(intel.

Intel® Architecture
Instruction Set Extensions Programming
Reference

319433-029
APRIL 2017

Intel technologies features and benefits depend on system configuration and may require enabled hardware, software, or service activation. Learn
more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages resulting
from such losses.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products
described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject
matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifica-
tions. Current characterized errata are available on request.

This document contains information on products, services and/or processes in development. All information provided here is subject to change
without notice. Intel does not guarantee the availability of these interfaces in any future product. Contact your Intel representative to obtain the
latest Intel product specifications and roadmaps.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-
800-548-4725, or by visiting http://www.intel.com/design/literature.htm.

Intel, the Intel logo, Intel Atom, Intel Core, Intel SpeedStep, MMX, Pentium, VTune, and Xeon are trademarks of Intel Corporation in the U.S.
and/or other countries.

*QOther names and brands may be claimed as the property of others.

Copyright © 1997-2017, Intel Corporation. All Rights Reserved.

ii Ref. # 319433-029

http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm

Revision History

Ref. #319433-029

Revision

Description

Date

-025

Removed instructions that now reside in the Intel® 64 and
1A-32 Architectures Software Developer’s Manual.

Minor updates to chapter 1.
Updates to Table 2-1, Table 2-2 and Table 2-8 (leaf 07H) to

indicate support for AVX512_4VNNIW and AVX512_4FMAPS.

Minor update to Table 2-8 (leaf 15H) regarding ECX
definition.

Minor updates to Section 4.6.2 and Section 4.6.3 to clarify
the effects of “suppress all exceptions”.

Footnote addition to CLWB instruction indicating operand
encoding requirement.

Removed PCOMMIT.

September 2016

-026

Removed CLWB instruction; it now resides in the Intel® 64
and 1A-32 Architectures Software Developer’s Manual.

Added additional 512-bit instruction extensions in chapter 6.

October 2016

-027

Added TLB CPUID leaf in chapter 2.

Added VPOPCNTD/Q instruction in chapter 6,and CPUID
details in chapter 2.

December 2016

-028

Updated intrinsics for VPOPCNTD/Q instruction in chapter 6.

December 2016

-029

Corrected typo in CPUID leaf 18H.

Updated operand encoding table format; extracted tuple
information from operand encoding.

Added VPERMB back into chapter 5; inadvertently removed.
Moved all instructions from chapter 6 to chapter 5.
Updated operation section of VPMULTISHIFTQB.

April 2017

Ref. # 319433-029

REVISION HISTORY

CHAPTER 1
FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS
1.1 ADOUT TS DOCUMENT . L . vttt ettt et e et e e et e e et et e e e et e e n e e 1-1
1.2 Intel® AVX-512 InStructions ArchiteCtUre QVEIVIBW vttt e et e s 1-1
1.2.1 5712-Bit Wide SIMD ReGiSTEr SUP POt . ..ottt ittt ettt e et ettt ettt e e 1-2
1.2.2 Y 11N (=T a3 (=T S U0 o 1-2
123 Eight OpMask RegiSTEr SUP PO . .o\ttt e e e et et 1-2
1.24 INSTrUCtiON SYNTaX EMNNCEMIENT . . . ottt e e e e e e e e 1-2
1.25 EVEX INSTruction ENCOGING SUP PO . . .ottt ettt et e e e e e e e e e e 1-3
CHAPTER 2
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL
2.1 Detection of AVX-512 Foundation INSTTUCTIONS ...\ v vttt et e e 2-1
2.2 Detection of 512-bit Instruction Groups of Intel® AVX-512 Family. ... e 2-2
2.3 Detection of Intel AVX-512 Instruction Groups Operating at 256 and 128-bit Vector Lengths.................cooiuut 2-3
24 Accessing XMM, YMM AND ZMM ReGISTEIS .. vttt ittt ittt ettt et e ettt 2-4
2.5 Enhanced Vector Programming Environment Using EVEX ENCOAING.o vvvvv ittt i e ie e 2-5
2.5.1 OPMASK Register to Predicate Vector Data ProCeSSiNg.vvuvr ittt i 2-5
2511 OPMAsk REGISTEN KOttt ettt e et et e 2-6
25.1.2 EXAMPle OF OPMAsk USageSottt it ettt e e e e 2-6
25.2 (0] 0] = TS TS (T o 2-7
253 20 =T (0 1 2-8
254 STATIC ROUNDING MODE AND SUPPRESS ALL EXCEPTIONS ...ttt ettt 2-8
255 Compressed Disp8*N ENCOMINGttt it ittt e ettt e et e e e 2-9
2.6 [=T g0 A A T 0 3T 3 P 2-10
2.7 SIMD Floating-Point EXCEPTIONS ..\ttt ittt e e s 2-11
28 Instruction EXCepion SPeCifiCation e 2-11
29 1 0 S o 1 oy o 2-12
CPUID—CPU IdentifiCation.ottt ettt ettt e e et e e et et e 2-12
CHAPTER 3
SYSTEM PROGRAMMING FOR INTEL® AVX-512
3.1 AVX-512 State, EVEX Prefix and Supported Operating Modesvriiiii e 3-1
3.2 LAY G Y = (=] =T = Ta =T 11 T= 3-1
3.2.1 Detection of ZMM and Opmask STate SUP POt u vttt e e e 3-1
3.2.2 Enabling of ZMM and Opmask REgiSTEr STate. .. . vv ittt e e 3-2
3.23 Enabling of SIMD Floating-EXCePTION SUPPOIT. . . .ttt et 3-3
3.24 The Layout Of XSAVE Sate SaVE ATBa ...\ttt ittt ittt ettt ettt ettt ettt ettt a e enes 3-3
3.25 XSAVE/XRSTOR Interaction with YMM State and MXCSR . ..o v it 3-5
3.26 XSAVE/XRSTOR/XSAVEOPT and Managing ZMM and Opmask States.oviiririiiii ittt i i eeans 3-6
33 BT = A2 =] 3T 1Y/ o 3-7
34 L= AU = o 3-7
35 Writing floating-point exception handIerso e 3-7
CHAPTER 4
INTEL® AVX-512 INSTRUCTION ENCODING
4.1 O 1Y V1=V Y= ot 1 4-1
4.2 INSTrUCtion FOrMAat @nd EVEX. ... ettt e e e e 4-1
43 Register Specifier ENCoding and EVEXottt e e e 4-3
431 OPMAsK REGISTEr ENMCOMING vt vttt t ettt e et e ettt e et e e e e 4-4
44 MASKING SUPPOTT I BV EX ..ttt e e et e e e 4-4
45 Compressed displacement (disp8*N) sUPPOrtin EVEX.ot e 4-5
4.6 EVEX encoding of broadcast/RoOUNdING/SAE SUPDOIT. u ittt e ettt 4-6
4.6.1 Embedded Broadcast SUPPOrtin EVEX.t e 4-6
46.2 Static RoUNding SUPPOTiN EVEX . ..ttt e e e 4-6
46.3 SAE SUPPOTE N BV EX i i i i i et e 4-7

Ref. #319433-029 v

464 Vector Length Orthogonalityovov et e 4-7

4.7 HUD qUATIONS TO BV EX Lottt e e e e e e e e e 4-7
4.7.1 State DepPendent HUDttt e e 4-7
472 Opcode INdependent HUDottt i i e e 4-8
473 0pcode Dependent HUDt e e 4-8
48 DEVICE NOT AVAIIEDIE . . ottt e e 4-9
4.9 B =Ll Y (oo 4-10
410 Exception Classifications of EVEX-Encoded iNSTrUCHIONS. vu ittt e e 4-10
4.10.1 Exceptions Type E1 and ETNF of EVEX-Encoded INSTrUCtionsvviriii i i ee e 4-13
410.2 Exceptions Type E2 of EVEX-ENcoded INStrUCTIONS ... v vttt 4-15
4103 Exceptions Type E3 and E3NF of EVEX-Encoded INSTrUCtionSvvvuiiii e 4-16
4104 Exceptions Type €4 and E4NF of EVEX-Encoded INSTrUCtiONSc.vveiii e 4-18
4105 EXCEPtioNs TYPE BS and EON . .. i i i it i e e 4-20
4106 EXCEpPtionNs TYPE BB and BONF i i ittt e e 4-22
4.10.7 EXCEPTIONS TYPE E7NM Lottt et e ettt e e e 4-24
410.8 EXCEPtioNs TyPe EQ and EONF ottt e e e 4-25
410.9 EXCEPTIONS TYPE ET0 Lttt ittt e et e e e et e e e e e e e 4-27
4.10.10 Exception Type €11 (EVEX-only, mem arg no AC, floating-point exceptions) ..., 4-29
4.10.11 Exception Type €12 and E12NP (VSIB mem arg, no AC, no floating-point exceptions).ccoovvvviiviiinninnns. 4-30
411 Exception Classifications of Opmask INSTTUCTIONS oui it et ettt 4-32
CHAPTER 5
INSTRUCTION SET REFERENCE, A-Z
5.1 Interpreting INStruction REfErENCE Pagesot e 5-1
511 1 0ot T o i 3= P 5-1
ADDPS—Add Packed Single-Precision Floating-Point Values (THISISAN EXAMPLE). ... 5-1
5.1.2 Opcode Column in the Instruction SUMMArY Tableo iv ittt e e 5-1
513 Instruction Column in the Instruction SUMMAry Tableo i i 5-4
514 64/32 bit Mode Support column in the Instruction Summary Table e 5-5
5.1.5 CPUID Support column in the Instruction Summary Tableo e 5-5
5.1.51 Operand Encoding Column in the Instruction Summary Table. i 5-5
5.2 A YN 1 = L0) B =TS 5-6
53 Ternary Bit Vector LOgic Tableov e e e e e 5-6
54 LTy (T o T Y = I = ==Y o P 5-8
V4FMADDPS/V4FNMADDPS — Packed Single-Precision Floating-Point Fused Multiply-Add (4-iterations)............. 5-9
V4FMADDSS/V4FNMADDSS —Scalar Single-Precision Floating-Point Fused Multiply-Add (4-iterations) 5-11
VP4DPWSSD — Dot Product of Signed Words with Dword Accumulation (4-iterations).............ovvviiiiinnnn.n. 5-13
VP4DPWSSDS — Dot Product of Signed Words with Dword Accumulation and Saturation (4-iterations)............. 5-15
VPERMB—Permute Packed Bytes ElementS ... o v ittt i e e e e e 5-17
VVPERMI2B—Full Permute of Bytes from Two Tables Overwriting the Index. ...t 5-19
VPERMT2B—Full Permute of Bytes from Two Tables OverwritingaTablecooiiiiii it 5-21
See EXCEPHIONS TYPE BANF . NID.. . .ottt e e e e e e 5-22
VPERMT2W/D/Q/PS/PD—Full Permute from Two Tables Overwritingone Table.............cooviiiiiiiiininnns, 5-23
VPMADD52LUQ—Packed Multiply of Unsigned 52-bit Integers and Add the Low 52-bit Products to Qword
Vol 1] = o 5-28
VPMADD52HUQ—Packed Multiply of Unsigned 52-bit Unsigned Integers and Add High 52-bit Products to 64-bit
A XaC a3 31U = o = 5-30
VPMULTISHIFTQB - Select Packed Unaligned Bytes from Quadword SOUrcesoovviiiiiinininninininannn. 5-32
VPOPCNTD/VPOPCNTQ — Return the Count of Number of Bits Set to 1 in DWORD/QWORDcvvvnnn. 5-34

vi Ref. #319433-029

TABLES

4-1
4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-23
4-24
4-25
4-26
4-27
4-28

512-bit Instruction Groups in the Intel AVX-5T2 Family. ..o e 2-2
Feature flag Collection Required of 256/128 Bit Vector Lengths for Each Instruction Group..................... 2-4
Instruction Mnemonics That Do Not Support EVEX. 128 ENcoding.c.vvviiii i 2-4
Characteristics of Three Rounding Control INTerfaces.ovvuiei i e 2-8
Static ROUNAING MOGE. . .ottt e e e e et e e e e e 2-9
Instructions Not Requiring Explicit Memory AlIgNmEnto e e 2-11
SIMD Instructions Requiring Explicitly AlIgned MemOryovuii i e 2-11
Information Returned by CPUID INSTIUCTION\ u i e e 2-13
Highest CPUID Source Operand for Intel 64 and IA-32 PrOCESSOrS ... v v vt ittt et eeeaeieanaens 2-26
ProCESSOr TYPE FIld. . . ottt ettt et e e e e e 2-27
Feature Information Returned in the ECX REGISTErvv ittt e e e 2-29
More on Feature Information Returned in the EDX Register.vviii i i 2-31
Encoding of Cache and TLB DeSCriPTOrSo v vttt ettt e et e e e 2-33
Structured Extended Feature Leaf, Function O, EBX Registercoviiiiii e 2-36
Processor Brand String Returned with Pentium 4 ProCeSS0rov vttt ittt ittt eans 2-39
Mapping of Brand Indices; and Intel 64 and IA-32 Processor Brand Strings..........coovviiiiiiiiiiiiiieiennnn 2-41
XCRO Processor STate COmMPOMENtS .ttt ettt ettt et s e ettt ettt et e 3-2
CR4 Bits for AVX-512 Foundation Instructions Technology SUPPOrto e 3-3
Layout of XSAVE Area For Processor Supporting YMM State . ..o i 3-4
D YNVl o T= =Tl o 1 - P 3-4
XSAVE Save Area Layout for YMM_Hi128 State (EXT_Save_Area_2)....vvvvrvritiiiiiiiinieiineinnnenns 3-4
XSAVE Save Area Layout for Opmask REGISTEISuviute ittt et et et a e 3-5
XSAVE Save Area Layout for ZMM State of the High 256 Bits of ZMMO-ZMM15 Registers...................... 3-5
XSAVE Save Area Layout for ZMM State of ZMM16-ZMM31 RegiSters.ovvviiiiii it 3-5
XRSTOR Action on MXCSR, XMM Registers, YMM RegiSTErsSvviiiiii i 3-6
XSAVE Action on MXCSR, XMM, YMM REGISTEN.ottt ettt e ee s 3-6
Processor Supplied Init Values XRSTOR May USe.iiiiiii ittt ittt et ieaa s 3-7
EVEX Prefix Bit Field FUNCTIONAl GrOUPING. . .. v\ttt ettt et e ettt e e it n et eaaenen 4-2
32-Register Support in 64-bit Mode Using EVEX with Embedded REXBitScovviiiiiiiiiiiiiiiiiianns 4-3
EVEX Encoding Register Specifiers in 32-Dit Mode.o.vviii i 4-4
Opmask Register Specifier ENCOAING v vttt e e 4-4
Compressed Displacement (DISP8*N) Affected by Embedded Broadcastovviiiiiiiiiiiiiinnns, 4-5
EVEX DISP8*N For Instructions Not Affected by Embedded Broadcast.............covviiiiiiiiiiii i 4-6
EVEX Embedded Broadcast/Rounding/SAE and Vector Length on Vector Instructionscocovvnene. 4-7
0S XSAVE Enabling Requirements of Instruction Categoriesc.ovririiii it e i i 4-8
Opcode Independent, State Dependent EVEX Bit FieldSovvuii i e 4-8
#UD Conditions of Operand-Encoding EVEX Prefix Bit Fields ..o e 4-8
#UD Conditions of Opmask Related Encoding Field.ooiei i e 4-9
#UD Conditions Dependent on EVEX D ConteXt. . ..ottt i e i e e i e 4-9
EVEX-Encoded Instruction EXCeption Class SUMMIAIYu ittt it it a i enans 4-10
EVEX Instructions in €ach EXCEPTION Classvuiii ittt ettt 4-11
Type E1 Class EXCEPLION CONAItiONS. v ittt et s et e e aaes 4-13
Type ETNF Class EXCEPTiON CONAitioNS\ v ittt e e i aaas 4-14
Type €2 Class EXCeption CONAILIONS.ttt e e e e e 4-15
Type E3 Class EXCEPLioN CONAITIONS. u ettt ettt aenenes 4-16
Type E3NF Class EXCEPtioN CONAItIONS v ittt ettt e e et e e e aenenes 4-17
Type €4 Class EXCEPTION CONAItioNS.ttt et e ettt ettt et aeaens 4-18
Type EANF Class EXCEPTION CONAitioNS v ittt et e aaes 4-19
Type E5 Class EXCEPTION CONAItioNS. v vttt ettt et 4-20
Type ESNF Class EXCePion CONITIONS v vttt ettt et e e 4-21
Type €6 Class EXCEPLioN CONAItIONS.ttt et e e e e e aenenes 4-22
Type EGNF Class EXCeption ConditionsS.v ittt i i e ittt i i a i aeaeas 4-23
Type E7NM Class EXCEPtioN CONAItiONSv'i ittt ettt ettt ettt aeaenas 4-24
Type E9 Class EXCEPTION CONAItiONS.\ttt e e e i aaes 4-25
Type EINF Class EXCEPTION CONAItiONSttt ettt e i aas 4-26

Ref. #319433-029 vii

4-29
4-30
4-31
4-32
4-33
4-34
4-35
5-1

5-2

viii

Type E10 Class EXCEPTioN CONAITIONS\ttt et et ettt aeaenas 4-27

Type ETONF Class EXCEPtioN CONAItIONS u 'ttt ittt e e 4-28
Type E11 Class EXCeption CONAITIONS cuuit ittt e 4-29
Type E12 Class EXCeption CONAITIONS ou ittt e e e 4-30
Type ET2NP Class EXception ConditionSttt i i it ettt aaeas 4-31
TYPE K20 Exception Definition (VEX-Encoded OpMask Instructions w/o Memory Arg)ovvvvnvvnvnennennnn. 4-32
TYPE K21 Exception Definition (VEX-Encoded OpMask Instructions Addressing Memory)covvvvvnvvnnn. 4-33
Low 8 columns of the 16x16 Map of VPTERNLOG Boolean Logic Operations.ccovvviviiiiiiininennnnnnns 5-7
Low 8 columns of the 16x16 Map of VPTERNLOG Boolean Logic Operations.ccovvviviiiniinininnnnnnss 5-8

Ref. #319433-029

FIGURES

Figure 1-1. 512-Bit Wide Vectors and SIMD Register Set.ouirii e 1-2
Figure 2-1. Procedural Flow of Application Detection of AVX-512 Foundation Instructions.coooiiiiiiiinnns, 2-1
Figure 2-2. Procedural Flow of Application Detection of 512-bit Instruction Groupsoviiiiiiiiiiiii i i eiaannns 2-2
Figure 2-3. Procedural Flow of Application Detection of Intel AVX-512 Instructions Operating at Vector Lengths < 512...... 2-3
Figure 2-4. Version Information Returned by CPUID in BAX. u ittt e i e e et et aes 2-27
Figure 2-5. Feature Information Returned in the ECX REGISTEr v vttt e e 2-29
Figure 2-6. Feature Information Returned in the EDX RegiSter........covuiie i s 2-31
Figure 2-7. Determination of Support for the Processor Brand String...........ovviiiiiiii i 2-38
Figure 2-8. Algorithm for Extracting Maximum Processor FFEQUENCYo .vnrr ettt ettt i et aaeaenas 2-40
Figure 3-1. Bit Vector and XCRO Layout of Extended Processor State Components.vvviiii it iii i enannns 3-2
Figure 4-1. AVX-512 Instruction Format and the EVEX PrefiX. e 4-1
Figure 4-2. Bit Field Layout of the EVEX PrefiX. .. v. v e e e e e 4-2
Figure 5-1. Register Source-Block Dot Product of Two Signed Word Operands with Doubleword Accumulation.............. 5-13

Ref. # 319433-029 K

Ref. #319433-029

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS

CHAPTER 1
FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS

1.1 ABOUT THIS DOCUMENT

This document describes the software programming interfaces of Intel® architecture instruction extensions
which may be included in future Intel processor generations. Intel does not guarantee the availability of these
interfaces in any future product.

The instruction set extensions cover a diverse range of application domains and programming usages. The 512-
bit SIMD vector SIMD extensions, referred to as Intel® Advanced Vector Extensions 512 (Intel® AVX-512) in-
structions, deliver comprehensive set of functionality and higher performance than Intel® AVX and Intel® AVX2
instructions. Intel AVX, Intel AVX2 and many Intel AVX-512 instructions are covered in Intel® 64 and 1A-32 Ar-
chitectures Software Developer’s Manual sets. The reader can refer to them for basic and more background in-
formation related to various features referenced in this document.

The base of the 512-bit SIMD instruction extensions are referred to as Intel AVX-512 Foundation instructions.
They include extensions of the AVX and AVX2 family of SIMD instructions but are encoded using a hew encoding
scheme with support for 512-bit vector registers, up to 32 vector registers in 64-bit mode, and conditional pro-
cessing using opmask registers.

Chapters 2 through 5 are devoted to the programming interfaces of the AVX-512 Foundation instruction set, ad-
ditional 512-bit instruction extensions in the Intel AVX-512 family targeting broad application domains, and in-
struction set extensions encoded using the EVEX prefix encoding scheme to operate at vector lengths smaller
than 512-bits.

Chapter 6 describes instruction set extensions that offer software tools with capability to address memory pro-
tection issues such as buffer overruns.

1.2 INTEL® AVX-512 INSTRUCTIONS ARCHITECTURE OVERVIEW

Intel AVX-512 Foundation instructions are a natural extension to AVX and AVX2. It introduces the following ar-
chitectural enhancements:

¢ Support for 512-bit wide vectors and SIMD register set. 512-bit register state is managed by the operating
system using XSAVE/XRSTOR instructions introduced in 45 nm Intel 64 processors (see Intel® 64 and 1A-32
Architectures Software Developer’s Manual, Volume 2C, and Intel® 64 and I1A-32 Architectures Software
Developer’s Manual, Volume 3A).

® Support for 16 new, 512-bit SIMD registers (for a total of 32 SIMD registers, ZMMO through ZMM31) in 64-bit
mode. The extra 16 registers state is managed by the operating system using XSAVE/XRSTOR/XSAVEOPT.

® Support for 8 new opmask registers (kO through k7) used for conditional execution and efficient merging of
destination operands. Again, the opmask register state is managed by the operating system using
XSAVE/XRSTOR/XSAVEOPT instructions

®* A new encoding prefix (referred to as EVEX) to support additional vector length encoding up to 512 bits. The
EVEX prefix builds upon the foundations of VEX prefix, to provide compact, efficient encoding for functionality
available to VEX encoding plus the following enhanced vector capabilities:

* opmasks
* embedded broadcast
* instruction prefix-embedded rounding control

* compressed address displacements

Ref. # 319433-029 1-1

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS

1.2.1 512-Bit Wide SIMD Register Support

AVX-512 instructions support 512-bit wide SIMD registers (ZMM0-ZMM31). The lower 256-bits of the ZMM regis-
ters are aliased to the respective 256-bit YMM registers and the lower 128-bit are aliased to the respective 128-bit
XMM registers.

1.2.2 32 SIMD Register Support

AVX-512 instructions also support for 32 SIMD registers in 64-bit mode (XMM0O-XMM31, YMMO-YMM31 and ZMMO-
ZMM31). The number of available vector registers in 32-bit mode is still 8.

1.2.3 Eight Opmask Register Support

AVX-512 instructions support 8 opmask registers (kO-k7). The width of each opmask register is architecturally
defined of size MAX_KL (64 bits). Seven of the eight opmask registers (k1-k7) can be used in conjunction with
EVEX-encoded AVX-512 Foundation instructions to provide conditional execution and efficient merging of data
elements in the destination operand. The encoding of opmask register kO is typically used when all data elements
(unconditional processing) are desired. Additionally, the opmask registers are also used as vector flags/element-
level vector sources to introduce novel SIMD functionality as seen in new instructions such as VCOMPRESSPS.

Bit#
511 256 255 128 127 0

ZMMO YMMO XMMO

ZMM1 YMMI1 XMM1

| ZMM31 YMM31 XMM31

Figure 1-1. 512-Bit Wide Vectors and SIMD Register Set

1.2.4 Instruction Syntax Enhancement
The architecture of EVEX encoding enhances vector instruction encoding scheme in the following way:

¢ 512-bit vector-length, up to 32 ZMM registers, and enhanced vector programming environment are supported
using the enhanced VEX (EVEX).

The EVEX prefix provides more encodable bit fields than VEX prefix. In addition to encoding 32 ZMM registers in 64-
bit mode, instruction encoding using the EVEX can directly encode 7 (out of 8) opmask register operands to provide
conditional processing in vector instruction programming. The enhanced vector programming environment can be
explicitly expressed in the instruction syntax to include the following elements:

®* An opmask operand: the opmask registers are expressed using the notation “k1” through “k7”. An EVEX-
encoded instruction supporting conditional vector operation using the opmask register k1 is expressed by
attaching the notation {k1} next to the destination operand. The use of this feature is optional for most instruc-
tions. There are two types of masking (merging and zeroing) differentiated using the EVEX.z bit ({z} in
instruction signature).

1-2 Ref. # 319433-029

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS

® Embedded broadcast may be supported for some instructions on the source operand that can be encoded as a
memory vector. Data elements of a memory vector may be conditionally fetched or written to.

® For instruction syntax that operates only on floating-point data in SIMD registers with rounding semantics, the
EVEX can provide explicit rounding control within the EVEX bit fields at either scalar or 512-bit vector length.

In AVX-512 instructions, vector addition of all elements of the source operands can be expressed in the same
syntax as AVX instruction:

VADDPS zmm1, zmm2, zmm3
Additionally, the EVEX encoding scheme of AVX-512 Foundation can express conditional vector addition as

VADDPS zmm1 {k1}{z}, zmm2, zmm3
where
® conditional processing and updates to destination is expressed with an opmask register,

¢ zeroing behavior of the opmask selected destination element is expressed by the {z} modifier (with merging
as the default if no modifier specified),

Note that some SIMD instructions supporting three-operand syntax but processing only less or equal than 128-bits
of data are considered part of the 512-bit SIMD instruction set extensions, because bits MAX_VL-1:128 of the
destination register are zeroed by the processor. The same rule applies to instructions operating on 256-bits of data
where bits MAX_VL-1:256 of the destination register are zeroed.

1.2.5 EVEX Instruction Encoding Support

Intel AVX-512 instructions employ a new encoding prefix, referred to as EVEX, in the Intel 64 and I1A-32 instruction
encoding format. Instruction encoding using the EVEX prefix provides the following capabilities:

¢ Direct encoding of a SIMD register operand within EVEX (similar to VEX). This provides instruction syntax
support for three source operands.

® Compaction of REX prefix functionality and extended SIMD register encoding: The equivalent REX-prefix
compaction functionality offered by the VEX prefix is provided within EVEX. Furthermore, EVEX extends the
operand encoding capability to allow direct addressing of up to 32 ZMM registers in 64-bit mode.

® Compaction of SIMD prefix functionality and escape byte encoding: The functionality of SIMD prefix (66H, F2H,
F3H) on opcode is equivalent to an opcode extension field to introduce new processing primitives. This
functionality is provided in the VEX prefix encoding scheme and employed within the EVEX prefix. Similarly, the
functionality of the escape opcode byte (OFH) and two-byte escape (OF38H, OF3AH) are also compacted within
the EVEX prefix encoding.

® Most EVEX-encoded SIMD numeric and data processing instruction semantics with memory operand have
relaxed memory alignment requirements than instructions encoded using SIMD prefixes (see Section 2.6,
“Memory Alignment”).

®* Direct encoding of a opmask operand within the EVEX prefix. This provides instruction syntax support for
conditional vector-element operation and merging of destination operand using an opmask register (k1-k7).

¢ Direct encoding of a broadcast attribute for instructions with a memory operand source. This provides
instruction syntax support for elements broadcasting of the second operand before being used in the actual
operation.

® Compressed memory address displacements for a more compact instruction encoding byte sequence.

EVEX encoding applies to SIMD instructions operating on XMM, YMM and ZMM registers. EVEX is not supported for
instructions operating on MMX or x87 registers. Details of EVEX instruction encoding are discussed in Chapter 4.

Ref. # 319433-029 1-3

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS

1-4 Ref. # 319433-029

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

CHAPTER 2
INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

The application programming model for AVX-512 Foundation instructions and several member groups of the Intel®
AVX-512 family (described in Chapter 5) extend from that of Intel AVX and Intel AVX2 with differences detailed in

this chapter.

2.1 DETECTION OF AVX-512 FOUNDATION INSTRUCTIONS

The majority of AVX-512 Foundation instructions are encoded using the EVEX encoding scheme. EVEX-encoded
instructions can operate on the 512-bit ZMM register state plus 8 opmask registers. The opmask instructions in
AVX-512 Foundation instructions operate only on opmask registers or with a general purpose register. System
software requirements to support ZMM state and opmask instructions are described in Chapter 3, “System
Programming For Intel® AVX-512”.

Processor support of AVX-512 Foundation instructions is indicated by CPUID.(EAX=07H, ECX=0):EBX.AVX512F[bit
16] = 1. Detection of AVX-512 Foundation instructions operating on ZMM states and opmask registers need to
follow the general procedural flow in Figure 2-1.

Check feature flag
CPUID.1H:ECX.OSXSAVE = 1?

OS provides processor
extended state management

Yes Implied HW support for
XSAVE, XRSTOR, XGETBYV, XCRO

y Opmask,
. YMM,ZMM
Check enabled state in > Check AVX512F flag
XCRO via XGETBV States ok to use
enabled Instructions

Figure 2-1. Procedural Flow of Application Detection of AVX-512 Foundation Instructions

Prior to using AVX-512 Foundation instructions, the application must identify that the operating system supports
the XGETBYV instruction, the ZMM register state, in addition to processor’s support for ZMM state management
using XSAVE/XRSTOR and AVX-512 Foundation instructions. The following simplified sequence accomplishes both
and is strongly recommended.

1) Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application usel).

2) Execute XGETBV and verify that XCRO[7:5] = ‘111b’ (OPMASK state, upper 256-bit of ZMM0-ZMM15 and
ZMM16-ZMM31 state are enabled by OS) and that XCRO[2:1] = ‘11b’ (XMM state and YMM state are enabled by
05S).

3) Detect CPUID.Ox7.0:EBX.AVX512F[bit 16] = 1.

1. If CPUID.01H:ECX.OSXSAVE reports 1, it also indirectly implies the processor supports XSAVE, XRSTOR, XGETBY, processor
extended state bit vector XCRO register. Thus an application may streamline the checking of CPUID feature flags for XSAVE and OSX-
SAVE. XSETBV is a privileged instruction.

Ref. # 319433-029 2-1

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

2.2
FAMILY

DETECTION OF 512-BIT INSTRUCTION GROUPS OF INTEL® AVX-512

In addition to the Intel AVX-512 Foundation instructions, Intel AVX-512 family provides several additional 512-bit
extensions in groups of instructions, each group is enumerated by a CPUID leaf 7 feature flag and can be encoded
via EVEX.L'L field to support operation at vector lengths smaller than 512 bits. These instruction groups are listed

in Table 2-1.

Table 2-1. 512-bit Instruction Groups in the Intel AVX-512 Family

CPUID Leaf 7 Feature Flag Bit

Feature Flag abbreviation of 512-bit Instruction Group

SW Detection Flow

CPUID.(EAX=07H, ECX=0).EBX[bit 16] AVX512F (AVX-512 Foundation) Figure 2-1
CPUID.(EAX=07H, ECX=0):EBX[bit 17] AVX512DQ Figure 2-2
CPUID.(EAX=07H, ECX=0):EBX[bit 21] AVX512IFMA Figure 2-2
CPUID.(EAX=07H, ECX=0).EBX[bit 28] AVX512CD Figure 2-2
CPUID.(EAX=07H, ECX=0):EBX[bit 30] AVX512BW Figure 2-2
CPUID.(EAX=07H, ECX=0):ECX[bit 01] AVX512VBMI Figure 2-2
CPUID.(EAX=07H, ECX=0):ECX[bit 14] AVX512_VPOPCNTDQ Figure 2-2
CPUID.(EAX=07H, ECX=0):EDX[bit 02] AVX512_4VNNIW Figure 2-2
CPUID.(EAX=07H, ECX=0):EDX[bit 03] AVX512_4FMAPS Figure 2-2

Software must follow the detection procedure for the 512-bit AVX-512 Foundation instructions as described in

Section 2.1.

Detection of other 512-bit sibling instruction groups listed in Table 2-1 (excluding AVX512F) follows the procedure

described in Figure 2-2:

Check feature flag
CPUID.1H:ECX.OXSAVE = 1?

Yes

OS provides processor
extended state management

Implied HW support for
XSAVE, XRSTOR, XGETBV, XCRO

Opmask,
. YMM,ZMM
Check enabled state in »| Check AVX512F and
XCRO via XGETBV States a S|bI|ng 512-bit flag
enabled

ok to use
Instructions

Figure 2-2. Procedural Flow of Application Detection of 512-bit Instruction Groups

2-2

Ref. # 319433-029

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

To illustrated the detection procedure for 512-bit instructions enumerated by AVX512CD, the following sequence is
strongly recommended.

1) Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application use).

2) Execute XGETBV and verify that XCRO[7:5] = ‘111b’ (OPMASK state, upper 256-bit of ZMM0-ZMM15 and
ZMM16-ZMM31 state are enabled by OS) and that XCRO[2:1] = ‘11b’ (XMM state and YMM state are enabled by
0S).

3) Verify both CPUID.Ox7.0:EBX.AVX512F[bit 16] = 1, CPUID.0x7.0:EBX.AVX512CD[bit 28] = 1.

Similarly, the detection procedure for enumerating 512-bit instructions reported by AVX512DW follows the same
flow.

2.3 DETECTION OF INTEL AVX-512 INSTRUCTION GROUPS OPERATING AT 256
AND 128-BIT VECTOR LENGTHS

For each of the 512-bit instruction groups in the Intel AVX-512 family listed in Table 2-1, EVEX encoding scheme
may support a vast majority of these instructions operating at 256-bit or 128-bit (if applicable) vector lengths. This
encoding support for vector lengths smaller than 512-bits is indicated by CPUID.(EAX=07H, ECX=0):EBX[bit 31],
abbreviated as AVX512VL.

The AVX512VL flag alone is never sufficient to determine a given Intel AVX-512 instruction may be encoded at
vector lengths smaller than 512 bits. Software must use the procedure described in Figure 2-3 and Table 2-2:

Check feature flag
CPUID.1H:ECX.OXSAVE = 1?

OS provides processor
extended state management

Yes Implied HW support for
XSAVE, XRSTOR, XGETBYV, XCRO

Opmask,
) YMM,ZMM
Check enabled statein | 5| Check applicable collection of »
XCRO via XGETBV States CPUID flags listed in Table 2-2 ok to use
enabled Instructions

Figure 2-3. Procedural Flow of Application Detection of Intel AVX-512 Instructions Operating at Vector Lengths <
512

To illustrate the procedure described in Figure 2-3 and Table 2-2 for software to use EVEX.256 encoded VPCON-
FLICT, the following sequence is strongly recommended.

1) Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application use)

2) Execute XGETBV and verify that XCRO[7:5] = ‘111b’ (OPMASK state, upper 256-bit of ZMM0O-ZMM15 and
ZMM16-ZMM3L1 state are enabled by OS) and that XCRO[2:1] = ‘11b’ (XMM state and YMM state are enabled by
0S).

3) Verify CPUID.O0x7.0:EBX.AVX512F[bit 16] = 1, CPUID.0x7.0:EBX.AVX512CD[bit 28] = 1, and
CPUID.Ox7.0:EBX.AVX512VL[bit 31] = 1.

