentiation using redundant representation and AVX2:
http://rd.springer.com/chapter/10.1007%2F978-3-642-31662-3_9?LI=true

http://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
https://www.intel.com/content/www/us/en/products/processors.html
https://software.intel.com/en-us/all-dev-areas
https://software.intel.com/en-us/articles/multi-core-introduction
https://software.intel.com/en-us/articles/motion-estimation-with-intel-streaming-simd-extensions-4-intel-sse4
https://software.intel.com/sites/default/files/m/8/b/8/D9156103.pdf
https://software.intel.com/en-us/articles/intel-64-architecture-processor-topology-enumeration
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/communications-ia-multi-buffer-paper.pdf
http://www.scirp.org/journal/PaperInformation.aspx?paperID=23995
http://eprint.iacr.org/2012/476.pdf
https://software.intel.com/en-us/articles/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode
http://rd.springer.com/chapter/10.1007%2F978-3-642-31662-3_9?LI=true

CHAPTER 2
INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

This chapter gives an overview of features relevant to software optimization for current generations of
Intel 64 and 1A-32 processors (processors based on Intel® microarchitecture code name Skylake Server,
Intel® microarchitecture code name Skylake, Intel® microarchitecture code name Broadwell, Intel®
microarchitecture code name Haswell, Intel microarchitecture code name lvy Bridge, Intel microarchi-
tecture code name Sandy Bridge, processors based on the Intel Core microarchitecture, Enhanced Intel
Core microarchitecture, Intel microarchitecture code name Nehalem). These features are:

® Microarchitectures that enable executing instructions with high throughput at high clock rates, a high
speed cache hierarchy and high speed system bus.

® Multicore architecture available across Intel Core processor and Intel Xeon processor families.
® Hyper-Threading Technology1 (HT Technology) support.
® Intel 64 architecture on Intel 64 processors.

¢ SIMD instruction extensions: MMX technology, Streaming SIMD Extensions (SSE), Streaming SIMD
Extensions 2 (SSE2), Streaming SIMD Extensions 3 (SSE3), Supplemental Streaming SIMD
Extensions 3 (SSSE3), SSE4.1, and SSE4.2.

* Intel® Advanced Vector Extensions (Intel® AVX).

® Half-precision floating-point conversion and RDRAND.

® Fused Multiply Add Extensions.

* Intel® Advanced Vector Extensions 2 (Intel® AVX2).

* ADX and RDSEED.

* Intel® Advanced Vector Extensions 512 (Intel® AVX-512).

The Intel Core 2, Intel Core 2 Extreme, Intel Core 2 Quad processor family, Intel Xeon processor 3000,
3200, 5100, 5300, 7300 series are based on the high-performance and power-efficient Intel Core
microarchitecture. Intel Xeon processor 3100, 3300, 5200, 5400, 7400 series, Intel Core 2 Extreme
processor QX9600, QX9700 series, Intel Core 2 Quad Q9000 series, Q8000 series are based on the
enhanced Intel Core microarchitecture. Intel Core i7 processor is based on Intel microarchitecture code
name Nehalem. Intel® Xeon® processor 5600 series, Intel Xeon processor E7 and Intel Core i7, i5, i3
processors are based on Intel microarchitecture code name Westmere.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor
E7-8800/4800/2800 product families, Intel® Core™ i7-3930K processor, and 2nd generation Intel®
Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Intel®
microarchitecture code name Sandy Bridge.

The Intel® Xeon® processor E3-1200 v2 product family and the 3rd generation Intel® Core™ processors
are based on the Ivy Bridge microarchitecture and support Intel 64 architecture. The Intel® Xeon®
processor E5 v2 and E7 v2 families are based on the lvy Bridge-E microarchitecture, support Intel 64
architecture and multiple physical processor packages in a platform.

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are
based on the Haswell microarchitecture and support Intel 64 architecture. The Intel® Xeon® processor
E5 26xx v3 family is based on the Haswell-E microarchitecture, supports Intel 64 architecture and
multiple physical processor packages in a platform.

Intel® Core™ M processors, 5th generation Intel Core processors and Intel Xeon processor E3-1200 v4
series are based on the Broadwell microarchitecture and support Intel 64 architecture.

1. Hyper-Threading Technology requires a computer system with an Intel processor supporting HT Technology and an HT
Technology enabled chipset, BIOS and operating system. Performance varies depending on the hardware and software
used.

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The 6th generation Intel Core processors, Intel Xeon processor E3-1500m v5 are based on the Skylake
microarchitecture and support Intel 64 architecture.

The Intel® Xeon® Processor Scalable Family is based on the Skylake Server microarchitecture and
supports Intel 64 architecture.

2.1 THE SKYLAKE SERVER MICROARCHITECTURE

The Intel® Xeon® Processor Scalable Family is based on the Skylake Server microarchitecture. Proces-
sors based on the Skylake microarchitecture can be identified using CPUID’s DisplayFamily DisplayModel
signature, which can be found in Table 2-1 of CHAPTER 2 of Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 4.

The Skylake Server microarchitecture introduces the following new features? that allow you to optimize
your application for performance and power consumption.

® A new core based on the Skylake Server microarchitecture with process improvements based on the
Kaby Lake microarchitecture.

* Intel® Advanced Vector Extensions 512 (Intel® AVX-512) support.

® More cores per socket (max 28 vs. max 22).

® 6 memory channels per socket in Skylake microarchitecture vs. 4 in the Broadwell microarchitecture.
® Bigger L2 cache, smaller non inclusive L3 cache.

* Intel® Optane™ support.

* Intel® Omni-Path Architecture (Intel® OPA).

® Sub-NUMA Clustering (SNC) support.

The green stars in Figure 2-1 represent new features in Skylake Server microarchitecture compared to
Skylake microarchitecture for client; a 1MB L2 cache and an additional Intel AVX-512 FMA unit on port 5
which is available on some parts.

Since port 0 and port 1 are 256-bits wide, Intel AVX-512 operations that will be dispatched to port O will
execute on both port 0 and port 1; however, other operations such as lea can still execute on port 1 in
parallel. See the red block in Figure 2-3 for the fusion of ports O and 1.

Notice that, unlike Skylake microarchitecture for client, the Skylake Server microarchitecture has its
front end loop stream detector (LSD) disabled.

2. Some features may not be available on all products.

2-2

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

32K ’ BPU |___AVX-512 Port Fusion |
Instruction Cache - -
uncore ; l | Dedicated AVX-512 unit |
Legacy Decode Decoded
Pipeline ICache MSROM
\ Micro-Op Queue
+
1M L2 Allocate/Rename/Retire/Move Elimination/Zero Idiom |
Cache >
Scheduler |
¥ r r
32K Data Port 2 Port 6 Port O Port 1 Port 5
[+ | INTEGER ALU INTEGER ALU INTEGER ALU INTEGER ALU
Cache LD/STA
/ INTEGER DIVIDE INTEGER MUL FAST LEA
1 SHIFT BRANCH 2 SLOW LEA VEC SHUFFLE
Port 3 BRANCH 1 FAST LEA
VECFMA
LD/STA | VECFMA VEC FMA
/ VEC MUL VEC MUL VECMUL
VECADD VEC ADD VECADD
Port4 VECALU VEC ALU VECALU
STD [* VEC SHIFTER VEC SHIFTER
INTEGER represent GPR scalar instructions.
VEC represent floating point and integer vector instructions.
Port 7 SLOW LEA represent a lea with 2 registers and displacement, all other lea versions considered
! as FAST LEA
STA BRANCH1 is primary branch and more capable than BRANCH2

Figure 2-1. Processor Core Pipeline Functionality of the Skylake Server Microarchitecture

2.1.1 Skylake Server Microarchitecture Cache

The Intel Xeon Processor Scalable Family based on Skylake Server microarchitecture has significant
changes in core and uncore architecture to improve performance and scalability of several components
compared with the previous generation of the Intel Xeon processor family based on Broadwell microar-
chitecture.

2.1.1.1

Skylake Server microarchitecture implements a mid-level (L2) cache of 1 MB capacity with a minimum
load-to-use latency of 14 cycles. The mid-level cache capacity is four times larger than the capacity in
previous Intel Xeon processor family implementations. The line size of the mid-level cache is 64B and it
is 16-way associative. The mid-level cache is private to each core.

Larger Mid-Level Cache

Software that has been optimized to place data in mid-level cache may have to be revised to take advan-
tage of the larger mid-level cache available in Skylake Server microarchitecture.

2.1.1.2

The last level cache (LLC) in Skylake is a non-inclusive, distributed, shared cache. The size of each of the
banks of last level cache has shrunk to 1.375 MB per bank. Because of the non-inclusive nature of the last
level cache, blocks that are present in the mid-level cache of one of the cores may not have a copy resi-

Non-Inclusive Last Level Cache

2-3

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

dent in a bank of last level cache. Based on the access pattern, size of the code and data accessed, and
sharing behavior between cores for a cache block, the last level cache may appear as a victim cache of
the mid-level cache and the aggregate cache capacity per core may appear to be a combination of the
private mid-level cache per core and a portion of the last level cache.

2.1.1.3 Skylake Server Microarchitecture Cache Recommendations

A high-level comparison between Skylake Server microarchitecture cache and the previous generation
Broadwell microarchitecture cache is available in the table below.

Table 2-1. Cache Comparison Between Skylake Microarchitecture and Broadwell Microarchitecture

Cache level Category Broadwell Skylake Server
Microarchitecture Microarchitecture
L1 Data Cache Size [KB] 32 32
Unit (DCU)
Latency [cycles] 4-6 4-6
Max bandwidth [bytes/cycles] 96 192
Sustained bandwidth [bytes/cycles] 93 133
Associativity [ways] 8 8
L2 Mid-level Cache | Size [KB] 256 1024 (1MB)
(MLC)
Latency [cycles] 12 14
Max bandwidth [bytes/cycles] 32 64
Sustained bandwidth [bytes/cycles] 25 52
Associativity [ways] 8 16
L3 Last-level Size [MB] Up to 2.5 per core up to 1.375" per core
Cache (LLC)
Latency [cycles] 50-60 50-70
Max bandwidth [bytes/cycles] 16 16
Sustained bandwidth [bytes/cycles] 14 15
NOTES:

1. Some Skylake Server parts have some cores disabled and hence have more than 1.375 MB per core of L3 cache.

The figure below shows how Skylake Server microarchitecture shifts the memory balance from shared-
distributed with high latency, to private-local with low latency.

2-4

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Broadwell Server Cache Structure

Shared L3 Cache (Inclusive): 2.5MB * N

Skylake Server Cache Structure

Shared L3 Cache (Non inclusive): 1.375MB * N

256KB L2 Cache

256KB L2 Cache

256KB L2 Cache

1MB L2 Cache

1MB L2 Cache

1MB L2 Cache

32KB L1 Cache

32KB L1 Cache

32KB L1 Cache

32KB L1 Cache

32KB L1 Cache

32KB L1 Cache

Core 0

Core 1l

Core N

Core 0

Core 1l

Core N

Figure 2-2. Broadwell Microarchitecture and Skylake Server Microarchitecture Cache Structures

The potential performance benefit from the cache changes is high, but software will need to adapt its
memory tiling strategy to be optimal for the new cache sizes.

Recommendation: Rebalance application shared and private data sizes to match the smaller, non-
inclusive L3 cache, and larger L2 cache.

Choice of cache blocking should be based on application bandwidth requirements and changes from one
application to another. Having four times the L2 cache size and twice the L2 cache bandwidth compared
to the previous generation Broadwell microarchitecture enables some applications to block to L2 instead
of L1 and thereby improves performance.

Recommendation: Consider blocking to L2 on Skylake Server microarchitecture if L2 can sustain the
application’s bandwidth requirements.

The change from inclusive last level cache to non-inclusive means that the capacity of mid-level and last
level cache can now be added together. Programs that determine cache capacity per core at run time
should now use a combination of mid-level cache size and last level cache size per core to estimate the
effective cache size per core. Using just the last level cache size per core may result in non-optimal use
of available on-chip cache; see Section 2.1.2 for details.

Recommendation: In case of no data sharing, applications should consider cache capacity per core as
L2 and L3 cache sizes and not only L3 cache size.

2.1.2 Non-Temporal Stores on Skylake Server Microarchitecture

Because of the change in the size of each bank of last level cache on Skylake Server microarchitecture, if
an application, library, or driver only considers the last level cache to determine the size of on-chip cache-
per-core, it may see a reduction with Skylake Server microarchitecture and may use non-temporal store
with smaller blocks of memory writes. Since non-temporal stores evict cache lines back to memory, this
may result in an increase in the number of subsequent cache misses and memory bandwidth demands
on Skylake Server microarchitecture, compared to the previous Intel Xeon processor family.

Also, because of a change in the handling of accesses resulting from non-temporal stores by Skylake
Server microarchitecture, the resources within each core remain busy for a longer duration compared to
similar accesses on the previous Intel Xeon processor family. As a result, if a series of such instructions
are executed, there is a potential that the processor may run out of resources and stall, thus limiting the
memory write bandwidth from each core.

2-5

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The increase in cache misses due to overuse of non-temporal stores and the limit on the memory write
bandwidth per core for non-temporal stores may result in reduced performance for some applications.

To avoid the performance condition described above with Skylake Server microarchitecture, include mid-
level cache capacity per core in addition to the last level cache per core for applications, libraries, or
drivers that determine the on-chip cache available with each core. Doing so optimizes the available on-
chip cache capacity on Skylake Server microarchitecture as intended, with its non-inclusive last level
cache implementation.

2.2 THE SKYLAKE MICROARCHITECTURE

The Skylake microarchitecture builds on the successes of the Haswell and Broadwell microarchitectures.
The basic pipeline functionality of the Skylake microarchitecture is depicted in Figure 2-3.

32K L1 Instruction
> hm
BPU Cache

Y

MSROM Decoded Icache | Legacy Decode |

(DSB) A Pipeline)

l4 uops/cycle 6 uops/cycle 5 uops/cycle l

Y

‘ Instruction Decode Queue (IDQ,, or micro-op queue) ‘

!

‘ Allocate/Rename/Retire/MoveElimination/Zeroldiom ‘

‘ Scheduler ‘
256K L2 Cache
[pot2 | (Unified)
Port0 Port 1 Ports Port 6 " st [
Int ALU, Int ALU, Int ALU, 1
VecFMA, | | FastLEA, Fast LEA, It | Port3
Vec MUL, Vec FMA, Vec SHUF, It Shit, | LD/STA ‘
Vec Add, Vec MUL, Vec ALY, sl >
Vec ALU, Vec Add, T ; 32K L1 Data Cache
Vec Shft, Vec ALU, > e P
Divide, Vec Shft, S >
Branch2 Int MUL,
Slow LEA Port 7
STA

Figure 2-3. CPU Core Pipeline Functionality of the Skylake Microarchitecture

The Skylake microarchitecture offers the following enhancements:

® Larger internal buffers to enable deeper OOO execution and higher cache bandwidth.
¢ Improved front end throughput.

® Improved branch predictor.

¢ Improved divider throughput and latency.

® Lower power consumption.

Improved SMT performance with Hyper-Threading Technology.

2-6

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

¢ Balanced floating-point ADD, MUL, FMA throughput and latency.

The microarchitecture supports flexible integration of multiple processor cores with a shared uncore sub-
system consisting of a number of components including a ring interconnect to multiple slices of L3 (an
off-die L4 is optional), processor graphics, integrated memory controller, interconnect fabrics, etc. A
four-core configuration can be supported similar to the arrangement shown in Figure 2-5.

2.2.1 The Front End

The front end in the Skylake microarchitecture provides the following improvements over previous
generation microarchitectures:

® Legacy Decode Pipeline delivery of 5 uops per cycle to the IDQ compared to 4 uops in previous gener-
ations.

® The DSB delivers 6 uops per cycle to the IDQ compared to 4 uops in previous generations.

® The IDQ can hold 64 uops per logical processor vs. 28 uops per logical processor in previous
generations when two sibling logical processors in the same core are active (2x64 vs. 2x28 per core).
If only one logical processor is active in the core, the IDQ can hold 64 uops (64 vs. 56 uops in ST
operation).

® The LSD in the IDQ can detect loops up to 64 uops per logical processor irrespective ST or SMT
operation.

® Improved Branch Predictor.

2.2.2 The Out-of-Order Execution Engine

The Out of Order and execution engine changes in Skylake microarchitecture include:
® Larger buffers enable deeper OOO execution compared to previous generations.
®* Improved throughput and latency for divide/sqrt and approximate reciprocals.

¢ ldentical latency and throughput for all operations running on FMA units.

® Longer pause latency enables better power efficiency and better SMT performance resource utili-
zation.

Table 2-2 summarizes the OOO engine’s capability to dispatch different types of operations to various
ports.

Table 2-2. Dispatch Port and Execution Stacks of the Skylake Microarchitecture

Port O Port 1 Port2, 3 Port 4 Port 5 Port 6 Port 7
ALU, ALY, LD STD ALU, ALU, STA
Vec ALU Fast LEA, STA Fast LEA, Shft,

Vec ALU Vec ALU,

Vec Shft, Vec Shft, Vec Shuffle, Branch1
Vec Add, Vec Add,
Vec Mul, Vec Mul,
FMA, FMA
DIv, Slow Int
Branch2 Slow LEA

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-3 lists execution units and common representative instructions that rely on these units.
Throughput improvements across the SSE, AVX and general-purpose instruction sets are related to the
number of units for the respective operations, and the varieties of instructions that execute using a
particular unit.

Table 2-3. Skylake Microarchitecture Execution Units and Representative Instructions’

Execution # of Instructions
Unit Unit
ALU 4 add, and, cmp, or, test, xor, movzx, movsx, mov, (v)movdqu, (v)movdqa, (v)movap*, (v)movup*
SHFT 2 sal, shl, rol, adc, sarx, adcx, adox, etc.
Slow Int 1 mul, imul, bsr, rcl, shid, mulx, pdep, etc.
BM 2 andn, bextr, blsi, blsmsk, bzhi, etc
Vec ALU 3 (v)pand, (v)por, (v)pxor, (v)movg, (v)movq, (v)movap*, (v)movup*,

(v)andp*, (v)orp*, (v)paddb/w/d/q, (v)blendv*, (v)blendp*, (v)pblendd

Vec_Shft 2 (v)psliv*, (v)psrlv*, vector shift count in imm8

Vec Add 2 (v)addp*, (v)cmpp*, (v)max*, (v)min*, (v)padds*, (v)paddus*, (v)psign, (v)pabs, (v)pavgb,
(v)pcmpeqg*, (v)pmax, (v)cvtps2dq, (v)cvtdg2ps, (v)cvtsdZsi, (v)cviss2si

Shuffle 1 (v)shufp*, vperm*, (v)pack*, (v)unpck?*, (v)punpck*, (v)pshuf?*, (v)pslidg, (v)alignr, (v)pmovzx*,
vbroadcast*, (v)pslidq, (v)psridq, (v)pblendw

Vec Mul 2 (v)mul*, (v)pmul*, (v)pmadd*,

SIMD Misc 1 STTNI, (v)pcimulgdq, (v)psadw, vector shift count in xmm,

FP Mov 1 (v)movsd/ss, (v)movd gpr,

DIVIDE 1 divp*, divs*, vdiv*, sqrt*, vsqrt*, rcp*, vrcp*, rsqrt*, idiv

NOTES:

1. Execution unit mapping to MMX instructions are not covered in this table. See Section 12.16.5 on MMX instruction
throughput remedy.

A significant portion of the SSE, AVX and general-purpose instructions also have latency improvements.
Appendix C lists the specific details. Software-visible latency exposure of an instruction sometimes may
include additional contributions that depend on the relationship between micro-ops flows of the producer
instruction and the micro-op flows of the ensuing consumer instruction. For example, a two-uop instruc-
tion like VPMULLD may experience two cumulative bypass delays of 1 cycle each from each of the two
micro-ops of VPMULLD.

Table 2-4 describes the bypass delay in cycles between a producer uop and the consumer uop. The left-
most column lists a variety of situations characteristic of the producer micro-op. The top row lists a
variety of situations characteristic of the consumer micro-op.

2-8

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-4. Bypass Delay Between Producer and Consumer Micro-ops

SIMD/0,1/ | FMA/0,1/ | VIMUL/O,1/ | SIMD/5/1,3 | SHUF/5/1, | V2I/0/3 | 12V/5/1
1 4 4 3

SIMD/0,1/1 | 0 1 1 0 0 0 NA
FMA/0,1/4 | 1 0 1 0 0 0 NA
VIMUL/0,1/4 | 1 0 1 0 0 0 NA
SIMD/5/1,3 | O 1 1 0 0 0 NA
SHUF/5/1,3 | 0 0 1 0 0 0 NA
v21/0/3 NA NA NA NA NA NA NA
12V/5/1 0 0 1 0 0 0 NA

The attributes that are relevant to the producer/consumer micro-ops for bypass are a triplet of abbrevi-
ation/one or more port number/latency cycle of the uop. For example:

¢ “SIMD/0,1/1” applies to 1-cycle vector SIMD uop dispatched to either port O or port 1.
* “VIMUL/0,1/4” applies to 4-cycle vector integer multiply uop dispatched to either port O or port 1.
¢ “SIMD/5/1,3” applies to either 1-cycle or 3-cycle non-shuffle uop dispatched to port 5.

2.2.3 Cache and Memory Subsystem

The cache hierarchy of the Skylake microarchitecture has the following enhancements:
® Higher Cache bandwidth compared to previous generations.
¢ Simultaneous handling of more loads and stores enabled by enlarged buffers.

® Processor can do two page walks in parallel compared to one in Haswell microarchitecture and earlier
generations.

® Page split load penalty down from 100 cycles in previous generation to 5 cycles.
¢ L3 write bandwidth increased from 4 cycles per line in previous generation to 2 per line.

® Support for the CLFLUSHOPT instruction to flush cache lines and manage memory ordering of flushed
data using SFENCE.

® Reduced performance penalty for a software prefetch that specifies a NULL pointer.
® L2 associativity changed from 8 ways to 4 ways.

2-9

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-5. Cache Parameters of the Skylake Microarchitecture

Capacity / Line Size | Fastest Peak Bandwidth | Sustained Bandwidth | Update
Level Associativity | (bytes) Latency’ | (bytes/cyc) (bytes/cyc) Policy
First Level Data | 32KB/8 64 4 cycle 96 (2x32B Load + | ~81 Writeback

1*32B Store)

Instruction 32KB/8 64 N/A N/A N/A N/A
Second Level 256KB/4 64 12 cycle 64 ~29 Writeback
Third Level Up to 2MB 64 44 32 ~18 Writeback
(Shared L3) per core/Up

to 16 ways
NOTES:

1. Software-visible latency will vary depending on access patterns and other factors.

The TLB hierarchy consists of dedicated level one TLB for instruction cache, TLB for L1D, plus unified TLB
for L2. The partition column of Table 2-6 indicates the resource sharing policy when Hyper-Threading
Technology is active.

Table 2-6. TLB Parameters of the Skylake Microarchitecture

Level Page Size Entries Associativity Partition
Instruction 4KB 128 8 ways dynamic
Instruction 2MB/4MB 8 per thread fixed
First Level Data 4KB 64 4 fixed
First Level Data 2MB/4MB 32 4 fixed
First Level Data 1GB 4 4 fixed
Second Level Shared by 4KB and 2/4MB pages | 1536 12 fixed
Second Level 1GB 16 4 fixed

2.2.4 Pause Latency in Skylake Microarchitecture

The PAUSE instruction is typically used with software threads executing on two logical processors located
in the same processor core, waiting for a lock to be released. Such short wait loops tend to last between
tens and a few hundreds of cycles, so performance-wise it is better to wait while occupying the CPU than
yielding to the OS. When the wait loop is expected to last for thousands of cycles or more, it is preferable
to yield to the operating system by calling an OS synchronization API function, such as WaitForSingleOb-
ject on Windows* OS or futex on Linux.

The PAUSE instruction is intended to:

¢ Temporarily provide the sibling logical processor (ready to make forward progress exiting the spin
loop) with competitively shared hardware resources. The competitively-shared microarchitectural
resources that the sibling logical processor can utilize in the Skylake microarchitecture are listed
below.

— Front end slots in the Decode ICache, LSD and IDQ.

— Execution slots in the RS.

® Save power consumed by the processor core compared with executing equivalent spin loop
instruction sequence in the following configurations.

— One logical processor is inactive (e.g., entering a C-state).

— Both logical processors in the same core execute the PAUSE instruction.

2-10

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

— HT is disabled (e.g. using BIOS options).

The latency of the PAUSE instruction in prior generation microarchitectures is about 10 cycles, whereas
in Skylake microarchitecture it has been extended to as many as 140 cycles.

The increased latency (allowing more effective utilization of competitively-shared microarchitectural
resources to the logical processor ready to make forward progress) has a small positive performance
impact of 1-2% on highly threaded applications. It is expected to have negligible impact on less threaded
applications if forward progress is not blocked executing a fixed number of looped PAUSE instructions.
There's also a small power benefit in 2-core and 4-core systems.

As the PAUSE latency has been increased significantly, workloads that are sensitive to PAUSE latency will
suffer some performance loss.

The following is an example of how to use the PAUSE instruction with a dynamic loop iteration count.

Notice that in the Skylake microarchitecture the RDTSC instruction counts at the machine's guaranteed
P1 frequency independently of the current processor clock (see the INVARIANT TSC property), and
therefore, when running in Intel® Turbo-Boost-enabled mode, the delay will remain constant, but the
number of instructions that could have been executed will change.

Use PollDelay function in your lock to wait a given amount of guaranteed P1 frequency cycles, specified
in the “clocks” variable.

Example 2-1. Dynamic Pause Loop Example
#include <x86intrin.h>
#include <stdinth>

/* A useful predicate for dealing with timestamps that may wrap.

Is a before b? Since the timestamps may wrap, this is asking whether it's
shorter to go clockwise from a to b around the clock-face, or anti-clockwise.
Times where going clockwise is less distance than going anti-clockwise

are in the future, others are in the past. e.g. a = MAX-1, b = MAX+1 (=0),
then a > b (true) does not mean a reached b; whereas signed(a) = -2,
signed(b) = O captures the actual difference */

static inline bool before(uint64_t a, uint64_t b)

{
return ((int64_t)b - (int64_t)a) > O;

}

void pollDelay(uint32_t clocks)
{

uint64_t endTime = _rdtsc()+ clocks;

for (; before(_rdtsc(), endTime);)
_mm_pause();

For contended spinlocks of the form shown in the baseline example below, we recommend an exponen-
tial back off when the lock is found to be busy, as shown in the improved example, to avoid significant
performance degradation that can be caused by conflicts between threads in the machine. This is more
important as we increase the number of threads in the machine and make changes to the architecture
that might aggravate these conflict conditions. In multi-socket Intel server processors with shared
memory, conflicts across threads take much longer to resolve as the number of threads contending for
the same lock increases. The exponential back off is designed to avoid these conflicts between the
threads thus avoiding the potential performance degradation. Note that in the example below, the

2-11

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

number of PAUSE instructions are increased by a factor of 2 until some MAX_BACKOFF is reached which
is subject to tuning.

Example 2-2. Contended Locks with Increasing Back-off Example

/ ki
/*Baseline Version */
/ ki

// atomic {if (lock == free) then change lock state to busy}
while (cmpxchg(lock, free, busy) == fail)

{
while (lock == busy)
{
__asm__ ("pause™);
}
}
Vikehaidieladiaiaieh **f
/*Improved Version */
Vikehaidieiadiaiaieh **f
int mask = 1;

int const max = 64; //MAX_BACKOFF
while (cmpxchg(lock, free, busy) == fail)
{
while (lock == busy)
{
for (int i=mask; i; --i){
__asm__ (“pause”);
}

mask = mask < max ? mask<<1 : max;

2.3 HASWELL MICROARCHITECTURE

The Haswell microarchitecture builds on the successes of the Sandy Bridge and Ivy Bridge microarchitec-
tures. The basic pipeline functionality of the Haswell microarchitecture is depicted in Figure 2-4. In
general, most of the features described in Section 2.3.1 - Section 2.3.4 also apply to the Broadwell
microarchitecture. Enhancements of the Broadwell microarchitecture are summarized in Section 2.3.6.

2-12

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

MSROM
—>»{ 32K L1 Instruction Cache Pre-Decode » Instruction Queue \‘

f

BPU Uop Cache (DSB)

Load Buffers, Store
Buffers, Reorder Buffers Allocate/Rename/Retire/

MoveElimination/Zeroldiom

IDQ

‘ Scheduler ‘
‘ Port O ‘ ‘ Port 1 ‘ ‘ Port 5 ‘ ‘ Port 6 ‘ ‘ Port 4 ‘ ‘ Port 2 ‘ ‘ Port 3 ‘ ‘ Port 7 ‘
ALU LA shit | [s | ‘ LD/STA ‘ ‘ LD/STA ‘ STA

SHFT, ; ALEEA ALU, .
VEC SHFT, ’ VECALU, ra‘Tc v il
FP mul VECLOG, VEC LOG, |
EMA FP mul, VEC SHUF, Memory Contro
’ FMA
DIV 4
STTNI FPadd, [}
Branch2 Slow Int x
T T) J

I—» 32K L1 Data Cache
|—> Line Fill Buffers
256K L2 Cache (Unified)

Figure 2-4. CPU Core Pipeline Functionality of the Haswell Microarchitecture

The Haswell microarchitecture offers the following innovative features:

Support for Intel Advanced Vector Extensions 2 (Intel AVX2), FMA.

Support for general-purpose, new instructions to accelerate integer numeric encryption.
Support for Intel® Transactional Synchronization Extensions (Intel® TSX).

Each core can dispatch up to 8 micro-ops per cycle.

256-bit data path for memory operation, FMA, AVX floating-point and AVX2 integer execution units.
Improved L1D and L2 cache bandwidth.

Two FMA execution pipelines.

Four arithmetic logical units (ALUS).

Three store address ports.

Two branch execution units.

Advanced power management features for IA processor core and uncore sub-systems.
Support for optional fourth level cache.

The microarchitecture supports flexible integration of multiple processor cores with a shared uncore sub-
system consisting of a number of components including a ring interconnect to multiple slices of L3 (an
off-die L4 is optional), processor graphics, integrated memory controller, interconnect fabrics, etc. An
example of the system integration view of four CPU cores with uncore components is illustrated in
Figure 2-5.

2-13

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

A
PCle DMI
DRAM

Disp PEG DMI PCle IMc
Eng Brdg
System Agent

CPU Core
CPU Core

Legend: | uncore

CPU Core

Processor Graphics/
Media Engine

Figure 2-5. Four Core System Integration of the Haswell Microarchitecture

2.3.1 The Front End

The front end of Intel microarchitecture code name Haswell builds on that of Intel microarchitecture code
name Sandy Bridge and Intel microarchitecture code name lvy Bridge, see Section 2.4.2 and Section
2.4.7. Additional enhancements in the front end include:

® The uop cache (or decoded ICache) is partitioned equally between two logical processors.

® The instruction decoders will alternate between each active logical processor. If one sibling logical
processor is idle, the active logical processor will use the decoders continuously.

® The LSD in the micro-op queue (or IDQ) can detect small loops up to 56 micro-ops. The 56-entry
micro-op queue is shared by two logical processors if Hyper-Threading Technology is active (Intel
microarchitecture Sandy Bridge provides duplicated 28-entry micro-op queue in each core).

2.3.2 The Out-of-Order Engine

The key components and significant improvements to the out-of-order engine are summarized below:

Renamer: The Renamer moves micro-ops from the micro-op queue to bind to the dispatch ports in the
Scheduler with execution resources. Zero-idiom, one-idiom and zero-latency register move operations
are performed by the Renamer to free up the Scheduler and execution core for improved performance.

Scheduler: The Scheduler controls the dispatch of micro-ops onto the dispatch ports. There are eight
dispatch ports to support the out-of-order execution core. Four of the eight ports provided execution
resources for computational operations. The other 4 ports support memory operations of up to two 256-
bit load and one 256-bit store operation in a cycle.

2-14

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Execution Core: The scheduler can dispatch up to eight micro-ops every cycle, one on each port. Of the
four ports providing computational resources, each provides an ALU, two of these execution pipes
provided dedicated FMA units. With the exception of division/square-root, STTNI/AESNI units, most
floating-point and integer SIMD execution units are 256-bit wide. The four dispatch ports servicing
memory operations consist with two dual-use ports for load and store-address operation. Plus a dedi-
cated 3rd store-address port and one dedicated store-data port. All memory ports can handle 256-bit
memory micro-ops. Peak floating-point throughput, at 32 single-precision operations per cycle and 16
double-precision operations per cycle using FMA, is twice that of Intel microarchitecture code name
Sandy Bridge.

The out-of-order engine can handle 192 uops in flight compared to 168 in Intel microarchitecture code

name Sandy Bridge.

2.3.3

Execution Engine

Table 2-7 summarizes which operations can be dispatched on which port.

Table 2-7. Dispatch Port and Execution Stacks of the Haswell Microarchitecture

Port O Port 1 Port2, 3 Port 4 Port 5 Port 6 Port 7
ALU, ALU, Load_Addr, Store_data ALU, ALU, Store_addr,
Shift Fast LEA, Store_addr Fast LEA, Shift, Simple_AGU

BM BM JEU
SIMD_Log, SIMD_ALU, SIMD_ALU,
SIMD misc, SIMD_Log SIMD_Log,
SIMD_Shifts
FMA/FP_mul, FMA/FP_mul, Shuffle
Divide FP_add
2nd_Jeu slow_int, FP mov,

AES

Table 2-8 lists execution units and common representative instructions that rely on these units. Table 2-8
also includes some instructions that are available only on processors based on the Broadwell microarchi-

tecture.

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-8. Haswell Microarchitecture Execution Units and Representative Instructions

Execution # of Instructions
Unit Ports
ALU 4 add, and, cmp, or, test, xor, movzx, movsx, mov, (v)movdqu, (v)movdga
SHFT 2 sal, shi, rol, adc, sarx, (adcx, adox)’ etc.
Slow Int 1 mul, imul, bsr, rcl, shid, mulx, pdep, etc.
BM 2 andn, bextr, blsi, blsmsk, bzhi, etc
SIMD Log 3 (v)pand, (v)por, (v)pxor, (v)movg, (v)movq, (v)blendp*, vpblendd
SIMD_Shft 1 (v)psl*, (v)psr*
SIMD ALU 2 (v)padd*, (v)psign, (v)pabs, (v)pavgb, (v)pcmpeg*, (v)pmax, (v)pcmpgt*
Shuffle 1 (v)shufp*, vperm*, (v)pack*, (v)unpck*, (v)punpck*, (v)pshuf*, (v)pslidq, (v)alignr, (v)pmovzx*,
vbroadcast*, (v)pslidq, (v)pblendw
SIMD Misc 1 (v)pmul*, (v)pmadd*, STTNI, (v)pcimulqdaq, (v)psadw, (v)pcmpgtq, vpslivd, (v)bendv?*, (v)plendw,
FP Add 1 (v)addp*, (v)cmpp*, (v)max*, (v)min*,
FP Mov 1 (v)movap*, (v)movup?*, (v)movsd/ss, (v)movd gpr, (v)andp?*, (v)orp*
DIVIDE 1 divp*, divs*, vdiv*, sqrt*, vsqrt*, rcp*, vrcp*, rsqrt*, idiv
NOTES:

1. Only available in processors based on the Broadwell microarchitecture and support CPUID ADX feature flag.

The reservation station (RS) is expanded to 60 entries deep (compared to 54 entries in Intel microarchi-
tecture code name Sandy Bridge). It can dispatch up to eight micro-ops in one cycle if the micro-ops are
ready to execute. The RS dispatch a micro-op through an issue port to a specific execution cluster,
arranged in several stacks to handle specific data types or granularity of data.

When a source of a micro-op executed in one stack comes from a micro-op executed in another stack, a
delay can occur. The delay occurs also for transitions between Intel SSE integer and Intel SSE floating-
point operations. In some of the cases the data transition is done using a micro-op that is added to the
instruction flow. Table 2-30 describes how data, written back after execution, can bypass to micro-op
execution in the following cycles.

2-16

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-9. Bypass Delay Between Producer and Consumer Micro-ops (cycles)

From/To INT SSE-INT/ SSE-FP/ X87/
AVX-INT AVX-FP_LOW AVX-FP_High
INT * micro-op (port 5) * micro-op (port 5) micro-op (port 5) + 3
* micro-op (port6) + | * micro-op (port6)+ 1 | cycle delay
1 cycle cycle
SSE-INT/ micro-op (port 1) 1 cycle delay
AVX-INT
SSE-FP/ micro-op (port 1) 1 cycle delay micro-op (port 5) +
AVX-FP_LOW 1cycle delay
X87/ micro-op (port 1) + 3 micro-op (port 5) +
AVX-FP_High cycle delay 1cycle delay
Load 1 cycle delay 1 cycle delay 2 cycle delay
2.3.4 Cache and Memory Subsystem

The cache hierarchy is similar to prior generations, including an instruction cache, a first-level data cache
and a second-level unified cache in each core, and a 3rd-level unified cache with size dependent on
specific product configuration. The 3rd-level cache is organized as multiple cache slices, the size of each
slice may depend on product configurations, connected by a ring interconnect. The exact details of the
cache topology is reported by CPUID leaf 4. The 3rd level cache resides in the “uncore” sub-system that
is shared by all the processor cores. In some product configurations, a fourth level cache is also
supported. Table 2-28 provides more details of the cache hierarchy.

Table 2-10. Cache Parameters of the Haswell Microarchitecture

Capacity/Ass | Line Size | Fastest Throughput | Peak Bandwidth Update
Level ociativity (bytes) Latency’ | (clocks) (bytes/cyc) Policy
First Level Data 32KB/8 64 4 cycle 0.52 64 (Load) + 32 (Store) | Writeback
Instruction 32 KB/8 64 N/A N/A N/A N/A
Second Level 256KB/8 64 11 cycle Varies 64 Writeback
Third Level Varies 64 34 Varies Writeback
(Shared L3)
NOTES:

1. Software-visible latency will vary depending on access patterns and other factors. L3 latency can vary due to clock

ratios between the processor core and uncore.

2. First level data cache supports two load micro-ops each cycle; each micro-op can fetch up to 32-bytes of data.

2-17

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The TLB hierarchy consists of dedicated level one TLB for instruction cache, TLB for L1D, plus unified TLB

for L2.
Table 2-11. TLB Parameters of the Haswell Microarchitecture

Level Page Size Entries Associativity Partition
Instruction 4KB 128 4 ways dynamic
Instruction 2MB/4MB 8 per thread fixed
First Level Data 4KB 64 4 fixed
First Level Data 2MB/4MB 32 4 fixed
First Level Data 1GB 4 4 fixed
Second Level Shared by 4KB and 2/4MB pages 1024 8 fixed

2.34.1 Load and Store Operation Enhancements

The L1 data cache can handle two 256-bit load and one 256-bit store operations each cycle. The unified
L2 can service one cache line (64 bytes) each cycle. Additionally, there are 72 load buffers and 42 store
buffers available to support micro-ops execution in-flight.

2.3.5 The Haswell-E Microarchitecture

Intel processors based on the Haswell-E microarchitecture comprises the same processor cores as
described in the Haswell microarchitecture, but provides more advanced uncore and integrated 1/0 capa-
bilities. Processors based on the Haswell-E microarchitecture support platforms with multiple sockets.

The Haswell-E microarchitecture supports versatile processor architectures and platform configurations
for scalability and high performance. Some of capabilities provided by the uncore and integrated 1/0 sub-
system of the Haswell-E microarchitecture include:

® Support for multiple Intel QPI interconnects in multi-socket configurations.

® Up to two integrated memory controllers per physical processor.

® Up to 40 lanes of PCI Express™ 3.0 links per physical processor.

® Up to 18 processor cores connected by two ring interconnects to the L3 in each physical processor.

An example of a possible 12-core processor implementation using the Haswell-E microarchitecture is
illustrated in Figure 2-6. The capabilities of the uncore and integrated 1/0 sub-system vary across the
processor family implementing the Haswell-E microarchitecture. For details, please consult the data
sheets of respective Intel Xeon E5 v3 processors.

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

PCle

N N N

QPI

Integrated 1/0

QPII Links

CPU Core

Core

|4 L3 Slice]

|Core |

Core

|4 L3 Sice]

|Core |

Core

| _J4»{ L3 slice|

| J4»{ L3 slice]

|Core |

Core

4|3 Slice]

|Core |

DRAM
«—

Home Agent
Memory Controller

DRAM
—>

DRAM
<«

Home Agent
Memory Controller

DRAM
—>

Figure 2-6. An Example of the Haswell-E Microarchitecture Supporting 12 Processor Cores

2.3.6

The Broadwell Microarchitecture

Intel Core M processors are based on the Broadwell microarchitecture. The Broadwell microarchitecture
builds from the Haswell microarchitecture and provides several enhancements. This section covers
enhanced features of the Broadwell microarchitecture.

® Floating-point multiply instruction latency is improved from 5 cycles in prior generation to 3 cycle in
the Broadwell microarchitecture. This applies to AVX, SSE and FP instruction sets.

¢ The throughput of gather instructions has been improved significantly, see Table C-5.

® The PCLMULQDQ instruction implementation is a single uop in the Broadwell microarchitecture with
improved latency and throughput.

The TLB hierarchy consists of dedicated level one TLB for instruction cache, TLB for L1D, plus unified TLB

for L2.
Table 2-12. TLB Parameters of the Broadwell Microarchitecture

Level Page Size Entries Associativity Partition
Instruction 4KB 128 4 ways dynamic
Instruction 2MB/4MB 8 per thread fixed
First Level Data 4KB 64 4 fixed
First Level Data 2MB/4MB 32 4 fixed
First Level Data 1GB 4 4 fixed
Second Level Shared by 4KB and 2MB pages 1536 6 fixed
Second Level 1GB pages 16 4 fixed

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.4 INTEL® MICROARCHITECTURE CODE NAME SANDY BRIDGE

Intel® microarchitecture code name Sandy Bridge builds on the successes of Intel® Core™ microarchi-
tecture and Intel microarchitecture code name Nehalem. It offers the following innovative features:

¢ Intel Advanced Vector Extensions (Intel AVX)

— 256-hit floating-point instruction set extensions to the 128-bit Intel Streaming SIMD Extensions,
providing up to 2X performance benefits relative to 128-bit code.

— Non-destructive destination encoding offers more flexible coding techniques.

— Supports flexible migration and co-existence between 256-bit AVX code, 128-bit AVX code and
legacy 128-bit SSE code.

® Enhanced front end and execution engine

— New decoded ICache component that improves front end bandwidth and reduces branch mispre-
diction penalty.

— Advanced branch prediction.

— Additional macro-fusion support.

— Larger dynamic execution window.

— Multi-precision integer arithmetic enhancements (ADC/SBB, MUL/IMUL).
— LEA bandwidth improvement.

— Reduction of general execution stalls (read ports, writeback conflicts, bypass latency, partial
stalls).

— Fast floating-point exception handling.
— XSAVE/XRSTORE performance improvements and XSAVEOPT new instruction.
® Cache hierarchy improvements for wider data path
— Doubling of bandwidth enabled by two symmetric ports for memory operation.
— Simultaneous handling of more in-flight loads and stores enabled by increased buffers.
— Internal bandwidth of two loads and one store each cycle.
— Improved prefetching.
— High bandwidth low latency LLC architecture.
— High bandwidth ring architecture of on-die interconnect.
® System-on-a-chip support
— Integrated graphics and media engine in second generation Intel Core processors.
— Integrated PCIE controller.
— Integrated memory controller.
® Next generation Intel Turbo Boost Technology

— Leverage TDP headroom to boost performance of CPU cores and integrated graphic unit.

2.4.1 Intel® Microarchitecture Code Name Sandy Bridge Pipeline Overview

Figure 2-7 depicts the pipeline and major components of a processor core that’s based on Intel microar-
chitecture code name Sandy Bridge. The pipeline consists of

®* Anin-order issue front end that fetches instructions and decodes them into micro-ops (micro-opera-
tions). The front end feeds the next pipeline stages with a continuous stream of micro-ops from the
most likely path that the program will execute.

2-20

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

An out-of-order, superscalar execution engine that dispatches up to six micro-ops to execution, per
cycle. The allocate/rename block reorders micro-ops to "dataflow" order so they can execute as soon
as their sources are ready and execution resources are available.

An in-order retirement unit that ensures that the results of execution of the micro-ops, including any
exceptions they may have encountered, are visible according to the original program order.

The flow of an instruction in the pipeline can be summarized in the following progression:

1. The Branch Prediction Unit chooses the next block of code to execute from the program. The
processor searches for the code in the following resources, in this order:

a. Decoded ICache.

b. Instruction Cache, via activating the legacy decode pipeline.

c. L2 cache, last level cache (LLC) and memory, as necessary.

P> | 32K L1 Instruction Cache | Pre-decode }»{Instr Queue Il_
[Decoders |

| Branch Predictor |

| 1.5K uOP Cache |

Load [store [Reorder —
Buffers Buffers [| Buffers :>> Allocate/Rename/Retire

In-order
out-of-order
Scheduler
PortO | | Port1 | |Port5 | |[Port2 | | Port3 | | Port4
ALU] ALU | ALU Load Load STD
V-Mul V-Add | [IMP StAddr || StAddr
V-Shuffld V-Shuffld 256- FP Shuf

Fdiv 256- FP Add 256- FP Bool

256- FP MUL 256- FP Blend ¢ ¢
256- FP Blend | [Memory Control
t 48 bytes/cycle
Line Fill
== 256K L2 Cache (Unified) Buffers

Figure 2-7. Intel Microarchitecture Code Name Sandy Bridge Pipeline Functionality

2. The micro-ops corresponding to this code are sent to the Rename/retirement block. They enter into
the scheduler in program order, but execute and are de-allocated from the scheduler according to
data-flow order. For simultaneously ready micro-ops, FIFO ordering is nearly always maintained.

Micro-op execution is executed using execution resources arranged in three stacks. The execution
units in each stack are associated with the data type of the instruction.

Branch mispredictions are signaled at branch execution. It re-steers the front end which delivers

micro-ops from the correct path. The processor can overlap work preceding the branch mispre-
diction with work from the following corrected path.

2-21

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

3. Memory operations are managed and reordered to achieve parallelism and maximum performance.
Misses to the L1 data cache go to the L2 cache. The data cache is non-blocking and can handle
multiple simultaneous misses.

4. Exceptions (Faults, Traps) are signaled at retirement (or attempted retirement) of the faulting

instruction.

Each processor core based on Intel microarchitecture code name Sandy Bridge can support two logical
processor if Intel Hyper-Threading Technology is enabled.

2.4.2

The Front End

This section describes the key characteristics of the front end. Table 2-13 lists the components of the
front end, their functions, and the problems they address.

Table 2-13. Components of the Front End of Intel Microarchitecture Code Name Sandy Bridge

Component

Functions

Performance Challenges

Instruction Cache

32-Kbyte backing store of instruction bytes

Fast access to hot code instruction bytes

Legacy Decode Pipeline

Decode instructions to micro-ops, delivered to
the micro-op queue and the Decoded ICache.

Provides the same decode latency and
bandwidth as prior Intel processors.

Decoded ICache warm-up

Decoded ICache

Provide stream of micro-ops to the micro-op
queue.

Provides higher micro-op bandwidth at
lower latency and lower power than the
legacy decode pipeline

MSROM

Complex instruction micro-op flow store,
accessible from both Legacy Decode Pipeline
and Decoded ICache

Branch Prediction Unit
(BPU)

Determine next block of code to be executed
and drive lookup of Decoded ICache and legacy
decode pipelines.

Improves performance and energy
efficiency through reduced branch
mispredictions.

Micro-op queue

Queues micro-ops from the Decoded ICache
and the legacy decode pipeline.

Hide front end bubbles; provide execution
micro-ops at a constant rate.

2.4.2.1

Legacy Decode Pipeline

The Legacy Decode Pipeline comprises the instruction translation lookaside buffer (ITLB), the instruction
cache (ICache), instruction predecode, and instruction decode units.

Instruction Cache and ITLB

An instruction fetch is a 16-byte aligned lookup through the ITLB and into the instruction cache. The
instruction cache can deliver every cycle 16 bytes to the instruction pre-decoder. Table 2-13 compares
the ICache and ITLB with prior generation.

Table 2-14. ICache and ITLB of Intel Microarchitecture Code Name Sandy Bridge

Component Intel microarchitecture code name Sandy Intel microarchitecture code name
Bridge Nehalem

ICache Size 32-Kbyte 32-Kbyte

ICache Ways 8 4

ITLB 4K page entries 128 128

ITLB large page (ZMor | 8 7

4M) entries

2-22

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Upon ITLB miss there is a lookup to the Second level TLB (STLB) that is common to the DTLB and the
ITLB. The penalty of an ITLB miss and a STLB hit is seven cycles.

Instruction PreDecode

The predecode unit accepts the 16 bytes from the instruction cache and determines the length of the
instructions.

The following length changing prefixes (LCPs) imply instruction length that is different from the default
length of instructions. Therefore they cause an additional penalty of three cycles per LCP during length
decoding. Previous processors incur a six-cycle penalty for each 16-byte chunk that has one or more
LCPs in it. Since usually there is no more than one LCP in a 16-byte chunk, in most cases, Intel microar-
chitecture code name Sandy Bridge introduces an improvement over previous processors.

® Operand Size Override (66H) preceding an instruction with a word/double immediate data. This
prefix might appear when the code uses 16 bit data types, unicode processing, and image
processing.

® Address Size Override (67H) preceding an instruction with a modr/m in real, big real, 16-bit
protected or 32-bit protected modes. This prefix may appear in boot code sequences.

® The REX prefix (4xh) in the Intel® 64 instruction set can change the size of two classes of instruc-
tions: MOV offset and MOV immediate. Despite this capability, it does not cause an LCP penalty and
hence is not considered an LCP.

Instruction Decode

There are four decoding units that decode instruction into micro-ops. The first can decode all IA-32 and
Intel 64 instructions up to four micro-ops in size. The remaining three decoding units handle single-
micro-op instructions. All four decoding units support the common cases of single micro-op flows
including micro-fusion and macro-fusion.

Micro-ops emitted by the decoders are directed to the micro-op queue and to the Decoded ICache.
Instructions longer than four micro-ops generate their micro-ops from the MSROM. The MSROM band-
width is four micro-ops per cycle. Instructions whose micro-ops come from the MSROM can start from
either the legacy decode pipeline or from the Decoded ICache.

MicroFusion

Micro-fusion fuses multiple micro-ops from the same instruction into a single complex micro-op. The
complex micro-op is dispatched in the out-of-order execution core as many times as it would if it were
not micro-fused.

Micro-fusion enables you to use memory-to-register operations, also known as the complex instruction
set computer (CISC) instruction set, to express the actual program operation without worrying about a
loss of decode bandwidth. Micro-fusion improves instruction bandwidth delivered from decode to retire-
ment and saves power.

Coding an instruction sequence by using single-uop instructions will increases the code size, which can
decrease fetch bandwidth from the legacy pipeline.

The following are examples of micro-fused micro-ops that can be handled by all decoders.

¢ All stores to memory, including store immediate. Stores execute internally as two separate functions,
store-address and store-data.

¢ Allinstructions that combine load and computation operations (load+op), for example:
e ADDPS XMM9, OWORD PTR [RSP+40]
* FADD DOUBLE PTR [RDI+RSI*8]
* XOR RAX, QWORD PTR [RBP+32]
® All instructions of the form "load and jump," for example:
e JMP [RDI+200]
* RET

¢ CMP and TEST with immediate operand and memory

2-23

INTEL® 64 AND |A-32 PROCESSOR ARCHITECTURES

An instruction with RIP relative addressing is not micro-fused in the following cases:
® An additional immediate is needed, for example:

e CMP [RIP+400], 27

* MOV [RIP+3000], 142

® The instruction is a control flow instruction with an indirect target specified using RIP-relative
addressing, for example:

* JMP [RIP+5000000]

In these cases, an instruction that can not be micro-fused will require decoder O to issue two micro-ops,
resulting in a slight loss of decode bandwidth.

In 64-bit code, the usage of RIP Relative addressing is common for global data. Since there is no micro-
fusion in these cases, performance may be reduced when porting 32-bit code to 64-bit code.

Macro-Fusion

Macro-fusion merges two instructions into a single micro-op. In Intel Core microarchitecture, this hard-
ware optimization is limited to specific conditions specific to the first and second of the macro-fusable
instruction pair.

® The first instruction of the macro-fused pair modifies the flags. The following instructions can be
macro-fused:

— In Intel microarchitecture code name Nehalem: CMP, TEST.
— In Intel microarchitecture code name Sandy Bridge: CMP, TEST, ADD, SUB, AND, INC, DEC
— These instructions can fuse if

* The first source / destination operand is a register.

* The second source operand (if exists) is one of: immediate, register, or non RIP-relative
memory.

® The second instruction of the macro-fusable pair is a conditional branch. Table 3-1 describes, for each
instruction, what branches it can fuse with.

Macro fusion does not happen if the first instruction ends on byte 63 of a cache line, and the second
instruction is a conditional branch that starts at byte O of the next cache line.

Since these pairs are common in many types of applications, macro-fusion improves performance even
on non-recompiled binaries.

Each macro-fused instruction executes with a single dispatch. This reduces latency and frees execution
resources. You also gain increased rename and retire bandwidth, increased virtual storage, and power
savings from representing more work in fewer bits.

2.4.2.2 Decoded ICache

The Decoded ICache is essentially an accelerator of the legacy decode pipeline. By storing decoded
instructions, the Decoded ICache enables the following features:

® Reduced latency on branch mispredictions.

® Increased micro-op delivery bandwidth to the out-of-order engine.

® Reduced front end power consumption.

The Decoded ICache caches the output of the instruction decoder. The next time the micro-ops are
consumed for execution the decoded micro-ops are taken from the Decoded ICache. This enables skip-
ping the fetch and decode stages for these micro-ops and reduces power and latency of the Front End.
The Decoded ICache provides average hit rates of above 80% of the micro-ops; furthermore, "hot spots"
typically have hit rates close to 100%.

Typical integer programs average less than four bytes per instruction, and the front end is able to race
ahead of the back end, filling in a large window for the scheduler to find instruction level parallelism.
However, for high performance code with a basic block consisting of many instructions, for example, Intel

2-24

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

SSE media algorithms or excessively unrolled loops, the 16 instruction bytes per cycle is occasionally a
limitation. The 32-byte orientation of the Decoded ICache helps such code to avoid this limitation.

The Decoded ICache automatically improves performance of programs with temporal and spatial locality.
However, to fully utilize the Decoded ICache potential, you might need to understand its internal organi-
zation.

The Decoded ICache consists of 32 sets. Each set contains eight Ways. Each Way can hold up to six
micro-ops. The Decoded ICache can ideally hold up to 1536 micro-ops.

The following are some of the rules how the Decoded ICache is filled with micro-ops:

® All micro-ops in a Way represent instructions which are statically contiguous in the code and have
their EIPs within the same aligned 32-byte region.

® Up to three Ways may be dedicated to the same 32-byte aligned chunk, allowing a total of 18 micro-
ops to be cached per 32-byte region of the original IA program.

® A multi micro-op instruction cannot be split across Ways.

¢ Up to two branches are allowed per Way.

® An instruction which turns on the MSROM consumes an entire Way.

¢ A non-conditional branch is the last micro-op in a Way.

® Micro-fused micro-ops (load+op and stores) are kept as one micro-op.

¢ A pair of macro-fused instructions is kept as one micro-op.

® Instructions with 64-bit immediate require two slots to hold the immediate.

When micro-ops cannot be stored in the Decoded ICache due to these restrictions, they are delivered
from the legacy decode pipeline. Once micro-ops are delivered from the legacy pipeline, fetching micro-
ops from the Decoded ICache can resume only after the next branch micro-op. Frequent switches can
incur a penalty.

The Decoded ICache is virtually included in the Instruction cache and ITLB. That is, any instruction with
micro-ops in the Decoded ICache has its original instruction bytes present in the instruction cache.
Instruction cache evictions must also be evicted from the Decoded ICache, which evicts only the neces-
sary lines.

There are cases where the entire Decoded ICache is flushed. One reason for this can be an ITLB entry
eviction. Other reasons are not usually visible to the application programmer, as they occur when impor-
tant controls are changed, for example, mapping in CR3, or feature and mode enabling in CRO and CRA4.
There are also cases where the Decoded ICache is disabled, for instance, when the CS base address is
NOT set to zero.

2.4.2.3 Branch Prediction

Branch prediction predicts the branch target and enables the processor to begin executing instructions
long before the branch true execution path is known. All branches utilize the branch prediction unit (BPU)
for prediction. This unit predicts the target address not only based on the EIP of the branch but also
based on the execution path through which execution reached this EIP. The BPU can efficiently predict the
following branch types:

¢ Conditional branches.

¢ Direct calls and jumps.

® Indirect calls and jumps.
® Returns.

2424 Micro-op Queue and the Loop Stream Detector (LSD)

The micro-op queue decouples the front end and the out-of order engine. It stays between the micro-op
generation and the renamer as shown in Figure 2-7. This queue helps to hide bubbles which are intro-
duced between the various sources of micro-ops in the front end and ensures that four micro-ops are
delivered for execution, each cycle.

2-25

INTEL® 64 AND |A-32 PROCESSOR ARCHITECTURES

The micro-op queue provides post-decode functionality for certain instructions types. In particular, loads
combined with computational operations and all stores, when used with indexed addressing, are repre-
sented as a single micro-op in the decoder or Decoded ICache. In the micro-op queue they are frag-
mented into two micro-ops through a process called un-lamination, one does the load and the other does
the operation. A typical example is the following "load plus operation" instruction:

ADD RAX, [RBP+RSI]; rax := rax + LD(RBP+RSI)

Similarly, the following store instruction has three register sources and is broken into "generate store
address" and "generate store data" sub-components.

MOV [ESP+ECX*4+12345678], AL

The additional micro-ops generated by unlamination use the rename and retirement bandwidth.
However, it has an overall power benefit. For code that is dominated by indexed addressing (as often
happens with array processing), recoding algorithms to use base (or base+displacement) addressing can
sometimes improve performance by keeping the load plus operation and store instructions fused.

The Loop Stream Detector (LSD)

The Loop Stream Detector was introduced in Intel® Core microarchitectures. The LSD detects small loops
that fit in the micro-op queue and locks them down. The loop streams from the micro-op queue, with no
more fetching, decoding, or reading micro-ops from any of the caches, until a branch mis-prediction
inevitably ends it.

The loops with the following attributes qualify for LSD/micro-op queue replay:

* Up to eight chunk fetches of 32-instruction-bytes.

* Up to 28 micro-ops (—28 instructions).

* All micro-ops are also resident in the Decoded ICache.

* Can contain no more than eight taken branches and none of them can be a CALL or RET.

* Cannot have mismatched stack operations. For example, more PUSH than POP instructions.
Many calculation-intensive loops, searches and software string moves match these characteristics.

Use the loop cache functionality opportunistically. For high performance code, loop unrolling is generally
preferable for performance even when it overflows the LSD capability.

243 The Out-of-Order Engine

The Out-of-Order engine provides improved performance over prior generations with excellent power
characteristics. It detects dependency chains and sends them to execution out-of-order while main-
taining the correct data flow. When a dependency chain is waiting for a resource, such as a second-level
data cache line, it sends micro-ops from another chain to the execution core. This increases the overall
rate of instructions executed per cycle (IPC).

The out-of-order engine consists of two blocks, shown in Figure 2-7: Core Functional Diagram, the
Rename/retirement block, and the Scheduler.

The Out-of-Order engine contains the following major components:

Renamer. The Renamer component moves micro-ops from the front end to the execution core. It elimi-
nates false dependencies among micro-ops, thereby enabling out-of-order execution of micro-ops.

Scheduler. The Scheduler component queues micro-ops until all source operands are ready. Schedules
and dispatches ready micro-ops to the available execution units in as close to a first in first out (FIFO)
order as possible.

Retirement. The Retirement component retires instructions and micro-ops in order and handles faults
and exceptions.

2-26

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.4.3.1 Renamer

The Renamer is the bridge between the in-order part in Figure 2-7, and the dataflow world of the Sched-
uler. It moves up to four micro-ops every cycle from the micro-op queue to the out-of-order engine.
Although the renamer can send up to 4 micro-ops (unfused, micro-fused, or macro-fused) per cycle, this
is equivalent to the issue port can dispatch six micro-ops per cycle. In this process, the out-of-order core
carries out the following steps:

® Renames architectural sources and destinations of the micro-ops to micro-architectural sources and
destinations.

® Allocates resources to the micro-ops. For example, load or store buffers.
¢ Binds the micro-op to an appropriate dispatch port.

Some micro-ops can execute to completion during rename and are removed from the pipeline at that
point, effectively costing no execution bandwidth. These include:

® Zero idioms (dependency breaking idioms).

® NOP.
¢ VZEROUPPER.
® FXCHG.

The renamer can allocate two branches each cycle, compared to one branch each cycle in the previous
microarchitecture. This can eliminate some bubbles in execution.

Micro-fused load and store operations that use an index register are decomposed to two micro-ops,
hence consume two out of the four slots the Renamer can use every cycle.

Dependency Breaking Idioms

Instruction parallelism can be improved by using common instructions to clear register contents to zero.
The renamer can detect them on the zero evaluation of the destination register.

Use one of these dependency breaking idioms to clear a register when possible.

¢ XOR REG,REG

® SUB REG,REG

® PXOR/VPXOR XMMREG,XMMREG

¢ PSUBB/W/D/Q XMMREG,XMMREG

¢® VPSUBB/W/D/Q XMMREG,XMMREG

¢ XORPS/PD XMMREG,XMMREG

® VXORPS/PD YMMREG, YMMREG

Since zero idioms are detected and removed by the renamer, they have no execution latency.
There is another dependency breaking idiom - the "ones idiom".

* CMPEQ XMM1, XMM1; "ones idiom" set all elements to all "ones"

In this case, the micro-op must execute, however, since it is known that regardless of the input data the
output data is always "all ones" the micro-op dependency upon its sources does not exist as with the zero
idiom and it can execute as soon as it finds a free execution port.

2.4.3.2 Scheduler

The scheduler controls the dispatch of micro-ops onto their execution ports. In order to do this, it must
identify which micro-ops are ready and where its sources come from: a register file entry, or a bypass
directly from an execution unit. Depending on the availability of dispatch ports and writeback buses, and
the priority of ready micro-ops, the scheduler selects which micro-ops are dispatched every cycle.

2-27

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.4.4 The Execution Core

The execution core is superscalar and can process instructions out of order. The execution core optimizes
overall performance by handling the most common operations efficiently, while minimizing potential
delays.

The out-of-order execution core improves execution unit organization over prior generation in the
following ways:

® Reduction in read port stalls.

® Reduction in writeback conflicts and delays.

® Reduction in power.

® Reduction of SIMD FP assists dealing with denormal inputs and underflow outputs.

Some high precision FP algorithms need to operate with FTZ=0 and DAZ=0, i.e. permitting underflowed
intermediate results and denormal inputs to achieve higher numerical precision at the expense of
reduced performance on prior generation microarchitectures due to SIMD FP assists. The reduction of
SIMD FP assists in Intel microarchitecture code name Sandy Bridge applies to the following SSE instruc-
tions (and AVX variants): ADDPD/ADDPS, MULPD/MULPS, DIVPD/DIVPS, and CVTPD2PS.

The out-of-order core consist of three execution stacks, where each stack encapsulates a certain type of
data. The execution core contains the following execution stacks:

® General purpose integer.
¢ SIMD integer and floating-point.
* X87.

The execution core also contains connections to and from the cache hierarchy. The loaded data is fetched
from the caches and written back into one of the stacks.

The scheduler can dispatch up to six micro-ops every cycle, one on each port. The following table
summarizes which operations can be dispatched on which port.

Table 2-15. Dispatch Port and Execution Stacks

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

Integer ALU, Shift ALU, Load_Addr, Load_Addr Store_data ALU,

Fast LEA, Store_addr Store_addr Shift,

Slow LEA, Branch,

MUL Fast LEA
SSE-Int, Mul, Shift, ALU, Shuf, Store_data ALU, Shuf,
AVX-Int, STTNI, Int-Div, Blend, 128b- Shift, Blend,
MMX 128b-Mov Mov 128b-Mov
SSE-FP, Mul, Div, Blend, Add, CVT Store_data Shuf, Blend,
AVX-FP_low 256b-Mov 256b-Mov
X87, Mul, Div, Blend, Add, CVT Store_data Shuf, Blend,
AVX-FP_High 256b-Mov 256b-Mov

After execution, the data is written back on a writeback bus corresponding to the dispatch port and the
data type of the result. Micro-ops that are dispatched on the same port but have different latencies may
need the write back bus at the same cycle. In these cases the execution of one of the micro-ops is

delayed until the writeback bus is available. For example, MULPS (five cycles) and BLENDPS (one cycle)
may collide if both are ready for execution on port O: first the MULPS and four cycles later the BLENDPS.
Intel microarchitecture code name Sandy Bridge eliminates such collisions as long as the micro-ops write

2-28

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

the results to different stacks. For example, integer ADD (one cycle) can be dispatched four cycles after
MULPS (five cycles) since the integer ADD uses the integer stack while the MULPS uses the FP stack.

When a source of a micro-op executed in one stack comes from a micro-op executed in another stack, a
one- or two-cycle delay can occur. The delay occurs also for transitions between Intel SSE integer and

Intel SSE floating-point operations. In some of the cases the data transition is done using a micro-op that
is added to the instruction flow. The following table describes how data, written back after execution, can

bypass to micro-op execution in the following cycles.

Table 2-16. Execution Core Writeback Latency (cycles)

Integer SSE-Int, AVX-Int, SSE-FP, X87,
MMX AVX-FP_low AVX-FP_High
Integer 0 micro-op (port 0) micro-op (port 0) micro-op (port 0) +
1 cycle

SSE-Int, AVX-Int, micro-op (port 5) or 0 1 cycle delay 0
MMX micro-op (port 5) +1

cycle
SSE-FP, micro-op (port 5) or 1 cycle delay 0 micro-op (port 5) +1
AVX-EP low micro-op (port 5) +1 cycle

- cycle
X87, micro-op (port 5) +1 0 micro-op (port 5) 0
AVX-FP_High cycle +1 cycle
Load 0 1 cycle delay 1 cycle delay 2 cycle delay
2.4.5 Cache Hierarchy

The cache hierarchy contains a first level instruction cache, a first level data cache (L1 DCache) and a
second level (L2) cache, in each core. The L1D cache may be shared by two logical processors if the
processor support Intel HyperThreading Technology. The L2 cache is shared by instructions and data. All
cores in a physical processor package connect to a shared last level cache (LLC) via a ring connection.

The caches use the services of the Instruction Translation Lookaside Buffer (ITLB), Data Translation
Lookaside Buffer (DTLB) and Shared Translation Lookaside Buffer (STLB) to translate linear addresses to
physical address. Data coherency in all cache levels is maintained using the MESI protocol. For more
information, see the Intel® 64 I1A-32 Architectures Software Developer's Manual, Volume 3. Cache hier-
archy details can be obtained at run-time using the CPUID instruction. see the Intel® 64 and 1A-32
Architectures Software Developer’s Manual, Volume 2A.

Table 2-17. Cache Parameters

Associativity Line Size Write Update
Level Capacity (ways) (bytes) Policy Inclusive
L1 Data 32 KB 8 64 Writeback -
Instruction 32 KB 8 N/A N/A -
L2 (Unified) 256 KB 8 64 Writeback No
Third Level (LLC) Varies, query Varies with cache | 64 Writeback Yes
CPUID leaf 4 size

2-29

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.4.5.1 Load and Store Operation Overview
This section provides an overview of the load and store operations.
Loads

When an instruction reads data from a memory location that has write-back (WB) type, the processor
looks for it in the caches and memory. Table 2-18 shows the access lookup order and best case latency.
The actual latency can vary depending on the cache queue occupancy, LLC ring occupancy, memory
components, and their parameters.

Table 2-18. Lookup Order and Load Latency

Level Latency (cycles) Bandwidth (per core per cycle)
L1 Data 41 2 x16 bytes

L2 (Unified) 12 1 x 32 bytes

Third Level (LLC) 26-312 1 x 32 bytes

L2 and L1 DCache in other cores | 43- clean hit;

if applicable 60 - dirty hit
NOTES:

1. Subject to execution core bypass restriction shown in Table 2-16.
2. Latency of L3 varies with product segment and sku. The values apply to second generation Intel Core processor families.

The LLC is inclusive of all cache levels above it - data contained in the core caches must also reside in the
LLC. Each cache line in the LLC holds an indication of the cores that may have this line in their L2 and L1
caches. If there is an indication in the LLC that other cores may hold the line of interest and its state
might have to modify, there is a lookup into the L1 DCache and L2 of these cores too. The lookup is called
“clean” if it does not require fetching data from the other core caches. The lookup is called “dirty” if modi-
fied data has to be fetched from the other core caches and transferred to the loading core.

The latencies shown above are the best-case scenarios. Sometimes a modified cache line has to be
evicted to make space for a new cache line. The modified cache line is evicted in parallel to bringing the
new data and does not require additional latency. However, when data is written back to memory, the
eviction uses cache bandwidth and possibly memory bandwidth as well. Therefore, when multiple cache
misses require the eviction of modified lines within a short time, there is an overall degradation in cache
response time. Memory access latencies vary based on occupancy of the memory controller queues,
DRAM configuration, DDR parameters, and DDR paging behavior (if the requested page is a page-hit,
page-miss or page-empty).

Stores

When an instruction writes data to a memory location that has a write back memory type, the processor
first ensures that it has the line containing this memory location in its L1 DCache, in Exclusive or Modified
MESI state. If the cache line is not there, in the right state, the processor fetches it from the next levels
of the memory hierarchy using a Read for Ownership request. The processor looks for the cache line in
the following locations, in the specified order:

L1 DCache
L2
Last Level Cache

L2 and L1 DCache in other cores, if applicable

a kM wndPE

Memory
Once the cache line is in the L1 DCache, the new data is written to it, and the line is marked as Modified.

Reading for ownership and storing the data happens after instruction retirement and follows the order of
store instruction retirement. Therefore, the store latency usually does not affect the store instruction
itself. However, several sequential stores that miss the L1 DCache may have cumulative latency that can

2-30

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

affect performance. As long as the store does not complete, its entry remains occupied in the store
buffer. When the store buffer becomes full, new micro-ops cannot enter the execution pipe and execution
might stall.

