
Intel® AVX-512 Architecture 
Comprehensive vector extension for HPC and enterprise 

 512-bit wide vectors, 32 SIMD 
registers 

 8 new mask registers 
 Embedded Rounding Control 
 Embedded Broadcast 
 New Math instructions 
 2-source shuffles 
 Gather and Scatter 
 Compress and Expand 
 Conflict Detection 

AVX-512 – What’s new? 
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32 SIMD registers 512 bit wide 

More And Bigger Registers 

 
 
Sparse computations are hard for vectorization 
 
 
 
 
 
 
 
Code above is wrong if any values within B[i] are duplicated 
 
VPCONFLICT instruction detects elements with conflicts 

Conflict Detection 

for(i=0; i<16; i++) {  A[B[i]]++; } 

 

index = vload &B[i]                // Load 16 B[i] 

old_val = vgather A, index         // Grab A[B[i]] 

new_val = vadd old_val, +1.0       // Compute new values 

vscatter A, index, new_val         // Update A[B[i]] 

index = vload &B[i]                        // Load 16 B[i] 

pending_elem = 0xFFFF; 

do {    

  curr_elem = get_conflict_free_subset(index, pending_elem) 

  old_val = vgather {curr_elem} A, index        // Grab A[B[i]] 

  new_val = vadd old_val, +1.0                  // Compute new values 

  vscatter A {curr_elem}, index, new_val        // Update A[B[i]] 

  pending_elem = pending_elem ^ curr_elem       // remove done idx 

} while (pending_elem) 

 

 
 

Compress And Expand 

Compress values from 512-bit vectors compound of f64, f32, i64, i32 
elements using mask and store in register or memory 

VCOMPRESSPD zmm1/mV {k1}, zmm2 

VEXPANDPS zmm1 {k1}{z}, zmm2/mV 
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Mask: k[] = 01110011 
Zeroed in the 
register form 
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Mask: k[] = 01110011 
All “X” are 
zeroed or 
remain 
unchanged 
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for (i =0; i < N; i++) { 

  if (topVal > b[i])  { 

    *dst = a[i];  

     dst++; 

   } 

} 

 

CMP %regMask, ops 

 …  

ADD %regA1, x1, y1 

 … 

ADD %regA2 = x2, y2 

BLEND %regA, %regMask, %regA1, %regA2 

Predication Scheme 

If (condition) { 

 

  A = .. 

} else { 

 

  A = .. 

} 

Source code 

Machine code 

%Mask = cmp (condition) 

 … 

 %A1 =  

 … 

 %A2 = 

 %A = SELECT %Mask, %A1, %A2 

 

LLVM IR 

Mask = cmp (condition) 

Not-Mask = not(Mask)  

 {Mask} C1 =  

 {Mask} B1 =  

 {Mask} A = B1+C1 

   

 {Not-Mask} C2 =  

 {Not-Mask} B2 =  

 {Not-Mask} A = B2+C2 

 

Goal:  

To set predicates for instructions that calculate A1 
and A2 (Mask and Not-Mask) 

Result:  

If the mask is all-zero, instruction will not be 
executed.   

Mask Propagation Pass – design ideas 

topVal = 

Mask = cmp() 

 

C1 = topVal*2 

B1 = 

A1 = B1 + C1 

C2 = 

B2 = 

A2 = B2 + C2 

A = BLEND(Mask, A1, A2) 

A new Machine Pass: 

• Before register allocation 

• Start from the “blend” operands and go up recursively till mask definition 

• Check all users of the destination operand before applying the mask 

Predicated memory accesses in LLVM IR 
would be helpful ! 

 Mask Propagation Pass does not guarantee full mask propagation 

over the whole path from blend to compare 

 Load/Store operations require exact masking 

 FP operations require masking if exceptions are not suppressed 

– IR generators should use compiler intrinsics 

topVal = 

Mask = cmp() 

 

           C1 = topVal*2 

           B1 = 

           A1 = B1 + C1 

           C2 = 

           B2 = 

           A2 = B2 + C2 

A = BLEND(Mask, A1, A2) 
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topVal = 

Mask = cmp() 

!Mask = Not(Mask) 

           C1 = topVal*2 

           B1 = 

           A1 = B1 + C1 
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   A = BLEND(Mask, A1, A2) 
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Mask = cmp() 

!Mask = Not(Mask) 
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Mask 

Mask 

Mask 

!Mask 

!Mask 

!Mask 

Masking in LLVM Masking 

Unmasked elements remain 
unchanged: 
VADDPD zmm1 {k1}, zmm2, zmm3 
Or zeroed: 
VADDPD zmm1 {k1} {z}, zmm2, zmm3 

float32 A[N], B[N], C[N]; 

for(i=0; i<16; i++) 

{ 

  if (B[i] != 0) 

    A[i] = A[i] / B[i];     

  else 

    A[i] = A[i] / C[i];     

} 
VMOVUPS zmm2, A 

VCMPPS k1, zmm0, B 

VDIVPS  zmm1 {k1}{z}, zmm2, B 

KNOT k2, k1 

VDIVPS  zmm1 {k2}, zmm2, C 

VMOVUPS A, zmm1 

A source from memory  is repeated across all the 
elements.  
 
  vbroadcastss zmm3, [rax] 

  vaddps zmm1, zmm2, zmm3 

                                      
  vaddps zmm1, zmm2, [rax] {1to16} 

Embedded Broadcast 

 

• Static (per instruction) rounding rode 

• No need to access MXCSR any more! 

 

 vaddps zmm7 {k6}, zmm2, zmm4 {rd} 

 vcvtdq2ps zmm1, zmm2, {ru} 

 

All exceptions are always suspended by using 
embedded RC 

Embedded Rounding Control 

 Memory fault suppression 
 Avoid FP exceptions 
 Avoid extra blends 

a7 a6 a5 a4 a3 a2 a1 a0 zmm1 

b7 b6 b5 b4 b3 b2 b1 b0 zmm2 

zmm3 

k1 

b7+c7 a6 b5+c5 b4+c4 b3+c3 b2+c2 a1 a0 zmm1 

+ + + + + + + + 

1 0 1 1 1 1 0 0 

c7 c6 c5 c4 c3 c2 c1 c0 

XMM0-15 128-bits 

YMM0-15 256-bits 

ZMM0-31 512-bits 
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