Ref. # 319433-029 2-3

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

Table 2-2. Feature flag Collection Required of 256/128 Bit Vector Lengths for Each Instruction Group

Usage of 256/128 Vector Lengths Feature Flag Collection to Verify
AVX512F AVX512F & AVX512VL
AVX512CD AVX512F & AVX512CD & AVX512VL
AVX512DQ AVX512F & AVX512DQ & AVX512VL
AVX512BW AVX512F & AVX512BW & AVX512VL
AVX512IFMA AVX512F & AVX512IFMA & AVX512VL
AVX512VBMI AVX512F & AVX512VBMI & AVX512VL
AVX512_4FMAPS AVX512F & AVX512_4FMAPS & AVX512VL
AVX512_4VNNIW AVX512F & AVX512_4VNNIW & AVX512VL
AVX512_VPOPCNTDQ AVX512F & AVX512_VPOPCNTDQ & AVX512VL

In some specific cases, AVX512VL may only support EVEX.256 encoding but not EVEX.128. These are listed in Table
2-3.

Table 2-3. Instruction Mnemonics That Do Not Support EVEX.128 Encoding

Instruction Group Instruction Mnemonics Supporting EVEX.256 Only Using AVX512VL
AUXS12F VBROADCASTSD, VBROADCASTF32X4, VEXTRACTI32X4, VINSERTF32X4, VINSERTI32X4, VPERMD,
VPERMPD, VPERMPS, VPERMQ, VSHUFF32X4, VSHUFF64X2, VSHUFI32X4, VSHUFIE4X2
AVX512CD
AVX512DQ VBROADCASTF32X2, VBROADCASTF64X2, VBROADCASTI32X4, VBROADCASTI64AX?2, VEXTRACTIE4X2,
VINSERTF64X2, VINSERTI64X2,
AVX512BW

2.4 ACCESSING XMM, YMM AND ZMM REGISTERS

The lower 128 bits of a YMM register is aliased to the corresponding XMM register. Legacy SSE instructions (i.e.
SIMD instructions operating on XMM state but not using the VEX prefix, also referred to non-VEX encoded SIMD
instructions) will not access the upper bits (MAX_VL-1:128) of the YMM registers. AVX and FMA instructions with a
VEX prefix and vector length of 128-bits zeroes the upper 128 bits of the YMM register.

Upper bits of YMM registers (255:128) can be read and written by many instructions with a VEX.256 prefix.
XSAVE and XRSTOR may be used to save and restore the upper bits of the YMM registers.

The lower 256 bits of a ZMM register are aliased to the corresponding YMM register. Legacy SSE instructions (i.e.
SIMD instructions operating on XMM state but not using the VEX prefix, also referred to non-VEX encoded SIMD
instructions) will not access the upper bits (MAX_VL-1:128) of the ZMM registers, where MAX_VL is maximum
vector length (currently 512 bits). AVX and FMA instructions with a VEX prefix and vector length of 128-bits zero
the upper 384 bits of the ZMM register, while VEX prefix and vector length of 256-bits zeros the upper 256 bits of
the ZMM register.

Upper bits of ZMM registers (511:256) can be read and written by instructions with an EVEX.512 prefix.

2-4 Ref. # 319433-029

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

2.5 ENHANCED VECTOR PROGRAMMING ENVIRONMENT USING EVEX
ENCODING

EVEX-encoded AVX-512 instructions support an enhanced vector programming environment. The enhanced vector
programming environment uses the combination of EVEX bit-field encodings and a set of eight opmask registers to
provide the following capabilities:

® Conditional vector processing of EVEX-encoded instruction. Opmask registers k1 through k7 can be used to
conditionally govern the per-data-element computational operation and the per-element updates to the
destination operand of an AVX-512 Foundation instruction. Each bit of the opmask register governs one vector
element operation (a vector element can be of 32 bits or 64 bits).

® In addition to providing predication control on vector instructions via EVEX bit-field encoding, the opmask
registers can also be used similarly to general-purpose registers as source/destination operands using modR/M
encoding for non-mask-related instructions. In this case, an opmask register kO through k7 can be selected.

® In 64-bit mode, 32 vector registers can be encoded using EVEX prefix.

¢ Broadcast may be supported for some instructions on the operand that can be encoded as a memory vector.
The data elements of a memory vector may be conditionally fetched or written to, and the vector size is
dependent on the data transformation function.

® Flexible rounding control for register-to-register flavor of EVEX encoded 512-bit and scalar instructions. Four
rounding modes are supported by direct encoding within the EVEX prefix overriding MXCSR settings.

® Broadcast of one element to the rest of the destination vector register.

® Compressed 8-bit displacement encoding scheme to increase the instruction encoding density for instructions
that normally require disp32 syntax.

2.5.1 OPMASK Register to Predicate Vector Data Processing

AVX-512 instructions using EVEX encodes a predicate operand to conditionally control per-element computational
operation and updating of result to the destination operand. The predicate operand is known as the opmask
register. The opmask is a set of eight architectural registers of size MAX_KL (64-bit). Note that from this set of 8
architectural registers, only k1 through k7 can be addressed as predicate operand. kO can be used as a regular
source or destination but cannot be encoded as a predicate operand. Note also that a predicate operand can be
used to enable memory fault-suppression for some instructions with a memory operand (source or destination).

As a predicate operand, the opmask registers contain one bit to govern the operation/update to each data element
of a vector register. In general, opmask registers can support instructions with element sizes: single-precision
floating-point (float32), integer doubleword(int32), double-precision floating-point (float64), integer quadword
(int64). The length of a opmask register, MAX_KL, is sufficient to handle up to 64 elements with one bit per
element, i.e. 64 bits. Masking is supported in most of the AVX-512 instructions. For a given vector length, each
instruction accesses only the number of least significant mask bits that are needed based on its data type. For
example, AVX-512 Foundation instructions operating on 64-bit data elements with a 512-bit vector length, only
use the 8 least significant bits of the opmask register.

An opmask register affects an AVX-512 instruction at per-element granularity. So, any numeric or non-numeric
operation of each data element and per-element updates of intermediate results to the destination operand are
predicated on the corresponding bit of the opmask register.

An opmask serving as a predicate operand in AVX-512 obeys the following properties:

® The instruction’s operation is not performed for an element if the corresponding opmask bit is not set. This
implies that no exception or violation can be caused by an operation on a masked-off element. Consequently,
no MXCSR exception flag is updated as a result of a masked-off operation.

® A destination element is not updated with the result of the operation if the corresponding writemask bit is not
set. Instead, the destination element value must be preserved (merging-masking) or it must be zeroed out
(zeroing-masking).

® For some instructions with a memory operand, memory faults are suppressed for elements with a mask bit of
0.

Ref. # 319433-029 2-5

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

Note that this feature provides a versatile construct to implement control-flow predication as the mask in effect

provides a merging behavior for AVX-512 vector register destinations. As an alternative the masking can be used
for zeroing instead of merging, so that the masked out elements are updated with O instead of preserving the old
value. The zeroing behavior is provided to remove the implicit dependency on the old value when it is not needed.

Most instructions with masking enabled accept both forms of masking. Instructions that must have EVEX.aaa bits
different than O (gather and scatter) and instructions that write to memory only accept merging-masking.

It’'s important to note that the per-element destination update rule also applies when the destination operand is a
memory location. Vectors are written on a per element basis, based on the opmask register used as a predicate
operand.

The value of an opmask register can be:

® generated as a result of a vector instruction (e.g. CMP)
® loaded from memory

¢ loaded from GPR register

¢ or modified by mask-to-mask operations

Opmask registers can be used for purposes outside of predication. For example, they can be used to manipulate
sparse sets of elements from a vector or used to set the EFLAGS based on the 0/0xFFFFFFFFFFFFFFFF/other status
of the OR of two opmask registers.

2.5.1.1 Opmask Register KO

The only exception to the opmask rules described above is that opmask kO can not be used as a predicate operand.
Opmask kO cannot be encoded as a predicate operand for a vector operation; the encoding value that would select
opmask kO will instead selects an implicit opmask value of OxFFFFFFFFFFFFFFFF, thereby effectively disabling
masking. Opmask register kO can still be used for any instruction that takes opmask register(s) as operand(s)
(either source or destination).

Note that certain instructions implicitly use the opmask as an extra destination operand. In such cases, trying to
use the “no mask” feature will translate into a #UD fault being raised.

2.5.1.2 Example of Opmask Usages

The example below illustrates predicated vector add operation and predicated updates of added results into the
destination operand. The initial state of vector registers zmmO, zmm1, and zmm2 and k3 are:

zmm0 =
[0x00000003 0x00000002 0x00000001 0x00000000

0x00000007 0x00000006 0x00000005 0x00000004
0x0000000B 0x0000000A 0x00000009 0x00000008

bytes 15 through 0)
bytes 31 through 16)

bytes 47 through 32)
bytes 63 through 48)

(AR

0x0000000F 0x0000000E 0x0000000D 0x0000000C

zmml =

[0Ox0000000F 0x0000000F 0x0000000F 0x0000000F bytes 15 through 0)
bytes 31 through 16)
bytes 47 through 32)

bytes 63 through 48)

0x0000000F 0x0000000F 0x000000O0F 0x0000000F

T)

[
[0Ox0000000F 0x0000000F 0x0000000F 0x0000000F
[0x0000000F 0x0000000F 0x0000000F 0x0000000F

zmm2 =

[OxAAAAAAAA OxXAAAAAAAA OxXAAAAAAAA OxAAAAAAAA bytes 15 through 0)
bytes 31 through 16)
bytes 47 through 32)

bytes 63 through 48)

0xBBBBBBBB 0xBBBBBBBB 0xBBBBBBBB 0xBBBBBBBB

T

[
[0xCCCCCCCC 0xCCCCCCCC 0xCCCccceee oxcceeeccee
[0xDDDDDDDD 0xDDDDDDDD 0xDDDDDDDD 0xDDDDDDDD

2-6 Ref. # 319433-029

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

k3 = 0x8F03 (1000 1111 0000 0011)

An opmask register serving as a predicate operand is expressed as a curly-braces-enclosed decorator following the
first operand in the Intel assembly syntax. Given this state, we will execute the following instruction:

vpaddd zmm2 {k3}, zmmO, zmml

The vpaddd instruction performs 32-bit integer additions on each data element conditionally based on the corre-
sponding bit value in the predicate operand k3. Since per-element operations are not operated if the corresponding
bit of the predicate mask is not set, the intermediate result is:

FhEkdkkkkkkx Kkkkkkxxxxkkx 0x00000010 0x00000O0OQF (bytes 15 through 0)

*khkkhkhkkkhhkkdk *khkkhhkhkhhkhkd *khkkhkhkhhhhkd *khkxdhrhhxk*k

(bytes 31 through 16)

0x0000001A 0x00000019 0x00000018 0x00000017 (bytes 47 through 32)

T S

O0X0000001E **kkkkkhkkk hkkhkkhhhkk *hhkkkhkhkdhkkk (bytes 63 through 48)
where 7******kxxx” ndicates that no operation is performed.

This intermediate result is then written into the destination vector register, zmmz2, using the opmask register k3 as
the writemask, producing the following final result:

zmm2 =
[0xAAAAAAAA OxXAAAAAAAA 0x00000010 0x0000000F] (bytes 15 through 0)
[OxBBBBBBBB 0xBBBBBBBB 0xBBBBBBBB 0xBBBBBBBB] (bytes 31 through 16)
[0x0000001A 0x00000019 0x00000018 0x00000017] (bytes 47 through 32)
[0x0000001E 0xDDDDDDDD 0xDDDDDDDD 0xDDDDDDDD] (bytes 63 through 48)

Note that for a 64-bit instruction (say vaddpd), only the 8 LSB of mask k3 (0x03) would be used to identify the
predicate operation on each one of the 8 elements of the source/destination vectors.

2.5.2 OpMask Instructions

AVX-512 Foundation instructions provide a collection of opmask instructions that allow programmers to set, copy,
or operate on the contents of a given opmask register. There are three types of opmask instructions:

® Mask read/write instructions: These instructions move data between a general-purpose integer register or
memory and an opmask mask register, or between two opmask registers. For example:

* kmovw k1, ebx; move lower 16 bits of ebx to k1.

® Flag instructions: This category, consisting of instructions that modify EFLAGS based on the content of
opmask registers.

* kortestw k1, k2; OR registers k1 and k2 and updated EFLAGS accordingly.

® Mask logical instructions: These instructions perform standard bitwise logical operations between opmask
registers.

¢ kandw k1, k2, k3; AND lowest 16 bits of registers k2 and k3, leaving the result in k1.

Ref. # 319433-029 2-7

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

2.5.3 Broadcast

EVEX encoding provides a bit-field to encode data broadcast for some load-op instructions, i.e. instructions that
load data from memory and perform some computational or data movement operation. A source element from
memory can be broadcasted (repeated) across all the elements of the effective source operand (up to 16 times for
32-bit data element, up to 8 times for 64-bit data element). The is useful when we want to reuse the same scalar
operand for all the operations in a vector instruction. Broadcast is only enabled on instructions with an element size
of 32 bits or 64 bits. Byte and word instructions do not support embedded broadcast.

The functionality of data broadcast is expressed as a curly-braces-enclosed decorator following the last
register/memory operand in the Intel assembly syntax.

For instance:
vmulps zmm1, zmmz2, [rax] {1tolé6}

The {1tol6} primitive loads one float32 (single precision) element from memory, replicates it 16 times to form a
vector of 16 32-bit floating-point elements, multiplies the 16 float32 elements with the corresponding elements in
the first source operand vector, and put each of the 16 results into the destination operand.

AVX-512 instructions with store semantics and pure load instructions do not support broadcast primitives.

vmovaps [rax] {k3}, zmml9

In contrast, the k3 opmask register is used as the predicate operand in the above example. Only the store opera-
tion on data elements corresponding to the non-zero bits in k3 will be performed.

2.5.4 STATIC ROUNDING MODE AND SUPPRESS ALL EXCEPTIONS

In previous SIMD instruction extensions, rounding control is generally specified in MXCSR, with a handful of
instructions providing per-instruction rounding override via encoding fields within the imm8 operand. AVX-512
offers a more flexible encoding attribute to override MXCSR-based rounding control for floating-pointing instruction
with rounding semantic. This rounding attribute embedded in the EVEX prefix is called Static (per instruction)
Rounding Mode or Rounding Mode override. This attribute allows programmers to statically apply a specific arith-
metic rounding mode irrespective of the value of RM bits in MXCSR. It is available only to register-to-register
flavors of EVEX-encoded floating-point instructions with rounding semantic. The differences between these three
rounding control interfaces are summarized in Table 2-4.

Table 2-4. Characteristics of Three Rounding Control Interfaces

Rounding Interface Static Rm_.lndlng Imm8 Embeddgd Rounding MXCSR Rounding Control
Override Override
Semantic Requirement FP rounding FP rounding FP rounding
Prefix Requirement EVEXB=1 NA NA
Rounding Control EVEX.L'L IMMB8[1:0] or MXCSR.RC MXCSR.RC
(depending on IMM8[2])
Suppress All Exceptions (SAE) Implied no no
SIMD FP Exception #XF All suppressed Can raise #1, #P (unless SPE is set) | MXCSR masking controls
MXCSR flag update No yes (except PE if SPE is set) Yes
Precedence Above MXCSR.RC Above EVEX.L'L Default
Scope 512-bit, reg-reg, ROUNDPx, ROUNDSX, All SIMD operands, vector lengths
Scalar reg-reg VCVTPS2PH, VRNDSCALEXX

2-8

Ref. # 319433-029

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

The static rounding-mode override in AVX-512 also implies the “suppress-all-exceptions” (SAE) attribute. The SAE
effect is as if all the MXCSR mask bits are set, and none of the MXCSR flags will be updated. Using static rounding-
mode via EVEX without SAE is not supported.

Static Rounding Mode and SAE control can be enabled in the encoding of the instruction by setting the EVEX.b bit
to 1 in a register-register vector instruction. In such a case, vector length is assumed to be MAX_VL (512-bit in
case of AVX-512 packed vector instructions) or 128-bit for scalar instructions. Table 2-5 summarizes the possible
static rounding-mode assignments in AVX-512 instructions.

Note that some instructions already allow to specify the rounding mode statically via immediate bits. In such case,
the immediate bits take precedence over the embedded rounding mode (in the same vein that they take prece-
dence over whatever MXCSR.RM says).

Table 2-5. Static Rounding Mode

Function Description

{rn-sae} Round to nearest (even) + SAE
{rd-sae} Round down (toward -inf) + SAE
{ru-sae} Round up (toward +inf) + SAE
{rz-sae} Round toward zero (Truncate) + SAE

An example of use would be in the following instructions:
vaddps zmm7 {k6}, zmm2, zmm4, {rd-sae}

Which would perform the single-precision floating-point addition of vectors zmm2 and zmm4 with round-towards-
minus-infinity, leaving the result in vector zmm7 using k6 as conditional writemask.

Note that MXCSR.RM bits are ignored and unaffected by the outcome of this instruction.
Examples of instructions instances where the static rounding-mode is not allowed would be:

; rounding-mode already specified in the instruction immediate

vrndscaleps zmm7 {k6}, zmm2, 0x00

; instructions with memory operands

vmulps zmm7 {ké6}, zmm2, [rax], {rd-sae}

255 Compressed Disp8*N Encoding

EVEX encoding supports a new displacement representation that allows for a more compact encoding of memory
addressing commonly used in unrolled code, where an 8-bit displacement can address a range exceeding the
dynamic range of an 8-bit value. This compressed displacement encoding is referred to as disp8*N, where N is a
constant implied by the memory operation characteristic of each instruction.

The compressed displacement is based on the assumption that the effective displacement (of a memory operand
occurring in a loop) is a multiple of the granularity of the memory access of each iteration. Since the Base register
in memory addressing already provides byte-granular resolution, the lower bits of the traditional disp8 operand
becomes redundant, and can be implied from the memory operation characteristic.

The memory operation characteristics depend on the following:
® The destination operand is updated as a full vector, a single element, or multi-element tuples.

® The memory source operand (or vector source operand if the destination operand is memory) is fetched (or
treated) as a full vector, a single element, or multi-element tuples.

Ref. # 319433-029 2-9

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

For example,
vaddps zmm7, zmm2, disp8[membase + index*8]

The destination zmm?7 is updated as a full 512-bit vector, and 64-bytes of data are fetched from memory as a full
vector; the next unrolled iteration may fetch from memory in 64-byte granularity per iteration. There are 6 bits of
lowest address that can be compressed, hence N = 276 = 64. The contribution of “disp8” to effective address
calculation is 64*disp8.

vbroadcastf32x4 zmm7, disp8 [membase + index*8]

In VBROADCASTF32x4, memory is fetched as a 4tuple of 4 32-bit entities. Hence the common lowest address bits
that can be compressed is 4, corresponding to the 4tuple width of 284 = 16 bytes (4x32 bits). Therefore, N = 274,

For EVEX encoded instructions that update only one element in the destination, or source element is fetched indi-
vidually, the number of lowest address bits that can be compressed is generally the width in bytes of the data
element, hence N = 27 (width).

2.6 MEMORY ALIGNMENT

Memory alignment requirements on EVEX-encoded SIMD instructions are similar to VEX-encoded SIMD instruc-
tions. Memory alignment applies to EVEX-encoded SIMD instructions in three categories:

® Explicitly-aligned SIMD load and store instructions accessing 64 bytes of memory with EVEX prefix encoded
vector length of 512 bits (e.g., VMOVAPD, VMOVAPS, VMOVDQA, etc.). These instructions always require
memory address to be aligned on 64-byte boundary.

¢ Explicitly-unaligned SIMD load and store instructions accessing 64 bytes or less of data from memory (e.g.
VMOVUPD, VMOVUPS, VMOVDQU, VMOVQ, VMOVD, etc.). These instructions do not require memory address
to be aligned on natural vector-length byte boundary.

® Most arithmetic and data processing instructions encoded using EVEX support memory access semantics.
When these instructions access from memory, there are no alignment restrictions.

Software may see performance penalties when unaligned accesses cross cacheline boundaries or vector-length
naturally-aligned boundaries, so reasonable attempts to align commonly used data sets should continue to be
pursued.

Atomic memory operation in Intel 64 and 1A-32 architecture is guaranteed only for a subset of memory operand
sizes and alignment scenarios. The guaranteed atomic operations are described in Section 7.1.1 of 1A-32 Intel®
Architecture Software Developer’s Manual, Volumes 3A. AVX and FMA instructions do not introduce any new guar-
anteed atomic memory operations.

AVX-512 instructions may generate an #AC(0) fault on misaligned 4 or 8-byte memory references in Ring-3 when
CRO.AM=1. 16, 32 and 64-byte memory references will not generate #AC(0) fault. See Table 2-7 for details.

Certain AVX-512 Foundation instructions always require 64-byte alignment (see the complete list of VEX and EVEX
encoded instructions in Table 2-6). These instructions will #GP(0) if not aligned to 64-byte boundaries.

2-10 Ref. # 319433-029

Table 2-6. SIMD Instructions Requiring Explicitly Aligned Memory

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

Require 16-byte alignment

Require 32-byte alignment

Require 64-byte alignment*

(V)MOVDQA xmm, m128

VMOVDQA ymm, m256

VMOVDQA zmm, m512

VMOVDQA m256, ymm

VMOVDQA m512, zmm

VV)MOVDQA m128, xmm
(

VMOVAPS ymm, m256

VMOVAPS zmm, m512

(V)MOVAPS m128, xmm

VMOVAPS m256, ymm

VMOVAPS m512, zmm

(

V)MOVAPS xmm, m128
v

(

V)MOVAPD xmm, m128

VMOVAPD ymm, m256

VMOVAPD zmm, m512

(V)MOVAPD m128, xmm

VMOVAPD m256, ymm

VMOVAPD m512, zmm

(V)MOVNTDQA xmm, m128

VMOVNTPS m256, ymm

VMOVNTPS m512, zmm

(V)MOVNTPS m128, xmm

VMOVNTPD m256, ymm

VMOVNTPD m512, zmm

(V)MOVNTPD m128, xmm

VMOVNTDQ m256, ymm

VMOVNTDQ m512, zmm

(V)MOVNTDQ m128, xmm

VMOVNTDQA ymm, m256

VMOVNTDQA zmm, m512

Table 2-7. Instructions Not Requiring Explicit Memory Alignment

(V)MOvVDQU xmm, m128

VMOVDQU ymm, m256

VMOVDQU zmm, m512

(V)MOVDQU m128, m128

VMOVDQU m256, ymm

VMOVDQU m512, zmm

VMOVUPS ymm, m256

VMOVUPS zmm, m512

(V)MOVUPS xmm, m128
(V)MOVUPS m128, xmm

VMOVUPS m256, ymm

VMOVUPS m512, zmm

VMOVUPD ymm, m256

VMOVUPD zmm, m512

)
(V)MOVUPD xmm, m128
(V)MOVUPD m128, xmm

VMOVUPD m256, ymm

VMOVUPD m512, zmm

2.7 SIMD FLOATING-POINT EXCEPTIONS

AVX-512 instructions can generate SIMD floating-point exceptions (#XM) if embedded “suppress all exceptions”
(SAE) in EVEX is not set. When SAE is not set, these instructions will respond to exception masks of MXCSR in the
same way as VEX-encoded AVX instructions. When CR4.0SXMMEXCPT=0 any unmasked FP exceptions generate
an Undefined Opcode exception (#UD).

2.8 INSTRUCTION EXCEPTION SPECIFICATION

Exception behavior of VEX-encoded Intel AVX and Intel AVX2 instructions are described in Intel® 64 and 1A-32
Architectures Software Developer’s Manual, Volume 2A. Exception behavior of AVX-512 Foundation instructions
and additional 512-bit extensions are described in Section 4.10, “Exception Classifications of EVEX-Encoded
instructions” and Section 4.11, “Exception Classifications of Opmask instructions”.

Ref. # 319433-029 2-11

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

2.9 CPUID INSTRUCTION

CPUID—CPU Identification

. . Compat/ i
Opcode Instruction 64-Bit Mode Leg Mode Description
OF A2 CPUID Valid Valid Returns processor identification and feature information to the EAX,
EBX, ECX, and EDX registers, as determined by input entered in EAX
(in some cases, ECX as well).
Description

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction. If a software procedure can
set and clear this flag, the processor executing the procedure supports the CPUID instruction. This instruction oper-
ates the same in non-64-bit modes and 64-bit mode.

CPUID returns processor identification and feature information in the EAX, EBX, ECX, and EDX registers.1 The
instruction’s output is dependent on the contents of the EAX register upon execution (in some cases, ECX as well).
For example, the following pseudocode loads EAX with OOH and causes CPUID to return a Maximum Return Value
and the Vendor Identification String in the appropriate registers:

MOV EAX, OOH
CPUID

Table 2-8 shows information returned, depending on the initial value loaded into the EAX register. Table 2-9 shows
the maximum CPUID input value recognized for each family of 1A-32 processors on which CPUID is implemented.

Two types of information are returned: basic and extended function information. If a value is entered for
CPUID.EAX is invalid for a particular processor, the data for the highest basic information leaf is returned. For
example, using the Intel Core 2 Duo E6850 processor, the following is true:

CPUID.EAX = 0O5H (* Returns MONITOR/MWAIT leaf. *)

CPUID.EAX = OAH (* Returns Architectural Performance Monitoring leaf. *)

CPUID.EAX = 0BH (* INVALID: Returns the same information as CPUID.EAX = OAH. *)

CPUID.EAX = 80000008H (* Returns virtual/physical address size data. *)

CPUID.EAX = 8000000AH (* INVALID: Returns same information as CPUID.EAX = OAH. *)

When CPUID returns the highest basic leaf information as a result of an invalid input EAX value, any dependence
on input ECX value in the basic leaf is honored.

CPUID can be executed at any privilege level to serialize instruction execution. Serializing instruction execution
guarantees that any modifications to flags, registers, and memory for previous instructions are completed before
the next instruction is fetched and executed.

See also:

“Serializing Instructions” in Chapter 8, “Multiple-Processor Management,” in the Intel® 64 and I1A-32 Architectures
Software Developer’s Manual, Volume 3A

"Caching Translation Information” in Chapter 4, “Paging,” in the Intel® 64 and 1A-32 Architectures Software Devel-
oper’s Manual, Volume 3A.

1. On Intel 64 processors, CPUID clears the high 32 bits of the RAX/RBX/RCX/RDX registers in all modes.

2-12 Ref. # 319433-029

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

Table 2-8. Information Returned by CPUID Instruction

Initial EAX Information Provided about the Processor
Value
Basic CPUID Information
OH EAX Maximum Input Value for Basic CPUID Information (see Table 2-9)
EBX “Genu”
ECX “ntel”
EDX “inel”
O1H EAX Version Information: Type, Family, Model, and Stepping ID (see Figure 2-4)
EBX Bits 7-0: Brand Index
Bits 15-8: CLFLUSH line size (Value * 8 = cache line size in bytes)
Bits 23-16: Maximum number of addressable IDs for logical processors in this physical package*.
Bits 31-24: Initial APIC ID
ECX Feature Information (see Figure 2-5 and Table 2-11)
EDX Feature Information (see Figure 2-6 and Table 2-12)
NOTES:
* The nearest power-of-2 integer that is not smaller than EBX[23:16] is the maximum number of
unique initial APIC IDs reserved for addressing different logical processors in a physical package.
02H EAX Cache and TLB Information (see Table 2-13)
EBX Cache and TLB Information
ECX Cache and TLB Information
EDX Cache and TLB Information
03H EAX Reserved.
EBX Reserved.
ECX Bits 00-31 of 96 bit processor serial number. (Available in Pentium Ill processor only; otherwise, the
value in this register is reserved.)
EDX Bits 32-63 of 96 bit processor serial number. (Available in Pentium Il processor only; otherwise, the
value in this register is reserved.)
NOTES:
Processor serial number (PSN) is not supported in the Pentium 4 processor or later. On all models,
use the PSN flag (returned using CPUID) to check for PSN support before accessing the feature.
CPUID leaves > 3 < 80000000 are visible only when IA32_MISC_ENABLES.BOOT_NT4[bit 22] = O (default).
Deterministic Cache Parameters Leaf
04H NOTES:
Leaf 04H output depends on the initial value in ECX.
See also: “INPUT EAX = 4: Returns Deterministic Cache Parameters for each level on page 2-35.
EAX Bits 4-0: Cache Type Field
0 = Null - No more caches
1 = Data Cache
2 = Instruction Cache
3 = Unified Cache
4-31 = Reserved

Ref. # 319433-029 2-13

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

Table 2-8. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor

EBX

ECX
EDX

Bits 7-5: Cache Level (starts at 1)
Bits 8: Self Initializing cache level (does not need SW initialization)
Bits 9: Fully Associative cache

Bits 13-10: Reserved

Bits 25-14: Maximum number of addressable IDs for logical processors sharing this cache*, **
Bits 31-26: Maximum number of addressable IDs for processor cores in the physical

package*, ***, *kkk

Bits 11-00: L = System Coherency Line Size*
Bits 21-12: P = Physical Line partitions*
Bits 31-22: W = Ways of associativity*

Bits 31-00: S = Number of Sets*

Bit 0: WBINVD/INVD behavior on lower level caches
Bit 10: Write-Back Invalidate/Invalidate
0 = WBINVD/INVD from threads sharing this cache acts upon lower level caches for threads
sharing this cache
1 = WBINVD/INVD is not guaranteed to act upon lower level caches of non-originating threads
sharing this cache.
Bit 1: Cache Inclusiveness
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.
Bit 2: Complex cache indexing
0 = Direct mapped cache
1 = A complex function is used to index the cache, potentially using
all address bits.
Bits 31-03: Reserved = 0

NOTES:

* Add one to the return value to get the result.

**The nearest power-of-2 integer that is not smaller than (1 + EAX[25:14]) is the number of unique
initial APIC IDs reserved for addressing different logical processors sharing this cache

*** The nearest power-of-2 integer that is not smaller than (1 + EAX[31:26]) is the number of
unique Core_IDs reserved for addressing different processor cores in a physical package. Core ID is
a subset of bits of the initial APIC ID.

****The returned value is constant for valid initial values in ECX. Valid ECX values start from O.

MONITOR/MWAIT Leaf

O5H

EAX

EBX

ECX

Bits 15-00: Smallest monitor-line size in bytes (default is processor’'s monitor granularity)
Bits 31-16: Reserved = 0

Bits 15-00: Largest monitor-line size in bytes (default is processor’'s monitor granularity)

Bits 31-16: Reserved = 0

Bits 00: Enumeration of Monitor-Mwait extensions (beyond EAX and EBX registers) supported
Bits 01: Supports treating interrupts as break-event for MWAIT, even when interrupts disabled
Bits 31 - 02: Reserved

2-14

Ref. # 319433-029

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

Table 2-8. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor

EDX

Bits 03 - 00: Number of CO* sub C-states supported using MWait

Bits 07 - 04: Number of C1* sub C-states supported using MWAIT
Bits 11 - 08: Number of C2* sub C-states supported using MWAIT
Bits 15 - 12: Number of C3* sub C-states supported using MWAIT
Bits 19 - 16: Number of C4* sub C-states supported using MWAIT
Bits 23 - 20: Number of C5* sub C-states supported using MWAIT
Bits 27 - 24: Number of C6* sub C-states supported using MWAIT
Bits 31 - 28: Number of C7* sub C-states supported using MWAIT

NOTE:

* The definition of CO through C7 states for MWAIT extension are processor-specific C-states, not
ACPI C-states.

Thermal and Power Management Leaf

06H EAX

EBX

ECX

EDX

Bit 00: Digital temperature sensor is supported if set

Bit 01: Intel Turbo Boost Technology Available (see description of IA32_MISC_ENABLE[38]).

Bit 02: ARAT. APIC-Timer-always-running feature is supported if set.

Bit 03: Reserved

Bit 04: PLN. Power limit notification controls are supported if set.

Bit 05: ECMD. Clock modulation duty cycle extension is supported if set.

Bit 06: PTM. Package thermal management is supported if set.

Bit 07: HWP. HWP base registers (IA32_PM_ENABLE[bit 0], IA32_HWP_CAPABILITIES,
IA32_HWP_REQUEST, IA32_HWP_STATUS) are supported if set.

Bit 08: HWP_Notification. IA32_HWP_INTERRUPT MSR is supported if set.

Bit 09: HWP_Activity_Window. IA32_HWP_REQUESTI[bits 41:32] is supported if set.

Bit 10: HWP_Energy_Performance_Preference. IA32_HWP_REQUESTI[bits 31:24] is supported if set.
Bit 11: HWP_Package_Level_Request. IA32_HWP_REQUEST_PKG MSR is supported if set.

Bit 12: Reserved.

Bit 13: HDC. HDC base registers IA32_PKG_HDC_CTL, IA32_PM_CTL1, IA32_THREAD_STALL MSRs
are supported if set.

Bits 31 - 15: Reserved

Bits 03 - 00: Number of Interrupt Thresholds in Digital Thermal Sensor

Bits 31 - 04: Reserved

Bit 00: Hardware Coordination Feedback Capability (Presence of IA32_MPERF and IA32_APERF). The
capability to provide a measure of delivered processor performance (since last reset of the coun-
ters), as a percentage of the expected processor performance when running at the TSC frequency.
Bits 02 - 01: Reserved = 0

Bit 03: The processor supports performance-energy bias preference if

CPUID.O6H:ECX.SETBH[bit 3] is set and it also implies the presence of a

new architectural MSR called IA32_ENERGY_PERF_BIAS (1BOH)

Bits 31 - 04: Reserved =0

Reserved =0

Structured Extended Feature Flags Enumeration Leaf (Output depends on ECX input value)

07H

EAX

NOTES:
Leaf 07H main leaf (ECX = 0).
If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return O.

Bits 31-00: Reports the maximum number sub-leaves that are supported in leaf 07H.

Ref. # 319433-029

2-15

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

Table 2-8. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor

EBX

ECX

Bit 00: FSGSBASE. Supports RDFSBASE/RDGSBASE/WRFSBASE/WRGSBASE if 1.
Bit 01: IA32_TSC_ADJUST MSR is supported if 1.

Bit 02: SGX

Bit 03: BMI1

Bit 04: HLE

Bit 05: AVX2

Bit 07: SMEP. Supports Supervisor Mode Execution Protection if 1.
Bit 06: Reserved

Bit 08: BMI2

Bit 09: ERMS

Bit 10: INVPCID

Bit 11: RTM

Bit 12: Supports Platform Quality of Service Monitoring (PQM) capability if 1.
Bit 13: Deprecates FPU CS and FPU DS values if 1.

Bit 14: Intel Memory Protection Extensions

Bit 15: Supports Platform Quality of Service Enforcement (PQE) capability if 1.
Bit 16: AVX512F

Bit 17: AVX512DQ

Bit 18: RDSEED

Bit 19: ADX

Bit 20: SMAP

Bit 21: AVX512IFMA

Bit 22: Reserved

Bit 23: CLFLUSHOPT

Bit 24: CLWB

Bit 25: Intel Processor Trace

Bit 26: AVX512PF

Bit 27: AVX512ER

Bit 28: AVX512CD

Bit 29: SHA

Bit 30: AVX512BW

Bit 31: AVX512VL

Bit 00: PREFETCHWT1

Bit 01: AVX512VBMI

Bit 02: UMIP. Supports user-mode instruction prevention if 1.

Bit 03: PKU. Supports protection keys for user-mode pages if 1.