2.4.5.2 L1 DCache

The L1 DCache is the first level data cache. It manages all load and store requests from all types through
its internal data structures. The L1 DCache:

¢ Enables loads and stores to issue speculatively and out of order.
® Ensures that retired loads and stores have the correct data upon retirement.

¢ Ensures that loads and stores follow the memory ordering rules of the 1A-32 and Intel 64 instruction
set architecture.

Table 2-19. L1 Data Cache Components

Intel microarchitecture code name

Intel microarchitecture code name

Component Sandy Bridge Nehalem
Data Cache Unit (DCU) 32KB, 8 ways 32KB, 8 ways
Load buffers 64 entries 48 entries
Store buffers 36 entries 32 entries
Line fill buffers (LFB) 10 entries 10 entries

The DCU is organized as 32 KBytes, eight-way set associative. Cache line size is 64-bytes arranged in
eight banks.

Internally, accesses are up to 16 bytes, with 256-bit Intel AVX instructions utilizing two 16-byte
accesses. Two load operations and one store operation can be handled each cycle.

The L1 DCache maintains requests which cannot be serviced immediately to completion. Some reasons
for requests that are delayed: cache misses, unaligned access that splits across cache lines, data not
ready to be forwarded from a preceding store, loads experiencing bank collisions, and load block due to
cache line replacement.

The L1 DCache can maintain up to 64 load micro-ops from allocation until retirement. It can maintain up
to 36 store operations from allocation until the store value is committed to the cache, or written to the
line fill buffers (LFB) in the case of non-temporal stores.

The L1 DCache can handle multiple outstanding cache misses and continue to service incoming stores
and loads. Up to 10 requests of missing cache lines can be managed simultaneously using the LFB.

The L1 DCache is a write-back write-allocate cache. Stores that hit in the DCU do not update the lower
levels of the memory hierarchy. Stores that miss the DCU allocate a cache line.

Loads

The L1 DCache architecture can service two loads per cycle, each of which can be up to 16 bytes. Up to
32 loads can be maintained at different stages of progress, from their allocation in the out of order engine
until the loaded value is returned to the execution core.

Loads can:

®* Read data before preceding stores when the load address and store address ranges are known not to
conflict.

® Be carried out speculatively, before preceding branches are resolved.
® Take cache misses out of order and in an overlapped manner.

Loads cannot:

¢ Speculatively take any sort of fault or trap.

® Speculatively access uncacheable memory.

2-31

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The common load latency is five cycles. When using a simple addressing mode, base plus offset that is
smaller than 2048, the load latency can be four cycles. This technique is especially useful for pointer-
chasing code. However, overall latency varies depending on the target register data type due to stack
bypass. See Section 2.4.4 for more information.

The following table lists overall load latencies. These latencies assume the common case of flat segment,
that is, segment base address is zero. If segment base is not zero, load latency increases.

Table 2-20. Effect of Addressing Modes on Load Latency

Base + Offset > 2048;
Data Type/Addressing Mode Base + Index [+ Offset] Base + Offset < 2048
Integer 5 4
MMX, SSE, 128-bit AVX 6 5
X87 7 6
256-bit AVX 7 7
Stores

Stores to memory are executed in two phases:

¢ Execution phase. Fills the store buffers with linear and physical address and data. Once store address
and data are known, the store data can be forwarded to the following load operations that need it.

® Completion phase. After the store retires, the L1 DCache moves its data from the store buffers to the
DCU, up to 16 bytes per cycle.

Address Translation

The DTLB can perform three linear to physical address translations every cycle, two for load addresses

and one for a store address. If the address is missing in the DTLB, the processor looks for it in the STLB,
which holds data and instruction address translations. The penalty of a DTLB miss that hits the STLB is

seven cycles. Large page support include 1G byte pages, in addition to 4K and 2M/4M pages.

The DTLB and STLB are four way set associative. The following table specifies the number of entries in
the DTLB and STLB.

Table 2-21. DTLB and STLB Parameters

TLB Page Size Entries
DTLB 4KB 64
2MB/4MB 32
1GB 4
STLB 4KB 512

Store Forwarding

If a load follows a store and reloads the data that the store writes to memory, the data can forward
directly from the store operation to the load. This process, called store to load forwarding, saves cycles
by enabling the load to obtain the data directly from the store operation instead of through memory. You
can take advantage of store forwarding to quickly move complex structures without losing the ability to
forward the subfields. The memory control unit can handle store forwarding situations with less restric-
tions compared to previous micro-architectures.

The following rules must be met to enable store to load forwarding:
® The store must be the last store to that address, prior to the load.
® The store must contain all data being loaded.

® The load is from a write-back memory type and neither the load nor the store are non-temporal
accesses.

2-32

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Stores cannot forward to loads in the following cases:

® Four byte and eight byte loads that cross eight byte boundary, relative to the preceding 16- or 32-
byte store.

® Any load that crosses a 16-byte boundary of a 32-byte store.

Table 2-22 to Table 2-25 detail the store to load forwarding behavior. For a given store size, all the loads
that may overlap are shown and specified by ‘F’. Forwarding from 32 byte store is similar to forwarding
from each of the 16 byte halves of the store. Cases that cannot forward are shown as ‘N’.

Table 2-22. Store Forwarding Conditions (1 and 2 byte stores)
Load Alignment

Store Load 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Size Size

Table 2-23. Store Forwarding Conditions (4-16 byte stores)

Load Alignment

Store Load |0 1 2 3

Size Size

4 1 F F F F
2 F F F N
4 F N [N |N

8 1 F F F F F F F F
2 F F F F F F F N
4 F F F F F N [N |N
8 F N [N |[N (N |N |N (N

16 1 F F F F F F F F F F F F F F F F
2 F F F F F F F F F F F F F F F N
4 F F F F F N [N |N |[F F F F F N N N
8 F N [N |N [N [N [N [N |F N [N N N N N N
16 F N [N |[N (N |[N [N [N |[N [N [N N N N N N

2-33

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-24. 32-byte Store Forwarding Conditions (0-15 byte alignment)

Load Alignment

Store Load |O 1 2 3 |4 |5 |6 |7 |8 |9 10 |11 12 |13 |14 |15

Size Size

32 1 F F F F F F F F F F F F F F F F
2 F F F F F F F F F F F F F F F N
4 F F F F F N [N [N |F F F F F N N N
8 F N [N [N [N |N |N [N |F N |N N N N N N
16 F N [N [N [N [N |[N (N |N |N (N N N N N N
32 F N [N [N [N [N |N (N |N |N (N N N N N N

Table 2-25. 32-byte Store Forwarding Conditions (16-31 byte alignment)

Load Alignment

Store Load 16 17 (18 |19 |20 |21 |22 |23 |24 |25 |26 |27 |28 |29 |30 |31

Size Size

32 1 F F F F F F F F F F F F F F F F
2 F F F F F F F F F F F F F F F N
4 F F F F F N N N F F F F F N N N
8 F N N N N N N N F N N N N N N N
16 F N N N N N N N N N N N N N N N
32 N N N N N N N N N N N N N N N N

Memory Disambiguation

A load operation may depend on a preceding store. Many microarchitectures block loads until all
preceding store addresses are known. The memory disambiguator predicts which loads will not depend
on any previous stores. When the disambiguator predicts that a load does not have such a dependency,
the load takes its data from the L1 data cache even when the store address is unknown. This hides the
load latency. Eventually, the prediction is verified. If an actual conflict is detected, the load and all
succeeding instructions are re-executed.

The following loads are not disambiguated. The execution of these loads is stalled until addresses of all
previous stores are known.

® Loads that cross the 16-byte boundary
¢ 32-byte Intel AVX loads that are not 32-byte aligned.

The memory disambiguator always assumes dependency between loads and earlier stores that have the
same address bits 0:11.

Bank Conflict

Since 16-byte loads can cover up to three banks, and two loads can happen every cycle, it is possible that
six of the eight banks may be accessed per cycle, for loads. A bank conflict happens when two load
accesses need the same bank (their address has the same 2-4 bit value) in different sets, at the same
time. When a bank conflict occurs, one of the load accesses is recycled internally.

In many cases two loads access exactly the same bank in the same cache line, as may happen when
popping operands off the stack, or any sequential accesses. In these cases, conflict does not occur and
the loads are serviced simultaneously.

2-34

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.4.5.3 Ring Interconnect and Last Level Cache

The system-on-a-chip design provides a high bandwidth bi-directional ring bus to connect between the
IA cores and various sub-systems in the uncore. In the second generation Intel Core processor 2xxx
series, the uncore subsystem include a system agent, the graphics unit (GT) and the last level cache
(LLC).

The LLC consists of multiple cache slices. The number of slices is equal to the number of IA cores. Each
slice has logic portion and data array portion. The logic portion handles data coherency, memory
ordering, access to the data array portion, LLC misses and writeback to memory, and more. The data
array portion stores cache lines. Each slice contains a full cache port that can supply 32 bytes/cycle.

The physical addresses of data kept in the LLC data arrays are distributed among the cache slices by a

hash function, such that addresses are uniformly distributed. The data array in a cache block may have
4/8/12/16 ways corresponding to 0.5M/1M/1.5M/2M block size. However, due to the address distribution
among the cache blocks from the software point of view, this does not appear as a normal N-way cache.

From the processor cores and the GT view, the LLC act as one shared cache with multiple ports and band-
width that scales with the number of cores. The LLC hit latency, ranging between 26-31 cycles, depends
on the core location relative to the LLC block, and how far the request needs to travel on the ring.

The number of cache-slices increases with the number of cores, therefore the ring and LLC are not likely
to be a bandwidth limiter to core operation.

The GT sits on the same ring interconnect, and uses the LLC for its data operations as well. In this respect
it is very similar to an 1A core. Therefore, high bandwidth graphic applications using cache bandwidth and
significant cache footprint, can interfere, to some extent, with core operations.

All the traffic that cannot be satisfied by the LLC, such as LLC misses, dirty line writeback, non-cacheable
operations, and MMIO/10 operations, still travels through the cache-slice logic portion and the ring, to
the system agent.

In the Intel Xeon Processor E5 Family, the uncore subsystem does not include the graphics unit (GT).
Instead, the uncore subsystem contains many more components, including an LLC with larger capacity
and snooping capabilities to support multiple processors, Intel® QuickPath Interconnect interfaces that
can support multi-socket platforms, power management control hardware, and a system agent capable
of supporting high-bandwidth traffic from memory and 1/0 devices.

In the Intel Xeon processor E5 2xxx or 4xxx families, the LLC capacity generally scales with the number
of processor cores with 2.5 MBytes per core.

2454 Data Prefetching

Data can be speculatively loaded to the L1 DCache using software prefetching, hardware prefetching, or
any combination of the two.

You can use the four Streaming SIMD Extensions (SSE) prefetch instructions to enable software-
controlled prefetching. These instructions are hints to bring a cache line of data into the desired levels of
the cache hierarchy. The software-controlled prefetch is intended for prefetching data, but not for
prefetching code.

The rest of this section describes the various hardware prefetching mechanisms provided by Intel micro-
architecture code name Sandy Bridge and their improvement over previous processors. The goal of the
prefetchers is to automatically predict which data the program is about to consume. If this data is not
close-by to the execution core or inner cache, the prefetchers bring it from the next levels of cache hier-
archy and memory. Prefetching has the following effects:

®* Improves performance if data is arranged sequentially in the order used in the program.

¢ May cause slight performance degradation due to bandwidth issues, if access patterns are sparse
instead of local.

® Onrare occasions, if the algorithm's working set is tuned to occupy most of the cache and unneeded
prefetches evict lines required by the program, hardware prefetcher may cause severe performance
degradation due to cache capacity of L1.

2-35

INTEL® 64 AND |A-32 PROCESSOR ARCHITECTURES

Data Prefetch to L1 Data Cache

Data prefetching is triggered by load operations when the following conditions are met:

¢ Load is from writeback memory type.

® The prefetched data is within the same 4K byte page as the load instruction that triggered it.
® No fence is in progress in the pipeline.

® Not many other load misses are in progress.

® There is not a continuous stream of stores.

Two hardware prefetchers load data to the L1 DCache:

¢ Data cache unit (DCU) prefetcher. This prefetcher, also known as the streaming prefetcher, is
triggered by an ascending access to very recently loaded data. The processor assumes that this
access is part of a streaming algorithm and automatically fetches the next line.

® Instruction pointer (IP)-based stride prefetcher. This prefetcher keeps track of individual load
instructions. If a load instruction is detected to have a regular stride, then a prefetch is sent to the
next address which is the sum of the current address and the stride. This prefetcher can prefetch
forward or backward and can detect strides of up to 2K bytes.

Data Prefetch to the L2 and Last Level Cache
The following two hardware prefetchers fetched data from memory to the L2 cache and last level cache:

Spatial Prefetcher: This prefetcher strives to complete every cache line fetched to the L2 cache with
the pair line that completes it to a 128-byte aligned chunk.

Streamer: This prefetcher monitors read requests from the L1 cache for ascending and descending
sequences of addresses. Monitored read requests include L1 DCache requests initiated by load and store
operations and by the hardware prefetchers, and L1 ICache requests for code fetch. When a forward or
backward stream of requests is detected, the anticipated cache lines are prefetched. Prefetched cache
lines must be in the same 4K page.

The streamer and spatial prefetcher prefetch the data to the last level cache. Typically data is brought
also to the L2 unless the L2 cache is heavily loaded with missing demand requests.

Enhancement to the streamer includes the following features:

® The streamer may issue two prefetch requests on every L2 lookup. The streamer can run up to 20
lines ahead of the load request.

® Adjusts dynamically to the number of outstanding requests per core. If there are not many
outstanding requests, the streamer prefetches further ahead. If there are many outstanding
requests it prefetches to the LLC only and less far ahead.

® When cache lines are far ahead, it prefetches to the last level cache only and not to the L2. This
method avoids replacement of useful cache lines in the L2 cache.

¢ Detects and maintains up to 32 streams of data accesses. For each 4K byte page, you can maintain
one forward and one backward stream can be maintained.

2.4.6 System Agent

The system agent implemented in the second generation Intel Core processor family contains the
following components:

® An arbiter that handles all accesses from the ring domain and from 1/0 (PCle* and DMI) and routes
the accesses to the right place.

® PCle controllers connect to external PCle devices. The PCle controllers have different configuration
possibilities the varies with product segment specifics: x16+x4, x8+x8+x4, X8+x4+x4+x4.

¢ DMI controller connects to the PCH chipset.

®* Integrated display engine, Flexible Display Interconnect, and Display Port, for the internal graphic
operations.

2-36

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

® Memory controller.

All main memory traffic is routed from the arbiter to the memory controller. The memory controller in the
second generation Intel Core processor 2xxx series support two channels of DDR, with data rates of
1066MHz, 1333MHz and 1600MHz, and 8 bytes per cycle, depending on the unit type, system configura-
tion and DRAMSs. Addresses are distributed between memory channels based on a local hash function
that attempts to balance the load between the channels in order to achieve maximum bandwidth and
minimum hotspot collisions.

For best performance, populate both channels with equal amounts of memory, preferably the exact same
types of DIMMs. In addition, using more ranks for the same amount of memory, results in somewhat
better memory bandwidth, since more DRAM pages can be open simultaneously. For best performance,
populate the system with the highest supported speed DRAM (1333MHz or 1600MHz data rates,
depending on the max supported frequency) with the best DRAM timings.

The two channels have separate resources and handle memory requests independently. The memory
controller contains a high-performance out-of-order scheduler that attempts to maximize memory band-
width while minimizing latency. Each memory channel contains a 32 cache-line write-data-buffer. Writes
to the memory controller are considered completed when they are written to the write-data-buffer. The
write-data-buffer is flushed out to main memory at a later time, not impacting write latency.

Partial writes are not handled efficiently on the memory controller and may result in read-modify-write
operations on the DDR channel if the partial-writes do not complete a full cache-line in time. Software
should avoid creating partial write transactions whenever possible and consider alternative, such as buff-
ering the partial writes into full cache line writes.

The memory controller also supports high-priority isochronous requests (such as USB isochronous, and
Display isochronous requests). High bandwidth of memory requests from the integrated display engine
takes up some of the memory bandwidth and impacts core access latency to some degree.

2.4.7 Intel® Microarchitecture Code Name lvy Bridge

Third generation Intel Core processors are based on Intel microarchitecture code name lvy Bridge. Most
of the features described in Section 2.4.1 - Section 2.4.6 also apply to Intel microarchitecture code name
Ivy Bridge. This section covers feature differences in microarchitecture that can affect coding and perfor-
mance.

Support for new instructions enabling include:

®* Numeric conversion to and from half-precision floating-point values.

® Hardware-based random number generator compliant to NIST SP 800-90A.

® Reading and writing to FS/GS base registers in any ring to improve user-mode threading support.

For details about using the hardware based random number generator instruction RDRAND, please refer
to the article available from Intel Software Network at https://software.intel.com/en-us/articles/intel-
digital-random-number-generator-drng-software-implementation-guide/.

A small number of microarchitectural enhancements that can be beneficial to software:

® Hardware prefetch enhancement: A next-page prefetcher (NPP) is added in Intel microarchitecture
code name lvy Bridge. The NPP is triggered by sequential accesses to cache lines approaching the
page boundary, either upwards or downwards.

® Zero-latency register move operation: A subset of register-to-register MOV instructions are executed
at the front end, conserving scheduling and execution resource in the out-of-order engine.

¢ Front end enhancement: In Intel microarchitecture code name Sandy Bridge, the micro-op queue is
statically partitioned to provide 28 entries for each logical processor, irrespective of software
executing in single thread or multiple threads. If one logical processor is not active in Intel microar-
chitecture code name lvy Bridge, then a single thread executing on that processor core can use the
56 entries in the micro-op queue. In this case, the LSD can handle larger loop structure that would
require more than 28 entries.

2-37

https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide/
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide/

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The latency and throughput of some instructions have been improved over those of Intel microarchi-
tecture code name Sandy Bridge. For example, 256-bit packed floating-point divide and square root
operations are faster; ROL and ROR instructions are also improved.

2.5 INTEL® CORE™ MICROARCHITECTURE AND ENHANCED INTEL®

CORE™ MICROARCHITECTURE

Intel Core microarchitecture introduces the following features that enable high performance and power-
efficient performance for single-threaded as well as multi-threaded workloads:

Intel® Wide Dynamic Execution enables each processor core to fetch, dispatch, execute with high
bandwidths and retire up to four instructions per cycle. Features include:

— Fourteen-stage efficient pipeline.

— Three arithmetic logical units.

— Four decoders to decode up to five instruction per cycle.

— Macro-fusion and micro-fusion to improve front end throughput.

— Peak issue rate of dispatching up to six micro-ops per cycle.

— Peak retirement bandwidth of up to four micro-ops per cycle.

— Advanced branch prediction.

— Stack pointer tracker to improve efficiency of executing function/procedure entries and exits.

Intel® Advanced Smart Cache delivers higher bandwidth from the second level cache to the core,
optimal performance and flexibility for single-threaded and multi-threaded applications. Features
include:

— Optimized for multicore and single-threaded execution environments.
— 256 bit internal data path to improve bandwidth from L2 to first-level data cache.
— Unified, shared second-level cache of 4 Mbyte, 16 way (or 2 MByte, 8 way).

Intel® Smart Memory Access prefetches data from memory in response to data access patterns
and reduces cache-miss exposure of out-of-order execution. Features include:

— Hardware prefetchers to reduce effective latency of second-level cache misses.
— Hardware prefetchers to reduce effective latency of first-level data cache misses.
— Memory disambiguation to improve efficiency of speculative execution engine.

Intel® Advanced Digital Media Boost improves most 128-bit SIMD instructions with single-cycle
throughput and floating-point operations. Features include:

— Single-cycle throughput of most 128-bit SIMD instructions (except 128-bit shuffle, pack, unpack
operations)

— Up to eight floating-point operations per cycle

— Three issue ports available to dispatching SIMD instructions for execution.

The Enhanced Intel Core microarchitecture supports all of the features of Intel Core microarchitecture
and provides a comprehensive set of enhancements.

Intel® Wide Dynamic Execution includes several enhancements:

— A radix-16 divider replacing previous radix-4 based divider to speedup long-latency operations
such as divisions and square roots.

— Improved system primitives to speedup long-latency operations such as RDTSC, STI, CLI, and VM
exit transitions.

Intel® Advanced Smart Cache provides up to 6 MBytes of second-level cache shared between two
processor cores (quad-core processors have up to 12 MBytes of L2); up to 24 way/set associativity.

2-38

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Intel® Smart Memory Access supports high-speed system bus up 1600 MHz and provides more
efficient handling of memory operations such as split cache line load and store-to-load forwarding
situations.

Intel® Advanced Digital Media Boost provides 128-bit shuffler unit to speedup shuffle, pack,
unpack operations; adds support for 47 SSE4.1 instructions.

In the sub-sections of 2.1.x, most of the descriptions on Intel Core microarchitecture also applies to
Enhanced Intel Core microarchitecture. Differences between them are note explicitly.

2.5.1 Intel® Core™ Microarchitecture Pipeline Overview

The pipeline of the Intel Core microarchitecture contains:

An in-order issue front end that fetches instruction streams from memory, with four instruction
decoders to supply decoded instruction (micro-ops) to the out-of-order execution core.

An out-of-order superscalar execution core that can issue up to six micro-ops per cycle (see
Table 2-27) and reorder micro-ops to execute as soon as sources are ready and execution resources
are available.

An in-order retirement unit that ensures the results of execution of micro-ops are processed and
architectural states are updated according to the original program order.

Intel Core 2 Extreme processor X6800, Intel Core 2 Duo processors and Intel Xeon processor 3000, 5100
series implement two processor cores based on the Intel Core microarchitecture. Intel Core 2 Extreme
quad-core processor, Intel Core 2 Quad processors and Intel Xeon processor 3200 series, 5300 series
implement four processor cores. Each physical package of these quad-core processors contains two
processor dies, each die containing two processor cores. The functionality of the subsystems in each core
are depicted in Figure 2-8.

| Instruction Fetch and PreDecode I{

v

| Instruction Queue |

Micro- +
code —>| Decode |
ROM
I Ja
"N Shared L2 Cache
| Rename/Alloc | Up to 10.7 GB/s
FSB
Retirement Unit
(Re-Order Buffer)
| Scheduler |
ALU ALU ALU
Branch FAdd FMul Load Store
MMX/SSE/FP MMX/SSE MMX/SSE
Move l l
L1D Cache and DTLB |

omM19808

Figure 2-8. Intel Core Microarchitecture Pipeline Functionality

2-39

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.5.2 Front End

The front ends needs to supply decoded instructions (micro-ops) and sustain the stream to a six-issue
wide out-of-order engine. The components of the front end, their functions, and the performance chal-
lenges to microarchitectural design are described in Table 2-26.

Table 2-26. Components of the Front End

Component Functions Performance Challenges

Branch Prediction Unit ® Helps the instruction fetch unit fetchthe | ® Enables speculative execution.

(BPU) most |Ik9|y instruction to be executed by ° Improves speculative execution
predicting the various branch types: efficiency by reducing the amount of
conditional, indirect, direct, call, and code in the “non-architected path”’
return. Uses dedicated hardware for each to be fetched into the pipeline.
type.

Instruction Fetch Unit * Prefetches instructions that are likely to ® \Variable length instruction format
be executed causes unevenness (bubbles) in

® (Caches frequently-used instructions decode bandwidth.

* Predecodes and buffers instructions, ® Taken branches and misaligned
maintaining a constant bandwidth despite targets causes disruptions in the
irregularities in the instruction stream overall bandwidth delivered by the

fetch unit.
Instruction Queue and ® Decodes up to four instructions, or up to ® Varying amounts of work per
Decode Unit five with macro-fusion instruction requires expansion into

* Stack pointer tracker algorithm for variable numbers of micro-ops.
efficient procedure entry and exit ® Prefix adds a dimension of decoding

* Implements the Macro-Fusion feature, complexity.
providing higher performance and ® Length Changing Prefix (LCP) can
efficiency cause front end bubbles.

® The Instruction Queue is also used as a
loop cache, enabling some loops to be
executed with both higher bandwidth
and lower power

NOTES:

1. Code paths that the processor thought it should execute but then found out it should go in another path and therefore
reverted from its initial intention.

2.5.2.1 Branch Prediction Unit

Branch prediction enables the processor to begin executing instructions long before the branch outcome
is decided. All branches utilize the BPU for prediction. The BPU contains the following features:

® 16-entry Return Stack Buffer (RSB). It enables the BPU to accurately predict RET instructions.

® Front end queuing of BPU lookups. The BPU makes branch predictions for 32 bytes at a time, twice
the width of the fetch engine. This enables taken branches to be predicted with no penalty.

Even though this BPU mechanism generally eliminates the penalty for taken branches, software
should still regard taken branches as consuming more resources than do not-taken branches.

The BPU makes the following types of predictions:

¢ Direct Calls and Jumps. Targets are read as a target array, without regarding the taken or not-taken
prediction.

® Indirect Calls and Jumps. These may either be predicted as having a monotonic target or as having
targets that vary in accordance with recent program behavior.

¢ Conditional branches. Predicts the branch target and whether or not the branch will be taken.

For information about optimizing software for the BPU, see Section 3.4, “Optimizing the Front End.”

2-40

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.5.2.2 Instruction Fetch Unit

The instruction fetch unit comprises the instruction translation lookaside buffer (ITLB), an instruction
prefetcher, the instruction cache and the predecode logic of the instruction queue (1Q).

Instruction Cache and ITLB

An instruction fetch is a 16-byte aligned lookup through the ITLB into the instruction cache and instruc-
tion prefetch buffers. A hit in the instruction cache causes 16 bytes to be delivered to the instruction
predecoder. Typical programs average slightly less than 4 bytes per instruction, depending on the code
being executed. Since most instructions can be decoded by all decoders, an entire fetch can often be
consumed by the decoders in one cycle.

A misaligned target reduces the number of instruction bytes by the amount of offset into the 16 byte
fetch quantity. A taken branch reduces the number of instruction bytes delivered to the decoders since
the bytes after the taken branch are not decoded. Branches are taken approximately every 10 instruc-
tions in typical integer code, which translates into a “partial” instruction fetch every 3 or 4 cycles.

Due to stalls in the rest of the machine, front end starvation does not usually cause performance degra-
dation. For extremely fast code with larger instructions (such as SSE2 integer media kernels), it may be
beneficial to use targeted alignment to prevent instruction starvation.

Instruction PreDecode

The predecode unit accepts the sixteen bytes from the instruction cache or prefetch buffers and carries
out the following tasks:

¢ Determine the length of the instructions.
® Decode all prefixes associated with instructions.
® Mark various properties of instructions for the decoders (for example, “is branch.”).

The predecode unit can write up to six instructions per cycle into the instruction queue. If a fetch contains
more than six instructions, the predecoder continues to decode up to six instructions per cycle until all
instructions in the fetch are written to the instruction queue. Subsequent fetches can only enter prede-
coding after the current fetch completes.

For a fetch of seven instructions, the predecoder decodes the first six in one cycle, and then only one in
the next cycle. This process would support decoding 3.5 instructions per cycle. Even if the instruction per
cycle (IPC) rate is not fully optimized, it is higher than the performance seen in most applications. In
general, software usually does not have to take any extra measures to prevent instruction starvation.

The following instruction prefixes cause problems during length decoding. These prefixes can dynami-
cally change the length of instructions and are known as length changing prefixes (LCPs):

® Operand Size Override (66H) preceding an instruction with a word immediate data.

® Address Size Override (67H) preceding an instruction with a mod R/M in real, 16-bit protected or 32-
bit protected modes.

When the predecoder encounters an LCP in the fetch line, it must use a slower length decoding algorithm.
With the slower length decoding algorithm, the predecoder decodes the fetch in 6 cycles, instead of the
usual 1 cycle.

Normal queuing within the processor pipeline usually cannot hide LCP penalties.

The REX prefix (4xh) in the Intel 64 architecture instruction set can change the size of two classes of
instruction: MOV offset and MOV immediate. Nevertheless, it does not cause an LCP penalty and hence is
not considered an LCP.

2523 Instruction Queue (1Q)

The instruction queue is 18 instructions deep. It sits between the instruction predecode unit and the
instruction decoders. It sends up to five instructions per cycle, and supports one macro-fusion per cycle.
It also serves as a loop cache for loops smaller than 18 instructions. The loop cache operates as described
below.

2-41

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

A Loop Stream Detector (LSD) resides in the BPU. The LSD attempts to detect loops which are candidates
for streaming from the instruction queue (IQ). When such a loop is detected, the instruction bytes are
locked down and the loop is allowed to stream from the 1Q until a misprediction ends it. When the loop
plays back from the 1Q, it provides higher bandwidth at reduced power (since much of the rest of the
front end pipeline is shut off).

The LSD provides the following benefits:

® No loss of bandwidth due to taken branches.

® No loss of bandwidth due to misaligned instructions.

® No LCP penalties, as the pre-decode stage has already been passed.

® Reduced front end power consumption, because the instruction cache, BPU and predecode unit can
be idle.

Software should use the loop cache functionality opportunistically. Loop unrolling and other code optimi-
zations may make the loop too big to fit into the LSD. For high performance code, loop unrolling is gener-
ally preferable for performance even when it overflows the loop cache capability.

2.5.2.4 Instruction Decode

The Intel Core microarchitecture contains four instruction decoders. The first, Decoder O, can decode
Intel 64 and 1A-32 instructions up to 4 micro-ops in size. Three other decoders handle single micro-op
instructions. The microsequencer can provide up to 3 micro-ops per cycle, and helps decode instructions
larger than 4 micro-ops.

All decoders support the common cases of single micro-op flows, including: micro-fusion, stack pointer
tracking and macro-fusion. Thus, the three simple decoders are not limited to decoding single micro-op
instructions. Packing instructions into a 4-1-1-1 template is not necessary and not recommended.

Macro-fusion merges two instructions into a single micro-op. Intel Core microarchitecture is capable of
one macro-fusion per cycle in 32-bit operation (including compatibility sub-mode of the Intel 64 architec-
ture), but not in 64-bit mode because code that uses longer instructions (length in bytes) more often is
less likely to take advantage of hardware support for macro-fusion.

2.5.2.5 Stack Pointer Tracker

The Intel 64 and 1A-32 architectures have several commonly used instructions for parameter passing and
procedure entry and exit: PUSH, POP, CALL, LEAVE and RET. These instructions implicitly update the
stack pointer register (RSP), maintaining a combined control and parameter stack without software
intervention. These instructions are typically implemented by several micro-ops in previous microarchi-
tectures.

The Stack Pointer Tracker moves all these implicit RSP updates to logic contained in the decoders them-
selves. The feature provides the following benefits:

® Improves decode bandwidth, as PUSH, POP and RET are single micro-op instructions in Intel Core
microarchitecture.

¢ Conserves execution bandwidth as the RSP updates do not compete for execution resources.

® Improves parallelism in the out of order execution engine as the implicit serial dependencies between
micro-ops are removed.

®* Improves power efficiency as the RSP updates are carried out on small, dedicated hardware.

2.5.2.6 Micro-fusion

Micro-fusion fuses multiple micro-ops from the same instruction into a single complex micro-op. The
complex micro-op is dispatched in the out-of-order execution core. Micro-fusion provides the following
performance advantages:

® Improves instruction bandwidth delivered from decode to retirement.

2-42

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

® Reduces power consumption as the complex micro-op represents more work in a smaller format (in
terms of bit density), reducing overall “bit-toggling” in the machine for a given amount of work and
virtually increasing the amount of storage in the out-of-order execution engine.

Many instructions provide register flavors and memory flavors. The flavor involving a memory operand
will decodes into a longer flow of micro-ops than the register version. Micro-fusion enables software to
use memory to register operations to express the actual program behavior without worrying about a loss
of decode bandwidth.

2.5.3 Execution Core

The execution core of the Intel Core microarchitecture is superscalar and can process instructions out of
order. When a dependency chain causes the machine to wait for a resource (such as a second-level data
cache line), the execution core executes other instructions. This increases the overall rate of instructions
executed per cycle (IPC).

The execution core contains the following three major components:

® Renamer — Moves micro-ops from the front end to the execution core. Architectural registers are
renamed to a larger set of microarchitectural registers. Renaming eliminates false dependencies
known as read-after-read and write-after-read hazards.

® Reorder buffer (ROB) — Holds micro-ops in various stages of completion, buffers completed micro-
ops, updates the architectural state in order, and manages ordering of exceptions. The ROB has 96
entries to handle instructions in flight.

® Reservation station (RS) — Queues micro-ops until all source operands are ready, schedules and
dispatches ready micro-ops to the available execution units. The RS has 32 entries.

The initial stages of the out of order core move the micro-ops from the front end to the ROB and RS. In
this process, the out of order core carries out the following steps:

® Allocates resources to micro-ops (for example: these resources could be load or store buffers).
¢ Binds the micro-op to an appropriate issue port.
® Renames sources and destinations of micro-ops, enabling out of order execution.

® Provides data to the micro-op when the data is either an immediate value or a register value that has
already been calculated.

The following list describes various types of common operations and how the core executes them effi-
ciently:

® Micro-ops with single-cycle latency — Most micro-ops with single-cycle latency can be executed
by multiple execution units, enabling multiple streams of dependent operations to be executed
quickly.

¢ Frequently-used [lops with longer latency — These micro-ops have pipelined execution units so
that multiple micro-ops of these types may be executing in different parts of the pipeline simultane-
ously.

® Operations with data-dependent latencies — Some operations, such as division, have data
dependent latencies. Integer division parses the operands to perform the calculation only on
significant portions of the operands, thereby speeding up common cases of dividing by small
numbers.

®* Floating-point operations with fixed latency for operands that meet certain restrictions —
Operands that do not fit these restrictions are considered exceptional cases and are executed with
higher latency and reduced throughput. The lower-throughput cases do not affect latency and
throughput for more common cases.

® Memory operands with variable latency, even in the case of an L1 cache hit — Loads that are
not known to be safe from forwarding may wait until a store-address is resolved before executing.
The memory order buffer (MOB) accepts and processes all memory operations. See Section 2.5.4 for
more information about the MOB.

2-43

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.5.3.1 Issue Ports and Execution Units

The scheduler can dispatch up to six micro-ops per cycle through the issue ports. The issue ports of Intel
Core microarchitecture and Enhanced Intel Core microarchitecture are depicted in Table 2-27, the former
is denoted by its CPUID signature of DisplayFamily_DisplayModel value of 06_0OFH, the latter denoted by
the corresponding signature value of 06_17H. The table provides latency and throughput data of
common integer and floating-point (FP) operations for each issue port in cycles.

Table 2-27. Issue Ports of Intel Core Microarchitecture and Enhanced Intel Core Microarchitecture

Executable operations Latency, Throughput Comment!

Signature = | Signature =

06_OFH 06_17H
Integer ALU 1,1 1,1 Includes 64-bit mode integer MUL;
Integer SIMD ALU 1,1 1,1 Issue port O; Writeback port O;
FP/SIMD/SSE2 Move and Logic 1,1 1,1
Single-precision (SP) FP MUL 4,1 4,1 Issue port O; Writeback port O
Double-precision FP MUL 5,1 51
FP MUL (X87) 5,2 52 Issue port O; Writeback port O
FP Shuffle 1,1 1,1 FP shuffle does not handle QW shuffle.
DIV/SQRT
Integer ALU 1,1 1,1 Excludes 64-bit mode integer MUL;
Integer SIMD ALU 1,1 1,1 Issue port 1; Writeback port 1;
FP/SIMD/SSE2 Move and Logic 1,1 1,1
FP ADD 3,1 3,1 Issue port 1; Writeback port 1;
QW Shuffle 1,12 1,13
Integer loads 3,1 3,1 Issue port 2; Writeback port 2;
FP loads 4,1 4,1
Store address® 3,1 3,1 Issue port 3;
Store data”. Issue Port 4;
Integer ALU 1,1 1,1 Issue port 5; Writeback port 5;
Integer SIMD ALU 1,1 1,1
FP/SIMD/SSE2 Move and Logic 1,1 1,1
QW shuffles 1,12 1,13 Issue port 5; Writeback port 5;
128-bit Shuffle/Pack/Unpack 2-4, 2-45 1-3,17

NOTES:

1. Mixing operations of different latencies that use the same port can result in writeback bus conflicts; this can reduce over-
all throughput.

2. 128-bit instructions executes with longer latency and reduced throughput.

3. Uses 128-bit shuffle unit in port 5.

4. Prepares the store forwarding and store retirement logic with the address of the data being stored.

5. Prepares the store forwarding and store retirement logic with the data being stored.

6. Varies with instructions; 128-bit instructions are executed using QW shuffle units.

7. Varies with instructions, 128-bit shuffle unit replaces QW shuffle units in Intel Core microarchitecture.

In each cycle, the RS can dispatch up to six micro-ops. Each cycle, up to 4 results may be written back to
the RS and ROB, to be used as early as the next cycle by the RS. This high execution bandwidth enables
execution bursts to keep up with the functional expansion of the micro-fused micro-ops that are decoded
and retired.

2-44

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The execution core contains the following three execution stacks:
¢ SIMD integer.

® Regular integer.

® x87/SIMD floating-point.

The execution core also contains connections to and from the memory cluster. See Figure 2-9.

|_| EXE
Data Cache =|_,
Unit 4 y A
— - 0,1,5 0,1,5 0,1,5
SIMD Integer/ Floating
Integer [P SIMD > Integer Point
MUL
dtlb
Memory ordering b h h
store forwarding _|
Load 2 —]
Store (address) 3 ¢
Store (data) 4
4—

Figure 2-9. Execution Core of Intel Core Microarchitecture

Notice that the two dark squares inside the execution block (in grey color) and appear in the path
connecting the integer and SIMD integer stacks to the floating-point stack. This delay shows up as an
extra cycle called a bypass delay. Data from the L1 cache has one extra cycle of latency to the floating-
point unit. The dark-colored squares in Figure 2-9 represent the extra cycle of latency.

2.5.4 Intel® Advanced Memory Access

The Intel Core microarchitecture contains an instruction cache and a first-level data cache in each core.
The two cores share a 2 or 4-MByte L2 cache. All caches are writeback and non-inclusive. Each core
contains:

¢ L1 datacache, known as the data cache unit (DCU) — The DCU can handle multiple outstanding
cache misses and continue to service incoming stores and loads. It supports maintaining cache
coherency. The DCU has the following specifications:

— 32-KBytes size.
— 8-way set associative.
— 64-bytes line size.

® Data translation lookaside buffer (DTLB) — The DTLB in Intel Core microarchitecture
implements two levels of hierarchy. Each level of the DTLB have multiple entries and can support
either 4-KByte pages or large pages. The entries of the inner level (DTLBO) is used for loads. The
entries in the outer level (DTLB1) support store operations and loads that missed DTLBO. All entries
are 4-way associative. Here is a list of entries in each DTLB:

2-45

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

— DTLB1 for large pages: 32 entries.

— DTLB1 for 4-KByte pages: 256 entries.
— DTLBO for large pages: 16 entries.

— DTLBO for 4-KByte pages: 16 entries.

An DTLBO miss and DTLB1 hit causes a penalty of 2 cycles. Software only pays this penalty if the
DTLBO is used in some dispatch cases. The delays associated with a miss to the DTLB1 and PMH are
largely non-blocking due to the design of Intel Smart Memory Access.

® Page miss handler (PMH)
®* A memory ordering buffer (MOB) — Which:
— Enables loads and stores to issue speculatively and out of order.
— Ensures retired loads and stores have the correct data upon retirement.
— Ensures loads and stores follow memory ordering rules of the Intel 64 and 1A-32 architectures.

The memory cluster of the Intel Core microarchitecture uses the following to speed up memory opera-
tions:

® 128-bit load and store operations.

¢ Data prefetching to L1 caches.

¢ Data prefetch logic for prefetching to the L2 cache.
® Store forwarding.

® Memory disambiguation.

* 8 fill buffer entries.

® 20 store buffer entries.

® OQut of order execution of memory operations.

® Pipelined read-for-ownership operation (RFO).

For information on optimizing software for the memory cluster, see Section 3.6, “Optimizing Memory
Accesses.”

2.5.4.1 Loads and Stores

The Intel Core microarchitecture can execute up to one 128-bit load and up to one 128-bit store per
cycle, each to different memory locations. The microarchitecture enables execution of memory opera-
tions out of order with respect to other instructions and with respect to other memory operations.

Loads can:

® |Issue before preceding stores when the load address and store address are known not to conflict.

® Be carried out speculatively, before preceding branches are resolved.

® Take cache misses out of order and in an overlapped manner.

® Issue before preceding stores, speculating that the store is not going to be to a conflicting address.
Loads cannot:

® Speculatively take any sort of fault or trap.

® Speculatively access the uncacheable memory type.

Faulting or uncacheable loads are detected and wait until retirement, when they update the programmer
visible state. x87 and floating-point SIMD loads add 1 additional clock latency.

Stores to memory are executed in two phases:

® Execution phase — Prepares the store buffers with address and data for store forwarding.
Consumes dispatch ports, which are ports 3 and 4.

2-46

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

¢ Completion phase — The store is retired to programmer-visible memory. It may compete for cache
banks with executing loads. Store retirement is maintained as a background task by the memory
order buffer, moving the data from the store buffers to the L1 cache.

2.5.4.2 Data Prefetch to L1 caches

Intel Core microarchitecture provides two hardware prefetchers to speed up data accessed by a program
by prefetching to the L1 data cache:

¢ Data cache unit (DCU) prefetcher — This prefetcher, also known as the streaming prefetcher, is
triggered by an ascending access to very recently loaded data. The processor assumes that this
access is part of a streaming algorithm and automatically fetches the next line.

® Instruction pointer (IP)- based strided prefetcher — This prefetcher keeps track of individual
load instructions. If a load instruction is detected to have a regular stride, then a prefetch is sent to
the next address which is the sum of the current address and the stride. This prefetcher can prefetch
forward or backward and can detect strides of up to half of a 4KB-page, or 2 KBytes.

Data prefetching works on loads only when the following conditions are met:
® Load is from writeback memory type.

® Prefetch request is within the page boundary of 4 Kbytes.

® No fence or lock is in progress in the pipeline.

®* Not many other load misses are in progress.

® The bus is not very busy.

® There is not a continuous stream of stores.

DCU Prefetching has the following effects:

®* Improves performance if data in large structures is arranged sequentially in the order used in the
program.

¢ May cause slight performance degradation due to bandwidth issues if access patterns are sparse
instead of local.

® Onrare occasions, if the algorithm's working set is tuned to occupy most of the cache and unneeded
prefetches evict lines required by the program, hardware prefetcher may cause severe performance
degradation due to cache capacity of L1.

In contrast to hardware prefetchers relying on hardware to anticipate data traffic, software prefetch
instructions relies on the programmer to anticipate cache miss traffic, software prefetch act as hints to
bring a cache line of data into the desired levels of the cache hierarchy. The software-controlled prefetch
is intended for prefetching data, but not for prefetching code.

2543 Data Prefetch Logic

Data prefetch logic (DPL) prefetches data to the second-level (L2) cache based on past request patterns
of the DCU from the L2. The DPL maintains two independent arrays to store addresses from the DCU: one
for upstreams (12 entries) and one for down streams (4 entries). The DPL tracks accesses to one 4K byte
page in each entry. If an accessed page is not in any of these arrays, then an array entry is allocated.

The DPL monitors DCU reads for incremental sequences of requests, known as streams. Once the DPL
detects the second access of a stream, it prefetches the next cache line. For example, when the DCU
requests the cache lines A and A+1, the DPL assumes the DCU will need cache line A+2 in the near
future. If the DCU then reads A+2, the DPL prefetches cache line A+3. The DPL works similarly for
“downward” loops.

The Intel Pentium M processor introduced DPL. The Intel Core microarchitecture added the following
features to DPL:

® The DPL can detect more complicated streams, such as when the stream skips cache lines. DPL may
issue 2 prefetch requests on every L2 lookup. The DPL in the Intel Core microarchitecture can run up
to 8 lines ahead from the load request.

2-47

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

¢ DPL in the Intel Core microarchitecture adjusts dynamically to bus bandwidth and the number of
requests. DPL prefetches far ahead if the bus is not busy, and less far ahead if the bus is busy.

¢ DPL adjusts to various applications and system configurations.

Entries for the two cores are handled separately.

2544 Store Forwarding

If a load follows a store and reloads the data that the store writes to memory, the Intel Core microarchi-
tecture can forward the data directly from the store to the load. This process, called store to load
forwarding, saves cycles by enabling the load to obtain the data directly from the store operation instead
of through memory.

The following rules must be met for store to load forwarding to occur:

® The store must be the last store to that address prior to the load.

® The store must be equal or greater in size than the size of data being loaded.

® The load cannot cross a cache line boundary.

® The load cannot cross an 8-Byte boundary. 16-Byte loads are an exception to this rule.

® The load must be aligned to the start of the store address, except for the following exceptions:
— An aligned 64-bit store may forward either of its 32-bit halves.
— An aligned 128-bit store may forward any of its 32-bit quarters.
— An aligned 128-bit store may forward either of its 64-bit halves.

Software can use the exceptions to the last rule to move complex structures without losing the ability to
forward the subfields.

In Enhanced Intel Core microarchitecture, the alignment restrictions to permit store forwarding to
proceed have been relaxed. Enhanced Intel Core microarchitecture permits store-forwarding to proceed
in several situations that the succeeding load is not aligned to the preceding store. Figure 2-10 shows six
situations (in gradient-filled background) of store-forwarding that are permitted in Enhanced Intel Core
microarchitecture but not in Intel Core microarchitecture. The cases with backward slash background
depicts store-forwarding that can proceed in both Intel Core microarchitecture and Enhanced Intel Core
microarchitecture.

2-48

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

‘ByteO‘B/tm‘B,:teZ‘B/teS‘B/te4‘Bﬂe5‘BﬁeS‘Q/te7‘
8byte boundary 8 byte boundary
Store 221t
Load &2bit
Bnple: 7 byte misalignment Load 16 bit Load 16 bit
\ Loed8 | Loed8 | Loed8 | Loed8
Store 64t
Load 64 kit
Bxarmple: 1 byte misaligment Load @bt Load 32bit
Load 16bit Loed 1614t Load 16t Load 1614t
Loed8 | Load8 | Loed8 | Loed8 | Loed8 | Load8 | Loed8 | Loed8
Store64hit
Load 64t Sore
Load 32 bit Load 32 bit Store-forwerding (SF) can nat proceed
Load 16bit Load 16bit Load 16hit Load 16 bit - SF proceed in Enhenved Intel Core rricroarcitect
Led8 | Load8 | Load8 | Loed8 | Load8 [Loed8 | Lond8 [Load8 F procesd

Figure 2-10. Store-Forwarding Enhancements in Enhanced Intel Core Microarchitecture

2.5.4.5 Memory Disambiguation

A load instruction micro-op may depend on a preceding store. Many microarchitectures block loads until
all preceding store address are known.

The memory disambiguator predicts which loads will not depend on any previous stores. When the
disambiguator predicts that a load does not have such a dependency, the load takes its data from the L1
data cache.

Eventually, the prediction is verified. If an actual conflict is detected, the load and all succeeding instruc-
tions are re-executed.

2.5.5 Intel® Advanced Smart Cache

The Intel Core microarchitecture optimized a number of features for two processor cores on a single die.
The two cores share a second-level cache and a bus interface unit, collectively known as Intel Advanced
Smart Cache. This section describes the components of Intel Advanced Smart Cache. Figure 2-11 illus-
trates the architecture of the Intel Advanced Smart Cache.

2-49

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Core 1 Core O
.| Branch .| Branch
¥l Prediction ¥l Prediction
h 4 4
. i <« Fetch/ . i Fetch/
Retirement |4 Execution Decode Retirement |4—| Execution | Decode
L1 Data L1 Instr. L1 Data L1 Instr.
Cache Cache Cache Cache
L2 Cache

v

Bus Interface Unit

¢ System Bus

A

v

Figure 2-11. Intel Advanced Smart Cache Architecture

Table 2-28 details the parameters of caches in the Intel Core microarchitecture. For information on
enumerating the cache hierarchy identification using the deterministic cache parameter leaf of CPUID
instruction, see the Intel® 64 and 1A-32 Architectures Software Developer’'s Manual, Volume 2A.

Table 2-28. Cache Parameters of Processors based on Intel Core Microarchitecture

Access Access
Associativity Line Size Latency Throughput Write Update

Level Capacity (ways) (bytes) (clocks) (clocks) Policy
First Level 32KB 8 64 3 1 Writeback
Instruction 32 KB 8 N/A N/A N/A N/A
Second Level 2,4 MB 8or16 64 142 2 Writeback
(Shared L2)'

Second Level 3,6MB 12 or 24 64 152 2 Writeback
(Shared L2)3

Third Level* 812,16 MB | 16 64 ~110 12 Writeback
NOTES:

1. Intel Core microarchitecture (CPUID signature DisplayFamily = 06H, DisplayModel = OFH).

2. Software-visible latency will vary depending on access patterns and other factors.

3. Enhanced Intel Core microarchitecture (CPUID signature DisaplyFamily = O6H, DisplayModel = 17H or 1DH).
4. Enhanced Intel Core microarchitecture (CPUID signature DisaplyFamily = 06H, DisplayModel = 1DH).

2-50

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.5.5.1 Loads

When an instruction reads data from a memory location that has write-back (WB) type, the processor
looks for the cache line that contains this data in the caches and memory in the following order:

1. DCU of the initiating core.
2. DCU of the other core and second-level cache.
3. System memory.

The cache line is taken from the DCU of the other core only if it is modified, ignoring the cache line avail-
ability or state in the L2 cache.

Table 2-29 shows the characteristics of fetching the first four bytes of different localities from the
memory cluster. The latency column provides an estimate of access latency. However, the actual latency
can vary depending on the load of cache, memory components, and their parameters.

Table 2-29. Characteristics of Load and Store Operations in Intel Core Microarchitecture

Data Locality Load Store
Latency Throughput Latency Throughput
DCU 3 1 2 1

DCU of the other core in 14 +55buscycles | 14+ 55buscycles | 14+ 5.5 bus cycles
modified state

2nd-level cache 14 3 14 3
Memory 14 + 5.5 bus cycles + | Depends on bus read | 14 + 5.5 bus cycles + | Depends on bus
memory protocol memory write protocol

Sometimes a modified cache line has to be evicted to make space for a new cache line. The modified
cache line is evicted in parallel to bringing the new data and does not require additional latency. However,
when data is written back to memory, the eviction uses cache bandwidth and possibly bus bandwidth as
well. Therefore, when multiple cache misses require the eviction of modified lines within a short time,
there is an overall degradation in cache response time.

2.5.5.2 Stores

When an instruction writes data to a memory location that has WB memory type, the processor first
ensures that the line is in Exclusive or Modified state in its own DCU. The processor looks for the cache
line in the following locations, in the specified order:

1. DCU of initiating core.
2. DCU of the other core and L2 cache.
3. System memory.

The cache line is taken from the DCU of the other core only if it is modified, ignoring the cache line avail-
ability or state in the L2 cache. After reading for ownership is completed, the data is written to the first-
level data cache and the line is marked as modified.

Reading for ownership and storing the data happens after instruction retirement and follows the order of
retirement. Therefore, the store latency does not effect the store instruction itself. However, several
sequential stores may have cumulative latency that can affect performance. Table 2-29 presents store
latencies depending on the initial cache line location.

2-51

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.6 INTEL® MICROARCHITECTURE CODE NAME NEHALEM

Intel microarchitecture code name Nehalem provides the foundation for many innovative features of
Intel Core i7 processors and Intel Xeon processor 3400, 5500, and 7500 series. It builds on the success
of 45 nm enhanced Intel Core microarchitecture and provides the following feature enhancements:

® Enhanced processor core
— Improved branch prediction and recovery from misprediction.
— Enhanced loop streaming to improve front end performance and reduce power consumption.
— Deeper buffering in out-of-order engine to extract parallelism.

— Enhanced execution units to provide acceleration in CRC, string/text processing and data
shuffling.

® Hyper-Threading Technology

— Provides two hardware threads (logical processors) per core.

— Takes advantage of 4-wide execution engine, large L3, and massive memory bandwidth.
® Smart Memory Access

— Integrated memory controller provides low-latency access to system memory and scalable
memory bandwidth.

— New cache hierarchy organization with shared, inclusive L3 to reduce snoop traffic.
— Two level TLBs and increased TLB size.
— Fast unaligned memory access.
®* Dedicated Power management Innovations
— Integrated microcontroller with optimized embedded firmware to manage power consumption.
— Embedded real-time sensors for temperature, current, and power.
— Integrated power gate to turn off/on per-core power consumption.
— Versatility to reduce power consumption of memory, link subsystems.

Intel microarchitecture code name Westmere is a 32 nm version of Intel microarchitecture code name
Nehalem. All of the features of latter also apply to the former.

2.6.1 Microarchitecture Pipeline

Intel microarchitecture code name Nehalem continues the four-wide microarchitecture pipeline
pioneered by the 65nm Intel Core microarchitecture. Figure 2-12 illustrates the basic components of the
pipeline of Intel microarchitecture code name Nehalem as implemented in Intel Core i7 processor, only
two of the four cores are sketched in the Figure 2-12 pipeline diagram.

2-52

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

, Instruction Fetch and Instruction Fetch and €
PreDecode

PreDecode

Instruction Queue

Instruction Queue -
Micro- Micro-
code code
ROM ROM

Rename/Alloc Rename/Alloc

Retirement Unit
(Re-Order Buffer)

Retirement Unit
(Re-Order Buffer)

A A
| Schedul.er | | Schedul.er |
EXE EXE EXE =gl Stor EX!E EX!E Ex!z ez Stor
Unit Unit Unit e Unit Unit Unit _ ?
Cluster | | Cluster | | Cluster 1] Cluster | | Cluster | | Cluster
0 1 5) 0 1 5
']]
L1D Cache and DTLB L1D Cache and DTLB
P L2 Cache L2 Cache | —
t t r Other L2
Inclusive L3 Cache by all cores
OM19808p

Intel QPI Link Logic

Figure 2-12. Intel Microarchitecture Code Name Nehalem Pipeline Functionality

The length of the pipeline in Intel microarchitecture code name Nehalem is two cycles longer than its
predecessor in 45 nm Intel Core 2 processor family, as measured by branch misprediction delay. The
front end can decode up to 4 instructions in one cycle and supports two hardware threads by decoding
the instruction streams between two logical processors in alternate cycles. The front end includes
enhancement in branch handling, loop detection, MSROM throughput, etc. These are discussed in subse-
quent sections.

The scheduler (or reservation station) can dispatch up to six micro-ops in one cycle through six issue
ports (five issue ports are shown in Figure 2-12; store operation involves separate ports for store
address and store data but is depicted as one in the diagram).

The out-of-order engine has many execution units that are arranged in three execution clusters shown in
Figure 2-12. It can retire four micro-ops in one cycle, same as its predecessor.

2-53

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.6.2 Front End Overview

Figure 2-13 depicts the key components of the front end of the microarchitecture. The instruction fetch
unit (IFU) can fetch up to 16 bytes of aligned instruction bytes each cycle from the instruction cache to
the instruction length decoder (ILD). The instruction queue (1Q) buffers the ILD-processed instructions
and can deliver up to four instructions in one cycle to the instruction decoder.

MSROM
ICache 4 micro-ops per cycle
4 : IDQ
< 4 micro-ops
ILD| 1Q ‘ per cycle
> max
| Fetch U > >

>
—>

Instr. Instr. Queue LSD

Decoder Instr. Decoder

Br. Predict U Instr. Decoder

Queue

Figure 2-13. Front End of Intel Microarchitecture Code Name Nehalem

The instruction decoder has three decoder units that can decode one simple instruction per cycle per
unit. The other decoder unit can decode one instruction every cycle, either simple instruction or complex
instruction made up of several micro-ops. Instructions made up of more than four micro-ops are deliv-
ered from the MSROM. Up to four micro-ops can be delivered each cycle to the instruction decoder queue
(IDQ).

The loop stream detector is located inside the IDQ to improve power consumption and front end effi-
ciency for loops with a short sequence of instructions.

The instruction decoder supports micro-fusion to improve front end throughput, increase the effective
size of queues in the scheduler and re-order buffer (ROB). The rules for micro-fusion are similar to those
of Intel Core microarchitecture.

The instruction queue also supports macro-fusion to combine adjacent instructions into one micro-ops
where possible. In previous generations of Intel Core microarchitecture, macro-fusion support for
CMP/Jcc sequence is limited to the CF and ZF flag, and macrofusion is not supported in 64-bit mode.

In Intel microarchitecture code name Nehalem , macro-fusion is supported in 64-bit mode, and the
following instruction sequences are supported:

® CMP or TEST can be fused when comparing (unchanged):
REG-REG. For example: CMP EAX,ECX; JZ label
REG-IMM. For example: CMP EAX,0x80; JZ label

REG-MEM. For example: CMP EAX,[ECX]; JZ label
MEM-RECG. For example: CMP [EAX],ECX; JZ label

® TEST can fused with all conditional jumps (unchanged).

2-54

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

¢ CMP can be fused with the following conditional jumps. These conditional jumps check carry flag (CF)
or zero flag (ZF). The list of macro-fusion-capable conditional jumps are (unchanged):

JA or INBE

JAE or JNB or JNC
JEorjz

JNA or |BE
JNAEorJCor B
JNE or JNZ

® CMP can be fused with the following conditional jumps in Intel microarchitecture code name
Nehalem, (this is an enhancement):

JL or JNGE
JGE or JNL
JLE or JNG
]G or JNLE

The hardware improves branch handling in several ways. Branch target buffer has increased to increase
the accuracy of branch predictions. Renaming is supported with return stack buffer to reduce mispredic-
tions of return instructions in the code. Furthermore, hardware enhancement improves the handling of
branch misprediction by expediting resource reclamation so that the front end would not be waiting to
decode instructions in an architected code path (the code path in which instructions will reach retire-
ment) while resources were allocated to executing mispredicted code path. Instead, new micro-ops
stream can start forward progress as soon as the front end decodes the instructions in the architected
code path.

2.6.3 Execution Engine

The IDQ (Figure 2-13) delivers micro-op stream to the allocation/renaming stage (Figure 2-12) of the
pipeline. The out-of-order engine supports up to 128 micro-ops in flight. Each micro-ops must be allo-
cated with the following resources: an entry in the re-order buffer (ROB), an entry in the reservation
station (RS), and a load/store buffer if a memory access is required.

The allocator also renames the register file entry of each micro-op in flight. The input data associated
with a micro-op are generally either read from the ROB or from the retired register file.

The RS is expanded to 36 entry deep (compared to 32 entries in previous generation). It can dispatch up
to six micro-ops in one cycle if the micro-ops are ready to execute. The RS dispatch a micro-op through
an issue port to a specific execution cluster, each cluster may contain a collection of integer/FP/SIMD
execution units.

The result from the execution unit executing a micro-op is written back to the register file, or forwarded
through a bypass network to a micro-op in-flight that needs the result. Intel microarchitecture code
name Nehalem can support write back throughput of one register file write per cycle per port. The bypass
network consists of three domains of integer/FP/SIMD. Forwarding the result within the same bypass
domain from a producer micro-op to a consumer micro is done efficiently in hardware without delay.
Forwarding the result across different bypass domains may be subject to additional bypass delays. The
bypass delays may be visible to software in addition to the latency and throughput characteristics of indi-
vidual execution units. The bypass delays between a producer micro-op and a consumer micro-op across
different bypass domains are shown in Table 2-30.

2-55

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-30. Bypass Delay Between Producer and Consumer Micro-ops (cycles)

FP Integer SIMD
FP 0 2 2
Integer 2 0 1
SIMD 2 1 0

2.6.3.1 Issue Ports and Execution Units

Table 2-31 summarizes the key characteristics of the issue ports and the execution unit latency/through-
puts for common operations in the microarchitecture.

Table 2-31. Issue Ports of Intel Microarchitecture Code Name Nehalem

Port Executable Latency Throughpu | Domain Comment
operations

Port O Integer ALU

Integer Shift

Port O Integer SIMD ALU
Integer SIMD Shuffle
Port O Single-precision (SP)
FP MUL
Double-precision FPMUL | 5 1
FP MUL (X87)
FP/SIMD/SSE2 Move and | ° 1
Logic 1 1
FP Shuffle
DIV/SQRT 1 1
Port 1 Integer ALU
Integer LEA
Integer Mul

Port 1 Integer SIMD MUL
Integer SIMD Shift
PSAD
StringCompare
Port 1 FP ADD FP
Port 2 Integer loads 1 Integer

Integer

SIMD

t
1
1
1
1
1

NG [N (NN

FP

Integer

SIMD

W = =W = =

W

Port 3 Store address 5 1 Integer

Port 4 Store data Integer
Port 5 Integer ALU

Integer Shift

Jmp

Port 5 Integer SIMD ALU
Integer SIMD Shuffle

Integer

SIMD

R N [S Y
RN N [N S O §

2-56

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-31. Issue Ports of Intel Microarchitecture Code Name Nehalem (Contd.)

Port Executable Latency Throughpu | Domain Comment
operations t

Port 5 FP/SIMD/SSE2 Move and 1 1 FP
Logic

2.6.4 Cache and Memory Subsystem

Intel microarchitecture code name Nehalem contains an instruction cache, a first-level data cache and a
second-level unified cache in each core (see Figure 2-12). Each physical processor may contain several
processor cores and a shared collection of sub-systems that are referred to as “uncore”. Specifically in
Intel Core i7 processor, the uncore provides a unified third-level cache shared by all cores in the physical
processor, Intel QuickPath Interconnect links and associated logic. The L1 and L2 caches are writeback
and non-inclusive.

The shared L3 cache is writeback and inclusive, such that a cache line that exists in either L1 data cache,
L1 instruction cache, unified L2 cache also exists in L3. The L3 is designed to use the inclusive nature to
minimize snoop traffic between processor cores. Table 2-32 lists characteristics of the cache hierarchy.
The latency of L3 access may vary as a function of the frequency ratio between the processor and the
uncore sub-system.

Table 2-32. Cache Parameters of Intel Core i7 Processors

Access Access

Associativity Line Size Latency Throughput Write Update
Level Capacity (ways) (bytes) (clocks) (clocks) Policy
First Level Data 32KB 8 64 4 1 Writeback
Instruction 32 KB 4 N/A N/A N/A N/A
Second Level 256KB 8 64 10! Varies Writeback
Third Level 8MB 16 64 35-40+2 Varies Writeback
(Shared L3)?
NOTES:

1. Software-visible latency will vary depending on access patterns and other factors.
2. Minimal L3 latency is 35 cycles if the frequency ratio between core and uncore is unity.

The Intel microarchitecture code name Nehalem implements two levels of translation lookaside buffer
(TLB). The first level consists of separate TLBs for data and code. DTLBO handles address translation for
data accesses, it provides 64 entries to support 4KB pages and 32 entries for large pages. The ITLB
provides 64 entries (per thread) for 4KB pages and 7 entries (per thread) for large pages.

The second level TLB (STLB) handles both code and data accesses for 4KB pages. It support 4KB page
translation operation that missed DTLBO or ITLB. All entries are 4-way associative. Here is a list of entries
in each DTLB:

® STLB for 4-KByte pages: 512 entries (services both data and instruction look-ups).
¢ DTLBO for large pages: 32 entries.
¢ DTLBO for 4-KByte pages: 64 entries.

An DTLBO miss and STLB hit causes a penalty of 7cycles. Software only pays this penalty if the DTLBO is
used in some dispatch cases. The delays associated with a miss to the STLB and PMH are largely non-
blocking.

2-57

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.6.5 Load and Store Operation Enhancements

The memory cluster of Intel microarchitecture code name Nehalem provides the following enhancements
to speed up memory operations:

® Peak issue rate of one 128-bit load and one 128-bit store operation per cycle.

¢ Deeper buffers for load and store operations: 48 load buffers, 32 store buffers and 10 fill buffers.
® Fast unaligned memory access and robust handling of memory alignment hazards.

¢ Improved store-forwarding for aligned and non-aligned scenarios.

® Store forwarding for most address alignments.

2.6.5.1 Efficient Handling of Alignment Hazards

The cache and memory subsystems handles a significant percentage of instructions in every workload.

Different address alignment scenarios will produce varying performance impact for memory and cache

operations. For example, 1-cycle throughput of L1 (see Table 2-33) generally applies to naturally-aligned
loads from L1 cache. But using unaligned load instructions (e.g. MOVUPS, MOVUPD, MOVDQU, etc.) to

access data from L1 will experience varying amount of delays depending on specific microarchitectures
and alignment scenarios.

Table 2-33. Performance Impact of Address Alignments of MOVDQU from L1

Throughput (cycle) Intel Core i7 4§ nm Intgl Core 6§ nm Intgl Core
Processor Microarchitecture Microarchitecture

Alignment Scenario 06_1AH 06_17H 06_OFH

16B aligned 1 2 2

Not-16B aligned, not cache split 1 ~2 ~2

Split cache line boundary ~4.5 ~20 ~20

Table 2-33 lists approximate throughput of issuing MOVDQU instructions with different address align-
ment scenarios to load data from the L1 cache. If a 16-byte load spans across cache line boundary,
previous microarchitecture generations will experience significant software-visible delays.

Intel microarchitecture code name Nehalem provides hardware enhancements to reduce the delays of
handling different address alignment scenarios including cache line splits.

2.6.5.2 Store Forwarding Enhancement

When a load follows a store and reloads the data that the store writes to memory, the microarchitecture
can forward the data directly from the store to the load in many cases. This situation, called store to load
forwarding, saves several cycles by enabling the load to obtain the data directly from the store operation
instead of through the memory system.

Several general rules must be met for store to load forwarding to proceed without delay:
® The store must be the last store to that address prior to the load.

® The store must be equal or greater in size than the size of data being loaded.

® The load data must be completely contained in the preceding store.

Specific address alignment and data sizes between the store and load operations will determine whether
a store-forward situation may proceed with data forwarding or experience a delay via the cache/memory
sub-system. The 45 nm Enhanced Intel Core microarchitecture offers more flexible address alignment
and data sizes requirement than previous microarchitectures. Intel microarchitecture code name
Nehalem offers additional enhancement with allowing more situations to forward data expeditiously.

2-58

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The store-forwarding situations for with respect to store operations of 16 bytes are illustrated in

Figure 2-14.

Bted | Byted1 | Bute2 | Byted | Byded | BteS | ByteS | Bwte¥ || Byted | Byted | ByedD | Byl 1 || Bute12 | Bytedd [Bytetd | Bute 1S
Store
Existing forwarding
Nehalem forwarding
Nt forwarding
Net applicable
Store 128 bit
load 128
ad B4 Inad 54
lnad 32 nad 32 lead 32 load 32
Inad32 load 32 lal 2
l0ai 32 load 32 load 32
load 32 load 32 load 32
load 16 load 16 load 18 oad 16 load 16 load 16 load 16
load 1 load 1 load 16 load 16 load 16 load 16 load 16 load 15
148 118 18} ld@ 148 148 148 148 148 148 148 4% 148 148 [L3

Figure 2-14. Store-Forwarding Scenarios of 16-Byte Store Operations

Intel microarchitecture code name Nehalem allows store-to-load forwarding to proceed regardless of
store address alignment (The white space in the diagram does not correspond to an applicable store-to-
load scenario). Figure 2-15 illustrates situations for store operation of 8 bytes or less.

2-59

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

| Byte 0 | Bryte 1 | Byte 2 | Byte 3 H Byte 4 | Byte 5 | Byte 6 | Byte 7 |

3 byte boundar 3 byte boundary

Store 32 bit

Eatiple: ¥ | towas2pi
i load 16 \
7- byte misalignment [Tiqs | ias | s e

Store 64 bit
load 64 bit
Store load 32 bit | ioad |32 bit
iy] Ioad 32 bit
Existing forwarding
Nehalem forwarding | e |
e O
| Ioad 32 bit
Not forwardi
e load 16 | toad 18 | load1s | load 16
Not applicable Ioad 16 load 16 load 16
1d 8 08 | id8 18 | a8 a8 | 1a8 Id s

Figure 2-15. Store-Forwarding Enhancement in Intel Microarchitecture Code Name Nehalem

2.6.6 REP String Enhancement

REP prefix in conjunction with MOVS/STOS instruction and a count value in ECX are frequently used to
implement library functions such as memcpy()/memset(). These are referred to as "REP string" instruc-
tions. Each iteration of these instruction can copy/write constant a value in byte/word/dword/qword
granularity The performance characteristics of using REP string can be attributed to two components:
startup overhead and data transfer throughput.

The two components of performance characteristics of REP String varies further depending on granu-
larity, alignment, and/or count values. Generally, MOVSB is used to handle very small chunks of data.
Therefore, processor implementation of REP MOVSB is optimized to handle ECX < 4. Using REP MOVSB
with ECX > 3 will achieve low data throughput due to not only byte-granular data transfer but also addi-
tional startup overhead. The latency for MOVSB, is 9 cycles if ECX < 4; otherwise REP MOVSB with ECX
>9 have a 50-cycle startup cost.

For REP string of larger granularity data transfer, as ECX value increases, the startup overhead of REP
String exhibit step-wise increase:

® Short string (ECX <= 12): the latency of REP MOVSW/MOVSD/MOVSQ is about 20 cycles.

® Fast string (ECX >= 76: excluding REP MOVSB): the processor implementation provides hardware
optimization by moving as many pieces of data in 16 bytes as possible. The latency of REP string
latency will vary if one of the 16-byte data transfer spans across cache line boundary:

— Split-free: the latency consists of a startup cost of about 40 cycles and each 64 bytes of data adds
4 cycles.

— Cache splits: the latency consists of a startup cost of about 35 cycles and each 64 bytes of data
adds 6cycles.

¢ Intermediate string lengths: the latency of REP MOVSW/MOVSD/MOVSQ has a startup cost of about
15 cycles plus one cycle for each iteration of the data movement in word/dword/qword.

Intel microarchitecture code name Nehalem improves the performance of REP strings significantly over
previous microarchitectures in several ways:

® Startup overhead have been reduced in most cases relative to previous microarchitecture.
¢ Data transfer throughput are improved over previous generation.

2-60

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

¢ Inorder for REP string to operate in “fast string” mode, previous microarchitectures requires address
alignment. In Intel microarchitecture code name Nehalem, REP string can operate in “fast string”
mode even if address is not aligned to 16 bytes.

2.6.7 Enhancements for System Software

In addition to microarchitectural enhancements that can benefit both application-level and system-level
software, Intel microarchitecture code name Nehalem enhances several operations that primarily benefit
system software.

Lock primitives: Synchronization primitives using the Lock prefix (e.g. XCHG, CMPXCHG8B) executes
with significantly reduced latency than previous microarchitectures.

VMM overhead improvements: VMX transitions between a Virtual Machine (VM) and its supervisor (the
VMM) can take thousands of cycle each time on previous microarchitectures. The latency of VMX transi-
tions has been reduced in processors based on Intel microarchitecture code name Nehalem.

2.6.8 Efficiency Enhancements for Power Consumption

Intel microarchitecture code name Nehalem is not only designed for high performance and power-effi-
cient performance under wide range of loading situations, it also features enhancement for low power
consumption while the system idles. Intel microarchitecture code name Nehalem supports processor-
specific C6 states, which have the lowest leakage power consumption that OS can manage through ACPI
and OS power management mechanisms.

2.6.9 Hyper-Threading Technology Support in Intel® Microarchitecture Code Name
Nehalem

Intel microarchitecture code name Nehalem supports Hyper-Threading Technology (HT). Its implemen-
tation of HT provides two logical processors sharing most execution/cache resources in each core. The HT
implementation in Intel microarchitecture code name Nehalem differs from previous generations of HT

implementations using Intel NetBurst microarchitecture in several areas:

¢ Intel microarchitecture code name Nehalem provides four-wide execution engine, more functional
execution units coupled to three issue ports capable of issuing computational operations.

¢ Intel microarchitecture code name Nehalem supports integrated memory controller that can provide
peak memory bandwidth of up to 25.6 GB/sec in Intel Core i7 processor.

®* Deeper buffering and enhanced resource sharing/partition policies:

— Replicated resource for HT operation: register state, renamed return stack buffer, large-page
ITLB.

— Partitioned resources for HT operation: load buffers, store buffers, re-order buffers, small-page
ITLB are statically allocated between two logical processors.

— Competitively-shared resource during HT operation: the reservation station, cache hierarchy, fill
buffers, both DTLBO and STLB.

— Alternating during HT operation: front end operation generally alternates between two logical
processors to ensure fairness.

— HT unaware resources: execution units.

2.7 INTEL® HYPER-THREADING TECHNOLOGY

Intel® Hyper-Threading Technology (HT Technology) enables software to take advantage of task-level, or
thread-level parallelism by providing multiple logical processors within a physical processor package, or
within each processor core in a physical processor package. In its first implementation in the Intel Xeon

2-61

INTEL® 64 AND |A-32 PROCESSOR ARCHITECTURES

processor, Hyper-Threading Technology makes a single physical processor (or a processor core) appear
as two or more logical processors. Intel Xeon Phi processors based on the Knights Landing microarchitec-
ture support 4 logical processors in each processor core; see Chapter 17 for detailed information of
Hyper-Threading Technology that is implemented in the Knights Landing microarchitecture.

Most Intel Architecture processor families support Hyper-Threading Technology with two logical proces-
sors in each processor core, or in a physical processor in early implementations. The rest of this section
describes features of the early implementation of Hyper-Threading Technology. Most of the descriptions
also apply to later Hyper-Threading Technology implementations supporting two logical processors. The
microarchitecture sections in this chapter provide additional details to individual microarchitecture and
enhancements to Hyper-Threading Technology.

The two logical processors each have a complete set of architectural registers while sharing one single
physical processor's resources. By maintaining the architecture state of two processors, an HT Tech-
nology capable processor looks like two processors to software, including operating system and applica-
tion code.

By sharing resources needed for peak demands between two logical processors, HT Technology is well
suited for multiprocessor systems to provide an additional performance boost in throughput when
compared to traditional MP systems.

Figure 2-16 shows a typical bus-based symmetric multiprocessor (SMP) based on processors supporting
HT Technology. Each logical processor can execute a software thread, allowing a maximum of two soft-
ware threads to execute simultaneously on one physical processor. The two software threads execute
simultaneously, meaning that in the same clock cycle an “add” operation from logical processor O and
another “add” operation and load from logical processor 1 can be executed simultaneously by the execu-
tion engine.

In the first implementation of HT Technology, the physical execution resources are shared and the archi-
tecture state is duplicated for each logical processor. This minimizes the die area cost of implementing HT
Technology while still achieving performance gains for multithreaded applications or multitasking work-

loads.

Architectural
State

Architectural
State

Architectural
State

Architectural
State

Execution Engine

Execution Engine

Local APIC

Local APIC

Local APIC

Local APIC

Bus Interface Bus Interface

System Bus

2-62

o

R

OM15152

Figure 2-16. Hyper-Threading Technology on an SMP

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The performance potential due to HT Technology is due to:

® The fact that operating systems and user programs can schedule processes or threads to execute
simultaneously on the logical processors in each physical processor.

® The ability to use on-chip execution resources at a higher level than when only a single thread is
consuming the execution resources; higher level of resource utilization can lead to higher system
throughput.

2.7.1 Processor Resources and HT Technology

The majority of microarchitecture resources in a physical processor are shared between the logical
processors. Only a few small data structures were replicated for each logical processor. This section
describes how resources are shared, partitioned or replicated.

2.7.1.1 Replicated Resources

The architectural state is replicated for each logical processor. The architecture state consists of registers
that are used by the operating system and application code to control program behavior and store data
for computations. This state includes the eight general-purpose registers, the control registers, machine
state registers, debug registers, and others. There are a few exceptions, most notably the memory type
range registers (MTRRs) and the performance monitoring resources. For a complete list of the architec-
ture state and exceptions, see the Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volumes 3A, 3B, 3C & 3D.

Other resources such as instruction pointers and register renaming tables were replicated to simultane-
ously track execution and state changes of the two logical processors. The return stack predictor is repli-
cated to improve branch prediction of return instructions.

In addition, a few buffers (for example, the 2-entry instruction streaming buffers) were replicated to
reduce complexity.

2.7.1.2 Partitioned Resources

Several buffers are shared by limiting the use of each logical processor to half the entries. These are
referred to as partitioned resources. Reasons for this partitioning include:

® Operational fairness.

¢ Permitting the ability to allow operations from one logical processor to bypass operations of the other
logical processor that may have stalled.

For example: a cache miss, a branch misprediction, or instruction dependencies may prevent a logical
processor from making forward progress for some number of cycles. The partitioning prevents the stalled
logical processor from blocking forward progress.

In general, the buffers for staging instructions between major pipe stages are partitioned. These buffers
include pop queues after the execution trace cache, the queues after the register rename stage, the
reorder buffer which stages instructions for retirement, and the load and store buffers.

In the case of load and store buffers, partitioning also provided an easier implementation to maintain
memory ordering for each logical processor and detect memory ordering violations.

2-63

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.7.1.3 Shared Resources

Most resources in a physical processor are fully shared to improve the dynamic utilization of the resource,
including caches and all the execution units. Some shared resources which are linearly addressed, like
the DTLB, include a logical processor ID bit to distinguish whether the entry belongs to one logical
processor or the other.

The first level cache can operate in two modes depending on a context-ID bit:
® Shared mode: The L1 data cache is fully shared by two logical processors.

¢ Adaptive mode: In adaptive mode, memory accesses using the page directory is mapped identically
across logical processors sharing the L1 data cache.

The other resources are fully shared.

2.7.2 Microarchitecture Pipeline and HT Technology

This section describes the HT Technology microarchitecture and how instructions from the two logical
processors are handled between the front end and the back end of the pipeline.

Although instructions originating from two programs or two threads execute simultaneously and not
necessarily in program order in the execution core and memory hierarchy, the front end and back end
contain several selection points to select between instructions from the two logical processors. All selec-
tion points alternate between the two logical processors unless one logical processor cannot make use of
a pipeline stage. In this case, the other logical processor has full use of every cycle of the pipeline stage.
Reasons why a logical processor may not use a pipeline stage include cache misses, branch mispredic-
tions, and instruction dependencies.

2.7.3 Front End Pipeline

The execution trace cache is shared between two logical processors. Execution trace cache access is arbi-
trated by the two logical processors every clock. If a cache line is fetched for one logical processor in one
clock cycle, the next clock cycle a line would be fetched for the other logical processor provided that both
logical processors are requesting access to the trace cache.

If one logical processor is stalled or is unable to use the execution trace cache, the other logical processor
can use the full bandwidth of the trace cache until the initial logical processor’s instruction fetches return
from the L2 cache.

After fetching the instructions and building traces of pops, the pops are placed in a queue. This queue
decouples the execution trace cache from the register rename pipeline stage. As described earlier, if both
logical processors are active, the queue is partitioned so that both logical processors can make indepen-
dent forward progress.

2.74 Execution Core

The core can dispatch up to six pops per cycle, provided the pops are ready to execute. Once the pops
are placed in the queues waiting for execution, there is no distinction between instructions from the two
logical processors. The execution core and memory hierarchy is also oblivious to which instructions
belong to which logical processor.

After execution, instructions are placed in the re-order buffer. The re-order buffer decouples the execu-
tion stage from the retirement stage. The re-order buffer is partitioned such that each uses half the
entries.

2-64

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.7.5 Retirement

The retirement logic tracks when instructions from the two logical processors are ready to be retired. It
retires the instruction in program order for each logical processor by alternating between the two logical
processors. If one logical processor is not ready to retire any instructions, then all retirement bandwidth
is dedicated to the other logical processor.

Once stores have retired, the processor needs to write the store data into the level-one data cache.
Selection logic alternates between the two logical processors to commit store data to the cache.

2.8 INTEL® 64 ARCHITECTURE

Intel 64 architecture supports almost all features in the 1A-32 Intel architecture and extends support to
run 64-bit OS and 64-bit applications in 64-bit linear address space. Intel 64 architecture provides a new
operating mode, referred to as I1A-32e mode, and increases the linear address space for software to 64
bits and supports physical address space up to 40 bits.

IA-32e mode consists of two sub-modes: (1) compatibility mode enables a 64-bit operating system to
run most legacy 32-bit software unmodified, (2) 64-bit mode enables a 64-bit operating system to run
applications written to access 64-bit linear address space.

In the 64-bit mode of Intel 64 architecture, software may access:
® 64-bit flat linear addressing.
¢ 8 additional general-purpose registers (GPRs).

¢ 8 additional registers (XMM) for streaming SIMD extensions (SSE, SSE2, SSE3, SSSE3, SSE4.1,
SSE4.2, AESNI, PCLMULQDQ).

— Sixteen 256-bit YMM registers (whose lower 128 bits are overlaid to the respective XMM
registers) if AVX, F16C, AVX2 or FMA are supported.

® 64-bit-wide GPRs and instruction pointers.

® Uniform byte-register addressing.

® Fast interrupt-prioritization mechanism.

® A new instruction-pointer relative-addressing mode.

2.9 SIMD TECHNOLOGY

SIMD computations (see Figure 2-17) were introduced to the architecture with MMX technology. MMX
technology allows SIMD computations to be performed on packed byte, word, and doubleword integers.
The integers are contained in a set of eight 64-bit registers called MMX registers (see Figure 2-18).

The Pentium lll processor extended the SIMD computation model with the introduction of the Streaming
SIMD Extensions (SSE). SSE allows SIMD computations to be performed on operands that contain four
packed single-precision floating-point data elements. The operands can be in memory or in a set of eight
128-bit XMM registers (see Figure 2-18). SSE also extended SIMD computational capability by adding
additional 64-bit MMX instructions.

Figure 2-17 shows a typical SIMD computation. Two sets of four packed data elements (X1, X2, X3, and
X4,and Y1, Y2, Y3, and Y4) are operated on in parallel, with the same operation being performed on each
corresponding pair of data elements (X1 and Y1, X2 and Y2, X3 and Y3, and X4 and Y4). The results of
the four parallel computations are sorted as a set of four packed data elements.

2-65

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

X4 X3 X2 X1
Y4 Y3 Y2 Y1
) 4 vy vy)
X4 op Y4 X3 o0p Y3 X2o0p Y2 X1op Y1
OM15148

Figure 2-17. Typical SIMD Operations

The Pentium 4 processor further extended the SIMD computation model with the introduction of
Streaming SIMD Extensions 2 (SSE2), Streaming SIMD Extensions 3 (SSE3), and Intel Xeon processor
5100 series introduced Supplemental Streaming SIMD Extensions 3 (SSSE3).

SSE2 works with operands in either memory or in the XMM registers. The technology extends SIMD
computations to process packed double-precision floating-point data elements and 128-bit packed inte-
gers. There are 144 instructions in SSE2 that operate on two packed double-precision floating-point data
elements or on 16 packed byte, 8 packed word, 4 doubleword, and 2 quadword integers.

SSE3 enhances x87, SSE and SSE2 by providing 13 instructions that can accelerate application perfor-
mance in specific areas. These include video processing, complex arithmetics, and thread synchroniza-
tion. SSE3 complements SSE and SSE2 with instructions that process SIMD data asymmetrically,
facilitate horizontal computation, and help avoid loading cache line splits. See Figure 2-18.

SSSE3 provides additional enhancement for SIMD computation with 32 instructions on digital video and
signal processing.

SSE4.1, SSE4.2 and AESNI are additional SIMD extensions that provide acceleration for applications in
media processing, text/lexical processing, and block encryption/decryption.

The SIMD extensions operates the same way in Intel 64 architecture as in 1A-32 architecture, with the
following enhancements:

® 128-bit SIMD instructions referencing XMM register can access 16 XMM registers in 64-bit mode.

® Instructions that reference 32-bit general purpose registers can access 16 general purpose registers
in 64-bit mode.

2-66

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

64-bit MMX Registers 128-bit XMM Registers
MM7 XMM7
MM6 XMM6
MM5 XMM5
MM4 XMM4
MM3 XMM3
MM2 XMM2
MM1 XMM1
MMO XMMO
OM15149

Figure 2-18. SIMD Instruction Register Usage

SIMD improves the performance of 3D graphics, speech recognition, image processing, scientific applica-
tions and applications that have the following characteristics:

® Inherently parallel.

® Recurring memory access patterns.

® Localized recurring operations performed on the data.
¢ Data-independent control flow.

2.10 SUMMARY OF SIMD TECHNOLOGIES AND APPLICATION LEVEL
EXTENSIONS

SIMD floating-point instructions fully support the IEEE Standard 754 for Binary Floating-Point Arithmetic.
They are accessible from all 1A-32 execution modes: protected mode, real address mode, and Virtual
8086 mode.

SSE, SSE2, and MMX technologies are architectural extensions. Existing software will continue to run
correctly, without modification on Intel microprocessors that incorporate these technologies. Existing
software will also run correctly in the presence of applications that incorporate SIMD technologies.

SSE and SSE2 instructions also introduced cacheability and memory ordering instructions that can
improve cache usage and application performance.

For more on SSE, SSE2, SSE3 and MMX technologies, see the following chapters in the Intel® 64 and
1A-32 Architectures Software Developer’s Manual, Volume 1:

® Chapter 9, “Programming with Intel® MMX™ Technology”.

¢ Chapter 10, “Programming with Streaming SIMD Extensions (SSE)”.

® Chapter 11, “Programming with Streaming SIMD Extensions 2 (SSE2)”.

® Chapter 12, “Programming with SSE3, SSSE3 and SSE4”.

® Chapter 14, “Programming with AVX, FMA and AVX2”.

® Chapter 15, “Programming with Intel® AVX-512”.

® Chapter 16, “Programming with Intel® Transactional Synchronization Extensions”.

2-67

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.10.1 MMX"™ Technology

MMX Technology introduced:
® 64-bit MMX registers.
¢ Support for SIMD operations on packed byte, word, and doubleword integers.

MMX instructions are useful for multimedia and communications software.

2.10.2 Streaming SIMD Extensions

Streaming SIMD extensions introduced:

® 128-bit XMM registers.

® 128-bit data type with four packed single-precision floating-point operands.

¢ Data prefetch instructions.

® Non-temporal store instructions and other cacheability and memory ordering instructions.
¢ Extra 64-bit SIMD integer support.

SSE instructions are useful for 3D geometry, 3D rendering, speech recognition, and video encoding and
decoding.

2.10.3 Streaming SIMD Extensions 2

Streaming SIMD extensions 2 add the following:
® 128-bit data type with two packed double-precision floating-point operands.

® 128-bit data types for SIMD integer operation on 16-byte, 8-word, 4-doubleword, or 2-quadword
integers.

® Support for SIMD arithmetic on 64-bit integer operands.

®* Instructions for converting between new and existing data types.

¢ Extended support for data shuffling.

®* Extended support for cacheability and memory ordering operations.

SSEZ2 instructions are useful for 3D graphics, video decoding/encoding, and encryption.

2.10.4 Streaming SIMD Extensions 3

Streaming SIMD extensions 3 add the following:

¢ SIMD floating-point instructions for asymmetric and horizontal computation.

® A special-purpose 128-bit load instruction to avoid cache line splits.

® An x87 FPU instruction to convert to integer independent of the floating-point control word (FCW).
® Instructions to support thread synchronization.

SSE3 instructions are useful for scientific, video and multi-threaded applications.

2.10.5 Supplemental Streaming SIMD Extensions 3

The Supplemental Streaming SIMD Extensions 3 introduces 32 new instructions to accelerate eight
types of computations on packed integers. These include:

® 12 instructions that perform horizontal addition or subtraction operations.
® 6 instructions that evaluate the absolute values.
® 2instructions that perform multiply and add operations and speed up the evaluation of dot products.

2-68

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

¢ 2 instructions that accelerate packed-integer multiply operations and produce integer values with
scaling.

® 2 instructions that perform a byte-wise, in-place shuffle according to the second shuffle control
operand.

® 6 instructions that negate packed integers in the destination operand if the signs of the corre-
sponding element in the source operand is less than zero.

¢ 2 instructions that align data from the composite of two operands.

2.10.6 SSE4.1

SSE4.1 introduces 47 new instructions to accelerate video, imaging and 3D applications. SSE4.1 also
improves compiler vectorization and significantly increase support for packed dword computation. These
include:

® Two instructions perform packed dword multiplies.

® Two instructions perform floating-point dot products with input/output selects.
® One instruction provides a streaming hint for WC loads.

® Six instructions simplify packed blending.

® Eight instructions expand support for packed integer MIN/MAX.

® Four instructions support floating-point round with selectable rounding mode and precision exception
override.

¢ Seven instructions improve data insertion and extractions from XMM registers

® Twelve instructions improve packed integer format conversions (sign and zero extensions).
® One instruction improves SAD (sum absolute difference) generation for small block sizes.

® One instruction aids horizontal searching operations of word integers.

® One instruction improves masked comparisons.

® One instruction adds qword packed equality comparisons.

® One instruction adds dword packing with unsigned saturation.

2.10.7 SSE4.2

SSE4.2 introduces 7 new instructions. These include:
® A 128-bit SIMD integer instruction for comparing 64-bit integer data elements.

¢ Four string/text processing instructions providing a rich set of primitives, these primitives can
accelerate:

— Basic and advanced string library functions from strlen, strcmp, to strcspn.

— Delimiter processing, token extraction for lexing of text streams.

— Parser, schema validation including XML processing.
® A general-purpose instruction for accelerating cyclic redundancy checksum signature calculations.
® A general-purpose instruction for calculating bit count population of integer numbers.

2.10.8 AESNI and PCLMULQDQ

AESNI introduces 7 new instructions, six of them are primitives for accelerating algorithms based on AES
encryption/decryption standard, referred to as AESNI.

The PCLMULQDQ instruction accelerates general-purpose block encryption, which can perform carry-less
multiplication for two binary numbers up to 64-bit wide.

2-69

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Typically, algorithm based on AES standard involve transformation of block data over multiple iterations
via several primitives. The AES standard supports cipher key of sizes 128, 192, and 256 bits. The respec-
tive cipher key sizes correspond to 10, 12, and 14 rounds of iteration.

AES encryption involves processing 128-bit input data (plaintext) through a finite number of iterative
operation, referred to as “AES round”, into a 128-bit encrypted block (ciphertext). Decryption follows the
reverse direction of iterative operation using the “equivalent inverse cipher” instead of the “inverse
cipher”.

The cryptographic processing at each round involves two input data, one is the “state”, the other is the
“round key”. Each round uses a different “round key”. The round keys are derived from the cipher key
using a “key schedule” algorithm. The “key schedule” algorithm is independent of the data processing of
encryption/decryption, and can be carried out independently from the encryption/decryption phase.

The AES extensions provide two primitives to accelerate AES rounds on encryption, two primitives for
AES rounds on decryption using the equivalent inverse cipher, and two instructions to support the AES
key expansion procedure.

2.10.9 Intel® Advanced Vector Extensions

Intel® Advanced Vector Extensions offers comprehensive architectural enhancements over previous
generations of Streaming SIMD Extensions. Intel AVX introduces the following architectural enhance-
ments:

® Support for 256-bit wide vectors and SIMD register set.

¢ 256-bit floating-point instruction set enhancement with up to 2X performance gain relative to 128-bit
Streaming SIMD extensions.

® Instruction syntax support for generalized three-operand syntax to improve instruction programming
flexibility and efficient encoding of new instruction extensions.

®* Enhancement of legacy 128-bit SIMD instruction extensions to support three-operand syntax and to
simplify compiler vectorization of high-level language expressions.

¢ Support flexible deployment of 256-bit AVX code, 128-bit AVX code, legacy 128-bit code and scalar
code.

Intel AVX instruction set and 256-bit register state management detail are described in Intel® 64 and
1A-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C & 2D. Optimization techniques for
Intel AVX is discussed in Chapter 11, “Optimization for Intel® AVX, FMA, and AVX2”.

2.10.10 Half-Precision Floating-Point Conversion (F16C)

VCVTPH2PS and VCVTPS2PH are two instructions supporting half-precision floating-point data type
conversion to and from single-precision floating-point data types. These two instruction extends on the
same programming model as Intel AVX.

2.10.11 RDRAND

The RDRAND instruction retrieves a random number supplied by a cryptographically secure, determin-
istic random bit generator (DBRG). The DBRG is designed to meet NIST SP 800-90A standard.

2.10.12 Fused-Multiply-ADD (FMA) Extensions

FMA extensions enhances Intel AVX with high-throughput, arithmetic capabilities covering fused
multiply-add, fused multiply-subtract, fused multiply add/subtract interleave, signed-reversed multiply
on fused multiply-add and multiply-subtract operations. FMA extensions provide 36 256-bit floating-
point instructions to perform computation on 256-bit vectors and additional 128-bit and scalar FMA
instructions.

2-70

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.10.13 Intel AVX2

Intel AVX2 extends Intel AVX by promoting most of the 128-bit SIMD integer instructions with 256-bit
numeric processing capabilities. AVX2 instructions follow the same programming model as AVX instruc-
tions.

In addition, AVX2 provide enhanced functionalities for broadcast/permute operations on data elements,
vector shift instructions with variable-shift count per data element, and instructions to fetch non-contig-
uous data elements from memory.

2.10.14 General-Purpose Bit-Processing Instructions

The fourth generation Intel Core processor family introduces a collection of bit processing instructions
that operate on the general purpose registers. The majority of these instructions uses the VEX-prefix
encoding scheme to provide non-destructive source operand syntax.

There instructions are enumerated by three separate feature flags reported by CPUID. For details, see

Section 5.1 of Intel® 64 and 1A-32 Architectures Software Developer’'s Manual, Volume 1 and chapters
3, 4 and 5 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C
& 2D.

2.10.15 Intel® Transactional Synchronization Extensions

The fourth generation Intel Core processor family introduces Intel® Transactional Synchronization
Extensions (Intel TSX), which aim to improve the performance of lock-protected critical sections of multi-
threaded applications while maintaining the lock-based programming model.

For background and details, see Chapter 16, “Programming with Intel® Transactional Synchronization
Extensions” of Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 1.

Software tuning recommendations for using Intel TSX on lock-protected critical sections of multithreaded
applications are described in Chapter 12, “Intel® TSX Recommendations”.

2.10.16 RDSEED
The Intel Core M processor family introduces the RDSEED, ADCX and ADOX instructions.

The RDSEED instruction retrieves a random number supplied by a cryptographically secure, enhanced
deterministic random bit generator Enhanced NRBG). The NRBG is designed to meet the NIST SP 800-
90B and NIST SP 800-90C standards.

2.10.17 ADCX and ADOX Instructions

The ADCX and ADOX instructions, in conjunction with MULX instruction, enable software to speed up
calculations that require large integer numerics. Details can be found at
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/large-integer-
squaring-ia-paper.pdf.

2-71

http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/large-integer-squaring-ia-paper.pdf

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2-72

CHAPTER 3
GENERAL OPTIMIZATION GUIDELINES

This chapter discusses general optimization techniques that can improve the performance of applications
running on processors based on Intel microarchitecture code name Haswell, lvy Bridge, Sandy Bridge,
Westmere, Nehalem, Enhanced Intel Core microarchitecture and Intel Core microarchitectures. These
techniques take advantage of microarchitectural described in Chapter 2, “Intel® 64 and 1A-32 Processor
Architectures.” Optimization guidelines focusing on Intel multi-core processors, Hyper-Threading Tech-
nology and 64-bit mode applications are discussed in Chapter 9, “Multicore and Hyper-Threading Tech-
nology,” and Chapter 10, “64-bit Mode Coding Guidelines.”

Practices that optimize performance focus on three areas:
® Tools and techniques for code generation.

® Analysis of the performance characteristics of the workload and its interaction with microarchitec-
tural sub-systems.

® Tuning code to the target microarchitecture (or families of microarchitecture) to improve perfor-
mance.

Some hints on using tools are summarized first to simplify the first two tasks. the rest of the chapter will
focus on recommendations of code generation or code tuning to the target microarchitectures.

This chapter explains optimization techniques for the Intel C++ Compiler, the Intel Fortran Compiler, and
other compilers.

3.1 PERFORMANCE TOOLS

Intel offers several tools to help optimize application performance, including compilers, performance
analyzer and multithreading tools.

3.1.1 Intel® C++ and Fortran Compilers

Intel compilers support multiple operating systems (Windows>, Linux*, Mac OS* and embedded). The
Intel compilers optimize performance and give application developers access to advanced features:

® Flexibility to target 32-bit or 64-bit Intel processors for optimization
¢ Compatibility with many integrated development environments or third-party compilers.
®* Automatic optimization features to take advantage of the target processor’s architecture.
¢ Automatic compiler optimization reduces the need to write different code for different processors.
® Common compiler features that are supported across Windows, Linux and Mac OS include:
— General optimization settings.
— Cache-management features.
— Interprocedural optimization (IPO) methods.
— Profile-guided optimization (PGO) methods.
— Multithreading support.
— Floating-point arithmetic precision and consistency support.

— Compiler optimization and vectorization reports.

GENERAL OPTIMIZATION GUIDELINES

3.1.2 General Compiler Recommendations

Generally speaking, a compiler that has been tuned for the target microarchitecture can be expected to
match or outperform hand-coding. However, if performance problems are noted with the compiled code,
some compilers (like Intel C++ and Fortran Compilers) allow the coder to insert intrinsics or inline
assembly in order to exert control over what code is generated. If inline assembly is used, the user must
verify that the code generated is of good quality and yields good performance.

Default compiler switches are targeted for common cases. An optimization may be made to the compiler
default if it is beneficial for most programs. If the root cause of a performance problem is a poor choice
on the part of the compiler, using different switches or compiling the targeted module with a different
compiler may be the solution.

3.1.3 VTune™ Performance Analyzer

VTune uses performance monitoring hardware to collect statistics and coding information of your appli-
cation and its interaction with the microarchitecture. This allows software engineers to measure perfor-
mance characteristics of the workload for a given microarchitecture. VTune supports all current and past
Intel processor families.

The VTune Performance Analyzer provides two kinds of feedback:

®* Indication of a performance improvement gained by using a specific coding recommendation or
microarchitectural feature.

¢ Information on whether a change in the program has improved or degraded performance with
respect to a particular metric.

The VTune Performance Analyzer also provides measures for a number of workload characteristics,

including:

® Retirement throughput of instruction execution as an indication of the degree of extractable
instruction-level parallelism in the workload.

® Data traffic locality as an indication of the stress point of the cache and memory hierarchy.

¢ Data traffic parallelism as an indication of the degree of effectiveness of amortization of data access
latency.

NOTE

Improving performance in one part of the machine does not necessarily bring significant
gains to overall performance. It is possible to degrade overall performance by improving
performance for some particular metric.

Where appropriate, coding recommendations in this chapter include descriptions of the VTune Perfor-
mance Analyzer events that provide measurable data on the performance gain achieved by following the
recommendations. For more on using the VTune analyzer, refer to the application’s online help.

3.2 PROCESSOR PERSPECTIVES

Many coding recommendations for work well across modern microarchitectures from Intel Core microar-
chitecture to the Haswell microarchitecture. However, there are situations where a recommendation may
benefit one microarchitecture more than another. Some of these are:

® Instruction decode throughput is important. Additionally, taking advantage of decoded ICache, Loop
Stream Detector and macrofusion can further improve front end performance.

¢ Generating code to take advantage 4 decoders and employ micro-fusion and macro-fusion so that
each of three simple decoders are not restricted to handling simple instructions consisting of one
micro-op.

3-2

GENERAL OPTIMIZATION GUIDELINES

® On processors based on Sandy Bridge, Ivy Bridge and Haswell microarchitectures, the code size for
optimal front end performance is associated with the decode ICache.

®* Dependencies for partial register writes can incur varying degree of penalties To avoid false
dependences from partial register updates, use full register updates and extended moves.

® Use appropriate instructions that support dependence-breaking (e.g. PXOR, SUB, XOR, XORPS).

¢ Hardware prefetching can reduce the effective memory latency for data and instruction accesses in
general. But different microarchitectures may require some custom modifications to adapt to the
specific hardware prefetch implementation of each microarchitecture.

3.2.1 CPUID Dispatch Strategy and Compatible Code Strategy

When optimum performance on all processor generations is desired, applications can take advantage of
the CPUID instruction to identify the processor generation and integrate processor-specific instructions
into the source code. The Intel C++ Compiler supports the integration of different versions of the code
for different target processors. The selection of which code to execute at runtime is made based on the
CPU identifiers. Binary code targeted for different processor generations can be generated under the
control of the programmer or by the compiler.

For applications that target multiple generations of microarchitectures, and where minimum binary code
size and single code path is important, a compatible code strategy is the best. Optimizing applications
using techniques developed for the Intel Core microarchitecture and combined with Intel microarchitec-
ture code name Nehalem are likely to improve code efficiency and scalability when running on processors
based on current and future generations of Intel 64 and 1A-32 processors.

3.2.2 Transparent Cache-Parameter Strategy

If the CPUID instruction supports function leaf 4, also known as deterministic cache parameter leaf, the
leaf reports cache parameters for each level of the cache hierarchy in a deterministic and forward-
compatible manner across Intel 64 and 1A-32 processor families.

For coding techniques that rely on specific parameters of a cache level, using the deterministic cache
parameter allows software to implement techniques in a way that is forward-compatible with future
generations of Intel 64 and IA-32 processors, and cross-compatible with processors equipped with
different cache sizes.

3.23 Threading Strategy and Hardware Multithreading Support

Intel 64 and 1A-32 processor families offer hardware multithreading support in two forms: dual-core
technology and HT Technology.

To fully harness the performance potential of hardware multithreading in current and future generations
of Intel 64 and 1A-32 processors, software must embrace a threaded approach in application design. At
the same time, to address the widest range of installed machines, multi-threaded software should be
able to run without failure on a single processor without hardware multithreading support and should
achieve performance on a single logical processor that is comparable to an unthreaded implementation
(if such comparison can be made). This generally requires architecting a multi-threaded application to
minimize the overhead of thread synchronization. Additional guidelines on multithreading are discussed
in Chapter 9, “Multicore and Hyper-Threading Technology.”

3.3 CODING RULES, SUGGESTIONS AND TUNING HINTS

This section includes rules, suggestions and hints. They are targeted for engineers who are:
¢ Modifying source code to enhance performance (user/source rules).
® Writing assemblers or compilers (assembly/compiler rules).

3-3

GENERAL OPTIMIZATION GUIDELINES

¢ Doing detailed performance tuning (tuning suggestions).
Coding recommendations are ranked in importance using two measures:

¢ Local impact (high, medium, or low) refers to a recommendation’s affect on the performance of a
given instance of code.

® Generality (high, medium, or low) measures how often such instances occur across all application
domains. Generality may also be thought of as “frequency”.

These recommendations are approximate. They can vary depending on coding style, application domain,
and other factors.

The purpose of the high, medium, and low (H, M, and L) priorities is to suggest the relative level of
performance gain one can expect if a recommendation is implemented.

Because it is not possible to predict the frequency of a particular code instance in applications, priority
hints cannot be directly correlated to application-level performance gain. In cases in which application-
level performance gain has been observed, we have provided a quantitative characterization of the gain
(for information only). In cases in which the impact has been deemed inapplicable, no priority is
assigned.

3.4 OPTIMIZING THE FRONT END

Optimizing the front end covers two aspects:

¢ Maintaining steady supply of micro-ops to the execution engine — Mispredicted branches can disrupt
streams of micro-ops, or cause the execution engine to waste execution resources on executing
streams of micro-ops in the non-architected code path. Much of the tuning in this respect focuses on
working with the Branch Prediction Unit. Common techniques are covered in Section 3.4.1, “Branch
Prediction Optimization.”

® Supplying streams of micro-ops to utilize the execution bandwidth and retirement bandwidth as
much as possible — For Intel Core microarchitecture and Intel Core Duo processor family, this aspect
focuses maintaining high decode throughput. In Intel microarchitecture code name Sandy Bridge,
this aspect focuses on keeping the hod code running from Decoded ICache. Techniques to maximize
decode throughput for Intel Core microarchitecture are covered in Section 3.4.2, “Fetch and Decode
Optimization.”

3.4.1 Branch Prediction Optimization

Branch optimizations have a significant impact on performance. By understanding the flow of branches
and improving their predictability, you can increase the speed of code significantly.

Optimizations that help branch prediction are:

¢ Keep code and data on separate pages. This is very important; see Section 3.6, “Optimizing Memory
Accesses,” for more information.

® Eliminate branches whenever possible.

®* Arrange code to be consistent with the static branch prediction algorithm.
® Use the PAUSE instruction in spin-wait loops.

® Inline functions and pair up calls and returns.

® Unroll as necessary so that repeatedly-executed loops have sixteen or fewer iterations (unless this
causes an excessive code size increase).

®* Avoid putting two conditional branch instructions in a loop so that both have the same branch target
address and, at the same time, belong to (i.e. have their last bytes' addresses within) the same 16-
byte aligned code block.

3-4

GENERAL OPTIMIZATION GUIDELINES

3.4.1.1 Eliminating Branches

Eliminating branches improves performance because:
® It reduces the possibility of mispredictions.

¢ It reduces the number of required branch target buffer (BTB) entries. Conditional branches, which
are never taken, do not consume BTB resources.

There are four principal ways of eliminating branches:

¢ Arrange code to make basic blocks contiguous.

¢ Unroll loops, as discussed in Section 3.4.1.7, “Loop Unrolling.”
¢ Use the CMOV instruction.

® Use the SETCC instruction.

The following rules apply to branch elimination:

Assembly/Compiler Coding Rule 1. (MH impact, M generality) Arrange code to make basic blocks
contiguous and eliminate unnecessary branches.

Assembly/Compiler Coding Rule 2. (M impact, ML generality) Use the SETCC and CMOV
instructions to eliminate unpredictable conditional branches where possible. Do not do this for
predictable branches. Do not use these instructions to eliminate all unpredictable conditional branches
(because using these instructions will incur execution overhead due to the requirement for executing
both paths of a conditional branch). In addition, converting a conditional branch to SETCC or CMOV
trades off control flow dependence for data dependence and restricts the capability of the out-of-order
engine. When tuning, note that all Intel 64 and 1A-32 processors usually have very high branch
prediction rates. Consistently mispredicted branches are generally rare. Use these instructions only if
the increase in computation time is less than the expected cost of a mispredicted branch.

Consider a line of C code that has a condition dependent upon one of the constants:
X =(A <B)?CONST1:CONSTZ;

This code conditionally compares two values, A and B. If the condition is true, X is set to CONST1; other-
wise it is set to CONST2. An assembly code sequence equivalent to the above C code can contain
branches that are not predictable if there are no correlation in the two values.

Example 3-1 shows the assembly code with unpredictable branches. The unpredictable branches can be
removed with the use of the SETCC instruction. Example 3-2 shows optimized code that has no
branches.

Example 3-1. Assembly Code with an Unpredictable Branch

cmpa, b ; Condition
jbe L30 ; Conditional branch
mov ebx const1 ; ebx holds X
jmp L31 ; Unconditional branch
L30:
mov ebx, const2
L31:

Example 3-2. Code Optimization to Eliminate Branches

xor ebx, ebx ; Clear ebx (X in the C code)
cnp A B
setge bl ;Whenebx=0or 1

; OR the complement condition
sub ebx, 1 ;ebx=11..11 or 00..00

and ebx, CONST3; CONST3 = CONST1-CONST2
add ebx, CONSTZ2; ebx=CONST1 or CONST2

3-5

GENERAL OPTIMIZATION GUIDELINES

The optimized code in Example 3-2 sets EBX to zero, then compares A and B. If A is greater than or equal
to B, EBX is set to one. Then EBX is decreased and AND’d with the difference of the constant values. This
sets EBX to either zero or the difference of the values. By adding CONST2 back to EBX, the correct value
is written to EBX. When CONST?2 is equal to zero, the last instruction can be deleted.

Another way to remove branches is to use the CMOV and FCMOV instructions. Example 3-3 shows how to
change a TEST and branch instruction sequence using CMOV to eliminate a branch. If the TEST sets the
equal flag, the value in EBX will be moved to EAX. This branch is data-dependent, and is representative
of an unpredictable branch.

Example 3-3. Eliminating Branch with CMOV Instruction

test ecx, ecx

jne TH
mov eax, ebx
TH:
; To optimize code, combine jne and mov into one cmovcc instruction that checks the equal flag
test ecx, ecx ; Test the flags
cmoveq eax, ebx ; If the equal flag is set, move

; ebx to eax- the 1H: tag no longer needed

34.1.2 Spin-Wait and Idle Loops

The Pentium 4 processor introduces a new PAUSE instruction; the instruction is architecturally a NOP on
Intel 64 and 1A-32 processor implementations.

To the Pentium 4 and later processors, this instruction acts as a hint that the code sequence is a spin-wait
loop. Without a PAUSE instruction in such loops, the Pentium 4 processor may suffer a severe penalty
when exiting the loop because the processor may detect a possible memory order violation. Inserting the
PAUSE instruction significantly reduces the likelihood of a memory order violation and as a result
improves performance.

In Example 3-4, the code spins until memory location A matches the value stored in the register EAX.
Such code sequences are common when protecting a critical section, in producer-consumer sequences,
for barriers, or other synchronization.

Example 3-4. Use of PAUSE Instruction

lock: cmpeax, a

jne loop

; Code in critical section:
loop: pause

cmp eax, a

jne loop

jmp lock

3.4.1.3 Static Prediction

Branches that do not have a history in the BTB (see Section 3.4.1, “Branch Prediction Optimization”) are
predicted using a static prediction algorithm:

® Predict unconditional branches to be taken.
® Predict indirect branches to be NOT taken.

The following rule applies to static elimination:

3-6

GENERAL OPTIMIZATION GUIDELINES

Assembly/Compiler Coding Rule 3. (M impact, H generality) Arrange code to be consistent with
the static branch prediction algorithm: make the fall-through code following a conditional branch be the
likely target for a branch with a forward target, and make the fall-through code following a conditional
branch be the unlikely target for a branch with a backward target.

Example 3-5 illustrates the static branch prediction algorithm. The body of an IF-THEN conditional is
predicted.

Example 3-5. Static Branch Prediction Algorithm

//Forward condition branches not taken (fall through)
IF<condition> {....

!
}

IF<condition> {...
\!
}

//Backward conditional branches are taken
LOOP{...
T — }<condition>

//Unconditional branches taken
JMP

Example 3-6 and Example 3-7 provide basic rules for a static prediction algorithm. In Example 3-6, the
backward branch (JC BEGIN) is not in the BTB the first time through; therefore, the BTB does not issue
a prediction. The static predictor, however, will predict the branch to be taken, so a misprediction will not
occur.

Example 3-6. Static Taken Prediction

Begin: mov eax, mem32
and eax, ebx
imul eax, edx
shid eax, 7
jc Begin

The first branch instruction (JC BEGIN) in Example 3-7 is a conditional forward branch. It is not in the
BTB the first time through, but the static predictor will predict the branch to fall through. The static
prediction algorithm correctly predicts that the CALL CONVERT instruction will be taken, even before the
branch has any branch history in the BTB.

Example 3-7. Static Not-Taken Prediction

mov eax, mem32

and eax, ebx

imul eax, edx

shid eax, 7

jc Begin

mov eax, 0
Begin: call Convert

GENERAL OPTIMIZATION GUIDELINES

The Intel Core microarchitecture does not use the static prediction heuristic. However, to maintain
consistency across Intel 64 and 1A-32 processors, software should maintain the static prediction heuristic
as the default.

34.14 Inlining, Calls and Returns

The return address stack mechanism augments the static and dynamic predictors to optimize specifically
for calls and returns. It holds 16 entries, which is large enough to cover the call depth of most programs.
If there is a chain of more than 16 nested calls and more than 16 returns in rapid succession, perfor-
mance may degrade.

The trace cache in Intel NetBurst microarchitecture maintains branch prediction information for calls and
returns. As long as the trace with the call or return remains in the trace cache and the call and return
targets remain unchanged, the depth limit of the return address stack described above will not impede
performance.

To enable the use of the return stack mechanism, calls and returns must be matched in pairs. If this is
done, the likelihood of exceeding the stack depth in a manner that will impact performance is very low.

The following rules apply to inlining, calls, and returns:

Assembly/Compiler Coding Rule 4. (MH impact, MH generality) Near calls must be matched with
near returns, and far calls must be matched with far returns. Pushing the return address on the stack
and jumping to the routine to be called is not recommended since it creates a mismatch in calls and
returns.

Calls and returns are expensive; use inlining for the following reasons:
® Parameter passing overhead can be eliminated.
¢ In a compiler, inlining a function exposes more opportunity for optimization.

® If the inlined routine contains branches, the additional context of the caller may improve branch
prediction within the routine.

¢ A mispredicted branch can lead to performance penalties inside a small function that are larger than
those that would occur if that function is inlined.

Assembly/Compiler Coding Rule 5. (MH impact, MH generality) Selectively inline a function if
doing so decreases code size or if the function is small and the call site is frequently executed.

Assembly/Compiler Coding Rule 6. (H impact, H generality) Do not inline a function if doing so
increases the working set size beyond what will fit in the trace cache.

Assembly/Compiler Coding Rule 7. (ML impact, ML generality) If there are more than 16 nested
calls and returns in rapid succession; consider transforming the program with inline to reduce the call
depth.

Assembly/Compiler Coding Rule 8. (ML impact, ML generality) Favor inlining small functions that
contain branches with poor prediction rates. If a branch misprediction results in a RETURN being
prematurely predicted as taken, a performance penalty may be incurred.

Assembly/Compiler Coding Rule 9. (L impact, L generality) If the last statement in a function is
a call to another function, consider converting the call to a jump. This will save the call/return overhead
as well as an entry in the return stack buffer.

Assembly/Compiler Coding Rule 10. (M impact, L generality) Do not put more than four
branches in a 16-byte chunk.

Assembly/Compiler Coding Rule 11. (M impact, L generality) Do not put more than two end loop
branches in a 16-byte chunk.

3.4.1.5 Code Alignment

Careful arrangement of code can enhance cache and memory locality. Likely sequences of basic blocks
should be laid out contiguously in memory. This may involve removing unlikely code, such as code to
handle error conditions, from the sequence. See Section 3.7, “Prefetching,” on optimizing the instruction
prefetcher.

3-8

GENERAL OPTIMIZATION GUIDELINES

Assembly/Compiler Coding Rule 12. (M impact, H generality) When executing code from the
DSB, direct branches that are mostly taken should have all their instruction bytes in a 64B cache line
and nearer the end of that cache line. Their targets should be at or near the beginning of a 64B cache
line.

When executing code from the legacy decode pipeline, direct branches that are mostly taken should have
all their instruction bytes in a 16B aligned chunk of memory and nearer the end of that 16B aligned
chunk. Their targets should be at or near the beginning of a 16B aligned chunk of memory.

Assembly/Compiler Coding Rule 13. (M impact, H generality) If the body of a conditional is not
likely to be executed, it should be placed in another part of the program. If it is highly unlikely to be
executed and code locality is an issue, it should be placed on a different code page.

3.4.1.6 Branch Type Selection

The default predicted target for indirect branches and calls is the fall-through path. Fall-through predic-
tion is overridden if and when a hardware prediction is available for that branch. The predicted branch
target from branch prediction hardware for an indirect branch is the previously executed branch target.

The default prediction to the fall-through path is only a significant issue if no branch prediction is avail-
able, due to poor code locality or pathological branch conflict problems. For indirect calls, predicting the
fall-through path is usually not an issue, since execution will likely return to the instruction after the
associated return.

Placing data immediately following an indirect branch can cause a performance problem. If the data
consists of all zeros, it looks like a long stream of ADDs to memory destinations and this can cause
resource conflicts and slow down branch recovery. Also, data immediately following indirect branches
may appear as branches to the branch predication hardware, which can branch off to execute other data
pages. This can lead to subsequent self-modifying code problems.

Assembly/Compiler Coding Rule 14. (M impact, L generality) When indirect branches are
present, try to put the most likely target of an indirect branch immediately following the indirect
branch. Alternatively, if indirect branches are common but they cannot be predicted by branch
prediction hardware, then follow the indirect branch with a UD2 instruction, which will stop the
processor from decoding down the fall-through path.

Indirect branches resulting from code constructs (such as switch statements, computed GOTOs or calls
through pointers) can jump to an arbitrary number of locations. If the code sequence is such that the
target destination of a branch goes to the same address most of the time, then the BTB will predict accu-
rately most of the time. Since only one taken (non-fall-through) target can be stored in the BTB, indirect
branches with multiple taken targets may have lower prediction rates.

The effective number of targets stored may be increased by introducing additional conditional branches.
Adding a conditional branch to a target is fruitful if:

® The branch direction is correlated with the branch history leading up to that branch; that is, not just
the last target, but how it got to this branch.

® The source/target pair is common enough to warrant using the extra branch prediction capacity. This
may increase the number of overall branch mispredictions, while improving the misprediction of
indirect branches. The profitability is lower if the number of mispredicting branches is very large.

User/Source Coding Rule 1. (M impact, L generality) If an indirect branch has two or more
common taken targets and at least one of those targets is correlated with branch history leading up to
the branch, then convert the indirect branch to a tree where one or more indirect branches are
preceded by conditional branches to those targets. Apply this “peeling” procedure to the common
target of an indirect branch that correlates to branch history.

The purpose of this rule is to reduce the total number of mispredictions by enhancing the predictability of
branches (even at the expense of adding more branches). The added branches must be predictable for
this to be worthwhile. One reason for such predictability is a strong correlation with preceding branch
history. That is, the directions taken on preceding branches are a good indicator of the direction of the
branch under consideration.

3-9

GENERAL OPTIMIZATION GUIDELINES

Example 3-8 shows a simple example of the correlation between a target of a preceding conditional
branch and a target of an indirect branch.

Example 3-8. Indirect Branch With Two Favored Targets

function ()
{
int n = rand(); // random integer O to RAND_MAX
if (1(n&0x01)){ // n will be O half the times
n=0; // updates branch history to predict taken
}

// indirect branches with multiple taken targets
// may have lower prediction rates

switch (n) {
case 0: handle_0(); break; // common target, correlated with
// branch history that is forward taken
case 1: handle_1(); break; // uncommon
case 3: handle_3(); break; // uncommon
default: handle_other(); // common target

}

Correlation can be difficult to determine analytically, for a compiler and for an assembly language
programmer. It may be fruitful to evaluate performance with and without peeling to get the best perfor-
mance from a coding effort.

An example of peeling out the most favored target of an indirect branch with correlated branch history is
shown in Example 3-9.

Example 3-9. A Peeling Technique to Reduce Indirect Branch Misprediction

function ()
{
int n = rand(); // Random integer 0 to RAND_MAX
if(!(n & Ox01)) THEN
n=0; // n will be 0 half the times
if (In) THEN
handle_O(); // Peel out the most common target
// with correlated branch history
{
switch (n) {
case 1: handle_1(); break; // Uncommon
case 3: handle_3(); break; // Uncommon
default: handle_other(); // Make the favored target in
/1 the fall-through path
}
}
}

3-10

GENERAL OPTIMIZATION GUIDELINES

3.4.1.7 Loop Unrolling

Benefits of unrolling loops are:

¢ Unrolling amortizes the branch overhead, since it eliminates branches and some of the code to
manage induction variables.

® Unrolling allows one to aggressively schedule (or pipeline) the loop to hide latencies. This is useful if
you have enough free registers to keep variables live as you stretch out the dependence chain to
expose the critical path.

¢ Unrolling exposes the code to various other optimizations, such as removal of redundant loads,
common subexpression elimination, and so on.

The potential costs of unrolling loops are:

¢ Excessive unrolling or unrolling of very large loops can lead to increased code size. This can be
harmful if the unrolled loop no longer fits in the trace cache (TC).

¢ Unrolling loops whose bodies contain branches increases demand on BTB capacity. If the number of
iterations of the unrolled loop is 16 or fewer, the branch predictor should be able to correctly predict
branches in the loop body that alternate direction.

Assembly/Compiler Coding Rule 15. (H impact, M generality) Unroll small loops until the
overhead of the branch and induction variable accounts (generally) for less than 10% of the execution
time of the loop.

Assembly/Compiler Coding Rule 16. (H impact, M generality) Avoid unrolling loops excessively;
this may thrash the trace cache or instruction cache.

Assembly/Compiler Coding Rule 17. (M impact, M generality) Unroll loops that are frequently
executed and have a predictable number of iterations to reduce the number of iterations to 16 or fewer.
Do this unless it increases code size so that the working set no longer fits in the trace or instruction
cache. If the loop body contains more than one conditional branch, then unroll so that the number of
iterations is 16/(# conditional branches).

Example 3-10 shows how unrolling enables other optimizations.

Example 3-10. Loop Unrolling

Before unrolling:
doi=1,100
if (imod2==0)thena(i)=x
elsea(i)=y
enddo
After unrolling
doi=1,100,2
a(i)=y
a(i+1)=x
enddo

In this example, the loop that executes 100 times assigns X to every even-numbered element and Y to
every odd-numbered element. By unrolling the loop you can make assignments more efficiently,
removing one branch in the loop body.

3.4.1.8 Compiler Support for Branch Prediction

Compilers generate code that improves the efficiency of branch prediction in Intel processors. The Intel
C++ Compiler accomplishes this by:

® Keeping code and data on separate pages.

® Using conditional move instructions to eliminate branches.

® Generating code consistent with the static branch prediction algorithm.
¢ Inlining where appropriate.

3-11

GENERAL OPTIMIZATION GUIDELINES

¢ Unrolling if the number of iterations is predictable.

With profile-guided optimization, the compiler can lay out basic blocks to eliminate branches for the most
frequently executed paths of a function or at least improve their predictability. Branch prediction need
not be a concern at the source level. For more information, see Intel C++ Compiler documentation.

34.2 Fetch and Decode Optimization

Intel Core microarchitecture provides several mechanisms to increase front end throughput. Techniques
to take advantage of some of these features are discussed below.

34.2.1 Optimizing for Micro-fusion

An Instruction that operates on a register and a memory operand decodes into more micro-ops than its
corresponding register-register version. Replacing the equivalent work of the former instruction using
the register-register version usually require a sequence of two instructions. The latter sequence is likely
to result in reduced fetch bandwidth.

Assembly/Compiler Coding Rule 18. (ML impact, M generality) For improving fetch/decode
throughput, Give preference to memory flavor of an instruction over the register-only flavor of the
same instruction, if such instruction can benefit from micro-fusion.

The following examples are some of the types of micro-fusions that can be handled by all decoders:

¢ All stores to memory, including store immediate. Stores execute internally as two separate micro-
ops: store-address and store-data.

* All “read-modify” (load+op) instructions between register and memory, for example:
ADDPS XMMS, OWORD PTR [RSP+40]
FADD DOUBLE PTR [RDI+RSI*8]
XOR RAX, QWORD PTR [RBP+32]

¢ All instructions of the form “load and jump,” for example:
JMP [RDI+200]
RET

¢ CMP and TEST with immediate operand and memory.
An Intel 64 instruction with RIP relative addressing is not micro-fused in the following cases:

® When an additional immediate is needed, for example:
CMP [RIP+400], 27
MOV [RIP+3000], 142

® When an RIP is needed for control flow purposes, for example:
JMP [RIP+5000000]

In these cases, Intel Core microarchitecture and Intel microarchitecture code name Sandy Bridge
provides a 2 micro-op flow from decoder 0, resulting in a slight loss of decode bandwidth since 2 micro-
op flow must be steered to decoder O from the decoder with which it was aligned.

RIP addressing may be common in accessing global data. Since it will not benefit from micro-fusion,
compiler may consider accessing global data with other means of memory addressing.

34.2.2 Optimizing for Macro-fusion

Macro-fusion merges two instructions to a single micro-op. Intel Core microarchitecture performs this
hardware optimization under limited circumstances.

The first instruction of the macro-fused pair must be a CMP or TEST instruction. This instruction can be
REG-REG, REG-IMM, or a micro-fused REG-MEM comparison. The second instruction (adjacent in the
instruction stream) should be a conditional branch.

Since these pairs are common ingredient in basic iterative programming sequences, macro-fusion
improves performance even on un-recompiled binaries. All of the decoders can decode one macro-fused

3-12

GENERAL OPTIMIZATION GUIDELINES

pair per cycle, with up to three other instructions, resulting in a peak decode bandwidth of 5 instructions
per cycle.

Each macro-fused instruction executes with a single dispatch. This process reduces latency, which in this
case shows up as a cycle removed from branch mispredict penalty. Software also gain all other fusion
benefits: increased rename and retire bandwidth, more storage for instructions in-flight, and power
savings from representing more work in fewer bits.

The following list details when you can use macro-fusion:

CMP or TEST can be fused when comparing:

REG-REG. For example: CMP EAX,ECX; JZ label
REG-IMM. For example: CMP EAX,0x80; JZ label
REG-MEM. For example: CMP EAX,[ECX]; JZ label
MEM-RECG. For example: CMP [EAX],ECX; JZ label

TEST can fused with all conditional jumps.

CMP can be fused with only the following conditional jumps in Intel Core microarchitecture. These
conditional jumps check carry flag (CF) or zero flag (ZF). jump. The list of macro-fusion-capable
conditional jumps are:

JA or JNBE

JAE or JNB or JNC
JEorjz

JNA or |BE
JNAEor JCor |B
JNE or INZ

CMP and TEST can not be fused when comparing MEM-IMM (e.g. CMP [EAX],0x80; JZ label). Macro-
fusion is not supported in 64-bit mode for Intel Core microarchitecture.

Intel microarchitecture code name Nehalem supports the following enhancements in macrofusion:

CMP can be fused with the following conditional jumps (that was not supported in Intel Core
microarchitecture):

* JLor JNGE
* JGE or JNL
* JLE or JNG
* JGor JNLE

Macro-fusion is support in 64-bit mode.

Enhanced macrofusion support in Intel microarchitecture code name Sandy Bridge is summarized in
Table 3-1 with additional information in Section 2.4.2.1 and Example 3-15:

Table 3-1. Macro-Fusible Instructions in Intel Microarchitecture Code Name Sandy Bridge

Instructions TEST |AND |[CMP |[ADD | SUB INC DEC
JO/INO Y Y N N N N N
|C/JB/|AE/INB Y Y Y Y Y N N
JE/)Z/INE/INZ Y Y Y Y Y Y Y
INA/|BE/)A/|NBE Y Y Y Y Y N N
IS/INS/JP/JPE/INP/JPO Y Y N N N N N
JL/INGE/JGE/NL/JLE/ING/|G/JNLE Y Y Y Y Y Y Y

3-13

GENERAL OPTIMIZATION GUIDELINES

Assembly/Compiler Coding Rule 19. (M impact, ML generality) Employ macro-fusion where
possible using instruction pairs that support macro-fusion. Prefer TEST over CMP if possible. Use
unsigned variables and unsigned jumps when possible. Try to logically verify that a variable is non-
negative at the time of comparison. Avoid CMP or TEST of MEM-IMM flavor when possible. However, do
not add other instructions to avoid using the MEM-IMM flavor.

Example 3-11. Macro-fusion, Unsigned Iteration Count

Without Macro-fusion With Macro-fusion

C code for (int' i = 0;i < 1000; i++) for (unsigned int%i=0;i< 1000; i++)
at+; at+;

Disassembly for (inti=0;i < 1000; i++) for (unsigned inti=0;i < 1000; i++)

mov dwordptr[i], 0

jmp First

Loop:

mov eax, dword ptr[i]
add eax, 1

mov dword ptr [i], eax

First:
cmp dword ptr[i], 3€8H3
jge End

at+;
mov eax, dwordptr[a]
addqq eax,1

mov dword ptr[a], eax
jmp Loop

End:

xor eax, eax
mov dword ptr [i], eax
jmp First

Loop:
mov eax, dword ptr[i]
add eax, 1

mov dword ptr [i], eax

First:
cmp eax, 3E8H*

jae End

at+;
mov eax, dword ptr[a]
add eax, 1
mov dword ptr[a], eax
jmp Loop
End:

NOTES:

1. Signed iteration count inhibits macro-fusion.

2. Unsigned iteration count is compatible with macro-fusion.

3. CMP MEM-IMM, JGE inhibit macro-fusion.
4. CMP REG-IMM, JAE permits macro-fusion.

Example 3-12. Macro-fusion, If Statement

Without Macro-fusion

With Macro-fusion

cmp dword ptr[a], 4DH 3
jge Dec

Ccode int'a=7; unsigned int?a=7;
if(a<77) if(a<77)
at++] a++;
else else
a--; a--
Disassembly inta=7; unsigned inta = 7;
mov dwordptr[al, 7 mov dwordptr[al 7
if (@<77) if(a<77)

mov eax, dword ptr[a]
cmp eax, 4DH
jae Dec

3-14

Example 3-12. Macro-fusion, If Statement (Contd.)

GENERAL OPTIMIZATION GUIDELINES

Without Macro-fusion With Macro-fusion
att; a++:
mov eax, dword ptr[a] add eax, 1
add eax, 1 mov dword ptr [a], eax
mov dword ptr [a], eax else
else jmp End
jmp End a-;
a--; Dec:
Dec: sub eax, 1
mov eax, dword ptr[a] mov dword ptr [a], eax
sub eax, 1 End::
mov dword ptr[a], eax
End::

NOTES:
1. Signed iteration count inhibits macro-fusion.

2. Unsigned iteration count is compatible with macro-fusion.

3. CMP MEM-IMM, JGE inhibit macro-fusion.

Assembly/Compiler Coding Rule 20. (M impact, ML generality) Software can enable macro
fusion when it can be logically determined that a variable is non-negative at the time of comparison;
use TEST appropriately to enable macro-fusion when comparing a variable with 0.

Example 3-13. Macro-fusion, Signed Variable

Without Macro-fusion With Macro-fusion

test ecx, ecx test ecx, ecx

jle OutSideThelF jle OutSideThelF
cmp ecx, 64H cmp ecx, 64H

jge OutSideThelF jae OutSideThelF
<|F BLOCK CODE> <|F BLOCK CODE>
OutSideThelF: OutSideThelF:

For either signed or unsigned variable ‘a’; “CMP a,0” and “TEST a,a” produce the same result as far as the
flags are concerned. Since TEST can be macro-fused more often, software can use “TEST a,a” to replace
“CMP a,0” for the purpose of enabling macro-fusion.

Example 3-14. Macro-fusion, Signed Comparison

C Code Without Macro-fusion With Macro-fusion
if @==0) cmpa, 0 testa, a

jne Ibl jne Ibl

Ibl: Ibl:
if (a>=0) cmpa, 0 testa, a

jllbl; jlibl

Ibl: Ibl:

Intel microarchitecture code name Sandy Bridge enables more arithmetic and logic instructions to
macro-fuse with conditional branches. In loops where the ALU ports are already congested, performing
one of these macro-fusions can relieve the pressure, as the macro-fused instruction consumes only port
5, instead of an ALU port plus port 5.

In Example 3-15, the “add/cmp/jnz” loop contains two ALU instructions that can be dispatched via either
port O, 1, 5. So there is higher probability of port 5 might bind to either ALU instruction causing JNZ to

3-15

GENERAL OPTIMIZATION GUIDELINES

wait a cycle. The “sub/jnz” loop, the likelihood of ADD/SUB/JNZ can be dispatched in the same cycle is
increased because only SUB is free to bind with either port O, 1, 5.

Example 3-15. Additional Macro-fusion Benefit in Intel Microarchitecture Code Name Sandy Bridge

Add + cmp + jnz alternative Loop control with sub + jnz
lea rdx, buff lea rdx, buff - 4

xor rcx, rex xor rcx, LEN

xor eax, eax Xor eax, eax

loop: loop:

add eax, [rdx + 4 * rcx] add eax, [rdx + 4 * rcx]
add rex, 1 sub rex, 1

cmp rcx, LEN jnz loop

jnz loop

34.23 Length-Changing Prefixes (LCP)

The length of an instruction can be up to 15 bytes in length. Some prefixes can dynamically change the
length of an instruction that the decoder must recognize. Typically, the pre-decode unit will estimate the
length of an instruction in the byte stream assuming the absence of LCP. When the predecoder encoun-
ters an LCP in the fetch line, it must use a slower length decoding algorithm. With the slower length
decoding algorithm, the predecoder decodes the fetch in 6 cycles, instead of the usual 1 cycle. Normal
queuing throughout of the machine pipeline generally cannot hide LCP penalties.

The prefixes that can dynamically change the length of a instruction include:
® Operand size prefix (Ox66).
® Address size prefix (0x67).

The instruction MOV DX, 01234h is subject to LCP stalls in processors based on Intel Core microarchitec-
ture, and in Intel Core Duo and Intel Core Solo processors. Instructions that contain imm16 as part of
their fixed encoding but do not require LCP to change the immediate size are not subject to LCP stalls.
The REX prefix (4xh) in 64-bit mode can change the size of two classes of instruction, but does not cause
an LCP penalty.

If the LCP stall happens in a tight loop, it can cause significant performance degradation. When decoding
is not a bottleneck, as in floating-point heavy code, isolated LCP stalls usually do not cause performance
degradation.

Assembly/Compiler Coding Rule 21. (MH impact, MH generality) Favor generating code using
imm8 or imm32 values instead of imm16 values.

If imm16 is needed, load equivalent imm32 into a register and use the word value in the register instead.

Double LCP Stalls

Instructions that are subject to LCP stalls and cross a 16-byte fetch line boundary can cause the LCP stall
to trigger twice. The following alignment situations can cause LCP stalls to trigger twice:

® Aninstruction is encoded with a MODR/M and SIB byte, and the fetch line boundary crossing is
between the MODR/M and the SIB bytes.

® Aninstruction starts at offset 13 of a fetch line references a memory location using register and
immediate byte offset addressing mode.

The first stall is for the 1st fetch line, and the 2nd stall is for the 2nd fetch line. A double LCP stall causes
a decode penalty of 11 cycles.

3-16

GENERAL OPTIMIZATION GUIDELINES

The following examples cause LCP stall once, regardless of their fetch-line location of the first byte of the
instruction:

ADD DX, 01234H

ADD word ptr [EDX], 01234H

ADD word ptr 012345678H[EDX], 01234H

ADD word ptr [012345678H], 01234H

The following instructions cause a double LCP stall when starting at offset 13 of a fetch line:

ADD word ptr [EDX+ESI], 01234H
ADD word ptr 012H[EDX], 01234H
ADD word ptr 012345678H[EDX+ESI], 01234H

To avoid double LCP stalls, do not use instructions subject to LCP stalls that use SIB byte encoding or
addressing mode with byte displacement.

False LCP Stalls

False LCP stalls have the same characteristics as LCP stalls, but occur on instructions that do not have
any imm16 value.

False LCP stalls occur when (a) instructions with LCP that are encoded using the F7 opcodes, and (b) are
located at offset 14 of a fetch line. These instructions are: not, neg, div, idiv, mul, and imul. False LCP
experiences delay because the instruction length decoder can not determine the length of the instruction
before the next fetch line, which holds the exact opcode of the instruction in its MODR/M byte.

The following techniques can help avoid false LCP stalls:
® Upcast all short operations from the F7 group of instructions to long, using the full 32 bit version.
¢ Ensure that the F7 opcode never starts at offset 14 of a fetch line.

Assembly/Compiler Coding Rule 22. (M impact, ML generality) Ensure instructions using OxF7
opcode byte does not start at offset 14 of a fetch line; and avoid using these instruction to operate on
16-bit data, upcast short data to 32 bits.

Example 3-16. Avoiding False LCP Delays with OxF7 Group Instructions

A Sequence Causing Delay in the Decoder Alternate Sequence to Avoid Delay
neg word ptr a movsx eax, word ptr a

neg eax

mov word ptr a3, AX

3.4.24 Optimizing the Loop Stream Detector (LSD)

Loops that fit the following criteria are detected by the LSD and replayed from the instruction queue to
feed the decoder in Intel Core microarchitecture:

® Must be less than or equal to four 16-byte fetches.

® Must be less than or equal to 18 instructions.

¢ Can contain no more than four taken branches and none of them can be a RET.

® Should usually have more than 64 iterations.

Loop Stream Detector in Intel microarchitecture code nhame Nehalem is improved by:

¢ Caching decoded micro-operations in the instruction decoder queue (IDQ, see Section 2.6.2) to feed
the rename/alloc stage.

® The size of the LSD is increased to 28 micro-ops.

3-17

GENERAL OPTIMIZATION GUIDELINES

The LSD and micro-op queue implementation continue to improve in Sandy Bridge and Haswell microar-
chitectures. They have the following characteristics:

Table 3-2. Small Loop Criteria Detected by Sandy Bridge and Haswell Microarchitectures

Sandy Bridge and lvy Bridge microarchitectures Haswell microarchitecture

Up to 8 chunk fetches of 32 instruction bytes 8 chunk fetches if HTT active, 11 chunk fetched if HTT
off

Up to 28 micro ops 28 micro-ops if HTT active, 56 micro-ops if HTT off

All micro-ops resident in Decoded Icache (i.e. DSB), but not All micro-ops resident in DSB, including micro-ops from

from MSROM MSRROM

No more than 8 taken branches Relaxed

Exclude CALL and RET Exclude CALL and RET

Mismatched stack operation disqualify Same

Many calculation-intensive loops, searches and software string moves match these characteristics. These
loops exceed the BPU prediction capacity and always terminate in a branch misprediction.

Assembly/Compiler Coding Rule 23. (MH impact, MH generality) Break up a loop long sequence
of instructions into loops of shorter instruction blocks of no more than the size of LSD.

Assembly/Compiler Coding Rule 24. (MH impact, M generality) Avoid unrolling loops containing
LCP stalls, if the unrolled block exceeds the size of LSD.

3.4.25 Exploit LSD Micro-op Emission Bandwidth in Intel® Microarchitecture Code Name
Sandy Bridge

The LSD holds micro-ops that construct small “infinite” loops. Micro-ops from the LSD are allocated in the
out-of-order engine. The loop in the LSD ends with a taken branch to the beginning of the loop. The taken
branch at the end of the loop is always the last micro-op allocated in the cycle. The instruction at the
beginning of the loop is always allocated at the next cycle. If the code performance is bound by front end
bandwidth, unused allocation slots result in a bubble in allocation, and can cause performance degrada-
tion.

Allocation bandwidth in Intel microarchitecture code name Sandy Bridge is four micro-ops per cycle.
Performance is best, when the number of micro-ops in the LSD result in the least number of unused allo-
cation slots. You can use loop unrolling to control the number of micro-ops that are in the LSD.

In the Example 3-17, the code sums all array elements. The original code adds one element per iteration.
It has three micro-ops per iteration, all allocated in one cycle. Code throughput is one load per cycle.

When unrolling the loop once there are five micro-ops per iteration, which are allocated in two cycles.
Code throughput is still one load per cycle. Therefore there is no performance gain.

When unrolling the loop twice there are seven micro-ops per iteration, still allocated in two cycles. Since
two loads can be executed in each cycle this code has a potential throughput of three load operations in
two cycles.

Example 3-17. Unrolling Loops in LSD to Optimize Emission Bandwidth

No Unrolling Unroll once Unroll Twice
Ip: add eax, [rsi + 4* rcx] Ip: add eax, [rsi + 4* rcx] Ip: add eax, [rsi + 4* rcx]
dec rcx add eax, [rsi + 4* rcx +4] add eax, [rsi + 4* rcx +4]
inzlp add rcx, -2 add eax, [rsi + 4* rcx + 8]
inzlp add rcx, -3
inzlp

GENERAL OPTIMIZATION GUIDELINES

3.4.2.6 Optimization for Decoded ICache

The decoded ICache is a new feature in Intel microarchitecture code name Sandy Bridge. Running the
code from the Decoded ICache has two advantages:

¢ Higher bandwidth of micro-ops feeding the out-of-order engine.
® The front end does not need to decode the code that is in the Decoded ICache. This saves power.

There is overhead in switching between the Decoded ICache and the legacy decode pipeline. If your code
switches frequently between the front end and the Decoded ICache, the penalty may be higher than
running only from the legacy pipeline.

To ensure “hot” code is feeding from the decoded ICache:

¢ Make sure each hot code block is less than about 500 instructions. Specifically, do not unroll to more
than 500 instructions in a loop. This should enable Decoded ICache residency even when hyper-
threading is enabled.

® For applications with very large blocks of calculations inside a loop, consider loop-fission: split the
loop into multiple loops that fit in the Decoded ICache, rather than a single loop that overflows.

¢ If an application can be sure to run with only one thread per core, it can increase hot code block size
to about 1000 instructions.

Dense Read-Modify-Write Code

The Decoded ICache can hold only up to 18 micro-ops per each 32 byte aligned memory chunk. There-
fore, code with a high concentration of instructions that are encoded in a small number of bytes, yet have
many micro-ops, may overflow the 18 micro-op limitation and not enter the Decoded ICache. Read-
modify-write (RMW) instructions are a good example of such instructions.