Bit 04: OSPKE. If 1, OS has set CR4.PKE to enable protection keys (and the RDPKRU/WRPKRU instruc-
tions).

Bits 13 - 05: Reserved

Bit 14: AVX512_VPOPCNTDQ

Bits 16 - 15: Reserved

Bits 21 - 17: The value of MAWAU used by the BNDLDX and BNDSTX instructions in 64-bit mode.
Bit 22: RDPID. Supports Read Processor ID if 1.

Bits 29 - 23: Reserved.

Bit 30: SGX_LC. Supports SGX Launch Configuration if 1.

Bit 31: Reserved.

EDX

Bits 01 - 00: Reserved

Bit 02: AVX512_4VNNIW (Vector instructions for deep learning enhanced word variable precision.)
Bit 03: AVX512_4FMAPS (Vector instructions for deep learning floating-point single precision.)
Bits 31-04: Reserved

2-16

Ref. # 319433-029

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

Table 2-8. Information Returned by CPUID Instruction(Continued)

Initial EAX Information Provided about the Processor
Value
Structured Extended Feature Enumeration Sub-leaves (EAX = 07H, ECX =n,n2 1)
07H NOTES:
Leaf 07H output depends on the initial value in ECX.
If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return O.
EAX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.
EBX This field reports O if the sub-leaf index, n, is invalid*; otherwise it is reserved.
ECX This field reports O if the sub-leaf index, n, is invalid*; otherwise it is reserved.
EDX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.
Direct Cache Access Information Leaf
0%H EAX Value of bits [31:0] of IA32_PLATFORM_DCA_CAP MSR (address 1F8H)
EBX Reserved
ECX Reserved
EDX Reserved
Architectural Performance Monitoring Leaf
OAH EAX Bits 07 - 00: Version ID of architectural performance monitoring
Bits 15- 08: Number of general-purpose performance monitoring counter per logical processor
Bits 23 - 16: Bit width of general-purpose, performance monitoring counter
Bits 31 - 24: Length of EBX bit vector to enumerate architectural performance monitoring events
EBX Bit 00: Core cycle event not available if 1
Bit 01: Instruction retired event not available if 1
Bit 02: Reference cycles event not available if 1
Bit 03: Last-level cache reference event not available if 1
Bit 04: Last-level cache misses event not available if 1
Bit 05: Branch instruction retired event not available if 1
Bit 06: Branch mispredict retired event not available if 1
Bits 31- 07: Reserved = 0
ECX Reserved = 0
EDX Bits 04 - 00: Number of fixed-function performance counters (if Version ID > 1)
Bits 12- 05: Bit width of fixed-function performance counters (if Version ID > 1)
Reserved = 0
Extended Topology Enumeration Leaf
0BH NOTES:
Most of Leaf OBH output depends on the initial value in ECX.
The EDX output of leaf OBH is always valid and does not vary with input value in ECX.
Output value in ECX[7:0] always equals input value in ECX[7:0].
For sub-leaves that returns an invalid level-type of O in ECX[15:8]; EAX and EBX will return 0.
If an input value N in ECX returns the invalid level-type of O in ECX[15:8], other input values with
ECX > N also return 0 in ECX[15:8]
EAX Bits 04-00: Number of bits to shift right on x2APIC ID to get a unique topology ID of the next level
type*. All logical processors with the same next level ID share current level.
Bits 31-5: Reserved.
EBX Bits 15 - 00: Number of logical processors at this level type. The number reflects configuration as
shipped by Intel**.
Bits 31- 16: Reserved.

Ref. # 319433-029 2-17

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

Table 2-8. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor

ECX

EDX

Bits 07 - 00: Level number. Same value in ECX input.
Bits 15 - 08: Level type***.
Bits 31 - 16: Reserved.

Bits 31- 00: x2APIC ID the current logical processor.

NOTES:
* Software should use this field (EAX[4:0]) to enumerate processor topology of the system.

** Software must not use EBX[15:0] to enumerate processor topology of the system. This value in
this field (EBX[15:0]) is only intended for display/diagnostic purposes. The actual number of logical
processors available to BIOS/0S/Applications may be different from the value of EBX[15:0], depend-
ing on software and platform hardware configurations.

*** The value of the “level type” field is not related to level numbers in any way, higher “level type”
values do not mean higher levels. Level type field has the following encoding:

0: invalid

1: SMT

2: Core

3-255: Reserved

Processor Extended State Enumeration Main Leaf (EAX = ODH, ECX = 0)

ODH

EAX

EBX

ECX

EDX

NOTES:
Leaf ODH main leaf (ECX = 0).

Bits 31-00: Reports the valid bit fields of the lower 32 bits of the XFEATURE_ENABLED_MASK regis-
ter. If a bit is O, the corresponding bit field in XCRO is reserved.

Bit 00: legacy x87

Bit 01: 128-bit SSE

Bit 02: 256-bit AVX

Bits 04 - 03: MPX state

Bit 07 - 05: AVX-512 state

Bit 08: Used for IA32_XSS

Bit 09: PKRU state

Bits 31-10: Reserved

Bits 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) required by
enabled features in XCRO. May be different than ECX if some features at the end of the XSAVE save
area are not enabled.

Bit 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) of the
XSAVE/XRSTOR save area required by all supported features in the processor, i.e all the valid bit
fields in XCRO.

Bit 31-0: Reports the valid bit fields of the upper 32 bits of the XCRO register. If a bit is O, the corre-
sponding bit field in XCRO is reserved

2-18

Ref. # 319433-029

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

Table 2-8. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor

Processor Extended State Enumeration Sub-leaf (EAX = ODH, ECX = 1)

ODH

EAX Bit 00: XSAVEOPT is available
Bit 01: Supports XSAVEC and the compacted form of XRSTOR if set
Bit 02: Supports XGETBV with ECX = 1 if set
Bit 03: Supports XSAVES/XRSTORS and IA32_XSS if set
Bits 31-04: Reserved
EBX Bits 31-00: The size in bytes of the XSAVE area containing all states enabled by XCRO | IA32_XSS.
ECX Bits 31-00: Reports the supported bits of the lower 32 bits of the IA32_XSS MSR. IA32_XSS[n] can
be set to 1 only if ECX[n] is 1.
Bits 07-00: Used for XCRO
Bit 08: PT state
Bit 09: Used for XCRO
Bits 31-10: Reserved
EDX Bits 31-00: Reports the supported bits of the upper 32 bits of the IA32_XSS MSR. IA32_XSS[n+32]
can be set to 1 only if EDX[N]is 1.
Bits 31-00: Reserved

Processor Extended State Enumeration Sub-leaves (EAX = ODH, ECX =n,n > 1)

ODH

NOTES:
Leaf ODH output depends on the initial value in ECX.

Each sub-leaf index (starting at position 2) is supported if it corresponds to a supported bit in
either the XCRO register or the IA32_XSS MSR.

* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leafn (0 < n < 31)is
invalid if sub-leaf O returns O in EAX[n] and sub-leaf 1 returns O in ECX[n]. Sub-leafn (32 <n <
63) is invalid if sub-leaf O returns O in EDX[n-32] and sub-leaf 1 returns 0 in EDX[n-32].

EAX Bits 31-0: The size in bytes (from the offset specified in EBX) of the save area for an extended state
feature associated with a valid sub-leaf index, n. This field reports 0 if the sub-leaf index, n, is
invalid*.

EBX Bits 31-0: The offset in bytes of this extended state component’s save area from the beginning of
the XSAVE/XRSTOR area.

This field reports O if the sub-leaf index, n, does not map to a valid bit in the XCRO register*.

ECX Bit O is set if the bit n (corresponding to the sub-leaf index) is supported in the IA32_XSS MSR; it is
clear if bit n is instead supported in XCRO.
Bit 1 is set if, when the compacted format of an XSAVE area is used, this extended state component
located on the next 64-byte boundary following the preceding state component (otherwise, it is
located immediately following the preceding state component).
Bits 31:02 are reserved.
This field reports O if the sub-leaf index, n, is invalid*.

EDX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.

Platform QoS Monitoring Enumeration Sub-leaf (EAX = OFH, ECX = 0)

OFH

NOTES:
Leaf OFH output depends on the initial value in ECX.
Sub-leaf index O reports valid resource type starting at bit position 1 of EDX.
EAX Reserved.
EBX Bits 31-0: Maximum range (zero-based) of RMID within this physical processor of all types.
ECX Reserved.

EDX Bit 00: Reserved.
Bit 01: Supports L3 Cache QoS Monitoring if 1.
Bits 31 - 02: Reserved

Ref. # 319433-029 2-19

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

Table 2-8. Information Returned by CPUID Instruction(Continued)

Ini\tliaalluiAX Information Provided about the Processor

L3 Cache QoS Monitoring Capability Enumeration Sub-leaf (EAX = OFH, ECX = 1)
OFH NOTES:
Leaf OFH output depends on the initial value in ECX.

EAX Reserved.
EBX Bits 31-0: Conversion factor from reported IA32_QM_CTR value to occupancy metric (bytes).
ECX Maximum range (zero-based) of RMID of this resource type.
EDX Bit 00: Supports L3 occupancy monitoring if 1.

Bits 31:01: Reserved
Platform QoS Enforcement Enumeration Sub-leaf (EAX = 10H, ECX = 0)

10H NOTES:
Leaf 10H output depends on the initial value in ECX.
Sub-leaf index O reports valid resource identification (ResID) starting at bit position 1 of EBX.

EAX Reserved.

EBX Bit 00: Reserved.
Bit 01: Supports L3 Cache QoS Enforcement if 1.
Bits 31 - 02: Reserved.

ECX Reserved.
EDX Reserved.
L3 Cache QoS Enforcement Enumeration Sub-leaf (EAX = 10H, ECX = ResID =1)
10H NOTES:
Leaf 10H output depends on the initial value in ECX.
EAX Bits 4:0: Length of the capacity bit mask for the corresponding ResID.
Bits 31:05: Reserved
EBX Bits 31-0: Bit-granular map of isolation/contention of allocation units.
ECX Bit 00: Reserved.

Bit 01: Updates of COS should be infrequent if 1.
Bit 02: Code and Data Prioritization Technology supported if 1.
Bits 31:03: Reserved

EDX Bits 15:0: Highest COS number supported for this ResID.
Bits 31:16: Reserved

Intel Processor Trace Enumeration Main Leaf (EAX = 14H, ECX = 0)

14H NOTES:
Leaf 14H main leaf (ECX = Q).
EAX Bits 31-0: Reports the maximum sub-leaf supported in leaf 14H.
EBX Bit 00: If 1, Indicates that IA32_RTIT_CTL.CR3Filter can be set to 1, and that

IA32_RTIT_CR3_MATCH MSR can be accessed.

Bits 01: If 1, Indicates support of Configurable PSB and Cycle-Accurate Mode.

Bits 02: If 1, Indicates support of IP Filtering, TraceStop filtering, and preservation of Intel PT MSRs
across warm reset.

Bits 03: If 1, Indicates support of MTC timing packet and suppression of COFl-based packets.

Bits 31: 04: Reserved

2-20 Ref. # 319433-029

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

Table 2-8. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor

ECX

EDX

Bit 00: If 1, Tracing can be enabled with IA32_RTIT_CTL.ToPA = 1, hence utilizing the ToPA output
scheme; IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS MSRs can be accessed.
Bit O1: If 1, ToPA tables can hold any number of output entries, up to the maximum allowed by the
MaskOrTableOffset field of IA32_RTIT_OUTPUT_MASK_PTRS.

Bits 02: If 1, Indicates support of Single-Range Output scheme.

Bits 03: If 1, Indicates support of output to Trace Transport subsystem.

Bit 30:04: Reserved

Bit 31: If 1, Generated packets which contain IP payloads have LIP values, which include the CS base
component.

Bits 31- 00: Reserved

Intel Processor Trace Enumeration Sub-leaf (EAX = 14H, ECX = 1)

14H

EAX

EBX

ECX
EDX

Bits 2:0: Number of configurable Address Ranges for filtering.
Bits 15-03: Reserved
Bit 31:16: Bitmap of supported MTC period encodings

Bits 15-0: Bitmap of supported Cycle Threshold value encodings
Bit 31:16: Bitmap of supported Configurable PSB frequency encodings

Bits 31-00: Reserved
Bits 31- 00: Reserved

Time Stamp Counter and Core Crystal Clock Information Leaf

15H

EAX
EBX
ECX
EDX

NOTES:
If EBX[31:0]is O, the TSC and “core crystal clock” ratio is not enumerated.
EBX[31:0]/EAX[31:0] indicates the ratio of the TSC frequency and the core crystal clock fre-
quency.
If ECX is O, the core crystal clock frequency is not enumerated.
"TSC frequency” = “core crystal clock frequency” * EBX/EAX.
The core crystal clock may differ from the reference clock, bus clock, or core clock frequencies.

Bits 31:0: An unsigned integer which is the denominator of the TSC/"core crystal clock” ratio.
Bits 31-0: An unsigned integer which is the numerator of the TSC/"core crystal clock” ratio.
Bits 31:0: An unsigned integer which is the nominal frequency of the core crystal clock in Hz.
Bits 31:0: Reserved = 0.

Ref. # 319433-029

2-21

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

Table 2-8. Information Returned by CPUID Instruction(Continued)

Initial EAX Information Provided about the Processor
Value
Processor Frequency Information Leaf
16H EAX Bits 15:0: Processor Base Frequency (in MHz).

Bits 31:16: Reserved =0

EBX Bits 15:0: Maximum Frequency (in MHz).
Bits 31:16: Reserved = 0

ECX Bits 15:0: Bus (Reference) Frequency (in MHz).
Bits 31:16: Reserved = 0

EDX Reserved
NOTES:

* Data is returned from this interface in accordance with the processor’s specification and does not
reflect actual values. Suitable use of this data includes the display of processor information in like
manner to the processor brand string and for determining the appropriate range to use when
displaying processor information e.g. frequency history graphs. The returned information should not
be used for any other purpose as the returned information does not accurately correlate to
information / counters returned by other processor interfaces.

While a processor may support the Processor Frequency Information leaf, fields that return a value
of zero are not supported.

System-0On-Chip Vendor Attribute Enumeration Main Leaf (EAX = 17H, ECX = 0)

17H NOTES:

Leaf 17H main leaf (ECX = 0).

Leaf 17H output depends on the initial value in ECX.

Leaf 17H sub-leaves 1 through 3 reports SOC Vendor Brand String.
Leaf 17H is valid if MaxSOCID_Index >= 3.

Leaf 17H sub-leaves 4 and above are reserved.

EAX Bits 31 - 00: MaxSOCID_Index. Reports the maximum input value of supported sub-leaf in leaf 17H.
EBX Bits 15 - 00: SOC Vendor ID.
Bit 16: IsVendorScheme. If 1, the SOC Vendor ID field is assigned via an industry standard
enumeration

scheme. Otherwise, the SOC Vendor ID field is assigned by Intel.
Bits 31 - 17: Reserved = 0.

ECX Bits 31 - 00: Project ID. A unique number an SOC vendor assigns to its SOC projects.
EDX Bits 31 - 00: Stepping ID. A unique number within an SOC project that an SOC vendor assigns.
System-On-Chip Vendor Attribute Enumeration Sub-leaf (EAX = 17H, ECX = 1..3)
17H EAX Bit 31 - 00: SOC Vendor Brand String. UTF-8 encoded string.
EBX Bit 31 - 00: SOC Vendor Brand String. UTF-8 encoded string.
ECX Bit 31 - 00: SOC Vendor Brand String. UTF-8 encoded string.
EDX Bit 31 - 00: SOC Vendor Brand String. UTF-8 encoded string.
NOTES:

Leaf 17H output depends on the initial value in ECX.

SOC Vendor Brand String is a UTF-8 encoded string padded with trailing bytes of O0H.

The complete SOC Vendor Brand String is constructed by concatenating in ascending order of
EAX:EBX:ECX:EDX and from the sub-leaf 1 fragment towards sub-leaf 3.

2-22 Ref. # 319433-029

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

Table 2-8. Information Returned by CPUID Instruction(Continued)

Initial EAX Information Provided about the Processor
Value
System-On-Chip Vendor Attribute Enumeration Sub-leaves (EAX = 17H, ECX > MaxSOCID_Index)
17H NOTES:
Leaf 17H output depends on the initial value in ECX.
EAX Bits 31 - 00: Reserved = 0.
EBX Bits 31 - 00: Reserved = 0.
ECX Bits 31 - 00: Reserved = 0.
EDX Bits 31 - 00: Reserved = 0.
Deterministic Address Translation Parameters Main Leaf (EAX = 18H, ECX = 0)
18H NOTES:
Each sub-leaf enumerates a different address translations structure. Valid sub-leaves do not need
to be contiguous or in any particular order. A valid sub-leaf may be in a higher input ECX value than
an invalid sub-leaf or than a valid sub-leaf of a higher or lower-level structure.
If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index niis invalid if n
exceeds the value that sub-leaf O returns in EAX.
* Add one to the return value to get the result.
EAX Bits 31 - 00: Reports the maximum input value of supported sub-leaf in leaf 18H.
EBX Bit 00: 4K page size entries supported by this structure.
Bit 01: 2MB page size entries supported by this structure.
Bit 02: 4MB page size entries supported by this structure.
Bit 03: 1 GB page size entries supported by this structure.
Bits 07 - 04: Reserved.
Bits 10 - 08: Partitioning (0: Soft partitioning between the logical processors sharing this structure).
Bits 15 - 11: Reserved.
Bits 31 - 16: W = Ways of associativity.
ECX Bits 31 - 00: S = Number of Sets.
EDX Bits 04 - 00: Translation cache type field.
00000b: Null (indicates this sub-leaf is not valid).
00001b: Data TLB.
00010b: Instruction TLB.
00011b: Unified TLB.
All other encodings are reserved.
Bits 07 - 05: Translation cache level (starts at 1).
Bit 08: Fully associative structure.
Bits 13 - 09: Reserved.
Bits 25- 14: Maximum number of addressable IDs for logical processors sharing this translation
cache*
Bits 31 - 26: Reserved.
Deterministic Address Translation Parameters Sub-leaf (EAX = 18H, ECX 2 1)
18H NOTES:
If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n is invalid if n
exceeds the value that sub-leaf O returns in EAX.
* Add one to the return value to get the result.
EAX Bits 31 - 00: Reserved.

Ref. # 319433-029 2-23

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

Table 2-8. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor

EBX Bit 00: 4K page size entries supported by this structure.
Bit 01: 2MB page size entries supported by this structure.
Bit 02: 4MB page size entries supported by this structure.
Bit 03: 1 GB page size entries supported by this structure.
Bits 07 - 04: Reserved.
Bits 10 - 08: Partitioning (0: Soft partitioning between the logical processors sharing this structure).
Bits 15 - 11: Reserved.
Bits 31 - 16: W = Ways of associativity.

ECX Bits 31 - 00: S = Number of Sets.

EDX Bits 04 - 00: Translation cache type field.
0000b: Null (indicates this sub-leaf is not valid).
0001b: Data TLB.
0010b: Instruction TLB.
0011b: Unified TLB.
All other encodings are reserved.
Bits 07 - 05: Translation cache level (starts at 1).
Bit 08: Fully associative structure.
Bits 13 - 09: Reserved.
Bits 25- 14: Maximum number of addressable IDs for logical processors sharing this translation
cache*
Bits 31 - 26: Reserved.

Unimplemented CPUID Leaf Functions

40000000H

AFFFFFFFH

Invalid. No existing or future CPU will return processor identification or feature information if the
initial EAX value is in the range 40000000H to 4FFFFFFFH.

Extended Function CPUID Information

80000000H

EAX Maximum Input Value for Extended Function CPUID Information (see
Table 2-9).

EBX Reserved
ECX Reserved
EDX Reserved

80000001H

EAX Extended Processor Signature and Feature Bits.
EBX Reserved
ECX Bit 0: LAHF/SAHF available in 64-bit mode

Bits 4-1: Reserved

Bit 5: LZCNT available

Bits 7-6 Reserved

Bit 8: PREFETCHW

Bits 31-9: Reserved

EDX Bits 10-0: Reserved
Bit 11: SYSCALL/SYSRET available (when in 64-bit mode)
Bits 19-12: Reserved = 0
Bit 20: Execute Disable Bit available
Bits 25-21: Reserved = 0
Bit 26: 1-GByte pages are available if 1
Bit 27: RDTSCP and IA32_TSC_AUX are available if 1
Bits 28: Reserved = 0

Bit 29: Intel® 64 Architecture available if 1
Bits 31-30: Reserved =0

2-24

Ref. # 319433-029

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

Table 2-8. Information Returned by CPUID Instruction(Continued)

Initial EAX Information Provided about the Processor
Value
80000002H | EAX Processor Brand String
EBX Processor Brand String Continued
ECX Processor Brand String Continued
EDX Processor Brand String Continued
80000003H | EAX Processor Brand String Continued
EBX Processor Brand String Continued
ECX Processor Brand String Continued
EDX Processor Brand String Continued
80000004H | EAX Processor Brand String Continued
EBX Processor Brand String Continued
ECX Processor Brand String Continued
EDX Processor Brand String Continued
80000005H | EAX Reserved = 0
EBX Reserved = 0
ECX Reserved =0
EDX Reserved =0
80000006H | EAX Reserved = 0
EBX Reserved = 0
ECX Bits 7-0: Cache Line size in bytes
Bits 11-08: Reserved
Bits 15-12; L2 Associativity field *
Bits 31-16: Cache size in 1K units
EDX Reserved = 0
NOTES:
* L2 associativity field encodings:
OOH - Disabled
01H - Direct mapped
02H - 2-way
04H - 4-way
06H - 8-way
08H - 16-way
OFH - Fully associative
80000007H | EAX Reserved = 0
EBX Reserved = 0
ECX Reserved = 0
EDX Bits 07-00: Reserved =0
Bit 08: Invariant TSC available if 1
Bits 31-09: Reserved = 0
80000008H | EAX Virtual/Physical Address size
Bits 7-0: #Physical Address Bits*
Bits 15-8: #Virtual Address Bits
Bits 31-16: Reserved = 0
EBX Reserved = 0
ECX Reserved = 0
EDX Reserved = 0
NOTES:
* |If CPUID.8B00O0000O8H:EAX[7:0] is supported, the maximum physical address number supported
should come from this field.

Ref. # 319433-029

2-25

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

INPUT EAX = OH: Returns CPUID’s Highest Value for Basic Processor Information and the Vendor Identification
String

When CPUID executes with EAX set to OH, the processor returns the highest value the CPUID recognizes for
returning basic processor information. The value is returned in the EAX register (see Table 2-9) and is processor
specific.
A vendor identification string is also returned in EBX, EDX, and ECX. For Intel processors, the string is “Genuin-
elntel” and is expressed:

EBX « 756e6547h (* "Genu”, with G in the low 4 bits of BL *)

EDX < 49656e639h (* “inel”, with i in the low 4 bits of DL *)

ECX « 6c65746eh (* "ntel”, with nin the low 4 bits of CL *)

INPUT EAX = 80000000H: Returns CPUID’s Highest Value for Extended Processor Information

When CPUID executes with EAX set to OH, the processor returns the highest value the processor recognizes for
returning extended processor information. The value is returned in the EAX register (see Table 2-9) and is
processor specific.

Table 2-9. Highest CPUID Source Operand for Intel 64 and IA-32 Processors

Highest Value in EAX
Intel 64 or IA-32 Processors
Basic Information Extended Function Information

Earlier Intel486 Processors CPUID Not Implemented CPUID Not Implemented
Later Intel486 Processors and Pentium O1H Not Implemented
Processors
Pentjum Pro gnd Pentium II Processors, 02H Not Implemented
Intel Celeron Processors
Pentium Ill Processors 03H Not Implemented
Pentium 4 Processors O2H 80000004H
Intel Xeon Processors 02H 80000004H
Pentium M Processor 02H 80000004H
Pentium 4 Processor supporting Hyper- O5H 80000008H
Threading Technology
Pentium D Processor (8xx) 0O5H 80000008H
Pentium D Processor (9xx) 06H 80000008H
Intel Core Duo Processor OAH 80000008H
Intel Core 2 Duo Processor OAH 80000008H
Intel Xeon Processor 3000, 5100, 5300 OAH 80000008H
Series
Intel Xeon Processor 3000, 5100, 5200, OAH 80000008H
5300, 5400 Series
Intel Core 2 Duo Processor 8000 Series ODH 80000008H
Intel Xeon Processor 5200, 5400 Series OAH 80000008H

IA32_BIOS_SIGN_ID Returns Microcode Update Signature

For processors that support the microcode update facility, the 1A32_BIOS_SIGN_ID MSR is loaded with the update
signature whenever CPUID executes. The signature is returned in the upper DWORD. For details, see Chapter 10 in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

2-26 Ref. # 319433-029

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

INPUT EAX = 01H: Returns Model, Family, Stepping Information

When CPUID executes with EAX set to 01H, version information is returned in EAX (see Figure 2-4). For example:
model, family, and processor type for the Intel Xeon processor 5100 series is as follows:

® Model —1111B
® Family — 0101B

® Processor Type — 00B

See Table 2-10 for available processor type values. Stepping IDs are provided as needed.

31 28 27 20 19 16 15 14 13 12 11 8 7 4 3 0
Extended Extended Family Stepping
EAX Family ID Model ID ID Model ID

Extended Family ID (0
Extended Model ID (0)

]

Processor Type

Family (OFH for the Pentium 4 Processor Family)

Model

D Reserved

Figure 2-4. Version Information Returned by CPUID in EAX

Table 2-10. Processor Type Field

Type Encoding
Original OEM Processor 00B
Intel OverDrive” Processor 01B
Dual processor (not applicable to Intel486 processors) 10B
Intel reserved 11B
NOTE

See "Caching Translation Information™ in Chapter 4, “Paging,” in the Intel® 64 and I1A-32 Architec-
tures Software Developer’s Manual, Volume 3A, and Chapter 16 in the Intel® 64 and 1A-32 Archi-
tectures Software Developer’'s Manual, Volume 1, for information on identifying earlier 1A-32

processors.

The Extended Family ID needs to be examined only when the Family ID is OFH. Integrate the fields into a display
using the following rule:

IF Family_ID # OFH

THEN Displayed_Family = Family_ID;
ELSE Displayed_Family = Extended_Family_ID + Family_ID;
(* Right justify and zero-extend 4-bit field. *)

Fl;

(* Show Display_Family as HEX field. *)

Ref. # 319433-029

2-27

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

The Extended Model ID needs to be examined only when the Family ID is O6H or OFH. Integrate the field into a
display using the following rule:

IF (Family_ID = 06H or Family_ID = OFH)
THEN Displayed_Model = (Extended_Model_ID << 4) + Model_ID;
(* Right justify and zero-extend 4-bit field; display Model_ID as HEX field.*)
ELSE Displayed_Model = Model_ID;

Fl;

(* Show Display_Model as HEX field. *)

INPUT EAX = 01H: Returns Additional Information in EBX

When CPUID executes with EAX set to O1H, additional information is returned to the EBX register:

¢ Brand index (low byte of EBX) — this number provides an entry into a brand string table that contains brand
strings for 1A-32 processors. More information about this field is provided later in this section.

¢ CLFLUSH instruction cache line size (second byte of EBX) — this number indicates the size of the cache line
flushed with CLFLUSH instruction in 8-byte increments. This field was introduced in the Pentium 4 processor.

® Local APIC ID (high byte of EBX) — this number is the 8-bit ID that is assigned to the local APIC on the
processor during power up. This field was introduced in the Pentium 4 processor.

INPUT EAX = 01H: Returns Feature Information in ECX and EDX

When CPUID executes with EAX set to 01H, feature information is returned in ECX and EDX.
® Figure 2-5 and Table 2-11 show encodings for ECX.

® Figure 2-6 and Table 2-12 show encodings for EDX.

For all feature flags, a 1 indicates that the feature is supported. Use Intel to properly interpret feature flags.

NOTE

Software must confirm that a processor feature is present using feature flags returned by CPUID
prior to using the feature. Software should not depend on future offerings retaining all features.

2-28 Ref. # 319433-029

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

313029 28 27 26 2524 23 222120191817 161514 13121110 9 8 7 6 54 3 2 1 O

ECX
0

RDRAND g
Fi6C ——M
AVX
OSXSAVE
XSAVE
AES
TSC-Deadline
POPCNT
MOVBE
x2APIC
SSE4 2 — SSE4.2
SSE4 1 — SSE4.1
DCA — Direct Cache Access
PCID — Process-context Identifiers
PDCM — Perf/Debug Capability MSR
xTPR Update Control
CMPXCHG16B

FMA — Fused Multiply Add

SDBG

CNXT-ID — L1 Context ID
SSSE3 — SSSE3 Extensions
TM2 — Thermal Monitor 2
EST — Enhanced Intel SpeedStep® Technology
SMX — Safer Mode Extensions
VMX — Virtual Machine Extensions
DS-CPL — CPL Qualified Debug Store
MONITOR — MONITOR/MWAIT
DTES64 — 64-bit DS Area
PCLMULQDQ — Carryless Multiplication
SSE3 — SSE3 Extensions

D Reserved

Figure 2-5. Feature Information Returned in the ECX Register

Table 2-11. Feature Information Returned in the ECX Register

Bit # Mnemonic Description

0 SSE3 Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the processor supports this technology.

1 PCLMULQDQ A value of 1 indicates the processor supports PCLMULQDQ instruction.

2 DTESE4 64-bit DS Area. A value of 1 indicates the processor supports DS area using 64-bit layout.

3 MONITOR MONITOR/MWAIT. A value of 1 indicates the processor supports this feature.

4 DS-CPL CPL Qualified Debug Store. A value of 1 indicates the processor supports the extensions to the
Debug Store feature to allow for branch message storage qualified by CPL.

5 VMX Virtual Machine Extensions. A value of 1 indicates that the processor supports this technology.

6 SMX Safer Mode Extensions. A value of 1 indicates that the processor supports this technology. See
Chapter 6, “Safer Mode Extensions Reference”.

v £sT Enhanced Intel SpeedStep® Technology. A value of 1 indicates that the processor supports this
technology.

8 T™M2 Thermal Monitor 2. A value of 1 indicates whether the processor supports this technology.
A value of 1 indicates the presence of the Supplemental Streaming SIMD Extensions 3 (SSSE3). A

9 SSSE3 -) . ; :
value of O indicates the instruction extensions are not present in the processor.

Ref. # 319433-029

2-29

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

Table 2-11. Feature Information Returned in the ECX Register (Continued)

Bit # Mnemonic Description

L1 Context ID. A value of 1 indicates the L1 data cache mode can be set to either adaptive mode or

10 CNXT-ID shared mode. A value of 0 indicates this feature is not supported. See definition of the
IA32_MISC_ENABLE MSR Bit 24 (L1 Data Cache Context Mode) for details.

11 SDBG A value of 1 indicates the processor supports IA32_DEBUG_INTERFACE MSR for silicon debug.

12 FMA A value of 1 indicates the processor supports FMA extensions using YMM state.

13 CMPXCHG16B CMPXCHG16B Available. A value of 1 indicates that the feature is available.

14 xTPR Update XTPR Update Control. A value of 1 indicates that the processor supports changing

Control IA32_MISC_ENABLES[bit 23].

15 PDCM Perfmon and Debug Capability. A value of 1 indicates the processor supports the performance and
debug feature indication MSR 1A32_PERF_CAPABILITIES.

16 Reserved Reserved

17 PCID Process-context identifiers. A value of 1 indicates that the processor supports PCIDs and that
software may set CR4.PCIDE to 1.

18 DCA A value of 1 indicates the processor supports the ability to prefetch data from a memory mapped
device.

19 SSE4.1 A value of 1 indicates that the processor supports SSE4.1.

20 SSE4.2 A value of 1 indicates that the processor supports SSE4.2.

21 x2APIC A value of 1 indicates that the processor supports x2APIC feature.

22 MOVBE A value of 1 indicates that the processor supports MOVBE instruction.

23 POPCNT A value of 1 indicates that the processor supports the POPCNT instruction.

>4 TSC-Deadline A valge of 1 indicates that the processor’s local APIC timer supports one-shot operation using a TSC
deadline value.

25 AES A value of 1 indicates that the processor supports the AESNI instruction extensions.

26 XSAVE A value of 1 indicates that the processor supports the XSAVE/XRSTOR processor extended states
feature, the XSETBV/XGETBV instructions, and XCRO.
A value of 1 indicates that the OS has set CR4.0SXSAVE[bit 18] to enable XSETBV/XGETBV

27 OSXSAVE instructions to access XCRO and to support processor extended state management using
XSAVE/XRSTOR.

o8 AVX A value of 1 indicates that processor supports AVX instructions operating on 256-bit YMM state, and
three-operand encoding of 256-bit and 128-bit SIMD instructions.

29 F16C A value of 1 indicates that processor supports 16-bit floating-point conversion instructions.

30 RDRAND A value of 1 indicates that processor supports RDRAND instruction.

31 Not Used Always return 0.

2-30

Ref. # 319433-029

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

313029282726252423222120191817161514131211109 8 7 6 54 3 2 1 0

EDX

PBE—-Pend. Brk. EN.J
TM-Therm. Monitor
HTT-Multi-threading ——
SS-Self Snoop

SSE2-SSE2 Extensions
SSE-SSE Extensions
FXSR-FXSAVE/FXRSTOR
MMX-MMX Technology ——————-
ACPI-Thermal Monitor and Clock Ctrl
DS-Debug Store
CLFSH-CFLUSH instruction
PSN-Processor Serial Number
PSE-36 — Page Size Extension
PAT-Page Attribute Table
CMOV-Conditional Move/Compare Instruction
MCA-Machine Check Architecture
PGE-PTE Global Bit
MTRR-Memory Type Range Registers
SEP-SYSENTER and SYSEXIT
APIC—APIC on Chip
CX8-CMPXCHGSB Inst.
MCE—-Machine Check Exception
PAE—Physical Address Extensions
MSR-RDMSR and WRMSR Support
TSC-Time Stamp Counter
PSE-Page Size Extensions
DE-Debugging Extensions
VME-Virtual-8086 Mode Enhancement
FPU-x87 FPU on Chip

D Reserved

Figure 2-6. Feature Information Returned in the EDX Register

Table 2-12. More on Feature Information Returned in the EDX Register

Bit # | Mnemonic Description
0 FPU Floating-point Unit On-Chip. The processor contains an x87 FPU.
1 Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements, including CR4.VME for controlling the
VME feature, CR4.PVI for protected mode virtual interrupts, software interrupt indirection, expansion of the TSS
with the software indirection bitmap, and EFLAGS.VIF and EFLAGS.VIP flags.
2 Debugging Extensions. Support for I/0 breakpoints, including CR4.DE for controlling the feature, and optional
DE ;
trapping of accesses to DR4 and DR5.
3 Page Size Extension. Large pages of size 4 MByte are supported, including CR4.PSE for controlling the
PSE feature, the defined dirty bit in PDE (Page Directory Entries), optional reserved bit trapping in CR3, PDEs, and
PTEs.

TSC Time Stamp Counter. The RDTSC instruction is supported, including CR4.TSD for controlling privilege.

Model Specific Registers RDMSR and WRMSR Instructions. The RDMSR and WRMSR instructions are
supported. Some of the MSRs are implementation dependent.

MSR

Ref. # 319433-029 2-31

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

Table 2-12. More on Feature Information Returned in the EDX Register(Continued)

Bit #

Mnemonic

Description

PAE

Physical Address Extension. Physical addresses greater than 32 bits are supported: extended page table
entry formats, an extra level in the page translation tables is defined, 2-MByte pages are supported instead of
4 Mbyte pages if PAE bit is 1. The actual number of address bits beyond 32 is not defined, and is
implementation specific.