RMW instructions accept one memory source operand, one register source operand, and use the source
memory operand as the destination. The same functionality can be achieved by two or three instructions:
the first reads the memory source operand, the second performs the operation with the second register
source operand, and the last writes the result back to memory. These instructions usually result in the
same number of micro-ops but use more bytes to encode the same functionality.

One case where RMW instructions may be used extensively is when the compiler optimizes aggressively
for code size.

Here are some possible solutions to fit the hot code in the Decoded ICache:

® Replace RMW instructions with two or three instructions that have the same functionality. For
example, “adc [rdi], rcx” is only three bytes long; the equivalent sequence “adc rax, [rdi]“ + “mov
[rdi], rax“ has a footprint of six bytes.

¢ Align the code so that the dense part is broken down among two different 32-byte chunks. This
solution is useful when using a tool that aligns code automatically, and is indifferent to code changes.

® Spread the code by adding multiple byte NOPs in the loop. Note that this solution adds micro-ops for
execution.

Align Unconditional Branches for Decoded ICache

For code entering the Decoded ICache, each unconditional branch is the last micro-op occupying a
Decoded ICache Way. Therefore, only three unconditional branches per a 32 byte aligned chunk can
enter the Decoded ICache.

Unconditional branches are frequent in jump tables and switch declarations. Below are examples for
these constructs, and methods for writing them so that they fit in the Decoded ICache.

Compilers create jump tables for C++ virtual class methods or DLL dispatch tables. Each unconditional
branch consumes five bytes; therefore up to seven of them can be associated with a 32-byte chunk. Thus
jump tables may not fit in the Decoded ICache if the unconditional branches are too dense in each
32Byte-aligned chunk. This can cause performance degradation for code executing before and after the
branch table.

The solution is to add multi-byte NOP instructions among the branches in the branch table. This may
increases code size and should be used cautiously. However, these NOPs are not executed and therefore
have no penalty in later pipe stages.

3-19

GENERAL OPTIMIZATION GUIDELINES

Switch-Case constructs represents a similar situation. Each evaluation of a case condition results in an
unconditional branch. The same solution of using multi-byte NOP can apply for every three consecutive
unconditional branches that fits inside an aligned 32-byte chunk.

Two Branches in a Decoded I1Cache Way

The Decoded ICache can hold up to two branches in a way. Dense branches in a 32 byte aligned chunk,
or their ordering with other instructions may prohibit all the micro-ops of the instructions in the chunk
from entering the Decoded ICache. This does not happen often. When it does happen, you can space the
code with NOP instructions where appropriate. Make sure that these NOP instructions are not part of hot
code.

Assembly/Compiler Coding Rule 25. (M impact, M generality) Avoid putting explicit references to
ESP in a sequence of stack operations (POP, PUSH, CALL, RET).

34.2.7 Other Decoding Guidelines

Assembly/Compiler Coding Rule 26. (ML impact, L generality) Use simple instructions that are
less than eight bytes in length.

Assembly/Compiler Coding Rule 27. (M impact, MH generality) Avoid using prefixes to change
the size of immediate and displacement.

Long instructions (more than seven bytes) may limit the number of decoded instructions per cycle. Each
prefix adds one byte to the length of instruction, possibly limiting the decoder’s throughput. In addition,
multiple prefixes can only be decoded by the first decoder. These prefixes also incur a delay when
decoded. If multiple prefixes or a prefix that changes the size of an immediate or displacement cannot be
avoided, schedule them behind instructions that stall the pipe for some other reason.

3.5 OPTIMIZING THE EXECUTION CORE

The superscalar, out-of-order execution core(s) in recent generations of microarchitectures contain
multiple execution hardware resources that can execute multiple micro-ops in parallel. These resources
generally ensure that micro-ops execute efficiently and proceed with fixed latencies. General guidelines
to make use of the available parallelism are:

® Follow the rules (see Section 3.4) to maximize useful decode bandwidth and front end throughput.
These rules include favouring single micro-op instructions and taking advantage of micro-fusion,
Stack pointer tracker and macro-fusion.

® Maximize rename bandwidth. Guidelines are discussed in this section and include properly dealing
with partial registers, ROB read ports and instructions which causes side-effects on flags.

¢ Scheduling recommendations on sequences of instructions so that multiple dependency chains are
alive in the reservation station (RS) simultaneously, thus ensuring that your code utilizes maximum
parallelism.

¢ Avoid hazards, minimize delays that may occur in the execution core, allowing the dispatched micro-
ops to make progress and be ready for retirement quickly.

3.5.1 Instruction Selection

Some execution units are not pipelined, this means that micro-ops cannot be dispatched in consecutive
cycles and the throughput is less than one per cycle.

It is generally a good starting point to select instructions by considering the number of micro-ops associ-
ated with each instruction, favoring in the order of: single micro-op instructions, simple instruction with
less then 4 micro-ops, and last instruction requiring microsequencer ROM (micro-ops which are executed
out of the microsequencer involve extra overhead).

3-20

GENERAL OPTIMIZATION GUIDELINES

Assembly/Compiler Coding Rule 28. (M impact, H generality) Favor single-micro-operation
instructions. Also favor instruction with shorter latencies.

A compiler may be already doing a good job on instruction selection. If so, user intervention usually is not
necessary.

Assembly/Compiler Coding Rule 29. (M impact, L generality) Avoid prefixes, especially multiple
non-0F-prefixed opcodes.

Assembly/Compiler Coding Rule 30. (M impact, L generality) Do not use many segment
registers.

Assembly/Compiler Coding Rule 31. (M impact, M generality) Avoid using complex instructions
(for example, enter, leave, or loop) that have more than four pops and require multiple cycles to
decode. Use sequences of simple instructions instead.

Assembly/Compiler Coding Rule 32. (MH impact, M generality) Use push/pop to manage stack
space and address adjustments between function calls/returns instead of enter/leave. Using enter
instruction with non-zero immediates can experience significant delays in the pipeline in addition to
misprediction.

Theoretically, arranging instructions sequence to match the 4-1-1-1 template applies to processors
based on Intel Core microarchitecture. However, with macro-fusion and micro-fusion capabilities in the
front end, attempts to schedule instruction sequences using the 4-1-1-1 template will likely provide
diminishing returns.

Instead, software should follow these additional decoder guidelines:

®* If you need to use multiple micro-op, non-microsequenced instructions, try to separate by a few
single micro-op instructions. The following instructions are examples of multiple micro-op instruction
not requiring micro-sequencer:

ADC/SBB
CMOVcc
Read-modify-write instructions
® If a series of multiple micro-op instructions cannot be separated, try breaking the series into a
different equivalent instruction sequence. For example, a series of read-modify-write instructions
may go faster if sequenced as a series of read-modify + store instructions. This strategy could
improve performance even if the new code sequence is larger than the original one.

3.5.1.1 Integer Divide

Typically, an integer divide is preceded by a CWD or CDQ instruction. Depending on the operand size,
divide instructions use DX:AX or EDX:EAX for the dividend. The CWD or CDQ instructions sign-extend AX
or EAX into DX or EDX, respectively. These instructions have denser encoding than a shift and move
would be, but they generate the same number of micro-ops. If AX or EAX is known to be positive, replace
these instructions with:

xor dx, dx
or
xor edx, edx

Modern compilers typically can transform high-level language expression involving integer division where
the divisor is a known integer constant at compile time into a faster sequence using IMUL instruction
instead. Thus programmers should minimize integer division expression with divisor whose value can not
be known at compile time.

Alternately, if certain known divisor value are favored over other unknown ranges, software may consider
isolating the few favored, known divisor value into constant-divisor expressions.

Section 10.2.4 describes more detail of using MUL/IMUL to replace integer divisions.

3-21

GENERAL OPTIMIZATION GUIDELINES

3.5.1.2 Using LEA

In Intel microarchitecture code name Sandy Bridge, there are two significant changes to the perfor-
mance characteristics of LEA instruction:

® LEA can be dispatched via port 1 and 5 in most cases, doubling the throughput over prior genera-
tions. However this apply only to LEA instructions with one or two source operands.

Example 3-18. Independent Two-Operand LEA Example

mov edx, N
mov eax, X
mov ecx, Y

loop:
lea ecx, [ecx + ecx] /] ecx = ecx*2
lea eax, [eax + eax *4] // eax = eax*5
and ecx, Oxff
and eax, Oxff
dec edx
ig loop

® For LEA instructions with three source operands and some specific situations, instruction latency has
increased to 3 cycles, and must dispatch via port 1:

— LEA that has all three source operands: base, index, and offset.
— LEA that uses base and index registers where the base is EBP, RBP, or R13.
— LEA that uses RIP relative addressing mode.

— LEA that uses 16-bit addressing mode.

3-22

Example 3-19. Alternative to Three-Operand LEA

GENERAL OPTIMIZATION GUIDELINES

3 operand LEA is slower Two-operand LEA alternative Alternative 2
#defineK 1 #defineK 1 #defineK 1
uint32an=0; uint32an=0; uint32 an = 0;
uint32 N=mi_N; uint32 N=mi_N; uint32 N=mi_N;
mov ecx, N mov ecx, N mov ecx, N
Xor esi, esi; Xor esi, esi; Xor esi, esi;
xor edx, edx; xor edx, edx; mov edx, K;
cmp ecx, 2; cmp ecx, 2; cmp ecx, 2;
jb finished; jb finished; jb finished;
dec ecx; dec ecx; mov eax, 2

dec ecx;
loop1: loop1: loop1:

mov edi, esi; mov edi, esi; mov edi, esi;

lea esi, [K+esi+edx]; lea esi, [K+edx]; lea esi, [esi+edx];

and esi, OxFF; lea esi, [esi+edx]; and esi, OxFF;
mov edx, edi; and esi, OxFF; lea edx, [edi +K];
dec ecx; mov edx, edi; dec ecx;

jnz loop1; dec ecx; jnz loop1;
finished: jnz loop1; finished:

mov [an] ,esi; finished: mov [an] ,esi;

mov [an] ,esi;

In some cases with processor based on Intel NetBurst microarchitecture, the LEA instruction or a
sequence of LEA, ADD, SUB and SHIFT instructions can replace constant multiply instructions. The LEA
instruction can also be used as a multiple operand addition instruction, for example:

LEA ECX, [EAX + EBX + 4 + A]

Using LEA in this way may avoid register usage by not tying up registers for operands of arithmetic
instructions. This use may also save code space.

If the LEA instruction uses a shift by a constant amount then the latency of the sequence of pops is
shorter if adds are used instead of a shift, and the LEA instruction may be replaced with an appropriate
sequence of pops. This, however, increases the total number of pops, leading to a trade-off.

Assembly/Compiler Coding Rule 33. (ML impact, L generality) If an LEA instruction using the
scaled index is on the critical path, a sequence with ADDs may be better. If code density and bandwidth
out of the trace cache are the critical factor, then use the LEA instruction.

3.5.1.3 ADC and SBB in Intel® Microarchitecture Code Name Sandy Bridge

The throughput of ADC and SBB in Intel microarchitecture code name Sandy Bridge is 1 cycle, compared
to 1.5-2 cycles in prior generation. These two instructions are useful in numeric handling of integer data
types that are wider than the maximum width of native hardware.

3-23

GENERAL OPTIMIZATION GUIDELINES

Example 3-20. Examples of 512-bit Additions

//Add 64-bit to 512 Number

lea rsi, g,.ongCounter
lea rdi, gStepValue
mov rax, [rdi]
Xor rcx, rex

oop_start:
mov r10, [rsi+rex]
add r10, rax
mov [rsi+rex], r10
mov r10, [rsi+rcx+8]
adc r10,0
mov [rsi+rex+8],r10

| mov r10, [rsi+rcx+16]
adc r10,0
mov [rsi+rcx+16], 110
mov r10, [rsi+rcx+24]
adc r10,0
mov [rsi+rcx+24],r10
mov r10, [rsi+rcx+32]
adc r10,0
mov [rsi+rex+32], 110

mov r10, [rsi+rcx+40]
adcr10,0
mov [rsi+rcx+40],r10

mov r10, [rsi+rcx+48]
adcr10,0
mov [rsi+rcx+48],r10

mov r10, [rsi+rcx+56]
adcr10,0

mov [rsi+rcx+56],r10
add rcx, 64

cmp rex, SIZE

jnz loop_start

/1'512-bit Addition

loop1:
mov rax, [StepValue]
add rax, [LongCounter]

mov LongCounter, rax
mov rax, [StepValue+8]
adc rax, [LongCounter+8]
mov LongCounter+8, rax
mov rax, [StepValue+16]

adc rax, [LongCounter+16]
mov LongCounter+16, rax
mov rax, [StepValue+24]
adc rax, [LongCounter+24]

mov LongCounter+24, rax
mov rax, [StepValue+32]
adc rax, [LongCounter+32]

mov LongCounter+32, rax
mov rax, [StepValue+40]
adc rax, [LongCounter+40]

mov LongCounter+40, rax
mov rax, [StepValue+48]
adc rax, [LongCounter+48]

mov LongCounter+48, rax
mov rax, [StepValue+56]
adc rax, [LongCounter+56]

mov LongCounter+56, rax
dec rcx
jnz loop1

3.5.1.4 Bitwise Rotation

Bitwise rotation can choose between rotate with count specified in the CL register, an immediate constant
and by 1 bit. Generally, The rotate by immediate and rotate by register instructions are slower than

rotate by 1 bit. The rotate by 1 instruction has the same latency as a shift.

3-24

GENERAL OPTIMIZATION GUIDELINES

Assembly/Compiler Coding Rule 34. (ML impact, L generality) Avoid ROTATE by register or
ROTATE by immediate instructions. If possible, replace with a ROTATE by 1 instruction.

In Intel microarchitecture code name Sandy Bridge, ROL/ROR by immediate has 1-cycle throughput,
SHLD/SHRD using the same register as source and destination by an immediate constant has 1-cycle
latency with 0.5 cycle throughput. The “ROL/ROR reg, imma8” instruction has two micro-ops with the
latency of 1-cycle for the rotate register result and 2-cycles for the flags, if used.

In Intel microarchitecture code name lvy Bridge, The “ROL/ROR reg, imm8” instruction with immediate
greater than 1, is one micro-op with one-cycle latency when the overflow flag result is used. When the
immediate is one, dependency on the overflow flag result of ROL/ROR by a subsequent instruction will
see the ROL/ROR instruction with two-cycle latency.

3.5.1.5 Variable Bit Count Rotation and Shift

In Intel microarchitecture code name Sandy Bridge, The “ROL/ROR/SHL/SHR reg, cl” instruction has
three micro-ops. When the flag result is not needed, one of these micro-ops may be discarded, providing
better performance in many common usages. When these instructions update partial flag results that are
subsequently used, the full three micro-ops flow must go through the execution and retirement pipeline,
experiencing slower performance. In Intel microarchitecture code name lvy Bridge, executing the full
three micro-ops flow to use the updated partial flag result has additional delay. Consider the looped
sequence below:
loop:

shl eax, cl

add ebx, eax

dec edx ; DEC does not update carry, causing SHL to execute slower three micro-ops flow

jnz loop

The DEC instruction does not modify the carry flag. Consequently, the SHL EAX, CL instruction needs to
execute the three micro-ops flow in subsequent iterations. The SUB instruction will update all flags. So
replacing DEC with SUB will allow SHL EAX, CL to execute the two micro-ops flow.

3.5.1.6 Address Calculations

For computing addresses, use the addressing modes rather than general-purpose computations. Inter-
nally, memory reference instructions can have four operands:

® Relocatable load-time constant.
® Immediate constant.

¢ Base register.

® Scaled index register.

Note that the latency and throughput of LEA with more than two operands are slower (see Section
3.5.1.2) in Intel microarchitecture code name Sandy Bridge. Addressing modes that uses both base and
index registers will consume more read port resource in the execution engine and may experience more
stalls due to availability of read port resources. Software should take care by selecting the speedy version
of address calculation.

In the segmented model, a segment register may constitute an additional operand in the linear address
calculation. In many cases, several integer instructions can be eliminated by fully using the operands of
memory references.

3-25

GENERAL OPTIMIZATION GUIDELINES

3.5.1.7 Clearing Registers and Dependency Breaking Idioms

Code sequences that modifies partial register can experience some delay in its dependency chain, but
can be avoided by using dependency breaking idioms.

In processors based on Intel Core microarchitecture, a number of instructions can help clear execution
dependency when software uses these instruction to clear register content to zero. The instructions
include:

XOR REG, REG

SUB REG, REG

XORPS/PD XMMREG, XMMREG

PXOR XMMREG, XMMREG

SUBPS/PD XMMREG, XMMREG

PSUBB/W/D/Q XMMREG, XMMREG

In processors based on Intel microarchitecture code name Sandy Bridge, the instruction listed above plus
equivalent AVX counter parts are also zero idioms that can be used to break dependency chains. Further-
more, they do not consume an issue port or an execution unit. So using zero idioms are preferable than
moving O’s into the register. The AVX equivalent zero idioms are:

VXORPS/PD XMMREG, XMMREG

VXORPS/PD YMMREG, YMMREG

VPXOR XMMREG, XMMREG

VSUBPS/PD XMMREG, XMMREG

VSUBPS/PD YMMREG, YMMREG

VPSUBB/W/D/Q XMMREG, XMMREG

In Intel Core Solo and Intel Core Duo processors, the XOR, SUB, XORPS, or PXOR instructions can be
used to clear execution dependencies on the zero evaluation of the destination register.

The Pentium 4 processor provides special support for XOR, SUB, and PXOR operations when executed
within the same register. This recognizes that clearing a register does not depend on the old value of the
register. The XORPS and XORPD instructions do not have this special support. They cannot be used to
break dependence chains.

Assembly/Compiler Coding Rule 35. (M impact, ML generality) Use dependency-breaking-idiom
instructions to set a register to 0, or to break a false dependence chain resulting from re-use of
registers. In contexts where the condition codes must be preserved, move 0O into the register instead.
This requires more code space than using XOR and SUB, but avoids setting the condition codes.

Example 3-21 of using pxor to break dependency idiom on a XMM register when performing negation on
the elements of an array.
int a[4096], b[4096], c[4096];
For (inti=0;i<4096;i++)
Ci] = - (ali] + bfi])

3-26

GENERAL OPTIMIZATION GUIDELINES

Example 3-21. Clearing Register to Break Dependency While Negating Array Elements

Negation (-x = (x XOR (-1)) - (-1) without breaking
dependency

Negation (-x = 0 -x) using PXOR reg, reg breaks
dependency

Lea eax, a

lea ecx, b

lea edi, c

xor edx, edx

movdga xmm7, allone

Ip:

movdga xmmO, [eax + edx]
paddd xmmO, [ecx + edX]
pxor xmmO, xmm?7

psubd xmmO, xmm7
movdga [edi + edx], xmmO
add edx, 16

cmp edx, 4096

ilp

lea eax, a
lea ecx, b
lea edi, c
xor edx, edx

Ip:

movdga xmmO, [eax + edx]
paddd xmmO, [ecx + edX]
pxor xmm?7, xmm?7

psubd xmm7, xmmO
movdqa [edi + edx], xmm7
add edx,16

cmp edx, 4096

ilp

Assembly/Compiler Coding Rule 36. (M impact, MH generality) Break dependences on portions
of registers between instructions by operating on 32-bit registers instead of partial registers. For
moves, this can be accomplished with 32-bit moves or by using MOVZX.

Sometimes sign-extended semantics can be maintained by zero-extending operands. For example, the C
code in the following statements does not need sign extension, nor does it need prefixes for operand size

overrides:

static short INT a, b;
IF(@==b){

}

Code for comparing these 16-bit operands might be:

MOVZW EAX, [a]
MOVZW EBX, [b]
CMP EAX, EBX

These circumstances tend to be common. However, the technique will not work if the compare is for
greater than, less than, greater than or equal, and so on, or if the values in eax or ebx are to be used in
another operation where sign extension is required.

Assembly/Compiler Coding Rule 37. (M impact, M generality) Try to use zero extension or
operate on 32-bit operands instead of using moves with sign extension.

The trace cache can be packed more tightly when instructions with operands that can only be repre-

sented as 32 bits are not adjacent.

Assembly/Compiler Coding Rule 38. (ML impact, L generality) Avoid placing instructions that
use 32-bit immediates which cannot be encoded as sign-extended 16-bit immediates near each other.
Try to schedule pops that have no immediate immediately before or after pops with 32-bit immediates.

3.5.1.8 Compares

Use TEST when comparing a value in a register with zero. TEST essentially ANDs operands together
without writing to a destination register. TEST is preferred over AND because AND produces an extra
result register. TEST is better than CMP ..., O because the instruction size is smaller.

3-27

GENERAL OPTIMIZATION GUIDELINES

Use TEST when comparing the result of a logical AND with an immediate constant for equality or
inequality if the register is EAX for cases such as:

IF (AVAR & 8) { }

The TEST instruction can also be used to detect rollover of modulo of a power of 2. For example, the C
code:

IF((AVAR% 16)==0){}
can be implemented using:

TEST EAX, OxOF
JNZ Afterlf

Using the TEST instruction between the instruction that may modify part of the flag register and the
instruction that uses the flag register can also help prevent partial flag register stall.
Assembly/Compiler Coding Rule 39. (ML impact, M generality) Use the TEST instruction instead
of AND when the result of the logical AND is not used. This saves pops in execution. Use a TEST of a
register with itself instead of a CMP of the register to zero, this saves the need to encode the zero and
saves encoding space. Avoid comparing a constant to a memory operand. It is preferable to load the
memory operand and compare the constant to a register.

Often a produced value must be compared with zero, and then used in a branch. Because most Intel
architecture instructions set the condition codes as part of their execution, the compare instruction may
be eliminated. Thus the operation can be tested directly by a JCC instruction. The notable exceptions are
MOV and LEA. In these cases, use TEST.

Assembly/Compiler Coding Rule 40. (ML impact, M generality) Eliminate unnecessary compare
with zero instructions by using the appropriate conditional jump instruction when the flags are already
set by a preceding arithmetic instruction. If necessary, use a TEST instruction instead of a compare. Be
certain that any code transformations made do not introduce problems with overflow.

3.5.1.9 Using NOPs

Code generators generate a no-operation (NOP) to align instructions. Examples of NOPs of different
lengths in 32-bit mode are shown below:
1-byte: XCHG EAX, EAX
2-byte: 66 NOP
3-byte: LEA REG, 0 (REG) (8-bit displacement)
4-byte: NOP DWORD PTR [EAX + 0] (8-bit displacement)
5-byte: NOP DWORD PTR [EAX + EAX*1 + 0] (8-bit displacement)
6-byte: LEA REG, 0 (REG) (32-bit displacement)
7-byte: NOP DWORD PTR [EAX + 0] (32-bit displacement)
8-byte: NOP DWORD PTR [EAX + EAX*1 + 0] (32-bit displacement)
9-byte: NOP WORD PTR [EAX + EAX*1 + 0] (32-bit displacement)

These are all true NOPs, having no effect on the state of the machine except to advance the EIP. Because
NOPs require hardware resources to decode and execute, use the fewest number to achieve the desired
padding.

The one byte NOP:[XCHG EAX,EAX] has special hardware support. Although it still consumes a pop and
its accompanying resources, the dependence upon the old value of EAX is removed. This pop can be
executed at the earliest possible opportunity, reducing the number of outstanding instructions and is the
lowest cost NOP.

The other NOPs have no special hardware support. Their input and output registers are interpreted by the
hardware. Therefore, a code generator should arrange to use the register containing the oldest value as
input, so that the NOP will dispatch and release RS resources at the earliest possible opportunity.

3-28

GENERAL OPTIMIZATION GUIDELINES

Try to observe the following NOP generation priority:

¢ Select the smallest number of NOPs and pseudo-NOPs to provide the desired padding.
¢ Select NOPs that are least likely to execute on slower execution unit clusters.

® Select the register arguments of NOPs to reduce dependencies.

3.5.1.10 Mixing SIMD Data Types

Previous microarchitectures (before Intel Core microarchitecture) do not have explicit restrictions on
mixing integer and floating-point (FP) operations on XMM registers. For Intel Core microarchitecture,
mixing integer and floating-point operations on the content of an XMM register can degrade perfor-
mance. Software should avoid mixed-use of integer/FP operation on XMM registers. Specifically:

® Use SIMD integer operations to feed SIMD integer operations. Use PXOR for idiom.
¢ Use SIMD floating-point operations to feed SIMD floating-point operations. Use XORPS for idiom.

® When floating-point operations are bitwise equivalent, use PS data type instead of PD data type.
MOVAPS and MOVAPD do the same thing, but MOVAPS takes one less byte to encode the instruction.

3.5.1.11 Spill Scheduling

The spill scheduling algorithm used by a code generator will be impacted by the memory subsystem. A
spill scheduling algorithm is an algorithm that selects what values to spill to memory when there are too
many live values to fit in registers. Consider the code in Example 3-22, where it is necessary to spill
either A, B, or C.

Example 3-22. Spill Scheduling Code

LOOP
C:=..
B:=..
A=A+

For modern microarchitectures, using dependence depth information in spill scheduling is even more
important than in previous processors. The loop-carried dependence in A makes it especially important
that A not be spilled. Not only would a store/load be placed in the dependence chain, but there would also
be a data-not-ready stall of the load, costing further cycles.

Assembly/Compiler Coding Rule 41. (H impact, MH generality) For small loops, placing loop
invariants in memory is better than spilling loop-carried dependencies.

A possibly counter-intuitive result is that in such a situation it is better to put loop invariants in memory
than in registers, since loop invariants never have a load blocked by store data that is not ready.

3.5.1.12 Zero-Latency MOV Instructions

In processors based on Intel microarchitecture code name lvy Bridge, a subset of register-to-register
move operations are executed in the front end (similar to zero-idioms, see Section 3.5.1.7). This
conserves scheduling/execution resources in the out-of-order engine. Most forms of register-to-register

3-29

GENERAL OPTIMIZATION GUIDELINES

MOV instructions can benefit from zero-latency MOV. Example 3-23 list the details of those forms that
qualify and a small set that do not.

Example 3-23. Zero-Latency MOV Instructions

MOV instructions latency that can be eliminated MOV instructions latency that cannot be eliminated
MOV reg32, reg32 MOV reg8, reg8

MOV reg64, regb4 MOV reg16, reg16

MOVUPD/MOVAPD xmm, xmm MOVZX reg32, reg8 (if AH/BH/CH/DH)
MOVUPD/MOVAPD ymm, ymm MOVZX reg64, reg8 (if AH/BH/CH/DH)
MOVUPS?MOVAPS xmm, xmm MOVSX

MOVUPS/MOVAPS ymm, ymm
MOVDQA/MOVDQU xmm, xmm
MOVDQA/MOVDQU ymm, ymm

MOVZX reg32, reg8 (if not AH/BH/CH/DH)
MOVZX regb4, reg8 (if not AH/BH/CH/DH)

Example 3-24 shows how to process 8-bit integers using MOVZX to take advantage of zero-latency MOV
enhancement. Consider

X = (X * 3~N) MOD 256;
Y = (Y * 3~N) MOD 256;

When “MOD 256” is implemented using the “AND Oxff” technique, its latency is exposed in the result-
dependency chain. Using a form of MOVZX on a truncated byte input, it can take advantage of zero-
latency MOV enhancement and gain about 45% in speed.

Example 3-24. Byte-Granular Data Computation Technique

Use AND Reg32, Oxff Use MOVZX

mov rsi, N mov rsi, N

mov rax, X mov rax, X

mov rcx, Y mov rcx, Y

loop: loop:

lea rex, [rex+rex*2] lea rbx, [rex+rex*2]
lea rax, [rax+rax*4] movzx, rcx, bl

and rcx, Oxff lea rbx, [rex+rex*2]
and rax, Oxff movzx, rcx, bl

lea rcx, [rex+rex*2] lea rdx, [rax+rax*4]
lea rax, [rax+rax*4] movzx, rax, dl

and rcx, Oxff llea rdx, [rax+rax*4]
and rax, Oxff movzx, rax, dl
subrsi, 2 subrsi, 2

ijg loop ijg loop

The effectiveness of coding a dense sequence of instructions to rely on a zero-latency MOV instruction
must also consider internal resource constraints in the microarchitecture.

3-30

GENERAL OPTIMIZATION GUIDELINES

Example 3-25. Re-ordering Sequence to Improve Effectiveness of Zero-Latency MOV Instructions

Needing more internal resource for zero-latency

MOVs Needing less internal resource for zero-latency MOVs
mov rsi, N mov rsi, N

mov rax, X mov rax, X

mov rcx, Y mov rcx, Y

loop: loop:

lea rbx, [rex+rex*2] lea rbx, [rex+rex*2]
movzx, rcx, bl movzx, rcx, bl

lea rdx, [rax+rax*4] lea rbx, [rex+rex*2]
movzx, rax, dl movzx, rcx, bl

lea rbx, [rex+rex*2] lea rdx, [rax+rax*4]
movzx, rcx, bl movzx, rax, dl

llea rdx, [rax+rax*4] llea rdx, [rax+rax*4]
movzx, rax, dl movzx, rax, dl
subrsi, 2 subrsi, 2

ig loop ig loop

In Example 3-25, RBX/RCX and RDX/RAX are pairs of registers that are shared and continuously over-
written. In the right-hand sequence, registers are overwritten with new results immediately, consuming
less internal resources provided by the underlying microarchitecture. As a result, it is about 8% faster
than the left-hand sequence where internal resources could only support 50% of the attempt to take
advantage of zero-latency MOV instructions.

3.5.2 Avoiding Stalls in Execution Core

Although the design of the execution core is optimized to make common cases executes quickly. A micro-
op may encounter various hazards, delays, or stalls while making forward progress from the front end to
the ROB and RS. The significant cases are:

® ROB Read Port Stalls.

® Partial Register Reference Stalls.

¢ Partial Updates to XMM Register Stalls.
® Partial Flag Register Reference Stalls.

3.5.2.1 ROB Read Port Stalls

As a micro-op is renamed, it determines whether its source operands have executed and been written to
the reorder buffer (ROB), or whether they will be captured “in flight” in the RS or in the bypass network.
Typically, the great majority of source operands are found to be “in flight” during renaming. Those that
have been written back to the ROB are read through a set of read ports.

Since the Intel Core microarchitecture is optimized for the common case where the operands are “in
flight”, it does not provide a full set of read ports to enable all renamed micro-ops to read all sources from
the ROB in the same cycle.

When not all sources can be read, a micro-op can stall in the rename stage until it can get access to
enough ROB read ports to complete renaming the micro-op. This stall is usually short-lived. Typically, a
micro-op will complete renaming in the next cycle, but it appears to the application as a loss of rename
bandwidth.

3-31

GENERAL OPTIMIZATION GUIDELINES

Some of the software-visible situations that can cause ROB read port stalls include:

® Registers that have become cold and require a ROB read port because execution units are doing other
independent calculations.

® Constants inside registers.
® Pointer and index registers.

In rare cases, ROB read port stalls may lead to more significant performance degradations. There are a
couple of heuristics that can help prevent over-subscribing the ROB read ports:

® Keep common register usage clustered together. Multiple references to the same written-back
register can be “folded” inside the out of order execution core.

® Keep short dependency chains intact. This practice ensures that the registers will not have been
written back when the new micro-ops are written to the RS.

These two scheduling heuristics may conflict with other more common scheduling heuristics. To reduce
demand on the ROB read port, use these two heuristics only if both the following situations are met:

® Short latency operations.

¢ Indications of actual ROB read port stalls can be confirmed by measurements of the performance
event (the relevant event is RAT_STALLS.ROB_READ_PORT, see Chapter 19 of the Intel® 64 and
1A-32 Architectures Software Developer’s Manual, Volume 3B).

If the code has a long dependency chain, these two heuristics should not be used because they can cause
the RS to fill, causing damage that outweighs the positive effects of reducing demands on the ROB read
port.

Starting with Intel microarchitecture code name Sandy Bridge, ROB port stall no longer applies because
data is read from the physical register file.

3.5.2.2 Writeback Bus Conflicts

The writeback bus inside the execution engine is a common resource needed to facilitate out-of-order
execution of micro-ops in flight. When the writeback bus is needed at the same time by two micro-ops
executing in the same stack of execution units (see Table 2-16), the younger micro-op will have to wait
for the writeback bus to be available. This situation typically will be more likely for short-latency instruc-
tions experience a delay when it might have been otherwise ready for dispatching into the execution
engine.

Consider a repeating sequence of independent floating-point ADDs with a single-cycle MOV bound to the
same dispatch port. When the MOV finds the dispatch port available, the writeback bus can be occupied
by the ADD. This delays the MOV operation.

If this problem is detected, you can sometimes change the instruction selection to use a different
dispatch port and reduce the writeback contention.

3.5.23 Bypass between Execution Domains

Floating-point (FP) loads have an extra cycle of latency. Moves between FP and SIMD stacks have
another additional cycle of latency.

Example:

ADDPS XMMO, XMM1
PAND XMMO, XMM3
ADDPS XMM2, XMMO

The overall latency for the above calculation is 9 cycles:

® 3 cycles for each ADDPS instruction.

¢ 1 cycle for the PAND instruction.

¢ 1 cycle to bypass between the ADDPS floating-point domain to the PAND integer domain.

¢ 1 cycle to move the data from the PAND integer to the second floating-point ADDPS domain.

3-32

GENERAL OPTIMIZATION GUIDELINES

To avoid this penalty, you should organize code to minimize domain changes. Sometimes you cannot
avoid bypasses.

Account for bypass cycles when counting the overall latency of your code. If your calculation is latency-
bound, you can execute more instructions in parallel or break dependency chains to reduce total latency.

Code that has many bypass domains and is completely latency-bound may run slower on the Intel Core
microarchitecture than it did on previous microarchitectures.

3.5.24 Partial Register Stalls

General purpose registers can be accessed in granularities of bytes, words, doublewords; 64-bit mode
also supports quadword granularity. Referencing a portion of a register is referred to as a partial register
reference.

A partial register stall happens when an instruction refers to a register, portions of which were previously
modified by other instructions. For example, partial register stalls occurs with a read to AX while previous
instructions stored AL and AH, or a read to EAX while previous instruction modified AX.

The delay of a partial register stall is small in processors based on Intel Core and NetBurst microarchitec-
tures, and in Pentium M processor (with CPUID signature family 6, model 13), Intel Core Solo, and Intel
Core Duo processors. Pentium M processors (CPUID signature with family 6, model 9) and the P6 family
incur a large penalty.

Note that in Intel 64 architecture, an update to the lower 32 bits of a 64 bit integer register is architec-
turally defined to zero extend the upper 32 bits. While this action may be logically viewed as a 32 bit
update, it is really a 64 bit update (and therefore does not cause a partial stall).

Referencing partial registers frequently produces code sequences with either false or real dependencies.
Example 3-18 demonstrates a series of false and real dependencies caused by referencing partial regis-
ters.

If instructions 4 and 6 (in Example 3-18) are changed to use a movzx instruction instead of a mov, then
the dependences of instruction 4 on 2 (and transitively 1 before it), and instruction 6 on 5 are broken.
This creates two independent chains of computation instead of one serial one.

Example 3-26 illustrates the use of MOVZX to avoid a partial register stall when packing three byte
values into a register.

Example 3-26. Avoiding Partial Register Stalls in Integer Code

A Sequence Causing Partial Register Stall Alternate Sequence Using MOVZX to Avoid Delay
mov al, byte ptr a[2] movzx eax, byte ptr a[2]
shl eax,16 shleax, 16
mov ax, word ptr a movzx ecx, word ptr a
movd mmO, eax or eax,ecx
ret movd mmO, eax
ret

Starting with Intel microarchitecture code name Sandy Bridge and all subsequent generations of Intel
Core microarchitecture, partial register access is handled in hardware by inserting a micro-op that
merges the partial register with the full register in the following cases:

¢ After a write to one of the registers AH, BH, CH or DH and before a following read of the 2-, 4- or 8-
byte form of the same register. In these cases a merge micro-op is inserted. The insertion consumes
a full allocation cycle in which other micro-ops cannot be allocated.

¢ After a micro-op with a destination register of 1 or 2 bytes, which is not a source of the instruction (or
the register's bigger form), and before a following read of a 2-,4- or 8-byte form of the same register.
In these cases the merge micro-op is part of the flow. For example:

* MOV AX, [BX]

When you want to load from memory to a partial register, consider using MOVZX or MOVSX to
avoid the additional merge micro-op penalty.

3-33

GENERAL OPTIMIZATION GUIDELINES

e LEA AX, [BX+CX]

For optimal performance, use of zero idioms, before the use of the register, eliminates the need for
partial register merge micro-ops.

3.5.25 Partial XMM Register Stalls

Partial register stalls can also apply to XMM registers. The following SSE and SSE2 instructions update
only part of the destination register:

MOVL/HPD XMM, MEM64
MOVL/HPS XMM, MEM32
MOVSS/SD between registers

Using these instructions creates a dependency chain between the unmodified part of the register and the
modified part of the register. This dependency chain can cause performance loss.

Example 3-27 illustrates the use of MOVZX to avoid a partial register stall when packing three byte
values into a register.

Follow these recommendations to avoid stalls from partial updates to XMM registers:
® Avoid using instructions which update only part of the XMM register.
® If a 64-bit load is needed, use the MOVSD or MOVQ instruction.

® If 2 64-bit loads are required to the same register from non continuous locations, use
MOVSD/MOVHPD instead of MOVLPD/MOVHPD.

® When copying the XMM register, use the following instructions for full register copy, even if you only
want to copy some of the source register data:

MOVAPS
MOVAPD
MOVDQA

Example 3-27. Avoiding Partial Register Stalls in SIMD Code

Using movipd for memory transactions and movsd Using movsd for memory and movapd between
between register copies Causing Partial Register Stall register copies Avoid Delay

mov edx, X

mov ecx, count
movlpd xmm3,_1_
movlpd xmmZ2,_1pt5_
align 16

movipd xmmo0, [edx]
addsd xmmO, xmm3
movsd xmm1, xmm2
subsd xmm1, [edx]
mulsd xmmO, xmm1
movsd [edx], xmmO

mov edx, X

mov ecx, count
movsd xmm3,_1_
movsd xmmZ2, _1pt5_
align 16

movsd xmmO, [edx]
addsd xmmO, xmm3
movapd xmm1, xmm2
subsd xmm1, [edx]
mulsd xmmO, xmm1
movsd [edx], xmmO

add edx, 8 add edx, 8
dec ecx dec ecx
jnzlp inzlp

3.5.2.6 Partial Flag Register Stalls

A “partial flag register stall” occurs when an instruction modifies a part of the flag register and the
following instruction is dependent on the outcome of the flags. This happens most often with shift

3-34

GENERAL OPTIMIZATION GUIDELINES

instructions (SAR, SAL, SHR, SHL). The flags are not modified in the case of a zero shift count, but the
shift count is usually known only at execution time. The front end stalls until the instruction is retired.

Other instructions that can modify some part of the flag register include CMPXCHGS8B, various rotate
instructions, STC, and STD. An example of assembly with a partial flag register stall and alternative code
without the stall is shown in Example 3-28.

In processors based on Intel Core microarchitecture, shiftimmediate by 1 is handled by special hardware
such that it does not experience partial flag stall.

Example 3-28. Avoiding Partial Flag Register Stalls

Partial Flag Register Stall

Avoiding Partial Flag Register Stall

XOr eax, eax
mov ecx, a

sar ecx, 2

setz al ;SAR can update carry causing a stall

or eax, eax
mov ecx, a

sar ecx, 2

test ecx, ecx ; test always updates all flags

setz al ;No partial reg or flag stall,

In Intel microarchitecture code name Sandy Bridge, the cost of partial flag access is replaced by the
insertion of a micro-op instead of a stall. However, it is still recommended to use less of instructions that
write only to some of the flags (such as INC, DEC, SET CL) before instructions that can write flags condi-
tionally (such as SHIFT CL).

Example 3-29 compares two techniques to implement the addition of very large integers (e.g. 1024
bits). The alternative sequence on the right side of Example 3-29 will be faster than the left side on Intel
microarchitecture code name Sandy Bridge, but it will experience partial flag stalls on prior microarchi-
tectures.

Example 3-29. Partial Flag Register Accesses in Intel Microarchitecture Code Name Sandy Bridge

Save partial flag register to avoid stall

Simplified code sequence

lea rsi, [A]

lea rdi, [B]

XOr rax, rax

mov rcx, 16 ; 16*64 =1024 bit

Ip_64bit;
add rax, [rsi]
adc rax, [rdi]
mov [rdi], rax
setc al ;save carry for next iteration
movzx rax, al
addrsi, 8
add rdi, 8
dec rcx
jnz Ip_64bit

lea rsi, [A]
lea rdi, [B]
XOr rax, rax
mov rcx, 16

Ip_64bit;

add rax, [rsi]
adc rax, [rdi]
mov [rdi], rax
lea rsi, [rsi+8]
lea rdi, [rdi+8]
dec rcx

jnz Ip_64bit

3.5.2.7 Floating-Point/SIMD Operands

Moves that write a portion of a register can introduce unwanted dependences. The MOVSD REG, REG
instruction writes only the bottom 64 bits of a register, not all 128 bits. This introduces a dependence on
the preceding instruction that produces the upper 64 bits (even if those bits are not longer wanted). The
dependence inhibits register renaming, and thereby reduces parallelism.

Use MOVAPD as an alternative; it writes all 128 bits. Even though this instruction has a longer latency,
the pops for MOVAPD use a different execution port and this port is more likely to be free. The change can

3-35

GENERAL OPTIMIZATION GUIDELINES

impact performance. There may be exceptional cases where the latency matters more than the depen-
dence or the execution port.

Assembly/Compiler Coding Rule 42. (M impact, ML generality) Avoid introducing dependences
with partial floating-point register writes, e.g. from the MOVSD XMMREG1, XMMREG2 instruction. Use
the MOVAPD XMMREG1, XMMREG2 instruction instead.

The MOVSD XMMREG, MEM instruction writes all 128 bits and breaks a dependence.

The MOVUPD from memory instruction performs two 64-bit loads, but requires additional pops to adjust
the address and combine the loads into a single register. This same functionality can be obtained using
MOVSD XMMREG1, MEM; MOVSD XMMREG2, MEM+8; UNPCKLPD XMMREG1, XMMREG2, which uses
fewer pops and can be packed into the trace cache more effectively. The latter alternative has been found
to provide a several percent performance improvement in some cases. Its encoding requires more
instruction bytes, but this is seldom an issue for the Pentium 4 processor. The store version of MOVUPD
is complex and slow, so much so that the sequence with two MOVSD and a UNPCKHPD should always be
used.

Assembly/Compiler Coding Rule 43. (ML impact, L generality) Instead of using MOVUPD
XMMREG1, MEM for a unaligned 128-bit load, use MOVSD XMMREG1, MEM; MOVSD XMMREGZ2,
MEM+8; UNPCKLPD XMMREG1, XMMREGZ2. If the additional register is not available, then use MOVSD
XMMREG1, MEM; MOVHPD XMMREG1, MEM+8.

Assembly/Compiler Coding Rule 44. (M impact, ML generality) Instead of using MOVUPD MEM,
XMMREG1 for a store, use MOVSD MEM, XMMREG1; UNPCKHPD XMMREG1, XMMREG1; MOVSD
MEM+8, XMMREGL1 instead.

3.5.3 Vectorization

This section provides a brief summary of optimization issues related to vectorization. There is more detail
in the chapters that follow.

Vectorization is a program transformation that allows special hardware to perform the same operation on
multiple data elements at the same time. Successive processor generations have provided vector

support through the MMX technology, Streaming SIMD Extensions (SSE), Streaming SIMD Extensions 2
(SSE2), Streaming SIMD Extensions 3 (SSE3) and Supplemental Streaming SIMD Extensions 3 (SSSE3).

Vectorization is a special case of SIMD, a term defined in Flynn’s architecture taxonomy to denote a
single instruction stream capable of operating on multiple data elements in parallel. The number of
elements which can be operated on in parallel range from four single-precision floating-point data
elements in Streaming SIMD Extensions and two double-precision floating-point data elements in
Streaming SIMD Extensions 2 to sixteen byte operations in a 128-bit register in Streaming SIMD Exten-
sions 2. Thus, vector length ranges from 2 to 16, depending on the instruction extensions used and on
the data type.

The Intel C++ Compiler supports vectorization in three ways:

® The compiler may be able to generate SIMD code without intervention from the user.

® The can user insert pragmas to help the compiler realize that it can vectorize the code.
® The user can write SIMD code explicitly using intrinsics and C++ classes.

To help enable the compiler to generate SIMD code, avoid global pointers and global variables. These
issues may be less troublesome if all modules are compiled simultaneously, and whole-program optimi-
zation is used.

User/Source Coding Rule 2. (H impact, M generality) Use the smallest possible floating-point or
SIMD data type, to enable more parallelism with the use of a (longer) SIMD vector. For example, use
single precision instead of double precision where possible.

User/Source Coding Rule 3. (M impact, ML generality) Arrange the nesting of loops so that the
innermost nesting level is free of inter-iteration dependencies. Especially avoid the case where the
store of data in an earlier iteration happens lexically after the load of that data in a future iteration,
something which is called a lexically backward dependence.

3-36

GENERAL OPTIMIZATION GUIDELINES

The integer part of the SIMD instruction set extensions cover 8-bit,16-bit and 32-bit operands. Not all
SIMD operations are supported for 32 bits, meaning that some source code will not be able to be vector-
ized at all unless smaller operands are used.

User/Source Coding Rule 4. (M impact, ML generality) Avoid the use of conditional branches
inside loops and consider using SSE instructions to eliminate branches.

User/Source Coding Rule 5. (M impact, ML generality) Keep induction (loop) variable expressions
simple.

354 Optimization of Partially Vectorizable Code

Frequently, a program contains a mixture of vectorizable code and some routines that are non-vectoriz-
able. A common situation of partially vectorizable code involves a loop structure which include mixtures
of vectorized code and unvectorizable code. This situation is depicted in Figure 3-1.

(] [[D)

Packed SIMD Instruction

(| | D,
— » 4

Unpacking
| | | | |
3 13 »
. —L 1
Unvectorizable Code </ N 4‘\> Serial Routine
v

I R S R

Packing \Q M
([[D)

Packed SIMD Instruction

(| [D)

Figure 3-1. Generic Program Flow of Partially Vectorized Code

It generally consists of five stages within the loop:

¢ Prolog.

® Unpacking vectorized data structure into individual elements.

¢ Calling a non-vectorizable routine to process each element serially.
® Packing individual result into vectorized data structure.

¢ Epilog.

This section discusses techniques that can reduce the cost and bottleneck associated with the
packing/unpacking stages in these partially vectorize code.

Example 3-30 shows a reference code template that is representative of partially vectorizable coding
situations that also experience performance issues. The unvectorizable portion of code is represented
generically by a sequence of calling a serial function named “foo” multiple times. This generic example is
referred to as “shuffle with store forwarding”, because the problem generally involves an unpacking
stage that shuffles data elements between register and memory, followed by a packing stage that can
experience store forwarding issue.

3-37

GENERAL OPTIMIZATION GUIDELINES

There are more than one useful techniques that can reduce the store-forwarding bottleneck between the
serialized portion and the packing stage. The following sub-sections presents alternate techniques to
deal with the packing, unpacking, and parameter passing to serialized function calls.

Example 3-30. Reference Code Template for Partially Vectorizable Program

/1 Prolog /11T
push ebp
mov ebp, esp

/1 Unpacking /1T
sub ebp, 32

and ebp, OxfffffffO

movaps [ebp], xmmO

// Serial operations on components /////1/
sub ebp, 4

mov eax, [ebp+4]
mov [ebp], eax

call foo

mov [ebp+16+4], eax

mov eax, [ebp+8]

mov [ebp], eax

call foo

mov [ebp+16+4+4], eax

mov eax, [ebp+12]

mov [ebp], eax

call foo

mov [ebp+16+8+4], eax

mov eax, [ebp+12+4]
mov [ebp], eax

call foo

mov [ebp+16+12+4], eax

[Packing /11T
movaps xmmoO, [ebp+16+4]

/1 Epilog /HTHTHITHTHTHTTHTTHTTHTTHHT

pop ebp
ret

3.54.1 Alternate Packing Techniques

The packing method implemented in the reference code of Example 3-30 will experience delay as it
assembles 4 doubleword result from memory into an XMM register due to store-forwarding restrictions.

3-38

GENERAL OPTIMIZATION GUIDELINES

Three alternate techniques for packing, using different SIMD instruction to assemble contents in XMM
registers are shown in Example 3-31. All three techniques avoid store-forwarding delay by satisfying the
restrictions on data sizes between a preceding store and subsequent load operations.

Example 3-31. Three Alternate Packing Methods for Avoiding Store Forwarding Difficulty

Packing Method 1 Packing Method 2 Packing Method 3
movd xmmoO, [ebp+16+4] movd xmmoO, [ebp+16+4] movd xmmoO, [ebp+16+4]
movd xmm1, [ebp+16+8] movd xmm1, [ebp+16+8] movd xmm1, [ebp+16+8]
movd xmmZ2, [ebp+16+12] movd xmmZ2, [ebp+16+12] movd xmmZ2, [ebp+16+12]
movd xmm3, [ebp+12+16+4] movd xmm3, [ebp+12+16+4] movd xmm3, [ebp+12+16+4]
punpckldg xmmO, xmm1 pslig xmm3, 32 movlhps xmm1,xmm3
punpckldg xmmZ2, xmm3 orps xmme2, xmm3 pslig xmm1, 32
punpckldg xmmO, xmm2 pslig xmm1, 32 movlhps xmmO, xmmZ2

orps xmmQO, xmm1movlhps xmmO0, xmmZ2 orps xmmO, xmm1

3.54.2 Simplifying Result Passing

In Example 3-30, individual results were passed to the packing stage by storing to contiguous memory
locations. Instead of using memory spills to pass four results, result passing may be accomplished by
using either one or more registers. Using registers to simplify result passing and reduce memory spills
can improve performance by varying degrees depending on the register pressure at runtime.

Example 3-32 shows the coding sequence that uses four extra XMM registers to reduce all memory spills
of passing results back to the parent routine. However, software must observe the following conditions
when using this technique:

® There is no register shortage.

¢ If the loop does not have many stores or loads but has many computations, this technique does not
help performance. This technique adds work to the computational units, while the store and loads
ports are idle.

Example 3-32. Using Four Registers to Reduce Memory Spills and Simplify Result Passing

mov eax, [ebp+4]
mov [ebp], eax
call foo

movd xmmoO, eax

mov eax, [ebp+8]
mov [ebp], eax
call foo

movd xmm1, eax

mov eax, [ebp+12]
mov [ebp], eax

call foo

movd xmm2, eax

mov eax, [ebp+12+4]
mov [ebp], eax

call foo

movd xmm3, eax

3-39

GENERAL OPTIMIZATION GUIDELINES

3.543 Stack Optimization

In Example 3-30, an input parameter was copied in turn onto the stack and passed to the non-vectoriz-
able routine for processing. The parameter passing from consecutive memory locations can be simplified
by a technique shown in Example 3-33.

Example 3-33. Stack Optimization Technique to Simplify Parameter Passing

call foo
mov [ebp+16], eax

add ebp, 4
call foo
mov [ebp+16], eax

add ebp, 4
call foo
mov [ebp+16], eax

add ebp, 4
call foo

Stack Optimization can only be used when:

® The serial operations are function calls. The function “foo” is declared as: INT FOO(INT A). The
parameter is passed on the stack.

® The order of operation on the components is from last to first.

Note the call to FOO and the advance of EDP when passing the vector elements to FOO one by one from
last to first.

3544 Tuning Considerations
Tuning considerations for situations represented by looping of Example 3-30 include:
®* Applying one of more of the following combinations:
— Choose an alternate packing technique.
— Consider a technique to simply result-passing.
— Consider the stack optimization technique to simplify parameter passing.
® Minimizing the average number of cycles to execute one iteration of the loop.
® Minimizing the per-iteration cost of the unpacking and packing operations.

The speed improvement by using the techniques discussed in this section will vary, depending on the
choice of combinations implemented and characteristics of the non-vectorizable routine. For example, if
the routine “foo” is short (representative of tight, short loops), the per-iteration cost of
unpacking/packing tend to be smaller than situations where the non-vectorizable code contain longer
operation or many dependencies. This is because many iterations of short, tight loop can be in flight in
the execution core, so the per-iteration cost of packing and unpacking is only partially exposed and
appear to cause very little performance degradation.

Evaluation of the per-iteration cost of packing/unpacking should be carried out in a methodical manner
over a selected number of test cases, where each case may implement some combination of the tech-
niques discussed in this section. The per-iteration cost can be estimated by:

¢ Evaluating the average cycles to execute one iteration of the test case.

® Evaluating the average cycles to execute one iteration of a base line loop sequence of non-vector-
izable code.

3-40

GENERAL OPTIMIZATION GUIDELINES

Example 3-34 shows the base line code sequence that can be used to estimate the average cost of a loop
that executes non-vectorizable routines.

Example 3-34. Base Line Code Sequence to Estimate Loop Overhead

push ebp
mov ebp, esp
sub ebp, 4

mov [ebp], edi
call foo

mov [ebp], edi
call foo

mov [ebp], edi
call foo

mov [ebp], edi
call foo

add ebp, 4
pop ebp
ret

The average per-iteration cost of packing/unpacking can be derived from measuring the execution times
of a large number of iterations by:

((Cycles to run TestCase) - (Cycles to run equivalent baseline sequence)) / (Iteration count).

For example, using a simple function that returns an input parameter (representative of tight, short
loops), the per-iteration cost of packing/unpacking may range from slightly more than 7 cycles (the
shuffle with store forwarding case, Example 3-30) to ~0.9 cycles (accomplished by several test cases).
Across 27 test cases (consisting of one of the alternate packing methods, no result-simplification/simpli-
fication of either 1 or 4 results, no stack optimization or with stack optimization), the average per-itera-
tion cost of packing/unpacking is about 1.7 cycles.

Generally speaking, packing method 2 and 3 (see Example 3-31) tend to be more robust than packing
method 1; the optimal choice of simplifying 1 or 4 results will be affected by register pressure of the
runtime and other relevant microarchitectural conditions.

Note that the numeric discussion of per-iteration cost of packing/packing is illustrative only. It will vary
with test cases using a different base line code sequence and will generally increase if the non-vectoriz-
able routine requires longer time to execute because the number of loop iterations that can reside in
flight in the execution core decreases.

3-41

GENERAL OPTIMIZATION GUIDELINES

3.6 OPTIMIZING MEMORY ACCESSES

This section discusses guidelines for optimizing code and data memory accesses. The most important
recommendations are:

¢ Execute load and store operations within available execution bandwidth.
® Enable forward progress of speculative execution.

¢ Enable store forwarding to proceed.

¢ Align data, paying attention to data layout and stack alignment.

® Place code and data on separate pages.

®* Enhance data locality.

® Use prefetching and cacheability control instructions.

®* Enhance code locality and align branch targets.

¢ Take advantage of write combining.

Alignment and forwarding problems are among the most common sources of large delays on processors
based on Intel NetBurst microarchitecture.

3.6.1 Load and Store Execution Bandwidth

Typically, loads and stores are the most frequent operations in a workload, up to 40% of the instructions
in a workload carrying load or store intent are not uncommon. Each generation of microarchitecture
provides multiple buffers to support executing load and store operations while there are instructions in
flight.

Software can maximize memory performance by not exceeding the issue or buffering limitations of the
machine. In the Intel Core microarchitecture, only 20 stores and 32 loads may be in flight at once. In
Intel microarchitecture code name Nehalem, there are 32 store buffers and 48 load buffers. Since only
one load can issue per cycle, algorithms which operate on two arrays are constrained to one operation
every other cycle unless you use programming tricks to reduce the amount of memory usage.

Intel Core Duo and Intel Core Solo processors have less buffers. Nevertheless the general heuristic
applies to all of them.

3.6.1.1 Make Use of Load Bandwidth in Intel® Microarchitecture Code Name Sandy Bridge

While prior microarchitecture has one load port (port 2), Intel microarchitecture code name Sandy Bridge
can load from port 2 and port 3. Thus two load operations can be performed every cycle and doubling the
load throughput of the code. This improves code that reads a lot of data and does not need to write out
results to memory very often (Port 3 also handles store-address operation). To exploit this bandwidth,
the data has to stay in the L1 data cache or it should be accessed sequentially, enabling the hardware
prefetchers to bring the data to the L1 data cache in time.

Consider the following C code example of adding all the elements of an array:
int buff[BUFF_SIZE];

int sum = 0;

for (i=0;i<BUFF_SIZE;i++){
sum+=Dbuff[i];
}

Alternative 1 is the assembly code generated by the Intel compiler for this C code, using the optimization
flag for Intel microarchitecture code name Nehalem. The compiler vectorizes execution using Intel SSE
instructions. In this code, each ADD operation uses the result of the previous ADD operation. This limits
the throughput to one load and ADD operation per cycle. Alternative 2 is optimized for Intel microarchi-

3-42

GENERAL OPTIMIZATION GUIDELINES

tecture code name Sandy Bridge by enabling it to use the additional load bandwidth. The code removes
the dependency among ADD operations, by using two registers to sum the array values. Two load and
two ADD operations can be executed every cycle.

Example 3-35. Optimize for Load Port Bandwidth in Intel Microarchitecture Code Name Sandy Bridge

Register dependency inhibits PADD execution Reduce register dependency allow two load port to supply
PADD execution
Xor eax, eax Xor eax, eax
pxor xmmO, xmmO pxor xmmO, xmmO
lea rsi, buff pxor xmm1, xmm1
lea rsi, buff
loop_start: loop_start:
paddd xmmoO, [rsi+4*rax] paddd xmmO, [rsi+4*rax]
paddd xmmoO, [rsi+4*rax+16] paddd xmm1, [rsi+4*rax+16]
paddd xmmoO, [rsi+4*rax+32] paddd xmmO, [rsi+4*rax+32]
paddd xmmoO, [rsi+4*rax+48] paddd xmm1, [rsi+4*rax+48]
paddd xmmoO, [rsi+4*rax+64] paddd xmmO, [rsi+4*rax+64]
paddd xmmoO, [rsi+4*rax+80] paddd xmm1, [rsi+4*rax+80]
paddd xmmoO, [rsi+4*rax+96] paddd xmmO, [rsi+4*rax+96]
paddd xmmoO, [rsi+4*rax+112] paddd xmm1, [rsi+4*rax+112]
add eax, 32 add eax, 32
cmp eax, BUFF_SIZE cmp eax, BUFF_SIZE
jl loop_start jl loop_start
sum_partials: sum_partials:
movdga xmm1, xmmO paddd xmmO, xmm1
psridg xmm1,8 movdga xmm1, xmmO
paddd xmmO, xmm1 psrldg xmm1,8
movdga xmmZ2, xmmO paddd xmmO, xmm1
psridg xmmZ, 4 movdga xmm2, xmmO
paddd xmmO, xmm2 psridg xmm2, 4
movd [sum], xmmO paddd xmmO, xmmZ2
movd [sum], xmmO

3.6.1.2 L1D Cache Latency in Intel® Microarchitecture Code Name Sandy Bridge

Load latency from L1D cache may vary (see Table 2-20). The best case if 4 cycles, which apply to load
operations to general purpose registers using one of the following:

® One register.
® A base register plus an offset that is smaller than 2048.

Consider the pointer-chasing code example in Example 3-36.

3-43

GENERAL OPTIMIZATION GUIDELINES

Example 3-36. Index versus Pointers in Pointer-Chasing Code

Traversing through indexes Traversing through pointers
// C code example // C code example
index = buffer.m_buff[index].next_index; node = node->pNext;
// ASM example // ASM example
loop: loop:
shlrbx, 6 mov rdx, [rdx]
mov rbx, 0x20(rbx+rcx) dec rax
dec rax cmp rax, -1
cmp rax, -1 jne loop
jne loop

The left side implements pointer chasing via traversing an index. Compiler then generates the code
shown below addressing memory using base+index with an offset. The right side shows compiler gener-
ated code from pointer de-referencing code and uses only a base register.

The code on the right side is faster than the left side across Intel microarchitecture code name Sandy
Bridge and prior microarchitecture. However the code that traverses index will be slower on Intel micro-
architecture code name Sandy Bridge relative to prior microarchitecture.

3.6.1.3 Handling L1D Cache Bank Conflict

In Intel microarchitecture code name Sandy Bridge, the internal organization of the L1D cache may
manifest a situation when two load micro-ops whose addresses have a bank conflict. When a bank
conflict is present between two load operations, the more recent one will be delayed until the conflict is
resolved. A bank conflict happens when two simultaneous load operations have the same bit 2-5 of their
linear address but they are not from the same set in the cache (bits 6 - 12).

Bank conflicts should be handled only if the code is bound by load bandwidth. Some bank conflicts do not
cause any performance degradation since they are hidden by other performance limiters. Eliminating
such bank conflicts does not improve performance.

The following example demonstrates bank conflict and how to modify the code and avoid them. It uses
two source arrays with a size that is a multiple of cache line size. When loading an element from A and
the counterpart element from B the elements have the same offset in their cache lines and therefore a
bank conflict may happen.

With the Haswell microarchitecture, the L1 DCache bank conflict issue does not apply.

3-44

GENERAL OPTIMIZATION GUIDELINES

Example 3-37. Example of Bank Conflicts in L1D Cache and Remedy

int A[128];
int B[128];
int C[128];
for (i=0;i<128;i+=4){

Cli+1]=Ali+1]+B[i+1];
Cli+2]=Ali+2]+B[i+2];
Cli+3]=A[i+3]+B[i+3];
}

// Code with Bank Conflicts
XOrT rCX, rcx
lear11, A
lear12,B
lear13,C

loop:
lea esi, [rcx*4]
movsxd rsi, esi
mov edi, [r11+rsi*4]
add edi, [r12+rsi*4]
mov r8d, [r11+rsi*4+4]
add r8d, [r12+rsi*4+4]
mov r9d, [r11+rsi*4+8]
add r9d, [r12+rsi*4+8]
mov r10d, [r11+rsi*4+12]
add r10d, [r12+rsi*4+12]

mov [r13+rsi*4], edi

inc ecx

mov [r13+rsi*4+4], r&d
mov [r13+rsi*4+8], rod
mov [r13+rsi*4+12],r10d
cmp ecx, LEN

jb loop

C[il=A[i1+BIil; the loads from A[i] and B[i] collide

// Code without Bank Conflicts
XOr rcX, rex
lear11, A
lear12, B
lear13,C

loop:
lea esi, [rcx*4]
movsxd rsi, esi
mov edi, [r11+rsi*4]
mov r8d, [r11+rsi*4+4]
add edi, [r12+rsi*4]
add r8d, [r12+rsi*4+4]
mov r9d, [r11+rsi*4+8]
mov r10d, [r11+rsi*4+12]
add r9d, [r12+rsi*4+8]
add r10d, [r12+rsi*4+12]

inc ecx

mov [r13+rsi*4], edi

mov [r13+rsi*4+4], r8d
mov [r13+rsi*4+8], rod
mov [r13+rsi*4+12], r10d
cmp ecx, LEN

jb loop

3.6.2 Minimize Register Spills

When a piece of code has more live variables than the processor can keep in general purpose registers,
a common method is to hold some of the variables in memory. This method is called register spill. The
effect of L1D cache latency can negatively affect the performance of this code. The effect can be more
pronounced if the address of register spills uses the slower addressing modes.

One option is to spill general purpose registers to XMM registers. This method is likely to improve perfor-
mance also on previous processor generations. The following example shows how to spill a register to an

XMM register rather than to memory.

3-45

GENERAL OPTIMIZATION GUIDELINES

Example 3-38. Using XMM Register in Lieu of Memory for Register Spills
Register spills into memory Register spills into XMM

loop: movq xmm4, [rsp+0x18]

mov rdx, [rsp+0x18]
movdga xmmO, [rdx]
movdga xmm1, [rsp+0x20]
pcmpeqd xmm1, xmmO
pmovmskb eax, xmm’1

test eax, eax

jne end_loop

movzx rcx, [rbx+0x60]

add qword ptr[rsp+0x18], 0x10
add rdi, Ox4

movzx rdx, di

sub rcx, 0x4

add rsi, 0x1d0

cmp rdx, rex

jle loop

mov rcx, 0x10
movq Xxmm5, rcx

loop:
movq rdx, xmm4
movdga xmmoO, [rdx]
movdga xmm1, [rsp+0x20]
pcmpeqd xmm1, xmmO
pmovmskb eax, xmm1
test eax, eax
jne end_loop
movzx rcx, [rbx+0x60]

padd xmm4, xmm5
add rdi, Ox4
movzx rdx, di

sub rcx, 0x4

add rsi, 0x1d0
cmp rdx, rex

jle loop

3.6.3 Enhance Speculative Execution and Memory Disambiguation

Prior to Intel Core microarchitecture, when code contains both stores and loads, the loads cannot be
issued before the address of the store is resolved. This rule ensures correct handling of load dependen-
cies on preceding stores.

The Intel Core microarchitecture contains a mechanism that allows some loads to be issued early specu-
latively. The processor later checks if the load address overlaps with a store. If the addresses do overlap,
then the processor re-executes the instructions.

Example 3-39 illustrates a situation that the compiler cannot be sure that “Ptr->Array” does not change
during the loop. Therefore, the compiler cannot keep “Ptr->Array” in a register as an invariant and must
read it again in every iteration. Although this situation can be fixed in software by a rewriting the code to
require the address of the pointer is invariant, memory disambiguation provides performance gain
without rewriting the code.

3-46

GENERAL OPTIMIZATION GUIDELINES

Example 3-39. Loads Blocked by Stores of Unknown Address

C code Assembly sequence
struct AA { nullify_loop:
AA ** array; mov dword ptr [eax], 0
¥ mov edx, dword ptr [edi]
void nullify_array (AA *Ptr, DWORD Index, AA *ThisPtr | sub ecx, 4
) cmp dword ptr [ecx+edx], esi
{ lea eax, [ecx+edx]
while (Ptr->Array[--Index] != ThisPtr) jne nullify_loop

{

Ptr->Array[Index] = NULL ;

b
b

3.64 Alignment

Alignment of data concerns all kinds of variables:
® Dynamically allocated variables.

® Members of a data structure.

¢ Global or local variables.

® Parameters passed on the stack.

Misalighed data access can incur significant performance penalties. This is particularly true for cache line
splits. The size of a cache line is 64 bytes in the Pentium 4 and other recent Intel processors, including
processors based on Intel Core microarchitecture.

An access to data unaligned on 64-byte boundary leads to two memory accesses and requires several
pops to be executed (instead of one). Accesses that span 64-byte boundaries are likely to incur a large
performance penalty, the cost of each stall generally are greater on machines with longer pipelines.

Double-precision floating-point operands that are eight-byte aligned have better performance than oper-
ands that are not eight-byte aligned, since they are less likely to incur penalties for cache and MOB splits.
Floating-point operation on a memory operands require that the operand be loaded from memory. This
incurs an additional pop, which can have a minor negative impact on front end bandwidth. Additionally,
memory operands may cause a data cache miss, causing a penalty.

Assembly/Compiler Coding Rule 45. (H impact, H generality) Align data on natural operand size
address boundaries. If the data will be accessed with vector instruction loads and stores, align the data
on 16-byte boundaries.

For best performance, align data as follows:

¢ Align 8-bit data at any address.

¢ Align 16-bit data to be contained within an aligned 4-byte word.

¢ Align 32-bit data so that its base address is a multiple of four.

® Align 64-bit data so that its base address is a multiple of eight.

¢ Align 80-bit data so that its base address is a multiple of sixteen.
® Align 128-bit data so that its base address is a multiple of sixteen.

A 64-byte or greater data structure or array should be aligned so that its base address is a multiple of 64.
Sorting data in decreasing size order is one heuristic for assisting with natural alignment. As long as 16-
byte boundaries (and cache lines) are never crossed, natural alignment is not strictly necessary (though
it is an easy way to enforce this).

3-47

GENERAL OPTIMIZATION GUIDELINES

Example 3-40 shows the type of code that can cause a cache line split. The code loads the addresses of
two DWORD arrays. 029E70FEH is not a 4-byte-aligned address, so a 4-byte access at this address will
get 2 bytes from the cache line this address is contained in, and 2 bytes from the cache line that starts at
029E700H. On processors with 64-byte cache lines, a similar cache line split will occur every 8 iterations.

Example 3-40. Code That Causes Cache Line Split

mov esi, 029e70feh

mov edi, 05be5260h
Blockmove;

mov eax, DWORD PTR [esi]

mov ebx, DWORD PTR [esi+4]

mov DWORD PTR [edi], eax

mov DWORD PTR [edi+4], ebx

add esi, 8
add edi, 8
sub edx, 1
jnz Blockmove

Figure 3-2 illustrates the situation of accessing a data element that span across cache line boundaries.

Address 029e70c1h Address 029e70feh

1]
Cache Line 029e70cOh Sol T~ indexo Q)

T T 1 g T ‘
Cache Line 029e7100h E) Index 0 cont'd Index 1 >~ >~ Index 15 Index 16 %

\ ! I I I I e
;

‘]]]]] I P]]] ‘
Cache Line 029e7140h E) Index 16 contd Index 17 > > Index 31 Index 32 («%

I I I I I -
‘ ;
|

Figure 3-2. Cache Line Split in Accessing Elements in a Array

Alignment of code is less important for processors based on Intel NetBurst microarchitecture. Alignment
of branch targets to maximize bandwidth of fetching cached instructions is an issue only when not
executing out of the trace cache.

Alignment of code can be an issue for the Pentium M, Intel Core Duo and Intel Core 2 Duo processors.
Alignment of branch targets will improve decoder throughput.

3.6.5 Store Forwarding

The processor’'s memory system only sends stores to memory (including cache) after store retirement.
However, store data can be forwarded from a store to a subsequent load from the same address to give
a much shorter store-load latency.

There are two kinds of requirements for store forwarding. If these requirements are violated, store
forwarding cannot occur and the load must get its data from the cache (so the store must write its data
back to the cache first). This incurs a penalty that is largely related to pipeline depth of the underlying
micro-architecture.

3-48

GENERAL OPTIMIZATION GUIDELINES

The first requirement pertains to the size and alignment of the store-forwarding data. This restriction is
likely to have high impact on overall application performance. Typically, a performance penalty due to
violating this restriction can be prevented. The store-to-load forwarding restrictions vary from one micro-
architecture to another. Several examples of coding pitfalls that cause store-forwarding stalls and solu-
tions to these pitfalls are discussed in detail in Section 3.6.5.1, “Store-to-Load-Forwarding Restriction on
Size and Alignhment.” The second requirement is the availability of data, discussed in Section 3.6.5.2,
“Store-forwarding Restriction on Data Availability.” A good practice is to eliminate redundant load opera-
tions.

It may be possible to keep a temporary scalar variable in a register and never write it to memory. Gener-
ally, such a variable must not be accessible using indirect pointers. Moving a variable to a register elimi-
nates all loads and stores of that variable and eliminates potential problems associated with store
forwarding. However, it also increases register pressure.

Load instructions tend to start chains of computation. Since the out-of-order engine is based on data
dependence, load instructions play a significant role in the engine’s ability to execute at a high rate. Elim-
inating loads should be given a high priority.

If a variable does not change between the time when it is stored and the time when it is used again, the
register that was stored can be copied or used directly. If register pressure is too high, or an unseen func-
tion is called before the store and the second load, it may not be possible to eliminate the second load.

Assembly/Compiler Coding Rule 46. (H impact, M generality) Pass parameters in registers
instead of on the stack where possible. Passing arguments on the stack requires a store followed by a
reload. While this sequence is optimized in hardware by providing the value to the load directly from
the memory order buffer without the need to access the data cache if permitted by store-forwarding
restrictions, floating-point values incur a significant latency in forwarding. Passing floating-point
arguments in (preferably XMM) registers should save this long latency operation.

Parameter passing conventions may limit the choice of which parameters are passed in registers which
are passed on the stack. However, these limitations may be overcome if the compiler has control of the
compilation of the whole binary (using whole-program optimization).

3.6.5.1 Store-to-Load-Forwarding Restriction on Size and Alignment

Data size and alignment restrictions for store-forwarding apply to processors based on Intel NetBurst
microarchitecture, Intel Core microarchitecture, Intel Core 2 Duo, Intel Core Solo and Pentium M proces-
sors. The performance penalty for violating store-forwarding restrictions is less for shorter-pipelined
machines than for Intel NetBurst microarchitecture.

Store-forwarding restrictions vary with each microarchitecture. Intel NetBurst microarchitecture places
more constraints than Intel Core microarchitecture on code generation to enable store-forwarding to
make progress instead of experiencing stalls. Fixing store-forwarding problems for Intel NetBurst micro-
architecture generally also avoids problems on Pentium M, Intel Core Duo and Intel Core 2 Duo proces-
sors. The size and alignment restrictions for store-forwarding in processors based on Intel NetBurst
microarchitecture are illustrated in Figure 3-3.

3-49

GENERAL OPTIMIZATION GUIDELINES

Load Aligned with
Store Will Forward

Non-Forwarding

(a) Small load after sre ‘v ‘
arge Store Penalty
L 9 St Load
(b) Size of Load >= sere T:|
o v Penalty
St Load
v A4
Store ‘ \
(c) Sizst-,:[of Load >= v Penalty
ore(s) Load %/////////////////////A
1 !

(d) 128-bit Forward
Must Be 16-Byte
Aligned

Load

16-Byte
Boundary

Penalty

N

OM15155

Figure 3-3. Size and Alignment Restrictions in Store Forwarding

The following rules help satisfy size and alignment restrictions for store forwarding:

Assembly/Compiler Coding Rule 47. (H impact, M generality) A load that forwards from a store
must have the same address start point and therefore the same alignment as the store data.

Assembly/Compiler Coding Rule 48. (H impact, M generality) The data of a load which is

forwarded from a store must be completely contained within the store data.

A load that forwards from a store must wait for the store’s data to be written to the store buffer before

proceeding, but other, unrelated loads need not wait.

3-50

GENERAL OPTIMIZATION GUIDELINES

Assembly/Compiler Coding Rule 49. (H impact, ML generality) If it is necessary to extract a non-
aligned portion of stored data, read out the smallest aligned portion that completely contains the data
and shift/mask the data as necessary. This is better than incurring the penalties of a failed store-
forward.

Assembly/Compiler Coding Rule 50. (MH impact, ML generality) Avoid several small loads after
large stores to the same area of memory by using a single large read and register copies as needed.

Example 3-41 depicts several store-forwarding situations in which small loads follow large stores. The
first three load operations illustrate the situations described in Rule 50. However, the last load operation
gets data from store-forwarding without problem.

Example 3-41. Situations Showing Small Loads After Large Store

mov [EBP],'abcd’

mov AL, [EBP] ; Not blocked - same alignment

mov BL, [EBP + 1] ; Blocked

mov CL, [EBP + 2] , Blocked

mov DL, [EBP + 3] ; Blocked

mov AL, [EBP] ; Not blocked - same alignment
; n.b. passes older blocked loads

Example 3-42 illustrates a store-forwarding situation in which a large load follows several small stores.
The data needed by the load operation cannot be forwarded because all of the data that needs to be
forwarded is not contained in the store buffer. Avoid large loads after small stores to the same area of
memory.

Example 3-42. Non-forwarding Example of Large Load After Small Store

mov [EBP], ‘@’

mov [EBP + 1],'b’

mov [EBP + 2], ‘'

mov [EBP + 3],'d’

mov EAX, [EBP] ; Blocked
; The first 4 small store can be consolidated into
; a single DWORD store to prevent this non-forwarding
; situation.

Example 3-43 illustrates a stalled store-forwarding situation that may appear in compiler generated
code. Sometimes a compiler generates code similar to that shown in Example 3-43 to handle a spilled
byte to the stack and convert the byte to an integer value.

Example 3-43. A Non-forwarding Situation in Compiler Generated Code

mov DWORD PTR [esp+10h], 00000000h

mov BYTE PTR [esp+10h], bl

mov eax, DWORD PTR [esp+10h] ; Stall

and eax, Oxff ; Converting back to byte value

3-51

GENERAL OPTIMIZATION GUIDELINES

Example 3-44 offers two alternatives to avoid the non-forwarding situation shown in Example 3-43.

Example 3-44. Two Ways to Avoid Non-forwarding Situation in Example 3-43

; A. Use MOVZ instruction to avoid large load after small
; store, when spills are ignored.

movz eax, bl ; Replaces the last three instructions
; B. Use MOVZ instruction and handle spills to the stack

mov DWORD PTR [esp+10h], 00000000h

mov BYTE PTR [esp+10h], bl

movz eax, BYTE PTR [esp+10h] ; Not blocked

When moving data that is smaller than 64 bits between memory locations, 64-bit or 128-bit SIMD
register moves are more efficient (if aligned) and can be used to avoid unaligned loads. Although
floating-point registers allow the movement of 64 bits at a time, floating-point instructions should not be
used for this purpose, as data may be inadvertently modified.

As an additional example, consider the cases in Example 3-45.

Example 3-45. Large and Small Load Stalls

; A. Large load stall

mov mem, eax ; Store dword to address “MEM”

mov mem + 4, ebx ; Store dword to address “"MEM + 4"

fid mem ; Load qword at address “MEM”, stalls

; B. Small Load stall

fstp mem ; Store qword to address "“MEM”

mov bx, mem+2 ; Load word at address “MEM + 2", stalls
mov CX, mem+4 ; Load word at address “MEM + 4", stalls

In the first case (A), there is a large load after a series of small stores to the same area of memory
(beginning at memory address MEM). The large load will stall.

The FLD must wait for the stores to write to memory before it can access all the data it requires. This stall
can also occur with other data types (for example, when bytes or words are stored and then words or
doublewords are read from the same area of memory).

In the second case (B), there is a series of small loads after a large store to the same area of memory
(beginning at memory address MEM). The small loads will stall.

The word loads must wait for the quadword store to write to memory before they can access the data
they require. This stall can also occur with other data types (for example, when doublewords or words
are stored and then words or bytes are read from the same area of memory). This can be avoided by

moving the store as far from the loads as possible.

3-52

GENERAL OPTIMIZATION GUIDELINES

Store forwarding restrictions for processors based on Intel Core microarchitecture is listed in Table 3-3.

Table 3-3. Store Forwarding Restrictions of Processors Based on Intel Core Microarchitecture

Store Forwarding
Store Alignment | Width of Store (bits) | Load Alignment (byte) | Width of Load (bits) | Restriction
To Natural size 16 word aligned 8,16 not stalled
To Natural size 16 not word aligned 8 stalled
To Natural size 32 dword aligned 8,32 not stalled
To Natural size 32 not dword aligned 8 stalled
To Natural size 32 word aligned 16 not stalled
To Natural size 32 not word aligned 16 stalled
To Natural size 64 qword aligned 8, 16,64 not stalled
To Natural size 64 not qword aligned 8,16 stalled
To Natural size 64 dword aligned 32 not stalled
To Natural size 64 not dword aligned 32 stalled
To Natural size 128 dqword aligned 8,16, 128 not stalled
To Natural size 128 not dqword aligned 8,16 stalled
To Natural size 128 dword aligned 32 not stalled
To Natural size 128 not dword aligned 32 stalled
To Natural size 128 qword aligned 64 not stalled
To Natural size 128 not qword aligned 64 stalled
Unaligned, start 32 byte O of store 8,16, 32 not stalled
byte 1
Unaligned, start 32 not byte 0 of store 8,16 stalled
byte 1
Unaligned, start 64 byte O of store 8,16, 32 not stalled
byte 1
Unaligned, start 64 not byte O of store 8,16, 32 stalled
byte 1
Unaligned, start 64 byte 0 of store 64 stalled
byte 1
Unaligned, start 32 byte O of store 8 not stalled
byte 7
Unaligned, start 32 not byte O of store 8 not stalled
byte 7
Unaligned, start 32 don't care 16, 32 stalled
byte 7
Unaligned, start 64 don't care 16, 32,64 stalled
byte 7

3.6.5.2 Store-forwarding Restriction on Data Availability

The value to be stored must be available before the load operation can be completed. If this restriction is
violated, the execution of the load will be delayed until the data is available. This delay causes some
execution resources to be used unnecessarily, and that can lead to sizable but non-deterministic delays.
However, the overall impact of this problem is much smaller than that from violating size and alignment
requirements.

3-53

GENERAL OPTIMIZATION GUIDELINES

In modern microarchitectures, hardware predicts when loads are dependent on and get their data
forwarded from preceding stores. These predictions can significantly improve performance. However, if a
load is scheduled too soon after the store it depends on or if the generation of the data to be stored is
delayed, there can be a significant penalty.

There are several cases in which data is passed through memory, and the store may need to be sepa-
rated from the load:

® Spills, save and restore registers in a stack frame.

® Parameter passing.

® Global and volatile variables.

¢ Type conversion between integer and floating-point.

® When compilers do not analyze code that is inlined, forcing variables that are involved in the interface
with inlined code to be in memory, creating more memory variables and preventing the elimination of
redundant loads.

Assembly/Compiler Coding Rule 51. (H impact, MH generality) Where it is possible to do so
without incurring other penalties, prioritize the allocation of variables to registers, as in register
allocation and for parameter passing, to minimize the likelihood and impact of store-forwarding
problems. Try not to store-forward data generated from a long latency instruction - for example, MUL
or DIV. Avoid store-forwarding data for variables with the shortest store-load distance. Avoid store-
forwarding data for variables with many and/or long dependence chains, and especially avoid including
a store forward on a loop-carried dependence chain.

Example 3-46 shows an example of a loop-carried dependence chain.

Example 3-46. Loop-carried Dependence Chain

for (i=0;i<MAX; i++){
a[i] = b[i] * foo;
foo=a[i]/3;
} // foo is a loop-carried dependence.

Assembly/Compiler Coding Rule 52. (M impact, MH generality) Calculate store addresses as
early as possible to avoid having stores block loads.

3.6.6 Data Layout Optimizations

User/Source Coding Rule 6. (H impact, M generality) Pad data structures defined in the source
code so that every data element is aligned to a natural operand size address boundary.

If the operands are packed in a SIMD instruction, align to the packed element size (64-bit or 128-bit).

Align data by providing padding inside structures and arrays. Programmers can reorganize structures and
arrays to minimize the amount of memory wasted by padding. However, compilers might not have this
freedom. The C programming language, for example, specifies the order in which structure elements are
allocated in memory. For more information, see Section 4.4, “Stack and Data Alignment”.

3-54

GENERAL OPTIMIZATION GUIDELINES

Example 3-47 shows how a data structure could be rearranged to reduce its size.

Example 3-47. Rearranging a Data Structure

struct unpacked { /* Fits in 20 bytes due to padding */
int a;
char b;
int (o8
char d;
int e
¥
struct packed { /* Fitsin 16 bytes */
int a;
int (o
int €
char b;
char d;
}

Cache line size of 64 bytes can impact streaming applications (for example, multimedia). These refer-
ence and use data only once before discarding it. Data accesses which sparsely utilize the data within a
cache line can result in less efficient utilization of system memory bandwidth. For example, arrays of
structures can be decomposed into several arrays to achieve better packing, as shown in Example 3-48.

Example 3-48. Decomposing an Array

struct { /* 1600 bytes */
int ace;
char b, d;
}array_of_struct [100];

struct { /* 1400 bytes */
int a[100], c[100], e[100];
char b[100], d[100];

} struct_of_array;

struct { /* 1200 bytes */
int ace;
}hybrid_struct_of_array_ace[100];

struct { /* 200 bytes */
char b, d;
}hybrid_struct_of_array_bd[100];

The efficiency of such optimizations depends on usage patterns. If the elements of the structure are all
accessed together but the access pattern of the array is random, then ARRAY_OF_STRUCT avoids unnec-
essary prefetch even though it wastes memory.

However, if the access pattern of the array exhibits locality (for example, if the array index is being swept
through) then processors with hardware prefetchers will prefetch data from STRUCT_OF_ARRAY, even if
the elements of the structure are accessed together.

3-55

GENERAL OPTIMIZATION GUIDELINES

When the elements of the structure are not accessed with equal frequency, such as when element A is
accessed ten times more often than the other entries, then STRUCT_OF_ARRAY not only saves memory,
but it also prevents fetching unnecessary data items B, C, D, and E.

Using STRUCT_OF_ARRAY also enables the use of the SIMD data types by the programmer and the
compiler.

Note that STRUCT_OF_ARRAY can have the disadvantage of requiring more independent memory stream
references. This can require the use of more prefetches and additional address generation calculations.
It can also have an impact on DRAM page access efficiency. An alternative, HYBRID_STRUCT_OF_ARRAY
blends the two approaches. In this case, only 2 separate address streams are generated and referenced:
1 for HYBRID_STRUCT_OF_ARRAY_ACE and 1 for HYBRID_STRUCT_OF_ARRAY_BD. The second alter-
ative also prevents fetching unnecessary data — assuming that (1) the variables A, C and E are always
used together, and (2) the variables B and D are always used together, but not at the same time as A, C
and E.

The hybrid approach ensures:

® Simpler/fewer address generations than STRUCT_OF_ARRAY.

® Fewer streams, which reduces DRAM page misses.

®* Fewer prefetches due to fewer streams.

® Efficient cache line packing of data elements that are used concurrently.

Assembly/Compiler Coding Rule 53. (H impact, M generality) Try to arrange data structures
such that they permit sequential access.

If the data is arranged into a set of streams, the automatic hardware prefetcher can prefetch data that
will be needed by the application, reducing the effective memory latency. If the data is accessed in a non-
sequential manner, the automatic hardware prefetcher cannot prefetch the data. The prefetcher can
recognize up to eight concurrent streams. See Chapter 7, “Optimizing Cache Usage,” for more informa-
tion on the hardware prefetcher.

User/Source Coding Rule 7. (M impact, L generality) Beware of false sharing within a cache line
(64 bytes).

3.6.7 Stack Alignment

Performance penalty of unaligned access to the stack happens when a memory reference splits a cache
line. This means that one out of eight spatially consecutive unaligned quadword accesses is always
penalized, similarly for one out of 4 consecutive, non-aligned double-quadword accesses, etc.

Aligning the stack may be beneficial any time there are data objects that exceed the default stack align-
ment of the system. For example, on 32/64bit Linux, and 64bit Windows, the default stack alignment is
16 bytes, while 32bit Windows is 4 bytes.

Assembly/Compiler Coding Rule 54. (H impact, M generality) Make sure that the stack is aligned
at the largest multi-byte granular data type boundary matching the register width.

Aligning the stack typically requires the use of an additional register to track across a padded area of
unknown amount. There is a trade-off between causing unaligned memory references that spanned
across a cache line and causing extra general purpose register spills.

The assembly level technique to implement dynamic stack alignment may depend on compilers, and
specific OS environment. The reader may wish to study the assembly output from a compiler of interest.

3-56

GENERAL OPTIMIZATION GUIDELINES

Example 3-49. Examples of Dynamical Stack Alignment

// 32-bit environment
push ebp ; save ebp
mov ebp, esp ; ebp now points to incoming parameters
and| esp, $-<N> ;align esp to N byte boundary
sub esp, S<stack_size>; reserve space for new stack frame
. ; parameters must be referenced off of ebp
mov esp, ebp ; restore esp
pop ebp ; restore ebp

// 64-bit environment

sub esp, S<stack_size +N>
mov r13, $S<offset_of_aligned_section_in_stack>
and| r13, $-<N>; r13 point to aligned section in stack

;use r13 as base for aligned data

If for some reason it is not possible to align the stack for 64-bits, the routine should access the parameter
and save it into a register or known aligned storage, thus incurring the penalty only once.

3.6.8 Capacity Limits and Aliasing in Caches

There are cases in which addresses with a given stride will compete for some resource in the memory
hierarchy.

Typically, caches are implemented to have multiple ways of set associativity, with each way consisting of
multiple sets of cache lines (or sectors in some cases). Multiple memory references that compete for the
same set of each way in a cache can cause a capacity issue. There are aliasing conditions that apply to
specific microarchitectures. Note that first-level cache lines are 64 bytes. Thus, the least significant 6 bits
are not considered in alias comparisons. For processors based on Intel NetBurst microarchitecture, data
is loaded into the second level cache in a sector of 128 bytes, so the least significant 7 bits are not
considered in alias comparisons.

3.6.8.1 Capacity Limits in Set-Associative Caches

Capacity limits may be reached if the number of outstanding memory references that are mapped to the
same set in each way of a given cache exceeds the number of ways of that cache. The conditions that
apply to the first-level data cache and second level cache are listed below:

® L1 Set Conflicts — Multiple references map to the same first-level cache set. The conflicting
condition is a stride determined by the size of the cache in bytes, divided by the number of ways.
These competing memory references can cause excessive cache misses only if the number of
outstanding memory references exceeds the number of ways in the working set:

— On Pentium 4 and Intel Xeon processors with a CPUID signature of family encoding 15, model
encoding of 0, 1, or 2; there will be an excess of first-level cache misses for more than 4 simulta-
neous competing memory references to addresses with 2-KByte modulus.

— On Pentium 4 and Intel Xeon processors with a CPUID signature of family encoding 15, model
encoding 3; there will be an excess of first-level cache misses for more than 8 simultaneous
competing references to addresses that are apart by 2-KByte modulus.

3-57

GENERAL OPTIMIZATION GUIDELINES

— On Intel Core 2 Duo, Intel Core Duo, Intel Core Solo, and Pentium M processors, there will be an
excess of first-level cache misses for more than 8 simultaneous references to addresses that are
apart by 4-KByte modulus.

¢ L2 Set Conflicts — Multiple references map to the same second-level cache set. The conflicting
condition is also determined by the size of the cache or the number of ways:

— On Pentium 4 and Intel Xeon processors, there will be an excess of second-level cache misses for
more than 8 simultaneous competing references. The stride sizes that can cause capacity issues
are 32 KBytes, 64 KBytes, or 128 KBytes, depending of the size of the second level cache.

— On Pentium M processors, the stride sizes that can cause capacity issues are 128 KBytes or 256
KBytes, depending of the size of the second level cache. On Intel Core 2 Duo, Intel Core Duo,
Intel Core Solo processors, stride size of 256 KBytes can cause capacity issue if the number of
simultaneous accesses exceeded the way associativity of the L2 cache.

3.6.8.2 Aliasing Cases in the Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo and Intel® Core™
2 Duo Processors

Pentium M, Intel Core Solo, Intel Core Duo and Intel Core 2 Duo processors have the following aliasing
case:

¢ Store forwarding — If a store to an address is followed by a load from the same address, the load
will not proceed until the store data is available. If a store is followed by a load and their addresses
differ by a multiple of 4 KBytes, the load stalls until the store operation completes.

Assembly/Compiler Coding Rule 55. (H impact, M generality) Avoid having a store followed by a
non-dependent load with addresses that differ by a multiple of 4 KBytes. Also, lay out data or order
computation to avoid having cache lines that have linear addresses that are a multiple of 64 KBytes
apart in the same working set. Avoid having more than 4 cache lines that are some multiple of 2 KBytes
apart in the same first-level cache working set, and avoid having more than 8 cache lines that are some
multiple of 4 KBytes apart in the same first-level cache working set.

When declaring multiple arrays that are referenced with the same index and are each a multiple of 64
KBytes (as can happen with STRUCT_OF_ARRAY data layouts), pad them to avoid declaring them contig-
uously. Padding can be accomplished by either intervening declarations of other variables or by artificially
increasing the dimension.

User/Source Coding Rule 8. (H impact, ML generality) Consider using a special memory allocation
library with address offset capability to avoid aliasing. One way to implement a memory allocator to
avoid aliasing is to allocate more than enough space and pad. For example, allocate structures that are
68 KB instead of 64 KBytes to avoid the 64-KByte aliasing, or have the allocator pad and return random
offsets that are a multiple of 128 Bytes (the size of a cache line).

User/Source Coding Rule 9. (M impact, M generality) When padding variable declarations to
avoid aliasing, the greatest benefit comes from avoiding aliasing on second-level cache lines,
suggesting an offset of 128 bytes or more.

4-KByte memory aliasing occurs when the code accesses two different memory locations with a 4-KByte
offset between them. The 4-KByte aliasing situation can manifest in a memory copy routine where the
addresses of the source buffer and destination buffer maintain a constant offset and the constant offset
happens to be a multiple of the byte increment from one iteration to the next.

Example 3-50 shows a routine that copies 16 bytes of memory in each iteration of a loop. If the offsets
(modular 4096) between source buffer (EAX) and destination buffer (EDX) differ by 16, 32, 48, 64, 80;
loads have to wait until stores have been retired before they can continue. For example at offset 16, the
load of the next iteration is 4-KByte aliased current iteration store, therefore the loop must wait until the
store operation completes, making the entire loop serialized. The amount of time needed to wait
decreases with larger offset until offset of 96 resolves the issue (as there is no pending stores by the time
of the load with same address).

3-58

GENERAL OPTIMIZATION GUIDELINES

The Intel Core microarchitecture provides a performance monitoring event (see
LOAD_BLOCK.OVERLAP_STORE in Intel® 64 and I1A-32 Architectures Software Developer’s Manual,
Volume 3B) that allows software tuning effort to detect the occurrence of aliasing conditions.

Example 3-50. Aliasing Between Loads and Stores Across Loop Iterations

LP:

movaps xmmo0, [eax+ecX]
movaps [edx+ecx], xmmO
add ecx, 16

jnzlp

3.6.9 Mixing Code and Data

The aggressive prefetching and pre-decoding of instructions by Intel processors have two related effects:

¢ Self-modifying code works correctly, according to the Intel architecture processor requirements, but
incurs a significant performance penalty. Avoid self-modifying code if possible.

® Placing writable data in the code segment might be impossible to distinguish from self-modifying
code. Writable data in the code segment might suffer the same performance penalty as self-
modifying code.

Assembly/Compiler Coding Rule 56. (M impact, L generality) If (hopefully read-only) data must
occur on the same page as code, avoid placing it immediately after an indirect jump. For example,
follow an indirect jump with its mostly likely target, and place the data after an unconditional branch.

Tuning Suggestion 1. In rare cases, a performance problem may be caused by executing data on a
code page as instructions. This is very likely to happen when execution is following an indirect branch
that is not resident in the trace cache. If this is clearly causing a performance problem, try moving the
data elsewhere, or inserting an illegal opcode or a PAUSE instruction immediately after the indirect
branch. Note that the latter two alternatives may degrade performance in some circumstances.

Assembly/Compiler Coding Rule 57. (H impact, L generality) Always put code and data on
separate pages. Avoid self-modifying code wherever possible. If code is to be modified, try to do it all at
once and make sure the code that performs the modifications and the code being modified are on
separate 4-KByte pages or on separate aligned 1-KByte subpages.

3.6.9.1 Self-modifying Code

Self-modifying code (SMC) that ran correctly on Pentium |ll processors and prior implementations will run
correctly on subsequent implementations. SMC and cross-modifying code (when multiple processors in a
multiprocessor system are writing to a code page) should be avoided when high performance is desired.

Software should avoid writing to a code page in the same 1-KByte subpage that is being executed or
fetching code in the same 2-KByte subpage of that is being written. In addition, sharing a page
containing directly or speculatively executed code with another processor as a data page can trigger an
SMC condition that causes the entire pipeline of the machine and the trace cache to be cleared. This is
due to the self-modifying code condition.

Dynamic code need not cause the SMC condition if the code written fills up a data page before that page
is accessed as code. Dynamically-modified code (for example, from target fix-ups) is likely to suffer from
the SMC condition and should be avoided where possible. Avoid the condition by introducing indirect
branches and using data tables on data pages (not code pages) using register-indirect calls.

3-59

GENERAL OPTIMIZATION GUIDELINES

3.6.9.2 Position Independent Code

Position independent code often needs to obtain the value of the instruction pointer. Example 3-51a
shows one technique to put the value of IP into the ECX register by issuing a CALL without a matching
RET. Example 3-51b shows an alternative technique to put the value of IP into the ECX register using a
matched pair of CALL/RET.

Example 3-51. Instruction Pointer Query Techniques

a) Using call without return to obtain IP does not corrupt the RSB

call _label; return address pushed is the IP of next instruction
_label:

pop ECX; IP of this instruction is now put into ECX

b) Using matched call/ret pair

call _Iblcx;
..., ECX now contains IP of this instruction

_Iblex
mov ecx, [esp];
ret

3.6.10 Write Combining

Write combining (WC) improves performance in two ways:

® On a write miss to the first-level cache, it allows multiple stores to the same cache line to occur
before that cache line is read for ownership (RFO) from further out in the cache/memory hierarchy.
Then the rest of line is read, and the bytes that have not been written are combined with the
unmodified bytes in the returned line.

® Write combining allows multiple writes to be assembled and written further out in the cache hierarchy
as a unit. This saves port and bus traffic. Saving traffic is particularly important for avoiding partial
writes to uncached memory.

There are six write-combining buffers (on Pentium 4 and Intel Xeon processors with a CPUID signature of
family encoding 15, model encoding 3; there are 8 write-combining buffers). Two of these buffers may
be written out to higher cache levels and freed up for use on other write misses. Only four write-
combining buffers are guaranteed to be available for simultaneous use. Write combining applies to
memory type WC; it does not apply to memory type UC.

There are six write-combining buffers in each processor core in Intel Core Duo and Intel Core Solo
processors. Processors based on Intel Core microarchitecture have eight write-combining buffers in each
core. Starting with Intel microarchitecture code name Nehalem, there are 10 buffers available for write-
combining.

Assembly/Compiler Coding Rule 58. (H impact, L generality) If an inner loop writes to more than
four arrays (four distinct cache lines), apply loop fission to break up the body of the loop such that only
four arrays are being written to in each iteration of each of the resulting loops.

Write combining buffers are used for stores of all memory types. They are particularly important for
writes to uncached memory: writes to different parts of the same cache line can be grouped into a single,
full-cache-line bus transaction instead of going across the bus (since they are not cached) as several
partial writes. Avoiding partial writes can have a significant impact on bus bandwidth-bound graphics
applications, where graphics buffers are in uncached memory. Separating writes to uncached memory
and writes to writeback memory into separate phases can assure that the write combining buffers can fill
before getting evicted by other write traffic. Eliminating partial write transactions has been found to have

3-60

GENERAL OPTIMIZATION GUIDELINES

performance impact on the order of 20% for some applications. Because the cache lines are 64 bytes, a
write to the bus for 63 bytes will result in 8 partial bus transactions.

When coding functions that execute simultaneously on two threads, reducing the number of writes that
are allowed in an inner loop will help take full advantage of write-combining store buffers. For write-
combining buffer recommendations for Hyper-Threading Technology, see Chapter 9, “Multicore and
Hyper-Threading Technology.”

Store ordering and visibility are also important issues for write combining. When a write to a write-
combining buffer for a previously-unwritten cache line occurs, there will be a read-for-ownership (RFO).
If a subsequent write happens to another write-combining buffer, a separate RFO may be caused for that
cache line. Subsequent writes to the first cache line and write-combining buffer will be delayed until the
second RFO has been serviced to guarantee properly ordered visibility of the writes. If the memory type
for the writes is write-combining, there will be no RFO since the line is not cached, and there is no such
delay. For details on write-combining, see Chapter 7, “Optimizing Cache Usage.”

3.6.11 Locality Enhancement

Locality enhancement can reduce data traffic originating from an outer-level sub-system in the
cache/memory hierarchy. This is to address the fact that the access-cost in terms of cycle-count from an
outer level will be more expensive than from an inner level. Typically, the cycle-cost of accessing a given
cache level (or memory system) varies across different microarchitectures, processor implementations,
and platform components. It may be sufficient to recognize the relative data access cost trend by locality
rather than to follow a large table of numeric values of cycle-costs, listed per locality, per processor/plat-
form implementations, etc. The general trend is typically that access cost from an outer sub-system may
be approximately 3-10X more expensive than accessing data from the immediate inner level in the
cache/memory hierarchy, assuming similar degrees of data access parallelism.

Thus locality enhancement should start with characterizing the dominant data traffic locality. Section A,
“Application Performance Tools,” describes some techniques that can be used to determine the dominant
data traffic locality for any workload.

Even if cache miss rates of the last level cache may be low relative to the number of cache references,
processors typically spend a sizable portion of their execution time waiting for cache misses to be
serviced. Reducing cache misses by enhancing a program’s locality is a key optimization. This can take
several forms:

® Blocking to iterate over a portion of an array that will fit in the cache (with the purpose that
subsequent references to the data-block [or tile] will be cache hit references).

® Loop interchange to avoid crossing cache lines or page boundaries.
®* Loop skewing to make accesses contiguous.

Locality enhancement to the last level cache can be accomplished with sequencing the data access
pattern to take advantage of hardware prefetching. This can also take several forms:

®* Transformation of a sparsely populated multi-dimensional array into a one-dimension array such that
memory references occur in a sequential, small-stride pattern that is friendly to the hardware
prefetch (see Section 2.4.5.4, “Data Prefetching”).

¢ Optimal tile size and shape selection can further improve temporal data locality by increasing hit
rates into the last level cache and reduce memory traffic resulting from the actions of hardware
prefetching (see Section 7.5.11, “Hardware Prefetching and Cache Blocking Techniques”).

It is important to avoid operations that work against locality-enhancing techniques. Using the lock prefix
heavily can incur large delays when accessing memory, regardless of whether the data is in the cache or
in system memory.

User/Source Coding Rule 10. (H impact, H generality) Optimization techniques such as blocking,
loop interchange, loop skewing, and packing are best done by the compiler. Optimize data structures
either to fit in one-half of the first-level cache or in the second-level cache; turn on loop optimizations
in the compiler to enhance locality for nested loops.

3-61

GENERAL OPTIMIZATION GUIDELINES

Optimizing for one-half of the first-level cache will bring the greatest performance benefit in terms of
cycle-cost per data access. If one-half of the first-level cache is too small to be practical, optimize for the
second-level cache. Optimizing for a point in between (for example, for the entire first-level cache) will
likely not bring a substantial improvement over optimizing for the second-level cache.

3.6.12 Minimizing Bus Latency

Each bus transaction includes the overhead of making requests and arbitrations. The average latency of
bus read and bus write transactions will be longer if reads and writes alternate. Segmenting reads and
writes into phases can reduce the average latency of bus transactions. This is because the number of
incidences of successive transactions involving a read following a write, or a write following a read, are
reduced.

User/Source Coding Rule 11. (M impact, ML generality) If there is a blend of reads and writes on
the bus, changing the code to separate these bus transactions into read phases and write phases can
help performance.

Note, however, that the order of read and write operations on the bus is not the same as it appears in the
program.

Bus latency for fetching a cache line of data can vary as a function of the access stride of data references.
In general, bus latency will increase in response to increasing values of the stride of successive cache
misses. Independently, bus latency will also increase as a function of increasing bus queue depths (the
number of outstanding bus requests of a given transaction type). The combination of these two trends
can be highly non-linear, in that bus latency of large-stride, bandwidth-sensitive situations are such that
effective throughput of the bus system for data-parallel accesses can be significantly less than the effec-
tive throughput of small-stride, bandwidth-sensitive situations.

To minimize the per-access cost of memory traffic or amortize raw memory latency effectively, software
should control its cache miss pattern to favor higher concentration of smaller-stride cache misses.

User/Source Coding Rule 12. (H impact, H generality) To achieve effective amortization of bus
latency, software should favor data access patterns that result in higher concentrations of cache miss
patterns, with cache miss strides that are significantly smaller than half the hardware prefetch trigger
threshold.

3.6.13 Non-Temporal Store Bus Traffic

Peak system bus bandwidth is shared by several types of bus activities, including reads (from memory),
reads for ownership (of a cache line), and writes. The data transfer rate for bus write transactions is
higher if 64 bytes are written out to the bus at a time.

Typically, bus writes to Writeback (WB) memory must share the system bus bandwidth with read-for-
ownership (RFO) traffic. Non-temporal stores do not require RFO traffic; they do require care in
managing the access patterns in order to ensure 64 bytes are evicted at once (rather than evicting
several 8-byte chunks).

3-62

GENERAL OPTIMIZATION GUIDELINES

Although the data bandwidth of full 64-byte bus writes due to non-temporal stores is twice that of bus
writes to WB memory, transferring 8-byte chunks wastes bus request bandwidth and delivers signifi-
cantly lower data bandwidth. This difference is depicted in Examples 3-52 and 3-53.

Example 3-52. Using Non-temporal Stores and 64-byte Bus Write Transactions

#define STRIDESIZE 256

lea ecx, p64byte_Aligned

mov edx, ARRAY_LEN

XOr eax, eax

slloop:

movntps XMMWORD ptr [ecx + eax], xmmO
movntps XMMWORD ptr [ecx + eax+16], xmmO
movntps XMMWORD ptr [ecx + eax+32], xmmO
movntps XMMWORD ptr [ecx + eax+48], xmmO
; 64 bytes is written in one bus transaction

add eax, STRIDESIZE

cmp eax, edx

jl slloop

Example 3-53. On-temporal Stores and Partial Bus Write Transactions

#define STRIDESIZE 256

Lea ecx, p64byte_Aligned

Mov edx, ARRAY_LEN

Xor eax, eax

slloop:

movntps XMMWORD ptr [ecx + eax], xmmO
movntps XMMWORD ptr [ecx + eax+16], xmmO
movntps XMMWORD ptr [ecx + eax+32], xmmO

; Storing 48 bytes results in 6 bus partial transactions
add eax, STRIDESIZE

cmp eax, edx

jl slloop

3.7 PREFETCHING

Recent Intel processor families employ several prefetching mechanisms to accelerate the movement of
data or code and improve performance:

® Hardware instruction prefetcher.
¢ Software prefetch for data.
® Hardware prefetch for cache lines of data or instructions.

3.7.1 Hardware Instruction Fetching and Software Prefetching

Software prefetching requires a programmer to use PREFETCH hint instructions and anticipate some suit-
able timing and location of cache misses.

3-63

GENERAL OPTIMIZATION GUIDELINES

Software PREFETCH operations work the same way as do load from memory operations, with the
following exceptions:

¢ Software PREFETCH instructions retire after virtual to physical address translation is completed.

®* If an exception, such as page fault, is required to prefetch the data, then the software prefetch
instruction retires without prefetching data.

¢ Avoid specifying a NULL address for software prefetches.

3.7.2 Hardware Prefetching for First-Level Data Cache

The hardware prefetching mechanism for L1 in Intel Core microarchitecture is discussed in Section
2.5.4.2.

Example 3-54 depicts a technique to trigger hardware prefetch. The code demonstrates traversing a
linked list and performing some computational work on 2 members of each element that reside in 2
different cache lines. Each element is of size 192 bytes. The total size of all elements is larger than can
be fitted in the L2 cache.

Example 3-54. Using DCU Hardware Prefetch

Original code Modified sequence benefit from prefetch

mov ebx, DWORD PTR [First] mov ebx, DWORD PTR [First]

XOr eax, eax XOr eax, eax

scan_list: scan_list:

mov eax, [ebx+4] mov eax, [ebx+4]

mov ecx, 60 mov eax, [ebx+4]
mov eax, [ebx+4]
mov ecx, 60

do_some_work_1: do_some_work_1:

add eax, eax add eax, eax

and eax, 6 and eax, 6

sub ecx, 1 sub ecx, 1

jnz do_some_work_1 jnz do_some_work_1

mov eax, [ebx+64] mov eax, [ebx+64]

mov ecx, 30 mov ecx, 30

do_some_work_2: do_some_work_2:

add eax, eax add eax, eax

and eax, 6 and eax, 6

sub ecx, 1 sub ecx, 1

jnz do_some_work_2 jnz do_some_work_2

mov ebx, [ebx] mov ebx, [ebx]

test ebx, ebx test ebx, ebx

jnz scan_list jnz scan_list

The additional instructions to load data from one member in the modified sequence can trigger the DCU
hardware prefetch mechanisms to prefetch data in the next cache line, enabling the work on the second
member to complete sooner.

Software can gain from the first-level data cache prefetchers in two cases:

¢ If data is not in the second-level cache, the first-level data cache prefetcher enables early trigger of
the second-level cache prefetcher.

¢ Ifdataisin the second-level cache and not in the first-level data cache, then the first-level data cache
prefetcher triggers earlier data bring-up of sequential cache line to the first-level data cache.

3-64

GENERAL OPTIMIZATION GUIDELINES

There are situations that software should pay attention to a potential side effect of triggering unneces-
sary DCU hardware prefetches. If a large data structure with many members spanning many cache lines
is accessed in ways that only a few of its members are actually referenced, but there are multiple pair
accesses to the same cache line. The DCU hardware prefetcher can trigger fetching of cache lines that
are not needed. In Example , references to the “Pts” array and “AltPts” will trigger DCU prefetch to fetch
additional cache lines that won’t be needed. If significant negative performance impact is detected due
to DCU hardware prefetch on a portion of the code, software can try to reduce the size of that contempo-
raneous working set to be less than half of the L2 cache.

Example 3-55. Avoid Causing DCU Hardware Prefetch to Fetch Un-needed Lines

while (CurrBond != NULL)
{
MyATOM *al = CurrBond->At1 ;
MyATOM *a2 = CurrBond->At2 ;

if (a1->CurrStep <= al->LastStep &&
a2->CurrStep <= a2->LastStep
)
{

al->CurrStep++;
a2->CurrStep++;

double ux =a1->Pts[0].x - a2->Pts[0].x ;
double uy =a1->Pts[0].y - a2->Pts[0].y ;
double uz = al1->Pts[0].z - a2->Pts[0].z;
al->AuxPts[0].x += ux;
al->AuxPts[0]y +=uy;
al->AuxPts[0].z +=uz;

a2->AuxPts[0].x +=ux ;
a2->AuxPts[0].y +=uy ;
a2->AuxPts[0].z +=uz;
I

CurrBond = CurrBond->Next ;

b

To fully benefit from these prefetchers, organize and access the data using one of the following methods:
Method 1:

® Organize the data so consecutive accesses can usually be found in the same 4-KByte page.

® Access the data in constant strides forward or backward IP Prefetcher.

Method 2:

® Organize the data in consecutive lines.

® Access the data in increasing addresses, in sequential cache lines.

Example demonstrates accesses to sequential cache lines that can benefit from the first-level cache
prefetcher.

3-65

GENERAL OPTIMIZATION GUIDELINES

Example 3-56. Technique For Using L1 Hardware Prefetch

unsigned int *p1, j, a, b;
for (j=0;j < num;j+=16)
{
a=pl[[

b=pI1[+1];

/1 Use these two values

}

By elevating the load operations from memory to the beginning of each iteration, it is likely that a signif-
icant part of the latency of the pair cache line transfer from memory to the second-level cache will be in
parallel with the transfer of the first cache line.

The IP prefetcher uses only the lower 8 bits of the address to distinguish a specific address. If the code
size of a loop is bigger than 256 bytes, two loads may appear similar in the lowest 8 bits and the IP
prefetcher will be restricted. Therefore, if you have a loop bigger than 256 bytes, make sure that no two
loads have the same lowest 8 bits in order to use the IP prefetcher.

3.7.3 Hardware Prefetching for Second-Level Cache

The Intel Core microarchitecture contains two second-level cache prefetchers:

® Streamer — Loads data or instructions from memory to the second-level cache. To use the streamer,
organize the data or instructions in blocks of 128 bytes, aligned on 128 bytes. The first access to one
of the two cache lines in this block while it is in memory triggers the streamer to prefetch the pair
line. To software, the L2 streamer’s functionality is similar to the adjacent cache line prefetch
mechanism found in processors based on Intel NetBurst microarchitecture.

® Data prefetch logic (DPL) — DPL and L2 Streamer are triggered only by writeback memory type.
They prefetch only inside page boundary (4 KBytes). Both L2 prefetchers can be triggered by
software prefetch instructions and by prefetch request from DCU prefetchers. DPL can also be
triggered by read for ownership (RFO) operations. The L2 Streamer can also be triggered by DPL
requests for L2 cache misses.

Software can gain from organizing data both according to the instruction pointer and according to line
strides. For example, for matrix calculations, columns can be prefetched by IP-based prefetches, and
rows can be prefetched by DPL and the L2 streamer.

3.74 Cacheability Instructions

SSE2 provides additional cacheability instructions that extend those provided in SSE. The new cache-
ability instructions include:

® New streaming store instructions.
® New cache line flush instruction.
®* New memory fencing instructions.

For more information, see Chapter 7, “Optimizing Cache Usage.”

3.7.5 REP Prefix and Data Movement

The REP prefix is commonly used with string move instructions for memory related library functions such
as MEMCPY (using REP MOVSD) or MEMSET (using REP STOS). These STRING/MOV instructions with the
REP prefixes are implemented in MS-ROM and have several implementation variants with different
performance levels.

3-66

GENERAL OPTIMIZATION GUIDELINES

The specific variant of the implementation is chosen at execution time based on data layout, alignment
and the counter (ECX) value. For example, MOVSB/STOSB with the REP prefix should be used with
counter value less than or equal to three for best performance.

String MOVE/STORE instructions have multiple data granularities. For efficient data movement, larger data
granularities are preferable. This means better efficiency can be achieved by decomposing an arbitrary

counter value into a number of doublewords plus single byte moves with a count value less than or equal
to 3.

Because software can use SIMD data movement instructions to move 16 bytes at a time, the following
paragraphs discuss general guidelines for designing and implementing high-performance library func-
tions such as MEMCPY (), MEMSET(), and MEMMOVE(). Four factors are to be considered:

® Throughput per iteration — If two pieces of code have approximately identical path lengths,
efficiency favors choosing the instruction that moves larger pieces of data per iteration. Also, smaller
code size per iteration will in general reduce overhead and improve throughput. Sometimes, this may
involve a comparison of the relative overhead of an iterative loop structure versus using REP prefix
for iteration.

® Address alignment — Data movement instructions with highest throughput usually have alignment
restrictions, or they operate more efficiently if the destination address is aligned to its natural data
size. Specifically, 16-byte moves need to ensure the destination address is aligned to 16-byte
boundaries, and 8-bytes moves perform better if the destination address is aligned to 8-byte
boundaries. Frequently, moving at doubleword granularity performs better with addresses that are 8-
byte aligned.

® REP string move vs. SIMD move — Implementing general-purpose memory functions using SIMD
extensions usually requires adding some prolog code to ensure the availability of SIMD instructions,
preamble code to facilitate aligned data movement requirements at runtime. Throughput comparison
must also take into consideration the overhead of the prolog when considering a REP string imple-
mentation versus a SIMD approach.

¢ Cache eviction — If the amount of data to be processed by a memory routine approaches half the
size of the last level on-die cache, temporal locality of the cache may suffer. Using streaming store
instructions (for example: MOVNTQ, MOVNTDQ) can minimize the effect of flushing the cache. The
threshold to start using a streaming store depends on the size of the last level cache. Determine the
size using the deterministic cache parameter leaf of CPUID.

Techniques for using streaming stores for implementing a MEMSET()-type library must also consider
that the application can benefit from this technique only if it has no immediate need to reference
the target addresses. This assumption is easily upheld when testing a streaming-store implemen-
tation on a micro-benchmark configuration, but violated in a full-scale application situation.

When applying general heuristics to the design of general-purpose, high-performance library routines,
the following guidelines can are useful when optimizing an arbitrary counter value N and address align-
ment. Different techniques may be necessary for optimal performance, depending on the magnitude of
N:

® When N is less than some small count (where the small count threshold will vary between microarchi-
tectures -- empirically, 8 may be a good value when optimizing for Intel NetBurst microarchitecture),
each case can be coded directly without the overhead of a looping structure. For example, 11 bytes
can be processed using two MOVSD instructions explicitly and a MOVSB with REP counter equaling 3.

® When N is not small but still less than some threshold value (which may vary for different micro-
architectures, but can be determined empirically), an SIMD implementation using run-time CPUID
and alignment prolog will likely deliver less throughput due to the overhead of the prolog. A REP
string implementation should favor using a REP string of doublewords. To improve address
alignment, a small piece of prolog code using MOVSB/STOSB with a count less than 4 can be used to
peel off the non-aligned data moves before starting to use MOVSD/STOSD.

® When N is less than half the size of last level cache, throughput consideration may favor either:

— An approach using a REP string with the largest data granularity because a REP string has little
overhead for loop iteration, and the branch misprediction overhead in the prolog/epilogue code to
handle address alignment is amortized over many iterations.

3-67

GENERAL OPTIMIZATION GUIDELINES

— An iterative approach using the instruction with largest data granularity, where the overhead for
SIMD feature detection, iteration overhead, and prolog/epilogue for alignment control can be
minimized. The trade-off between these approaches may depend on the microarchitecture.

An example of MEMSET() implemented using stosd for arbitrary counter value with the destination
address aligned to doubleword boundary in 32-bit mode is shown in Example 3-57.

® When N is larger than half the size of the last level cache, using 16-byte granularity streaming stores
with prolog/epilog for address alignment will likely be more efficient, if the destination addresses will
not be referenced immediately afterwards.

Example 3-57. REP STOSD with Arbitrary Count Size and 4-Byte-Aligned Destination

A ‘C’ example of Memset() Equivalent Implementation Using REP STOSD

void memset(void *dst,int ¢,size_t size)
{

char *d = (char *)dst;

size_t;

for (i=0;i<size;i++)

push edi

movzx eax, byte ptr [esp+12]
MOV ecx, eax

shl ecx, 8

or ecx, eax

*d++ = (char)c; MoV ecx, eax
1 shl ecx, 16
or eax, ecx
mov edi, [esp+8] ; 4-byte aligned
mov ecx, [esp+16] ; byte count
shrecx, 2 ; do dword
cmp ecx, 127
jle _main
test edi, 4
jz _main
stosd ;peel off one dword
dec ecx
_main: ; 8-byte aligned
rep stosd
mov ecX, [esp + 16]
and ecx, 3 ;docount <=3
rep stosb ; optimal with <=3
pop edi
ret

Memory routines in the runtime library generated by Intel compilers are optimized across a wide range
of address alignments, counter values, and microarchitectures. In most cases, applications should take
advantage of the default memory routines provided by Intel compilers.

In some situations, the byte count of the data is known by the context (as opposed to being known by a
parameter passed from a call), and one can take a simpler approach than those required for a general-
purpose library routine. For example, if the byte count is also small, using REP MOVSB/STOSB with a
count less than four can ensure good address alignment and loop-unrolling to finish the remaining data;
using MOVSD/STOSD can reduce the overhead associated with iteration.

Using a REP prefix with string move instructions can provide high performance in the situations described
above. However, using a REP prefix with string scan instructions (SCASB, SCASW, SCASD, SCASQ) or
compare instructions (CMPSB, CMPSW, SMPSD, SMPSQ) is not recommended for high performance.
Consider using SIMD instructions instead.

3-68

GENERAL OPTIMIZATION GUIDELINES

3.7.6 Enhanced REP MOVSB and STOSB Operation

Beginning with processors based on Intel microarchitecture code name lvy Bridge, REP string operation
using MOVSB and STOSB can provide both flexible and high-performance REP string operations for soft-
ware in common situations like memory copy and set operations. Processors that provide enhanced
MOVSB/STOSB operations are enumerated by the CPUID feature flag: CPUID:(EAX=7H,
ECX=0H):EBX.[bit 9] = 1.

3.7.6.1 Memcpy Considerations

The interface for the standard library function memcpy introduces several factors (e.g. length, alignment
of the source buffer and destination) that interact with microarchitecture to determine the performance
characteristics of the implementation of the library function. Two of the common approaches to imple-
ment memcpy are driven from small code size vs. maximum throughput. The former generally uses REP
MOVSD+B (see Section 3.7.5), while the latter uses SIMD instruction sets and has to deal with additional
data alignment restrictions.

For processors supporting enhanced REP MOVSB/STOSB, implementing memcpy with REP MOVSB will
provide even more compact benefits in code size and better throughput than using the combination of
REP MOVSD+B. For processors based on Intel microarchitecture code name lvy Bridge, implementing
memcpy using Enhanced REP MOVSB and STOSB might not reach the same level of throughput as using
256-bit or 128-bit AVX alternatives, depending on length and alignment factors.

160 ——REPMO\VSB
=== REP MOVSD+B

140

120

100

A
~

LS
NRAA
Noae
A
larm '
AN
~a
~ N
< rmona
A

length in bytes

Figure 3-4. Memcpy Performance Comparison for Lengths up to 2KB

Figure 3-4 depicts the relative performance of memcpy implementation on a third-generation Intel Core
processor using Enhanced REP MOVSB and STOSB versus REP MOVSD+B, for alignment conditions when
both the source and destination addresses are aligned to a 16-Byte boundary and the source region does
not overlap with the destination region. Using Enhanced REP MOVSB and STOSB always delivers better
performance than using REP MOVSD+B. If the length is a multiple of 64, it can produce even higher

3-69

GENERAL OPTIMIZATION GUIDELINES

performance. For example, copying 65-128 bytes takes 40 cycles, while copying 128 bytes needs only 35
cycles.

If an application wishes to bypass standard memcpy library implementation with its own custom imple-
mentation and have freedom to manage the buffer length allocation for both source and destination, it

may be worthwhile to manipulate the lengths of its memory copy operation to be multiples of 64 to take
advantage the code size and performance benefit of Enhanced REP MOVSB and STOSB.

The performance characteristic of implementing a general-purpose memcpy library function using a
SIMD register is significantly more colorful than an equivalent implementation using a general-purpose
register, depending on length, instruction set selection between SSE2, 128-bit AVX, 256-bit AVX, relative
alignment of source/destination, and memory address alignment granularities/boundaries, etc.

Hence comparing performance characteristics between a memcpy using Enhanced REP MOVSB and
STOSB versus a SIMD implementation is highly dependent on the particular SIMD implementation. The
remainder of this section discusses the relative performance of memcpy using Enhanced REP MOVSB and
STOSB versus unpublished, optimized 128-bit AVX implementation of memcpy to illustrate the hardware
capability of Intel microarchitecture code name lvy Bridge.

Table 3-4. Relative Performance of Memcpy() Using Enhanced REP MOVSB and STOSB Vs. 128-bit AVX
Range of Lengths (bytes) <128 128 to 2048 2048 to 4096

Memcpy_ERMSB/Memcpy_AVX128 0x7X 1X 1.02X

Table 3-4 shows the relative performance of the Memcpy function implemented using enhanced REP
MOVSB versus 128-bit AVX for several ranges of memcpy lengths, when both the source and destination
addresses are 16-byte aligned and the source region and destination region do not overlap. For memcpy
length less than 128 bytes, using Enhanced REP MOVSB and STOSB is slower than what’s possible using
128-bit AVX, due to internal start-up overhead in the REP string.

For situations with address misalignment, memcpy performance will generally be reduced relative to the
16-byte alignment scenario (see Table 3-5).

Table 3-5. Effect of Address Misalignment on Memcpy() Performance

Address Misalignment Performance Impact

Source Buffer The impact on Enhanced REP MOVSB and STOSB implementation versus 128-
bit AVX is similar.

Destination Buffer The impact on Enhanced REP MOVSB and STOSB implementation can be 25%
degradation, while 128-bit AVX implementation of memcpy may degrade only
5%, relative to 16-byte aligned scenario.

Memcpy() implemented with Enhanced REP MOVSB and STOSB can benefit further from the 256-bit
SIMD integer data-path on the Haswell microarchitecture. see Section 12.16.3.

3.7.6.2 Memmove Considerations

When there is an overlap between the source and destination regions, software may need to use
memmove instead of memcpy to ensure correctness. It is possible to use REP MOVSB in conjunction with
the direction flag (DF) in a memmove() implementation to handle situations where the latter part of the
source region overlaps with the beginning of the destination region. However, setting the DF to force REP
MOVSB to copy bytes from high towards low addresses will experience significant performance degrada-
tion.

When using Enhanced REP MOVSB and STOSB to implement memmove function, one can detect the
above situation and handle first the rear chunks in the source region that will be written to as part of the
destination region, using REP MOVSB with the DF=0, to the non-overlapping region of the destination.
After the overlapping chunks in the rear section are copied, the rest of the source region can be
processed normally, also with DF=0.

3-70

GENERAL OPTIMIZATION GUIDELINES

3.7.6.3 Memset Considerations

The consideration of code size and throughput also applies for memset() implementations. For proces-
sors supporting Enhanced REP MOVSB and STOSB, using REP STOSB will again deliver more compact
code size and significantly better performance than the combination of STOSD+B technique described in
Section 3.7.5.

When the destination buffer is 16-byte aligned, memset() using Enhanced REP MOVSB and STOSB can
perform better than SIMD approaches. When the destination buffer is misaligned, memset() perfor-
mance using Enhanced REP MOVSB and STOSB can degrade about 20% relative to aligned case, for
processors based on Intel microarchitecture code name lvy Bridge. In contrast, SIMD implementation of
memset() will experience smaller degradation when the destination is misaligned.

Memset() implemented with Enhanced REP MOVSB and STOSB can benefit further from the 256-bit data
path on the Haswell microarchitecture. see Section 12.16.3.3.

3.8 FLOATING-POINT CONSIDERATIONS

When programming floating-point applications, it is best to start with a high-level programming
language such as C, C++, or Fortran. Many compilers perform floating-point scheduling and optimization
when it is possible. However in order to produce optimal code, the compiler may need some assistance.

3.8.1 Guidelines for Optimizing Floating-point Code

User/Source Coding Rule 13. (M impact, M generality) Enable the compiler’s use of SSE, SSE2
and more advanced SIMD instruction sets (e.g. AVX) with appropriate switches. Favor scalar SIMD code
generation to replace x87 code generation.

Follow this procedure to investigate the performance of your floating-point application:

¢ Understand how the compiler handles floating-point code.

¢ Look at the assembly dump and see what transforms are already performed on the program.
® Study the loop nests in the application that dominate the execution time.

¢ Determine why the compiler is not creating the fastest code.

® See if there is a dependence that can be resolved.

¢ Determine the problem area: bus bandwidth, cache locality, trace cache bandwidth, or instruction
latency. Focus on optimizing the problem area. For example, adding PREFETCH instructions will not
help if the bus is already saturated. If trace cache bandwidth is the problem, added prefetch pops
may degrade performance.

Also, in general, follow the general coding recommendations discussed in this chapter, including:

® Blocking the cache.

® Using prefetch.

¢ Enabling vectorization.

® Unrolling loops.

User/Source Coding Rule 14. (H impact, ML generality) Make sure your application stays in range
to avoid denormal values, underflows.

Out-of-range numbers cause very high overhead.

When converting floating-point values to 16-bit, 32-bit, or 64-bit integers using truncation, the instruc-
tions CVTTSS2SI and CVTTSD2SI are recommended over instructions that access x87 FPU stack. This
avoids changing the rounding mode.

3-71

GENERAL OPTIMIZATION GUIDELINES

User/Source Coding Rule 15. (M impact, ML generality) Usually, math libraries take advantage of
the transcendental instructions (for example, FSIN) when evaluating elementary functions. If there is
no critical need to evaluate the transcendental functions using the extended precision of 80 bits,
applications should consider an alternate, software-based approach, such as a look-up-table-based
algorithm using interpolation techniques. It is possible to improve transcendental performance with
these techniques by choosing the desired numeric precision and the size of the look-up table, and by
taking advantage of the parallelism of the SSE and the SSE2 instructions.

3.8.2 Microarchitecture Specific Considerations

3.8.2.1 Long-Latency FP Instructions

In the Haswell microarchitecture, long-latency floating-point instructions for division, square root opera-
tions have continued the improvements from the Ivy Bridge microarchitecture with pipe-lined hardware
implementation. These improvement will benefit existing code transparently.

3.8.2.2 Miscellaneous Instructions

In the Haswell microarchitecture, SIMD floating-point compare and set flag instructions (COMISD/SS,
UCOMISD/SS) is a one micro-op implementation for the register/register flavor of these instructions. The
latency is increased slightly to 3 cycles.

The ROUNDPD/SD instructions (both AVX and SSE4.1) are implemented as two micro-ops with latency
increased to 6 cycles. This can have a measurable impact to math library functions using these instruc-
tions to polynomial evaluation of exponentiation.

3.8.3 Floating-point Modes and Exceptions

When working with floating-point numbers, high-speed microprocessors frequently must deal with situ-
ations that need special handling in hardware or code.

3.8.3.1 Floating-point Exceptions

The most frequent cause of performance degradation is the use of masked floating-point exception
conditions such as:

® Arithmetic overflow.
® Arithmetic underflow.
® Denormalized operand.

Refer to Chapter 4 of Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 1 for defi-
nitions of overflow, underflow and denormal exceptions.

Denormalized floating-point numbers impact performance in two ways:

¢ Directly when are used as operands.

® Indirectly when are produced as a result of an underflow situation.

If a floating-point application never underflows, the denormals can only come from floating-point
constants.

User/Source Coding Rule 16. (H impact, ML generality) Denormalized floating-point constants
should be avoided as much as possible.

Denormal and arithmetic underflow exceptions can occur during the execution of x87 instructions or
SSE/SSE2/SSE3 instructions. Processors based on Intel NetBurst microarchitecture handle these excep-
tions more efficiently when executing SSE/SSE2/SSE3 instructions and when speed is more important
than complying with the IEEE standard. The following paragraphs give recommendations on how to opti-
mize your code to reduce performance degradations related to floating-point exceptions.

3-72

GENERAL OPTIMIZATION GUIDELINES

3.8.3.2 Dealing with floating-point exceptions in x87 FPU code

Every special situation listed in Section 3.8.3.1, “Floating-point Exceptions,” is costly in terms of perfor-
mance. For that reason, x87 FPU code should be written to avoid these situations.

There are basically three ways to reduce the impact of overflow/underflow situations with x87 FPU code:

¢ Choose floating-point data types that are large enough to accommodate results without generating
arithmetic overflow and underflow exceptions.

® Scale the range of operands/results to reduce as much as possible the number of arithmetic
overflow/underflow situations.

® Keep intermediate results on the x87 FPU register stack until the final results have been computed
and stored in memory. Overflow or underflow is less likely to happen when intermediate results are
kept in the x87 FPU stack (this is because data on the stack is stored in double extended-precision
format and overflow/underflow conditions are detected accordingly).

®* Denormalized floating-point constants (which are read-only, and hence never change) should be
avoided and replaced, if possible, with zeros of the same sign.

3.8.3.3 Floating-point Exceptions in SSE/SSE2/SSE3 Code

Most special situations that involve masked floating-point exceptions are handled efficiently in hardware.
When a masked overflow exception occurs while executing SSE/SSE2/SSE3 code, processor hardware
can handles it without performance penalty.

Underflow exceptions and denormalized source operands are usually treated according to the IEEE 754
specification, but this can incur significant performance delay. If a programmer is willing to trade pure
IEEE 754 compliance for speed, two non-lEEE 754 compliant modes are provided to speed situations
where underflows and input are frequent: FTZ mode and DAZ mode.

When the FTZ mode is enabled, an underflow result is automatically converted to a zero with the correct
sign. Although this behavior is not compliant with IEEE 754, it is provided for use in applications where
performance is more important than IEEE 754 compliance. Since denormal results are not produced
when the FTZ mode is enabled, the only denormal floating-point numbers that can be encountered in FTZ
mode are the ones specified as constants (read only).

The DAZ mode is provided to handle denormal source operands efficiently when running a SIMD floating-
point application. When the DAZ mode is enabled, input denormals are treated as zeros with the same
sign. Enabling the DAZ mode is the way to deal with denormal floating-point constants when perfor-
mance is the objective.

If departing from the IEEE 754 specification is acceptable and performance is critical, run
SSE/SSE2/SSE3 applications with FTZ and DAZ modes enabled.

NOTE

The DAZ mode is available with both the SSE and SSE2 extensions, although the speed
improvement expected from this mode is fully realized only in SSE code.

3.84 Floating-point Modes

For x87 code, using the FLDCW instruction to change floating modes can be an expensive operation in
many cases.

Recent processor generations provide hardware optimization for FLDCW that allows programmers to
alternate between two constant values efficiently. For the FLDCW optimization to be effective, the two
constant FCW values are only allowed to differ on the following 5 bits in the FCW:

FCW[8-9] ; Precision control

FCW[10-11] ;Rounding control

FCW[12] ; Infinity control

3-73

GENERAL OPTIMIZATION GUIDELINES

If programmers need to modify other bits (for example: mask bits) in the FCW, the FLDCW instruction is
still an expensive operation.

In situations where an application cycles between three (or more) constant values, FLDCW optimization
does not apply, and the performance degradation occurs for each FLDCW instruction.

One solution to this problem is to choose two constant FCW values, take advantage of the optimization of
the FLDCW instruction to alternate between only these two constant FCW values, and devise some
means to accomplish the task that requires the 3rd FCW value without actually changing the FCW to a
third constant value. An alternative solution is to structure the code so that, for periods of time, the appli-
cation alternates between only two constant FCW values. When the application later alternates between
a pair of different FCW values, the performance degradation occurs only during the transition.

It is expected that SIMD applications are unlikely to alternate between FTZ and DAZ mode values.
Consequently, the SIMD control word does not have the short latencies that the floating-point control
register does. A read of the MXCSR register has a fairly long latency, and a write to the register is a seri-
alizing instruction.

There is no separate control word for single and double precision; both use the same modes. Notably,
this applies to both FTZ and DAZ modes.

Assembly/Compiler Coding Rule 59. (H impact, M generality) Minimize changes to bits 8-12 of
the floating-point control word. Changes for more than two values (each value being a combination of
the following bits: precision, rounding and infinity control, and the rest of bits in FCW) leads to delays
that are on the order of the pipeline depth.

3.8.4.1 Rounding Mode

Many libraries provide float-to-integer library routines that convert floating-point values to integer. Many
of these libraries conform to ANSI C coding standards which state that the rounding mode should be
truncation. With the Pentium 4 processor, one can use the CVTTSD2SI and CVTTSS2SI instructions to
convert operands with truncation without ever needing to change rounding modes. The cost savings of
using these instructions over the methods below is enough to justify using SSE and SSE2 wherever
possible when truncation is involved.

For x87 floating-point, the FIST instruction uses the rounding mode represented in the floating-point
control word (FCW). The rounding mode is generally “round to nearest”, so many compiler writers imple-
ment a change in the rounding mode in the processor in order to conform to the C and FORTRAN stan-
dards. This implementation requires changing the control word on the processor using the FLDCW
instruction. For a change in the rounding, precision, and infinity bits, use the FSTCW instruction to store
the floating-point control word. Then use the FLDCW instruction to change the rounding mode to trunca-
tion.

In a typical code sequence that changes the rounding mode in the FCW, a FSTCW instruction is usually
followed by a load operation. The load operation from memory should be a 16-bit operand to prevent
store-forwarding problem. If the load operation on the previously-stored FCW word involves either an 8-
bit or a 32-bit operand, this will cause a store-forwarding problem due to mismatch of the size of the data
between the store operation and the load operation.

To avoid store-forwarding problems, make sure that the write and read to the FCW are both 16-bit oper-
ations.

If there is more than one change to the rounding, precision, and infinity bits, and the rounding mode is
not important to the result, use the algorithm in Example 3-58 to avoid synchronization issues, the over-
head of the FLDCW instruction, and having to change the rounding mode. Note that the example suffers

3-74

GENERAL OPTIMIZATION GUIDELINES

from a store-forwarding problem which will lead to a performance penalty. However, its performance is
still better than changing the rounding, precision, and infinity bits among more than two values.

Example 3-58. Algorithm to Avoid Changing Rounding Mode

lea
sub
and
fid

fistp
fild
mov
mov
test
je

_fto132proc

ecx, [esp-8]

esp, 16 ; Allocate frame

ecx, -8 ; Align pointer on boundary of 8
st(0) ; Duplicate FPU stack top
qword ptr[ecx]

qword ptr[ecx]

edx, [ecx+4] ; High DWORD of integer
eax, [ecx] ; Low DWIRD of integer
eax, eax

integer_QnaN_or_zero

test
jns
fstp
mov
add
Xor
add
adc
ret

fstp
mov
add
add
sbb
ret

positive:

positive:

arg_is_not_integer_QnaN:
fsubp

st(1), st ; TOS=d-round(d), { st(1) = st(1)-st & pop ST}
edx, edx ; What's sign of integer

positive ; Number is negative

dword ptrfecx] ; Result of subtraction

ecx, [ecx] ; DWORD of diff(single-precision)

esp, 16

ecx, 80000000h

ecx, 7ffffffth ; If diff<0 then decrement integer

eax,0 ; INC EAX (add CARRY flag)

dword ptrlecx] ; 17-18 result of subtraction

ecx, [ecx] ; DWORD of diff(single precision)
esp, 16

ecx, 7fffffffh ; If diff<0 then decrement integer
eax, 0 ; DEC EAX (subtract CARRY flag)

integer_QnaN_or_zero:

test edx, 7ffffffth

inz arg_is_not_integer_QnaN
add esp, 16

ret

Assembly/Compiler Coding Rule 60. (H impact, L generality) Minimize the number of changes to
the rounding mode. Do not use changes in the rounding mode to implement the floor and ceiling
functions if this involves a total of more than two values of the set of rounding, precision, and infinity

bits.

3-75

GENERAL OPTIMIZATION GUIDELINES

3.8.4.2 Precision

If single precision is adequate, use it instead of double precision. This is true because:

® Single precision operations allow the use of longer SIMD vectors, since more single precision data
elements can fit in a register.

® If the precision control (PC) field in the x87 FPU control word is set to single precision, the floating-
point divider can complete a single-precision computation much faster than either a double-precision
computation or an extended double-precision computation. If the PC field is set to double precision,
this will enable those x87 FPU operations on double-precision data to complete faster than extended
double-precision computation. These characteristics affect computations including floating-point
divide and square root.

Assembly/Compiler Coding Rule 61. (H impact, L generality) Minimize the number of changes to
the precision mode.

3.8.5 x87 vs. Scalar SIMD Floating-point Trade-offs

There are a number of differences between x87 floating-point code and scalar floating-point code (using
SSE and SSE?2). The following differences should drive decisions about which registers and instructions to
use:

® When an input operand for a SIMD floating-point instruction contains values that are less than the
representable range of the data type, a denormal exception occurs. This causes a significant
performance penalty. An SIMD floating-point operation has a flush-to-zero mode in which the results
will not underflow. Therefore subsequent computation will not face the performance penalty of
handling denormal input operands. For example, in the case of 3D applications with low lighting
levels, using flush-to-zero mode can improve performance by as much as 50% for applications with
large numbers of underflows.

® Scalar floating-point SIMD instructions have lower latencies than equivalent x87 instructions. Scalar
SIMD floating-point multiply instruction may be pipelined, while x87 multiply instruction is not.

¢ Although x87 supports transcendental instructions, software library implementation of transcen-
dental function can be faster in many cases.

® x87 supports 80-bit precision, double extended floating-point. SSE support a maximum of 32-bit
precision. SSE2 supports a maximum of 64-bit precision.

® Scalar floating-point registers may be accessed directly, avoiding FXCH and top-of-stack restrictions.

® The cost of converting from floating-point to integer with truncation is significantly lower with
Streaming SIMD Extensions 2 and Streaming SIMD Extensions in the processors based on Intel
NetBurst microarchitecture than with either changes to the rounding mode or the sequence
prescribed in the Example 3-58.

Assembly/Compiler Coding Rule 62. (M impact, M generality) Use Streaming SIMD Extensions 2
or Streaming SIMD Extensions unless you need an x87 feature. Most SSE2 arithmetic operations have
shorter latency then their X87 counterpart and they eliminate the overhead associated with the
management of the X87 register stack.

3.8.5.1 Scalar SSE/SSE2

In code sequences that have conversions from floating-point to integer, divide single-precision instruc-

tions, or any precision change, x87 code generation from a compiler typically writes data to memory in

single-precision and reads it again in order to reduce precision. Using SSE/SSE2 scalar code instead of

Xx87 code can generate a large performance benefit using Intel NetBurst microarchitecture and a modest
benefit on Intel Core Solo and Intel Core Duo processors.

3-76

GENERAL OPTIMIZATION GUIDELINES

Recommendation: Use the compiler switch to generate scalar floating-point code using XMM rather
than x87 code.

When working with scalar SSE/SSE2 code, pay attention to the need for clearing the content of unused
slots in an XMM register and the associated performance impact. For example, loading data from
memory with MOVSS or MOVSD causes an extra micro-op for zeroing the upper part of the XMM register.

3.8.5.2 Transcendental Functions

If an application needs to emulate math functions in software for performance or other reasons (see
Section 3.8.1, “Guidelines for Optimizing Floating-point Code”), it may be worthwhile to inline math
library calls because the CALL and the prologue/epilogue involved with such calls can significantly affect
the latency of operations.