MCE

Machine Check Exception. Exception 18 is defined for Machine Checks, including CR4.MCE for controlling the
feature. This feature does not define the model-specific implementations of machine-check error logging,
reporting, and processor shutdowns. Machine Check exception handlers may have to depend on processor
version to do model specific processing of the exception, or test for the presence of the Machine Check
feature.

X8

CMPXCHGB8B Instruction. The compare-and-exchange 8 bytes (64 bits) instruction is supported (implicitly
locked and atomic).

APIC

APIC On-Chip. The processor contains an Advanced Programmable Interrupt Controller (APIC), responding to
memory mapped commands in the physical address range FFFEOOOOH to FFFEOFFFH (by default - some
processors permit the APIC to be relocated).

10

Reserved

Reserved

1

SEP

SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT and associated MSRs are supported.

12

MTRR

Memory Type Range Registers. MTRRs are supported. The MTRRcap MSR contains feature bits that describe
what memory types are supported, how many variable MTRRs are supported, and whether fixed MTRRs are
supported.

13

PGE

Page Global Bit. The global bit is supported in paging-structure entries that map a page, indicating TLB entries
that are common to different processes and need not be flushed. The CR4.PGE bit controls this feature.

14

MCA

Machine Check Architecture. The Machine Check Architecture, which provides a compatible mechanism for
error reporting in P6 family, Pentium 4, Intel Xeon processors, and future processors, is supported. The
MCG_CAP MSR contains feature bits describing how many banks of error reporting MSRs are supported.

15

cMov

Conditional Move Instructions. The conditional move instruction CMOV is supported. In addition, if x87 FPU is
present as indicated by the CPUID.FPU feature bit, then the FCOMI and FCMOV instructions are supported

16

PAT

Page Attribute Table. Page Attribute Table is supported. This feature augments the Memory Type Range
Registers (MTRRs), allowing an operating system to specify attributes of memory accessed through a linear
address on a 4KB granularity.

17

PSE-36

36-Bit Page Size Extension. 4-MByte pages addressing physical memory beyond 4 GBytes are supported
with 32-bit paging. This feature indicates that upper bits of the physical address of a 4-MByte page are
encoded in bits 20:13 of the page-directory entry. Such physical addresses are limited by MAXPHYADDR and
may be up to 40 bits in size.

18

PSN

Processor Serial Number. The processor supports the 96-bit processor identification number feature and the
feature is enabled.

19

CLFSH

CLFLUSH Instruction. CLFLUSH Instruction is supported.

20

Reserved

Reserved

21

DS

Debug Store. The processor supports the ability to write debug information into a memory resident buffer.
This feature is used by the branch trace store (BTS) and precise event-based sampling (PEBS) facilities (see
Chapter 23, “Introduction to Virtual-Machine Extensions,” in the Intel® 64 and IA-32 Architectures Software
Developer’'s Manual, Volume 3C).

22

ACPI

Thermal Monitor and Software Controlled Clock Facilities. The processor implements internal MSRs that
allow processor temperature to be monitored and processor performance to be modulated in predefined duty
cycles under software control.

23

MMX

Intel MMX Technology. The processor supports the Intel MMX technology.

24

FXSR

FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR instructions are supported for fast save and
restore of the floating-point context. Presence of this bit also indicates that CR4.0SFXSR is available for an
operating system to indicate that it supports the FXSAVE and FXRSTOR instructions.

2-32

Ref. # 319433-029

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

Table 2-12. More on Feature Information Returned in the EDX Register(Continued)

Bit # | Mnemonic

Description

25 SSE SSE. The processor supports the SSE extensions.

26 SSE2 SSE2. The processor supports the SSE2 extensions.

27 s Self Snoop. The processor supports the management of conflicting memory types by performing a snoop of
its own cache structure for transactions issued to the bus.

28 HTT Max APIC IDs reserved field is Valid. A value of O for HTT indicates there is only a single logical processor in
the package and software should assume only a single APIC ID is reserved. A value of 1 for HTT indicates the
value in CPUID.1.EBX[23:16] (the Maximum number of addressable IDs for logical processors in this package) is
valid for the package.

29 ™ Thermal Monitor. The processor implements the thermal monitor automatic thermal control circuitry (TCC).

30 Reserved

Reserved

31
PBE

Pending Break Enable. The processor supports the use of the FERR#/PBE# pin when the processor is in the
stop-clock state (STPCLK# is asserted) to signal the processor that an interrupt is pending and that the
processor should return to normal operation to handle the interrupt. Bit 10 (PBE enable) in the
IA32_MISC_ENABLE MSR enables this capability.

INPUT EAX = 02H: Cache and TLB Information Returned in EAX, EBX, ECX, EDX

When CPUID exec

utes with EAX set to 02H, the processor returns information about the processor’s internal caches

and TLBs in the EAX, EBX, ECX, and EDX registers.

The encoding is as follows:

® The least-sign

ificant byte in register EAX (register AL) indicates the number of times the CPUID instruction

must be executed with an input value of 02H to get a complete description of the processor’s caches and TLBs.

The first mem
® The most sign

ber of the family of Pentium 4 processors will return a 0O1H.
ificant bit (bit 31) of each register indicates whether the register contains valid information (set

to 0) or is reserved (set to 1).

¢ If aregister contains valid information, the information is contained in 1 byte descriptors. Table 2-13 shows the

encoding of th
defined; that i

ese descriptors. Note that the order of descriptors in the EAX, EBX, ECX, and EDX registers is not
s, specific bytes are not designated to contain descriptors for specific cache or TLB types. The

descriptors may appear in any order.

Table 2-13. Encoding of Cache and TLB Descriptors

Descriptor Value Cache or TLB Description

OOH Null descriptor

O01H Instruction TLB: 4 KByte pages, 4-way set associative, 32 entries

02H Instruction TLB: 4 MByte pages, 4-way set associative, 2 entries

O3H Data TLB: 4 KByte pages, 4-way set associative, 64 entries

04H Data TLB: 4 MByte pages, 4-way set associative, 8 entries

O5H Data TLB1: 4 MByte pages, 4-way set associative, 32 entries

06H 1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size

08H 1st-level instruction cache: 16 KBytes, 4-way set associative, 32 byte line size

OAH 1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size

OBH Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries

OCH 1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size

22H 3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines per sector
23H 3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector
25H 3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

Ref. # 319433-029

2-33

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

Table 2-13. Encoding of Cache and TLB Descriptors (Continued)

Descriptor Value

Cache or TLB Description

29H

3rd-level cache: 4 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

2CH 1st-level data cache: 32 KBytes, 8-way set associative, 64 byte line size

30H 1st-level instruction cache: 32 KBytes, 8-way set associative, 64 byte line size

40H No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-level cache

41H 2nd-level cache; 128 KBytes, 4-way set associative, 32 byte line size

42H 2nd-level cache: 256 KBytes, 4-way set associative, 32 byte line size

43H 2nd-level cache; 512 KBytes, 4-way set associative, 32 byte line size

44H 2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size

45H 2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size

46H 3rd-level cache: 4 MByte, 4-way set associative, 64 byte line size

47H 3rd-level cache: 8 MByte, 8-way set associative, 64 byte line size

49H 3rd-level cache: 4MB, 16-way set associative, 64-byte line size (Intel Xeon processor MP, Family OFH, Model O6H);
2nd-level cache: 4 MByte, 16-way set associative, 64 byte line size

4AH 3rd-level cache: 6MByte, 12-way set associative, 64 byte line size

4BH 3rd-level cache: 8MByte, 16-way set associative, 64 byte line size

4CH 3rd-level cache: 12MByte, 12-way set associative, 64 byte line size

4DH 3rd-level cache; 16MByte, 16-way set associative, 64 byte line size

4€EH 2nd-level cache: 6MByte, 24-way set associative, 64 byte line size

50H Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries

51H Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries

52H Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries

56H Data TLBO: 4 MByte pages, 4-way set associative, 16 entries

57H Data TLBO: 4 KByte pages, 4-way associative, 16 entries

5BH Data TLB: 4 KByte and 4 MByte pages, 64 entries

5CH Data TLB: 4 KByte and 4 MByte pages,128 entries

5DH Data TLB: 4 KByte and 4 MByte pages,256 entries

60H 1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size

66H 1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size

67H 1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size

68H 1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size

70H Trace cache: 12 K-pop, 8-way set associative

71H Trace cache: 16 K-uop, 8-way set associative

72H Trace cache: 32 K-pop, 8-way set associative

78H 2nd-level cache: 1 MByte, 4-way set associative, 64byte line size

79H 2nd-level cache; 128 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7AH 2nd-level cache: 256 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7BH 2nd-level cache; 512 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7CH 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per sector

7DH 2nd-level cache: 2 MByte, 8-way set associative, 64byte line size

7FH 2nd-level cache: 512 KByte, 2-way set associative, 64-byte line size

82H 2nd-level cache; 256 KByte, 8-way set associative, 32 byte line size

2-34

Ref. # 319433-029

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

Table 2-13. Encoding of Cache and TLB Descriptors (Continued)

Descriptor Value Cache or TLB Description
83H 2nd-level cache: 512 KByte, 8-way set associative, 32 byte line size
84H 2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size
85H 2nd-level cache; 2 MByte, 8-way set associative, 32 byte line size
86H 2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size
87H 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size
BOH Instruction TLB: 4 KByte pages, 4-way set associative, 128 entries
B1H Instruction TLB: 2M pages, 4-way, 8 entries or 4M pages, 4-way, 4 entries
B3H Data TLB: 4 KByte pages, 4-way set associative, 128 entries
B4H Data TLB1: 4 KByte pages, 4-way associative, 256 entries
FOH 64-Byte prefetching
F1H 128-Byte prefetching

Example 2-1. Example of Cache and TLB Interpretation

The first member of the family of Pentium 4 processors returns the following information about caches and TLBs
when the CPUID executes with an input value of 2:

EAX 66 5B 50 01H
EBX OH
ECX OH
EDX 00 7A 70 OOH

Which means:

® The least-significant byte (byte 0) of register EAX is set to O1H. This indicates that CPUID needs to be executed
once with an input value of 2 to retrieve complete information about caches and TLBs.

® The most-significant bit of all four registers (EAX, EBX, ECX, and EDX) is set to 0, indicating that each register
contains valid 1-byte descriptors.

® Bytes 1, 2, and 3 of register EAX indicate that the processor has:

— 50H - a 64-entry instruction TLB, for mapping 4-KByte and 2-MByte or 4-MByte pages.

— B5BH - a 64-entry data TLB, for mapping 4-KByte and 4-MByte pages.

— 66H - an 8-KByte 1st level data cache, 4-way set associative, with a 64-Byte cache line size.
® The descriptors in registers EBX and ECX are valid, but contain NULL descriptors.
® Bytes 0, 1, 2, and 3 of register EDX indicate that the processor has:

— OOH - NULL descriptor.

— 70H - Trace cache: 12 K-pop, 8-way set associative.

— 7AH - a 256-KByte 2nd level cache, 8-way set associative, with a sectored, 64-byte cache line size.
— OOH - NULL descriptor.

INPUT EAX = 04H: Returns Deterministic Cache Parameters for Each Level

When CPUID executes with EAX set to 04H and ECX contains an index value, the processor returns encoded data
that describe a set of deterministic cache parameters (for the cache level associated with the input in ECX). Valid
index values start from O.

Software can enumerate the deterministic cache parameters for each level of the cache hierarchy starting with an
index value of O, until the parameters report the value associated with the cache type field is 0. The architecturally
defined fields reported by deterministic cache parameters are documented in Table 2-8.

Ref. # 319433-029 2-35

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

The CPUID leaf 4 also reports data that can be used to derive the topology of processor cores in a physical package.
This information is constant for all valid index values. Software can query the raw data reported by executing
CPUID with EAX=04H and ECX=0H and use it as part of the topology enumeration algorithm described in Chapter
8, “Multiple-Processor Management,” in the Intel® 64 and 1A-32 Architectures Software Developer’'s Manual,
Volume 3A.

INPUT EAX = O5H: Returns MONITOR and MWAIT Features

When CPUID executes with EAX set to O5H, the processor returns information about features available to
MONITOR/MWAIT instructions. The MONITOR instruction is used for address-range monitoring in conjunction with
MWAIT instruction. The MWAIT instruction optionally provides additional extensions for advanced power manage-
ment. See Table 2-8.

INPUT EAX = 06H: Returns Thermal and Power Management Features

When CPUID executes with EAX set to 06H, the processor returns information about thermal and power manage-
ment features. See Table 2-8.

INPUT EAX = 07H: Returns Structured Extended Feature Enumeration Information

When CPUID executes with EAX set to 07H and ECX = OH, the processor returns information about the maximum
number of sub-leaves that contain extended feature flags. See Table 2-8.

When CPUID executes with EAX set to 07H and ECX = n (n > land less than the number of non-zero bits in
CPUID.(EAX=07H, ECX= 0OH).EAX, the processor returns information about extended feature flags. See Table 2-8.
In sub-leaf 0, only EAX has the number of sub-leaves. In sub-leaf 0, EBX, ECX & EDX all contain extended feature
flags.

Table 2-14. Structured Extended Feature Leaf, Function 0, EBX Register

Bit # Mnemonic Description
0 RWFSGSBASE A value of 1 indicates the processor supports RD/WR FSGSBASE instructions
1-31 Reserved Reserved

INPUT EAX = 09H: Returns Direct Cache Access Information

When CPUID executes with EAX set to 09H, the processor returns information about Direct Cache Access capabili-
ties. See Table 2-8.

INPUT EAX = OAH: Returns Architectural Performance Monitoring Features

When CPUID executes with EAX set to OAH, the processor returns information about support for architectural
performance monitoring capabilities. Architectural performance monitoring is supported if the version ID (see Table
2-8) is greater than Pn 0. See Table 2-8.

For each version of architectural performance monitoring capability, software must enumerate this leaf to discover
the programming facilities and the architectural performance events available in the processor. The details are
described in Chapter 17, “Debug, Branch Profile, TSC, and Quality of Service,” in the Intel® 64 and 1A-32 Architec-
tures Software Developer’s Manual, Volume 3A.

INPUT EAX = OBH: Returns Extended Topology Information

When CPUID executes with EAX set to OBH, the processor returns information about extended topology enumera-
tion data. Software must detect the presence of CPUID leaf OBH by verifying (a) the highest leaf index supported
by CPUID is >= 0BH, and (b) CPUID.OBH:EBX[15:0] reports a non-zero value. See Table 2-8.

2-36 Ref. # 319433-029

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

INPUT EAX = ODH: Returns Processor Extended States Enumeration Information

When CPUID executes with EAX set to ODH and ECX = OH, the processor returns information about the bit-vector
representation of all processor state extensions that are supported in the processor and storage size requirements
of the XSAVE/XRSTOR area. See Table 2-8.

When CPUID executes with EAX set to ODH and ECX = n (n > 1, and is a valid sub-leaf index), the processor returns
information about the size and offset of each processor extended state save area within the XSAVE/XRSTOR area.
See Table 2-8. Software can use the forward-extendable technique depicted below to query the valid sub-leaves
and obtain size and offset information for each processor extended state save area:

Fori =2 to 62 // sub-leaf 1 is reserved
IF (CPUID.(EAX=0DH, ECX=0):VECTOR([i] = 1) // VECTOR is the 64-bit value of EDX:EAX
Execute CPUID.(EAX=0DH, ECX = i) to examine size and offset for sub-leaf i;
Fl;

INPUT EAX = OFH: Returns Platform Quality of Service (PQoS) Monitoring Enumeration Information

When CPUID executes with EAX set to OFH and ECX = 0, the processor returns information about the bit-vector
representation of QoS monitoring resource types that are supported in the processor and maximum range of RMID
values the processor can use to monitor of any supported resource types. Each bit, starting from bit 1, corresponds
to a specific resource type if the bit is set. The bit position corresponds to the sub-leaf index (or ResID) that soft-
ware must use to query QoS monitoring capability available for that type. See Table 2-8.

When CPUID executes with EAX set to OFH and ECX = n (n >= 1, and is a valid ResID), the processor returns infor-
mation software can use to program IA32_PQR_ASSOC, 1A32_QM_EVTSEL MSRs before reading QoS data from the
IA32_QM_CTR MSR.

INPUT EAX = 10H: Returns Platform Quality of Service (PQoS) Enforcement Enumeration Information

When CPUID executes with EAX set to 10H and ECX = 0, the processor returns information about the bit-vector
representation of QoS Enforcement resource types that are supported in the processor. Each bit, starting from bit
1, corresponds to a specific resource type if the bit is set. The bit position corresponds to the sub-leaf index (or
ReslD) that software must use to query QoS enforcement capability available for that type. See Table 2-8.

When CPUID executes with EAX set to 10H and ECX = n (n >= 1, and is a valid ResID), the processor returns infor-
mation about available classes of service and range of QoS mask MSRs that software can use to configure each
class of services using capability bit masks in the QoS Mask registers, 1A32_resourceType_Mask_n.

INPUT EAX = 14H: Returns Intel Processor Trace Enumeration Information

When CPUID executes with EAX set to 14H and ECX = OH, the processor returns information about Intel Processor
Trace extensions. See Table 2-8.

When CPUID executes with EAX set to 14H and ECX = n (n > 0 and less than the number of non-zero bits in
CPUID.(EAX=14H, ECX= OH).EAX), the processor returns information about packet generation in Intel Processor
Trace. See Table 2-8.

INPUT EAX = 15H: Returns Time Stamp Counter and Core Crystal Clock Information

When CPUID executes with EAX set to 15H and ECX = OH, the processor returns information about Time Stamp
Counter and Core Crystal Clock. See Table 2-8.

INPUT EAX = 16H: Returns Processor Frequency Information

When CPUID executes with EAX set to 16H, the processor returns information about Processor Frequency Informa-
tion. See Table 2-8.

INPUT EAX = 17H: Returns System-0n-Chip Information

When CPUID executes with EAX set to 17H, the processor returns information about the System-On-Chip Vendor
Attribute Enumeration. See Table 2-8.

Ref. # 319433-029 2-37

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

INPUT EAX = 18H: Returns Deterministic Address Translation Parameters Information

When CPUID executes with EAX set to 18H, the processor returns information about the Deterministic Address
Translation Parameters. See Table 2-8.

METHODS FOR RETURNING BRANDING INFORMATION

Use the following techniques to access branding information:

1. Processor brand string method; this method also returns the processor’s maximum operating frequency
2. Processor brand index; this method uses a software supplied brand string table.

These two methods are discussed in the following sections. For methods that are available in early processors, see
Section: “ldentification of Earlier 1A-32 Processors” in Chapter 16 of the Intel® 64 and I1A-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

The Processor Brand String Method

Figure 2-7 describes the algorithm used for detection of the brand string. Processor brand identification software
should execute this algorithm on all Intel 64 and I1A-32 processors.

This method (introduced with Pentium 4 processors) returns an ASCII brand identification string and the maximum
operating frequency of the processor to the EAX, EBX, ECX, and EDX registers.

Input: EAX=
0x80000000

False Processor Brand
String Not
Supported

IF (EAX & 0x80000000)

CPUID _
. True =
Function Extended
Supported

EAX Return Value =
Max. Extended CPUID
Function Index

Processor Brand

IF (EAX Return Value
String Supported

= 0x80000004)

Figure 2-7. Determination of Support for the Processor Brand String

How Brand Strings Work

To use the brand string method, execute CPUID with EAX input of 8000002H through 80000004H. For each input
value, CPUID returns 16 ASCII characters using EAX, EBX, ECX, and EDX. The returned string will be NULL-termi-
nated.

Table 2-15 shows the brand string that is returned by the first processor in the Pentium 4 processor family.

2-38 Ref. # 319433-029

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

Table 2-15. Processor Brand String Returned with Pentium 4 Processor

EAX Input Value Return Values ASCII Equivalent

80000002H EAX =20202020H o
EBX =20202020H "
ECX = 20202020H .
EDX = 6E492020H “nl "

80000003H EAX = 286C6574H “(let”
EBX =50202952H “P)R"
ECX = 69746E65H “itne”
EDX = 52286D75H “R(mu”

80000004H EAX =20342029H "4y
EBX =20555043H " UPC”
ECX =30303531H “0051"
EDX = 007A484DH “\0zHM"

Extracting the Maximum Processor Frequency from Brand Strings

Figure 2-8 provides an algorithm which software can use to extract the maximum processor operating frequency

from the processor brand string.

Ref. # 319433-029

2-39

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

NOTE

When a frequency is given in a brand string, it is the maximum qualified frequency of the processor,
not the frequency at which the processor is currently running.

Scan "Brand String" in
Reverse Byte Order

"zHM", or
"zHG", or
SHT"

Match
Substring

False
IF Substring Matched Report Error
If "zZHM" 5
Multiplier=1x 10
If "zZHG" — 5
/ Multiplier =1 x 10
Determine "Multiplier" If "zZHT" =
< Multiplier =1 x 10
Scan Digits
Until Blank

Reverse Digits
To Decimal Value

A

Determine "Freq"
In Reverse Order

Max. Qualified
Frequency = " w_ .
"Freq" x "Multiplier” Frgq =X.YZif
Digits = "ZY.X"

Figure 2-8. Algorithm for Extracting Maximum Processor Frequency

The Processor Brand Index Method

The brand index method (introduced with Pentium® IIl Xeon® processors) provides an entry point into a brand
identification table that is maintained in memory by system software and is accessible from system- and user-level

code. In this table, each brand index is associate with an ASCII brand identification string that identifies the official
Intel family and model number of a processor.

When CPUID executes with EAX set to 01H, the processor returns a brand index to the low byte in EBX. Software
can then use this index to locate the brand identification string for the processor in the brand identification table.
The first entry (brand index 0) in this table is reserved, allowing for backward compatibility with processors that do
not support the brand identification feature. Starting with processor signature family ID = OFH, model = O3H,
brand index method is no longer supported. Use brand string method instead.

2-40 Ref. # 319433-029

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

Table 2-16 shows brand indices that have identification strings associated with them.

Table 2-16. Mapping of Brand Indices; and Intel 64 and IA-32 Processor Brand Strings

Brand Index Brand String
OOH This processor does not support the brand identification feature
01H Intel(R) Celeron(R) processor1
02H Intel(R) Pentium(R) lll processor1
O3H Intel(R) Pentium(R) Ill Xeon(R) processor; If processor signature = 000006B1h, then Intel(R) Celeron(R)
processor
04H Intel(R) Pentium(R) Ill processor
O6H Mobile Intel(R) Pentium(R) Ill processor-M
07H Mobile Intel(R) Celeron(R) processor1
08H Intel(R) Pentium(R) 4 processor
OSH Intel(R) Pentium(R) 4 processor
OAH Intel(R) Celeron(R) processor1
OBH Intel(R) Xeon(R) processor; If processor signature = 00000F 13h, then Intel(R) Xeon(R) processor MP
OCH Intel(R) Xeon(R) processor MP
O€EH Mobile Intel(R) Pentium(R) 4 processor-M; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor
OFH Mobile Intel(R) Celeron(R) proces.sor1
11H Mobile Genuine Intel(R) processor
12H Intel(R) Celeron(R) M processor
13H Mobile Intel(R) Celeron(R) processor1
14H Intel(R) Celeron(R) processor
15H Mobile Genuine Intel(R) processor
16H Intel(R) Pentium(R) M processor
17H Mobile Intel(R) Celeron(R) processor1
18H - OFFH RESERVED
NOTES:

1.Indicates versions of these processors that were introduced after the Pentium Il

IA-32 Architecture Compatibility

CPUID is not supported in early models of the Intel486 processor or in any 1A-32 processor earlier than the
Intel486 processor.

Operation
IA32_BIOS_SIGN_ID MSR « Update with installed microcode revision number;

CASE (EAX) OF

EAX = 0:
EAX <« Highest basic function input value understood by CPUID;
EBX « Vendor identification string;
EDX <« Vendor identification string;
ECX « Vendor identification string;

BREAK;

EAX = 1H:
EAX[3:0] < Stepping ID;

Ref. # 319433-029 2-41

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

EAX[7:4] < Model;
EAX[11:8] «<— Family;
EAX[13:12] < Processor type;
EAX[15:14] < Reserved;
EAX[19:16] « Extended Model;
EAX[27:20] <— Extended Family;
EAX[31:28] < Reserved;
EBX][7:0] « Brand Index; (* Reserved if the value is zero. *)
EBX[15:8] «~ CLFLUSH Line Size;
EBX[16:23] < Reserved; (* Number of threads enabled = 2 if MT enable fuse set. *)
EBX[24:31] « Initial APIC ID;
ECX « Feature flags; (* See Figure 2-5. *)
EDX « Feature flags; (* See Figure 2-6. *)
BREAK;
EAX = 2H:
EAX « Cache and TLB information;
EBX « Cache and TLB information;
ECX « Cache and TLB information;
EDX « Cache and TLB information;
BREAK;
EAX = 3H:
EAX « Reserved;
EBX « Reserved;
ECX « ProcessorSerialNumber[31:0];
(* Pentium IIl processors only, otherwise reserved. *)
EDX < ProcessorSerialNumber[63:32];
(* Pentium IIl processors only, otherwise reserved. *
BREAK
EAX = 4H:
EAX < Deterministic Cache Parameters Leaf; (* See Table 2-8. *)
EBX <« Deterministic Cache Parameters Leaf;
ECX « Deterministic Cache Parameters Leaf;
EDX « Deterministic Cache Parameters Leaf;
BREAK;
EAX = 5H:
EAX < MONITOR/MWAIT Leaf; (* See Table 2-8. *)
EBX <~ MONITOR/MWAIT Leaf;
ECX < MONITOR/MWAIT Leaf;
EDX < MONITOR/MWAIT Leaf;
BREAK;
EAX = 6H:
EAX < Thermal and Power Management Leaf; (* See Table 2-8. *)
EBX « Thermal and Power Management Leaf;
ECX « Thermal and Power Management Leaf;
EDX « Thermal and Power Management Leaf;
BREAK;
EAX =T7H:
EAX « Structured Extended Feature Leaf; (* See Table 2-8. *);
EBX « Structured Extended Feature Leaf;
ECX « Structured Extended Feature Leaf;
EDX « Structured Extended Feature Leaf;
BREAK;
EAX = 8H:
EAX < Reserved = 0;

2-42 Ref. # 319433-029

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

EBX « Reserved = 0;
ECX « Reserved = 0;
EDX < Reserved = 0;
BREAK;
EAX = 9H:
EAX « Direct Cache Access Information Leaf; (* See Table 2-8. *)
EBX <« Direct Cache Access Information Leaf;
ECX « Direct Cache Access Information Leaf;
EDX « Direct Cache Access Information Leaf;
BREAK;
EAX = AH:
EAX « Architectural Performance Monitoring Leaf; (* See Table 2-8. *)
EBX « Architectural Performance Monitoring Leaf;
ECX « Architectural Performance Monitoring Leaf;
EDX « Architectural Performance Monitoring Leaf;
BREAK
EAX = BH:
EAX < Extended Topology Enumeration Leaf; (* See Table 2-8. *)
EBX « Extended Topology Enumeration Leaf;
ECX « Extended Topology Enumeration Leaf;
EDX « Extended Topology Enumeration Leaf;
BREAK;
EAX = CH:
EAX « Reserved = 0;
EBX « Reserved = 0;
ECX « Reserved = 0;
EDX < Reserved = 0;
BREAK;
EAX = DH:
EAX « Processor Extended State Enumeration Leaf; (* See Table 2-8. *)
EBX <« Processor Extended State Enumeration Leaf;
ECX « Processor Extended State Enumeration Leaf;
EDX « Processor Extended State Enumeration Leaf;
BREAK;
EAX =EH:
EAX « Reserved = 0;
EBX < Reserved = 0;
ECX « Reserved = 0;
EDX «— Reserved = 0;
BREAK;
EAX =FH:
EAX « Platform Quality of Service Monitoring Enumeration Leaf; (* See Table 2-8. *)
EBX « Platform Quality of Service Monitoring Enumeration Leaf;
ECX « Platform Quality of Service Monitoring Enumeration Leaf;
EDX « Platform Quality of Service Monitoring Enumeration Leaf;
BREAK;
EAX =10H:
EAX « Platform Quality of Service Enforcement Enumeration Leaf; (* See Table 2-8. *)
EBX « Platform Quality of Service Enforcement Enumeration Leaf;
ECX « Platform Quality of Service Enforcement Enumeration Leaf;
EDX « Platform Quality of Service Enforcement Enumeration Leaf;
BREAK;
EAX = 14H:
EAX « Intel Processor Trace Enumeration Leaf; (* See Table 2-8. *)

Ref. # 319433-029 2-43

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

EBX <« Intel Processor Trace Enumeration Leaf;
ECX « Intel Processor Trace Enumeration Leaf;
EDX « Intel Processor Trace Enumeration Leaf;
BREAK;
EAX = 15H:
EAX « Time Stamp Counter and Core Crystal Clock Information Leaf; (* See Table 2-8. *)
EBX « Time Stamp Counter and Core Crystal Clock Information Leaf;
ECX « Time Stamp Counter and Core Crystal Clock Information Leaf;
EDX « Time Stamp Counter and Core Crystal Clock Information Leaf;
BREAK;
EAX = 16H:
EAX <« Processor Frequency Information Enumeration Leaf; (* See Table 2-8. *)
EBX « Processor Frequency Information Enumeration Leaf;
ECX « Processor Frequency Information Enumeration Leaf;
EDX « Processor Frequency Information Enumeration Leaf;
BREAK;
EAX = 17H:
EAX « System-On-Chip Vendor Attribute Enumeration Leaf; (* See Table 2-8. *)
EBX « System-On-Chip Vendor Attribute Enumeration Leaf;
ECX « System-On-Chip Vendor Attribute Enumeration Leaf;
EDX « System-On-Chip Vendor Attribute Enumeration Leaf;
BREAK;
EAX = 18H:
EAX « Deterministic Address Translation Parameters Enumeration Leaf; (* See Table 2-8. *)
EBX « Deterministic Address Translation Parameters Enumeration Leaf;
ECX «Deterministic Address Translation Parameters Enumeration Leaf;
EDX «— Deterministic Address Translation Parameters Enumeration Leaf;
BREAK;
EAX = 80000000H:
EAX « Highest extended function input value understood by CPUID;
EBX « Reserved;
ECX « Reserved;
EDX <« Reserved;
BREAK;
EAX = 80000001H:
EAX « Reserved;
EBX « Reserved;
ECX «— Extended Feature Bits (* See Table 2-8.%);
EDX « Extended Feature Bits (* See Table 2-8. *);
BREAK;
EAX = 80000002H:
EAX « Processor Brand String;
EBX « Processor Brand String, continued;
ECX « Processor Brand String, continued;
EDX « Processor Brand String, continued;
BREAK;
EAX = 80000003H:
EAX « Processor Brand String, continued;
EBX « Processor Brand String, continued;
ECX « Processor Brand String, continued;
EDX « Processor Brand String, continued;
BREAK;
EAX = 80000004H:
EAX « Processor Brand String, continued;

2-44 Ref. # 319433-029

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

EBX « Processor Brand String, continued;
ECX « Processor Brand String, continued;
EDX « Processor Brand String, continued;
BREAK;
EAX = 80000005H:
EAX « Reserved = 0;
EBX « Reserved = 0;
ECX « Reserved = 0;
EDX < Reserved = 0;
BREAK;
EAX = 80000006H:
EAX « Reserved = 0;
EBX « Reserved = 0;
ECX « Cache information;
EDX < Reserved = 0;
BREAK;
EAX = 80000007H:
EAX « Reserved = 0;
EBX « Reserved = 0;
ECX « Reserved = 0;
EDX < Reserved = 0;
BREAK;
EAX = 80000008H:
EAX « Reserved = 0;
EBX « Reserved = 0;
ECX « Reserved = 0;
EDX < Reserved = 0;
BREAK;
DEFAULT: (* EAX = Value outside of recognized range for CPUID. *)
(* If the highest basic information leaf data depend on ECX input value, ECX is honored.*)
EAX < Reserved; (* Information returned for highest basic information leaf. *)
EBX « Reserved; (* Information returned for highest basic information leaf. *)
ECX « Reserved; (* Information returned for highest basic information leaf. *)
EDX « Reserved; (* Information returned for highest basic information leaf. *)
BREAK;
ESAC;

Flags Affected

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

In earlier 1A-32 processors that do not support the CPUID instruction, execution of the instruction results in an
invalid opcode (#UD) exception being generated.8§

Ref. # 319433-029 2-45

INTEL® AVX-512 APPLICATION PROGRAMMING MODEL

2-46 Ref. # 319433-029

SYSTEM PROGRAMMING FOR INTEL® AVX-512

CHAPTER 3
SYSTEM PROGRAMMING FOR INTEL® AVX-512

This chapter describes the operating system programming considerations for supporting the following extended
processor states: 512-bit ZMM registers and opmask k-registers. These system programming requirements apply
to AVX-512 Foundation instructions and other 512-bit instructions described in Chapter 5.

The basic requirements for an operating system using XSAVE/XRSTOR to manage processor extended states, e.g.
YMM registers, can be found in Chapter 13 of Intel 64 and 1A-32 Architectures Software Developer’s Manual,
Volumes 3A. This chapter covers additional requirements for OS to support ZMM and opmask register states.

3.1 AVX-512 STATE, EVEX PREFIX AND SUPPORTED OPERATING MODES

AVX-512 instructions are encoded using EVEX prefix. The EVEX encoding scheme can support 512-bit, 256-bit and
128-bit instructions that operate on opmask register, ZMM, YMM and XMM states.

For processors that support AVX-512 family of instructions, the extended processor states (ZMM and opmask
registers) exist in all operating modes. However, the access to those states may vary in different modes. The
processor's support for instruction extensions that employ EVEX prefix encoding is independent of the processor's
support for using XSAVE/XRSTOR/XSAVEOPT to those states.

Instructions requiring EVEX prefix encoding generally are supported in 64-bit, 32-bit modes, and 16-bit protected
mode. They are not supported in Real mode, Virtual-8086 mode or entering into SMM mode.

Note that bits MAX_VL-1:256 (511:256) of ZMM register state are maintained across transitions into and out of
these modes. Because the XSAVE/XRSTOR/XSAVEOPT instruction can operate in all operating modes, it is possible
that the processor's ZMM register state can be modified by software in any operating mode by executing XRSTOR.
The ZMM registers can be updated by XRSTOR using the state information stored in the XSAVE/XRSTOR area
residing in memory.

3.2 AVX-512 STATE MANAGEMENT

Operating systems must use the XSAVE/XRSTOR/XSAVEOPT instructions for ZMM and opmask state management.
An OS must enable its ZMM and opmask state management to support AVX-512 Foundation instructions. Other-
wise, an attempt to execute an instruction in AVX-512 Foundation instructions (including a scalar 128-bit SIMD
instructions using EVEX encoding) will cause a #UD exception. An operating system, which enabled AVX-512 state
to support AVX-512 Foundation instructions, is also sufficient to support the rest of AVX-512 family of instructions.

3.2.1 Detection of ZMM and Opmask State Support

Hardware support of the extended state components for executing AVX-512 Foundation instructions is queried
through the main leaf of CPUID leaf function ODH with index ECX = 0. Specifically, the return value in EDX:EAX of
CPUID.(EAX=0DH, ECX=0) provides a 64-bit wide bit vector of hardware support of processor state components,
beginning with bit O of EAX corresponding to x87 FPU state, CPUID.(EAX=0DH, ECX=0):EAX[1] corresponding to
SSE state (XMM registers and MXCSR), CPUID.(EAX=0DH, ECX=0):EAX[2] corresponding to YMM states.