3.9 MAXIMIZING PCIE PERFORMANCE

PCle performance can be dramatically impacted by the size and alignment of upstream reads and writes
(read and write transactions issued from a PCle agent to the host’'s memory). As a general rule, the best
performance, in terms of both bandwidth and latency, is obtained by aligning the start addresses of
upstream reads and writes on 64-byte boundaries and ensuring that the request size is a multiple of 64-
bytes, with modest further increases in bandwidth when larger multiples (128, 192, 256 bytes) are
employed. In particular, a partial write will cause a delay for the following request (read or write).

A second rule is to avoid multiple concurrently outstanding accesses to a single cache line. This can result
in a conflict which in turn can cause serialization of accesses that would otherwise be pipelined, resulting
in higher latency and/or lower bandwidth. Patterns that violate this rule include sequential accesses
(reads or writes) that are not a multiple of 64-bytes, as well as explicit accesses to the same cache line
address. Overlapping requests—those with different start addresses but with request lengths that result
in overlap of the requests—can have the same effect. For example, a 96-byte read of address
0x00000200 followed by a 64-byte read of address 0x00000240 will cause a conflict—and a likely delay—
for the second read.

Upstream writes that are a multiple of 64-byte but are non-aligned will have the performance of a series
of partial and full sequential writes. For example, a write of length 128-byte to address 0x00000070 will
perform similarly to 3 sequential writes of lengths 16, 64, and 48 to addresses 0x00000070,
0x00000080, and 0x00000100, respectively.

For PCle cards implementing multi-function devices, such as dual or quad port network interface cards
(NICs) or dual-GPU graphics cards, it is important to note that non-optimal behavior by one of those
devices can impact the bandwidth and/or latency observed by the other devices on that card. With
respect to the behavior described in this section, all traffic on a given PCle port is treated as if it origi-
nated from a single device and function.

For the best PCle bandwidth:

1. Align start addresses of upstream reads and writes on 64-byte boundaries.

2. Use read and write requests that are a multiple of 64-bytes.

3. Eliminate or avoid sequential and random partial line upstream writes.

4. Eliminate or avoid conflicting upstream reads, including sequential partial line reads.
Techniques for avoiding performance pitfalls include cache line aligning all descriptors and data buffers,
padding descriptors that are written upstream to 64-byte alignment, buffering incoming data to achieve
larger upstream write payloads, allocating data structures intended for sequential reading by the PCle
device in such a way as to enable use of (multiple of) 64-byte reads. The negative impact of unoptimized

reads and writes depends on the specific workload and the microarchitecture on which the product is
based.

3-77

GENERAL OPTIMIZATION GUIDELINES

3.9.1 Optimizing PCle Performance for Accesses Toward Coherent Memory and

Toward MMIO Regions (P2P)

In order to maximize performance for PCle devices in the processors listed in Table 3-6 below, the soft-
ware should determine whether the accesses are toward coherent memory (system memory) or toward
MMIO regions (P2P access to other devices). If the access is toward MMIO region, then software can
command HW to set the RO bit in the TLP header, as this would allow hardware to achieve maximum
throughput for these types of accesses. For accesses toward coherent memory, software can command
HW to clear the RO bit in the TLP header (no RO), as this would allow hardware to achieve maximum

throughput for these types of accesses.

Table 3-6. Intel Processor CPU RP Device IDs for Processors Optimizing PCle Performance

Processor

CPU RP Device IDs

Intel Xeon processors based on Broadwell microarchitecture

6F01H-6FOEH

Intel Xeon processors based on Haswell microarchitecture

2F0TH-2FOEH

3-78

CHAPTER 4
CODING FOR SIMD ARCHITECTURES

Processors based on Intel Core microarchitecture supports MMX, SSE, SSE2, SSE3, and SSSE3. Proces-
sors based on Enhanced Intel Core microarchitecture supports MMX, SSE, SSE2, SSE3, SSSE3 and
SSE4.1. Processors based on Intel microarchitecture code name Nehalem supports MMX, SSE, SSE2,
SSE3, SSSE3, SSE4.1 and SSE4.2. Processors based on Intel microarchitecture code name Westmere
supports MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2 and AESNI. Processors based on Intel
microarchitecture code name Sandy Bridge supports MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
AESNI, PCLMULQDQ and Intel AVX.

Intel Pentium 4, Intel Xeon and Pentium M processors include support for SSE2, SSE, and MMX tech-
nology. SSE3 were introduced with the Pentium 4 processor supporting Hyper-Threading Technology at
90 nm technology. Intel Core Solo and Intel Core Duo processors support SSE3/SSE2/SSE, and MMX.

Single-instruction, multiple-data (SIMD) technologies enable the development of advanced multimedia,
signal processing, and modeling applications.

Single-instruction, multiple-data techniques can be applied to text/string processing, lexing and parser
applications. This is covered in Chapter 11, “SSE4.2 and SIMD Programming For Text-
Processing/Lexing/Parsing”. Techniques for optimizing AESNI are discussed in Section 5.10.

To take advantage of the performance opportunities presented by these capabilities, do the following:
¢ Ensure that the processor supports MMX technology, SSE, SSE2, SSE3, SSSE3 and SSE4.1.

® Ensure that the operating system supports MMX technology and SSE (OS support for SSE2, SSE3
and SSSE3 is the same as OS support for SSE).

®* Employ the optimization and scheduling strategies described in this book.
® Use stack and data alignment techniques to keep data properly aligned for efficient memory use.
® Utilize the cacheability instructions offered by SSE and SSE2, where appropriate.

4.1 CHECKING FOR PROCESSOR SUPPORT OF SIMD TECHNOLOGIES

This section shows how to check whether a processor supports MMX technology, SSE, SSE2, SSE3,
SSSE3, and SSE4.1.

SIMD technology can be included in your application in three ways:

1. Check for the SIMD technology during installation. If the desired SIMD technology is available, the
appropriate DLLs can be installed.

2. Check for the SIMD technology during program execution and install the proper DLLs at runtime. This
is effective for programs that may be executed on different machines.

3. Create a “fat” binary that includes multiple versions of routines; versions that use SIMD technology
and versions that do not. Check for SIMD technology during program execution and run the
appropriate versions of the routines. This is especially effective for programs that may be executed
on different machines.

CODING FOR SIMD ARCHITECTURES

4.1.1 Checking for MMX Technology Support

If MMX technology is available, then CPUID.01H:EDX[BIT 23] = 1. Use the code segment in Example 4-1
to test for MMX technology.

Example 4-1. Identification of MMX Technology with CPUID

..identify existence of cpuid instruction

; Identify signature is genuine Intel

’

mov eax, 1 ; Request for feature flags

cpuid ; OFH, 0A2H CPUID instruction

test edx, 00800000h ; Is MMX technology bit (bit 23) in feature flags equal to 1
jnz Found

For more information on CPUID see, Intel® Processor Identification with CPUID Instruction, order
number 241618.

4.1.2 Checking for Streaming SIMD Extensions Support

Checking for processor support of Streaming SIMD Extensions (SSE) on your processor is similar to
checking for MMX technology. However, operating system (OS) must provide support for SSE states save
and restore on context switches to ensure consistent application behavior when using SSE instructions.

To check whether your system supports SSE, follow these steps:

1. Check that your processor supports the CPUID instruction.

2. Check the feature bits of CPUID for SSE existence.

Example 4-2 shows how to find the SSE feature bit (bit 25) in CPUID feature flags.

Example 4-2. Identification of SSE with CPUID

..Identify existence of cpuid instruction
; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags

cpuid ; OFH, OA2H cpuid instruction
test EDX, 002000000h ; Bit 25 in feature flags equal to 1
jnz Found

4.1.3 Checking for Streaming SIMD Extensions 2 Support

Checking for support of SSE2 is like checking for SSE support. The OS requirements for SSE2 Support are
the same as the OS requirements for SSE.

To check whether your system supports SSE2, follow these steps:
1. Check that your processor has the CPUID instruction.
2. Check the feature bits of CPUID for SSE2 technology existence.

4-2

CODING FOR SIMD ARCHITECTURES

Example 4-3 shows how to find the SSE2 feature bit (bit 26) in the CPUID feature flags.

Example 4-3. Identification of SSE2 with cpuid

..identify existence of cpuid instruction
; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags

cpuid ; OFH, 0A2H CPUID instruction
test EDX, 004000000h ; Bit 26 in feature flags equal to 1
jnz Found

4.1.4 Checking for Streaming SIMD Extensions 3 Support

SSE3 includes 13 instructions, 11 of those are suited for SIMD or x87 style programming. Checking for
support of SSE3 instructions is similar to checking for SSE support. The OS requirements for SSE3
Support are the same as the requirements for SSE.

To check whether your system supports the x87 and SIMD instructions of SSE3, follow these steps:
1. Check that your processor has the CPUID instruction.

2. Check the ECX feature bit O of CPUID for SSE3 technology existence.

Example 4-4 shows how to find the SSE3 feature bit (bit O of ECX) in the CPUID feature flags.

Example 4-4. Identification of SSE3 with CPUID

..identify existence of cpuid instruction
; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags
cpuid ; OFH, OAZ2H CPUID instruction
test ECX, 000000001h ;Bit O in feature flags equal to 1
jnz Found

Software must check for support of MONITOR and MWAIT before attempting to use MONITOR and
MWAIT.Detecting the availability of MONITOR and MWAIT can be done using a code sequence similar to
Example 4-4. The availability of MONITOR and MWAIT is indicated by bit 3 of the returned value in ECX.

4.1.5 Checking for Supplemental Streaming SIMD Extensions 3 Support

Checking for support of SSSES3 is similar to checking for SSE support. The OS requirements for SSSE3
support are the same as the requirements for SSE.

To check whether your system supports SSSE3, follow these steps:

1. Check that your processor has the CPUID instruction.

2. Check the feature bits of CPUID for SSSE3 technology existence.

Example 4-5 shows how to find the SSSE3 feature bit in the CPUID feature flags.

Example 4-5. Identification of SSSE3 with cpuid

..Identify existence of CPUID instruction
; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags
cpuid ; OFH, 0A2H CPUID instruction
test ECX, 000000200h ; ECXbit9

jnz Found

4-3

CODING FOR SIMD ARCHITECTURES

4.1.6 Checking for SSE4.1 Support

Checking for support of SSE4.1 is similar to checking for SSE support. The OS requirements for SSE4.1
support are the same as the requirements for SSE.

To check whether your system supports SSE4.1, follow these steps:

1. Check that your processor has the CPUID instruction.

2. Check the feature bit of CPUID for SSE4.1.

Example 4-6 shows how to find the SSE4.1 feature bit in the CPUID feature flags.

Example 4-6. Identification of SSE4.1 with cpuid

..Identify existence of CPUID instruction
; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags
cpuid ; OFH, OAZ2H CPUID instruction
test ECX, 000080000h ; ECX bit 19

jnz Found

4.1.7 Checking for SSE4.2 Support

Checking for support of SSE4.2 is similar to checking for SSE support. The OS requirements for SSE4.2
support are the same as the requirements for SSE.

To check whether your system supports SSE4.2, follow these steps:

1. Check that your processor has the CPUID instruction.

2. Check the feature bit of CPUID for SSE4.2.

Example 4-7 shows how to find the SSE4.2 feature bit in the CPUID feature flags.

Example 4-7. Identification of SSE4.2 with cpuid

..Identify existence of CPUID instruction
; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags
cpuid ; OFH, OA2H CPUID instruction
test ECX, 000100000h ; ECX bit 20

jnz Found

4.1.8 DetectiON of PCLMULQDQ and AESNI Instructions

Before an application attempts to use the following AESNI instructions: AESDEC/AESDE-
CLAST/AESENC/AESENCLAST/AESIMC/AESKEYGENASSIST, it must check that the processor supports
the AESNI extensions. AESNI extensions is supported if CPUID.01H:ECX.AESNI[bit 25] = 1.

Prior to using PCLMULQDQ instruction, application must check if CPUID.01H:ECX.PCLMULQDQ[bit 1] =
1.

4-4

CODING FOR SIMD ARCHITECTURES

Operating systems that support handling SSE state will also support applications that use AESNI exten-
sions and PCLMULQDQ instruction. This is the same requirement for SSE2, SSE3, SSSE3, and SSE4.

Example 4-8. Detection of AESNI Instructions

..Identify existence of CPUID instruction
; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags
cpuid ; OFH, OAZ2H CPUID instruction
test ECX, 002000000h ; ECX bit 25

jnz Found

Example 4-9. Detection of PCLMULQDQ Instruction

..Identify existence of CPUID instruction
; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags
cpuid ; OFH, 0A2H CPUID instruction
test ECX, 000000002h ; ECX bit 1

jnz Found

4.1.9 Detection of AVX Instructions

Intel AVX operates on the 256-bit YMM register state. Application detection of new instruction extensions
operating on the YMM state follows the general procedural flow in Figure 4-1.

Prior to using AVX, the application must identify that the operating system supports the XGETBYV instruc-
tion, the YMM register state, in addition to processor’s support for YMM state management using
XSAVE/XRSTOR and AVX instructions. The following simplified sequence accomplishes both and is

strongly recommended.

1) Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application usel)
2) Issue XGETBYV and verify that XFEATURE_ENABLED_MASK][2:1] = ‘11b’ (XMM state and YMM state are

enabled by 0S).

3) Detect CPUID.1:ECX.AVX[bit 28] = 1 (AVX instructions supported).
Note: Step 3 can be done in any order relative to 1 and 2.

1. If CPUID.01H:ECX.OSXSAVE reports 1, it also indirectly implies the processor supports XSAVE, XRSTOR, XGETBY, pro-
cessor extended state bit vector XFEATURE ENALBED MASK register. Thus an application may streamline the checking
of CPUID feature flags for XSAVE and OSXSAVE. XSETBYV is a privileged instruction.

4-5

CODING FOR SIMD ARCHITECTURES

Check feature flag
CPUID.1H:ECX.OXSAVE = 1?

OS provides processor

Yes
extended state management
Implied HW support for
XSAVE, XRSTOR, XGETBV, XFEATURE_ENABLED_MASK
Check enabled state in »| Check feature flag
XCRO via XGETBV State for Instruction set ok to use

enabled Instructions

Figure 4-1. General Procedural Flow of Application Detection of AVX

The following pseudocode illustrates this recommended application AVX detection process:

Example 4-10. Detection of AVX Instruction

INT supports_AVX()
{ mov eax, 1
cpuid
and ecx, 018000000H
cmp ecx, 018000000H; check both OSXSAVE and AVX feature flags
jne not_supported
; processor supports AVX instructions and XGETBV is enabled by 0OS
mov ecx, 0; specify 0 for XSFEATURE_ENABLED_MASK register
XGETBV ; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support

jne not_supported
mov eax, 1
jmp done

NOT_SUPPORTED:
mov eax, 0
done:

Note: It is unwise for an application to rely exclusively on CPUID.1:ECX.AVX[bit 28] or at all on
CPUID.1:ECX.XSAVE[bit 26]: These indicate hardware support but not operating system support. If YMM
state management is not enabled by an operating systems, AVX instructions will #UD regardless of
CPUID.1:ECX.AVX[bit 28]. “CPUID.1:ECX.XSAVE[bit 26] = 1” does not guarantee the OS actually uses
the XSAVE process for state management.

CODING FOR SIMD ARCHITECTURES

4.1.10 Detection of VEX-Encoded AES and VPCLMULQDQ

VAESDEC/VAESDECLAST/VAESENC/VAESENCLAST/VAESIMC/VAESKEYGENASSIST instructions operate
on YMM states. The detection sequence must combine checking for CPUID.1:ECX.AES[bit 25] = 1 and

the sequence for detection application support for AVX.

Example 4-11. Detection of VEX-Encoded AESNI Instructions

INT supports_VAESNI()

{ mov eax, 1
cpuid
and ecx, 01A00000CH
cmp ecx, 01A000000H; check OSXSAVE AVX and AESNI feature flags
jne not_supported
, processor supports AVX and VEX-encoded AESNI and XGETBYV is enabled by OS
mov ecx, 0; specify 0 for XSFEATURE_ENABLED_MASK register
XGETBV ; result in EDX:EAX
and eax, O6H
cmp eax, 06H; check OS has enabled both XMM and YMM state support

jne not_supported
mov eax, 1
jmp done

NOT_SUPPORTED:
mov eax, 0
done:

Similarly, the detection sequence for VPCLMULQDQ must combine checking for
CPUID.1:ECX.PCLMULQDQIbit 1] = 1 and the sequence for detection application support for AVX.

This is shown in the pseudocode:

Example 4-12. Detection of VEX-Encoded AESNI Instructions

INT supports_VPCLMULQDQ)
{ mov eax, 1
cpuid

and ecx, 018000002H

cmp ecx, 018000002H; check OSXSAVE AVX and PCLMULQDQ feature flags

jne not_supported

; processor supports AVX and VEX-encoded PCLMULQDQ and XGETBV is enabled by 0S
mov ecx, O; specify O for XFEATURE_ENABLED_MASK register

XGETBV ; result in EDX:EAX

and eax, 06H

cmp eax, 06H; check OS has enabled both XMM and YMM state support

jne not_supported
mov eax, 1
jmp done

NOT_SUPPORTED:
mov eax, 0
done:

4.1.11 Detection of F16C Instructions
Application using float 16 instruction must follow a detection sequence similar to AVX to ensure:

¢ The OS has enabled YMM state management support.

4-7

CODING FOR SIMD ARCHITECTURES

® The processor support AVX as indicated by the CPUID feature flag, i.e. CPUID.01H:ECX.AVX[bit 28]
=1.

® The processor support 16-bit floating-point conversion instructions via a CPUID feature flag
(CPUID.O1H:ECX.F16C[bit 29] = 1).

Application detection of Float-16 conversion instructions follow the general procedural flow in Figure 4-2.

Check feature flag
CPUID.1H:ECX.OXSAVE = 1?

Yes OS provides processor
extended state management

Implied HW support for
XSAVE, XRSTOR, XGETBV, XFEATURE_ENABLED_MASK

Check enabled YMM statein |5, | Check feature flags

—
XCRO via XGETBV State for AVX and F16C ok to use
enabled Instructions

Figure 4-2. General Procedural Flow of Application Detection of Float-16

INT supports_f16c()

{ ; result in eax
mov eax, 1
cpuid

and ecx, 038000000H

cmp ecx, 038000000H; check OSXSAVE, AVX, F16C feature flags

jne not_supported

; processor supports AVX,F16C instructions and XGETBYV is enabled by OS
mov ecx, 0; specify O for XFEATURE_ENABLED_MASK register

XGETBV; result in EDX:EAX

and eax, O6H

cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported

mov eax, 1

jmp done

NOT_SUPPORTED:

mov eax, 0

done:

41.12 Detection of FMA
Hardware support for FMA is indicated by CPUID.1:ECX.FMA[bit 12]=1.

4-8

CODING FOR SIMD ARCHITECTURES

Application Software must identify that hardware supports AVX, after that it must also detect support for
FMA by CPUID.1:ECX.FMA[bit 12]. The recommended pseudocode sequence for detection of FMA is:

INT supports_fma()

{

; result in eax

mov eax, 1

cpuid

and ecx, 018001000H

cmp ecx, 018001000H; check OSXSAVE, AVX, FMA feature flags

jne not_supported

; processor supports AVX,FMA instructions and XGETBYV is enabled by OS
mov ecx, 0; specify 0 for XFEATURE_ENABLED_MASK register

XGETBV; result in EDX:EAX

and eax, 06H

cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported

mov eax, 1
jmp done

NOT_SUPPORTED:

mov eax, O

done:

4.1.13 Detection of AVX2

Hardware support for AVX2 is indicated by CPUID.(EAX=07H, ECX=0H):EBX.AVX2[bit 5]=1.

Application Software must identify that hardware supports AVX, after that it must also detect support for
AVX2 by checking CPUID.(EAX=07H, ECX=0H):EBX.AVX2[bit 5]. The recommended pseudocode
sequence for detection of AVX2 is:

INT supports_avx2()

{

; result in eax

mov eax, 1

cpuid

and ecx, 018000000H

cmp ecx, 018000000H; check both OSXSAVE and AVX feature flags
jne not_supported

; processor supports AVX instructions and XGETBYV is enabled by OS
mov eax, 7

mov ecx, 0

cpuid

and ebx, 20H

cmp ebx, 20H; check AVX2 feature flags

jne not_supported

4-9

CODING FOR SIMD ARCHITECTURES

mov ecx, 0; specify O for XFEATURE_ENABLED_MASK register

XGETBV; result in EDX:EAX

and eax, O6H

cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported

mov eax, 1

jmp done

NOT_SUPPORTED:

mov eax, 0

done:

4.2 CONSIDERATIONS FOR CODE CONVERSION TO SIMD

PROGRAMMING

The VTune Performance Enhancement Environment CD provides tools to aid in the evaluation and tuning.
Before implementing them, you need answers to the following questions:

1.

2B O

Will the current code benefit by using MMX technology, Streaming SIMD Extensions, Streaming
SIMD Extensions 2, Streaming SIMD Extensions 3, or Supplemental Streaming SIMD Extensions 3?

Is this code integer or floating-point?

What integer word size or floating-point precision is nheeded?
What coding techniques should I use?

What guidelines do | need to follow?

How should | arrange and align the datatypes?

Figure 4-3 provides a flowchart for the process of converting code to MMX technology, SSE, SSE2, SSE3,
or SSSE3.

CODING FOR SIMD ARCHITECTURES

Identify Hot Spots in Code

Code benefits
from SIMD

Integer or
floating-point?

Floating Point Integer

Performance >
If possible, re-arrange data

for SIMD efficiency
Range or ¢
Precision Align data structures
Convert to code to use
Can convert ves | Change touse | | SIMD Technologies
to Integer? SIMD Integer ¢

Follow general coding
guidelines and SIMD
coding guidelines

v

Change to use Use memory optimizations

Yes — Single Precision — and prefetchif appropriate

Schedule instructions to
No optimize performance

Figure 4-3. Converting to Streaming SIMD Extensions Chart

No

Can convert to
Single-precision?,

OM15156

To use any of the SIMD technologies optimally, you must evaluate the following situations in your code:
® Fragments that are computationally intensive.

®* Fragments that are executed often enough to have an impact on performance.

® Fragments that with little data-dependent control flow.

® Fragments that require floating-point computations.

® Fragments that can benefit from moving data 16 bytes at a time.

® Fragments of computation that can coded using fewer instructions.

® Fragments that require help in using the cache hierarchy efficiently.

4-11

CODING FOR SIMD ARCHITECTURES

4.2.1 Identifying Hot Spots

To optimize performance, use the VTune Performance Analyzer to find sections of code that occupy most
of the computation time. Such sections are called the hotspots. See Appendix A, “Application Perfor-
mance Tools.”

The VTune analyzer provides a hotspots view of a specific module to help you identify sections in your
code that take the most CPU time and that have potential performance problems. The hotspots view
helps you identify sections in your code that take the most CPU time and that have potential performance
problems.

The VTune analyzer enables you to change the view to show hotspots by memory location, functions,
classes, or source files. You can double-click on a hotspot and open the source or assembly view for the
hotspot and see more detailed information about the performance of each instruction in the hotspot.

The VTune analyzer offers focused analysis and performance data at all levels of your source code and
can also provide advice at the assembly language level. The code coach analyzes and identifies opportu-
nities for better performance of C/C++, Fortran and Java* programs, and suggests specific optimiza-
tions. Where appropriate, the coach displays pseudo-code to suggest the use of highly optimized
intrinsics and functions in the Intel® Performance Library Suite. Because VTune analyzer is designed
specifically for Intel architecture (I1A)-based processors, including the Pentium 4 processor, it can offer
detailed approaches to working with IA. See Appendix A.1.1, “Recommended Optimization Settings for
Intel® 64 and IA-32 Processors,” for details.

4.2.2 Determine If Code Benefits by Conversion to SIMD Execution

Identifying code that benefits by using SIMD technologies can be time-consuming and difficult. Likely
candidates for conversion are applications that are highly computation intensive, such as the following:

® Speech compression algorithms and filters.
® Speech recognition algorithms.

® Video display and capture routines.

® Rendering routines.

¢ 3D graphics (geometry).

® Image and video processing algorithms.
® Spatial (3D) audio.

® Physical modeling (graphics, CAD).

® Workstation applications.

® Encryption algorithms.

® Complex arithmetics.

Generally, good candidate code is code that contains small-sized repetitive loops that operate on sequen-
tial arrays of integers of 8, 16 or 32 bits, single-precision 32-bit floating-point data, double precision 64-
bit floating-point data (integer and floating-point data items should be sequential in memory). The repet-
itiveness of these loops incurs costly application processing time. However, these routines have potential
for increased performance when you convert them to use one of the SIMD technologies.

Once you identify your opportunities for using a SIMD technology, you must evaluate what should be
done to determine whether the current algorithm or a modified one will ensure the best performance.

43 CODING TECHNIQUES

The SIMD features of SSE3, SSE2, SSE, and MMX technology require new methods of coding algorithms.
One of them is vectorization. Vectorization is the process of transforming sequentially-executing, or
scalar, code into code that can execute in parallel, taking advantage of the SIMD architecture parallelism.

4-12

CODING FOR SIMD ARCHITECTURES

This section discusses the coding techniques available for an application to make use of the SIMD archi-
tecture.

To vectorize your code and thus take advantage of the SIMD architecture, do the following:
¢ Determine if the memory accesses have dependencies that would prevent parallel execution.

® “Strip-mine” the inner loop to reduce the iteration count by the length of the SIMD operations (for
example, four for single-precision floating-point SIMD, eight for 16-bit integer SIMD on the XMM
registers).

® Re-code the loop with the SIMD instructions.

Each of these actions is discussed in detail in the subsequent sections of this chapter. These sections also
discuss enabling automatic vectorization using the Intel C++ Compiler.

4.3.1 Coding Methodologies

Software developers need to compare the performance improvement that can be obtained from
assembly code versus the cost of those improvements. Programming directly in assembly language for a
target platform may produce the required performance gain, however, assembly code is not portable
between processor architectures and is expensive to write and maintain.

Performance objectives can be met by taking advantage of the different SIMD technologies using high-
level languages as well as assembly. The new C/C++ language extensions designed specifically for
SSSE3, SSE3, SSE2, SSE, and MMX technology help make this possible.

Figure 4-4 illustrates the trade-offs involved in the performance of hand-coded assembly versus the ease
of programming and portability.

S

T e N
Assembly Instrinsics
g G J Automatic
5) Vectorization
b=
[
o C/C++/Fortran
- @
- @
Ease of Programming/Portability >

Figure 4-4. Hand-Coded Assembly and High-Level Compiler Performance Trade-offs

The examples that follow illustrate the use of coding adjustments to enable the algorithm to benefit from
the SSE. The same techniques may be used for single-precision floating-point, double-precision floating-
point, and integer data under SSSE3, SSE3, SSE2, SSE, and MMX technology.

4-13

CODING FOR SIMD ARCHITECTURES

As a basis for the usage model discussed in this section, consider a simple loop shown in Example 4-13.

Example 4-13. Simple Four-Iteration Loop

void add(float *a, float *b, float *c)
{
inti;
for(i=0;i<4;i++){
c[i] = a[i] + b[il;
}
}

Note that the loop runs for only four iterations. This allows a simple replacement of the code with
Streaming SIMD Extensions.

For the optimal use of the Streaming SIMD Extensions that need data alignment on the 16-byte
boundary, all examples in this chapter assume that the arrays passed to the routine, A, B, C, are aligned
to 16-byte boundaries by a calling routine. For the methods to ensure this alignment, please refer to the
application notes for the Pentium 4 processor.

The sections that follow provide details on the coding methodologies: inlined assembly, intrinsics, C++
vector classes, and automatic vectorization.

4.3.1.1 Assembly

Key loops can be coded directly in assembly language using an assembler or by using inlined assembly
(C-asm) in C/C++ code. The Intel compiler or assembler recognize the new instructions and registers,
then directly generate the corresponding code. This model offers the opportunity for attaining greatest
performance, but this performance is not portable across the different processor architectures.

Example 4-14 shows the Streaming SIMD Extensions inlined assembly encoding.

Example 4-14. Streaming SIMD Extensions Using Inlined Assembly Encoding

void add(float *3, float *b, float *c)

{
_asm{
mov eax, a
mov edx, b
mov ecx, C

movaps XxmmO, XMMWORD PTR [eax]
addps xmmO, XMMWORD PTR [edx]
movaps XMMWORD PTR [ecx], xmmO

4.3.1.2 Intrinsics

Intrinsics provide the access to the ISA functionality using C/C++ style coding instead of assembly
language. Intel has defined three sets of intrinsic functions that are implemented in the Intel C++
Compiler to support the MMX technology, Streaming SIMD Extensions and Streaming SIMD Extensions 2.
Four new C data types, representing 64-bit and 128-bit objects are used as the operands of these
intrinsic functions. __M64 is used for MMX integer SIMD, __M128 is used for single-precision floating-
point SIMD, __M128l is used for Streaming SIMD Extensions 2 integer SIMD, and __M128D is used for
double precision floating-point SIMD. These types enable the programmer to choose the implementation
of an algorithm directly, while allowing the compiler to perform register allocation and instruction sched-

414

CODING FOR SIMD ARCHITECTURES

uling where possible. The intrinsics are portable among all Intel architecture-based processors supported
by a compiler.

The use of intrinsics allows you to obtain performance close to the levels achievable with assembly. The
cost of writing and maintaining programs with intrinsics is considerably less. For a detailed description of
the intrinsics and their use, refer to the Intel C++ Compiler documentation.

Example 4-15 shows the loop from Example 4-13 using intrinsics.

Example 4-15. Simple Four-lteration Loop Coded with Intrinsics

#include <xmmintrin.h>
void add(float *a, float *b, float *c)
{
__m12810, t1;
t0 = _mm_load_ps(a);
t1 = _mm_load_ps(b);
t0 = _mm_add_ps(t0, t1);
_mm_store_ps(c, t0);
}

The intrinsics map one-to-one with actual Streaming SIMD Extensions assembly code. The
XMMINTRIN.H header file in which the prototypes for the intrinsics are defined is part of the Intel C++
Compiler included with the VTune Performance Enhancement Environment CD.

Intrinsics are also defined for the MMX technology ISA. These are based on the __m64 data type to
represent the contents of an mm register. You can specify values in bytes, short integers, 32-bit values,
or as a 64-bit object.

The intrinsic data types, however, are not a basic ANSI C data type, and therefore you must observe the
following usage restrictions:

® Use intrinsic data types only on the left-hand side of an assignment as a return value or as a
parameter. You cannot use it with other arithmetic expressions (for example, “+7, “>>").

® Use intrinsic data type objects in aggregates, such as unions to access the byte elements and
structures; the address of an ___M64 object may be also used.

® Use intrinsic data type data only with the MMX technology intrinsics described in this guide.

For complete details of the hardware instructions, see the Intel Architecture MMX Technology
Programmer’s Reference Manual. For a description of data types, see the Intel® 64 and 1A-32 Architec-
tures Software Developer’s Manual.

4.3.1.3 Classes

A set of C++ classes has been defined and available in Intel C++ Compiler to provide both a higher-level
abstraction and more flexibility for programming with MMX technology, Streaming SIMD Extensions and
Streaming SIMD Extensions 2. These classes provide an easy-to-use and flexible interface to the intrinsic
functions, allowing developers to write more natural C++ code without worrying about which intrinsic or
assembly language instruction to use for a given operation. Since the intrinsic functions underlie the
implementation of these C++ classes, the performance of applications using this methodology can
approach that of one using the intrinsics. Further details on the use of these classes can be found in the
Intel C++ Class Libraries for SIMD Operations User’s Guide, order number 693500.

4-15

CODING FOR SIMD ARCHITECTURES

Example 4-16 shows the C++ code using a vector class library. The example assumes the arrays passed
to the routine are already aligned to 16-byte boundaries.

Example 4-16. C++ Code Using the Vector Classes

#include <fvech>
void add(float *3, float *b, float *c)

F32vec4 *av=(F32vec4 *) a;

F32vec4 *bv=(F32vec4 *) b;

F32vec4 *cv=(F32vecd *) ¢
*cv=*av + *by;

Here, fvec.h is the class definition file and F32vec4 is the class representing an array of four floats. The
“+” and “=" operators are overloaded so that the actual Streaming SIMD Extensions implementation in
the previous example is abstracted out, or hidden, from the developer. Note how much more this resem-
bles the original code, allowing for simpler and faster programming.

Again, the example is assuming the arrays, passed to the routine, are already aligned to 16-byte
boundary.

43.1.4 Automatic Vectorization

The Intel C++ Compiler provides an optimization mechanism by which loops, such as in Example 4-13
can be automatically vectorized, or converted into Streaming SIMD Extensions code. The compiler uses
similar techniques to those used by a programmer to identify whether a loop is suitable for conversion to
SIMD. This involves determining whether the following might prevent vectorization:

¢ The layout of the loop and the data structures used.
¢ Dependencies amongst the data accesses in each iteration and across iterations.

Once the compiler has made such a determination, it can generate vectorized code for the loop, allowing
the application to use the SIMD instructions.

The caveat to this is that only certain types of loops can be automatically vectorized, and in most cases
user interaction with the compiler is needed to fully enable this.

Example 4-17 shows the code for automatic vectorization for the simple four-iteration loop (from
Example 4-13).

Example 4-17. Automatic Vectorization for a Simple Loop

void add (float *restrict a,
float *restrict b,
float *restrict c)
{
inti;
for (i=0;i<4;i++){
cfi] = a[i] + b[i;
}
}

Compile this code using the -QAX and -QRESTRICT switches of the Intel C++ Compiler, version 4.0 or
later.

The RESTRICT qualifier in the argument list is necessary to let the compiler know that there are no other
aliases to the memory to which the pointers point. In other words, the pointer for which it is used,

4-16

CODING FOR SIMD ARCHITECTURES

provides the only means of accessing the memory in question in the scope in which the pointers live.
Without the restrict qualifier, the compiler will still vectorize this loop using runtime data dependence
testing, where the generated code dynamically selects between sequential or vector execution of the
loop, based on overlap of the parameters (See documentation for the Intel C++ Compiler). The restrict
keyword avoids the associated overhead altogether.

See Intel C++ Compiler documentation for details.

4.4 STACK AND DATA ALIGNMENT

To get the most performance out of code written for SIMD technologies data should be formatted in
memory according to the guidelines described in this section. Assembly code with an unaligned accesses
is a lot slower than an aligned access.

4.4.1 Alignment and Contiguity of Data Access Patterns

The 64-bit packed data types defined by MMX technology, and the 128-bit packed data types for
Streaming SIMD Extensions and Streaming SIMD Extensions 2 create more potential for misaligned data
accesses. The data access patterns of many algorithms are inherently misaligned when using MMX tech-
nology and Streaming SIMD Extensions. Several techniques for improving data access, such as padding,
organizing data elements into arrays, etc. are described below. SSE3 provides a special-purpose instruc-
tion LDDQU that can avoid cache line splits is discussed in Section 5.7.1.1, “Supplemental Techniques for
Avoiding Cache Line Splits.”

4.4.1.1 Using Padding to Align Data

However, when accessing SIMD data using SIMD operations, access to data can be improved simply by a
change in the declaration. For example, consider a declaration of a structure, which represents a point in
space plus an attribute.

typedef struct {short x,y,z; char a} Point;

Point pt[N];
Assume we will be performing a number of computations on X, Y, Z in three of the four elements of a
SIMD word; see Section 4.5.1, “Data Structure Layout,” for an example. Even if the first element in array
PT is aligned, the second element will start 7 bytes later and not be aligned (3 shorts at two bytes each
plus a single byte = 7 bytes).
By adding the padding variable PAD, the structure is now 8 bytes, and if the first element is aligned to 8
bytes (64 bits), all following elements will also be aligned. The sample declaration follows:

typedef struct {short x,y,z; char a; char pad;} Point;

Point pt[N];

44.1.2 Using Arrays to Make Data Contiguous

In the following code,

for (i=0; i<N; i++) pt[ily *= scale;
the second dimension Y needs to be multiplied by a scaling value. Here, the FOR loop accesses each Y
dimension in the array PT thus disallowing the access to contiguous data. This can degrade the perfor-

mance of the application by increasing cache misses, by poor utilization of each cache line that is fetched,
and by increasing the chance for accesses which span multiple cache lines.

The following declaration allows you to vectorize the scaling operation and further improve the alignment
of the data access patterns:

short ptx[N], pty[N], ptz[N];

for (i=0; i<N; i++) pty[i] *= scale;

4-17

CODING FOR SIMD ARCHITECTURES

With the SIMD technology, choice of data organization becomes more important and should be made
carefully based on the operations that will be performed on the data. In some applications, traditional
data arrangements may not lead to the maximum performance.

A simple example of this is an FIR filter. An FIR filter is effectively a vector dot product in the length of the
number of coefficient taps.

Consider the following code:
(data [j] *coeff [0] + data [j+1]*coeff [1]+..+data [j+num of taps-1]*coeff [num of taps-1]),

If in the code above the filter operation of data element | is the vector dot product that begins at data
element J, then the filter operation of data element I1+1 begins at data element J+1.

Assuming you have a 64-bit aligned data vector and a 64-bit aligned coefficients vector, the filter opera-
tion on the first data element will be fully aligned. For the second data element, however, access to the
data vector will be misaligned. For an example of how to avoid the misalignment problem in the FIR filter,
refer to Intel application notes on Streaming SIMD Extensions and filters.

Duplication and padding of data structures can be used to avoid the problem of data accesses in algo-
rithms which are inherently misaligned. Section 4.5.1, “Data Structure Layout,” discusses trade-offs for
organizing data structures.

NOTE

The duplication and padding technique overcomes the misalignment problem, thus
avoiding the expensive penalty for misaligned data access, at the cost of increasing the
data size. When developing your code, you should consider this tradeoff and use the
option which gives the best performance.

44.2 Stack Alignment For 128-bit SIMD Technologies

For best performance, the Streaming SIMD Extensions and Streaming SIMD Extensions 2 require their
memory operands to be aligned to 16-byte boundaries. Unaligned data can cause significant perfor-
mance penalties compared to aligned data. However, the existing software conventions for 1A-32
(STDCALL, CDECL, FASTCALL) as implemented in most compilers, do not provide any mechanism for
ensuring that certain local data and certain parameters are 16-byte aligned. Therefore, Intel has defined
a new set of 1A-32 software conventions for alignment to support the new ___M128* datatypes (__M128,
__M128D, and __M218l). These meet the following conditions:

® Functions that use Streaming SIMD Extensions or Streaming SIMD Extensions 2 data need to provide
a 16-byte aligned stack frame.

¢ _ M128* parameters need to be aligned to 16-byte boundaries, possibly creating “holes” (due to
padding) in the argument block.

The new conventions presented in this section as implemented by the Intel C++ Compiler can be used as
a guideline for an assembly language code as well. In many cases, this section assumes the use of the
__M128* data types, as defined by the Intel C++ Compiler, which represents an array of four 32-bit floats.

443 Data Alignment for MMX Technology

Many compilers enable alignment of variables using controls. This aligns variable bit lengths to the
appropriate boundaries. If some of the variables are not appropriately aligned as specified, you can align
them using the C algorithm in Example 4-18.

Example 4-18. C Algorithm for 64-bit Data Alignment

/* Make newp a pointer to a 64-bit aligned array of NUM_ELEMENTS 64-bit elements. */
double *p, *newp;

p = (double*)malloc (sizeof(double)*(NUM_ELEMENTS+1));

newp = (p+7) & (~0x7);

4-18

CODING FOR SIMD ARCHITECTURES

The algorithm in Example 4-18 aligns an array of 64-bit elements on a 64-bit boundary. The constant of
7 is derived from one less than the number of bytes in a 64-bit element, or 8-1. Aligning data in this
manner avoids the significant performance penalties that can occur when an access crosses a cache line
boundary.

Another way to improve data alignment is to copy the data into locations that are aligned on 64-bit
boundaries. When the data is accessed frequently, this can provide a significant performance improve-
ment.

444 Data Alignment for 128-bit data

Data must be 16-byte aligned when loading to and storing from the 128-bit XMM registers used by
SSE/SSE2/SSE3/SSSE3. This must be done to avoid severe performance penalties and, at worst, execu-
tion faults.

There are MOVE instructions (and intrinsics) that allow unaligned data to be copied to and out of XMM
registers when not using aligned data, but such operations are much slower than aligned accesses. If
data is not 16-byte-aligned and the programmer or the compiler does not detect this and uses the
aligned instructions, a fault occurs. So keep data 16-byte-aligned. Such alignment also works for MMX
technology code, even though MMX technology only requires 8-byte alignment.

The following describes alignment techniques for Pentium 4 processor as implemented with the Intel
C++ Compiler.

4.4.4.1 Compiler-Supported Alignment

The Intel C++ Compiler provides the following methods to ensure that the data is aligned.

Alignment by F32vec4 or __m128 Data Types

When the compiler detects F32VEC4 or __M128 data declarations or parameters, it forces alignment of
the object to a 16-byte boundary for both global and local data, as well as parameters. If the declaration
is within a function, the compiler also aligns the function's stack frame to ensure that local data and
parameters are 16-byte-aligned. For details on the stack frame layout that the compiler generates for
both debug and optimized (“release”-mode) compilations, refer to Intel’s compiler documentation.

___declspec(align(16)) specifications

These can be placed before data declarations to force 16-byte alignment. This is useful for local or global
data declarations that are assigned to 128-bit data types. The syntax for it is

__declspec(align(integer-constant))

where the INTEGER-CONSTANT is an integral power of two but no greater than 32. For example, the
following increases the alignment to 16-bytes:

__declspec(align(16)) float buffer[400];

The variable BUFFER could then be used as if it contained 100 objects of type _M128 or F32VECA4. In the
code below, the construction of the F32VEC4 object, X, will occur with aligned data.

void foo() {
F32vec4 x = *(__m128 *) buffer;

}
Without the declaration of _ DECLSPEC(ALIGN(16)), a fault may occur.

Alignment by Using a UNION Structure

When feasible, a UNION can be used with 128-bit data types to allow the compiler to align the data struc-
ture by default. This is preferred to forcing alignment with _ DECLSPEC(ALIGN(16)) because it exposes
the true program intent to the compiler in that ___M128 data is being used. For example:

4-19

CODING FOR SIMD ARCHITECTURES

union {
float f[400];
__m128 m[100];
} buffer;

Now, 16-byte alignment is used by default due to the ___M128 type in the UNION; it is not necessary to
use __ DECLSPEC(ALIGN(16)) to force the result.

In C++ (but not in C) it is also possible to force the alignment of a CLASS/STRUCT/UNION type, as in the
code that follows:

struct __declspec(align(16)) my_m128
{

¥

float f[4];

If the data in such a CLASS is going to be used with the Streaming SIMD Extensions or Streaming SIMD
Extensions 2, it is preferable to use a UNION to make this explicit. In C++, an anonymous UNION can be
used to make this more convenient:

class my_m128 {
union {
_m128m;
float f[4];

¥

Because the UNION is anonymous, the names, M and F, can be used as immediate member names of
MY__M128. Note that __ DECLSPEC(ALIGN) has no effect when applied to a CLASS, STRUCT, or UNION
member in either C or C++.

Alignment by Using __m64 or DOUBLE Data

In some cases, the compiler aligns routines with __M64 or DOUBLE data to 16-bytes by default. The
command-line switch, -QSFALIGN16, limits the compiler so that it only performs this alignment on
routines that contain 128-bit data. The default behavior is to use -QSFALIGNS8. This switch instructs the
complier to align routines with 8- or 16-byte data types to 16 bytes.

For more, see the Intel C++ Compiler documentation.

4.5 IMPROVING MEMORY UTILIZATION

Memory performance can be improved by rearranging data and algorithms for SSE, SSE2, and MMX
technology intrinsics. Methods for improving memory performance involve working with the following:

¢ Data structure layout.
® Strip-mining for vectorization and memory utilization.
® Loop-blocking.

Using the cacheability instructions, prefetch and streaming store, also greatly enhance memory utiliza-
tion. See also: Chapter 7, “Optimizing Cache Usage.”

4.5.1 Data Structure Layout

For certain algorithms, like 3D transformations and lighting, there are two basic ways to arrange vertex
data. The traditional method is the array of structures (AoS) arrangement, with a structure for each

4-20

CODING FOR SIMD ARCHITECTURES

vertex (Example 4-19). However this method does not take full advantage of SIMD technology capabili-
ties.

Example 4-19. AoS Data Structure

typedef struct{
float x,v,z;
intab,c;
} Vertex;
Vertex Vertices[NumOfVertices];

The best processing method for code using SIMD technology is to arrange the data in an array for each
coordinate (Example 4-20). This data arrangement is called structure of arrays (SoA).

Example 4-20. SoA Data Structure

typedef struct{
float x[NumOfVertices];
float y[NumOfVertices];
float zZ[NumOfVertices];
int a[NumOfVertices];
int b[NumOfVertices];
int c[NumOfVertices];

} VerticesList;
VerticesList Vertices;

There are two options for computing data in AoS format: perform operation on the data as it stands in
AoS format, or re-arrange it (swizzle it) into SoA format dynamically. See Example 4-21 for code samples
of each option based on a dot-product computation.

Example 4-21. AoS and SoA Code Samples

; The dot product of an array of vectors (Array) and a fixed vector (Fixed) is a

; common operation in 3D lighting operations, where Array = (x0,y0,20),(x1,y1,21)....
; and Fixed = (xF,yF,zF)

; A dot product is defined as the scalar quantity dO = xO*xF + yO*yF + z0*zF.

; AoS code
; All values marked DC are “don’t-care.”

; In the AOS model, the vertices are stored in the xyz format

movaps xmmO, Array ; xmmO = DC, x0, y0, z0

movaps xmm1, Fixed ;xmm1 = DC, xF, yF, zF

mulps xmmO, xmm1 ; xmmO = DC, xO*xF, yO*yF, z0*zF
movhlps xmm, xmmO ; xmm = DC, DC, DC, xO*xF

addps xmm1, xmmO ; xmmO = DC, DC, DC,

; X0*XF+z0*zFmovaps xmm2, xmm1
shufps xmm2, xmm2,55h ; xmm2 =DC,DC, DC, yO*yF
addps xmm2, xmm1 ;xmm1 =DC,DC, DC,

; XO*XF+y0*yF+z0*zF

4-21

CODING FOR SIMD ARCHITECTURES

Example 4-21. AoS and SoA Code Samples (Contd.)

; SOA code

; X =x0,x1,x2,x3

;Y =y0yly2y3

;2=120,21,22,23

; A = XF,xF,XF,xF

;B =yFyFyFyF

; C=2zF,zF,zF,zF

movaps xmm0, X ; xmmO = x0,x1,x2,x3

movaps xmm1, Y ; xmmO =y0,y1,y2,y3

movaps xmmz2, Z ; xmmO = 20,21,z2,23

mulps xmmO, A ; xmmO = x0*xF, x1*xF, x2*xF, x3*xF
mulps xmm1, B ; xmm1 = y0*yF, y1*yF, y2*yF, y3*xF
mulps xmm2, C ; xmm2 = z20*zF, z1*zF, z2*zF, z23*zF
addps xmmO, xmm1

addps xmmO, xmm2 ; xmmO = (XO*xF+y0*yF+z20*zF), ...

Performing SIMD operations on the original AoS format can require more calculations and some opera-
tions do not take advantage of all SIMD elements available. Therefore, this option is generally less effi-
cient.

The recommended way for computing data in AoS format is to swizzle each set of elements to SoA format
before processing it using SIMD technologies. Swizzling can either be done dynamically during program
execution or statically when the data structures are generated. See Chapter 5 and Chapter 6 for exam-
ples. Performing the swizzle dynamically is usually better than using AoS, but can be somewhat ineffi-
cient because there are extra instructions during computation. Performing the swizzle statically, when
data structures are being laid out, is best as there is no runtime overhead.

As mentioned earlier, the SoA arrangement allows more efficient use of the parallelism of SIMD technol-
ogies because the data is ready for computation in a more optimal vertical manner: multiplying compo-
nents X0,X1,X2,X3 by XF,XF,XF,XF using 4 SIMD execution slots to produce 4 unique results. In contrast,
computing directly on AoS data can lead to horizontal operations that consume SIMD execution slots but
produce only a single scalar result (as shown by the many “don’t-care” (DC) slots in Example 4-21).

Use of the SoA format for data structures can lead to more efficient use of caches and bandwidth. When
the elements of the structure are not accessed with equal frequency, such as when element x, y, z are
accessed ten times more often than the other entries, then SoA saves memory and prevents fetching
unnecessary data items a, b, and c.

Example 4-22. Hybrid SOA Data Structure

NumOfGroups = NumOfVertices/SIMDwidth
typedef struct{

float x[SIMDwidth];

float y[SIMDwidth];

float z[SIMDwidth];

} VerticesCoordList;
typedef struct{
int a[SIMDwidth];
int b[SIMDwidth];
int c[SIMDwidth];

} VerticesColorlList;
VerticesCoordList VerticesCoord[NumOfGroups];
VerticesColorList VerticesColor[NumOfGroups];

4-22

CODING FOR SIMD ARCHITECTURES

Note that SoA can have the disadvantage of requiring more independent memory stream references. A
computation that uses arrays X, Y, and Z (see Example 4-20) would require three separate data streams.
This can require the use of more prefetches, additional address generation calculations, as well as having
a greater impact on DRAM page access efficiency.

There is an alternative: a hybrid SoA approach blends the two alternatives (see Example 4-22). In this
case, only 2 separate address streams are generated and referenced: one contains XXXX, YYYY,ZZZZ,
ZZZZ,... and the other AAAA, BBBB, CCCC, AAAA, DDDD,... . The approach prevents fetching unneces-
sary data, assuming the variables X, Y, Z are always used together; whereas the variables A, B, C would
also be used together, but not at the same time as X, Y, Z.

The hybrid SoA approach ensures:

¢ Data is organized to enable more efficient vertical SIMD computation.

® Simpler/less address generation than AoS.

® Fewer streams, which reduces DRAM page misses.

® Use of fewer prefetches, due to fewer streams.

® Efficient cache line packing of data elements that are used concurrently.

With the advent of the SIMD technologies, the choice of data organization becomes more important and
should be carefully based on the operations to be performed on the data. This will become increasingly
important in the Pentium 4 processor and future processors. In some applications, traditional data
arrangements may not lead to the maximum performance. Application developers are encouraged to
explore different data arrangements and data segmentation policies for efficient computation. This may
mean using a combination of AoS, SoA, and Hybrid SoA in a given application.

4.5.2 Strip-Mining

Strip-mining, also known as loop sectioning, is a loop transformation technique for enabling SIMD-
encodings of loops, as well as providing a means of improving memory performance. First introduced for
vectorizers, this technique consists of the generation of code when each vector operation is done for a
size less than or equal to the maximum vector length on a given vector machine. By fragmenting a large
loop into smaller segments or strips, this technique transforms the loop structure by:

¢ Increasing the temporal and spatial locality in the data cache if the data are reusable in different
passes of an algorithm.

® Reducing the number of iterations of the loop by a factor of the length of each “vector,” or number of
operations being performed per SIMD operation. In the case of Streaming SIMD Extensions, this
vector or strip-length is reduced by 4 times: four floating-point data items per single Streaming SIMD
Extensions single-precision floating-point SIMD operation are processed. Consider Example 4-23.

Example 4-23. Pseudo-code Before Strip Mining

typedef struct _VERTEX {
float x, y, z, nx, ny, Nz, u, v;
} Vertex_rec;

main()

{

Vertex_rec v[Num];

for (i=0; i<Num; i++) {
Transform(v[i]);

}

4-23

CODING FOR SIMD ARCHITECTURES

Example 4-23. Pseudo-code Before Strip Mining (Contd.)

for (i=0; i<Num; i++) {
Lighting(v[i]);
}

}

The main loop consists of two functions: transformation and lighting. For each object, the main loop calls
a transformation routine to update some data, then calls the lighting routine to further work on the data.
If the size of array V[NUM] is larger than the cache, then the coordinates for V[I] that were cached during
TRANSFORM(VII]) will be evicted from the cache by the time we do LIGHTING(V[I]). This means that
V[I] will have to be fetched from main memory a second time, reducing performance.

In Example 4-24, the computation has been strip-mined to a size STRIP_SIZE. The value STRIP_SIZE is
chosen such that STRIP_SIZE elements of array V[NUM] fit into the cache hierarchy. By doing this, a
given element V[I] brought into the cache by TRANSFORM(V[I]) will still be in the cache when we
perform LIGHTING(V[I]), and thus improve performance over the non-strip-mined code.

Example 4-24. Strip Mined Code

MAIN()
{

Vertex_rec v[Num];

for (i=0; i < Num; i+=strip_size) {
FOR (J=I; J < MIN(NUM, 1+STRIP_SIZE); J++) {
TRANSFORM(V[I]D);
}
FOR (J=I; J < MIN(NUM, 1+STRIP_SIZE); J++) {
LIGHTING(V[J]);
¥
}
b

45.3 Loop Blocking

Loop blocking is another useful technique for memory performance optimization. The main purpose of
loop blocking is also to eliminate as many cache misses as possible. This technique transforms the
memory domain of a given problem into smaller chunks rather than sequentially traversing through the
entire memory domain. Each chunk should be small enough to fit all the data for a given computation
into the cache, thereby maximizing data reuse. In fact, one can treat loop blocking as strip mining in two
or more dimensions. Consider the code in Example 4-23 and access pattern in Figure 4-5. The two-
dimensional array A is referenced in the J (column) direction and then referenced in the | (row) direction
(column-major order); whereas array B is referenced in the opposite manner (row-major order). Assume
the memory layout is in column-major order; therefore, the access strides of array A and B for the code
in Example 4-25 would be 1 and MAX, respectively.

Example 4-25. Loop Blocking

A. Original Loop
float A[MAX, MAX], B[MAX, MAX]
for (i=0; i< MAX; i++) {
for (j=0; j< MAX; j++) {
Alij] = Afij] + Bl iI;
}
}

4-24

CODING FOR SIMD ARCHITECTURES

Example 4-25. Loop Blocking (Contd.)

B. Transformed Loop after Blocking
float AIMAX, MAX], BIMAX, MAX];
for (i=0; i< MAX; i+=block_size) {
for (j=0; j< MAX; j+=block_size) {
for (ii=i; ii<i+block_size; ii++) {
for (jj=j; ji<j+block_size; jj++) {
Alijj] = Afiijj] + Bij, ii];
}

For the first iteration of the inner loop, each access to array B will generate a cache miss. If the size of
one row of array A, that is, A[2, 0:MAX-1], is large enough, by the time the second iteration starts, each
access to array B will always generate a cache miss. For instance, on the first iteration, the cache line
containing B[O, 0:7] will be brought in when B[0,0] is referenced because the float type variable is four
bytes and each cache line is 32 bytes. Due to the limitation of cache capacity, this line will be evicted due
to conflict misses before the inner loop reaches the end. For the next iteration of the outer loop, another
cache miss will be generated while referencing B[O, 1]. In this manner, a cache miss occurs when each
element of array B is referenced, that is, there is no data reuse in the cache at all for array B.

This situation can be avoided if the loop is blocked with respect to the cache size. In Figure 4-5, a
BLOCK_SIZE is selected as the loop blocking factor. Suppose that BLOCK_SIZE is 8, then the blocked
chunk of each array will be eight cache lines (32 bytes each). In the first iteration of the inner loop, A[O,
0:7] and B[O, 0:7] will be brought into the cache. B[O, 0:7] will be completely consumed by the first iter-
ation of the outer loop. Consequently, B[O, 0:7] will only experience one cache miss after applying loop
blocking optimization in lieu of eight misses for the original algorithm. As illustrated in Figure 4-5, arrays
A and B are blocked into smaller rectangular chunks so that the total size of two blocked A and B chunks
is smaller than the cache size. This allows maximum data reuse.

4-25

CODING FOR SIMD ARCHITECTURES

A(i, j) access pattern
after blocking

A (i, j) access pattern |

>

Blocking
— >

h
I\

VVVVYVVVVVVVYVVYVYY

I
O O O T O

!
/
!
IBINH
1
I ! 11
bbb 1 ’/ i i
U {1
" (.
H [AERFRNAN] Plepenfef e (rfepe|rf
AR < cache size el il
AN AN AN

B(i, j) access pattern
after blocking

OM15158

Figure 4-5. Loop Blocking Access Pattern

As one can see, all the redundant cache misses can be eliminated by applying this loop blocking tech-
nique. If MAX is huge, loop blocking can also help reduce the penalty from DTLB (data translation look-
aside buffer) misses. In addition to improving the cache/memory performance, this optimization tech-

nique also saves external bus bandwidth.

4.6 INSTRUCTION SELECTION

The following section gives some guidelines for choosing instructions to complete a task.

One barrier to SIMD computation can be the existence of data-dependent branches. Conditional moves
can be used to eliminate data-dependent branches. Conditional moves can be emulated in SIMD compu-
tation by using masked compares and logicals, as shown in Example 4-26. SSE4.1 provides packed blend

instruction that can vectorize data-dependent branches in a loop.

Example 4-26. Emulation of Conditional Moves

High-level code:
__declspec(align(16)) short AIMAX_ELEMENT], BIMAX_ELEMENT], CIMAX_ELEMENT], D[]MAX_ELEMENT],
E[MAX_ELEMENT];

for (i=0; i<MAX_ELEMENT; i++){

if (AL > Bl {
C[i] = DOl
Jelse {
C[il = EfiT:
}

4-26

CODING FOR SIMD ARCHITECTURES

Example 4-26. Emulation of Conditional Moves (Contd.)

}

MMX assembly code processes 4 short values per iteration:
Xor eax, eax

top_of_loop:
movqg mmO, [A + eax]
pcmpgtwxmmaO, [B + eax]; Create compare mask
movqg mm1, [D + eax]
pand mm1, mmO; Drop elements where A<B
pandn mmO, [E + eax] ; Drop elements where A>B

por mmO, mm1; Crete single word
movqg [C + eax], mmO
add eax, 8
cmp eax, MAX_ELEMENT*2
jle top_of_loop
SSE4.1 assembly processes 8 short values per iteration:
xor eax, eax
top_of_loop:

movdgqg xmmQ, [A + eax]

pcmpgtw xmmoO, [B + eax]; Create compare mask
movdga xmm1, [E + eax]

pblendv xmmT1, [D + eax], xmmoO;

movdga [C + eax], xmm1;

add eax, 16
cmp eax, MAX_ELEMENT*2
jle top_of_loop

If there are multiple consumers of an instance of a register, group the consumers together as closely as
possible. However, the consumers should not be scheduled near the producer.

4.6.1 SIMD Optimizations and Microarchitectures

Pentium M, Intel Core Solo and Intel Core Duo processors have a different microarchitecture than Intel
NetBurst microarchitecture. The following sub-section discusses optimizing SIMD code targeting Intel
Core Solo and Intel Core Duo processors.

The register-register variant of the following instructions has improved performance on Intel Core Solo
and Intel Core Duo processor relative to Pentium M processors. This is because the instructions consist of
two micro-ops instead of three. Relevant instructions are: unpcklps, unpckhps, packsswb, packuswb,
packssdw, pshufd, shuffps and shuffpd.

Recommendation: When targeting code generation for Intel Core Solo and Intel Core Duo processors,
favor instructions consisting of two micro-ops over those with more than two micro-ops.

Intel Core microarchitecture generally executes SIMD instructions more efficiently than previous
microarchitectures in terms of latency and throughput, most 128-bit SIMD operations have 1 cycle
throughput (except shuffle, pack, unpack operations). Many of the restrictions specific to Intel Core Duo,
Intel Core Solo processors (such as 128-bit SIMD operations having 2 cycle throughput at a minimum)
do not apply to Intel Core microarchitecture. The same is true of Intel Core microarchitecture relative to
Intel NetBurst microarchitectures.

Enhanced Intel Core microarchitecture provides dedicated 128-bit shuffler and radix-16 divider hard-
ware. These capabilities and SSE4.1 instructions will make vectorization using 128-bit SIMD instructions
even more efficient and effective.

4-27

CODING FOR SIMD ARCHITECTURES

Recommendation: With the proliferation of 128-bit SIMD hardware in Intel Core microarchitecture and
Enhanced Intel Core microarchitecture, integer SIMD code written using MMX instructions should
consider more efficient implementations using 128-bit SIMD instructions.

4.7 TUNING THE FINAL APPLICATION

The best way to tune your application once it is functioning correctly is to use a profiler that measures the
application while it is running on a system. Intel VTune Amplifier XE can help you determine where to
make changes in your application to improve performance. Using Intel VTune Amplifier XE can help you
with various phases required for optimized performance. See Appendix A.3.1, “Intel® VTune™ Amplifier
XE,” for details. After every effort to optimize, you should check the performance gains to see where you
are making your major optimization gains.

4-28

CHAPTER 5
OPTIMIZING FOR SIMD INTEGER APPLICATIONS

SIMD integer instructions provide performance improvements in applications that are integer-intensive
and can take advantage of SIMD architecture.

Guidelines in this chapter for using SIMD integer instructions (in addition to those described in Chapter
3) may be used to develop fast and efficient code that scales across processor generations.

The collection of 64-bit and 128-bit SIMD integer instructions supported by MMX technology, SSE, SSE2,
SSE3, SSSE3, SSE4.1, and PCMPEQQ in SSE4.2 are referred to as SIMD integer instructions.

Code sequences in this chapter demonstrates the use of basic 64-bit SIMD integer instructions and more
efficient 128-bit SIMD integer instructions.

Processors based on Intel Core microarchitecture support MMX, SSE, SSE2, SSE3, and SSSE3. Proces-
sors based on Enhanced Intel Core microarchitecture support SSE4.1 and all previous generations of
SIMD integer instructions. Processors based on Intel microarchitecture code name Nehalem supports
MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1 and SSE4.2.

Single-instruction, multiple-data techniques can be applied to text/string processing, lexing and parser

applications. SIMD programming in string/text processing and lexing applications often require sophisti-
cated techniques beyond those commonly used in SIMD integer programming. This is covered in Chapter
11, “SSE4.2 and SIMD Programming For Text-Processing/Lexing/Parsing”.

Execution of 128-bit SIMD integer instructions in Intel Core microarchitecture and Enhanced Intel Core
microarchitecture are substantially more efficient than on previous microarchitectures. Thus newer
SIMD capabilities introduced in SSE4.1 operate on 128-bit operands and do not introduce equivalent 64-
bit SIMD capabilities. Conversion from 64-bit SIMD integer code to 128-bit SIMD integer code is highly
recommended.

This chapter contains examples that will help you to get started with coding your application. The goal is
to provide simple, low-level operations that are frequently used. The examples use a minimum number
of instructions necessary to achieve best performance on the current generation of Intel 64 and 1A-32
processors.

Each example includes a short description, sample code, and notes if necessary. These examples do not
address scheduling as it is assumed the examples will be incorporated in longer code sequences.

For planning considerations of using the SIMD integer instructions, refer to Section 4.1.3.

5.1 GENERAL RULES ON SIMD INTEGER CODE

General rules and suggestions are:

< Do not intermix 64-bit SIMD integer instructions with x87 floating-point instructions. See Section
5.2, “Using SIMD Integer with x87 Floating-point.” Note that all SIMD integer instructions can be
intermixed without penalty.

= Favor 128-bit SIMD integer code over 64-bit SIMD integer code. On microarchitectures prior to Intel
Core microarchitecture, most 128-bit SIMD instructions have two-cycle throughput restrictions due
to the underlying 64-bit data path in the execution engine. Intel Core microarchitecture executes
most SIMD instructions (except shuffle, pack, unpack operations) with one-cycle throughput and
provides three ports to execute multiple SIMD instructions in parallel. Enhanced Intel Core microar-
chitecture speeds up 128-bit shuffle, pack, unpack operations with 1 cycle throughput.

< When writing SIMD code that works for both integer and floating-point data, use the subset of SIMD
convert instructions or load/store instructions to ensure that the input operands in XMM registers
contain data types that are properly defined to match the instruction.

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Code sequences containing cross-typed usage produce the same result across different implementa-
tions but incur a significant performance penalty. Using SSE/SSE2/SSE3/SSSE3/SSE44.1 instruc-
tions to operate on type-mismatched SIMD data in the XMM register is strongly discouraged.

* Use the optimization rules and guidelines described in Chapter 3 and Chapter 4.

= Take advantage of hardware prefetcher where possible. Use the PREFETCH instruction only when
data access patterns are irregular and prefetch distance can be pre-determined. See Chapter 7,
“Optimizing Cache Usage.”

< Emulate conditional moves by using blend, masked compares and logicals instead of using
conditional branches.

5.2 USING SIMD INTEGER WITH X87 FLOATING-POINT

All 64-bit SIMD integer instructions use MMX registers, which share register state with the x87 floating-
point stack. Because of this sharing, certain rules and considerations apply. Instructions using MMX
registers cannot be freely intermixed with x87 floating-point registers. Take care when switching
between 64-bit SIMD integer instructions and x87 floating-point instructions to ensure functional
correctness. See Section 5.2.1.

Both Section 5.2.1 and Section 5.2.2 apply only to software that employs MMX instructions. As noted
before, 128-bit SIMD integer instructions should be favored to replace MMX code and achieve higher
performance. That also obviates the need to use EMMS, and the performance penalty of using EMMS
when intermixing MMX and X87 instructions.

For performance considerations, there is no penalty of intermixing SIMD floating-point operations and
128-bit SIMD integer operations and x87 floating-point operations.

5.2.1 Using the EMMS Instruction

When generating 64-bit SIMD integer code, keep in mind that the eight MMX registers are aliased to x87
floating-point registers. Switching from MMX instructions to x87 floating-point instructions incurs a finite
delay, so it is the best to minimize switching between these instruction types. But when switching, the
EMMS instruction provides an efficient means to clear the x87 stack so that subsequent x87 code can
operate properly.

As soon as an instruction makes reference to an MMX register, all valid bits in the x87 floating-point tag
word are set, which implies that all x87 registers contain valid values. In order for software to operate
correctly, the x87 floating-point stack should be emptied when starting a series of x87 floating-point
calculations after operating on the MMX registers.

Using EMMS clears all valid bits, effectively emptying the x87 floating-point stack and making it ready for
new x87 floating-point operations. The EMMS instruction ensures a clean transition between using oper-
ations on the MMX registers and using operations on the x87 floating-point stack. On the Pentium 4
processor, there is a finite overhead for using the EMMS instruction.

Failure to use the EMMS instruction (or the _MM_EMPTY() intrinsic) between operations on the MMX
registers and x87 floating-point registers may lead to unexpected results.

NOTE

Failure to reset the tag word for FP instructions after using an MMX instruction can result
in faulty execution or poor performance.

5.2.2 Guidelines for Using EMMS Instruction

When developing code with both x87 floating-point and 64-bit SIMD integer instructions, follow these
steps:

5-2

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

1. Always call the EMMS instruction at the end of 64-bit SIMD integer code when the code transitions to
x87 floating-point code.

2. Insert the EMMS instruction at the end of all 64-bit SIMD integer code segments to avoid an x87
floating-point stack overflow exception when an x87 floating-point instruction is executed.

When writing an application that uses both floating-point and 64-bit SIMD integer instructions, use the
following guidelines to help you determine when to use EMMS:

= If next instruction is x87 FP — Use _MM_EMPTY() after a 64-bit SIMD integer instruction if the
next instruction is an X87 FP instruction; for example, before doing calculations on floats, doubles or
long doubles.

e Don’t empty when already empty — If the next instruction uses an MMX register, _MM_EMPTY ()
incurs a cost with no benefit.

e Group Instructions — Try to partition regions that use X87 FP instructions from those that use 64-
bit SIMD integer instructions. This eliminates the need for an EMMS instruction within the body of a
critical loop.

* Runtime initialization — Use _MM_EMPTY() during runtime initialization of __M64 and X87 FP data
types. This ensures resetting the register between data type transitions. See Example 5-1 for coding
usage.

Example 5-1. Resetting Register Between __m64 and FP Data Types Code

Incorrect Usage Correct Usage
__mb4 x =_m_paddd(y, z); __m64 x = _m_paddd(y, z);
float f = init(); float f = (_Lmm_empty(), init());

You must be aware that your code generates an MMX instruction, which uses MMX registers with the Intel
C++ Compiler, in the following situations:

= when using a 64-bit SIMD integer intrinsic from MMX technology, SSE/SSE2/SSSE3

= when using a 64-bit SIMD integer instruction from MMX technology, SSE/SSE2/SSSE3 through inline
assembly

= when referencing the ___M64 data type variable

Additional information on the x87 floating-point programming model can be found in the Intel® 64 and
1A-32 Architectures Software Developer’s Manual, Volume 1. For more on EMMS, visit http://devel-
oper.intel.com.

53 DATA ALIGNMENT

Make sure that 64-bit SIMD integer data is 8-byte aligned and that 128-bit SIMD integer data is 16-byte
aligned. Referencing unaligned 64-bit SIMD integer data can incur a performance penalty due to
accesses that span 2 cache lines. Referencing unaligned 128-bit SIMD integer data results in an excep-
tion unless the MOVDQU (move double-quadword unaligned) instruction is used. Using the MOVDQU
instruction on unaligned data can result in lower performance than using 16-byte aligned references.
Refer to Section 4.4, “Stack and Data Alignment,” for more information.

Loading 16 bytes of SIMD data efficiently requires data alignment on 16-byte boundaries. SSSE3
provides the PALIGNR instruction. It reduces overhead in situations that requires software to processing
data elements from non-aligned address. The PALIGNR instruction is most valuable when loading or
storing unaligned data with the address shifts by a few bytes. You can replace a set of unaligned loads
with aligned loads followed by using PALIGNR instructions and simple register to register copies.

5-3

http://developer.intel.com
http://developer.intel.com

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Using PALIGNRs to replace unaligned loads improves performance by eliminating cache line splits and
other penalties. In routines like MEMCPY(), PALIGNR can boost the performance of misaligned cases.
Example 5-2 shows a situation that benefits by using PALIGNR.

Example 5-2. FIR Processing Example in C language Code

void FIR(float *in, float *out, float *coeff, int count)
{intij;
for (i=0; i<count - TAP; i++)
{ floatsum = 0;
for (j=0; [<TAP; j++)
{ sum+=in[j]*coeff[j]; }
*out++ = sum;

in++;

Example 5-3 compares an optimal SSE2 sequence of the FIR loop and an equivalent SSSE3 implementa-
tion. Both implementations unroll 4 iteration of the FIR inner loop to enable SIMD coding techniques. The
SSE2 code can not avoid experiencing cache line split once every four iterations. PALGNR allows the
SSSES3 code to avoid the delays associated with cache line splits.

Example 5-3. SSE2 and SSSE3 Implementation of FIR Processing Code

Optimized for SSE2

pxor xmmO, xmmO

xor ecx, ecx

mov eax, dword ptr[input]
mov ebx, dword ptr[coeff4]

inner_loop:

movaps xmm71, xmmword ptr[eax+ecx]
mulps xmm71, xmmword ptrlebx+4*ecx]
addps xmmO, xmm1

movups xmm1, xmmword ptrleax+ecx+4]
mulps xmm1, xmmword ptr[ebx+4*ecx+16]
addps xmmQO, xmm1

movups xmm1, xmmword ptrieax+ecx+8]
mulps xmm71, xmmword ptrlebx+4*ecx+32]
addps xmmO, xmm1

movups xmm1, xmmword ptrleax+ecx+12]
mulps xmm1, xmmword ptriebx+4*ecx+48]
addps xmmO, xmm1

add ecx, 16
cnp ecx, 4*TAP
jl inner_loop

mov eax, dword ptr[output]
movaps xmmword ptr[eax], xmmO

Optimized for SSSE3

pxor xmmQO, xmmO

xor ecx, ecx

mov eax, dword ptr[input]
mov ebx, dword ptr[coeff4]

inner_loop:

movaps xmm1, xmmword ptrleax+ecx]
movaps xmm3, xmm 1

mulps xmm1, xmmword ptr[ebx+4*ecx]
addps xmmO, xmm1

movaps xmm2, xmmword ptr[eax+ecx+16]
movaps xmm1, xmm2

palignr xmmZ2, xmm3, 4

mulps xmm2, xmmword ptr[ebx+4*ecx+16]
addps xmmQO, xmm2

movaps xmm2, xmm 1

palignr xmmZ2, xmm3, 8

mulps xmmZ2, xmmword ptrlebx+4*ecx+32]
addps xmmO, xmmZ2

movaps xmm2, xmm1

palignr xmm2, xmm3, 12

mulps xmm2, xmmword ptrlebx+4*ecx+48]
addps xmmQO, xmmZ2

add ecx, 16
cnp ecx, 4*TAP
jl inner_loop

mov eax, dword ptrloutput]
movaps xmmword ptr[eax], xmmO

5-4

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

5.4 DATA MOVEMENT CODING TECHNIQUES

In general, better performance can be achieved if data is pre-arranged for SIMD computation (see
Section 4.5, “Improving Memory Utilization”). This may not always be possible.

This section covers techniques for gathering and arranging data for more efficient SIMD computation.

5.4.1 Unsigned Unpack

MMX technology provides several instructions that are used to pack and unpack data in the MMX regis-
ters. SSE2 extends these instructions so that they operate on 128-bit source and destinations.

The unpack instructions can be used to zero-extend an unsigned number. Example 5-4 assumes the
source is a packed-word (16-bit) data type.

Example 5-4. Zero Extend 16-bit Values into 32 Bits Using Unsigned Unpack Instructions Code

; Input:
; XMMO 8 16-bit values in source
; XMM7 0 a local variable can be used
; instead of the register XMM7 if
; desired.
; Output:
; XMMO four zero-extended 32-bit
; doublewords from four low-end
; words
; XMM1 four zero-extended 32-bit
; doublewords from four high-end
; words
movdga xmm71, xmmO ; copy source
punpcklwd xmmO, xmm?7 ; unpack the 4 low-end words
; into 4 32-bit doubleword
punpckhwd xmm1, xmm7 ; unpack the 4 high-end words
; into 4 32-bit doublewords

542 Signed Unpack

Signed numbers should be sign-extended when unpacking values. This is similar to the zero-extend
shown above, except that the PSRAD instruction (packed shift right arithmetic) is used to sign extend the
values.

Example 5-5 assumes the source is a packed-word (16-bit) data type.

Example 5-5. Signed Unpack Code

Input;

; XMMO source value

; Output:

; XMMO four sign-extended 32-bit doublewords
; from four low-end words

; XMM1 four sign-extended 32-bit doublewords
; from four high-end words

5-5

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Example 5-5. Signed Unpack Code (Contd.)

movdga xmm1, xmmO ; copy source

punpcklwd xmmO, xmmO ; unpack four low end words of the source
; into the upper 16 bits of each doubleword
; in the destination

punpckhwd xmm1, xmm1 ; unpack 4 high-end words of the source
; into the upper 16 bits of each doubleword
; in the destination

psrad xmmQ0, 16 ; sign-extend the 4 low-end words of the source
; into four 32-bit signed doublewords
psrad xmm1,16 ;sign-extend the 4 high-end words of the

; source into four 32-bit signed doublewords

543 Interleaved Pack with Saturation

Pack instructions pack two values into a destination register in a predetermined order. PACKSSDW satu-
rates two signed doublewords from a source operand and two signed doublewords from a destination
operand into four signed words; and it packs the four signed words into a destination register. See
Figure 5-1.

SSE2 extends PACKSSDW so that it saturates four signed doublewords from a source operand and four
signed doublewords from a destination operand into eight signed words; the eight signed words are
packed into the destination.

mm/m64 mm

OM15159

Figure 5-1. PACKSSDW mm, mm/mm64 Instruction

Figure 5-2 illustrates where two pairs of values are interleaved in a destination register; Example 5-6
shows MMX code that accomplishes the operation.

Two signed doublewords are used as source operands and the result is interleaved signed words. The
sequence in Example 5-6 can be extended in SSE2 to interleave eight signed words using XMM registers.

5-6

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

MM/M64 mm

OM15160

Figure 5-2. Interleaved Pack with Saturation

Example 5-6. Interleaved Pack with Saturation Code

; Input:

MMO signed sourcel value
; MM1 signed sourceZ2 value
; Output:

MMO the first and third words contain the
; signed-saturated doublewords from MMO,
; the second and fourth words contain
; signed-saturated doublewords from MM1
packssdw mmO, mmO ; pack and sign saturate
packssdw mm1, mm1 ; pack and sign saturate
punpcklwvd mmO, mm1 ;interleave the low-end 16-bit

; values of the operands

Pack instructions always assume that source operands are signed numbers. The result in the destination
register is always defined by the pack instruction that performs the operation. For example, PACKSSDW
packs each of two signed 32-bit values of two sources into four saturated 16-bit signed values in a desti-
nation register. PACKUSWB, on the other hand, packs the four signed 16-bit values of two sources into
eight saturated eight-bit unsigned values in the destination.

544 Interleaved Pack without Saturation

Example 5-7 is similar to Example 5-6 except that the resulting words are not saturated. In addition, in
order to protect against overflow, only the low order 16 bits of each doubleword are used. Again,
Example 5-7 can be extended in SSE2 to accomplish interleaving eight words without saturation.

Example 5-7. Interleaved Pack without Saturation Code

; Input:

; MMO signed source value

; MM1 signed source value

; Output:

; MMO the first and third words contain the

; low 16-bits of the doublewords in MMO,

; the second and fourth words contain the
low 16-bits of the doublewords in MM1

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Example 5-7. Interleaved Pack without Saturation Code (Contd.)

psiid mm1,16 ; shift the 16 LSB from each of the
; doubleword values to the 16 MSB
; position

pand mmoO, {O,ffff,0,ffff}
; mask to zero the 16 MSB
; of each doubleword value

por mmO, mm1 ; merge the two operands

545 Non-Interleaved Unpack

Unpack instructions perform an interleave merge of the data elements of the destination and source
operands into the destination register.

The following example merges the two operands into destination registers without interleaving. For
example, take two adjacent elements of a packed-word data type in SOURCE1 and place this value in the
low 32 bits of the results. Then take two adjacent elements of a packed-word data type in SOURCE2 and
place this value in the high 32 bits of the results. One of the destination registers will have the combina-
tion illustrated in Figure 5-3.

mm/m64 mm

2

2

2 1

1

2

1

o

mm

Figure 5-3. Result of Non-Interleaved Unpack Low in MMO

The other destination register will contain the opposite combination illustrated in Figure 5-4.

Figure 5-4. Result of Non-Interleaved Unpack High in MM1

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Code in the Example 5-8 unpacks two packed-word sources in a non-interleaved way. The goal is to use
the instruction which unpacks doublewords to a quadword, instead of using the instruction which
unpacks words to doublewords.

Example 5-8. Unpacking Two Packed-word Sources in Non-interleaved Way Code

; Input:

; MMO packed-word source value

; MM1 packed-word source value

; Output:

; MMO contains the two low-end words of the
; original sources, non-interleaved

; MM2 contains the two high end words of the
; original sources, non-interleaved.

movq mm2, mm0 ; copy source]l

punpckldg mmO, mm1 ; replace the two high-end words of MMO with
; two low-end words of MMT1;
; leave the two low-end words of MMO in place
punpckhdg mm2, mm1 ; move two high-end words of MM2 to the two low-end
; words of MM2; place the two high-end words of
; MMT1 in two high-end words of MM2

5.4.6 Extract Data Element

The PEXTRW instruction in SSE takes the word in the designated MMX register selected by the two least
significant bits of the immediate value and moves it to the lower half of a 32-bit integer register. See
Figure 5-5 and Example 5-9.

With SSE2, PEXTRW can extract a word from an XMM register to the lower 16 bits of an integer register.
SSE4.1 provides extraction of a byte, word, dword and qword from an XMM register into either a memory
location or integer register.

MM
63 31 0
X4 X3 X2 X1
R32
31 v 0
0..0 X1
OM15163

Figure 5-5. PEXTRW Instruction

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Example 5-9. PEXTRW Instruction Code

; Input:

; eax source value

; immediate value: “0"

; Output:

; edx 32-bit integer register containing the extracted word in the

; low-order bits & the high-order bits zero-extended
movqg mmO, [eax]
pextrw edx, mmQ, O

5.4.7 Insert Data Element

The PINSRW instruction in SSE loads a word from the lower half of a 32-bit integer register or from
memory and inserts it in an MMX technology destination register at a position defined by the two least
significant bits of the immediate constant. Insertion is done in such a way that three other words from
the destination register are left untouched. See Figure 5-6 and Example 5-10.

With SSE2, PINSRW can insert a word from the lower 16 bits of an integer register or memory into an
XMM register. SSE4.1 provides insertion of a byte, dword and gword from either a memory location or
integer register into an XMM register.

MM
63 31 0
X4 X3 Y1 X1
R32
31 0
Y2 Y1
OM15164

Figure 5-6. PINSRW Instruction

Example 5-10. PINSRW Instruction Code

; Input:

; edx pointer to source value

; Output:

; mmO register with new 16-bit value inserted
mov eax, [edX]
pinsrw mmoO, eax, 1

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

If all of the operands in a register are being replaced by a series of PINSRW instructions, it can be useful
to clear the content and break the dependence chain by either using the PXOR instruction or loading the
register. See Example 5-11 and Section 3.5.1.7, “Clearing Registers and Dependency Breaking Idioms.”

Example 5-11. Repeated PINSRW Instruction Code

; Input:

; edx pointer to structure containing source

; values at offsets: of +0, +10, +13, and +24
; immediate value: "1”

; Output:

; MMX register with new 16-bit value inserted
pxor mmO, mmO ; Breaks dependency on previous value of mmO
mov eax, [edx]

pinsrw mmo, eax, 0

mov eax, [edx+10]

pinsrw mmO, eax, 1

mov eax, [edx+13]

pinsrw mmO, eax, 2

mov eax, [edx+24]

pinsrw mmo, eax, 3

5.4.8 Non-Unit Stride Data Movement

SSE4.1 provides instructions to insert a data element from memory into an XMM register, and to extract
a data element from an XMM register into memory directly. Separate instructions are provided to handle
floating-point data and integer byte, word, or dword. These instructions are suited for vectorizing code
that loads/stores non-unit stride data from memory, see Example 5-12.

Example 5-12. Non-Unit Stride Load/Store Using SSE4.1 Instructions

/* Goal: Non-Unit Stride Load Dwords*/

movd xmmoO, [addr]

pinsrd xmmO, [addr + stride], 1
pinsrd xmmO, [addr + 2*stride], 2
pinsrd xmmO, [addr + 3*stride], 3

/* Goal: Non-Unit Stride Store Dwords*/

movd [addr], xmmO

pextrd [addr + stride], xmmoO, 1
pextrd [addr + 2*stride], xmmO, 2
pextrd [addr + 3*stride], xmmO, 3

Example 5-13 provides two examples: using INSERTPS and PEXTRD to perform gather operations on
floating-point data; using EXTRACTPS and PEXTRD to perform scatter operations on floating-point data.

Example 5-13. Scatter and Gather Operations Using SSE4.1 Instructions

/* Goal: Gather Operation*/

movd eax, xmmO

movss xmm1, [addr + 4*eax]
pextrd eax, xmmO, 1

insertps xmm©1, [addr + 4*eax], 1
pextrd eax, xmmO, 2

insertps xmm’1, [addr + 4*eax], 2
pextrd eax, xmmO, 3

insertps xmm©1, [addr + 4*eax], 3

/* Goal: Scatter Operation*/

movd eax, xmmO

movss [addr + 4*eax], xmm1
pextrd eax, xmmO, 1

extractps [addr + 4*eax], xmm1, 1
pextrd eax, xmmO, 2

extractps [addr + 4*eax], xmm1, 2
pextrd eax, xmmO, 3

extractps [addr + 4*eax], xmm1, 3

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

549 Move Byte Mask to Integer

The PMOVMSKB instruction returns a bit mask formed from the most significant bits of each byte of its
source operand. When used with 64-bit MMX registers, this produces an 8-bit mask, zeroing out the
upper 24 bits in the destination register. When used with 128-bit XMM registers, it produces a 16-bit
mask, zeroing out the upper 16 bits in the destination register.

The 64-bit version of this instruction is shown in Figure 5-7 and Example 5-14.

63 55 47 39 31 23 15 7 0

3 1)

7 0
R32

OM15165

Figure 5-7. PMOVSMKB Instruction

Example 5-14. PMOVMSKB Instruction Code

; Input:

; source value

; Output:

; 32-bit register containing the byte mask in the lower eight bits
movg mmO, [edi]
pmovmskb eax, mm0O

5.4.10 Packed Shuffle Word for 64-bit Registers

The PSHUFW instruction uses the immediate (IMM8) operand to select between the four words in either
two MMX registers or one MMX register and a 64-bit memory location. SSE2 provides PSHUFLW to shuffle
the lower four words into an XMM register. In addition to the equivalent to the PSHUFW, SSE2 also
provides PSHUFHW to shuffle the higher four words. Furthermore, SSE2 offers PSHUFD to shuffle four
dwords into an XMM register. All of these four PSHUF instructions use an immediate byte to encode the
data path of individual words within the corresponding 8 bytes from source to destination, shown in Table
5-1.

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Table 5-1. PSHUF Encoding

Bits Words

1-0 0

3-2 1

5-4 2

7-6 3
5.4.11 Packed Shuffle Word for 128-bit Registers

The PSHUFLW/PSHUFHW instruction performs a full shuffle of any source word field within the low/high
64 bits to any result word field in the low/high 64 bits, using an 8-bit immediate operand; other high/low
64 bits are passed through from the source operand.

PSHUFD performs a full shuffle of any double-word field within the 128-bit source to any double-word
field in the 128-bit result, using an 8-bit immediate operand.

No more than 3 instructions, using PSHUFLW/PSHUFHW/PSHUFD, are required to implement many
common data shuffling operations. Broadcast, Swap, and Reverse are illustrated in Example 5-15 and
Example 5-16.

Example 5-15. Broadcast a Word Across XMM, Using 2 SSE2 Instructions

/* Goal: Broadcast the value from word 5 to all words */
/* Instruction Result */
| 716151 4|32]1]0|

PSHUFHW (3,2,1,1) 7] 6] 5] 5| 3] 2| 1] O

PSHUFD (2,2,2,2) | 5] 5/ 5| 5] 5 5 51 5

Example 5-16. Swap/Reverse words in an XMM, Using 3 SSE2 Instructions

/* Goal: Swap the values in word 6 and word 1 */
/* Instruction Result */
[71615141312/ 1]0|
PSHUFD (3,0,1,2)| 7] 6] 1] O] 3| 2| 5] 4|
PSHUFHW (3,1,2,0)| 7| 1] 6] O] 3| 2| 5| 4|

PSHUFD (3,0,1,2)| 7] 1| 5/ 4| 3| 2| 6| O]

/* Goal: Reverse the order of the words */
/* Instruction Result */

| 716]5]4]3]2]10]
PSHUFLW (0,1,2,3)| 7| 6] 5] 4| 0] 1] 2| 3]
PSHUFHW (0,1,2,3)| 4] 5| 6] 7] 0] 1] 2| 3|

PSHUFD (1,0,3,2)| 0] 1] 2| 3| 4| 5/ 6| 7|

5.4.12 Shuffle Bytes

SSSE3 provides PSHUFB; this instruction carries out byte manipulation within a 16 byte range. PSHUFB
can replace up to 12 other instructions: including SHIFT, OR, AND and MOV.

Use PSHUFB if the alternative uses 5 or more instructions.

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

5.4.13 Conditional Data Movement

SSE4.1 provides two packed blend instructions on byte and word data elements in 128-bit operands.
Packed blend instructions conditionally copies data elements from selected positions in the source to the
corresponding data element using a mask specified by an immediate control byte or an implied XMM
register (XMMO0). The mask can be generated by a packed compare instruction for example. Thus packed
blend instructions are most useful for vectorizing conditional flows within a loop and can be more efficient
than inserting single element one at a time for some situations.

5.4.14 Unpacking/interleaving 64-bit Data in 128-bit Registers

The PUNPCKLQDQ/PUNPCHQDQ instructions interleave the low/high-order 64-bits of the source operand
and the low/high-order 64-bits of the destination operand. It then writes the results to the destination
register.

The high/low-order 64-bits of the source operands are ignored.

5.4.15 Data Movement

There are two additional instructions to enable data movement from 64-bit SIMD integer registers to
128-bit SIMD registers.

The MOVQ2DQ instruction moves the 64-bit integer data from an MMX register (source) to a 128-bit
destination register. The high-order 64 bits of the destination register are zeroed-out.

The MOVDQ2Q instruction moves the low-order 64-bits of integer data from a 128-bit source register to
an MMX register (destination).

5.4.16 Conversion Instructions

SSE provides Instructions to support 4-wide conversion of single-precision data to/from double-word
integer data. Conversions between double-precision data to double-word integer data have been added
in SSE2.

SSE4.1 provides 4 rounding instructions to convert floating-point values to integer values with rounding
control specified in a more flexible manner and independent of the rounding control in MXCSR. The
integer values produced by ROUNDxx instructions are maintained as floating-point data.

SSE4.1 also provides instructions to convert integer data from:

« Packed bytes to packed word/dword/qword format using either sign extension or zero extension.
= Packed words to packed dword/gword format using either sign extension or zero extension.

= Packed dword to packed gword format using either sign extension or zero extension.

5.5 GENERATING CONSTANTS

SIMD integer instruction sets do not have instructions that will load immediate constants to the SIMD
registers.

The following code segments generate frequently used constants in the SIMD register. These examples
can also be extended in SSE2 by substituting MMX with XMM registers. See Example 5-17.

5-14

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Example 5-17. Generating Constants

pxor mmO, mmO ; generate a zero register in MMO

pcmpegmm1, mm1 ; Generate all 1's in register MM1,
; which is -1 in each of the packed
; data type fields

pxor ~ mmO, mmO
pcmpeg mm1, mm1
psubb mmO, mm1 [psubw mmO, mm1] (psubd mmO, mm1)
; three instructions above generate
; the constant 1 in every
, packed-byte [or packed-word]
; (or packed-dword) field
pcmpeg mm1, mm1
psrlw mm1, 16-n(psrid mm1, 32-n)
; two instructions above generate
; the signed constant 2™-1 in every
; packed-word (or packed-dword) field

pcmpeg mm1, mm1
psllw mm1,n (pslid mm1,n)
; two instructions above generate
; the signed constant -2n in every
; packed-word (or packed-dword) field

NOTE

Because SIMD integer instruction sets do not support shift instructions for bytes, 2n—-1
and -2n are relevant only for packed words and packed doublewords.

5.6 BUILDING BLOCKS

This section describes instructions and algorithms which implement common code building blocks.

5.6.1 Absolute Difference of Unsigned Numbers

Example 5-18 computes the absolute difference of two unsigned numbers. It assumes an unsigned
packed-byte data type.

Here, we make use of the subtract instruction with unsigned saturation. This instruction receives
UNSIGNED operands and subtracts them with UNSIGNED saturation. This support exists only for packed
bytes and packed words, not for packed doublewords.

Example 5-18. Absolute Difference of Two Unsigned Numbers

; Input:

; MMO source operand

; MM1 source operand

; Output:

; MMO absolute difference of the unsigned operands

5-15

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Example 5-18. Absolute Difference of Two Unsigned Numbers (Contd.)

movg mm2, mmO ; make a copy of mmO
psubusbmmO, mm1 ; compute difference one way
psubusbmm1, mm2 ; compute difference the other way
por mmO, mm1 ; OR them together

This example will not work if the operands are signed. Note that PSADBW may also be used in some situ-
ations. See Section 5.6.9 for details.

5.6.2 Absolute Difference of Signed Numbers

Example 5-19 computes the absolute difference of two signed numbers using SSSE3 instruction PABSW.
This sequence is more efficient than using previous generation of SIMD instruction extensions.

Example 5-19. Absolute Difference of Signed Numbers

;Input:
XMMO signed source operand
XMM1 signed source operand

;Output:
XMM1absolute difference of the unsigned operands

psubw xmmO, xmm1 ; subtract words
pabsw xmm1, xmmO ; results in XMM1

5.6.3 Absolute Value

Example 5-20 show an MMX code sequence to compute | X
signed words to be the operands.

, where X is signed. This example assumes

With SSSES3, this sequence of three instructions can be replaced by the PABSW instruction. Additionally,
SSSE3 provides a 128-bit version using XMM registers and supports byte, word and doubleword granu-
larity.

Example 5-20. Computing Absolute Value

; Input:

; MMO signed source operand

; Output:

; MM1 ABS(MMO)

pxor mm1,mm1 ;setmm1 to all zeros

psubw mm1, mmO ; make each mm1 word contain the
; negative of each mmO word

pmaxswmm1, mmO ; mm1 will contain only the positive
; (larger) values - the absolute value

NOTE

The absolute value of the most negative number (that is, 8000H for 16-bit) cannot be
represented using positive numbers. This algorithm will return the original value for the
absolute value (8000H).

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

5.6.4 Pixel Format Conversion

SSSE3 provides the PSHUFB instruction to carry out byte manipulation within a 16-byte range. PSHUFB
can replace a set of up to 12 other instruction, including SHIFT, OR, AND and MOV.

Use PSHUFB if the alternative code uses 5 or more instructions. Example 5-21 shows the basic form of
conversion of color pixel formats.

Example 5-21. Basic C Implementation of RGBA to BGRA Conversion

Standard C Code:
struct RGBA{BYTE r,g,b.a};
struct BGRA{BYTE b,g,r,a;};

void BGRA_RGBA_Convert(BGRA *source, RGBA *dest, int num_pixels)

{

for(inti = 0; i < num_pixels; i++){
dest[i].r = source[i].r;
dest[i].g = source[i].g;
dest[i].b = sourcel[i].b;
dest[i].a = source[i].a;

Example 5-22 and Example 5-23 show SSE2 code and SSSE3 code for pixel format conversion. In the
SSSE3 example, PSHUFB replaces six SSE2 instructions.

Example 5-22. Color Pixel Format Conversion Using SSE2

; Optimized for SSE2

mov esi, src
mov edi, dest
mov ecx, iterations
movdga xmmO, ag_mask //{0,ff,0,ff,0,ff,0,f,0,ff,0,ff,0,ff,0,ff}
movdga xmmb5, rb_mask //{ff,0,ff,0,ff,0,f,0,ff,0,ff,0,ff,0,ff,0}
mov eax, remainder

convert16Pixs: // 16 pixels, 64 byte per iteration
movdga xmm1, [esi] // xmm1 = [r3g3b3a3,r2g2b2a2,r1g1b1a1,r0g0b0a0]
movdga xmmZ2, xmm 1
movdga xmm7, xmm1 //xmm?7 abgr
psrld xmm2, 16 //xmm2 00ab
pslld xmm1, 16 //xmm1 grO0

por xmm1,xmm2 //xmm1 grab
pand xmm7,xmmO //xmm7 a0g0
pand xmm1,xmm5 //xmm1 OrOb
por xmm1,xmm7 //xmm1 argb
movdgqa [edi], xmm1

5-17

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Example 5-22. Color Pixel Format Conversion Using SSE2 (Contd.)

//repeats for another 3*16 bytes

add esi, 64
add edi, 64
sub ecx, 1
jnz convert16Pixs

Example 5-23. Color Pixel Format Conversion Using SSSE3

; Optimized for SSSE3

mov esi, Src
mov edi, dest
mov ecx, iterations
movdga xmmoO, _shufb
// xmm0 =[15,12,13,14,11,8,9,10,7,4,5,6,3,0,1,2]
mov eax, remainder

convert16Pixs: // 16 pixels, 64 byte per iteration
movdqga xmm1, [esi]

/1 xmm1 = [r3g3b3a3,r2g2b2a2,r1g1b1a1,r0g0b0a0]
movdga xmmZ, [esi+16]
pshufb xmm1, xmmO

/I xmm1 = [b3g3r3a3,b2g2r2a2,b1g1r1a1,b0g0r0a0]
movdqa [edi], xmm1

//repeats for another 3*16 bytes

add esi, 64

add edi, 64

sub ecx, 1

inz convert16Pixs

5.6.5 Endian Conversion

The PSHUFB instruction can also be used to reverse byte ordering within a doubleword. It is more effi-
cient than traditional techniques, such as BSWAP.

Example 5-24 (a) shows the traditional technique using four BSWAP instructions to reverse the bytes
within a DWORD. Each BSWAP requires executing two micro-ops. In addition, the code requires 4 loads
and 4 stores for processing 4 DWORDs of data.

Example 5-24 (b) shows an SSSE3 implementation of endian conversion using PSHUFB. The reversing of
four DWORDSs requires one load, one store, and PSHUFB.

On Intel Core microarchitecture, reversing 4 DWORDs using PSHUFB can be approximately twice as fast
as using BSWAP.

5-18

Example 5-24. Big-Endian to Little-Endian Conversion

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

»(@) Using BSWAP
lea eax, src

lea ecx, dst

mov edx, elCount
start:

mov edi, [eax]

mov esi, [eax+4]

bswap edi

mov ebx, [eax+8]

bswap esi

mov ebp, [eax+12]
mov [ecx], edi

mov [ecx+4], esi
bswap ebx

mov [ecx+8], ebx
bswap ebp

mov [ecx+12], ebp

add eax, 16
add ecx, 16
sub edx, 4
jnz start

.+ (b) Using PSHUFB

__declspec(align(16)) BYTE bswapMASK[16] =
{3.21,0,76,54,11,1098, 15,14,13,12};

lea eax, src
lea ecx, dst
mov edx, elCount

movaps xmm7, bswapMASK

start:

movdga xmmO, [eax]

pshufb xmmO, xmm?7
movdga [ecx], xmmO

add eax, 16
add ecx, 16
sub edx, 4
jnz start

5.6.6 Clipping to an Arbitrary Range [High, Low]

This section explains how to clip a values to a range [HIGH, LOW]. Specifically, if the value is less than
LOW or greater than HIGH, then clip to LOW or HIGH, respectively. This technique uses the packed-add
and packed-subtract instructions with saturation (signed or unsigned), which means that this technique

can only be used on packed-byte and packed-word data types.

The examples in this section use the constants PACKED_MAX and PACKED_MIN and show operations on
word values. For simplicity, we use the following constants (corresponding constants are used in case the

operation is done on byte values):

PACKED_MAX equals OX7FFF7FFF7FFF7FFF
PACKED_MIN equals 0X8000800080008000
PACKED_LOW contains the value LOW in all four words of the packed-words data type
PACKED_HIGH contains the value HIGH in all four words of the packed-words data type

PACKED_USMAX all values equal 1

HIGH_US adds the HIGH value to all data elements (4 words) of PACKED_MIN
LOW_US adds the LOW value to all data elements (4 words) of PACKED_MIN

5.6.6.1 Highly Efficient Clipping

For clipping signed words to an arbitrary range, the PMAXSW and PMINSW instructions may be used. For
clipping unsigned bytes to an arbitrary range, the PMAXUB and PMINUB instructions may be used.

5-19

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Example 5-25 shows how to clip signed words to an arbitrary range; the code for clipping unsigned bytes
is similar.

Example 5-25. Clipping to a Signed Range of Words [High, Low]

; Input:

; MMO signed source operands

; Output:

; MMO signed words clipped to the signed
; range [high, low]

pminsw mmO, packed_high

pmaxswmmO, packed_low

With SSE4.1, Example 5-25 can be easily extended to clip signed bytes, unsigned words, signed and
unsigned dwords.

Example 5-26. Clipping to an Arbitrary Signed Range [High, Low]

; Input:

; MMO signed source operands

; Output:

; MM1 signed operands clipped to the unsigned
; range [high, low]

paddw mmO, packed_min ; add with no saturation

; 0x8000 to convert to unsigned
padduswmmoO, (packed_usmax - high_us)

; in effect this clips to high
psubuswmmoO, (packed_usmax - high_us + low_us)

; in effect this clips to low
paddw mmO, packed_low ; undo the previous two offsets

The code above converts values to unsigned numbers first and then clips them to an unsigned range. The
last instruction converts the data back to signed data and places the data within the signed range.

Conversion to unsigned data is required for correct results when (High - Low) < 0X8000. If (High - Low)
>= 0X8000, simplify the algorithm as in Example 5-27.

Example 5-27. Simplified Clipping to an Arbitrary Signed Range

; Input: MMO signed source operands
; Output: MM1 signed operands clipped to the unsigned
; range [high, low]
paddssw mmO, (packed_max - packed_high)
; in effect this clips to high
psubssw mmoO, (packed_usmax - packed_high + packed_low)
; clips to low
paddw mmO, low ; undo the previous two offsets

This algorithm saves a cycle when it is known that (High - Low) >= 0x8000. The three-instruction algo-
rithm does not work when (High - Low) < 0x8000 because Oxffff minus any number < 0x8000 wiill yield
a number greater in magnitude than 0x8000 (which is a negative number).

When the second instruction, psubssw MMO, (Oxffff - High + Low) in the three-step algorithm
(Example 5-27) is executed, a negative number is subtracted. The result of this subtraction causes the
values in MMO to be increased instead of decreased, as should be the case, and an incorrect answer is
generated.

5-20

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

5.6.6.2 Clipping to an Arbitrary Unsigned Range [High, Low]

Example 5-28 clips an unsigned value to the unsigned range [High, Low]. If the value is less than low or
greater than high, then clip to low or high, respectively. This technique uses the packed-add and packed-
subtract instructions with unsigned saturation, thus the technique can only be used on packed-bytes and
packed-words data types.

Figure 5-28 illustrates operation on word values.

Example 5-28. Clipping to an Arbitrary Unsigned Range [High, Low]

; Input:
; MMO unsigned source operands
; Output:
; MM1 unsigned operands clipped to the unsigned
; range [HIGH, LOW]
paddusw mmO, Oxffff - high

, in effect this clips to high
psubusw mmoO, (Oxffff - high + low)

; in effect this clips to low
paddw mmO, low

; undo the previous two offsets

5.6.7 Packed Max/Min of Byte, Word and Dword

The PMAXSW instruction returns the maximum between four signed words in either of two SIMD regis-
ters, or one SIMD register and a memory location.

The PMINSW instruction returns the minimum between the four signed words in either of two SIMD
registers, or one SIMD register and a memory location.

The PMAXUB instruction returns the maximum between the eight unsigned bytes in either of two SIMD
registers, or one SIMD register and a memory location.

The PMINUB instruction returns the minimum between the eight unsigned bytes in either of two SIMD
registers, or one SIMD register and a memory location.

SSE2 extended PMAXSW/PMAXUB/PMINSW/PMINUB to 128-bit operations. SSE4.1 adds 128-bit opera-
tions for signed bytes, unsigned word, signed and unsigned dword.

5.6.8 Packed Multiply Integers

The PMULHUW/PMULHW instruction multiplies the unsigned/signed words in the destination operand
with the unsigned/signed words in the source operand. The high-order 16 bits of the 32-bit intermediate
results are written to the destination operand. The PMULLW instruction multiplies the signed words in the
destination operand with the signed words in the source operand. The low-order 16 bits of the 32-bit
intermediate results are written to the destination operand.

SSE2 extended PMULHUW/PMULHW/PMULLW to 128-bit operations and adds PMULUDQ.

The PMULUDQ instruction performs an unsigned multiply on the lower pair of double-word operands
within 64-bit chunks from the two sources; the full 64-bit result from each multiplication is returned to
the destination register.

This instruction is added in both a 64-bit and 128-bit version; the latter performs 2 independent opera-
tions, on the low and high halves of a 128-bit register.

SSE4.1 adds 128-bit operations of PMULDQ and PMULLD. The PMULLD instruction multiplies the signed

dwords in the destination operand with the signed dwords in the source operand. The low-order 32 bits

of the 64-bit intermediate results are written to the destination operand. The PMULDQ instruction multi-
plies the two low-order, signed dwords in the destination operand with the two low-order, signed dwords
in the source operand and stores two 64-bit results in the destination operand.

5-21

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

5.6.9 Packed Sum of Absolute Differences

The PSADBW instruction computes the absolute value of the difference of unsigned bytes for either two
SIMD registers, or one SIMD register and a memory location. The differences of 8 pairs of unsigned bytes
are then summed to produce a word result in the lower 16-bit field, and the upper three words are set to
zero. With SSE2, PSADBW is extended to compute two word results.

The subtraction operation presented above is an absolute difference. That is, T = ABS(X-Y) . Byte values
are stored in temporary space, all values are summed together, and the result is written to the lower
word of the destination register.

Motion estimation involves searching reference frames for best matches. Sum absolute difference (SAD)
on two blocks of pixels is a common ingredient in video processing algorithms to locate matching blocks
of pixels. PSADBW can be used as building blocks for finding best matches by way of calculating SAD
results on 4x4, 8x4, 8x8 blocks of pixels.

5.6.10 MPSADBW and PHMINPOSUW

The MPSADBW instruction in SSE4.1 performs eight SAD operations. Each SAD operation produces a
word result from 4 pairs of unsigned bytes. With 8 SAD result in an XMM register, PHMINPOSUM can help
search for the best match between eight 4x4 pixel blocks.

For motion estimation algorithms, MPSADBW is likely to improve over PSADBW in several ways:

< Simplified data movement to construct packed data format for SAD computation on pixel blocks.
= Higher throughput in terms of SAD results per iteration (less iteration required per frame).

= MPSADBW results are amenable to efficient search using PHMINPOSUW.

Examples of MPSADBW vs. PSADBW for 4x4 and 8x8 block search can be found in the white paper listed
in the reference section of Chapter 1.

5.6.11 Packed Average (Byte/Word)

The PAVGB and PAVGW instructions add the unsigned data elements of the source operand to the
unsigned data elements of the destination register, along with a carry-in. The results of the addition are
then independently shifted to the right by one bit position. The high order bits of each element are filled
with the carry bits of the corresponding sum.

The destination operand is an SIMD register. The source operand can either be an SIMD register or a
memory operand.

The PAVGB instruction operates on packed unsigned bytes and the PAVGW instruction operates on
packed unsigned words.

5.6.12 Complex Multiply by a Constant

Complex multiplication is an operation which requires four multiplications and two additions. This is
exactly how the PMADDWD instruction operates. In order to use this instruction, you need to format the
data into multiple 16-bit values. The real and imaginary components should be 16-bits each. Consider
Example 5-29, which assumes that the 64-bit MMX registers are being used:

* Let the input data be DR and DI, where DR is real component of the data and DI is imaginary
component of the data.

= Format the constant complex coefficients in memory as four 16-bit values [CR -CI ClI CR]. Remember
to load the values into the MMX register using MOVQ.

e The real component of the complex product is PR = DR*CR - DI*CI and the imaginary component of
the complex product is PI = DR*CI + DI*CR.

5-22

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

= The output is a packed doubleword. If needed, a pack instruction can be used to convert the result to
16-bit (thereby matching the format of the input).

Example 5-29. Complex Multiply by a Constant

; Input:

; MMO complex value, Dr, Di

; MM1 constant complex coefficient in the form
; [Cr-CiCi Cr]

; Output:

; MMO two 32-bit dwords containing [Pr Pi]

punpckldg mmO, mmO ; makes [dr di dr di]
pmaddwd mmO, mm1 ;done, the result is
; [(Dr*Cr-Di*Ci)(Dr*Ci+Di*Cr)]

5.6.13 Packed 64-bit Add/Subtract

The PADDQ/PSUBQ instructions add/subtract quad-word operands within each 64-bit chunk from the two
sources; the 64-bit result from each computation is written to the destination register. Like the integer
ADD/SUB instruction, PADDQ/PSUBQ can operate on either unsigned or signed (two’s complement nota-
tion) integer operands.

When an individual result is too large to be represented in 64-bits, the lower 64-bits of the result are
written to the destination operand and therefore the result wraps around. These instructions are added
in both a 64-bit and 128-bit version; the latter performs 2 independent operations, on the low and high
halves of a 128-bit register.

5.6.14 128-bit Shifts

The PSLLDQ/PSRLDQ instructions shift the first operand to the left/right by the number of bytes specified
by the immediate operand. The empty low/high-order bytes are cleared (set to zero).

If the value specified by the immediate operand is greater than 15, then the destination is set to all zeros.

5.6.15 PTEST and Conditional Branch

SSE4.1 offers PTEST instruction that can be used in vectorizing loops with conditional branches. PTEST is
an 128-bit version of the general-purpose instruction TEST. The ZF or CF field of the EFLAGS register are
modified as a result of PTEST.

Example 5-30(a) depicts a loop that requires a conditional branch to handle the special case of divide-by-
zero. In order to vectorize such loop, any iteration that may encounter divide-by-zero must be treated
outside the vectorizable iterations.

5-23

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Example 5-30. Using PTEST to Separate Vectorizable and non-Vectorizable Loop Iterations

(@) /* Loops requiring infrequent exception | (b) /* PTEST enables early out to handle infrequent, non-vectorizable
handling*/ portion*/

float a[CNT]; Xor eax,eax
unsigned int i; movaps xmm7, [all_ones]
Xorps xmm6, xmm6
for (i=0;i<CNT;i++) Ip:
{ movaps xmmo, a[eax]
if (a[i] = 0.0) cmpegps xmm6, xmmO ; convert each non-zero to ones
{ a[i]=1.0f/3[i]; ptest xmm6, xmm7
} jnc zero_present; carry will be set if all 4 were non-zero
else movaps xmm1,[_1_0f_]
{ call DivException(); divps xmm1, xmmO
} movaps a[eax], xmm1
} add eax, 16
cmp eax, CNT
jnz Ip
jmp end

zero_present:
// execute one by one, call
/1 exception when value is zero

Example 5-30(b) shows an assembly sequence that uses PTEST to cause an early-out branch whenever
any one of the four floating-point values in xmmO is zero. The fall-through path enables the rest of the
floating-point calculations to be vectorized because none of the four values are zero.

5.6.16 Vectorization of Heterogeneous Computations across Loop Iterations

Vectorization techniques on unrolled loops generally rely on repetitive, homogeneous operations
between each loop iteration. Using variable blend instructions, vectorization of heterogeneous operations
across loop iterations may be possible.

Example 5-31(a) depicts a simple heterogeneous loop. The heterogeneous operation and conditional
branch makes simple loop-unrolling techniques infeasible for vectorization.

Example 5-31. Using Variable BLEND to Vectorize Heterogeneous Loops

(@) /* Loops with heterogeneous operation | (b) /* Vectorize Condition Flow with BLENDVPS*/

across iterations*/ xor eax,eax
float a[CNTY; Ip:
unsigned int i; movaps xmmO, a[eax]

movaps xmm/1, b[eax]
movaps xmmz2, xmmO

for (i=0;i<CNT;i++) // compare a and b values

{ cmpgtps xmmO, xmm|1
if (a[i] > bi]) /1 xmm3 - will hold -b
{ a[i] +=b[i]; } movaps xmm3, [SIGN_BIT_MASK]
else xorps xmm3, xmm1
{afil-=bli]; }

}

5-24

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Example 5-31. Using Variable BLEND to Vectorize Heterogeneous Loops (Contd.)

// select values for the add operation,
/I true condition produce a+b, false will become a+(-b)
// blend mask is xmmO
blendvps xmm1,xmm3, xmmO
addps xmm2, xmm1
movaps a[eax], xmm2

add eax, 16
cmp eax, CNT
jnz Ip

Example 5-31(b) depicts an assembly sequence that uses BLENDVPS to vectorize the handling of hetero-
geneous computations occurring across four consecutive loop iterations.

5.6.17 Vectorization of Control Flows in Nested Loops

The PTEST and BLENDVPx instructions can be used as building blocks to vectorize more complex control-
flow statements, where each control flow statement is creating a “working” mask used as a predicate of
which the conditional code under the mask will operate.

The Mandelbrot-set map evaluation is useful to illustrate a situation with more complex control flows in
nested loops. The Mandelbrot-set is a set of height values mapped to a 2-D grid. The height value is the
number of Mandelbrot iterations (defined over the complex number space as I, = I,.;> + lg) needed to
get |1,] = 2. It is common to limit the map generation by setting some maximum threshold value of the
height, all other points are assigned with a height equal to the threshold. Example 5-32 shows an
example of Mandelbrot map evaluation implemented in C.

Example 5-32. Baseline C Code for Mandelbrot Set Map Evaluation

#define DIMX (64)

#define DIMY (64)

#define X_STEP (0.5f/DIMX)
#define Y_STEP (0.4f/(DIMY/2))
int map[DIMX][DIMY];

void mandelbrot_C()
{ intij;
float x,y;
for (i=0,x=-1.8f;i<DIMX;i++,x+=X_STEP)
{
for (j=0,y=-0.2f;j<DIMY/2;j++,y+=Y_STEP)
{float sx,sy;
intiter =0;
SX = X;
sy=vy;

5-25

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Example 5-32. Baseline C Code for Mandelbrot Set Map Evaluation (Contd.)

while (iter < 256)
{ if(sx*sx +sy*sy >=4,0f) break;
float old_sx = sx;
SX = X * sX*sx - sy*sy;
sy =y + 2*old_sx*sy;
iter++;
}
maplil[i] = iter;

}

Example 5-33 shows a vectorized implementation of Mandelbrot map evaluation. Vectorization is not
done on the inner most loop, because the presence of the break statement implies the iteration count will
vary from one pixel to the next. The vectorized version take into account the parallel nature of 2-D,
vectorize over four iterations of Y values of 4 consecutive pixels, and conditionally handles three
scenarios:

« In the inner most iteration, when all 4 pixels do not reach break condition, vectorize 4 pixels.

< When one or more pixels reached break condition, use blend intrinsics to accumulate the complex
height vector for the remaining pixels not reaching the break condition and continue the inner
iteration of the complex height vector.

< When all four pixels reached break condition, exit the inner loop.

Example 5-33. Vectorized Mandelbrot Set Map Evaluation Using SSE4.1 Intrinsics

__declspec(align(16)) float _INIT_Y_4[4] = {O,Y_STEP,2*Y_STEP,3*Y_STEP};
F32vec4 _F_STEP_Y(4*Y_STEP);

I32vec4 _I_ONE_=_mm_set1_epi32(1);

F32vec4 _F_FOUR_(4.0f);

F32vec4 _F_TWO_(2.01);

void mandelbrot_C()
{ intij;
F32vec4 x.y;

for (i = 0, x = F32vec4(-1.8f); i < DIMX; i ++, x += F32vec4(X_STEP))
{
for (j = DIMY/2, y = F32vec4(-0.2f) +
(F32vecd)_INIT_Y_4;j < DIMY; j+= 4,y += _F_STEP_Y)
{ F32vecd sxsy;
I32vec4 iter = _mm_setzero_si128();
int scalar_iter = 0;
SX =X;
SV=V,

5-26

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Example 5-33. Vectorized Mandelbrot Set Map Evaluation Using SSE4.1 Intrinsics (Contd.)

while (scalar_iter < 256)
{ intmask=0;
F32vec4 old_sx = sx;
__m128 vmask = _mm_cmpnlt_ps(sx*sx + sy*sy,_F_FOUR_);
/1 if all data points in our vector are hitting the “exit” condition,
// the vectorized loop can exit
if (_mm_test_all_ones(_mm_castps_si128(vmask)))
break;

(continue)

// if non of the data points are out, we don’t need the extra code which blends the results
if (_mm_test_all_zeros(_mm_castps_si128(vmask),
_mm_castps_si128(vmask)))
{ sx=X+sx*sx-sy*sy;
sy =y +_F_TWO_*old_sx*sy;
iter += _|_ONE_;
}
else
{
// Blended flavour of the code, this code blends values from previous iteration with the values
// from current iteration. Only values which did not hit the “exit” condition are being stored;
// values which are already “out” are maintaining their value
sx = _mm_blendv_ps(x + sX*sx - sy*sy,sx,vmask);
sy = _mm_blendv_ps(y + _F_TWO_*old_sx*sy,sy,vmask);
iter = 132vec4(_mm_blendv_epi8(iter + _I_ONE_,
iter,_mm_castps_si128(vmask)));
}

scalar_iter++;

}
_mm_storeu_si128((_m128i*)&mapli][jl.iter);

5.7 MEMORY OPTIMIZATIONS

You can improve memory access using the following techniques:

= Avoiding partial memory accesses.

= Increasing the bandwidth of memory fills and video fills.

= Prefetching data with Streaming SIMD Extensions. See Chapter 7, “Optimizing Cache Usage.”

MMX registers and XMM registers allow you to move large quantities of data without stalling the
processor. Instead of loading single array values that are 8, 16, or 32 bits long, consider loading the
values in a single quadword or double quadword and then incrementing the structure or array pointer
accordingly.

Any data that will be manipulated by SIMD integer instructions should be loaded using either:
= An SIMD integer instruction that loads a 64-bit or 128-bit operand (for example: MOVQ MMO, M64).

= The register-memory form of any SIMD integer instruction that operates on a quadword or double
quadword memory operand (for example, PMADDW MMO, M64).

All SIMD data should be stored using an SIMD integer instruction that stores a 64-bit or 128-bit operand
(for example: MOVQ M64, MMO).

5-27

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

The goal of the above recommendations is twofold. First, the loading and storing of SIMD data is more
efficient using the larger block sizes. Second, following the above recommendations helps to avoid
mixing of 8-, 16-, or 32-bit load and store operations with SIMD integer technology load and store oper-
ations to the same SIMD data.

This prevents situations in which small loads follow large stores to the same area of memory, or large
loads follow small stores to the same area of memory. The Pentium 11, Pentium lll, and Pentium 4 proces-
sors may stall in such situations. See Chapter 3 for details.

5.7.1 Partial Memory Accesses

Consider a case with a large load after a series of small stores to the same area of memory (beginning at
memory address MEM). The large load stalls in the case shown in Example 5-34.

Example 5-34. A Large Load after a Series of Small Stores (Penalty)

mov mem, eax ; store dword to address “mem”
mov mem + 4, ebx ; store dword to address “mem + 4"
movg mmO, mem ; load qword at address “mem”, stalls

MOVQ must wait for the stores to write memory before it can access all data it requires. This stall can also
occur with other data types (for example, when bytes or words are stored and then words or double-
words are read from the same area of memory). When you change the code sequence as shown in
Example 5-35, the processor can access the data without delay.

Example 5-35. Accessing Data Without Delay

movd mm1, ebx ; build data into a qword first
; before storing it to memory
movd mmZ2, eax

psllg mmi1, 32

por mm1, mm2

movg mem, mm1 ; store SIMD variable to “mem"” as
;aqword

movg mmO, mem ; load qword SIMD “mem”, no stall

Consider a case with a series of small loads after a large store to the same area of memory (beginning at
memory address MEM), as shown in Example 5-36. Most of the small loads stall because they are not
aligned with the store. See Section 3.6.5, “Store Forwarding,” for details.

Example 5-36. A Series of Small Loads After a Large Store

movg mem, mmO ; store qword to address “mem”
mov bx, mem + 2 ; load word at “mem + 2" stalls
mov cx, mem + 4 ; load word at “mem + 4" stalls

The word loads must wait for the quadword store to write to memory before they can access the data
they require. This stall can also occur with other data types (for example: when doublewords or words
are stored and then words or bytes are read from the same area of memory).

5-28

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

When you change the code sequence as shown in Example 5-37, the processor can access the data
without delay.

Example 5-37. Eliminating Delay for a Series of Small Loads after a Large Store

movqg mem, mmO ;store qword to address “mem”

movqg mm1, mem ;load qword at address “mem”
movd eax, mm1 ; transfer “mem + 2" to eax from
; MMX register, not memory

psrlg mm1, 32
shr eax, 16
movd ebx, mm1 ; transfer “mem + 4" to bx from

; MMX register, not memory
and ebx, Offffh

These transformations, in general, increase the number of instructions required to perform the desired
operation. For Pentium 11, Pentium lll, and Pentium 4 processors, the benefit of avoiding forwarding prob-
lems outweighs the performance penalty due to the increased number of instructions.

5.7.1.1 Supplemental Techniques for Avoiding Cache Line Splits

Video processing applications sometimes cannot avoid loading data from memory addresses that are not
aligned to 16-byte boundaries. An example of this situation is when each line in a video frame is aver-
aged by shifting horizontally half a pixel.

Example shows a common operation in video processing that loads data fromm memory address not
aligned to a 16-byte boundary. As video processing traverses each line in the video frame, it experiences
a cache line split for each 64 byte chunk loaded from memory.

Example 5-38. An Example of Video Processing with Cache Line Splits

// Average half-pels horizontally (on // the “x" axis),
// from one reference frame only.

nextLinesLoop:

movdqu xmmO, XMMWORD PTR [edx] // may not be 16B aligned
movdqu xmmO, XMMWORD PTR [edx+1]

movdqu xmm1, XMMWORD PTR [edx+eax]

movdqu xmm1, XMMWORD PTR [edx+eax+1]

pavgbxmmO, xmm1

pavgbxmmZ, xmm3

movdqaXMMWORD PTR [ecx], xmmO
movdgaXMMWORD PTR [ecx+eax], xmm2
// (repeat ..)

SSE3 provides an instruction LDDQU for loading from memory address that are not 16-byte aligned.
LDDQU is a special 128-bit unaligned load designed to avoid cache line splits. If the address of the load
is aligned on a 16-byte boundary, LDQQU loads the 16 bytes requested. If the address of the load is not
aligned on a 16-byte boundary, LDDQU loads a 32-byte block starting at the 16-byte aligned address
immediately below the address of the load request. It then provides the requested 16 bytes. If the

5-29

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

address is aligned on a 16-byte boundary, the effective number of memory requests is implementation
dependent (one, or more).

LDDQU is designed for programming usage of loading data from memory without storing modified data
back to the same address. Thus, the usage of LDDQU should be restricted to situations where no store-
to-load forwarding is expected. For situations where store-to-load forwarding is expected, use regular
store/load pairs (either aligned or unaligned based on the alignment of the data accessed).

Example 5-39. Video Processing Using LDDQU to Avoid Cache Line Splits

/1 Average half-pels horizontally (on // the “X" axis),

// from one reference frame only.

nextLinesLoop:

Iddqu xmmO, XMMWORD PTR [edx] // may not be 16B aligned
Iddqu xmmO, XMMWORD PTR [edx+1]

Iddqu xmm1, XMMWORD PTR [edx+eaX]

Iddqu xmm1, XMMWORD PTR [edx+eax+1]

pavgbxmmQO, xmm1

pavgbxmmZ2, xmm3

movdqaXMMWORD PTR [ecx], xmmO //results stored elsewhere
movdqaXMMWORD PTR [ecx+eax], xmm2

/ (repeat ..

5.7.2 Increasing Bandwidth of Memory Fills and Video Fills

It is beneficial to understand how memory is accessed and filled. A memory-to-memory fill (for example
a memory-to-video fill) is defined as a 64-byte (cache line) load from memory which is immediately
stored back to memory (such as a video frame buffer).

The following are guidelines for obtaining higher bandwidth and shorter latencies for sequential memory
fills (video fills). These recommendations are relevant for all Intel architecture processors with MMX
technology and refer to cases in which the loads and stores do not hit in the first- or second-level cache.

5.7.2.1 Increasing Memory Bandwidth Using the MOVDQ Instruction

Loading any size data operand will cause an entire cache line to be loaded into the cache hierarchy. Thus,
any size load looks more or less the same from a memory bandwidth perspective. However, using many
smaller loads consumes more microarchitectural resources than fewer larger stores. Consuming too
many resources can cause the processor to stall and reduce the bandwidth that the processor can
request of the memory subsystem.

Using MOVDQ to store the data back to UC memory (or WC memory in some cases) instead of using 32-
bit stores (for example, MOVD) will reduce by three-quarters the number of stores per memory fill cycle.
As a result, using the MOVDQ in memory fill cycles can achieve significantly higher effective bandwidth
than using MOVD.

5.7.2.2 Increasing Memory Bandwidth by Loading and Storing to and from the Same DRAM
Page

DRAM is divided into pages, which are not the same as operating system (OS) pages. The size of a DRAM
page is a function of the total size of the DRAM and the organization of the DRAM. Page sizes of several
Kilobytes are common. Like OS pages, DRAM pages are constructed of sequential addresses. Sequential
memory accesses to the same DRAM page have shorter latencies than sequential accesses to different

DRAM pages.

In many systems the latency for a page miss (that is, an access to a different page instead of the page
previously accessed) can be twice as large as the latency of a memory page hit (access to the same page

5-30

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

as the previous access). Therefore, if the loads and stores of the memory fill cycle are to the same DRAM
page, a significant increase in the bandwidth of the memory fill cycles can be achieved.

5.7.23 Increasing UC and WC Store Bandwidth by Using Aligned Stores

Using aligned stores to fill UC or WC memory will yield higher bandwidth than using unaligned stores. If
a UC store or some WC stores cross a cache line boundary, a single store will result in two transaction on
the bus, reducing the efficiency of the bus transactions. By aligning the stores to the size of the stores,
you eliminate the possibility of crossing a cache line boundary, and the stores will not be split into sepa-
rate transactions.

5.73 Reverse Memory Copy

Copying blocks of memory from a source location to a destination location in reverse order presents a
challenge for software to make the most out of the machines capabilities while avoiding microarchitec-
tural hazards. The basic, un-optimized C code is shown in Example 5-40.

The simple C code in Example 5-40 is sub-optimal, because it loads and stores one byte at a time (even
in situations that hardware prefetcher might have brought data in from system memory to cache).

Example 5-40. Un-optimized Reverse Memory Copy in C

unsigned char* src;
unsigned char* dst;
while (len > Q)

{
*dst-- = *src++;
--len;

}

5-31

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Using MOVDQA or MOVDQU, software can load and store up to 16 bytes at a time but must either ensure
16 byte alignment requirement (if using MOVDQA) or minimize the delays MOVDQU may encounter if
data span across cache line boundary.

(@)
0123456... N

Source Bytes

i

paubily e1id 91

Destination Bytes I

I I
0123456... N

Aiepunog aur ayoed

w
o
c
5
(o]
[¢]
—

vy

Destination

Figure 5-8. Data Alignment of Loads and Stores in Reverse Memory Copy

Given the general problem of arbitrary byte count to copy, arbitrary offsets of leading source byte and
destination bytes, address alignment relative to 16 byte and cache line boundaries, these alignment situ-
ations can be a bit complicated. Figure 5-8 (a) and (b) depict the alignment situations of reverse memory
copy of N bytes.

The general guidelines for dealing with unaligned loads and stores are (in order of importance):

« Avoid stores that span cache line boundaries.

= Minimize the number of loads that span cacheline boundaries.

< Favor 16-byte aligned loads and stores over unaligned versions.

In Figure 5-8 (a), the guidelines above can be applied to the reverse memory copy problem as follows:

1. Peel off several leading destination bytes until it aligns on 16 Byte boundary, then the ensuing
destination bytes can be written to using MOVAPS until the remaining byte count falls below 16 bytes.

2. After the leading source bytes have been peeled (corresponding to step 1 above), the source
alignment in Figure 5-8 (a) allows loading 16 bytes at a time using MOVAPS until the remaining byte
count falls below 16 bytes.

Switching the byte ordering of each 16 bytes of data can be accomplished by a 16-byte mask with
PSHUFB. The pertinent code sequence is shown in Example 5-41.

5-32

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Example 5-41. Using PSHUFB to Reverse Byte Ordering 16 Bytes at a Time

__declspec(align(16)) static const unsigned char BswapMask[16] = {15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0};

mov esi, src

mov edi, dst

mov ecx, len

movaps xmm?7, BswapMask
start:

movdga xmmO, [esi]

pshufb xmmO, xmm?7

movdqa [edi-16], xmmO
subedi, 16

add esi, 16

sub ecx, 16

cmp ecx, 32

jae start

//handle left-overs

In Figure 5-8 (b), we also start with peeling the destination bytes:

1. Peel off several leading destination bytes until it aligns on 16 Byte boundary, then the ensuing

destination bytes can be written to using MOVAPS until the remaining byte count falls below 16 bytes.
However, the remaining source bytes are not aligned on 16 byte boundaries, replacing MOVDQA with

MOVDQU for loads will inevitably run into cache line splits.

2. To achieve higher data throughput than loading unaligned bytes with MOVDQU, the 16 bytes of data
targeted to each of 16 bytes of aligned destination addresses can be assembled using two aligned

loads. This technique is illustrated in Figure 5-9.

O 1 23456 Step 1:Pell off

leading bytes
Step1: Pell off o |
leading bytes { T s e A

} Source Bytes

\'QO,Q oé/
Step2 : Load 2 i - Reverse byte order iy register, St
Pz aligned 16 bytes) Store

aligned 16-Byte
Blocks

I Destination Bytes |

Atepunoq aur ayoe)

peublly e14g 91

Figure 5-9. A Technique to Avoid Cacheline Split Loads in Reverse Memory Copy Using Two Aligned

Loads

5-33

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

5.8 CONVERTING FROM 64-BIT TO 128-BIT SIMD INTEGERS

SSE2 defines a superset of 128-bit integer instructions currently available in MMX technology; the oper-
ation of the extended instructions remains. The superset simply operates on data that is twice as wide.
This simplifies porting of 64-bit integer applications. However, there are few considerations:

= Computation instructions which use a memory operand that may not be aligned to a 16-byte
boundary must be replaced with an unaligned 128-bit load (MOVDQU) followed by the same
computation operation that uses instead register operands.

Use of 128-bit integer computation instructions with memory operands that are not 16-byte aligned
will result in a #GP. Unaligned 128-bit loads and stores are not as efficient as corresponding aligned
versions; this fact can reduce the performance gains when using the 128-bit SIMD integer
extensions.

= General guidelines on the alignment of memory operands are:
— The greatest performance gains can be achieved when all memory streams are 16-byte aligned.

— Reasonable performance gains are possible if roughly half of all memory streams are 16-byte
aligned and the other half are not.

— Little or no performance gain may result if all memory streams are not aligned to 16-bytes. In
this case, use of the 64-bit SIMD integer instructions may be preferable.

 Loop counters need to be updated because each 128-bit integer instruction operates on twice the
amount of data as its 64-bit integer counterpart.

= Extension of the PSHUFW instruction (shuffle word across 64-bit integer operand) across a full 128-
bit operand is emulated by a combination of the following instructions: PSHUFHW, PSHUFLW, and
PSHUFD.

= Use of the 64-bit shift by bit instructions (PSRLQ, PSLLQ) are extended to 128 bits by:
— Use of PSRLQ and PSLLQ, along with masking logic operations.

— A Code sequence rewritten to use the PSRLDQ and PSLLDQ instructions (shift double quad-word
operand by bytes).

5.8.1 SIMD Optimizations and Microarchitectures

Pentium M, Intel Core Solo and Intel Core Duo processors have a different microarchitecture than Intel
NetBurst microarchitecture. The following sections discuss optimizing SIMD code that targets Intel Core
Solo and Intel Core Duo processors.

On Intel Core Solo and Intel Core Duo processors, LDDQU behaves identically to movdqu by loading 16
bytes of data irrespective of address alignment.

5.8.1.1 Packed SSEZ2 Integer versus MMX Instructions

In general, 128-bit SIMD integer instructions should be favored over 64-bit MMX instructions on Intel
Core Solo and Intel Core Duo processors. This is because:

< Improved decoder bandwidth and more efficient micro-op flows relative to the Pentium M processor.

= Wider width of the XMM registers can benefit code that is limited by either decoder bandwidth or
execution latency. XMM registers can provide twice the space to store data for in-flight execution.
Wider XMM registers can facilitate loop-unrolling or in reducing loop overhead by halving the number
of loop iterations.

In microarchitectures prior to Intel Core microarchitecture, execution throughput of 128-bit SIMD inte-
gration operations is basically the same as 64-bit MMX operations. Some shuffle/unpack/shift operations
do not benefit from the front end improvements. The net impact of using 128-bit SIMD integer instruc-
tion on Intel Core Solo and Intel Core Duo processors is likely to be slightly positive overall, but there
may be a few situations where their use will generate an unfavorable performance impact.

5-34

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Intel Core microarchitecture generally executes 128-bit SIMD instructions more efficiently than previous
microarchitectures in terms of latency and throughput, many of the limitations specific to Intel Core Duo,
Intel Core Solo processors do not apply. The same is true of Intel Core microarchitecture relative to Intel
NetBurst microarchitectures.

Enhanced Intel Core microarchitecture provides even more powerful 128-bit SIMD execution capabilities
and more comprehensive sets of SIMD instruction extensions than Intel Core microarchitecture. The
integer SIMD instructions offered by SSE4.1 operates on 128-bit XMM register only. All of these highly
encourages software to favor 128-bit vectorizable code to take advantage of processors based on
Enhanced Intel Core microarchitecture and Intel Core microarchitecture.

5.8.1.2 Work-around for False Dependency Issue

In processor based on Intel microarchitecture code name Nehalem, using PMOVSX and PMOVZX instruc-
tions to combine data type conversion and data movement in the same instruction will create a false-
dependency due to hardware causes. A simple work-around to avoid the false dependency issue is to use
PMOVSX, PMOVZX instruction solely for data type conversion and issue separate instruction to move data
to destination or from origin.

Example 5-42. PMOVSX/PMOVZX Work-around to Avoid False Dependency

#issuing the instruction below will create a false dependency on xmmO
pmovzxbd xmmO, dword ptr [eax]
/ the above instruction may be blocked if xmmO are updated by other instructions in flight

#Alternate solution to avoid false dependency
movd xmmO, dword ptr [eax] ; 000 hardware can hoist loads to hide latency
pmovsxbd xmmO0, xmmO

5.9 TUNING PARTIALLY VECTORIZABLE CODE

Some loop structured code are more difficult to vectorize than others. Example 5-43 depicts a loop
carrying out table look-up operation and some arithmetic computation.

Example 5-43. Table Look-up Operations in C Code

// pIn1 integer input arrays.

// pOut integer output array.

// count size of array.

// LookUpTable integer values.
TABLE_SIZE size of the look-up table.
for (unsigned i=0; i < count; i++)

{ pOutfi]=
((LookUpTable[pIn1[i] % TABLE_SIZE] + pln1[i] + 17)| 17
) % 256;

}

Although some of the arithmetic computations and input/output to data array in each iteration can be
easily vectorizable, but the table look-up via an index array is not. This creates different approaches to

5-35

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

tuning. A compiler can take a scalar approach to execute each iteration sequentially. Hand-tuning of such
loops may use a couple of different techniques to handle the non-vectorizable table look-up operation.
One vectorization technique is to load the input data for four iteration at once, then use SSE2 instruction
to shift out individual index out of an XMM register to carry out table look-up sequentially. The shift tech-
nique is depicted by Example 5-44. Another technique is to use PEXTRD in SSE4.1 to extract the index
from an XMM directly and then carry out table look-up sequentially. The PEXTRD technique is depicted by
Example 5-45.

Example 5-44. Shift Techniques on Non-Vectorizable Table Look-up

int modulo[4] = {256-1, 256-1, 256-1, 256-1};
intc[41={17,17,17,17}

mov esi, pin1

mov ebx, pOut

mov ecx, count

mov edx, pLookUpTablePTR

movaps Xxmm6, modulo

movaps Xmmb, C

lloop:

// vectorizable multiple consecutive data accesses
movaps xmm4, [esi] // read 4 indices from pin1
movaps Xmm7, xmmé4
pand xmm?7, tableSize

//Table look-up is not vectorizable, shift out one data element to look up table one by one
movd eax, xmm7 // get first index
movd xmmO, word ptr[edx + eax*4]
psridq xmm7, 4
movd eax, xmm7 // get 2nd index
movd xmm1, word ptr[edx + eax*4]
psridq xmm7, 4
movd eax, xmm7 // get 3rdindex
movd xmmZ2, word ptr[edx + eax*4]
psridq xmm7, 4
movd eax, xmm?7 // get fourth index
movd xmm3, word ptr[edx + eax*4]

//end of scalar part

//packing
movlhps xmm71,xmm3
psllq xmm1,32
movlhps xmmO,xmm2
orps xmmO,xmm1

//end of packing

(continue)

//Vectorizable computation operations

paddd xmmO, xmm4 //+pin1
paddd xmmO, xmm5 // +17
por xmmO, xmm5

andps xmmO, xmm6 //mod

movaps [ebx], xmmO

//end of vectorizable operation

5-36

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Example 5-44. Shift Techniques on Non-Vectorizable Table Look-up (Contd.)

add ebx, 16
add esi, 16
add edi, 16
sub ecx, 1
test ecx, ecx
jne lloop

Example 5-45. PEXTRD Techniques on Non-Vectorizable Table Look-up

int modulo[4] = {256-1, 256-1, 256-1, 256-1};
intc41={17,17,17,17%

mov esi, pin1

mov ebx, pOut

mov ecx, count

mov edx, pLookUpTablePTR

movaps xmm6, modulo

movaps Xxmmb, ¢

lloop:
// vectorizable multiple consecutive data accesses
movaps xmm4, [esi] // read 4 indices from pin1
movaps Xmm7, xmmé4
pand xmm7, tableSize
//Table look-up is not vectorizable, extract one data element to look up table one by one
movd eax, xmm?7 // get first index
mov eax, [edx + eax*4]
movd xmmoO, eax
(continue)
pextrd eax, xmm7, 1 // extract 2nd index
mov eax, [edx + eax*4]
pinsrd xmmo, eax, 1
pextrd eax, xmm7, 2 // extract 2nd index
mov eax, [edx + eax*4]
pinsrd xmmo, eax, 2
pextrd eax, xmm7, 3 // extract 2nd index
mov eax, [edx + eax*4]
pinsrd xmmo, eax, 2

//end of scalar part
//packing not needed
//\Vectorizable operations

paddd xmmO, xmm4 //+pin1
paddd xmmO, xmm5 // +17
por xmmO, xmm5

andps xmmO, xmm6 //mod

movaps [ebx], xmmO

5-37

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Example 5-45. PEXTRD Techniques on Non-Vectorizable Table Look-up (Contd.)

add ebx, 16
add esi, 16
add edi, 16
sub ecx, 1
test ecx, ecx
jne lloop

The effectiveness of these two hand-tuning techniques on partially vectorizable code depends on the
relative cost of transforming data layout format using various forms of pack and unpack instructions.

The shift technique requires additional instructions to pack scalar table values into an XMM to transition
into vectorized arithmetic computations. The net performance gain or loss of this technique will vary with
the characteristics of different microarchitectures. The alternate PEXTRD technique uses less instruction
to extract each index, does not require extraneous packing of scalar data into packed SIMD data format
to begin vectorized arithmetic computation.

5.10 PARALLEL MODE AES ENCRYPTION AND DECRYPTION

To deliver optimal encryption and decryption throughput using AESNI, software can optimize by re-
ordering the computations and working on multiple blocks in parallel. This can speed up encryption (and
decryption) in parallel modes of operation such as ECB, CTR, and CBC-Decrypt (comparing to CBC-
Encrypt which is serial mode of operation). See details in Recommendation for Block Cipher Modes of
Operation?. The Related Documentation section provides a pointer to this document.

In Intel microarchitecture code name Sandy Bridge, the AES round instructions (AESENC / AESECNLAST
/ AESDEC / AESDECLAST) have a throughput of one cycle and latency of eight cycles. This allows inde-
pendent AES instructions for multiple blocks to be dispatched every cycle, if data can be provided suffi-
ciently fast. Compared to the prior Intel microarchitecture code name Westmere, where these
instructions have throughput of two cycles and a latency of six cycles, the AES encryption/decryption
throughput can be significantly increased, for parallel modes of operation.

To achieve optimal parallel operation with multiple blocks, write the AES software sequences in a way
that it computes one AES round on multiple blocks, using one Round Key, and then it continues to
compute the subsequent round for multiple blocks, using another Round Key.

For such software optimization, you need to define the number of blocks that are processed in parallel.
In Intel microarchitecture code name Sandy Bridge, the optimal parallelization parameter is eight blocks,
compared to four blocks on prior microarchitecture.

5.10.1 AES Counter Mode of Operation

Example 5-46 is an example of a function that implements the Counter Mode (CTR mode) of operations
while operating on eight blocks in parallel. The following pseudo-code encrypts n data blocks of 16 byte
each (PT[iD:

5-38

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Example 5-46. Pseudo-Code Flow of AES Counter Mode Operation

CTRBLK := NONCE || IV || ONE
FORi:=1ton-1D0
CT[i] := PT[i] XOR AES(CTRBLK)
CTRBLK := CTRBLK + 1) % 256;
END
CT[n] := PT[n] XOR TRUNC(AES(CTRBLK)) CTRBLK := NONCE || IV || ONE
FORi:=1ton-1DO0O
CTI[i] := PTI[i] XOR AES(CTRBLK)// CT [i] is the i-th ciphetext block
CTRBLK := CTRBLK + 1
END
CT[n]:= PT[n] XOR TRUNC(AES(CTRBLK))

Example 5-47 in the following pages show the assembly implementation of the above code, optimized for
Intel microarchitecture code name Sandy Bridge.