The ZMM and opmaks states consist of three additional components in the XSAVE/XRSTOR state save area:

® The opmask register state component represents eight 64-bit opmask registers. Processor support for this
component state is indicated by CPUID.(EAX=0DH, ECX=0):EAX[5].

® The ZMM_Hi256 component represents the high 256 bits of the low 16 ZMM registers, i.e. ZMMO0..15[511:256].
Processor support for this component state is indicated by CPUID.(EAX=0DH, ECX=0):EAX[6].

® The Hil6_ZMM component represents the full 512 bits of the high 16 ZMM registers, i.e. ZMM16..31[511:0].
Processor support for this component state is indicated by CPUID.(EAX=0DH, ECX=0):EAX[7].

Ref. # 319433-029 3-1

SYSTEM PROGRAMMING FOR INTEL® AVX-512

Each component state has a corresponding enable it in the XCRO register. Operating system must use XSETBV to
set these three enable bits to enable AVX-512 Foundation instructions to be decoded. The location of bit vector
representing the AVX-512 states, matching the layout of the XCRO register, is provided in the following figure.

Hi16_ZMM: ZMM16..31[511:0] ‘
ZMM_Hi256: ZMMO..15[511:256]

OpMask: k0..7[63:0]
BNDCSR:
BNDREGS: BNDO..3[127:0]
YMM_Hi128: YMMO..15[255:128]
SSE: XMMO..15[127:0]
X87:

63 76543210
reserved [[T T TTT]

Figure 3-1. Bit Vector and XCRO Layout of Extended Processor State Components

3.2.2 Enabling of ZMM and Opmask Register State

An OS can enable ZMM and opmask register state support with the following steps:

¢ Verify the processor supports XSAVE/XRSTOR/XSETBV/XGETBYV instructions and the XCRO register by checking
CPUID.1.ECX.XSAVE[bit 26]=1.

® Verify the processor supports SSE, YMM, ZMM_Hi256, Hi1l6_ZMM, and opmask states (i.e. bits 2:1 and 7:5 of
XCRO are valid) by checking CPUID.(EAX=0DH, ECX=0):EAX[7:5].

The OS must determine the buffer size requirement for the XSAVE area that will be used by XSAVE/XRSTOR.
Note that even though ZMM8-ZMM31 are not accessible in 32 bit mode, a 32 bit OS is still required to allocate
the buffer for the entire ZMM state.

¢ Set CR4.0SXSAVE[bit 18]=1 to enable the use of XSETBV/XGETBYV instructions to write/read the XCRO register.

® Supply an appropriate mask via EDX:EAX to execute XSETBYV to enable the processor state components that
the OS wishes to manage using XSAVE/XRSTOR instruction.

To enable ZMM and opmask register state, system software must use a EDX:EAX mask of 111xx111b when
executing XSETBV.

Table 3-1. XCRO Processor State Components

Bit Meaning

0-x87 This bit O must be 1. An attempt to write O to this bit causes a #GP exception.

1-SSE If 1, the processor supports SSE state (MXCSR and XMM registers) management using XSAVE, XSAVEOPT, and
XRSTOR. This bit must be set to ‘1’ to enable AVX-512 Foundation instructions.

2-YMM_Hi128 If 1, the processor supports YMM_hi128 state management (upper 128 bits of YMMO-15) using XSAVE,
XSAVEOPT, and XRSTOR. This bit must be set to ‘1’ to enable AVX-512 Foundation instructions.

3 - BNDREGS If 1, the processor supports Intel Memory Protection Extensions (Intel MPX) bound register state management
using XSAVE, XSAVEOPT, and XRSTOR.

4 - BNDCSR If 1, the processor supports Intel MPX bound configuration and status management using XSAVE, XSAVEOPT,
and XRSTOR.

5 - Opmask If 1, the processor supports the opmask state management using XSAVE, XSAVEOPT, and XRSTOR. This bit
must be set to "1’ to enable AVX-512 Foundation instructions.

3-2 Ref. # 319433-029

SYSTEM PROGRAMMING FOR INTEL® AVX-512

Table 3-1. XCRO Processor State Components

Bit Meaning
6 - ZMM_Hi256 If 1, the processor supports ZMM_Hi256 state (the upper 256 bits of the low 16 ZMM registers) management
using XSAVE, XSAVEOPT, and XRSTOR. This bit must be set to ‘1’ to enable AVX-512 Foundation instruc-
tions.
7 - Hi16_ZMM If 1, the processor supports Hi16-_ZMM state (the full 512 bits of the high16 ZMM registers) management
using XSAVE, XSAVEOPT, and XRSTOR. This bit must be set to ‘1" to enable AVX-512 Foundation instruc-
tions.

3.23 Enabling of SIMD Floating-Exception Support

AVX-512 Foundation instructions may generate SIMD floating-point exceptions. An OS must enable SIMD float-
ing-point exception support by setting CR4.0SXMMEXCPT[bit 10]=1.

The effect of CR4 setting that affects AVX-512 Foundation instructions is the same as for AVX and FMA enabling
as listed in Table 3-2

Table 3-2. CR4 Bits for AVX-512 Foundation Instructions Technology Support
Bit Meaning

CR4.0SXSAVE[bit 18] If set, the OS supports use of XSETBV/XGETBV instruction to access. the XCRO register,
XSAVE/XRSTOR to manage processor extended states. Must be set to ‘1’ to enable AVX-512 Founda-
tion, AVX2, FMA, and AVX instructions.

CR4.0SXMMEXCPT[bit 10] | Must be set to 1 to enable SIMD floating-point exceptions. This applies to SIMD floating-point instruc-
tions across AVX-512 Foundation, AVX and FMA, and legacy 128-bit SIMD floating-point instructions
operating on XMM registers.

CR4.0SFXSR[bit 9] Must be set to 1 to enable legacy 128-bit SIMD instructions operating on XMM state.
Not needed to enable AVX-512 Foundation, AVX2, FMA, and AVX instructions.

3.24 The Layout of XSAVE Sate Save Area

The OS must determine the buffer size requirement by querying CPUID with EAX=0DH, ECX=0. If the OS wishes
to enable all processor extended state components in the XCRO, it can allocate the buffer size according to
CPUID.(EAX=0DH, ECX=0):ECX.

After the memory buffer for XSAVE is allocated, the entire buffer must be cleared prior to executing XSAVE.

The XSAVE area layout currently defined in Intel Architecture is listed in Table 3-3. The register fields of the first
512 byte of the XSAVE area are identical to those of the FXSAVE/FXRSTOR area.

The layout of the XSAVE Area for additional processor components (512-bit ZMM register, 32 ZMM registers,
opmask registers) are to be determined later.

Ref. # 319433-029 3-3

SYSTEM PROGRAMMING FOR INTEL® AVX-512

Table 3-3. Layout of XSAVE Area For Processor Supporting YMM State

Save Areas Offset (Byte) Size (Bytes)

FPU/SSE SaveArea 0 512

Header 512 64
Ext_Save_Area_2 (YMM_Hi128) CPUID.(EAX=0DH, ECX=2):EBX CPUID.(EAX=0DH, ECX=2):EAX
Ext_Save_Area_3 (BNDREGS) CPUID.(EAX=0DH, ECX=3):EBX CPUID.(EAX=0DH, ECX=3):EAX
Ext_Save_Area_4 (BNDCSR) CPUID.(EAX=0DH, ECX=4).EBX CPUID.(EAX=0DH, ECX=4).EAX
Ext_Save_Area_5 (OPMASK) CPUID.(EAX=0DH, ECX=5):EBX CPUID.(EAX=0DH, ECX=5):EAX
Ext_Save_Area_6 (ZMM_Hi256) CPUID.(EAX=0DH, ECX=6).EBX CPUID.(EAX=0DH, ECX=6):EAX
Ext_Save_Area_7 (Hi16_ZMM) CPUID.(EAX=0DH, ECX=7).EBX CPUID.(EAX=0DH, ECX=7):EAX

The format of the header is as follows (see Table 3-4):

Table 3-4. XSAVE Header Format

15:8 7:0 Byte Offset from Header Byte Offset from XSAVE Area
Reserved (Must be zero) XSTATE_BV 0 512
Reserved Reserved (Must be zero) 16 528
Reserved Reserved 32 544
Reserved Reserved 48 560

The layout of the Ext_Save_Area[YMM_Hil128] contains 16 of the upper 128-bits of the YMM registers, it is shown

in Table 3-5.
Table 3-5. XSAVE Save Area Layout for YMM_Hi128 State (Ext_Save_Area_2)

31 16 15 0 Byte Offset from YMM_Hi128_Save_Area Byte Offset from XSAVE Area
YMM1[255:128] YMMO[255:128] 0 576
YMM3[255:128] YMMZ2[255:128] 32 608
YMM5([255:128] YMM4[255:128] 64 640
YMM7[255:128] YMM6[255:128] 96 672
YMM9[255:128] YMMB8B[255:128] 128 704
YMM11[255:128] YMM10[255:128] 160 736
YMM13[255:128] | YMM12[255:128] 192 768
YMM15[255:128] YMM14[255:128] 224 800

The layout of the Ext_SAVE_Area_3[BNDREGS] contains bounds register state of the Intel Memory Protection
Extensions (Intel MPX).

The layout of the Ext_SAVE_Area_ 4[BNDCSR] contains the processor state of bounds configuration and status of

Intel MPX.

The layout of the Ext_SAVE_Area_5[Opmask] contains 8 64-bit mask register as shown in Table 3-6.

3-4

Ref. # 319433-029

SYSTEM PROGRAMMING FOR INTEL® AVX-512

Table 3-6. XSAVE Save Area Layout for Opmask Registers

15 8 7 0 Byte Offset from OPMASK_Save_Area Byte Offset from XSAVE Area
K1[63:0] K0[63:0] 0 1088
K3[63:0] K2[63:0] 16 1104
K5[63:0] K4[63:0] 32 1120
K7[63:0] K6[63:0] 48 1136

The layout of the Ext_SAVE_Area_6[ZMM_Hi256] is shown below in Table 3-7.

Table 3-7. XSAVE Save Area Layout for ZMM State of the High 256 Bits of ZMM0-ZMM15 Registers

63 32 310 MRS Sove prea | XSRVE Arco
ZMM1[511:256] ZMMO[511:256] 0 1152
ZMM3[511:256] ZMM2[511:256] 64 1216
ZMM5[511:256] ZMM4[511:256] 128 1280
ZMM7[511:256] ZMM6[511:256] 192 1344
ZMM9[511:256] ZMM8[511:256] 256 1408
ZMM11[511:256] ZMM10[511:256] 320 1472
ZMM13[511:256] ZMM12[511:256] 384 1536
ZMM15[511:256] ZMM14[511:256] 448 1600

The layout of the Ext_SAVE_Area_7[Hil6_ZMM] corresponding to the upper new 16 ZMM registers is shown below

in Table 3-8.
Table 3-8. XSAVE Save Area Layout for ZMM State of ZMM16-ZMM31 Registers
Byte Offset from Byte Offset from
127 64 63 0 Hi16_ZMM_Save_Area XSAVE Area
ZMM17[511:0] ZMM16[511:0] 0 1664
ZMM19[511:0] ZMM18[511:0] 128 1792
ZMM21[511:0] ZMMZ20[511:0] 256 1920
ZMMZ23[511:0] ZMM22[511:0] 384 2048
ZMM25[511:0] ZMM24[511:0] 512 2176
ZMM27[511:0] ZMMZ26[511:0] 640 2304
ZMM29[511:0] ZMM28[511:0] 768 2432
ZMM31[511:0] ZMM30[511:0] 896 2560
3.25 XSAVE/XRSTOR Interaction with YMM State and MXCSR

The processor’s actions as a result of executing XRSTOR, on the MXCSR, XMM and YMM registers, are listed in Table
3-9 The XMM registers may be initialized by the processor (See XRSTOR operation in Intel® 64 and 1A-32 Architec-
tures Software Developer’s Manual, Volume 2B). When the MXCSR register is updated from memory, reserved bit
checking is enforced. XSAVE / XRSTOR will save / restore the MXCSR only if the AVX or SSE bits are set in the
EDX:EAX mask.

Ref. # 319433-029 3-5

SYSTEM PROGRAMMING FOR INTEL® AVX-512

Table 3-9. XRSTOR Action on MXCSR, XMM Registers, YMM Registers

EDX:EAX XSTATE_BV i

Bitz | Bit1 | Btz | Bit1 MXCSR YI\RTQT;ZE XMM Registers
0 0 X None None None
0 1 X Load/Check None Init by processor
0 1 X 1 Load/Check None Load
1 0 0 X Load/Check | Init by processor None
1 0 1 X Load/Check Load None
1 1 0 0 Load/Check | Init by processor | Init by processor
1 1 0 1 Load/Check | Init by processor Load
1 1 1 0 Load/Check Load Init by processor
1 1 1 1 Load/Check Load Load

The action of XSAVE for managing YMM and MXCSR is listed in Table 3-10.
Table 3-10. XSAVE Action on MXCSR, XMM, YMM Register
EDX:EAX XCRO_MASK

Bitz | Bit1 | Btz | Bit1 MXCSR Rgil\:t_ek:s XMM Registers
0 0 X X None None None
0 1 X 1 Store None Store
0 1 X 0 None None None
1 0 0 X None None None
1 0 1 1 Store Store None
1 1 0 0 None None None
1 1 0 1 Store None Store
1 1 1 1 Store Store Store

3.2.6 XSAVE/XRSTOR/XSAVEOPT and Managing ZMM and Opmask States

The requirements for managing ZMM_Hi256, Hil6_ZMM and Opmask registers using XSAVE/XRSTOR/XSAVEOPT
are simpler than those listed in Section 3.2.5. Because each of the three components (ZMM_Hi256, Hi16_ZMM and
Opmask registers) can be managed independently of one another by XSAVE/XRSTOR/XSAVEOPT according to the
corresponding bits in the bit vectors: EDX:EAX, XSAVE_BV, XCRO_MASK, independent of MXCSR:

® For using XSAVE with Opmask/ZMM_Hi256/Hi16_ZMM, XSAVE/XSAVEOPT will save the component to memory
and mark the corresponding bits in the XSTATE_BV of the XSAVE header, if that component is specified in
EDX:EAX as input to XSAVE/XSAVEOPT.

® XRSTOR will restore the Opmask/ZMM_Hi256/Hi16_ZMM components by checking the corresponding bits in
both the input bit vector in EDX:EAX of XRSTOR and in XSTATE_BYV of the header area in the following ways:

— If the corresponding bit in EDX:EAX is set and XSTATE_BV is INIT, that component will be initialized,

— If the corresponding bit in EDX:EAX is set and XSTATE_BYV is set, that component will be restored from
memory,

— If the corresponding bit in EDX:EAX is not set, that component will remain unchanged.

¢ To enable AVX-512 Foundation instructions, all three components (Opmask/ZMM_Hi256/Hi16_ZMM) in XCRO
must be set.

3-6 Ref. # 319433-029

SYSTEM PROGRAMMING FOR INTEL® AVX-512

The processor supplied INIT values for each processor state component used by XRSTOR is listed in Table 3-11.

Table 3-11. Processor Supplied Init Values XRSTOR May Use

Processor State Component Processor Supplied Register Values
x87 FPU State FCW « 037FH; FTW « OFFFFH; FSW « OH; FPU CS « OH; FPU DS « OH; FPU IP « OH; FPU
DP « 0; STO-ST7 « Q;
SSE State' If 64-bit Mode: XMMO-XMM15 « OH;
Else XMMO-XMM7 « OH
YMM_Hi128 State' If 64-bit Mode: YMMO_H-YMM15_H « OH;
Else YMMO_H-YMM7_H « OH
OPMASK State’ If 64-bit Mode: KO-K7 « OH;
ZMM_Hi256 State' If 64-bit Mode: ZMMO_H-ZMM15_H « OH;
Else ZMMO_H-ZMM7_H « OH
Hi16_ZMM State' If 64-bit Mode: ZMM16-ZMM31 « OH;
NOTES:

1. MXCSR state is not updated by processor supplied values. MXCSR state can only be updated by XRSTOR
from state information stored in XSAVE/XRSTOR area.

3.3 RESET BEHAVIOR

At processor reset
* YMMO-15 bits[255:0] are set to zero.
e ZMMO-15 bits [511:256] are set to zero.
- ZMM16-31 are set to zero.
= Opmask register KO-7 are set to OxOH.
XCRO[2:1] is set to zero, XCRO[O] is set to 1.
XCRO[7:6] and is set to zero, XCRO[Opmask] is set to 0.
CR4.0SXSAVE[bit 18] (and its mirror CPUID.1.ECX.OSXSAVE[bit 27]) is set to O.

3.4 EMULATION

Setting the CRO.EM bit to 1 provides a technique to emulate Legacy SSE floating-point instruction sets in software.
This technique is not supported with AVX instructions, nor FMA instructions.

If an operating system wishes to emulate AVX instructions, set XCRO[2:1] to zero. This will cause AVX instructions
to #UD. Emulation of FMA by operating system can be done similarly as with emulating AVX instructions.

3.5 WRITING FLOATING-POINT EXCEPTION HANDLERS

AVX-512, AVX and FMA floating-point exceptions are handled in an entirely analogous way to Legacy SSE floating-
point exceptions. To handle unmasked SIMD floating-point exceptions, the operating system or executive must
provide an exception handler. The section titled “SSE and SSE2 SIMD Floating-Point Exceptions” in Chapter 11,
“Programming with Streaming SIMD Extensions 2 (SSE2),” of the 1A-32 Intel® Architecture Software Developer’s
Manual, Volume 1, describes the SIMD floating-point exception classes and gives suggestions for writing an excep-
tion handler to handle them.

To indicate that the operating system provides a handler for SIMD floating-point exceptions (#¥XM), the CR4.0SXM-
MEXCPT flag (bit 10) must be set.

Ref. # 319433-029 3-7

SYSTEM PROGRAMMING FOR INTEL® AVX-512

3-8 Ref. # 319433-029

INTEL® AVX-512 INSTRUCTION ENCODING

CHAPTER 4
INTEL® AVX-512 INSTRUCTION ENCODING

4.1 OVERVIEW SECTION

This chapter describes the details of the Intel® AVX-512 instruction encoding system. The AVX-512 Foundation
instructions described in Chapter 5 use a new prefix (called EVEX). Opmask instructions described in Chapter 5 are
encoded using the VEX prefix. The EVEX prefix has some parts resembling the instruction encoding scheme using
the VEX prefix, and many other capabilities not available with the VEX prefix. The EVEX encoding architecture also
applies to other 512-bit instructions described in Chapter 5.

The significant feature differences between EVEX and VEX are summarized below.

® EVEX s a 4-Byte prefix (the first byte must be 62H); VEX is either a 2-Byte (C5H is the first byte) or 3-Byte
(C4H is the first byte) prefix.

® EVEX prefix can encode 32 vector registers (XMM/YMM/ZMM) in 64-bit mode.

® EVEX prefix can encode an opmask register for conditional processing or selection control in EVEX-encoded
vector instructions; opmask instructions, whose source/destination operands are opmask registers and treat
the content of an opmask register as a single value, are encoded using the VEX prefix.

® EVEX memory addressing with disp8 form uses a compressed disp8 encoding scheme to improve encoding
density of the instruction byte stream.

® EVEX prefix can encode functionality that are specific to instruction classes (e.g. packed instruction with
“load+op” semantic can support embedded broadcast functionality, floating-point instruction with rounding
semantic can support static rounding functionality, floating-point instruction with non-rounding arithmetic
semantic can support “suppress all exceptions” functionality).

4.2 INSTRUCTION FORMAT AND EVEX

The placement of the EVEX prefix in an IA instruction is represented in Figure 4-1:

of bytes: 4 1 1 1 4 1
| [Preﬁxes]| | EVEX | | Opcode | | ModR/M | | [SIB] | |[Disp32] | | [Immediate]
1

[Disp8*N]

Figure 4-1. AVX-512 Instruction Format and the EVEX Prefix

The EVEX prefix is a 4-byte prefix, with the first two bytes derived from unused encoding form of the 32-bit-mode-
only BOUND instruction. The layout of the EVEX prefix is shown in Figure 4-2. The first byte must be 62H, followed
by three payload bytes, denoted as PO, P1, and P2 individually or collectively as P[23:0] (see Figure 4-2).

Ref. # 319433-029 4-1

INTEL® AVX-512 INSTRUCTION ENCODING

evex |e2H | |0 | [Pt | |2 |
7 6 5 4 3 2 1 0
PO (R x [B[rR][O] o] m[m|] Pro
7 6 5 4 3 2 1 0
P1 lwl v [v]v]v] 1] p] p] P[15:8]
7 6 5 4 3 2 1 0
P2 [z v][] v]al]al] a|] Pl

Figure 4-2. Bit Field Layout of the EVEX Prefix

Table 4-1. EVEX Prefix Bit Field Functional Grouping

Notation Bit field Group Position Comment
- Reserved P[3:2] Must be O
- Fixed Value P[10] Must be 1
EVEX.mm Compressed legacy escape P[1:0] Identical to low two bits of VEX.mmmmm
EVEX.pp Compressed legacy prefix P[9:8] Identical to VEX.pp
EVEX.RXB Next-8 register specifier modifier P[7 : 5] Combine with ModR/M.reg, ModR/M.rm (base, index/vidx)
EVEXR' High-16 register specifier modifier P[4] Combine with EVEX.R and ModR/M.reg
EVEXX High-16 register specifier modifier P[6] Combine with EVEX.B and ModR/M.rm, when SIB/VSIB absent
EVEX.vvvv NDS register specifier P[14:11] | Same as VEX.vvvv
EVEXV' High-16 NDS/VIDX register specifier | P[19] Combine with EVEX.vvvv or when VSIB present
EVEX.aaa Embedded opmask register specifier | P[18:16]
EVEX.W Osize promotion/Opcode extension P[15]
EVEX.z Zeroing/Merging P[23]
EVEXD Broadcast/RC/SAE Context P[20]
EVEX.L'L Vector length/RC P[22:21]

The bit fields in P[23:0] are divided into the following functional groups (Table 4-1 provides a tabular summary):

4-2

Reserved bits: P[3:2] must be 0, otherwise #UD.
Fixed-value bit: P[10] must be 1, otherwise #UD.

Compressed legacy prefix/escape bytes: P[1:0] is identical to the lowest 2 bits of VEX.mmmmm; P[9:8] is
identical to VEX.pp.

Operand specifier modifier bits for vector register, general purpose register, memory addressing: P[7:5] allows
access to the next set of 8 registers beyond the low 8 registers when combined with ModR/M register specifiers.

Operand specifier modifier bit for vector register: P[4] (or EVEX.R’) allows access to the high 16 vector register
set when combined with P[7] and ModR/M.reg specifier; P[6] can also provide access to a high 16 vector
register when SIB or VSIB addressing are not needed.

Non-destructive source /vector index operand specifier: P[19] and P[14:11] encode the second source vector
register operand in a non-destructive source syntax, vector index register operand can access an upper 16
vector register using P[19].

Op-mask register specifiers: P[18:16] encodes op-mask register set kO-k7 in instructions operating on vector
registers.

Ref. # 319433-029

INTEL® AVX-512 INSTRUCTION ENCODING

¢® EVEX.W: P[15] is similar to VEX.W which serves either as opcode extension bit or operand size promotion to
64-bit in 64-bit mode.

® Vector destination merging/zeroing: P[23] encodes the destination result behavior which either zeroes the
masked elements or leave masked element unchanged.

® Broadcast/Static-rounding/SAE context bit: P[20] encodes multiple functionality, which differs across different
classes of instructions and can affect the meaning of the remaining field (EVEX.L'L). The functionality for the
following instruction classes are:

— Broadcasting a single element across the destination vector register: this applies to the instruction class
with Load+Op semantic where one of the source operand is from memory.

— Redirect L'L field (P[22:21]) as static rounding control for floating-point instructions with rounding
semantic. Static rounding control overrides MXCSR.RC field and implies “Suppress all exceptions” (SAE).

— Enable SAE for floating -point instructions with arithmetic semantic that is not rounding.

— For instruction classes outside of the afore-mentioned three classes, setting EVEX.b will cause #UD.
¢ Vector length/rounding control specifier: P[22:21] can server one of three functionality:

— vector length information for packed vector instructions,

— ignored for instructions operating on vector register content as a single data element,

— rounding control for floating-point instructions that have a rounding semantic and whose source and
destination operands are all vector registers.

4.3 REGISTER SPECIFIER ENCODING AND EVEX

EVEX-encoded instruction can access 8 opmask registers, 16 general-purpose registers and 32 vector registers in
64-bit mode (8 general-purpose registers and 8 vector registers in non-64-bit modes). EVEX-encoding can support
instruction syntax that access up to 4 instruction operands. Normal memory addressing modes and VSIB memory
addressing are supported with EVEX prefix encoding. The mapping of register operands used by various instruction
syntax and memory addressing in 64-bit mode are shown in Table 4-2. Opmask register encoding is described in
Section 4.3.1.

Table 4-2. 32-Register Support in 64-bit Mode Using EVEX with Embedded REX Bits

47 3 [2:0] Reg. Type Common Usages
REG EVEXR' REXR modrm.reg GPR, Vector Destination or Source
NDS/NDD EVEX.V' EVEX.vvvv GPR, Vector 2ndSource or Destination
RM EVEXX EVEXB modrm.r/m GPR, Vector Ist Source or Destination
BASE 0 EVEX.B modrm.r/m GPR memory addressing
INDEX 0 EVEX.X sib.index GPR memory addressing
VIDX EVEX.V' EVEX.X sib.index Vector VSIB memory addressing
1S4 Imm8[3] Imm8[7:4] Vector 3rd Source
NOTES:

1. Not applicable for accessing general purpose registers.

Ref. # 319433-029

4-3

INTEL® AVX-512 INSTRUCTION ENCODING

The mapping of register operands used by various instruction syntax and memory addressing in 32-bit modes are
shown in Table 4-3.

Table 4-3. EVEX Encoding Register Specifiers in 32-bit Mode

4.3.1

[2:0] Reg. Type Common Usages
REG modrm.reg GPR, Vector Dest or Source
NDS/NDD EVEX.vwv GPR, Vector 2ndSource or Dest
RM modrm.r/m GPR, Vector Ist Source or Dest
BASE modrm.r/m GPR memory addressing
INDEX sib.index GPR memory addressing
VIDX sib.index Vector VSIB memory addressing
IS4 Imm8[7:5] Vector 3rd Source

Opmask Register Encoding

There are eight opmask registers, kO-k7. Opmask register encoding falls into two categories:

® Opmask registers that are the source or destination operands of an instruction treating the content of opmask
register as a scalar value, are encoded using the VEX prefix scheme. It can support up to three operands using
standard modR/M byte’s reg field and rm field and VEX.vvvv. Such a scalar opmask instruction does not support
conditional update of the destination operand.

®* An opmask register providing conditional processing and/or conditional update of the destination register of a
vector instruction is encoded using EVEX.aaa field (see Section 4.4).

® An opmask register serving as the destination or source operand of a vector instruction is encoded using
standard modR/M byte’s reg field and rm fields.

Table 4-4. Opmask Register Specifier Encoding

[2:0] Register Access Common Usages
REG modrm.reg k0-k7 Source
NDS VEX.vwv kO-k7 2ndSource
RM modrm.r/m k0-7 Ist Source
{k1} EVEX.aaa ko'-k7 Opmask
NOTES:

1. instructions that overwrite the conditional mask in opmask do not permit using kO as
the embedded mask.

4.4 MASKING SUPPORT IN EVEX

EVEX can encode an opmask register to conditionally control per-element computational operation and updating of
result of an instruction to the destination operand. The predicate operand is known as the opmask register. The
EVEX.aaa field, P[18:16] of the EVEX prefix, is used to encode one out of a set of eight 64-bit architectural regis-
ters. Note that from this set of 8 architectural registers, only k1 through k7 can be addressed as predicate oper-
ands. kO can be used as a regular source or destination but cannot be encoded as a predicate operand.

AVX-512 instructions support two types of masking with EVEX.z bit (P[23]) controlling the type of masking:

¢ Merging-masking, which is the default type of masking for EVEX-encoded vector instructions, preserves the old
value of each element of the destination where the corresponding mask bit has a 0. It corresponds to the case
of EVEX.z = 0.

44 Ref. # 319433-029

INTEL® AVX-512 INSTRUCTION ENCODING

® Zeroing-masking, is enabled by having the EVEX.z bit set to 1. In this case, an element of the destination is set
to 0 when the corresponding mask bit has a 0 value.

AVX-512 Foundation instructions can be divided in three different groups:
® Instructions which support “zeroing-masking”.
¢ Also allow merging-masking.
® Instructions which require aaa = 000.
¢ Do not allow any form of masking.
¢ Instructions which allow merging-masking but do not allow zeroing-masking
* Require EVEX.zto be setto O
* This group is mostly composed of instructions that write to memory.
¢ Instructions which require aaa <> 000 do not allow EVEX.z to be set to 1.

¢ Allow merging-masking and do not allow zeroing-masking, e.g., gather instructions.

4.5 COMPRESSED DISPLACEMENT (DISP8*N) SUPPORT IN EVEX

For memory addressing using disp8 form, EVEX-encoded instructions always use a compressed displacement
scheme by multiplying disp8 in conjunction with a scaling factor N that is determined based on the vector length,
the value of EVEX.b bit (embedded broadcast) and the input element size of the instruction. In general, the factor
N corresponds to the number of bytes characterizing the internal memory operation of the input operand (e.g., 64
when the accessing a full 512-bit memory vector). The scale factor N is listed in Table 4-5 and Table 4-6 below,
where EVEX encoded instructions are classified using the tupletype attribute. The scale factor N of each tupletype
is listed based on the vector length (VL) and other factors affecting it.

Table 4-5 covers EVEX-encoded instructions which has a load semantic in conjunction with additional computa-
tional or data element movement operation, operating either on the full vector or half vector (due to conversion of
numerical precision from a wider format to narrower format). EVEX.b is supported for such instructions for data
element sizes which are either dword or qword (see Section 4.7).

EVEX-encoded instruction that are pure load/store, and “Load+op” instruction semantic that operate on data
element size less then dword do not support broadcasting using EVEX.b. These are listed in Table 4-6. Table 4-6
also includes many broadcast instructions which perform broadcast using a subset of data elements without using
EVEX.b. These instructions and a few data element size conversion instruction are covered in Table 4-6. Instruction
classified in Table 4-6 do not use EVEX.b and EVEX.b must be 0, otherwise #UD will occur.

The tupletype abbreviation will be referenced in the instruction operand encoding table in the reference page of
each instruction, providing the cross reference for the scaling factor N to encoding memory addressing operand.

Note that the disp8*N rules still apply when using 16b addressing.

Table 4-5. Compressed Displacement (DISP8*N) Affected by Embedded Broadcast

TupleType | EVEX.b | InputSize | EVEX.W | Broadcast | N (VL=128) | N (VL=256) | N (VL=512) Comment
0 32bit 0 none 16 32 64
Full Vector 1 32bit 0 {1tox} 4 4 4 Load+0p (Full Vector
(FV) 0 64bit 1 none 16 32 64 Dword/Qword)
1 64bit 1 {1tox} 8 8 8
0 32bit 0 none 8 16 32
Half:{ ector - Load+0p (Half Vector)
(HV) 1 32bit 0 {1tox} 4 4 4

Ref. # 319433-029 4-5

INTEL® AVX-512 INSTRUCTION ENCODING

Table 4-6. EVEX DISP8*N For Instructions Not Affected by Embedded Broadcast

TupleType InputSize | EVEX.W | N (VL=128) | N (VL= 256) | N (VL= 512) Comment
Full Vector Mem (FVM) N/A N/A 16 32 64 Load/store or subDword full vector
8bit N/A 1 1 1
16bit N/A 2 2 2
Tuple1 Scalar (T1S) - 1Tuple less than Full Vector
32bit 0 4 4 4
64bit 1 8 8 8
32bit N/A 4 4 4 .
Tuple1 Fixed (T1F) . 1 Tuple memsize not affected by
64bit N/A 8 8 8 EVEXW
32bit 0 8 8 8
Tuple2 (T2) - Broadcast (2 elements)
64bit 1 NA 16 16
32bit 0 NA 16 16
Tuple4 (T4) - Broadcast (4 elements)
64bit 1 NA NA 32
Tuple8 (T8) 32bit 0 NA NA 32 Broadcast (8 elements)
Half Mem (HVM) N/A N/A 8 16 32 SubQword Conversion
QuarterMem (QVM) N/A N/A 4 8 16 SubDword Conversion
OctMem (OVM) N/A N/A 2 4 8 SubWord Conversion
Mem128 (M128) N/A N/A 16 16 16 Shift count from memory
MOVDDUP (DUP) N/A N/A 8 32 64 VMOVDDUP

4.6 EVEX ENCODING OF BROADCAST/ROUNDING/SAE SUPPORT

EVEX.b can provide three types of encoding context, depending on the instruction classes:

®* Embedded broadcasting of one data element from a source memory operand to the destination for vector
instructions with “load+op” semantic.

® Static rounding control overriding MXCSR.RC for floating-point instructions with rounding semantic.

¢ “Suppress All exceptions” (SAE) overriding MXCSR mask control for floating-point arithmetic instructions that
do not have rounding semantic.

4.6.1 Embedded Broadcast Support in EVEX

EVEX encodes an embedded broadcast functionality that is supported on many vector instructions with 32-bit
(double word or single-precision floating-point) and 64-bit data elements, and when the source operand is from
memory. EVEX.b (P[20]) bit is used to enable broadcast on load-op instructions. When enabled, only one element
is loaded from memory and broadcasted to all other elements instead of loading the full memory size.

The following instruction classes do not support embedded broadcasting:

® Instructions with only one scalar result is written to the vector destination.
® Instructions with explicit broadcast functionality provided by its opcode.

¢ Instruction semantic is a pure load or a pure store operation.

4.6.2 Static Rounding Support in EVEX

Static rounding control embedded in the EVEX encoding system applies only to register-to-register flavor of
floating-point instructions with rounding semantic at two distinct vector lengths: (i) scalar, (ii) 512-bit. In both

4-6 Ref. # 319433-029

INTEL® AVX-512 INSTRUCTION ENCODING

cases, the field EVEX.L'L expresses rounding mode control overriding MXCSR.RC if EVEX.b is set. When EVEX.b is
set, “suppress all exceptions” is implied. The processor behaves as if all MXCSR masking controls are set, and none
of the MXCSR flags will be updated.

4.6.3 SAE Support in EVEX

The EVEX encoding system allows arithmetic floating-point instructions without rounding semantic to be encoded
with the SAE attribute. This capability applies to scalar and 512-bit vector lengths, register-to-register only, by
setting EVEX.b. When EVEX.b is set, “suppress all exceptions” is implied. The processor behaves as if all MXCSR
masking controls are set, and none of the MXCSR flags will be updated.

4.6.4 Vector Length Orthogonality

The architecture of EVEX encoding scheme can support SIMD instructions operating at multiple vector lengths.
Many AVX-512 Foundation instructions operate at 512-bit vector length. The vector length of EVEX encoded vector
instructions are generally determined using the L'L field in EVEX prefix, except for 512-bit floating-point, reg-reg
instructions with rounding semantic. The table below shows the vector length corresponding to various values of
the L'L bits. When EVEX is used to encode scalar instructions, L'L is generally ignored.

When EVEX.b bit is set for a register-register instructions with floating-point rounding semantic, the same two bits
P2[6:5] specifies rounding mode for the instruction, with implied SAE behavior. The mapping of different instruc-
tion classes relative to the embedded broadcast/rounding/SAE control and the EVEX.L'L fields are summarized in
Table 4-7.

Table 4-7. EVEX Embedded Broadcast/Rounding/SAE and Vector Length on Vector Instructions

Position P2[4] P2[6:5] P2[6:5]
Broadcast/Rounding/SAE Context EVEX.b EVEX.L'L EVEX.RC
Reg-reg, FP Instructions w/ rounding semantic Enable static rounding Vector length Implied 00b: SAE + RNE
control (SAE implied) (512 bit or scalar) 01b: SAE +RD
10b: SAE +RU
11b: SAE +RZ
FP Instructions w/o rounding semantic, can cause #XF SAE control 00b: 128-bit NA
Load+op Instructions w/ memory source Broadcast Control %E EESE:E NA
Other Instructions (Must be O (otherwise 11b: Reserved (#UD) NA
Explicit Load/Store/Broadcast/Gather/Scatter) #UD)

4.7 #UD EQUATIONS FOR EVEX

Instructions encoded using EVEX can face three types of UD conditions: state dependent, opcode independent and
opcode dependent.

4.7.1 State Dependent #UD

In general, attempts of execute an instruction, which required OS support for incremental extended state compo-
nent, will #UD if required state components were not enabled by OS. Table 4-8 lists instruction categories with
respect to required processor state components. Attempts to execute a given category of instructions while
enabled states were less than the required bit vector in XCRO shown in Table 4-8 will cause #UD.

Ref. # 319433-029 4-7

INTEL® AVX-512 INSTRUCTION ENCODING

Table 4-8. 0S XSAVE Enabling Requirements of Instruction Categories

Instruction Categories Vector Register State Access Required XCRO Bit Vector [7:0]
Legacy SIMD prefix encoded Instructions (e.g SSE) XMM Xxxxxx11b
VEX-encoded instructions operating on YMM YMM Xxxxx111b
EVEX-encoded 128-bit instructions ZMM 111xx111b
EVEX-encoded 256-bit instructions ZMM 111xx111b
EVEX-encoded 512-bit instructions ZMM 111xx111b
VEX-encoded instructions operating on opmask k-reg xx1xxx11b

4.7.2 Opcode Independent #UD

A number of bit fields in EVEX encoded instruction must obey mode-specific but opcode-independent patterns
listed in Table 4-9:

Table 4-9. Opcode Independent, State Dependent EVEX Bit Fields

Position Notation 64-bit #UD Non-64-bit #UD
P[3:2] -- if >0 if >0
P[10] - if 0 if 0
P[1:0] EVEX.mm if 00b if 00b
P[7: 6] EVEX.RX None (valid) None (BOUND if EVEX.RX |= 11b)
4.7.3 Opcode Dependent #UD

This section describes legal values for the rest of the EVEX bit fields. Table 4-10 lists the #UD conditions of EVEX
prefix bit fields which encodes or modifies register operands.

Table 4-10. #UD Conditions of Operand-Encoding EVEX Prefix Bit Fields

Notation Position Operand Encoding 64-bit #UD Non-64-bit #UD

EVEXR P[7] ModRM.reg encodes k-reg if EVEXR=0 None (BOUND if
ModRM.reg is opcode extension None (ignored) EVEXRX 1= 11b)
ModRM.reg encodes all other registers None (valid)

EVEX.X P[6] ModRM.r/m encodes ZMM/YMM/XMM None (valid)
ModRM.r/m encodes k-reg or GPR None (ignored)
ModRM.r/m without SIB/VSIB None (ignored)
ModRM.r/m with SIB/VSIB None (valid)

EVEX.B P[5] ModRM.r/m encodes k-reg None (ignored) None (ignored)
ModRM.r/m encodes other registers None (valid)
ModRM.r/m base present None (valid)
ModRM.r/m base not present None (ignored)

EVEXR' P[4] ModRM.reg encodes k-reg or GPR if 0 None (ignored)
ModRM.reg is opcode extension None (ignored)
ModRM.reg encodes ZMM/YMM/XMM None (valid)

4-8 Ref. # 319433-029

INTEL® AVX-512 INSTRUCTION ENCODING

Table 4-10. #UD Conditions of Operand-Encoding EVEX Prefix Bit Fields (Continued)

EVEX.vvwv P[14:11] | vvvv encodes ZMM/YMM/XMM None (valid) None (valid)
P[14] ignored
otherwise if1=1111b if1=1111b
EVEXV' P[19] encodes ZMM/YMM/XMM None (valid) if 0
otherwise if 0 if 0

Table 4-11 lists the #UD conditions of instruction encoding of opmask register using EVEX.aaa and EVEX.z

Table 4-11. #UD Conditions of Opmask Related Encoding Field

Notation Position Operand Encoding 64-bit #UD Non-64-bit #UD
EVEX.aaa P[18:16] | instructions do not use opmask for conditional processing’ | if aaa = 000b if aaa != 000b
opmask used as conditional processing mask and updated | if aaa = 000b if aaa = 000b;
at completion?
opmask used as conditional processing None (valid3) None (valid')
EVEX.z P[23] vector instruction using opmask as source or destination® | if EVEX.z 1= 0 if EVEX.z!1=0
store instructions or gather/scatter instructions if EVEX.zI=0 if EVEX.zI=0
instruction supporting conditional processing mask with if EVEX.z!1=0 if EVEX.z!1=0
EVEX.aaa = 000b
NOTES:

1. E.g. VBROADCASTMxxx, VPMOVMZ2x, VPMOVXx2M

2. E.g. Gather/Scatter family
3. aaa can take any value. A value of 000 indicates that there is no masking on the instruction; in this case, all
elements will be processed as if there was a mask of ‘all ones’ regardless of the actual value in KO.

4. E.g. VFPCLASSPD/PS, VCMPB/D/Q/W family, VPMOVM2x, VPMOVx2M

Table 4-12 lists the #UD conditions of EVEX bit fields that depends on the context of EVEX.b.

Table 4-12. #UD Conditions Dependent on EVEX.b Context

Notation Position Operand Encoding 64-bit #UD Non-64-bit #UD
EVEX.L'Lb P[22 : 20] | reg-reg, FP instructions with rounding semantic None (valid") None (valid")
other reg-reg, FP instructions that can cause #XF None (valid?) None (valid?)
other reg-mem instructions in Table 4-5 None (valid3) None (valid?)
other instruction classes? in Table 4-6 if EVEXb >0 if EVEXb >0
NOTES:

1. L'L specifies rounding control, see Table 4-7, supports {er} syntax.
2. 'L specifies vector length, see Table 4-7, supports {sae} syntax.

3. L'L specifies vector length, see Table 4-7, supports embedded broadcast syntax
4. L'L specifies either vector length or ignored.

4.8

DEVICE NOT AVAILABLE

EVEX-encoded instructions follow the same rules when it comes to generating #NM (Device Not Available) excep-
tion. In particular, it is generated when CRO.TS[bit 3]= 1.

Ref. # 319433-029

4-9

INTEL® AVX-512 INSTRUCTION ENCODING

4.9 SCALAR INSTRUCTIONS

EVEX-encoded scalar SIMD instructions can access up to 32 registers in 64-bit mode. Scalar instructions support

masking (using the least significant bit of the opmask register), but broadcasting is not supported.

410

EXCEPTION CLASSIFICATIONS OF EVEX-ENCODED INSTRUCTIONS

The exception behavior of EVEX-encoded instructions can be classified into the classes shown in the rest of this
section. The classification of EVEX-encoded instructions follow a similar framework as those of AVX and AVX2
instructions using the VEX prefix. Exception types for EVEX-encoded instructions are named in the style of

“E##” or with a suffix “E##XX”. The “##” designation generally follows that of AVX/AVX2 instructions. The
majority of EVEX encoded instruction with “Load+op” semantic supports memory fault suppression, which is repre-
sented by E##. The instructions with “Load+op” semantic but do not support fault suppression are nhamed
“E##NF”. A summary table of exception classes by class names are shown below.

Table 4-13. EVEX-Encoded Instruction Exception Class Summary

Exception Class Instruction set Mem arg (#XM)
Type E1 Vector Moves/Load/Stores explicitly aligned, w/ fault suppression none
Type E1NF Vector Non-temporal Stores explicitly aligned, no fault suppression none
Type E2 FP Vector Load+op Support fault suppression yes
Type E2NF FP Vector Load+op No fault suppression yes
Type €3 FP Scalar/Partial Vector, Load+Op Support fault suppression yes
Type E3NF FP Scalar/Partial Vector, Load+Op No fault suppression yes
Type €4 Integer Vector Load+op Support fault suppression no
Type E4NF Integer Vector Load+op No fault suppression no
Type E5 Legacy-like Promotion Varies, Support fault suppression no
Type ESNF Legacy-like Promotion Varies, No fault suppression no
Type E6 Post AVX Promotion Varies, w/ fault suppression no
Type EGNF Post AVX Promotion Varies, no fault suppression no
Type E7NM register-to-register op none none
Type ESNF Miscellaneous 128-bit Vector-length Specific, no fault suppression none
Type E10 Non-XF Scalar Vector Length ignored, w/ fault suppression none
Type E10NF Non-XF Scalar Vector Length ignored, no fault suppression none
Type E11 VCVTPHZPS Half Vector Length, w/ fault suppression yes
Type ET11NF VCVTPS2PH Half Vector Length, no fault suppression yes
Type E12 Gather and Scatter Family VSIB addressing, w/ fault suppression none
Type E12NP Gather and Scatter Prefetch Family V/SIB addressing, w/o page fault none

4-10

Ref. # 319433-029

INTEL® AVX-512 INSTRUCTION ENCODING

Table 4-14 lists EVEX-encoded instruction mnemonic by exception classes.

Table 4-14. EVEX Instructions in each Exception Class

Exception Class Instruction

Type E1 VMOVAPD, VMOVAPS, VMOVDQA32, VMOVDQAG4

Type EINF VMOVNTDQ, VMOVNTDQA, VMOVNTPD, VMOVNTPS

VADDPD, VADDPS, VCMPPD, VCMPPS, VCVTDQZPS, VCVTPD2DQ, VCVTPDZPS, VCVTPS2DQ, VCVTTPDZ2DQ,
VCVTTPS2DQ, VDIVPD, VDIVPS, VFMADDxxxPD, VFMADDxxxPS, VFMSUBADDxxxPD, VFMSUBADDxxxPS,
VFMSUBxxxPD, VFMSUBxxxPS, VFNMADDxxxPD, VFNMADDxxxPS, VFNMSUBxxxPD, VFNMSUBxxxPS, VMAXPD,
VMAXPS, VMINPD, VMINPS, VMULPD, VMULPS, VSQRTPD, VSQRTPS, VSUBPD, VSUBPS

Type €2 VCVTPD2QQ, VCVTPD2UQQ, VCVTPD2UDQ, VCVTPS2UDQS, VCVTQQ2PD, VCVTQQ2PS, VCVTTPD2DQ,
VCVTTPD2QQ, VCVTTPD2UDQ, VCVTTPD2UQQ, VCVTTPS2DQ, VCVTTPS2UDQ, VCVTUDQ2PS, VCVTUQQ2PD,
VCVTUQQ2PS, VFIXUPIMMPD, VFIXUPIMMPS, VGETEXPPD, VGETEXPPS, VGETMANTPD, VGETMANTPS, VRANGEPD,
VRANGEPS, VREDUCEPD, VREDUCEPS, VRNDSCALEPD, VRNDSCALEPS, 'SCALEFPD, VSCALEFPS, VRCP28PD,
VRCP28PS, VRSQRT28PD, VRSQRT28PS

VADDSD, VADDSS, VCMPSD, VCMPSS, VCVTPS2PD, VCVTSDZSS, VCVTSS2SD, VDIVSD, VDIVSS, VMAXSD, VMAXSS,
VMINSD, VMINSS, VMULSD, VMULSS, VSQRTSD, VSQRTSS, VSUBSD, VSUBSS

VCVTPS2QQ, VCVTPS2UQQ, VCVTTPS2QQ, VCVTTPS2UQQ, VFMADDXxXXSD, VFMADDXXXSS, VFMSUBXXXSD,
Type E3 VEMSUBXxxXSS, VFNMADDxxxSD, VFNMADDxxxSS, VFNMSUBxxxSD, VFNMSUBxxxSS, VFIXUPIMMSD,
VFIXUPIMMSS, VGETEXPSD, VGETEXPSS, VGETMANTSD, VGETMANTSS, VRANGESD, VRANGESS, VREDUCESD,
VREDUCESS, VRNDSCALESD, VRNDSCALESS, VSCALEFSD, VSCALEFSS, VRCP28SD, VRCP28SS, VRSQRT28SD,
VRSQRT28SS

VCOMISD, VCOMISS, VCVTSD2SI, VCVTSIZ2SD, VCVTSIZSS, VCVTSS2SI, VCVTTSD2SI, VCVTTSS2SI, VUCOMISD,
Type E3NF VUCOMISS

VCVTSD2USI, VEVTTSD2USI, VEVTSS2USI, VEVTTSS2USI, VEVTUSIZSD, VCVTUSIZSS

VANDPD, VANDPS, VANDNPD, VANDNPS, VORPD, VORPS, VPABSD, VPABSQ, VPADDD, VPADDQ, VPANDD, VPANDQ,
VPANDND, VPANDNQ, VPCMPEQD, VPCMPEQQ,VPCMPGTD, VPCMPGTQ, VPMAXSD, VPMAXSQ, VPMAXUD,
VPMAXUQ, VPMINSD, VPMINSQ,VPMINUDVPMINUQ, VPMULLD, VPMULLQ, VPMULUDQ, VPMULDQ, VPORD, VPORQ,
VPSUBD, VPSUBQ, VPXORD, VPXORQ, VXORPD, VXORPS, VPSLLVD, VPSLLVQ,

Type €4 VBLENDMPD, VBLENDMPS, VPBLENDMD, VPBLENDMQ, VFPCLASSPD, VFPCLASSPSVPCMPD, VPCMPQ,VPCMPUD,
VPCMPUQ, VPLZCNTD, VPLZCNTQ, VPROLD, VPROLQ, (VPSLLD, VPSLLQ, VPSRAD, VPSRAQ, VPSRLD, VPSRLQ)',
VPTERNLOGD, VPTERNLOGQ,VPTESTMD, VPTESTMQ,VPTESTNMD, VPTESTNMQ, VRCP14PD, VRCP14PS,
VRSQRT14PD, VRSQRT14PS, VPCONFLICTD, VPCONFLICTQ, VPSRAVW, VPSRAVD, VPSRAVW, VPSRAVQ,
VPMADD52LUQ, VPMADD52HUQ

VMOVUPD, VMOVUPS, VMOVDQUS8, VMOVDQU16, YMOVDQU32, YMOVDQU64, VPCMPB, VPCMPW, VPCMPUB,
VPCMPUW, VEXPANDPD, VEXPANDPS, VPCOMPRESSD, VPCOMPRESSQ, VPEXPANDD, VPEXPANDQ,
VVCOMPRESSPD, VCOMPRESSPS, VPABSB, VPABSW, VPADDB, VPADDW, VPADDSB, VPADDSW, VPADDUSB,

€4.nb? VPADDUSW, VPAVGB, VPAVGW, VPCMPEQB, VPCMPEQW, VPCMPGTB, VPCMPGTW, VPMAXSB, VPMAXSW,
VPMAXUB, VPMAXUW, VPMINSB, VPMINSW, VPMINUB, VPMINUW, VPMULHRSW, VPMULHUW, VPMULHW,
VPMULLW, VPSUBB, VPSUBW, VPSUBSB, VPSUBSW, VPTESTMB, VPTESTMW, VPTESTNMB, VPTESTNMW, VPSLLW,
VPSRAW, VPSRLW, VPSLLVW, VPSRLVW

VPACKSSDW, VPACKUSDW VPSHUFD, VPUNPCKHDQ, VPUNPCKHQDQ, VPUNPCKLDQ, VPUNPCKLQDQ, VSHUFPD,
VSHUFPS, VUNPCKHPD, VUNPCKHPS, VUNPCKLPD, VUNPCKLPS, VPERMD, VPERMPS, VPERMPD, VPERMQ,

Type E4NF VALIGND, VALIGNQ, VPERMIZD, VPERMIZPS, VPERMIZPD, VPERMIZ2Q, VPERMTZD, VPERMT2PS, VPERMT2Q,
VPERMTZPD, VPERMILPD, VPERMILPS, VSHUFI32X4, VSHUFI64X2, VSHUFF32X4, VSHUFF64X2,
VPMULTISHIFTQB

VDBPSADBW, VPACKSSWB, VPACKUSWB, VPALIGNR, VPMADDWD, VPMADDUBSW, VMOVSHDUP, VMOVSLDUP,
VPSADBW, VPSHUFB, VPSHUFHW, VPSHUFLW, VPSLLDQ, VPSRLDQ, VPSLLW, VPSRAW, VPSRLW, (VPSLLD,
VPSLLQ, VPSRAD, VPSRAQ, VPSRLD, VPSRLQ)3, VPUNPCKHBW, VPUNPCKHWD, VPUNPCKLBW, VPUNPCKLWD,
VPERMW, VPERMIZW, VPERMT2W, VPERMB, VPERMIZB, VPERMTZB

E4NF.Nb2

Ref. # 319433-029 4-11

INTEL® AVX-512 INSTRUCTION ENCODING

Table 4-14. EVEX Instructions in each Exception Class(Continued)

Exception Class Instruction

VCVTDQZPD, PMOVSXBW, PMOVSXBW, PMOVSXBD, PMOVSXBQ, PMOVSXWD, PMOVSXWQ, PMOVSXDQ,
Type €5 PMOVZXBW, PMOVZXBD, PMOVZXBQ, PMOVZXWD, PMOVZXWQ, PMOVZXDQ

VCVTUDQZPD

Type ESNF | VMOVDDUP

VBROADCASTSS, VBROADCASTSD, VBROADCASTF32X4, VBROADCASTI32X4, VPBROADCASTB, VPBROADCASTD,
VPBROADCASTW, VPBROADCASTQ,

VBROADCASTF32X2, VBROADCASTF32X4, VBROADCASTF64X2, VBROADCASTF32X8, VBROADCASTF64X4,
Type €6 VBROADCASTI32X2, VBROADCASTI32X4, VBROADCASTI64X2, VBROADCASTI32X8, VBROADCASTI64X4,
VFPCLASSSD, VFPCLASSSS, VPMOVQB, VPMOVSQB, VPMOVUSQB, VPMOVQW, VPMOVSQW, VPMOVUSQW,
VPMOVQD, VPMOVSQD, VPMOVUSQD, VPMOVDB, VPMOVSDB, VPMOVUSDB, VPMOVDW, VPMOVSDW,
VPMOVUSDW

VEXTRACTF32X4, VEXTRACTF64X2, VEXTRACTF32X8, VINSERTF32X4, VINSERTF64X2, VINSERTF64X4,
VINSERTF32X8, VINSERTI32X4, VINSERTI64X2, VINSERTI64X4, VINSERTI32X8, VEXTRACTI32X4,

Type BENF |\ EXTRACTIBAX2, VEXTRACTI32XS, VEXTRACTI6AX4, VPBROADCASTMB2Q, VPBROADCASTMWZD, VPMOVWS,
VPMOVSWB, VPMOVUSWB
Type VMOVLHPS, VMOVHLPS
E7NM.128%
Tvoe £7NM, | (VPBROADCASTD, VPBROADCASTQ, VPBROADCASTS, VPBROADCASTW)®, VPMOVM2B, VPMOVM2D, VPMOVM2Q,
yp | VPMOVM2W, VPMOVB2M, VPMOVD2M, VPMOVQ2M, VPMOVW2M
Type ESNF VEXTRACTPS, VINSERTPS, VMOVHPD, VMOVHPS, VMOVLPD, VMOVLPS, VMOVD, VMOVQ, VPEXTRB, VPEXTRD,

VPEXTRW, VPEXTRQ, VPINSRB, VPINSRD, VPINSRW, VPINSRQ

Type E10 VMOVSD, VMOVSS, VRCP14SD, VRCP14SS, VRSQRT14SD, VRSQRT14SS,

Type ETONF | (VCVTSI2SD, VCVTUSI2SD)P

Type E11 | VCVTPH2PS, VCVTPS2PH

VGATHERDPS, VGATHERDPD, VGATHERQPS, VGATHERQPD, VPGATHERDD, VPGATHERDQ, VPGATHERQD,
Type E12 VPGATHERQQ, VPSCATTERDD, VPSCATTERDQ, VPSCATTERQD, VPSCATTERQQ, VSCATTERDPD, VSCATTERDPS,
VSCATTERQPD, VSCATTERQPS

VGATHERPFODPD, VGATHERPFODPS, VGATHERPFOQPD, VGATHERPFOQPS, VGATHERPF1DPD, VGATHERPF1DPS,
Type E12NP | VGATHERPF1QPD, VGATHERPF1QPS, VSCATTERPFODPD, VSCATTERPFODPS, VSCATTERPFOQPD,
VSCATTERPFOQPS, VSCATTERPF1DPD, VSCATTERPF1DPS, VSCATTERPF1QPD, VSCATTERPF1QPS

NOTES:

1. Operand encoding FVI tupletype with immediate.

2. Embedded broadcast is not supported with the “.nb” suffix.
3. Operand encoding M128 tupletype.

4. #UD raised if EVEX.L'L I=00b (VL=128).

5. The source operand is a general purpose register.

6. WO encoding only.

4-12 Ref. # 319433-029

INTEL® AVX-512 INSTRUCTION ENCODING

4.10.1 Exceptions Type E1 and E1NF of EVEX-Encoded Instructions

EVEX-encoded instructions with memory alignment restrictions, and supporting memory fault suppression follow
exception class E1.

Table 4-15. Type E1 Class Exception Conditions

8 |82
X 0=
. | ® 82| 5 .
Exception K = 5 9 $ Cause of Exception
2 |BE
= | @0
S [av
X X If EVEX prefix present.
If CR4.0SXSAVE[bit 18]=0.
If any one of following conditions applies:
= State requirement, Table 4-8 not met.
X X |* Opcode independent #UD condition in Table 4-9.
Invalid Opcode = Operand encoding #UD conditions in Table 4-10.
#UD ! = Opmask encoding #UD condition of Table 4-11.
= [fEVEXD!=0.
= [f EVEX.L'L!=10b (VL=512).

X X X X | If preceded by a LOCK prefix (FOH).
If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X X X | If any corresponding CPUID feature flag is ‘0",

Device Not Avail-—| 'y | % | x | x |ifcroTS[bit3]=1.

able, #NM
X If fault suppression not set, and an illegal address in the SS segment.
Stack, SS(0) w | If fault suppression not set, and a memory address referencing the SS segment s in
a non-canonical form.
EVEX.512: Memory operand is not 64-byte aligned.
X X | EVEX.256: Memory operand is not 32-byte aligned.
EVEX.128: Memory operand is not 16-byte aligned.
General Protection, X If fault suppression not set, and an illegal memory operand effective address in the
CS, DS, €S, FS or GS segments.
#GP(0)
X | If fault suppression not set, and the memory address is in a non-canonical form.
X X If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.
Page Fault

#PF(fault-code) X X X | If fault suppression not set, and a page fault.

Ref. # 319433-029 4-13

INTEL® AVX-512 INSTRUCTION ENCODING

EVEX-encoded instructions with memory alignment restrictions, but do not support memory fault suppression
follow exception class E1INF.

Table 4-16. Type E1NF Class Exception Conditions

#PF(fault-code)

8 |82
X =
. | & |82 5 .
Exception K = g o & Cause of Exception
=] o
£ |8E
= |80
S [av
X X If EVEX prefix present.
If CR4.0SXSAVE[bit 18]=0.
If any one of following conditions applies:
= State requirement, Table 4-8 not met.
X X |" Opcode independent #UD condition in Table 4-9.
Invalid Opcode = Operand encoding #UD conditions in Table 4-10.
#UD ! = Opmask encoding #UD condition of Table 4-11.
= [fEVEXD!=0.
= [f EVEX.L'L!=10b (VL=512).
X X X X | If preceded by a LOCK prefix (FOH).
If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X X X | If any corresponding CPUID feature flag is ‘0",
Device Not Avail- N
able, #NM X X X X | If CRO.TS[bit 3]=1.
X For an illegal address in the SS segment.
Stack, SS(0) - . -
X | If a memory address referencing the SS segment is in a non-canonical form.
EVEX.512: Memory operand is not 64-byte aligned.
X X | EVEX.256: Memory operand is not 32-byte aligned.
EVEX.128: Memory operand is not 16-byte aligned.
General Protection, X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
#GP(0) ments.
X | If the memory address is in a non-canonical form.
X X If any part of the operand lies outside the effective address space from O to FFFFH.
Page Fault X X X | For a page fault.

4-14

Ref. # 319433-029

INTEL® AVX-512 INSTRUCTION ENCODING

4.10.2 Exceptions Type E2 of EVEX-Encoded Instructions

EVEX-encoded vector instructions with arithmetic semantic follow exception class E2.

Table 4-17. Type E2 Class Exception Conditions

g |82
— Q vo| =
. ©® | © | aF| B .
Exception 9| 5 |ER|l < Cause of Exception
@ S 18el
E |55
S |&£8
X X If EVEX prefix present.
X X X X | If an unmasked SIMD floating-point exception and CR4.0SXMMEXCPT[bit 10] = 0.
If CR4.0SXSAVE[bit 18]=0.
If any one of following conditions applies:
= State requirement, Table 4-8 not met.
Invalid Opcode, X X Opcode independent #UD condition in Table 4-9.
#UD Operand encoding #UD conditions in Table 4-10.

= Opmask encoding #UD condition of Table 4-11.
= [f EVEX.L'L!=10b (VL=512).

X X X X | If preceded by a LOCK prefix (FOH).
X | If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X X X | If any corresponding CPUID feature flag is ‘0.

Device Not Avail-

able, #NM X | X | X | X |IfCRO.TS[bit 3]=1.

X If fault suppression not set, and an illegal address in the SS segment.

Stack, SS(0) If fault suppression not set, and a memory address referencing the SS segment is in a
non-canonical form.

If fault suppression not set, and an illegal memory operand effective address in the CS,
DS, ES, FS or GS segments.

X | If fault suppression not set, and the memory address is in a non-canonical form.

General Protec-

tion, #GP(0)
X X If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.
Page Fault .
#PF(fault-code) X X X | If fault suppression not set, and a page fault.
SIMD Floating- . . .
. ; If an unmasked SIMD floating-point exception, {sae} or {er} not set, and CR4.0SXMMEX-
point Exception, X X X X . -
#XM CPT[bit10]=1.

Ref. # 319433-029 4-15

INTEL® AVX-512 INSTRUCTION ENCODING

4.10.3 Exceptions Type €3 and E3NF of EVEX-Encoded Instructions

EVEX-encoded scalar instructions with arithmetic semantic that support memory fault suppression follow exception

class E3.
Table 4-18. Type €3 Class Exception Conditions
8 |22
X =
. | ® 82| 5 .
Exception K = |88 ¢ Cause of Exception
= 9 ©
£ |8E
= |86
S [av
X X If EVEX prefix present.
X X X X | If an unmasked SIMD floating-point exception and CR4.0SXMMEXCPT[bit 10] = 0.
If CR4.0SXSAVE[bit 18]=0.
If any one of following conditions applies:
= State requirement, Table 4-8 not met.
. X X | = Opcode independent #UD condition in Table 4-9.
Invalid Opcode, #UD = Operand encoding #UD conditions in Table 4-10.
= Opmask encoding #UD condition of Table 4-11.
= [fEVEXD!=0.
X X X X | If preceded by a LOCK prefix (FOH).
If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X X X | If any corresponding CPUID feature flag is ‘0",
Device Not Available, | 'y | x| x | x |ifcrRo.TS[bit 3]=1.
#NM
X If fault suppression not set, and an illegal address in the SS segment.
Stack, SS(0) w | If fault suppression not set, and a memory address referencing the SS segment is
in a non-canonical form.
X If fault suppression not set, and an illegal memory operand effective address in
the CS, DS, €S, FS or GS segments.
G#Eg%e)" Protection, X | If fault suppression not set, and the memory address is in @ non-canonical form.
X X If fault suppression not set, and any part of the operand lies outside the effective
address space from O to FFFFH.
E:gg)Fault #PF(fault- X X X | If fault suppression not set, and a page fault.
Alignment Check X X X If alignment checking is enabled and an unaligned memory reference of 8 bytes
#AC(0) or less is made while the current privilege level is 3.
SIMD Floating-point X X X X If an unmasked SIMD floating-point exception, {sae} or {er} not set, and CR4.0SX-

Exception, #XM

MMEXCPT[bit 10] = 1.

4-16

Ref. # 319433-029

INTEL® AVX-512 INSTRUCTION ENCODING

EVEX-encoded scalar instructions with arithmetic semantic that do not support memory fault suppression follow

exception class E3NF.

Table 4-19. Type E3NF Class Exception Conditions

® |22
X 0=
. | ® |82| 5 .
Exception K = 5 9| & Cause of Exception
=] (o]
£ |8E
= |60
S [av
X X EVEX prefix.
X X X X | If an unmasked SIMD floating-point exception and CR4.0SXMMEXCPT[bit 10] = 0.
If CR4.0SXSAVE[bit 18]=0.
If any one of following conditions applies:
= State requirement, Table 4-8 not met.
. X X | = Opcode independent #UD condition in Table 4-9.
Invalid Opcode, #UD = Operand encoding #UD conditions in Table 4-10.
= Opmask encoding #UD condition of Table 4-11.
= [fEVEXD!=0.
X X X X | If preceded by a LOCK prefix (FOH).
X | If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X X X | If any corresponding CPUID feature flag is ‘0",
Device Not Available, |\ 'y |y | x | x |ifcrRo.TS[bit3]=1.
#NM
X For an illegal address in the SS segment.
Stack, SS(0) : — .
X | If a memory address referencing the SS segment is in a non-canonical form.
X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.
General Protection, - -
HGP(0) X | If the memory address is in a non-canonical form.
If any part of the operand lies outside the effective address space from O to
X X
FFFFH.
Page Fault #PF(fault- X X X | For a page fault.
code)
Alignment Check X X X If alignment checking is enabled and an unaligned memory reference of 8 bytes
#AC(0) or less is made while the current privilege level is 3.
SIMD Floating-point X X X X If an unmasked SIMD floating-point exception, {sae} or {er} not set, and CR4.0SX-
Exception, #XM MMEXCPT[bit 10] = 1.

Ref. # 319433-029

4-17

INTEL® AVX-512 INSTRUCTION ENCODING

4.10.4 Exceptions Type €4 and E4NF of EVEX-Encoded Instructions

EVEX-encoded vector instructions that cause no SIMD FP exception and support memory fault suppression follow

exception class E4.

Table 4-20. Type €4 Class Exception Conditions

Exception

Real

Protected and

Compatibility

64-bit

Cause of Exception

Invalid Opcode, #UD

>

x| Virtual 80x86

If EVEX prefix present.

If CR4.0SXSAVE[bit 18]=0.

If any one of following conditions applies:

= State requirement, Table 4-8 not met.

* Opcode independent #UD condition in Table 4-9.

= Operand encoding #UD conditions in Table 4-10.

= Opmask encoding #UD condition of Table 4-11.

= [f EVEX.b!=0and in E4.nb subclass (see E4.nb entries in Table 4-14).
= [f EVEX.L'L!=10b (VL=512).

If preceded by a LOCK prefix (FOH).

If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

If any corresponding CPUID feature flag is ‘0"

Device Not Available,
#NM

If CRO.TS[bit 3]=1.

Stack, SS(0)

If fault suppression not set, and an illegal address in the SS segment.

If fault suppression not set, and a memory address referencing the SS segment is
in @ non-canonical form.

General Protection,
#GP(0)

If fault suppression not set, and an illegal memory operand effective address in
the CS, DS, ES, FS or GS segments.

If fault suppression not set, and the memory address is in a non-canonical form.

If fault suppression not set, and any part of the operand lies outside the effective
address space from O to FFFFH.

Page Fault #PF(fault-
code)

If fault suppression not set, and a page fault.

4-18

Ref. # 319433-029

INTEL® AVX-512 INSTRUCTION ENCODING

EVEX-encoded vector instructions that do not cause SIMD FP exception nor support memory fault suppression
follow exception class E4NF.

Table 4-21. Type E4NF Class Exception Conditions

| 8 |32| 5
Exception Q = |8R| & Cause of Exception
o © 3 al 3
2 |8 E
= | 8o
S |av
X X If EVEX prefix present.

If CR4.0SXSAVE[bit 18]=0.

If any one of following conditions applies:

= State requirement, Table 4-8 not met.

X X " Opcode independent #UD condition in Table 4-9.

Operand encoding #UD conditions in Table 4-10.

Opmask encoding #UD condition of Table 4-11.

If EVEX.b = 0 and in E4NF.nb subclass (see E4NF.nb entries in Table 4-14).
If EVEX.L'L!=10b (VL=512).

X X X X | If preceded by a LOCK prefix (FOH).
X X | If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X X X | If any corresponding CPUID feature flag is ‘0",

Invalid Opcode, #UD

Device Not Available,

#NM X X X X | If CRO.TS[bit 3]=1.

X For an illegal address in the SS segment.
Stack, SS(0)

X | If a memory address referencing the SS segment is in a non-canonical form.

For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-

General Protection, ments.
#GP(0) X | If the memory address is in a non-canonical form.
X X If any part of the operand lies outside the effective address space from O to
FFFFH.
cP;!cgljg)f:ault #PF(fault- X " X | For a page fauit

Ref. # 319433-029 4-19

INTEL® AVX-512 INSTRUCTION ENCODING

4.10.5

Exceptions Type E5 and E5NF

EVEX-encoded scalar/partial-vector instructions that cause no SIMD FP exception and support memory fault

suppression follow exception class E5.

Table 4-22. Type E5 Class Exception Conditions

Exception

Real

Protected and

Compatibility

64-bit

Cause of Exception

Invalid Opcode, #UD

>

> | Virtual 80x86

If EVEX prefix present.

If CR4.0SXSAVE[bit 18]=0.

If any one of following conditions applies:

= State requirement, Table 4-8 not met.

Opcode independent #UD condition in Table 4-9.
Operand encoding #UD conditions in Table 4-10.
Opmask encoding #UD condition of Table 4-11.
If EVEXb!= 0.

If EVEX.L'L!= 10b (VL=512).

If preceded by a LOCK prefix (FOH).

If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.

If any corresponding CPUID feature flag is ‘0.

Device Not Available,
#NM

If CRO.TS[bit 3]=1.

Stack, SS(0)

If fault suppression not set, and an illegal address in the SS segment.

If fault suppression not set, and a memory address referencing the SS segment is
in @ non-canonical form.

General Protection,
#GP(0)

If fault suppression not set, and an illegal memory operand effective address in the
CS, DS, €S, FS or GS segments.

If fault suppression not set, and the memory address is in @ non-canonical form.

If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.

Page Fault #PF(fault-
code)

If fault suppression not set, and a page fault.

Alignment Check
#AC(0)

If alignment checking is enabled and an unaligned memory reference of 8 bytes or
less is made while the current privilege level is 3.