Example 5-47. AES128-CTR Implementation with Eight Block in Parallel

/***/

/* This function encrypts an input buffer using AES in CTR mode */

/* The parameters: */

/* const unsigned char *in - pointer to the palintext for encryption or */

/* ciphertextfor decryption */

/* unsigned char *out - pointer to the buffer where the encrypted/decrypted*/
/* data will be stored */

/* const unsigned char ivec[8] - 8 bytes of the initialization vector */

/* const unsigned char nonce[4] - 4 bytes of the nonce */

/* const unsigned long length - the length of the input in bytes */

/* int number_of_rounds - number of AES round. 10 = AES128, 12 = AES192, 14 = AES256 */
/* unsigned char *key_schedule - pointer to the AES key schedule */

/***/

//void AES_128_CTR_encrypt_parallelize_8_blocks_unrolled (

1/ const unsigned char *in,

1/ unsigned char *out,

// const unsigned char ivec[8],
1/ const unsigned char nonce[4],
1/ const unsigned long length,

1/ unsigned char *key_schedule)
align 16,0x90

align 16

ONE: .quad 0x00000000,0x00000001
align 16

FOUR: .quad 0x00000004,0x00000004
align 16

EIGHT: .quad 0x00000008,0x00000008

(continue)

5-39

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Example 5-47. AES128-CTR Implementation with Eight Block in Parallel (Contd.)

align 16
TWO_N_ONE: .quad 0x00000002,0x00000001
align 16
TWO_N_TWO: .quad 0x00000002,0x00000002
align 16

LOAD_HIGH_BROADCAST_AND_BSWAP: byte 15,14,13,12,11,10,9,8
byte 15,14,13,12,11,10,9,8
align 16
BSWAP_EPI_64: byte 7,6,54,3,2,1,0
byte 15,14,13,12,11,10,9,8

.globl AES_CTR_encrypt

AES_CTR_encrypt:

parameter 1: %rdi # parameter 2: %rsi
parameter 3: %rdx # parameter 4: %rcx
parameter 5: %r8 # parameter 6: %r9

parameter 7: 8 + %rsp

movq %r8, %r10
movl 8(%rsp), %r12d
shrq $4, %r8
shlg $60, %r10
je NO_PARTS
addg $1,%r8

NO_PARTS:
movq %r8, %r10
shilg $61,%r10
shrg $61,%r10

pinsrq $1, (%rdx), %xmmO

pinsrd $1, (%rcx), %xmmQ

psridg $4, %xmmO

movdga %xmm0, %xmm4

pshufb (LOAD_HIGH_BROADCAST_AND_BSWAP), %xmm4
paddqg (TWO_N_ONE), %xmm4
movdga %xmm4, %xmm/1

paddqg (TWO_N_TWO), %xmm4
movdga %xmm4, %xmm2

paddqg (TWO_N_TWO), %xmm4
movdga %xmm4, %xmm3

paddqg (TWO_N_TWO), %xmm4
pshufb (BSWAP_EPI_64), %xmm1
pshufb (BSWAP_EPI_64), %xmm2
pshufb (BSWAP_EPI_64), %xmm3
pshufb (BSWAP_EPI_64), %xmm4

shrq $3, %r8
je REMAINDER
subqg $128, %rsi
subqg $128, %rdi
(continue)

5-40

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Example 5-47. AES128-CTR Implementation with Eight Block in Parallel (Contd.)

LOOP:
addq
addq

shufpd
shufpd
shufpd
shufpd
shufpd
shufpd
shufpd
shufpd

pshufb
pshufb
pshufb
pshufb

paddq
paddq
paddq
paddq

pxor
pxor
pxor
pxor

pxor
pxor
pxor
pxor

pshufb
pshufb
pshufb
pshufb

$128, %rsi
$128, %rdi

movdga %xmmO, %xmm?7
movdga %xmm0, %xmm8
movdga %xmmO, %xmm9
movdga %xmmO0, %xmm10
movdga %xmm0, %xmm11
movdga %xmm0, %xmm12
movdga %xmmo0, %xmm13
movdga %xmmO0, %xmm14

$2, %xmm1, %xmm7
$0, %xmm1, %xmm8
$2, %xmm2, %xmm9
$0, %xmm2, %xmm10
$2, %xmm3, %xmm11
$0, %xmm3, %xmm12
$2, %xmm4, %xmm13
$0, %xmm4, %xmm14

(BSWAP_EPI_64), %xmm1
(BSWAP_EPI_64), %xmm2
(BSWAP_EPI_64), %xmm3
(BSWAP_EPI_64), %xmm4

movdqga (%r9), %exmm5
movdga 16(%r9), %xmm6

(EIGHT
(EIGHT
(EIGHT
(EIGHT

, %oxmm’1
, %xmm2
, %xmm3
, Y%oxmm4

— — — —

%xmmb5, %xmm?7
%xmmb5, %xmm8
%xmmb5, %xmm9
%xmmb5, %xmm10

%xmmb5, %xmm11
%xmmb5, %xmm12
%xmmb5, %xmm13
%xmmb5, %xmm14

(BSWAP_EPI_64), %xmm1
(BSWAP_EPI_64), %xmm2
(BSWAP_EPI_64), %xmm3
(BSWAP_EPI_64), %xmm4

(continue)

5-41

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Example 5-47. AES128-CTR Implementation with Eight Block in Parallel (Contd.)

aesenc %xmm6, %xmm7
aesenc %xmm6, %xmm8
aesenc %xmm6, %xmm9
aesenc %xmm6, %xmm10
aesenc %xmm6, %xmm11
aesenc %xmm6, %xmm12
aesenc %xmmb6, %xmm13
aesenc %xmmb6, %xmm14

movdga 32(%r9), %xmm5
movdga 48(%r9), %xmm6

aesenc %xmmb5, %xmm7
aesenc %xmmb5, %xmm8
aesenc %xmmb5, %xmm9
aesenc %xmmb5, %xmm10
aesenc %xmmb>, %xmm11
aesenc %xmmb, %xmm12
aesenc %xmmb, %xmm13
aesenc %xmmb, %xmm14

aesenc %xmm6, %xmm7
aesenc %xmm6, %xmm8
aesenc %xmm6, %xmm9
aesenc %xmm6, %xmm10
aesenc %xmm6, %xmm11
aesenc %xmm6, %xmm12
aesenc %xmmb6, %xmm13
aesenc %xmmb6, %xmm14

movdga 64(%r9), %xmm5
movdga 80(%r9), %xmm6

aesenc %xmmb5, %xmm7
aesenc %xmmb5, %xmm8
aesenc %xmmb5, %xmm9
aesenc %xmmb, %xmm10
aesenc %xmmb, %xmm11
aesenc %xmmb, %xmm12
aesenc %xmmb5, %xmm13
aesenc %xmmb, %xmm14

aesenc %xmm6, %xmm7
aesenc %xmm6, %xmm8
aesenc %xmm6, %xmm9
aesenc %xmmb6, %xmm10
aesenc %xmm6, %xmm11
aesenc %xmm6, %xmm12
aesenc %xmm6, %xmm13
aesenc %xmmb6, %xmm14

(continue)

5-42

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Example 5-47. AES128-CTR Implementation with Eight Block in Parallel (Contd.)

movdga 96(%r9), %xmm5
movdga 112(%r9), %xmm6

aesenc %xmmb5, %xmm7
aesenc %xmmb5, %xmm8
aesenc %xmmb5, %xmm9
aesenc %xmmb5, %xmm10
aesenc %xmmb5, %xmm11
aesenc %xmmb5, %xmm12
aesenc %xmmb5, %xmm13
aesenc %xmmb5, %xmm14

aesenc %xmm6, %xmm7
aesenc %xmm6, %xmm8
aesenc %xmm6, %xmm9
aesenc %xmm6, %xmm10
aesenc %xmm6, %xmm11
aesenc %xmm6, %xmm12
aesenc %xmm6, %xmm13
aesenc %xmm6, %xmm14

movdga 128(%r9), %exmm5
movdga 144(%r9), %xmm6
movdga 160(%r9), %xmm15
cmp $12,%r12d

aesenc %xmmb5, %xmm7
aesenc %xmmb5, %xmm8
aesenc %xmmb5, %xmm9
aesenc %xmmb5, %xmm10
aesenc %xmmb5, %xmm11
aesenc %xmmb5, %xmm12
aesenc %xmmb5, %xmm13
aesenc %xmmb5, %xmm14

aesenc %xmm6, %xmm7
aesenc %xmm6, %xmm8
aesenc %xmm6, %xmm9
aesenc %xmm6, %xmm10
aesenc %xmm6, %xmm11
aesenc %xmm6, %xmm12
aesenc %xmm6, %xmm13
aesenc %xmm6, %xmm14

jb LAST

(continue)

5-43

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Example 5-47. AES128-CTR Implementation with Eight Block in Parallel (Contd.)

movdga 160(%r9), %xmm5
movdgqa 176(%r9), %xmm6
movdga 192(%r9), %xmm15
cmp $14,%r12d

aesenc %xmmb5, %xmm7
aesenc %xmmb5, %xmm8
aesenc %xmmb5, %xmm9
aesenc %xmmb, %xmm10
aesenc %xmmb, %xmm11
aesenc %xmmb5, %xmm12
aesenc %xmmb5, %xmm13
aesenc %xmmb, %xmm14

aesenc %xmm6, %xmm7
aesenc %xmm6, %xmm8
aesenc %xmm6, %xmm9
aesenc %xmm6, %xmm10
aesenc %xmm6, %xmm11
aesenc %xmmb6, %xmm12
aesenc %xmmb6, %xmm13
aesenc %xmmb6, %xmm14

jb LAST

movdga 192(%r9), %xmm5
movdga 208(%r9), %xmm6
movdga 224(%r9), %xmm15

aesenc %xmmb5, %xmm7
aesenc %xmmb5, %xmm8
aesenc %xmmb5, %xmm9
aesenc %xmmb5, %xmm10
aesenc %xmmb, %xmm11
aesenc %xmmb5, %xmm12
aesenc %xmmb5, %xmm13
aesenc %xmmb, %xmm14

aesenc %xmm6, %xmm7
aesenc %xmm6, %xmm8
aesenc %xmm6, %xmm9
aesenc %xmm6, %xmm10
aesenc %xmm6, %xmm11
aesenc %xmm6, %xmm12
aesenc %xmmb6, %xmm13
aesenc %xmmb6, %xmm14
LAST:
(continue)

5-44

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Example 5-47. AES128-CTR Implementation with Eight Block in Parallel (Contd.)

aesenclast %xmm15, %xmm?7
aesenclast %xmm15, %xmm8
aesenclast %xmm15, %xmm9
aesenclast %xmm15, %xmm10
aesenclast %xmm15, %xmm11
aesenclast %xmm15, %xmm12

aesenclast %xmm15, %xmm13
aesenclast %xmm15, %xmm14

pxor (%rdi), %xmm?7

pxor 16(%rdi), %oxmm8
pxor 32(%rdi), %xmm9
pxor 48(%rdi), %xmm10
pxor 64(%rdi), %xmm11
pxor 80(%rdi), %xmm12
pxor 96(%rdi), %xmm13
pxor 112(%rdi), %xmm14

dec %r8

movdqu %xmm7, (%rsi)
movdqu %xmm8, 16(%rsi)
movdqu %xmm3, 32(%rsi)
movdqu %xmm10, 48(%rsi
movdqu %xmm11, 64(%rsi)
movdqu %xmm12, 80(%rsi)
movdqu %xmm13, 96(%rsi)
movdqu %xmm14, 112(%rsi)
jne LOOP

addq $128,%rsi
addq $128,%rdi

REMAINDER:
cmp $0, %r10
je END
shufpd $2, %xmm1, %xmmO
IN_LOOP:
movdga %xmm0, %xmm11
pshufb (BSWAP_EPI_64), %xmm0
pxor (%r9), %xmm11
paddqg (ONE), %xmmO
aesenc 16(%r9), %xmm11
aesenc 32(%r9), %xmm11
pshufb (BSWAP_EPI_64), %xmmO

(continue)

5-45

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Example 5-47. AES128-CTR Implementation with Eight Block in Parallel (Contd.)

aesenc 48(%r9), %xmm11
aesenc 64(%r9), %xmm11
aesenc 80(%r9), %xmm11
aesenc 96(%r9), %xmm11
aesenc 112(%r9), %xmm11
aesenc 128(%r9), %xmm11
aesenc 144(%r9), %xmm11
movdqa 160(%r9), %xmm2
cmp $12,%r12d
jb IN_LAST
aesenc 160(%r9), %xmm11
aesenc 176(%r9), %xmm11
movdqa 192(%r9), %xmm2
cmp $14,%r12d
jb IN_LAST
aesenc 192(%r9), %xmm11
aesenc 208(%r9), %xmm11
movdqa 224(%r9), %xmm2
IN_LAST:
aesenclast %xmm2, %xmm11
pxor (%rdi),%xmm11
movdqu %xmm11, (%rsi)
addqg $16,%rdi
addq $16,%rsi

dec %r10

jne IN_LOOP
END:

ret

5.10.2 AES Key Expansion Alternative

In Intel microarchitecture code name Sandy Bridge, the throughput of AESKEYGENASSIST is two cycles
with higher latency than the AESENC/AESDEC instructions. Software may consider implementing the
AES key expansion by using the AESENCLAST instruction with the second operand (i.e., the round key)
being the RCON value, duplicated four times in the register. The AESENCLAST instruction performs the
SubBytes step and the xor-with-RCON step, while the ROTWORD step can be done using a PSHUFB
instruction. Following are code examples of AES128 key expansion using either method.

Example 5-48. AES128 Key Expansion

/1 Use AESKENYGENASSIST /1 Use AESENCLAST
align 16,0x90 mask:
.globl AES_128_Key_Expansion Jong 0x0c0f0e0d,0x0c0f0e0d,0x0c0f0e0d,0x0c0f0e0d
AES_128_Key_Expansion: conl:
parameter 1: %rdi dong 1,111
parameter 2: %rsi conz:

movl $10, 240(%rsi) Jong 0x1b,0x1b,0x1b,0x1b

movdqu (%rdi), %xmm1 align 16,0x90

movdga %xmm1, (%rsi) .globl AES_128_Key_Expansion

(continue) (continue)

5-46

Example 5-48. AES128 Key Expansion (Contd.)

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

aeskeygenassist $1, %xmm1, %xmm?2
call PREPARE_ROUNDKEY_128
movdga %xmm1, 16(%rsi)
aeskeygenassist $2, %xmm1, %xmm2
call PREPARE_ROUNDKEY_128
movdga %xmm1, 32(%rsi)
aeskeygenassist $4, %xmm1, %xmm2

ASSISTS:

call PREPARE_ROUNDKEY_128
movdga %xmm1, 48(%rsi)
aeskeygenassist $8, %xmm1, %xmm2

call PREPARE_ROUNDKEY_128
movdga %xmm1, 64(%rsi)
aeskeygenassist $16, %xmm1, %xmm2
call PREPARE_ROUNDKEY_128
movdga %xmm1, 80(%rsi)
aeskeygenassist $32, %xmm1, %xmm2
call PREPARE_ROUNDKEY_128
movdga %xmm1, 96(%rsi)
aeskeygenassist $64, %xmm1, %xmm2
call PREPARE_ROUNDKEY_128
movdga %xmm1, 112(%rsi)
aeskeygenassist $0x80, %xmm1, %xmm2
call PREPARE_ROUNDKEY_128
movdga %xmm1, 128(%rsi)
aeskeygenassist $O0x1b, %xmm1, %xmm2
call PREPARE_ROUNDKEY_128
movdqa %xmm1, 144(%rsi)
aeskeygenassist $0x36, %xmm1, %xmm2
call PREPARE_ROUNDKEY_128
movdga %xmm1, 160(%rsi)
ret

PREPARE_ROUNDKEY_128:

pshufd $255, %xmm2, %xmm2
movdga %xmm1, %xmm3
pslidg $4, %xmm3

pxor %xmm3, %xmm1

pslidg $4, %xmm3

pxor %xmm3, %xmm1

pslidg $4, %xmm3

pxor %xmm3, %xmm1

pxor %xmm2, %exmm1

ret

AES_128_Key_Expansion:
parameter 1: %rdi
parameter 2; %rsi
movdqu (%rdi), %xmm1
movdga %xmmT1, (%rsi)
movdga %xmm1, %xmmZ2
movdga (con1), %xmmO
movdga (mask), %exmm15
mov $8, %ax
LOOP1:
add $16, %rsi
dec %ax
pshufb %xmm15,%xmm2
aesenclast %xmm0, %xmm2
psild $1, %xmmO0
movdga %xmm1, %xmm3
pslidg $4, %xmm3
pxor %xmm3, %xmm1
pslidg $4, %xmm3
pxor %xmm3, %xmm1
pslidg $4, %xmm3
pxor %xmm3, %xmm1
pxor %xmmz2, %xmm1
movdga %xmm1, (%rsi)
movdga %xmm1, %xmmZ2
jne LOOP1
movdga (con2), %xmmO
pshufb %xmm15,%xmm2
aesenclast %xmm0, %xmmZ2
psiid $1, %xmmO0
movdga %xmm1, %xmm3
pslidg $4, %xmm3
pxor %xmm3, %xmm1
pslidg $4, %xmm3
pxor %xmm3, %xmm1
pslidg $4, %xmm3
pxor %xmm3, %xmm1
pxor %xmm¢2, %xmm1
movdga %xmm1, 16(%rsi)
movdga %xmm1, %xmmZ2
pshufb %xmm15,%xmm2
aesenclast %xmm0, %xmmZ2
movdga %xmm1, %xmm3
pslidg $4, %xmm3
pxor %xmm3, %xmm1
pslidg $4, %xmm3
pxor %xmm3, %xmm1
(continue)

5-47

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Example 5-48. AES128 Key Expansion (Contd.)

pslidg $4, %xmm3

pxor %xmm3, %xmm1
pxor %xmm2, %xmm1
movdga %xmm1, 32(%rsi)
movdga %xmm1, %xmm2
ret

5.10.3 Enhancement in Intel Microarchitecture Code Name Haswell

5.10.3.1 AES and Multi-Buffer Cryptographic Throughput

The AESINC/AESINCLAST, AESDEC/AESDECLAST instructions in Intel microarchitecture code name
Haswell have slightly improvement latency and are one micro-op. These improvements are expected to
benefit AES algorithms operating in parallel modes (e.g. CBC decryption) and multiple-buffer implemen-
tations of AES algorithms. See the following link for additional details on AESNI:

e http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set.

5.10.3.2 PCLMULQDQ Improvement

The latency of PCLMULQDQ in Intel microarchitecture code name Haswell is reduced from 14 to 7 cycles,
and throughput improved from once every 8 cycle to every other cycle, when compared to prior genera-
tions. This will speed up CRC calculations for generic polynomials. Details and examples can be found at:

e http://www.intel.com/Assets/PDF/manual/323640.pdf.
AES-GCM implemented using PCLMULQDQ can be found in OpenSSL project at:

e http://www.intel.com/content/dam/www/public/us/en/documents/software-support/enabling-high-
performance-gcm.pdf.

5.11 UGHT-WEIGHT DECOMPRESSION AND DATABASE PROCESSING

Traditionally, database storage requires high-compression ratio means to preserve the finite disk 1/0
bandwidth limitations. In row-optimized database architecture, the primary limitation on database
processing performance often correlates to the hardware constraints of the storage 1/0 bandwidth, the
locality issues of data records from rows in large tables that must be decompressed from its storage
format. Many recent database innovations are centered around columnar database architecture, where
storage format is optimized for query operations to fetch data in a sequential manner.

Some of the recent advances in columnar database (also known as in-memory database) are light-
weight compression/decompression techniques and vectorized query operation primitives using SSE4.2
and other SIMD instructions. When a database engine combines those processing techniques with a
column-optimized storage system using solid state drives, query performance increase of several fold
has been reported?. This section discusses the usage of SIMD instructions for light-weight compres-
sion/decompression in columnar databases.

The optimal objective for light-weight compression/decompression is to deliver high throughput at
reasonably low CPU utilization, such that the finite total compute bandwidth can be divided more favor-
ably between query processing and decompression to achieve maximal query throughput. SSE4.2 can
raise the compute bandwidth for some query operations to a significantly higher level (see Section
11.3.3), compared to query primitives implemented using general-purpose-register instructions. This
also places higher demand on the streaming data feed of decompressed columnar data.

1. See published TPC-H non-clustered performance results at www.tpc.org

5-48

http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set
http://software.intel.com/en-us/articles/download-the-intel-aesni-sample-library/
http://www.intel.com/Assets/PDF/manual/323640.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/software-support/enabling-high-performance-gcm.pdf

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

5.11.1 Reduced Dynamic Range Datasets

One of the more successful approaches to compress/decompress columnar data in high-speed is based
on the idea that an ensemble of integral values in a sequential data stream of fixed-size storage width
can be represented more compactly if the dynamic range of that ensemble is reduced by way of parti-
tioning, offset from a common reference value, and additional techniques?,3.

For example, a column that stores 5-digit ZIPCODE as 32-bit integers only requires a dynamic range of
17 bits. The unique primary keys in a 2 billion row table can be reduced through partitioning of sequential
blocks of 2N entries to store the offset in the block header and reducing the storage size of each 32-bit
integer as N bits.

5.11.2 Compression and Decompression Using SIMD Instructions

To illustrate the usage of SIMD instructions for reduced-dynamic-range compression/decompression,
and compressed data elements are not byte-aligned, we consider an array of 32-bit integers whose
dynamic range only requires 5 bits per value.

To pack a stream of 32-bit integer values into consecutive 5-bit buckets, the SIMD technique illustrated
in Example 5-49 consists of the following phases:

= Dword-to-byte packing and byte-array sequencing: The stream of dword elements is reduced to byte
streams with each iteration handling 32 elements. The two resulting 16-byte vectors are sequenced
to enable 4-way bit-stitching using PSLLD and PSRLD instructions.

Example 5-49. Compress 32-bit Integers into 5-bit Buckets

static __declspec(align(16)) short mask_dw_5b[16] = // 5-bit mask for 4 way bit-packing via dword
{Ox1f, 0x0, Ox1f, Ox0, 0x1f, 0x0, Ox1f, 0x0}; // packed shift
static __declspec(align(16)) short sprdb_0_5_10_15[8] = // shuffle control to re-arrange

{ OxffOO, Oxffff, Ox04ff, Oxffff, Oxffff, OxffO8, Oxffff, OxOcff}; // bytes 0, 4, 8, 12 to gap positions at 0, 5, 10, 15
void RDRpack32x4_sse(int *src, int cnt, char * out)

inti, j;
__m128ia0, al, a2, a3, c0, c1, b0, b1, b2, b3, bb;
__m128imsk4;
__m128isprd4 = _mm_loadu_si128((__m128i*) &sprdb_0_5_10_15[0]);
switch(bucket_width) {
case 5;=0;
(continue)

2. "SIMD-scan: ultra fast in-memory table scan using on-chip vector processing units”, T. Willhalm, et. al., Proceedings of the
VLDB Endowment, Vol. 2, #1, August 20089.

3. "Super-Scalar RAM-CPU Cache Compression,” M. Zukowski, et, al, Data Engineering, International Conference, vol. 0, no. O,
pp. 59, 2006.

5-49

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Example 5-49. Compress 32-bit Integers into 5-bit Buckets (Contd.)

msk4 = _mm_loadu_si128((__m128i*) &mask_dw_5b[0]);
// process 32 elements in each iteration
for(i=0;i<cnt;i+=32) {
b0 = _mm_packus_epi32(_mm_loadu_si128((__m128i*) &srcli]), _mm_loadu_si128((__m128i*) &src[i+4]));
b1 = _mm_packus_epi32(_mm_loadu_si128((__m128i*) &src[i+8]), _mm_loadu_si128((__m128i*) &src[i+12]));
b2 = _mm_packus_epi32(_mm_loadu_si128((_m128i*) &src[i+16]), _mm_loadu_si128((_m128i*)
&src[i+20]));
b3 = _mm_packus_epi32(_mm_loadu_si128((__m128i*) &src[i+24]), _mm_loadu_si128((__m128i*)
&src[i+28)));
c0 = _mm_packus_epi16(_mm_unpacklo_epi64(b0, b1), _mm_unpacklo_epi64(b2, b3));
// c0 contains bytes; 0-3,8-11, 16-19, 24-27 elements
c1 =_mm_packus_epi16(_mm_unpackhi_epi64(b0, b1), _mm_unpackhi_epi64(b2, b3));
// c1 contains bytes: 4-7, 12-15, 20-23, 28-31

b0 = _mm_and_si128(c0, msk4); // keep lowest 5 bits in each way/dword
b1 = _mm_and_si128(_mm_srli_epi32(cO, 3), _mm_slli_epi32(msk4, 5));
b0 = _mm_or_si128(b0, b1); // add next 5 bits to each way/dword

b1 = _mm_and_si128(_mm_srli_epi32(cO, 6), _mm_slli_epi32(msk4, 10));
b0 = _mm_or_si128(b0, b1);
b1 = _mm_and_si128(_mm_srli_epi32(cO, 9), _mm_slli_epi32(msk4, 15));
b0 = _mm_or_si128(b0, b1);
b1 = _mm_and_si128(_mm_slli_epi32(c1, 20), _mm_slli_epi32(msk4, 20));
b0 = _mm_or_si128(b0, b1);
b1 = _mm_and_si128(_mm_slli_epi32(c1, 17), _mm_slli_epi32(msk4, 25));
b0 = _mm_or_si128(b0, b1);
b1 = _mm_and_si128(_mm_slli_epi32(c1, 14), _mm_slli_epi32(msk4, 30));
b0 = _mm_or_si128(b0, b1); // add next 2 bits from each dword channel, xmm full
(int)&out[j] = _mm_cvtsi128_si32(b0);// the first dword is compressed and ready
// re-distribute the remaining 3 dword and add gap bytes to store remained bits
b0 = _mm_shuffle_epi8(b0, gap4x3);
b1 = _mm_and_si128(_mm_srli_epi32(c1, 18), _mm_srli_epi32(msk4, 2)); // do 4-way packing of the next 3 bits
b2 = _mm_and_si128(_mm_srli_epi32(c1, 21), _mm_slli_epi32(msk4, 3));
b1 = _mm_or_si128(b1, b2); //5th byte compressed at bytes 0, 4, 8, 12
// shuffle the fifth byte result to byte offsets of 0, 5, 10, 15
b0 = _mm_or_si128(b0, _mm_shuffle_epi8(b1, sprd4));
_mm_storeu_si128((__m128i *) &out[j+4], b0);
j += bucket_width*4;
}
/1 handle remainder if cnt is not multiples of 32
break;

}

« Four-way bit stitching: In each way (dword) of the destination, 5 bits are packed consecutively from
the corresponding byte element that contains 5 non-zero bit patterns. Since each dword destination
will be completely filled up by the contents of 7 consecutive elements, the remaining three bits of the
7th element and the 8th element are done separately in a similar 4-way stitching operation but
require the assistance of shuffle operations.

Example 5-50 shows the reverse operation of decompressing consecutively packed 5-bit buckets into
32-bit data elements.

5-50

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Example 5-50. Decompression of a Stream of 5-bit Integers into 32-bit Elements

static __declspec(align(16)) short mask_dw_5b[16] = // 5-bit mask for 4 way bit-packing via dword
{Ox1f, 0x0, Ox1f, Ox0, 0x1f, 0x0, Ox1f, 0x0}; // packed shift

static __declspec(align(16)) short pack_dw_4x3[8] = // pack 3 dwords 1-4,6-9, 11-14

{ Oxffff, Oxffff, 0x0201, 0x0403, 0x0706, 0x0908, OxcOb, 0x0e0d}; // to vacate bytes 0-3

static __declspec(align(16)) short packb_0_5_10_15[8] = // shuffle control to re-arrange bytes

{ Oxffff, OxOff, Oxffff, OX5ff, Oxffff, Oxaff, Oxffff, OxOfff}; // 0, 5, 10, 15 to gap positions at 3,7, 11,15

void RDRunpack32x4_sse(char *src, int cnt, int * out)

{inti,j;

__m128ia0, al, a2, a3, c0, c1, b0, b1, b2, b3, bb, dO, d1, d2, d3;
__m128imsk4;

__m128i pck4 = _mm_loadu_si128((__m128i*) &packb_0_5_10_15[0]);

__m128i pckdw3 = _mm_loadu_si128((__m128i*) &pack_dw_4x3[0]);

switch(bucket_width) {
case 5;j=0;
msk4 = _mm_loadu_si128((__m128i*) &mask_dw_5b[0]);
for(i=0;i<cnt;i+=32) {
al = _mm_loadu_si128((__m128i*) &src[j +4));
// pick up bytes 4, 9, 14, 19 and shuffle into offset 3,7, 11, 15
c0 = _mm_shuffle_epiB(a1l, pck4);
b1 = _mm_and_si128(_mm_srli_epi32(c0, 3), _mm_slli_epi32(msk4, 24));
// put 3 unaligned dword 1-4, 6-9, 11-14 to vacate bytes 0-3
al = _mm_shuffle_epi8(a1, pckdw3);
b0 = _mm_and_si128(_mm_srli_epi32(c0, 6), _mm_slli_epi32(msk4, 16));
a0 = _mm_cvtsi32_si128(*(int *)&src[j]);
b1 =_mm_or_si128(b0, b1); //finished decompress source bytes 4,9, 14, 19
a0 = _mm_or_si128(a0, al1); // bytes 0-16 contain compressed bits
b0 = _mm_and_si128(_mm_srli_epi32(a0, 14), _mm_slli_epi32(msk4, 16));
b1 =_mm_or_si128(b0, b1);
b0 = _mm_and_si128(_mm_srli_epi32(a0, 17), _mm_slli_epi32(msk4, 8));
b1 =_mm_or_si128(b0, b1);
b0 = _mm_and_si128(_mm_srli_epi32(a0, 20), msk4);
b1 =_mm_or_si128(b0, b1);// b1 now full with decompressed 4-7,12-15,20-23,28-31
_mm_storeu_si128((__m128i *) &out[i+4], _mm_cvtepu8_epi32(b1));
b0 = _mm_and_si128(_mm_slli_epi32(a0, 9), _mm_slli_epi32(msk4, 24));
c0 = _mm_and_si128(_mm_slli_epi32(a0, 6), _mm_slli_epi32(msk4, 16));
b0 = _mm_or_si128(b0, cO);
_mm_storeu_si128((__m128i *) &out[i+12],, _mm_cvtepu8_epi32(_mm_srli_si128(b1, 4)));
c0 = _mm_and_si128(_mm_slli_epi32(a0, 3), _mm_slli_epi32(msk4, 8));
_mm_storeu_si128((__m128i *) &out[i+20], _mm_cvtepu8_epi32(_mm_srli_si128(b1, 8)));
b0 = _mm_or_si128(b0, cO);
_mm_storeu_si128((__m128i *) &out[i+28], _mm_cvtepu8_epi32(_mm_srli_si128(b1, 12)));
c0 = _mm_and_si128(a0, msk4);
b0 = _mm_or_si128(b0, c0);// b0 now full with decompressed 0-3,8-11,16-19,24-27

5-51

OPTIMIZING FOR SIMD INTEGER APPLICATIONS

Example 5-50. Decompression of a Stream of 5-bit Integers into 32-bit Elements (Contd.)

__m128i*
__ m128i*
__m128i~*

m128i*

_mm_storeu_si128
_mm_storeu_si128
_mm_storeu_si128
_mm_storeu_si128
j += g_bwidth*4;

—_—

&out[i], _mm_cvtepu8_epi32(b0));

&out[i+8], _mm_cvtepu8_epi32(_mm_srli_si128(b0, 4)));
&out[i+16], _mm_cvtepu8_epi32(_mm_srli_si128(b0, 8)));
&out[i+24], _mm_cvtepu8_epi32(_mm_srli_si128(b0, 12)));

_= =X
—_—~ e~ —~
~—_ — — —

}

break;

}

Compression/decompression of integers for dynamic range that are non-power-of-2 can generally use
similar mask/packed shift/stitch technique with additional adaptation of the horizontal rearrangement of
partially stitched vectors. The increase in throughput relative to using general-purpose scalar instruc-
tions will depend on implementation and bucket width.

When compiled with the “/02” option on an Intel Compiler, the compression throughput can reach 6
Bytes/cycle on Intel microarchitecture code name Sandy Bridge, and the throughput varies little for
working set sizes due to the streaming data access pattern and the effectiveness of hardware
prefetchers. The decompression throughput of the above example is more than 5 Bytes/cycle at full utili-
zation, allowing a database query engine to partition CPU utilization effectively to allocate a small fraction
for on-the-fly decompression to feed vectorized query computation.

The decompression throughput increase using a SIMD light-weight compression technique offers data-
base architects new degrees of freedom to relocate critical performance bottlenecks from a lower-
throughput technology (disk 1/0, DRAM) to a faster pipeline.

5-52

CHAPTER 6
OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

This chapter discusses rules for optimizing for the single-instruction, multiple-data (SIMD) floating-point
instructions available in SSE, SSE2 SSE3, and SSE4.1. The chapter also provides examples that illustrate
the optimization techniques for single-precision and double-precision SIMD floating-point applications.

6.1 GENERAL RULES FOR SIMD FLOATING-POINT CODE

The rules and suggestions in this section help optimize floating-point code containing SIMD floating-
point instructions. Generally, it is important to understand and balance port utilization to create efficient
SIMD floating-point code. Basic rules and suggestions include the following:

® Follow all guidelines in Chapter 3 and Chapter 4.

® Mask exceptions to achieve higher performance. When exceptions are unmasked, software
performance is slower.

¢ Utilize the flush-to-zero and denormals-are-zero modes for higher performance to avoid the penalty
of dealing with denormals and underflows.

® Use the reciprocal instructions followed by iteration for increased accuracy. These instructions yield
reduced accuracy but execute much faster. Note the following:

— If reduced accuracy is acceptable, use them with no iteration.
— If near full accuracy is needed, use a Newton-Raphson iteration.

— If full accuracy is needed, then use divide and square root which provide more accuracy, but slow
down performance.

6.2 PLANNING CONSIDERATIONS

Whether adapting an existing application or creating a new one, using SIMD floating-point instructions to
achieve optimum performance gain requires programmers to consider several issues. In general, when
choosing candidates for optimization, look for code segments that are computationally intensive and
floating-point intensive. Also consider efficient use of the cache architecture.

The sections that follow answer the questions that should be raised before implementation:
® Can data layout be arranged to increase parallelism or cache utilization?

® Which part of the code benefits from SIMD floating-point instructions?

® Is the current algorithm the most appropriate for SIMD floating-point instructions?

® |Is the code floating-point intensive?

®* Do either single-precision floating-point or double-precision floating-point computations provide
enough range and precision?

®* Does the result of computation affected by enabling flush-to-zero or denormals-to-zero modes?
®* Is the data arranged for efficient utilization of the SIMD floating-point registers?
® Is this application targeted for processors without SIMD floating-point instructions?

See also: Section 4.2, “Considerations for Code Conversion to SIMD Programming.”

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

6.3 USING SIMD FLOATING-POINT WITH X87 FLOATING-POINT

Because the XMM registers used for SIMD floating-point computations are separate registers and are not
mapped to the existing x87 floating-point stack, SIMD floating-point code can be mixed with x87
floating-point or 64-bit SIMD integer code.

With Intel Core microarchitecture, 128-bit SIMD integer instructions provides substantially higher effi-
ciency than 64-bit SIMD integer instructions. Software should favor using SIMD floating-point and
integer SIMD instructions with XMM registers where possible.

6.4 SCALAR FLOATING-POINT CODE

There are SIMD floating-point instructions that operate only on the lowest order element in the SIMD
register. These instructions are known as scalar instructions. They allow the XMM registers to be used for
general-purpose floating-point computations.

In terms of performance, scalar floating-point code can be equivalent to or exceed x87 floating-point
code and has the following advantages:

®* SIMD floating-point code uses a flat register model, whereas x87 floating-point code uses a stack
model. Using scalar floating-point code eliminates the need to use FXCH instructions. These have
performance limits on the Intel Pentium 4 processor.

®* Mixing with MMX technology code without penalty.
® Flush-to-zero mode.
® Shorter latencies than x87 floating-point.

When using scalar floating-point instructions, it is not necessary to ensure that the data appears in
vector form. However, the optimizations regarding alignment, scheduling, instruction selection, and
other optimizations covered in Chapter 3 and Chapter 4 should be observed.

6.5 DATA ALIGNMENT

SIMD floating-point data is 16-byte aligned. Referencing unaligned 128-bit SIMD floating-point data will
result in an exception unless MOVUPS or MOVUPD (move unaligned packed single or unaligned packed
double) is used. The unaligned instructions used on aligned or unaligned data will also suffer a perfor-
mance penalty relative to aligned accesses.

See also: Section 4.4, “Stack and Data Alignment.”

6.5.1 Data Arrangement

Because SSE and SSE2 incorporate SIMD architecture, arranging data to fully use the SIMD registers
produces optimum performance. This implies contiguous data for processing, which leads to fewer cache
misses. Correct data arrangement can potentially quadruple data throughput when using SSE or double
throughput when using SSE2. Performance gains can occur because four data elements can be loaded
with 128-bit load instructions into XMM registers using SSE (MOVAPS). Similarly, two data elements can
loaded with 128-bit load instructions into XMM registers using SSE2 (MOVAPD).

Refer to the Section 4.4, “Stack and Data Alignment,” for data arrangement recommendations. Dupli-
cating and padding techniques overcome misalignment problems that occur in some data structures and
arrangements. This increases the data space but avoids penalties for misaligned data access.

For some applications (for example: 3D geometry), traditional data arrangement requires some changes
to fully utilize the SIMD registers and parallel techniques. Traditionally, the data layout has been an array
of structures (AoS). To fully utilize the SIMD registers in such applications, a new data layout has been
proposed — a structure of arrays (SoA) resulting in more optimized performance.

6-2

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

6.5.1.1 Vertical versus Horizontal Computation

The majority of the floating-point arithmetic instructions in SSE/SSE2 provide greater performance gain
on vertical data processing for parallel data elements. This means each element of the destination is the
result of an arithmetic operation performed from the source elements in the same vertical position
(Figure 6-1).

To supplement these homogeneous arithmetic operations on parallel data elements, SSE and SSE2
provides data movement instructions (e.g., SHUFPS, UNPCKLPS, UNPCKHPS, MOVLHPS, MOVHLPS, etc.)
that facilitate moving data elements

horizontally.
X3 X2 X1 X0
Y3 Y2 Y1 YO0
OoP OoP OoP OoP
X3 0P Y3 X2 0P Y2 X 10P Y1 X0 OP YO

Figure 6-1. Homogeneous Operation on Parallel Data Elements

The organization of structured data have a significant impact on SIMD programming efficiency and
performance. This can be illustrated using two common type of data structure organizations:

¢ Array of Structure: This refers to the arrangement of an array of data structures. Within the data
structure, each member is a scalar. This is shown in Figure 6-2. Typically, a repetitive sequence of
computation is applied to each element of an array, i.e., a data structure. Computational sequence
for the scalar members of the structure is likely to be non-homogeneous within each iteration. AoS is
generally associated with a horizontal computation model.

Figure 6-2. Horizontal Computation Model

Structure of Array: Here, each member of the data structure is an array. Each element of the array is
a scalar. This is shown Table 6-1. Repetitive computational sequence is applied to scalar elements
and homogeneous operation can be easily achieved across consecutive iterations within the same
structural member. Consequently, SoA is generally amenable to the vertical computation model.

6-3

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

Table 6-1. SoA Form of Representing Vertices Data

Vx array X1 X2 X3 X4 .. Xn
Vly array Y1 Y2 Y3 Y .. Yn
Vz array Z1 Z2 Z3 Yy¢ .. Zn
Vw array W1 W2 W3 wg | Wn

Using SIMD instructions with vertical computation on SOA arrangement can achieve higher efficiency and
performance than AOS and horizontal computation. This can be seen with dot-product operation on
vectors. The dot product operation on SoA arrangement is shown in Figure 6-3.

X1 X2 X3 X4
X Fx Fx Fx Fx
+ Y1 Y2 Y3 Y4
X Fy Fy Fy Fy
+ Z1 Z2 Z3 Z4
X Fz Fz Fz Fz
+ W1 W2 W3 W4
X Fw Fw Fw Fw
= R1 R2 R3 R4

OM15168

Figure 6-3. Dot Product Operation

Example 6-1 shows how one result would be computed for seven instructions if the data were organized
as AoS and using SSE alone: four results would require 28 instructions.

Example 6-1. Pseudocode for Horizontal (xyz, AoS) Computation

mulps P XX, Ry, 247

movaps ; reg->reg move, since next steps overwrite
shufps ; getb,a,d,c fromab,cd

addps ; get a+b,a+b,c+d,c+d

movaps ; reg->reg move

shufps ; get c+d,c+d,a+b,a+b from prior addps
addps ; get a+b+c+d,a+b+c+d,a+b+c+d,a+b+c+d

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

Now consider the case when the data is organized as SoA. Example 6-2 demonstrates how four results
are computed for five instructions.

Example 6-2. Pseudocode for Vertical (xxxx, yyyy, zzzz, SoA) Computation

mulps ; x*x’ for all 4 x-components of 4 vertices
mulps ; y*y’ for all 4 y-components of 4 vertices
mulps ; z*Z for all 4 z-components of 4 vertices
addps ; x*X' +y*y'

addps ; X*X'+y*y'+z*7'

For the most efficient use of the four component-wide registers, reorganizing the data into the SoA
format yields increased throughput and hence much better performance for the instructions used.

As seen from this simple example, vertical computation can yield 100% use of the available SIMD regis-
ters to produce four results. (The results may vary for other situations.) If the data structures are repre-
sented in a format that is not “friendly” to vertical computation, it can be rearranged “on the fly” to
facilitate better utilization of the SIMD registers. This operation is referred to as “swizzling” operation and
the reverse operation is referred to as “deswizzling.”

6.5.1.2 Data Swizzling

Swizzling data from SoA to AoS format can apply to a number of application domains, including 3D
geometry, video and imaging. Two different swizzling techniques can be adapted to handle floating-point
and integer data. Example 6-3 illustrates a swizzle function that uses SHUFPS, MOVLHPS, MOVHLPS
instructions.

Example 6-3. Swizzling Data Using SHUFPS, MOVLHPS, MOVHLPS

typedef struct _VERTEX_AOS {

float x, v, z, color;
} Vertex_aos; /1 AoS structure declaration
typedef struct _VERTEX_SOA {

float x[4], float y[4], float z[4];

float color[4];

} Vertex_soa; /1 SoA structure declaration
void swizzle_asm (Vertex_aos *in, Vertex_soa *out)
{

//in mem: x1y1z1w1-x2y2z2w2-x3y3z3w3-x4y4z4w4-
/1 SWIZZLE XYZW --> XXXX

asm {
mov ebx, in // get structure addresses
mov edx, out
movaps xmmT1, [ebx] /1 x4 x3 x2 x1

movaps xmmZ2, [ebx + 16]//y4 y3y2y1
movaps xmm3, [ebx + 32]// z4 z3 z2 z1
movaps xmm4, [ebx + 48] // w4 w3 w2 w1
movaps xmm7, xmm4 // xmm7= w4 z4 y4 x4
movhlps xmm7, xmm3 // xmm7= w4 z4 w3 z3
movaps xmm6, xmmZ2 // xmm6= w2 z2 y2 x2
movlhps xmm3, xmm4 // xmm3=y4 x4 y3 x3
movhlps xmm2, xmm1 // xmm2=w2 z2 w1 z1
movlhps xmm1, xmm6 // xmm1=y2 x2 y1 x1

6-5

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

Example 6-3. Swizzling Data (Contd.)Using SHUFPS, MOVLHPS, MOVHLPS (Contd.)

movaps xmm6, xmm2// xmm6= w2 z2 w1 z1

movaps xmm5, xmm1// xmm5=y2 x2 y1 x1

shufps xmm2, xmm7, 0xDD // xmm2= w4 w3 w2 w1 =>v4
shufps xmm1, xmm3, 0x88 // xmm1= x4 x3 x2 x1 =>v1
shufps xmm5, xmm3, OxDD // xmm5=y4 y3 y2 y1 =>v2
shufps xmm6, xmm7, 0x88 // xmm6= z4 z3 z2 z1 => v3

movaps [edx], xmm1 // store X
movaps [edx+16], xmm5 // store Y
movaps [edx+32], xmmb // store Z
movaps [edx+48], xmmZ2 // store W

Example 6-4 shows a similar data-swizzling algorithm using SIMD instructions in the integer domain.

Example 6-4. Swizzling Data Using UNPCKxxx Instructions

void swizzle_asm (Vertex_aos *in, Vertex_soa *out)
{
//in mem: x1y1z1w1-x2y2z2w2-x3y3z3w3-x4y4z4w4-
/1 SWIZZLE XYZW --> XXXX
asm {
mov ebx, in // get structure addresses
mov edx, out

movdqa xmm1, [ebx + 0*16] //w0 z0 y0O x0
movdqa xmme2, [ebx + 1*16] //w1 21 y1 x1

movdqa xmm3, [ebx + 2*16] //w2 z2 y2 x2
movdqa xmm4, [ebx + 3*16] //w3z3y3 x3

movdqa xmmb5, xmm1
punpckldg ~ xmm1, xmm2 //'y1y0x1x0
punpckhdg xmmb5, xmm2 // w1 w0 z1 z0
movdqa XmmZ2, Xxmm3
punpckldg ~ xmm3, xmm4 11'y3y2 x3 x2
punpckldg ~ xmmZ2, xmm4 /I w3 w2 z32z2
movdqa xmm4, xmm1

punpcklgdg xmm1, xmm3 /1 x3 x2 x1 x0
punpckhqdg xmm4, xmm3 //y3y2y1y0
movdqa Xxmm3, Xmm5

punpcklgdg xmmb5, xmm2 /123222120
punpckhqdg xmm3, xmm2 /w3 w2 w1l w0
movdga [edx+0*16], xmm1 //x3 x2 x1 x0
movdga [edx+1*16], xmm4 //y3y2y1y0
movdga [edx+2*16], xmm5 //z3 z2 z1 z0
movdga [edx+3*16], xmm3 //w3 w2 w1 w0

The technique in Example 6-3 (loading 16 bytes, using SHUFPS and copying halves of XMM registers) is
preferable over an alternate approach of loading halves of each vector using MOVLPS/MOVHPS on newer
microarchitectures. This is because loading 8 bytes using MOVLPS/MOVHPS can create code dependency
and reduce the throughput of the execution engine.

6-6

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

The performance considerations of Example 6-3 and Example 6-4 often depends on the characteristics of
each microarchitecture. For example, in Intel Core microarchitecture, executing a SHUFPS tend to be
slower than a PUNPCKxxx instruction. In Enhanced Intel Core microarchitecture, SHUFPS and
PUNPCKxxx instruction all executes with 1 cycle throughput due to the 128-bit shuffle execution unit.
Then the next important consideration is that there is only one port that can execute PUNPCKxxX Vs.
MOVLHPS/MOVHLPS can execute on multiple ports. The performance of both techniques improves on
Intel Core microarchitecture over previous microarchitectures due to 3 ports for executing SIMD instruc-
tions. Both techniques improves further on Enhanced Intel Core microarchitecture due to the 128-bit
shuffle unit.

6.5.1.3 Data Deswizzling

In the deswizzle operation, we want to arrange the SoA format back into AoS format so the XXXX, YYYY,
ZZZ7ZZ7 are rearranged and stored in memory as XYZ. Example 6-5 illustrates one deswizzle function for
floating-point data.

Example 6-5. Deswizzling Single-Precision SIMD Data

void deswizzle_asm(Vertex_soa *in, Vertex_aos *out)
{
_asm{
mov ecx, in //'load structure addresses
mov edx, out
movaps xmmO, [ecx] //x3 x2 x1 x0
movaps xmm1, [ecx +16] //y3y2y1y0
movaps xmme, [ecx +32] //z322 21 z0
movaps xmm3, [ecx +48] //w3 w2 w1l w0
movaps xmm5, xmmO
movaps xmm?7, xmm2
unpcklps xmmO, xmm1 //y1 x1y0 x0
unpcklps Xmm2, xmm3 /w1 z1w0z0
movdqa xmm4, xmmO
movlhps xmmO, xmmZ2 // w0 z0 y0 x0
movhlps xmm4, xmm2 /w1 z1 y1 x1
unpckhps xmmb5, xmm’1 /1y3x3y2x2
unpckhps Xmm7, xmm3 /Il w3 z3 w2 z2
movdga Xmm6, xmm5
movlhps Xmm5, xmm?7 /I'w2 z2 y2 x2
movhlps Xmm6, xmm?7 /w3 z3y3x3
movaps [edx+0*16], xmmO //w0 z0 y0 x0
movaps [edx+1*16], xmm4 //w1 z1y1 x1
movaps [edx+2*16], xmm5 //w2 z2 y2 x2
movaps [edx+3*16], xmm6 //w3 z3y3 x3
}
}

Example 6-6 shows a similar deswizzle function using SIMD integer instructions. Both of these tech-
niques demonstrate loading 16 bytes and performing horizontal data movement in registers. This
approach is likely to be more efficient than alternative techniques of storing 8-byte halves of XMM regis-
ters using MOVLPS and MOVHPS.

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

Example 6-6. Deswizzling Data Using SIMD Integer Instructions

void deswizzle_rgb(Vertex_soa *in, Vertex_aos *out)

{

//---deswizzle rgb---
/1 assume: xmm1=rrrr, Xmm2=gggg, xmm3=bbbb, xmm4=aaaa

_asm{
mov ecx, in // load structure addresses
mov edx, out
movdga xmmoO, [ecx] //oadr4r3r2r1 =>xmml
movdga xmm1, [ecx+16] //'load g4 g3 g2 g1 => xmm2
movdqa xmmZ, [ecx+32] //'load b4 b3 b2 b1 => xmm3
movdqa xmm3, [ecx+48] //'load a4 a3 a2 a1 => xmm4
// Start deswizzling here
movdqa xmmb5, xmmO
movdqa Xmm7, XxmmZ2
punpckldg ~ xmmO, xmm1 //g2r2glril
punpckldg ~ xmmZ2, xmm3 // a2 b2 a1 b1
movdqa xmm4, xmmO

punpcklgdg xmmO, xmmZ2 //a1b1glrl=>vl
punpckhqdg xmm4, xmm2 //a2b2g2r2=>v2
punpckhdg xmmb5, xmm1 //g4r4g3r3
punpckhdg xmm?7, xmm3 // a4 b4 a3 b3
movdqa Xmm6, xmm5

punpcklgdg xmmb5, xmm7 //a3b3g3r3=>v3
punpckhqdg xmm6, xmm7 // a4 b4 g4 r4 => v4

movdga [edx], xmmO /vl
movdqa [edx+16], xmm4 /2
movdqa [edx+32], xmm5 //v3
movdqa [edx+48], xmm6 1/ v4
// DESWIZZLING ENDS HERE
}

}

6.5.1.4 Horizontal ADD Using SSE

Although vertical computations generally make use of SIMD performance better than horizontal compu-

tations, in some cases, code must use a horizontal operation.

MOVLHPS/MOVHLPS and shuffle can be used to sum data horizontally. For example, starting with four
128-bit registers, to sum up each register horizontally while having the final results in one register, use
the MOVLHPS/MOVHLPS to align the upper and lower parts of each register. This allows you to use a
vertical add. With the resulting partial horizontal summation, full summation follows easily.

Figure 6-4 presents a horizontal add using MOVHLPS/MOVLHPS. Example 6-7 and Example 6-8 provide

the code for this operation.

6-8

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

A1|A2|B1|B2

xmmO xmm1 xmm?2 xmm3
/[/[/ /[
|A1|A2|A3|A4 |B1‘BZ|BS|B4 |C1|02|03|C4 |D1|D2|D3|D4
MOVLHPS MOVHLPS MOVLHPS MOVHLPS
A3|A4|BS|B4g C1|02|D1|D2g03|04|03|D4g

ADDPS

ADDPS

| A1+A3 | A2+A4 | B1+B3 | B2+B4 \j | C1+C3 | C2+C4 | D1+D3 | D2+D4

SHUFPS

SHUFPS

| A1+A3 | B1+B3 | C1+C3 | D1+D3 ﬁ | A2+A4 | B2+B4 | C2+C4 | D2+D4

ADDPS

| A1+A2+A3+A4 | B1+B2+B3+B4 | C1+C2+C3+C4 | D1+D2+D3+D4 Q

OM15169

Figure 6-4. Horizontal Add Using MOVHLPS/MOVLHPS

Example 6-7. Horizontal Add Using MOVHLPS/MOVLHPS

void horiz_add(Vertex_soa *in, float
_asm{
mov ecx,in
mov edx, out
movaps xmmo, [ecx]
movaps xmm1, [ecx+16]
movaps xmm2, [ecx+32]
movaps xmm3, [ecx+48]

// START HORIZONTAL ADD
movaps xmm5, xmmO
movlhps xmm5, xmm’1
movhlps xmm1, xmmO
addps xmmb5, xmm1

movaps xmm4, xmm2
movlhps xmm2, xmm3
movhlps xmm3, xmmé4
addps xmm3, xmm2
movaps xmm6, xmm3
shufps xmm3, xmm5, 0xDD

shufps xmm5, xmm6, 0x88

addps xmm6, xmm5

*out) {
// load structure addresses

/l'load A1 A2 A3 A4 => xmmO
//'load B1 B2 B3 B4 => xmm1
//'load C1 C2 C3 C4 => xmm2
//'load D1 D2 D3 D4 => xmm3

/I xmm5= A1,A2,A3,A4
/I xmm5=A1,A2,B1,B2
/I xmm1= A3,A4,B3,B4
/I xmm5= A1+A3,A2+A4,B1+B3,B2+B4

// xmm2=(C1,C2,D1,D2
// xmm3= (3,C4,D3,D4
// xmm3= C1+C3,C2+C4,D1+D3,D2+D4
/I xmm6= C1+C3,C2+C4,D1+D3,D2+D4

/Ixmm6=A1+A3,B1+B3,C1+C3,D1+D3

// xmm5= A2+A4,B2+B4,C2+C4,D2+D4
// xmm6=D,C,B,A

6-9

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

Example 6-7. Horizontal Add Using MOVHLPS/MOVLHPS (Contd.)

// END HORIZONTAL ADD
movaps [edx], xmm6

}

}

Example 6-8. Horizontal Add Using Intrinsics with MOVHLPS/MOVLHPS

void horiz_add_intrin(Vertex_soa *in, float *out)
{
__m128v,v2,v3,v4;
__m128 tmmO,tmm1,tmmZ2,tmm3,tmm4,tmm5,tmm6;
// Temporary variables

tmmO0 = _mm_load_ps(in->x); //tmmO0 = AT A2 A3 A4

tmm1 = _mm_load_ps(in->y); //tmm1 =B1 B2 B3 B4

tmmZ2 = _mm_load_ps(in->z); /Itmm2 =C1C2C3C4

tmm3 = _mm_load_ps(in->w); // tmm3 =D1 D2 D3 D4

tmm5 = tmm0; //tmmO0 = A1 A2 A3 A4

tmm5 = _mm_movelh_ps(tmm5, tmm1); // tmm5 = A1 A2B1B2

tmm1 = _mm_movehl_ps(tmm1, tmmO); //tmm1 = A3 A4 B3 B4

tmm5 = _mm_add_ps(tmm5, tmm1); /1 tmm5 = A1+A3 A2+A4 B1+B3 B2+B4
tmm4 = tmm2;

tmmZ2 = _mm_movelh_ps(tmmZ2, tmm3); //tmm2 = C1 C2D1 D2

tmm3 = _mm_movehl_ps(tmm3, tmm4); //tmm3 = C3 C4 D3 D4

tmm3 = _mm_add_ps(tmm3, tmm2); // tmm3 = C1+C3 C2+C4 D1+D3 D2+D4
tmm6 = tmm3; // tmm6 = C1+C3 C2+C4 D1+D3 D2+D4

tmm6 = _mm_shuffle_ps(tmm3, tmm5, 0xDD);

// tmm6 = A1+A3 B1+B3 C1+C3 D1+D3
tmm5 = _mm_shuffle_ps(tmm5, tmm6, 0x88);
// tmm5 = A2+A4 B2+B4 C2+C4 D2+D4
tmm6 = _mm_add_ps(tmm6, tmmb5);
//tmm6 = A1+A2+A3+A4 B1+B2+B3+B4
// C1+C2+C3+C4 D1+D2+D3+D4
_mm_store_ps(out, tmme6);

}

6.5.2 Use of CVTTPS2PI/CVTTSS2SI Instructions

The CVTTPS2PI and CVTTSS2SI instructions encode the truncate/chop rounding mode implicitly in the
instruction. They take precedence over the rounding mode specified in the MXCSR register. This behavior
can eliminate the need to change the rounding mode from round-nearest, to truncate/chop, and then
back to round-nearest to resume computation.

Avoid frequent changes to the MXCSR register since there is a penalty associated with writing this
register. Typically, when using CVTTPS2P/CVTTSS2SI, rounding control in MXCSR can always be set to
round-nearest.

6.5.3 Flush-to-Zero and Denormals-are-Zero Modes

The flush-to-zero (FTZ) and denormals-are-zero (DAZ) modes are not compatible with the IEEE Stan-
dard 754. They are provided to improve performance for applications where underflow is common and
where the generation of a denormalized result is not necessary.

6-10

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

See also: Section 3.8.3, “Floating-point Modes and Exceptions.”

6.6 SIMD OPTIMIZATIONS AND MICROARCHITECTURES

Pentium M, Intel Core Solo and Intel Core Duo processors have a different microarchitecture than Intel
NetBurst microarchitecture. Intel Core microarchitecture offers significantly more efficient SIMD floating-
point capability than previous microarchitectures. In addition, instruction latency and throughput of
SSE3 instructions are significantly improved in Intel Core microarchitecture over previous microarchitec-
tures.

6.6.1 SIMD Floating-point Programming Using SSE3

SSE3 enhances SSE and SSE2 with nine instructions targeted for SIMD floating-point programming. In
contrast to many SSE/SSE2 instructions offering homogeneous arithmetic operations on parallel data
elements and favoring the vertical computation model, SSE3 offers instructions that performs asym-
metric arithmetic operation and arithmetic operation on horizontal data elements.

ADDSUBPS and ADDSUBPD are two instructions with asymmetric arithmetic processing capability (see
Figure 6-5). HADDPS, HADDPD, HSUBPS and HSUBPD offers horizontal arithmetic processing capability
(see Figure 6-6). In addition: MOVSLDUP, MOVSHDUP and MOVDDUP load data from memory (or XMM
register) and replicate data elements at once.

X1 X0
Yy YD
[
ADD SuB
X1+Y1 X0-YO

Figure 6-5. Asymmetric Arithmetic Operation of the SSE3 Instruction

X1 X0
Y1 Yp
I Y
@ ADD
YO + Y1 X0 + X1

Figure 6-6. Horizontal Arithmetic Operation of the SSE3 Instruction HADDPD

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

6.6.1.1 SSE3 and Complex Arithmetics

The flexibility of SSE3 in dealing with AOS-type of data structure can be demonstrated by the example of
multiplication and division of complex numbers. For example, a complex number can be stored in a struc-
ture consisting of its real and imaginary part. This naturally leads to the use of an array of structure.
Example 6-9 demonstrates using SSE3 instructions to perform multiplications of single-precision
complex numbers. Example 6-10 demonstrates using SSE3 instructions to perform division of complex
numbers.

Example 6-9. Multiplication of Two Pair of Single-precision Complex Number

/1 Multiplication of (ak +ibk)* (ck +idk)
//a +ib can be stored as a data structure
movsldup xmmoO, Src1; load real parts into the destination,

;al,atl, a0, al

movaps xmm’1, src2; load the 2nd pair of complex values,
;ie.d1,c1,do, co

mulps xmmO, xmm1; temporary results, ald1, alc1, a0doO,
;a0c0

shufps xmm1, xmm1, b1; reorder the real and imaginary
;parts, c1,d1, c0,d0

movshdup xmm2, Src1; load the imaginary parts into the
; destination, b1, b1, b0, b0

mulps xmmZ2, xmm1; temporary results, b1c1, b1d1, bOcO,
;b0dO

addsubps xmmO, xmm2; b1c1+ald1, alc1 -b1d1, bOc0+a0dO,
; a0c0-b0d0

Example 6-10. Division of Two Pair of Single-precision Complex Numbers

// Division of (ak +ibk)/ (ck +idk)

movshdup xmmoO, Src1; load imaginary parts into the
; destination, b1, b1, b0, b0

movaps xmm1, src2; load the 2nd pair of complex values,
;ie.d1,c1,do, co

mulps xmmO, xmm1; temporary results, b1d1, b1c1, b0d0,
; b0cO

shufps xmm1, xmm1, b1; reorder the real and imaginary
; parts, c1,d1, cO, dO

movsldup xmm2, Src1; load the real parts into the
; destination, a1, a1, a0, a0

mulps xmmZ2, xmm1; temp results, alc1, ald1, a0cO, a0dO
addsubps xmmO, xmmZ2; alc1+b1d1, b1c1-a1d1, aOc0+b0dO,
; b0c0-a0d0

mulps xmm1, xmm1 ; c1c1, d1d1, cOcO, dOdO

movps xmm2, xmm1; c1c1,d1d1, cOcO, d0dO

shufps xmm¢2, xmme2, b1; d1d1, c1c1, d0dO, cOcO

addps xmm2, xmm1; c1c1+d1d1, c1c1+d1d1, cOcO+d0dO,
; c0c0+d0d0

6-12

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

Example 6-10. Division of Two Pair of Single-precision Complex Numbers (Contd.)

divps xmmO, xmm2

shufps xmmO, xmmO, b1 ; (b1c1-a1d1)/(c1c1+d1d1),
;(@1c1+b1d1)/(c1c1+d1d1),
; (b0c0-a0d0)/(c0c0+d0d0),

; (@0c0+b0d0)/(c0c0+d0d0)

In both examples, the complex numbers are store in arrays of structures. MOVSLDUP, MOVSHDUP and
the asymmetric ADDSUBPS allow performing complex arithmetics on two pair of single-precision
complex number simultaneously and without any unnecessary swizzling between data elements.

Due to microarchitectural differences, software should implement multiplication of complex double-
precision numbers using SSE3 instructions on processors based on Intel Core microarchitecture. In Intel
Core Duo and Intel Core Solo processors, software should use scalar SSE2 instructions to implement
double-precision complex multiplication. This is because the data path between SIMD execution units is
128 bits in Intel Core microarchitecture, and only 64 bits in previous microarchitectures. Processors
based on the Enhanced Intel Core microarchitecture generally executes SSE3 instruction more efficiently
than previous microarchitectures, they also have a 128-bit shuffle unit that will benefit complex arith-
metic operations further than Intel Core microarchitecture did.

Example 6-11 shows two equivalent implementations of double-precision complex multiply of two pair of
complex numbers using vector SSE2 versus SSE3 instructions. Example 6-12 shows the equivalent
scalar SSE2 implementation.

Example 6-11. Double-Precision Complex Multiplication of Two Pairs

SSE2 Vector Implementation

SSE3 Vector Implementation

movapd xmmO, [eax] vy X
movapd xmm1, [eax+16];w z
unpcklpd xmm1, xmm1 ;zz
movapd xmm2, [eax+16];w z
unpckhpd xmm2, xmm2 ;ww
mulpd xmm1, xmm0 ;z*y z*x
mulpd xmm2, xmm0 ;w*y w*x
xorpd xmm2, xmm7 -w*y +w*x
shufpd xmm2, xmm2,1 ;w*x -w*y
addpd xmmz2, xmm1 ;z*y+w*x z*x-w*y
movapd [ecx], xmmZ2

movapd xmmO, [eax] vy X

movapd xmm1, [eax+16];z z

movapd xmmZ2, xmm1

unpcklpd xmm1, xmm1

unpckhpd xmm2, xmmZ2

mulpd xmm1, xmm0 ;z*y z*x

mulpd xmm2, xmm0 ;w*y w*x
shufpd xmm2, xmm2, 1 ;w*x w*y
addsubpd xmm1, xmm2 ;w*X+z*y z*x-w*y
movapd [ecx], xmm1

Example 6-12. Double-Precision Complex Multiplication Using Scalar SSE2

movsd xmmoO, [eax] X
movsd xmmb5, [eax+8] v
movsd xmm1, [eax+16] ;z
movsd xmm2, [eax+24] ;w

movsd xmm3, xmm1 ;z
movsd xmm4, xmm2 ;w
mulsd xmm1, xmmO0 ;z*X
mulsd xmm2, xmmO0 ;w*x
mulsd xmm3, xmm5 ;z*y

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

Example 6-12. Double-Precision Complex Multiplication Using Scalar SSE2 (Contd.)

mulsd xmm4, xmm5 ;w*y
subsd xmm1, xmm4 ;z*X - w*y
addsd xmm3, xmm2 ;Z*y + w*X
movsd [ecx], xmm1

movsd [ecx+8], xmm3

6.6.1.2 Packed Floating-Point Performance in Intel Core Duo Processor

Most packed SIMD floating-point code will speed up on Intel Core Solo processors relative to Pentium M
processors. This is due to improvement in decoding packed SIMD instructions.

The improvement of packed floating-point performance on the Intel Core Solo processor over Pentium M
processor depends on several factors. Generally, code that is decoder-bound and/or has a mixture of
integer and packed floating-point instructions can expect significant gain. Code that is limited by execu-
tion latency and has a “cycles per instructions” ratio greater than one will not benefit from decoder
improvement.

When targeting complex arithmetics on Intel Core Solo and Intel Core Duo processors, using single-
precision SSE3 instructions can deliver higher performance than alternatives. On the other hand, tasks
requiring double-precision complex arithmetics may perform better using scalar SSE2 instructions on
Intel Core Solo and Intel Core Duo processors. This is because scalar SSE2 instructions can be dispatched
through two ports and executed using two separate floating-point units.

Packed horizontal SSE3 instructions (HADDPS and HSUBPS) can simplify the code sequence for some
tasks. However, these instruction consist of more than five micro-ops on Intel Core Solo and Intel Core
Duo processors. Care must be taken to ensure the latency and decoding penalty of the horizontal instruc-
tion does not offset any algorithmic benefits.

6.6.2 Dot Product and Horizontal SIMD Instructions

Sometimes the AOS type of data organization are more natural in many algebraic formula, one common
example is the dot product operation. Dot product operation can be implemented using SSE/SSE2
instruction sets. SSE3 added a few horizontal add/subtract instructions for applications that rely on the
horizontal computation model. SSE4.1 provides additional enhancement with instructions that are
capable of directly evaluating dot product operations of vectors of 2, 3 or 4 components.

Example 6-13. Dot Product of Vector Length 4 Using SSE/SSE2
Using SSE/SSE2 to compute one dot product

movaps xmmo0, [eax] // a4, a3, a2, al

mulps xmmoO, [eax+16] // a4*b4, a3*b3, a2*b2, a1*b1

movhlps xmm1, xmmO0 // X, X, a4*b4, a3*b3, upper half not needed
addps xmmO, xmm1 // X, X, a2*b2+a4*b4, a1*b1+a3*b3,

pshufd xmm1, xmmO, 1// X, X, X, a2*b2+a4*b4

addss xmmO, xmm1 // a1*b1+a3*b3+a2*b2+a4*b4

movss [ecx], xmmO

OPTIMIZING FOR SIMD FLOATING-POINT APPLICATIONS

Example 6-14. Dot Product of Vector Length 4 Using SSE3
Using SSE3 to compute one dot product

movaps xmmO, [eax]

mulps xmmoO, [eax+16] // a4*b4, a3*b3, a2*b2, a1*b1

haddps xmmO, xmmO // a4*b4+a3*b3, a2*b2+al1*b1, a4*b4+a3*b3, a2*b2+al1*b1
movaps xmm1, xmmO // a4*b4+a3*b3, a2*b2+al1*b1, a4*b4+a3*b3, a2*b2+al1*b1
psrig xmmOQ, 32 // 0, a4*b4+a3*b3, 0, a4*b4+a3*b3

addss xmmQO, xmm1 // -, -, -, a1*b1+a3*b3+a2*b2+ad*b4

movss [eax], xmmO

Example 6-15. Dot Product of Vector Length 4 Using SSE4.1
Using SSE4.1 to compute one dot product
movaps xmm0, [eax]
dpps xmmO, [eax+16], 0xf1// 0, 0, 0, al*b1+a3*b3+a2*b2+a4*b4
movss [eax], xmmO

Example 6-13, Example 6-14, and Example 6-15 compare the basic code sequence to compute one dot-
product result for a pair of vectors.

The selection of an optimal sequence in conjunction with an application’s memory access patterns may
favor different approaches. For example, if each dot product result is immediately consumed by addi-
tional computational sequences, it may be more optimal to compare the relative speed of these different
approaches. If dot products can be computed for an array of vectors and kept in the cache for subsequent
computations, then more optimal choice may depend on the relative throughput of the sequence of
instructions.

In Intel Core microarchitecture, Example 6-14 has higher throughput than Example 6-13. Due to the
relatively longer latency of HADDPS, the speed of Example 6-14 is slightly slower than Example 6-13.

In Enhanced Intel Core microarchitecture, Example 6-15 is faster in both speed and throughput than
Example 6-13 and Example 6-14. Although the latency of DPPS is also relatively long, it is compensated
by the reduction of number of instructions in Example 6-15 to do the same amount of work.

Unrolling can further improve the throughput of each of three dot product implementations.
Example 6-16 shows two unrolled versions using the basic SSE2 and SSE3 sequences. The SSE4.1
version can also be unrolled and using INSERTPS to pack 4 dot-product results.

Example 6-16. Unrolled Implementation of Four Dot Products

SSE2 Implementation

SSE3 Implementation

movaps xmmO, [eax]
mulps xmmO, [eax+16]
;w0*w1 z0*z1 yO*y1 x0*x1
movaps xmmZ2, [eax+32]
mulps xmm2, [eax+16+32]
w2*w3 z2*z3 y2*y3 x2*x3
movaps Xxmm3, [eax+64]
mulps xmm3, [eax+16+64]
warw5 z4*25 y4*y5 x4*x5
movaps xmm4, [eax+96]
mulps xmm4, [eax+16+96]
wb*w7 26*27 y6*y7 x6*x7

movaps xmmO, [eax]
mulps xmmoO, [eax+16]
movaps xmm1, [eax+32]
mulps xmm1, [eax+16+32]
movaps XxmmZ2, [eax