4-20

Ref. # 319433-029

INTEL® AVX-512 INSTRUCTION ENCODING

EVEX-encoded scalar/partial vector instructions that do not cause SIMD FP exception nor support memory fault
suppression follow exception class ESNF.

Table 4-23. Type E5NF Class Exception Conditions

#AC(0)

3 |22
X 0=
. | ® |82| 5 .
Exception K = 5 B & Cause of Exception
=] (o]
£ |8E
= |20
S |av
X X If EVEX prefix present.
If CR4.0SXSAVE[bit 18]=0.
If any one of following conditions applies:
= State requirement, Table 4-8 not met.
X X " Opcode independent #UD condition in Table 4-9.
= Operand encoding #UD conditions in Table 4-10.
Invalid Opcode, #UD = Opmask encoding #UD condition of Table 4-11.
= [fEVEXD!=0.
= [f EVEXLL!=10b (VL=512).
X X X X | If preceded by a LOCK prefix (FOH).
X | If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X X | If any corresponding CPUID feature flag is ‘0",
Device Not Available, |\ 'y | x| x | x |If cRo.TS[bit 3)=1.
#NM
X If an illegal address in the SS segment.
Stack, SS(0) : — .
X | If a memory address referencing the SS segment is in a non-canonical form.
X If an illegal memory operand effective address in the CS, DS, €S, FS or GS segments.
General Protection, X | If the memory address is in a non-canonical form.
H#GP(0) If any part of the operand lies outside the effective address space from O to
X X
FFFFH.
Page Fault #PF(fault- X X X | For a page fault.
code)
Alignment Check X X X If alignment checking is enabled and an unaligned memory reference of 8 bytes or

less is made while the current privilege level is 3.

Ref. # 319433-029

4-21

INTEL® AVX-512 INSTRUCTION ENCODING

4.10.6 Exceptions Type E6 and E6GNF
Table 4-24. Type €6 Class Exception Conditions
(o] TV >
S |RE
. | & |B2| 5 .
Exception e = E 9| g Cause of Exception
= - E (Vo)
= © o
> av
X X If EVEX prefix present.
If CR4.0SXSAVE[bit 18]=0.
If any one of following conditions applies:
= State requirement, Table 4-8 not met.
X x | Opcode independent #UD condition in Table 4-S.
= Operand encoding #UD conditions in Table 4-10.
Invalid Opcode, #UD = Opmask encoding #UD condition of Table 4-11.
= [fEVEXD!=0.
= If EVEXL'L!=10b (VL=512).
X X | If preceded by a LOCK prefix (FOH).
X X | Ifany REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X | If any corresponding CPUID feature flag is ‘0",
Device Not Available, o
#NM X X | f CRO.TS[bit 3]=1.
X If fault suppression not set, and an illegal address in the SS segment.
Stack, SS(0) w | If fault suppression not set, and a memory address referencing the SS segment is
in @ non-canonical form.
) X If fault suppression not set, and an illegal memory operand effective address in the
gég?g)" Protection, CS, DS, €S, FS or GS segments.
X | If fault suppression not set, and the memory address is in a non-canonical form.
chgs)Fault #PF(fault- X X | If fault suppression not set, and a page fault.
Alignment Check For 4 or 8 byte memory references if alignment checking is enabled and an
g X X | unaligned memory reference of 8 bytes or less is made while the current privilege

#AC(0)

level is 3.

4-22

Ref. # 319433-029

INTEL® AVX-512 INSTRUCTION ENCODING

EVEX-encoded instructions that do not cause SIMD FP exception nor support memory fault suppression follow

exception class E6NF.

Table 4-25. Type E6NF Class Exception Conditions

#AC(0)

3 B2
X o =
— o |va E
Exception é % g ‘é < Cause of Exception
g2 |8E °
S |&S
Invalid Opcode, #UD X X If EVEX prefix present.
If CR4.0SXSAVE[bit 18]=0.
If any one of following conditions applies:
= State requirement, Table 4-8 not met.
X X |" Opcode independent #UD condition in Table 4-9.
= Operand encoding #UD conditions in Table 4-10.
= Opmask encoding #UD condition of Table 4-11.
= [fEVEXD!=0.
= [f EVEX.L'L!=10b (VL=512).
X X | If preceded by a LOCK prefix (FOH).
If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X | If any corresponding CPUID feature flag is ‘0"
BE‘I{LICG Not Available, X | X |IfCROTS[bit 3]=1.
Stack, 5(0) X For an illegal address in the SS segment.
ack,
X | If a memory address referencing the SS segment is in a non-canonical form.
G | Protecti X For an illegal memory operand effective address in the CS, DS, €S, FS or GS seg-
eneral Protection, ments.
#GP(0) — -
X | If the memory address is in a non-canonical form.
Egg:)Fault #PF(fault- X | X | Forapage fault.
Alianment Check For 4 or 8 byte memory references if alignment checking is enabled and an
g X X | unaligned memory reference of 8 bytes or less is made while the current privilege

level is 3.

Ref. # 319433-029

4-23

INTEL® AVX-512 INSTRUCTION ENCODING

4.10.7 Exceptions Type EZNM

EVEX-encoded instructions that cause no SIMD FP exception and do not reference memory follow exception class

E7NM.

Table 4-26. Type E7NM Class Exception Conditions

® |22
X | 8=
. | 8 |82 5 .
Exception e = E o & Cause of Exception
=] (o]
£ |85
= |80
S |av
X X If EVEX prefix present.
If CR4.0SXSAVE[bit 18]=0.
If any one of following conditions applies:
= State requirement, Table 4-8 not met.
X X |" Opcode independent #UD condition in Table 4-9.
= Operand encoding #UD conditions in Table 4-10.
Invalid Opcode, #UD = Opmask encoding #UD condition of Table 4-11.
= [fEVEXD!=0.
= Instruction specific EVEX.L'L restriction not met.
X X X X | If preceded by a LOCK prefix (FOH).
X X | If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X X X | If any corresponding CPUID feature flag is ‘0",
Device Not Available, o1
#NM X X | f CRO.TS[bit 3]=1.

4-24

Ref. # 319433-029

4.10.8

INTEL® AVX-512 INSTRUCTION ENCODING

Exceptions Type €9 and ESNF

EVEX-encoded vector or partial-vector instructions that do not cause no SIMD FP exception and support memory

fault suppression follow exception class E9.

Table 4-27. Type E9 Class Exception Conditions

#AC(0)

3 |22
X 0=
. | ® |82| 5 .
Exception K = 5 B & Cause of Exception
=] (o]
£ |8E
= |20
S |av
X X If EVEX prefix present.
If CR4.0SXSAVE[bit 18]=0.
If any one of following conditions applies:
= State requirement, Table 4-8 not met.
X X |* Opcode independent #UD condition in Table 4-9.
= Operand encoding #UD conditions in Table 4-10.
Invalid Opcode, #UD = Opmask encoding #UD condition of Table 4-11.
= [fEVEXD!=0.
= [f EVEX.L'L!= 00b (VL=128).
X X X X | If preceded by a LOCK prefix (FOH).
X | If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X X X | If any corresponding CPUID feature flag is ‘0",
Device Not Available, |\ 'y | x| x | x |ifcrRo.TS[bit 3]=1.
#NM
X If fault suppression not set, and an illegal address in the SS segment.
Stack, SS(0) w | If fault suppression not set, and a memory address referencing the SS segment is
in @ non-canonical form.
X If fault suppression not set, and an illegal memory operand effective address in the
CS, DS, €S, FS or GS segments.
gtér;%a)ul Protection, X | If fault suppression not set, and the memory address is in a non-canonical form.
X X If fault suppression not set, and any part of the operand lies outside the effective
address space from O to FFFFH.
chchJg)FauIt #PF(fault- X X X | If fault suppression not set, and a page fault.
Alignment Check X X X If alignment checking is enabled and an unaligned memory reference of 8 bytes or

less is made while the current privilege level is 3.

Ref. # 319433-029

4-25

INTEL® AVX-512 INSTRUCTION ENCODING

EVEX-encoded vector or partial-vector instructions that must be encoded with VEX.L'L = 0, do not cause SIMD FP
exception nor support memory fault suppression follow exception class EQNF.

Table 4-28. Type ESNF Class Exception Conditions

8 |22
X =
. | ® 82| 5 .
Exception K = g 9| & Cause of Exception
=] o
£ |8E
= |86
S [av
X X If EVEX prefix present.
If CR4.0SXSAVE[bit 18]=0.
If any one of following conditions applies:
= State requirement, Table 4-8 not met.
X X |" Opcode independent #UD condition in Table 4-9.
= Operand encoding #UD conditions in Table 4-10.
Invalid Opcode, #UD = Opmask encoding #UD condition of Table 4-11.
= [fEVEXD!=0.
= [f EVEX.L'L!= 00b (VL=128).
X X X X | If preceded by a LOCK prefix (FOH).
If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X X X | If any corresponding CPUID feature flag is ‘0"
Device Not Available, | 'y |y | x | x |ifcrRo.TS[bit 3]=1.
#NM
X If an illegal address in the SS segment.
Stack, SS(0) . . :
X | If a memory address referencing the SS segment is in a non-canonical form.
X If an illegal memory operand effective address in the CS, DS, €S, FS or GS segments.
General Protection, X | If the memory address is in a non-canonical form.
#GP(0) If any part of the operand lies outside the effective address space from O to
X X
FFFFH.
Page Fault #PF(fault- X X X | For a page fault.
code)
Alignment Check If alignment checking is enabled and an unaligned memory reference is made while
X X X .)
#AC(0) the current privilege level is 3.
4-26 Ref. # 319433-029

4.10.9

Exceptions Type €10

INTEL® AVX-512 INSTRUCTION ENCODING

EVEX-encoded scalar instructions that ignore EVEX.L'L vector length encoding and do not cause no SIMD FP excep-
tion, support memory fault suppression follow exception class E10.

Table 4-29. Type E10 Class Exception Conditions

#AC(0)

3 |22
X 0=
. | ® |82| 5 .
Exception K = 5 B & Cause of Exception
=] (o]
£ |85
= |80
S |av
X X If EVEX prefix present.
If CR4.0SXSAVE[bit 18]=0.
If any one of following conditions applies:
= State requirement, Table 4-8 not met.
X X | = Opcode independent #UD condition in Table 4-9.
. = Operand encoding #UD conditions in Table 4-10.
Invalid Opcode, #UD = Opmask encoding #UD condition of Table 4-11.
= IfEVEXD!=0.
X X X X | If preceded by a LOCK prefix (FOH).
X | If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X X X | If any corresponding CPUID feature flag is ‘0",
Device Not Available, X X X X | If CRO.TS[bit 3]=1.
#NM
X If fault suppression not set, and an illegal address in the SS segment.
Stack, SS(0) w | If fault suppression not set, and a memory address referencing the SS segment is
in @ non-canonical form.
X If fault suppression not set, and an illegal memory operand effective address in the
CS, DS, €S, FS or GS segments.
G#Er;%a;l Protection, X | If fault suppression not set, and the memory address is in a non-canonical form.
X X If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.
cPsg:)Fault #PF(fault- X X X | If fault suppression not set, and a page fault.
Alignment Check X X X If alignment checking is enabled and an unaligned memory reference of 8 bytes or

less is made while the current privilege level is 3.

Ref. # 319433-029

4-27

INTEL® AVX-512 INSTRUCTION ENCODING

EVEX-encoded scalar instructions that must be encoded with VEX.L'L = 0, do not cause SIMD FP exception nor
support memory fault suppression follow exception class E10NF.

Table 4-30. Type ET10NF Class Exception Conditions

8 |22
X =
. | ® 82| 5 .
Exception K = g 9| & Cause of Exception
=] o
£ |5 §
= |86
S [av
X X If EVEX prefix present.
If CR4.0SXSAVE[bit 18]=0.
If any one of following conditions applies:
= State requirement, Table 4-8 not met.
X X | = Opcode independent #UD condition in Table 4-9.
. = Operand encoding #UD conditions in Table 4-10.
Invalid Opcode, #UD = Opmask encoding #UD condition of Table 4-11.
= [fEVEXD!=0.
X X X X | If preceded by a LOCK prefix (FOH).
If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X X X | If any corresponding CPUID feature flag is ‘0"
Device Not Available, X X X X | If CRO.TS[bit 3]=1.
#NM
X If fault suppression not set, and an illegal address in the SS segment.
Stack, SS(0) w | If fault suppression not set, and a memory address referencing the SS segment s
in @ non-canonical form.
X If fault suppression not set, and an illegal memory operand effective address in the
CS, DS, €S, FS or GS segments.
gg?,?g)“ Protection, X | If fault suppression not set, and the memory address is in a non-canonical form.
X X If fault suppression not set, and any part of the operand lies outside the effective
address space from 0 to FFFFH.
chdgs)FauIt #PF(fault- X X X | If fault suppression not set, and a page fault.
Alignment Check X X X If alignment checking is enabled and an unaligned memory reference of 8 bytes or
#AC(0) less is made while the current privilege level is 3.

4-28

Ref. # 319433-029

INTEL® AVX-512 INSTRUCTION ENCODING

4.10.10 Exception Type €11 (EVEX-only, mem arg no AC, floating-point exceptions)

EVEX-encoded instructions that can cause SIMD FP exception, memory operand support fault suppression but do

not cause #AC follow exception class E11.

Table 4-31. Type E11 Class Exception Conditions

Exception, #XM

® |22
X 0=
. | ® |82| 5 .
Exception K = 5 9 $ Cause of Exception
2 |2 E
= |80
S |av
Invalid Opcode, #UD | X If EVEX prefix present.
X X If CR4.0SXSAVE[bit 18]=0.
If any one of following conditions applies:
= State requirement, Table 4-8 not met.
= Opcode independent #UD condition in Table 4-9.
= Operand encoding #UD conditions in Table 4-10.
= Opmask encoding #UD condition of Table 4-11.
= [fEVEXD!=0.
= [f EVEXLL!=10b (VL=512).
X X X If preceded by a LOCK prefix (FOH).
X X If any REX, F2, F3, or 66 prefixes precede a EVEX prefix.
X X X If any corresponding CPUID feature flag is ‘0.
Device Not Available, | X X X If CRO.TS[bit 3]=1.
#NM
Stack, SS(0) X If fault suppression not set, and an illegal address in the SS segment.
X If fault suppression not set, and a memory address referencing the SS segment is
in @ non-canonical form.
General Protection, X If fault suppression not set, and an illegal memory operand effective address in the
#GP(0) CS, DS, €S, FS or GS segments.
X If fault suppression not set, and the memory address is in a non-canonical form.
X If fault suppression not set, and any part of the operand lies outside the effective
address space from O to FFFFH.
Page Fault #PF (fault- X X If fault suppression not set, and a page fault.
code)
SIMD Floating-Point X X X If an unmasked SIMD floating-point exception, {sae} not set, and CR4.0SXMMEX-

CPT[bit 10] = 1.

Ref. # 319433-029

4-29

INTEL® AVX-512 INSTRUCTION ENCODING

4.10.11 Exception Type E12 and E12NP (VSIB mem arg, no AC, no floating-point exceptions)

Table 4-32. Type E12 Class Exception Conditions

Exception

Real

Virtual 80x86

Cause of Exception

Protected and
Compatibility
64-bit

Invalid Opcode, #UD

If EVEX prefix present.

>
>

If CR4.0SXSAVE[bit 18]=0.

If any one of following conditions applies:

= State requirement, Table 4-8 not met.

Opcode independent #UD condition in Table 4-9.
Operand encoding #UD conditions in Table 4-10.
Opmask encoding #UD condition of Table 4-11.
If EVEXDb = 0.

If EVEX.L'L!= 10b (VL=512).

If vwyv!=1111b.

If preceded by a LOCK prefix (FOH).

>

If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

NA | If address size attribute is 16 bit.

If ModR/M.mod ="11b".

If ModR/M.rm !="100b".

If any corresponding CPUID feature flag is ‘0.

If kO is used (gather or scatter operation).

If index = destination register (gather operation).

Device Not Available,
#NM

XX | X[X|X|X|X

XX | X[X|X]|X|X

XX | X[X|X|X|X]|X]|X

X | X | X[X]|X]|X

If CRO.TS[bit 3]=1.

Stack, SS(0)

X For an illegal address in the SS segment.

X If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

X If the memory address is in a non-canonical form.

If any part of the operand lies outside the effective address space from O to
FFFFH.

Page Fault #PF (fault-
code)

X X For a page fault.

4-30

Ref. # 319433-029

INTEL® AVX-512 INSTRUCTION ENCODING

EVEX-encoded prefetch instructions that do not cause #PF follow exception class E12NP.

Table 4-33. Type E12NP Class Exception Conditions

Exception

Real

Virtual 80x86

Protected and

Compatibility

64-bit

Cause of Exception

Invalid Opcode, #UD

X

If EVEX prefix present.

pad

If CR4.0SXSAVE[bit 18]=0.

If any one of following conditions applies:

= State requirement, Table 4-8 not met.

Opcode independent #UD condition in Table 4-9.
Operand encoding #UD conditions in Table 4-10.
Opmask encoding #UD condition of Table 4-11.
If EVEX.b!=0.

If EVEX.LL!= 10b (VL=512).

If preceded by a LOCK prefix (FOH).

If any REX, F2, F3, or 66 prefixes precede a VEX prefix.

If address size attribute is 16 bit.

If ModR/M.mod =‘11b".

If ModR/M.rm |="100b".

If any corresponding CPUID feature flag is ‘0.

If kO is used (gather or scatter operation).

Device Not Available,
#NM

X | X | X[X]| X[X

X | X | X[X]|X|X

XX | X | X[X[X]|X]|X

X | X | X[X]|X

If CRO.TS[bit 3]=1.

Stack, SS(0)

For an illegal address in the SS segment.

If a memory address referencing the SS segment is in a non-canonical form.

General Protection,
#GP(0)

For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
ments.

If the memory address is in a non-canonical form.

If any part of the operand lies outside the effective address space from O to
FFFFH.

Ref. # 319433-029

4-31

INTEL® AVX-512 INSTRUCTION ENCODING

411 EXCEPTION CLASSIFICATIONS OF OPMASK INSTRUCTIONS

The exception behavior of VEX-encoded opmask instructions are listed below.

Exception conditions of Opmask instructions that do not address memory are listed as Type K20.

Table 4-34. TYPE K20 Exception Definition (VEX-Encoded OpMask Instructions w/o Memory Arg)

#NM

8 |22
X 0 =
. | @ |82| 5 .
Exception e = og 9 $ Cause of Exception
2 |2 E
Lt |80
S |av
Invalid Opcode, #UD | X X X If relevant CPUID feature flag is ‘0",
X If a VEX prefix is present.
X X If CR4.0SXSAVE[bit 18]=0.
If any one of following conditions applies:
= State requirement, Table 4-8 not met.
= Opcode independent #UD condition in Table 4-9.
= Operand encoding #UD conditions in Table 4-10.
X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.
X X If ModRM:[7:6] = 11b.
Device Not Available, X X X X | If CRO.TS[bit 3]=1.

4-32

Ref. # 319433-029

INTEL® AVX-512 INSTRUCTION ENCODING

Exception conditions of Opmask instructions that address memory are listed as Type K21.

Table 4-35. TYPE K21 Exception Definition (VEX-Encoded OpMask Instructions Addressing Memory)

#AC(0)

8 B2
X o =
. | & |BE| 5 .
Exception e = E 9 $ Cause of Exception
2 |8BE
= |80
> av
Invalid Opcode, #UD | X X X If relevant CPUID feature flag is ‘0",
If a VEX prefix is present.
X X If CR4.0SXSAVE[bit 18]=0.
If any one of following conditions applies:
= State requirement, Table 4-8 not met.
= Opcode independent #UD condition in Table 4-9.
* Operand encoding #UD conditions in Table 4-10.
Device Not Available, X X X X | If CRO.TS[bit 3]=1.
#NM
X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix.
Stack, SS(0) X X For an illegal address in the SS segment.
X If a memory address referencing the SS segment is in a non-canonical form.
General Protection, X For an illegal memory operand effective address in the CS, DS, €S, FS or GS seg-
#GP(0) ments.
If the DS, €S, FS, or GS register is used to access memory and it contains a null
segment selector.
X If the memory address is in a non-canonical form.
X If any part of the operand lies outside the effective address space from 0 to
FFFFH.
Page Fault #PF(fault- X X For a page fault.
code)
Alignment Check X X If alignment checking is enabled and an unaligned memory reference of 8 bytes or

less is made while the current privilege level is 3.

Ref. # 319433-029

4-33

INTEL® AVX-512 INSTRUCTION ENCODING

4-34 Ref. # 319433-029

INSTRUCTION SET REFERENCE, A-Z

CHAPTER 5
INSTRUCTION SET REFERENCE, A-Z

Instructions described in this document follow the general documentation convention established in Intel 64 and
1A-32 Architectures Software Developer’s Manual Volume 2A. Additional notations and conventions adopted in this
document are listed in Section 5.1. Section 5.1.5.1 covers supplemental information that applies to a specific
subset of instructions.

5.1 INTERPRETING INSTRUCTION REFERENCE PAGES

This section describes the format of information contained in the instruction reference pages in this chapter. It
explains notational conventions and abbreviations used in these sections that are outside of those conventions
described in Section 3.1 of the Intel 64 and 1A-32 Architectures Software Developer’s Manual Volume 2A.

5.1.1 Instruction Format

The following is an example of the format used for each instruction description in this chapter. The table below
provides an example summary table.

ADDPS—Add Packed Single-Precision Floating-Point Values (THIS IS AN EXAMPLE)

Opcode/ 64/32 CPUID Description
Instruction bit Mode | Feature

Support | Flag
OF 58 /r VIV SSE Add packed single-precision floating-point values from
ADDPS xmm1, xmm2/m128 xmm2/mem to xmm1 and store result in xmm1.
VEX.NDS.128.0F 58 /r VIV AVX Add packed single-precision floating-point values from
VADDPS xmm1,xmm2, xmm3/m128 xmm3/mem to xmmZ2 and store result in xmm1.
VEX.NDS.256.0F 58 /r VIV AVX Add packed single-precision floating-point values from
VADDPS ymm1, ymm2, ymm3/m256 ymm3/mem to ymmZ2 and store result in ymm1.
VEX.L1.0FWO0 41 /r VIV AVX512F Bitwise AND word masks k2 and k3 and place result in k1.
KANDW k1, k2, k3
EVEX.NDS.128.0F.WO0 58 /r VIV AVX512VL | Add packed single-precision floating-point values from
VADDPS xmm1 {k1¥z}, xmmZ, AVX512F xmm3/m128/m32bcst to xmm2 and store result in xmm1
xmm3/m128/m32bcst with writemask k1.
EVEX.NDS.256.0F.WO0 58 /r VIV AVX512VL | Add packed single-precision floating-point values from
VADDPS ymm1 {k1¥z}, ymm2, AVX512F ymm3/m256/m32bcst to ymm?2 and store result in ymm’1
ymm3/m256/m32bcst with writemask k1.
EVEX.NDS.512.0F.W0 58 /r VIV AVX512F Add packed single-precision floating-point values from
VADDPS zmm1 {k1}z}, zmm2, zmm3/m512/m32bcst with zmm2 and store result in zmm1
zmm3/m512/m32bcst {er} with writemask k1.

5.1.2 Opcode Column in the Instruction Summary Table

For notation and conventions applicable to instructions that do not use VEX or EVEX prefixes, consult Section 3.1
of the Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 2A.

In the Instruction Summary Table, the Opcode column presents each instruction encoded using the VEX prefix in
following form (including the modR/M byte if applicable, the immediate byte if applicable):

VEX.[NDS/NDD/DS].[128,256,L0,L1,L1G].[66,F2,F3].0F/0F3A/0F38.[WO,W1,WIG] opcode [/r]
[ib,Zis4]

Ref. # 319433-029 5-1

INSTRUCTION SET REFERENCE, A-Z

5-2

VEX: indicates the presence of the VEX prefix is required. The VEX prefix can be encoded using the three-byte
form (the first byte is C4H), or using the two-byte form (the first byte is C5H). The two-byte form of VEX only
applies to those instructions that do not require the following fields to be encoded: VEX.mmmmm, VEX.W,
VEX.X, VEX.B.

The encoding of various sub-fields of the VEX prefix is described using the following notations:

NDS, NDD, DDS: implies that VEX.vvvv field is valid for the encoding of an operand. It may specify either
the source register (NDS) or the destination register (NDD). The VEX.vvvv field can be encoded using either
the 2-byte or 3-byte form of the VEX prefix. DDS expresses a syntax where vvvv encodes the second
source register in a three-operand instruction syntax where the content of first source register will be
overwritten by the result. If NDS, NDD and DDS are absent (i.e. VEX.vvvv does not encode an operand),
VEX.vvvv must be 1111b.

128,256,L0,L1: VEX.L fields can be O (denoted by VEX.128 or VEX.LO for mask instructions) or 1 (denoted
by VEX.256 or VEX.L1 for mask instructions). The VEX.L field can be encoded using either the 2-byte or 3-
byte form of the VEX prefix. The presence of the notation VEX.256 or VEX.128 in the opcode column should
be interpreted as follows:

* If VEX.256 is present in the opcode column: The semantics of the instruction must be encoded with
VEX.L = 1. An attempt to encode this instruction with VEX.L= 0 can result in one of two situations: (a)
if VEX.128 version is defined, the processor will behave according to the defined VEX.128 behavior; (b)
an #UD occurs if there is no VEX.128 version defined.

e IfVEX.128 is present in the opcode column but there is no VEX.256 version defined for the same opcode
byte: Three situations apply: (a) For VEX-encoded, 128-bit SIMD integer instructions, software must
encode the instruction with VEX.L = 0. The processor will treat the opcode byte encoded with VEX.L=1
by causing an #UD exception; (b) For VEX-encoded, 128-bit packed floating-point instructions,
software must encode the instruction with VEX.L = 0. The processor will treat the opcode byte encoded
with VEX.L= 1 by causing an #UD exception (e.g. VMOVLPS); (c) For VEX-encoded, scalar, SIMD
floating-point instructions, software should encode the instruction with VEX.L = 0 to ensure software
compatibility with future processor generations. Scalar SIMD floating-point instruction can be distin-
guished from the mnemonic of the instruction. Generally, the last two letters of the instruction
mnemonic would be either “SS”, “SD”, or “SI” for SIMD floating-point conversion instructions, except
VBROADCASTSX are unique cases.

* VEX.LO and VEX.L1 notations are used in the case of masking instructions such as KANDW since the
VEX.L bit is not used to distinguish between the 128-bit and 256-bit forms for these instructions.
Instead, this bit is used to distinguish between the two operand form (VEX.LO) and the three operand
form (VEX.L1) of the same mask instruction.

* IfVEX.LOis present in the opcode column: The semantics of the instruction must be encoded with VEX.L
= 0. An attempt to encode this instruction with VEX.L= 1 can result in one of two situations: (a) if
VEX.L1 version is defined, the processor will behave according to the defined VEX.L1 behavior; (b) an
#UD occurs if there is no VEX.L1 version defined.

e If VEX.L1is presentin the opcode column: The semantics of the instruction must be encoded with VEX.L
= 1. An attempt to encode this instruction with VEX.L= 0 can result in one of two situations: (a) if
VEX.LO version is defined, the processor will behave according to the defined VEX.L1 behavior; (b) an
#UD occurs if there is no VEX.LO version defined.

¢ LIG: VEX.L bit ignored

66,F2,F3: The presence or absence of these value maps to the VEX.pp field encodings. If absent, this
corresponds to VEX.pp=00B. If present, the corresponding VEX.pp value affects the “opcode” byte in the
same way as if a SIMD prefix (66H, F2H or F3H) does to the ensuing opcode byte. Thus a non-zero encoding
of VEX.pp may be considered as an implied 66H/F2H/F3H prefix. The VEX.pp field may be encoded using
either the 2-byte or 3-byte form of the VEX prefix.

OF,0F3A,0F38: The presence maps to a valid encoding of the VEX.mmmmm field. Only three encoded
values of VEX.mmmmm are defined as valid, corresponding to the escape byte sequence of OFH, OF3AH
and OF38H. The effect of a valid VEX.mmmmm encoding on the ensuing opcode byte is the same as if the
corresponding escape byte sequence on the ensuing opcode byte for non-VEX encoded instructions. Thus a
valid encoding of VEX.mmmmm may be considered as an implied escape byte sequence of either OFH,
OF3AH or OF38H. The VEX.mmmmm field must be encoded using the 3-byte form of VEX prefix.

Ref. # 319433-029

INSTRUCTION SET REFERENCE, A-Z

OF,0F3A,0F38 and 2-byte/3-byte VEX. The presence of OF3A and OF38 in the opcode column implies
that opcode can only be encoded by the three-byte form of VEX. The presence of OF in the opcode column
does not preclude the opcode to be encoded by the two-byte of VEX if the semantics of the opcode does not
require any subfield of VEX not present in the two-byte form of the VEX prefix.

WO: VEX.W=0.
W1: VEX.W=1.
WIG: VEX.W bit ignhored

The presence of WO/W1 in the opcode column applies to two situations: (a) it is treated as an extended
opcode bit, (b) the instruction semantics support an operand size promotion to 64-bit of a general-purpose
register operand or a 32-bit memory operand. The presence of W1 in the opcode column implies the opcode
must be encoded using the 3-byte form of the VEX prefix. The presence of WO in the opcode column does
not preclude the opcode to be encoded using the C5H form of the VEX prefix, if the semantics of the opcode
does not require other VEX subfields not present in the two-byte form of the VEX prefix. If neither WO or
W1 is present, the instruction may be encoded using either the two-byte form (if the opcode semantic does
not require VEX subfields not present in the two-byte form of VEX) or the three-byte form of VEX. Encoding
an instruction using the two-byte form of VEX is equivalent to WO.

® opcode: Instruction opcode.

®* ib: An 8-bit immediate byte is present and used as one of the instructions operands.

¢ /is4: An 8-bit immediate byte is present containing a source register specifier in imm[7:4] and instruction-
specific payload in imm[3:0].

® imz2: Part of the is4 immediate byte provides control functions that apply to two-source permute instructions

In general, the encoding o f VEX.R, VEX.X, VEX.B field are not shown explicitly in the opcode column.

EVEX.[NDS/NDD/DDS].[128,256,512,L1G].[66,F2,F3].0F/0F3A/0F38.[WO,W1,WIG] opcode [/r]

[ib,Zis4]

® EVEX: The EVEX prefix is encoded using the four-byte form (the first byte is 62H). Refer to Section 4.2 for
more detail on the EVEX prefix.

The encoding of various sub-fields of the EVEX prefix is described using the following notations.

NDS, NDD, DDS: implies that EVEX.vvvv (and EVEX.V’) field is valid for the encoding of an operand. It may
specify either the source register (NDS) or the destination register (NDD). DDS expresses a syntax where
vvvv encodes the second source register in a three-operand instruction syntax where the content of first
source register will be overwritten by the result. If both NDS and NDD absent (i.e. EVEX.vvvv does not
encode an operand), EVEX.vvvv must be 1111b (and EVEX.V’ must be 1b).

128, 256, 512, LIG: This corresponds to the vector length; three values are allowed by EVEX: 512-bit,
256-bit and 128-bit. Alternatively, vector length is ignored (LIG) for certain instructions; this typically
applies to scalar instructions operating on one data element of a vector register.

66,F2,F3: The presence of these value maps to the EVEX.pp field encodings. The corresponding VEX.pp
value affects the “opcode” byte in the same way as if a SIMD prefix (66H, F2H or F3H) does to the ensuing
opcode byte. Thus a non-zero encoding of VEX.pp may be considered as an implied 66H/F2H/F3H prefix.

OF,0F3A,0F38: The presence maps to a valid encoding of the EVEX.mmm field. Only three encoded values
of EVEX.mmm are defined as valid, corresponding to the escape byte sequence of OFH, OF3AH and OF38H.
The effect of a valid EVEX.mmm encoding on the ensuing opcode byte is the same as if the corresponding
escape byte sequence on the ensuing opcode byte for non-EVEX encoded instructions. Thus a valid
encoding of EVEX.mmm may be considered as an implied escape byte sequence of either OFH, OF3AH or
OF38H.

WO: EVEX.W=0.
W1: EVEX.W=1.
WIG: EVEX.W bit ignored

® opcode: Instruction opcode.

Ref. # 319433-029 5-3

INSTRUCTION SET REFERENCE, A-Z

/is4: An 8-bit immediate byte is present containing a source register specifier in imm[7:4] and instruction-
specific payload in imm[3:0].

imz2: Part of the is4 immediate byte provides control functions that apply to two-source permute instructions

In general, the encoding of EVEX.R and R’, EVEX.X and X', and EVEX.B and B’ fields are not shown explicitly in
the opcode column.

513 Instruction Column in the Instruction Summary Table

5-4

Xmm — an XMM register. The XMM registers are: XMMO through XMM7; XMM8 through XMM15 are available in
64-bit mode. XMM16 through XMM31 are available in 64-bit mode via EVEX prefix.

ymm — a YMM register. The 256-bit YMM registers are: YMMO through YMM7; YMMS8 through YMM15 are
available in 64-bit mode. YMM16 through YMM31 are available in 64-bit mode via EVEX prefix.

m256 — A 32-byte operand in memory.
ymm/m256 - a YMM register or 256-bit memory operand.
<YMMO=: indicates use of the YMMO register as an implicit argument.

zmm — a ZMM register. The 512-bit ZMM registers require EVEX prefix and are: ZMMO through ZMM7; ZMM8
through ZMM31 are available in 64-bit mode.

m512 — A 64-byte operand in memory.
zmm/m512 — a ZMM register or 512-bit memory operand.

{k1}{z} — a mask register used as instruction writemask. The 64-bit k registers are: k1 through k7.
Writemask specification is available exclusively via EVEX prefix. The masking can either be done as a merging-
masking, where the old values are preserved for masked out elements or as a zeroing masking. The type of
masking is determined by using the EVEX.z bit.

{k1} — without {z}: a mask register used as instruction writemask for instructions that do not allow zeroing-
masking but support merging-masking. This corresponds to instructions that require the value of the aaa field
to be different than O (e.g., gather) and store-type instructions which allow only merging-masking.

k1 — a mask register used as a regular operand (either destination or source). The 64-bit k registers are: kO
through k7.

mV — a vector memory operand; the operand size is dependent on the instruction.

vm32{X,y, z} — A vector array of memory operands specified using VSIB memory addressing. The array of
memory addresses are specified using a common base register, a constant scale factor, and a vector index
register with individual elements of 32-bit index value in an XMM register (vm32x), a YMM register (vm32y) or
a ZMM register (vm32z).

vme64{x,y, z} — A vector array of memory operands specified using VSIB memory addressing. The array of
memory addresses are specified using a common base register, a constant scale factor, and a vector index
register with individual elements of 64-bit index value in an XMM register (vm64x), a YMM register (vm64y) or
a ZMM register (vm64z).

zmm/m512/m32bcst — an operand that can be a ZMM register, a 512-bit memory location or a 512-bit
vector loaded from a 32-bit memory location.

zmm/m512/m64bcst — an operand that can be a ZMM register, a 512-bit memory location or a 512-bit
vector loaded from a 64-bit memory location.

<ZMMO=> — indicates use of the ZMMO register as an implicit argument.

{er} indicates support for embedded rounding control, which is only applicable to the register-register form of
the instruction. This also implies support for SAE (Suppress All Exceptions).

{sae} indicates support for SAE (Suppress All Exceptions). This is used for instructions that support SAE, but
do not support embedded rounding control.

SRC1 — Denotes the first source operand in the instruction syntax of an instruction encoded with the EVEX
prefix and having two or more source operands.

SRC2 — Denotes the second source operand in the instruction syntax of an instruction encoded with the EVEX
prefix and having two or more source operands.

Ref. # 319433-029

INSTRUCTION SET REFERENCE, A-Z

¢ SRC3 — Denotes the third source operand in the instruction syntax of an instruction encoded with the EVEX
prefix and having three source operands.

® SRC — The source in a single-source instruction.
® DST — the destination in an instruction. This field is encoded by reg_field.

5.1.4 64/32 bit Mode Support column in the Instruction Summary Table

The “64/32 bit Mode Support” column in the Instruction Summary table indicates whether an opcode sequence is
supported in 64-bit or the Compatibility/other 1A32 modes.

The 64-bit mode support is to the left of the ‘slash’ and has the following notation.

* V — Supported.

« | — Not supported.

< N.E. — Indicates an instruction syntax is not encodable in 64-bit mode (it may represent part of a sequence
of valid instructions in other modes).

= N.P. — Indicates the REX prefix does not affect the legacy instruction in 64-bit mode.

= N.I. — Indicates the opcode is treated as a new instruction in 64-bit mode.

= N.S. — Indicates an instruction syntax that requires an address override prefix in 64-bit mode and is not sup-
ported. Using an address override prefix in 64-bit mode may result in model-specific execution behavior.

The compatibility/Legacy mode support is to the right of the ‘slash’ and has the following notation.

* V — Supported.

= | — Not supported.

< N.E. — Indicates an Intel 64 instruction mnemonics/syntax that is not encodable; the opcode sequence is not

applicable as an individual instruction in compatibility mode or 1A-32 mode. The opcode may represent a valid
sequence of legacy 1A-32 instructions.

5.1.5 CPUID Support column in the Instruction Summary Table

The fourth column holds abbreviated CPUID feature flags (e.g. appropriate bits in CPUID.1:ECX, CPUID.1:EDX for
SSE/SSE2/SSE3/SSSE3/SSE4.1/SSE4.2/AVX/F16C support; bits in CPUID.(EAX=07H,ECX=0):BCX for
AVX2/AVX512F etc) that indicate processor support for the instruction. If the corresponding flag is ‘0’, the instruc-
tion will #UD.

For entries that reference to CPUID feature flags listed in Table 2-1, software should follow the detection procedure
described in Section 2.1 and Section 2.2.

For entries that reference to CPUID feature flags listed in Table 2-1 and AVX512VL, software should follow the
detection procedure described in Section 2.3.

5.1.5.1 Operand Encoding Column in the Instruction Summary Table

The “operand encoding” column is abbreviated as Op/En in the Instruction Summary table heading. Instruction
operand encoding information is provided for each assembly instruction syntax using a letter to cross reference to
a row entry in the operand encoding definition table that follows the instruction summary table. The operand
encoding table in each instruction reference page lists each instruction operand (according to each instruction
syntax and operand ordering shown in the instruction column) relative to the ModRM byte, VEX.vvvv field or addi-
tional operand encoding placement.

EVEX encoded instructions employ compressed disp8*N encoding of the displacement bytes, where N is defined in
Table 4-5 and Table 4-6, according to tupletypes. The Op/En column of an EVEX encoded instruction uses an abbre-
viation that corresponds to the tupletype abbreviation (and may include an additional abbreviation related to
ModR/M and vvvv encoding). Most EVEX encoded instructions with VEX encoded equivalent have the ModR/M and
vvvv encoding order. In such cases, the Tuple abbreviation is shown and the ModR/M, vvvv encoding abbreviation
may be omitted.

Ref. # 319433-029 5-5

INSTRUCTION SET REFERENCE, A-Z

NOTES

The letters in the Op/En column of an instruction apply ONLY to the encoding definition table
immediately following the instruction summary table.

In the encoding definition table, the letter ‘r’ within a pair of parentheses denotes the content of the operand will
be read by the processor. The letter ‘w’ within a pair of parenthesis denotes the content of the operand will be
updated by the processor.

5.2 SUMMARY OF TERMS

® “Legacy SSE” — Refers to SSE, SSE2, SSE3, SSSE3, SSE4, and any future instruction sets referencing XMM
registers and encoded without a VEX or EVEX prefix.

¢* XGETBV, XSETBV, XSAVE, XRSTOR are defined in Intel 64 and 1A-32 Architectures Software Developer’s
Manual, Volumes 3A and Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 2C.

® VEX — Refers to a two-byte or three-byte prefix. AVX and FMA instructions are encoded using a VEX prefix.
® EVEX — Refers to a four-byte prefix. AVX512F instructions are encoded using an EVEX prefix.

®* VEX.vvvv — The VEX bit field specifying a source or destination register (in 1's complement form).

®* rm_field — Shorthand for the ModR/M r/m field and any REX.B

®* reg_field — Shorthand for the ModR/M reg field and any REX.R

53 TERNARY BIT VECTOR LOGIC TABLE

VPTERNLOGD/VPTERNLOGQ instructions operate on dword/qword elements and take three bit vectors of the
respective input data elements to form a set of 32/64 indices, where each 3-bit value provides an index into an 8-
bit lookup table represented by the imm8 byte of the instruction. The 256 possible values of the imm8 byte is
constructed as a 16x16 boolean logic table. The 16 rows of the table uses the lower 4 bits of imm8 as row index.
The 16 columns are referenced by imm8[7:4]. The 16 columns of the table are present in two halves, with 8
columns shown in Table 5-1 for the column index value between 0:7, followed by Table 5-2 showing the 8 columns
corresponding to column index 8:15. This section presents the two-halves of the 256-entry table using a short-
hand notation representing simple or compound boolean logic expressions with three input bit source data.

The three input bit source data will be denoted with the capital letters: A, B, C; where A represents a bit from the
first source operand (also the destination operand), B and C represent a bit from the 2nd and 3rd source operands.

Each map entry takes the form of a logic expression consisting of one of more component expressions. Each
component expression consists of either a unary or binary boolean operator and associated operands. Each binary
boolean operator is expressed in lowercase letters, and operands concatenated after the logic operator. The unary
operator ‘not’ is expressed using ‘. Additionally, the conditional expression “A?B:C” expresses a result returning B
if A is set, returning C otherwise.

A binary boolean operator is followed by two operands, e.g. andAB. For a compound binary expression that contain
commutative components and comprising the same logic operator, the 2nd logic operator is omitted and three
operands can be concatenated in sequence, e.g. andABC. When the 2nd operand of the first binary boolean expres-
sion comes from the result of another boolean expression, the 2nd boolean expression is concatenated after the
uppercase operand of the first logic expression, e.g. norBnandAC. When the result is independent of an operand,
that operand is omitted in the logic expression, e.g. zeros or norCB.

The 3-input expression “majorABC” returns O if two or more input bits are O, returns 1 if two or more input bits are
1. The 3-input expression “minorABC” returns 1 if two or more input bits are 0, returns 0 if two or more input bits
are 1.

5-6 Ref. # 319433-029

INSTRUCTION SET REFERENCE, A-Z

The building-block bit logic functions used in Table 5-1 and Table 5-2 include:
® Constants: TRUE (1), FALSE (0)
® Unary function: Not (1)

® Binary functions: and, nand, or, nor, xor, xnor

¢ Conditional function: Select (?:)

¢ Tertiary functions: major, minor

Table 5-1. Low 8 columns of the 16x16 Map of VPTERNLOG Boolean Logic Operations

Imm [7:4]
[3:0] | OH T1H 2H 3H 4H 5H 6H 7H
O0OH | FALSE andAnorBC norBnandAC | andAIB norCnandBA | andAIC andAxorBC andAnandBC
01H | norABC norCB norBxorAC A?!B:norBC norCxorBA A?IC:norBC A?xorBC:norB | A?nandBC:no
C BC
02H | andCnorBA norBxnorAC | andCIB norBnorAC C?norBA:and | C7norBA:A C?'B:andBA C?IBA
BA
03H | norBA norBandAC C?IB:norBA B C?norBA:xnor | A?IC:IB A?xorBC:!B A?nandBC:!B
BA
04H | andBnorAC norCxnorBA | B?norAC:and | B?norACA andBIC norCnorBA B?IC:andAC B?ICA
AC
O5H | norCA norCandBA B?norAC:xnor | A?IB:IC B?IC:norAC Ic A?xorBC:IC A?nandBC:IC
AC
06H | norAxnorBC | A?norBC:xorB | B?norAC.C xorBorAC C?norBA:B xorCorBA xorCB B?IC:orAC
C
07H | norAandBC minorABC C?IB:IA nandBorAC B?IC:IA nandCorBA A?xorBC:nan | nandCB
dBC
08H | norAnandBC | A?norBC:and | andCxorBA A?IB:andBC andBxorAC A?IC:andBC A?xorBC:and | xorAandBC
BC BC
09H | norAxorBC A?norBC:xnor | C?xorBA:norB | A?IB:xnorBC | B?xorAC:norA | A?IC:xnorBC | xnorABC A?nandBC:xn
BC A C orBC
OAH | andCIA A?norBC:.C andCnandBA | A?IB:.C C?/A:andBA xorCA xorCandBA A?nandBC.C
OBH | C?/A:norBA C?A:B C?nandBA:no | C?nandBA:IB | B?xorAC:IA B?xorAC:nan | C?nandBA:xn | nandBxnorAC
rBA dAC orBA
OCH | andBIA A?norBC:B B?IA:andAC XorBA andBnandAC | A7IC:B xorBandAC A?nandBC:B
ODH | B?!A:norAC B?IA:IC B?IA:xnorAC | C?xorBA:nan | B?nandAC:no | B?nandAC:IC | B?nandAC:xn | nandCxnorBA
dBA rAC orAC
OEH | norAnorBC xorAorBC B?IA.C A?B:.orBC C?A:B A?IC.orBC B?nandAC:.C | A?nandBC.or
BC
OFH | /A nandAorBC C?nandBA:!A | nandBA B?nandAC:!A | nandCA nandAxnorBC | nandABC

Table 5-2 shows the half of 256-entry map corresponding to column index values 8:15.

Ref. # 319433-029

5-7

INSTRUCTION SET REFERENCE, A-Z

Table 5-2. Low 8 columns of the 16x16 Map of VPTERNLOG Boolean Logic Operations

Imm [7:4]
[3:0] | 08H 09H OAH O0BH OCH ODH OEH OFH
O0H | andABC andAxnorBC | andCA B?andACA andBA C?andBA:A andAorBC A
O1H | A7andBC:nor | B7andAC:IC A?C:norBC C?A:B A?B:norBC B?A:IC xnorAorBC orAnorBC
BC
02H | andCxnorBA | B7andAC:xor | B?andAC:.C B?andAC:orA | C?xnorBA:an | B?A:xorAC B?A:C B?A:orAC
AC C dBA
03H | A7andBC:B xnorBandAC | A?C:IB nandBnandA | xnorBA B?A:nandAC | A7orBC:!B orAIB
C
04H | andBxnorAC | C?andBA:xor | B?xnorAC:an | B?xnorAC:A C?andBA:B C?andBA:orB | C?A:B C?A:.0rBA
BA dAC A
0O5H | A7andBC:IC xnorCandBA | xnorCA C?A:nandBA | A?B:IC nandCnandB | A7orBC:IC orAIC
A
06H | A7andBC:xor | xorABC A?C:xorBC B?xnorAC:orA | A7B:xorBC C?xnorBA:orB | A?orBC:xorBC | orAxorBC
BC C A
07H | xnorAandBC | A?xnorBC:na | A?C:nandBC | nandBxorAC | A?B:nandBC | nandCxorBA | A7orBCnandB | orAnandBC
ndBC C
08H | andCB A?xnorBC:an | andCorAB B?CA andBorAC C7’BA majorABC orAandBC
dBC
09H | B?C:norAC xnorCB xnorCorBA C?0rBA:IB xnorBorAC B?orAC:IC A?7orBC:xnorB | orAxnorBC
C
OAH | A7andBC.C A?xnorBC:.C C B?C.orAC A?7B:.C B?0rAC:xorAC | orCandBA orCA
OBH | B?CIA B?C:nandAC | orCnorBA orCIB B?orAC:IA B?orAC:nand | orCxnorBA nandBnorAC
AC
OCH | A7andBC:B A?xnorBC:.B | A?C:B C?0rBA:xorBA | B C?B:.orBA orBandAC orBA
ODH | C7’BIA C?B:nandBA | C?orBA:IA C?orBA:nand | orBnorAC orBIC orBxnorAC nandCnorBA
BA
OEH | A7andBC:orB | A?xnorBC:orB | A?C:.orBC orCxorBA A?B:.orBC orBxorAC orCB orABC
C C
OFH | nandAnandB | nandAxorBC | orCIA orCnandBA orBIA orBnandAC nandAnorBC | TRUE
C

Table 5-1 and Table 5-2 translate each of the possible value of the imm8 byte to a Boolean expression. These tables
can also be used by software to translate Boolean expressions to numerical constants to form the imma8 value
needed to construct the VPTERNLOG syntax. There is a unique set of three byte constants (FOH, CCH, AAH) that
can be used for this purpose as input operands in conjunction with the Boolean expressions defined in those tables.
The reverse mapping can be expressed as:

Result_imm8 = Table_Lookup_Entry(OFOH, OCCH, OAAH).
Table_Lookup_Entry is the Boolean expression defined in Table 5-1 and Table 5-2.

5.4

5-8

INSTRUCTION SET REFERENCE

Ref. # 319433-029

INSTRUCTION SET REFERENCE, A-Z

V4FMADDPS/V4FNMADDPS — Packed Single-Precision Floating-Point Fused Multiply-Add
(4-iterations)

Opcode/ Op/ | 64/32 CPUID Feature Description
Instruction En bitMode | Flag
Support
EVEX.DDS.512.F2.0F38.W0 9A /r A VIV AVX512_4FMAPS | Multiply packed single-precision floating-point
VAFMADDPS zmm1{k1}z}, zmm2+3, values from source register block indicated by
m128 zmmZ2 by values from m128 and accumulate the
result in zmmT.
EVEX.DDS.512.F2.0F38.W0 AA /r A VIV AVX512_4FMAPS | Multiply and negate packed single-precision
V4FNMADDPS zmm1{k1¥z}, floating-point values from source register block
zmmZ2+3,m128 indicated by zmmZ2 by values from m128 and
accumulate the result in zmm1.

Instruction Operand Encoding

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4
A T1_4X ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) NA
Description

This instruction computes 4 sequential packed fused single-precision floating-point multiply-add instructions with
a sequentially selected memory operand in each of the four steps.

In the above box, the notation of “+3” is used to denote that the instruction accesses 4 source registers based on
that operand; sources are consecutive, start in a multiple of 4 boundary, and contain the encoded register operand.

This instruction supports memory fault suppression. The entire memory operand is loaded if any of the 16 lowest

significant mask bits is set to 1 or if a “no masking” encoding is used.

The tuple type T1_4X implies that 4 32-bit elements (16 bytes) are referenced by the memory operation portion of

this instruction.

Rounding is performed at every FMA (fused multiply and add) boundary. Exceptions are also taken sequentially.
Pre- and post-computational exceptions of the first FMA take priority over the pre- and post-computational excep-

tions of the second FMA, etc.

Ref. # 319433-029

5-9

INSTRUCTION SET REFERENCE, A-Z

Operation
src_reg_id is the 5 bit index of the vector register specified in the instruction as the src1 register.

define NFMA_PS(kI, vI, dest, k1, msrc, regs_loaded, src_base, posneg):
tmpdest < dest

// req[] is an array representing the SIMD register file.
for j « O to regs_loaded-1:

fori<« Otokl-1:
if k1[i] or *no writemask™*:
if posneg = O:

tmpdest.single[i] <~ RoundFPControl_MXCSR(tmpdest.single[i] - reg[src_base + j].single[i] * msrc.single[j])

else:

tmpdest.single[i] < RoundFPControl_MXCSR(tmpdest.single[i] + reg[src_base + j].single[i] * msrc.single[j])

else if *zeroing*:
tmpdest.single[i] < O
dest « tmpdst
dest[MAX_VL-1:VL] <0

VAFMADDPS and VAFNMADDPS dest{k1}, src1, msrc (AVX512)
kivl = (16,512)

regs_loaded < 4

src_base «— src_reg_id & ~3 // for src1 operand

posneg < O if negative form, 1 otherwise

NFMA_PS(kI, vl, dest, k1, msrc, regs_loaded, src_base, posneg)

Intel C/C++ Compiler Intrinsic Equivalent

V4FMADDPS __m512 _mm512_4fmadd_ps(__m512, __m512x4, __m128 *);

V4FMADDPS __m512 _mm512_mask_4fmadd_ps(__m512, __mmask16, __m512x4, __m128 *);
V4FMADDPS __m512 _mm5712_maskz_4fmadd_ps(__mmask16, __m512, __m512x4, __m128*);
V4FNMADDPS __m512 _mm512_4fnmadd_ps(__m512, __m512x4, __m128*);

V4FNMADDPS __m512 _mm512_mask_4fnmadd_ps(__m512, __mmask16, __m512x4, __m128 *);

V4FNMADDPS __m512 _mm512_maskz_4fnmadd_ps(__mmask16, __m512, __m512x4, __m128*);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions
See Type E2; additionally

#UD If the EVEX broadcast bit is set to 1.
#UD If the MODRM.mod = Ob11.
5-10

Ref. # 319433-029

INSTRUCTION SET REFERENCE, A-Z

V4FMADDSS/V4FNMADDSS —Scalar Single-Precision Floating-Point Fused Multiply-Add
(4-iterations)

Opcode/ Op/ | 64/32 CPUID Feature Description
Instruction En bitMode | Flag
Support
EVEX.DDS.LLIG.F2.0F38.W0 9B /r A VIV AVX512_4FMAPS | Multiply scalar single-precision floating-point
V4FMADDSS xmm1{k1¥Xz}, values from source register block indicated by
xmmZ2+3, m128 xmm2 by values from m128 and accumulate the
result in xmm1.
EVEX.DDS.LLIG.F2.0F38.WO0 AB /r A VIV AVX512_4FMAPS | Multiply and negate scalar single-precision
V4FNMADDSS xmm1{k1}z}, floating-point values from source register block
xmmZ2+3, m128 indicated by xmm2 by values from m128 and
accumulate the result in xmm1.

Instruction Operand Encoding

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4
A T1_4X ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) NA
Description

This instruction computes 4 sequential scalar fused single-precision floating-point multiply-add instructions with a
sequentially selected memory operand in each of the four steps.

In the above box, the notation of “+3” is used to denote that the instruction accesses 4 source registers based that
operand; sources are consecutive, start in a multiple of 4 boundary, and contain the encoded register operand.

This instruction supports memory fault suppression. The entire memory operand is loaded if the least significant
mask bit is set to 1 or if a “no masking” encoding is used.

The tuple type T1_4X implies that 4 32-bit elements (16 bytes) are referenced by the memory operation portion of
this instruction.

Rounding is performed at every FMA boundary. Exceptions are also taken sequentially. Pre- and post-computa-
tional exceptions of the first FMA take priority over the pre- and post-computational exceptions of the second FMA,
etc.

Operation
src_reg_id is the 5 bit index of the vector register specified in the instruction as the src1 register.

define NFMA_SS(vl, dest, k1, msrc, regs_loaded, src_base, posneq):
tmpdest < dest
// req[] is an array representing the SIMD register file.
if k1[0] or *no writemask*:
for j « O toregs_loaded - 1:
if posneg = O:
tmpdest.single[0] «— RoundFPControl_MXCSR(tmpdest.single[0] - reg[src_base + j].single[0] * msrc.single[j])
else:
tmpdest.single[0] «— RoundFPControl_MXCSR(tmpdest.single[0] + reg[src_base + j].single[0] * msrc.single[j])
else if *zeroing*:
tmpdest.single[0] < O
dest « tmpdst
dest[MAX_VL-T:VL] <0

Ref. # 319433-029 5-11

INSTRUCTION SET REFERENCE, A-Z

V4FMADDSS and V4FNMADDSS dest{k1}, src1, msrc (AVX512)
vi=128

regs_loaded « 4

src_base «— src_reg_id & ~3 // for src1 operand

posneg <« 0 if negative form, 1 otherwise

NFMA_SS(vl, dest, k1, msrc, regs_loaded, src_base, posneg)

Intel C/C++ Compiler Intrinsic Equivalent

V4FMADDSS __m128 _mm_4fmadd_ss(__m128,__m128x4, __m128*);
V4FMADDSS __m128 _mm_mask_4fmadd_ss(__m128, __mmask8, __m128x4,

m128 *);

V4FMADDSS __m128 _mm_maskz_4fmadd_ss(__mmask8, __ m128, __ m128x4, __m128 *);
V4FNMADDSS __m128 _mm_4fnmadd_ss(__m128, __m128x4, __ m128*);
V4FNMADDSS __m128 _mm_mask_4fnmadd_ss(__m128, __mmask8, __ m128x4, _ m128 *);

V4FNMADDSS __m128 _mm_maskz_4fnmadd_ss(__mmask8, __m128, __ m128x4, __m128 *);
SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

See Type E2; additionally

#UD If the EVEX broadcast bit is set to 1.

#UD If the MODRM.mod = 0Ob11.

5-12

Ref. # 319433-029

INSTRUCTION SET REFERENCE, A-Z

VP4DPWSSD — Dot Product of Signed Words with Dword Accumulation (4-iterations)

Opcode/ Op/ | 64/32 CPUID Feature Description
Instruction En bitMode | Flag
Support
EVEX.DDS.512.F2.0F38.W0 52 /r A VIV AVX512_4VNNIW | Multiply signed words from source register block
VP4DPWSSD zmm1{k1¥z},zmm2+3, indicated by zmm2 by signed words from m128
m128 and accumulate resulting signed dwords in zmm1.
Instruction Operand Encoding
Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4
A T1_4X ModRM:reg (r, w) EVEX.vvwv (r) ModRM:r/m (r) NA
Description

This instruction computes 4 sequential register source-block dot-products of two signed word operands with
doubleword accumulation; see Figure 5-1 below. The memory operand is sequentially selected in each of the four

steps.

In the above box, the notation of “+3"" is used to denote that the instruction accesses 4 source registers based on
that operand; sources are consecutive, start in a multiple of 4 boundary, and contain the encoded register operand.

This instruction supports memory fault suppression. The entire memory operand is loaded if any bit of the lowest
16-bits of the mask is set to 1 or if a “no masking” encoding is used.

The tuple type T1_4X implies that four 32-bit elements (16 bytes) are referenced by the memory operation portion

of this instruction.

16b 16b 16b 16b
a3 a2 al a0
bl b0 bl b0
32b 32b
cl c0

cl=cl+a2*b0+a3*bl

c0=c0+a0*b0+al*bl

32b

32b

Figure 5-1. Register Source-Block Dot Product of Two Signed Word Operands with Doubleword Accumulation’

NOTES:

1. For illustration purposes, one source-block dot product instance is shown out of

the four.

Ref. # 319433-029

5-13

INSTRUCTION SET REFERENCE, A-Z

Operation
src_reg_id is the 5 bit index of the vector register specified in the instruction as the src1 register.

VVP4DPWSSD dest, src1, src2
(KLVL) =(16,512)
N4

ORIGDEST « DEST
src_base « src_reg_id & ~ (N-1) // for src1 operand

FOR i« 0 to KL-1:
IF k1[i] or *no writemask*:
FORmM « 0 toN-1:
t <« SRC2.dword[m]
pldword « reg[src_base+m].word[2*i] * t.word[0]
p2dword « reg[src_base+m].word[2*i+1] * t.word[1]
DEST.dword[i] < DEST.dword[i] + p1dword + p2dword
ELSE IF *zeroing™:
DEST.dword[i] < O
ELSE
DEST.dword[i] <~ ORIGDEST.dword[i]
DEST[MAX_VL-1:VL] « 0O

Intel C/C++ Compiler Intrinsic Equivalent

VP4DPWSSD __m512i _mm512_4dpwssd_epi32(_m512i, __m512ix4, __m128i *);
VP4DPWSSD __m512i _mm512_mask_4dpwssd_epi32(_m512i, __mmask16, __m512ix4, __m128i *);
VP4DPWSSD __m512i _mm512_maskz_4dpwssd_epi32(_mmask16, __m512i, __m512ix4, __m128i *);

SIMD Floating-Point Exceptions
None.

Other Exceptions

See Type E4; additionally

#UD If the EVEX broadcast bit is set to 1.
#UD If the MODRM.mod = Ob11.

5-14 Ref. # 319433-029

INSTRUCTION SET REFERENCE, A-Z

VP4DPWSSDS — Dot Product of Signed Words with Dword Accumulation and Saturation
(4-iterations)

Opcode/ Op/ | 64/32 CPUID Feature Description
Instruction En bitMode | Flag
Support
EVEX.DDS.512.F2.0F38.W0 53 /r A VIV AVX512_4VNNIW | Multiply signed words from source register block
VP4DPWSSDS zmm1{k1¥z]}, indicated by zmmZ2 by signed words from m128
zmmZ2+3, 128 and accumulate the resulting dword results with
signed saturation in zmm1.
Instruction Operand Encoding
Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4
A T1_4X ModRM:reg (r, w) EVEX.vvwv (r) ModRM:r/m (r) NA
Description

This instruction computes 4 sequential register source-block dot-products of two signed word operands with
doubleword accumulation and signed saturation. The memory operand is sequentially selected in each of the four

steps.

In the above box, the notation of “+3” is used to denote that the instruction accesses 4 source registers based on
that operand; sources are consecutive, start in a multiple of 4 boundary, and contain the encoded register operand.

This instruction supports memory fault suppression. The entire memory operand is loaded if any bit of the lowest

16-bits of the mask is set to 1 or if a “no masking” encoding is used.

The tuple type T1_4X implies that four 32-bit elements (16 bytes) are referenced by the memory operation portion

of this instruction.

Operation
src_reg_id is the 5 bit index of the vector register specified in the instruction as the src1 register.

VVP4DPWSSDS dest, src1, src2
(KLVL)=(16,512)
N4

ORIGDEST « DEST
src_base <« src_reg_id & ~ (N-1) // for src1 operand

FOR i« O toKL-1:
IF k1[i] or *no writemask*:
FORmM « 0 toN-1:
t < SRC2.dword[m]
pldword « reg[src_base+m].word[2*i] * t.word[0]
p2dword « reg[src_base+m].word[2*i+1] * t.word[1]
DEST.dword[i] «— SIGNED_DWORD_SATURATE(DEST.dword[i] + p1dword + p2dword)
ELSE IF *zeroing*:
DEST.dword[i] < 0O
ELSE
DEST.dword[i] «— ORIGDEST.dword][i]
DEST[MAX_VL-T:VL] « 0

Ref. # 319433-029 5-15

INSTRUCTION SET REFERENCE, A-Z

Intel C/C++ Compiler Intrinsic Equivalent

VP4DPWSSDS __m512i _mm512_4dpwssds_epi32(_m512i,__m512ix4, __m128i *);
VP4DPWSSDS __m512i _mm512_mask_4dpwssds_epi32(__m512i, __mmask16, __m512ix4, __m128i *);
VP4DPWSSDS __m512i _mm512_maskz_4dpwssds_epi32(__mmask16, __m512i, __m512ix4, __m128i *);

SIMD Floating-Point Exceptions
None.

Other Exceptions

See Type E4; additionally

#UD If the EVEX broadcast bit is set to 1.
#UD If the MODRM.mod = Ob11.

5-16 Ref. # 319433-029

INSTRUCTION SET REFERENCE, A-Z

VPERMB—Permute Packed Bytes Elements

Opcode/ Op/ 64/32 CPUID Description
Instruction En bitMode Feature Flag

Support
EVEX.NDS.128.66.0F38.W0 8D /r A VIV AVX512VL Permute bytes in xmm3/m128 using byte indexes in
VPERMB xmm1 {k1¥z}, xmm2, AVX512VBMI xmmZ2 and store the result in xmm1 using writemask
xmm3/m128 k1.
EVEX.NDS.256.66.0F38.W0 8D /r A VIV AVX512VL Permute bytes in ymm3/m256 using byte indexes in
VPERMB ymm1 {k1¥z}, ymm2, AVX512VBMI ymmZ2 and store the result in ymm1 using writemask
ymm3/m256 k1.
EVEX.NDS.512.66.0F38.W0 8D /r A VIV AVX512VBMI Permute bytes in zmm3/m512 using byte indexes in
VPERMB zmm1 {k1}z}, zmm2, zmmZ2 and store the result in zmm1 using writemask
zmm3/m512 k1.

Instruction Operand Encoding

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4
A FULLMEM ModRM:reg (w) EVEX.vvwv (1) ModRM:r/m (r) NA
Description

Copies bytes from the second source operand (the third operand) to the destination operand (the first operand)
according to the byte indices in the first source operand (the second operand). Note that this instruction permits a
byte in the source operand to be copied to more than one location in the destination operand.

Only the low 6(EVEX.512)/5(EVEX.256)/4(EVEX.128) bits of each byte index is used to select the location of the
source byte from the second source operand.

The first source operand is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM reg-
ister, a 512/256/128-bit memory location. The destination operand is a ZMM/YMM/XMM register updated at byte
granularity by the writemask k1.

Operation

VPERMB (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
IFVL=128:
ne3;
ELSE IF VL = 256:
n«4
ELSEIFVL=512:
ne«>5;
Fl;
FORj < 0 TOKL-1:
id « SRC1[j*8 + n: j*8] ; // location of the source byte
IF k1[j] OR *no writemask* THEN
DEST[j*8 + 7:j*8] « SRC2[id*8 +7:id*8];
ELSE IF zeroing-masking THEN
DEST[j*8 + 7:j*8] « O;
*ELSE
DEST[j*8 + 7:j*8] remains unchanged*
Fl
ENDFOR
DEST[MAX_VL-1:VL] « O;

Ref. # 319433-029 5-17

INSTRUCTION SET REFERENCE, A-Z

Intel C/C++ Compiler Intrinsic Equivalent

VPERMB _m512i _mm512_permutexvar_epi8(__m512iidx, __m512i a);

VPERMB _m512i _mm512_mask_permutexvar_epi8(__m512is, __mmask64 k, __m512iidx, __m512i a);
VPERMB _m512i _mm512_maskz_permutexvar_epi8(__mmask64 k, __m512iidx, __m512i a);

VPERMB _m256i _mm256_permutexvar_epi8(__m256i idx, __m256i a);

VPERMB _m256i _mm256_mask_permutexvar_epi8(__m256i s, __mmask32 k, __m256i idx, __m256i a);
VPERMB _m256i _mm256_maskz_permutexvar_epi8(__mmask32 k, __m256i idx, __m256i a);

VPERMB _m128i _mm_permutexvar_epi8(__m128iidx, __m128i a);

VPERMB _m128i _mm_mask_permutexvar_epi8(__m128is, __mmask16 k, __m128iidx, __m128i a);
VPERMB _m128i _mm_maskz_permutexvar_epi8(_mmask16 k, __m128iidx, __m128i a);

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type E4ANF.nb.

5-18

Ref. # 319433-029

INSTRUCTION SET REFERENCE, A-Z

VPERMIZ2B—Full Permute of Bytes from Two Tables Overwriting the Index

VPERMIZB zmm1 {k1¥z}, zmm2,
zmm3/m512

Opcode/ Op/ | 64/32 CPUID Feature | Description
Instruction En bitMode | Flag

Support
EVEX.DDS.128.66.0F38.W0 75 /r A VIV AVX512VL Permute bytes in xmm3/m128 and xmmZ2 using
VPERMIZB xmm1 {k1}z]}, xmmz2, AVX512VBMI byte indexes in xmm1 and store the byte results
xmm3/m128 in xmm?1 using writemask k1.
EVEX.DDS.256.66.0F38.W0 75 /r A VIV AVX512VL Permute bytes in ymm3/m256 and ymmZ2 using
VPERMIZB ymm1 {k1Xz}, ymm2, AVX512VBMI byte indexes in ymm1 and store the byte results
ymm3/m256 in ymm1 using writemask k1.
EVEX.DDS.512.66.0F38.W0 75 /r A VIV AVX512VBMI Permute bytes in zmm3/m512 and zmm2 using

byte indexes in zmm1 and store the byte results
in zmm1 using writemask k1.

Instruction Operand Encoding

Op/En Tuple Operand 1

Operand 2

Operand 3 Operand 4

A FULLMEM ModRM:reg (r, w)

EVEX.vvvv (r)

ModRM:r/m (r) NA

Description

Permutes byte values in the second operand (the first source operand) and the third operand (the second source
operand) using the byte indices in the first operand (the destination operand) to select byte elements from the
second or third source operands. The selected byte elements are written to the destination at byte granularity

under the writemask k1.

The first and second operands are ZMM/YMM/XMM registers. The first operand contains input indices to select
elements from the two input tables in the 2nd and 3rd operands. The first operand is also the destination of the
result. The third operand can be a ZMM/YMM/XMM register, or a 512/256/128-bit memory location. In each index
byte, the id bit for table selection is bit 6/5/4, and bits [5:0]/[4:0]/[3:0] selects element within each input table.

Note that these instructions permit a byte value in the source operands to be copied to more than one location in
the destination operand. Also, the same tables can be reused in subsequent iterations, but the index elements are

overwritten.

Bits (MAX_VL-1:256/128) of the destination are zeroed for VL=256,128.

Ref. # 319433-029

5-19

INSTRUCTION SET REFERENCE, A-Z

Operation

VPERMIZB (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
IFVL=128:
id« 3;
ELSE IF VL = 256:
id « 4;
ELSEIFVL=512:
id < 5;
Fl;
TMP_DEST[VL-1:0] <~ DEST[VL-1:0];
FOR j « 0 TOKL-1
off < 8*SRC1[j*8 +id: j*8] ;
IF k1[j] OR *no writemask*:
DEST[j*8 + 7:j*8] « TMP_DEST[j*8+id+1]? SRC2[off+7:0ff] : SRC1[off+7:0ff];
ELSE IF *zeroing-masking*
DEST[j*8 + 7:j*8] « O;
*ELSE
DEST[j*8 + 7: j*8] remains unchanged*
FI;
ENDFOR
DEST[MAX_VL-1:VL] « O;

Intel C/C++ Compiler Intrinsic Equivalent
VPERMIZB __m512i _mm512_permutex2var_epi8(__m512ia, __m512iidx, __m512ib);

VPERMIZB __m512i _mm512_mask2_permutex2var_epi8(__m512ia, __m512iidx, __mmask64 k, __m512i b);
VPERMIZB __m512i _mm512_maskz_permutex2var_epi8(__mmask64 k, __m512ia, __m512iidx, __m512ib);

VPERMIZB __m256i _mm256_permutex2var_epi8(__m256i a, __m256i idx, __m256i b);

VPERMIZB _m256i _mm256_mask2_permutex2var_epi8(_m256i a, __m256i idx, __mmask32 k, __m256i b);
VPERMIZB _m256i _mm256_maskz_permutex2var_epi8(__mmask32 k, __m256i a, __m256i idx, __m256i b);

VPERMIZB __m128i _mm_permutex2var_epi8(_m128ia, __m128iidx, __m128ib);
VPERMIZB __m128i _mm_mask2_permutex2var_epi8(__m128ia, __m128iidx, __mmask16 k, __m128i b);
VPERMIZB _m128i _mm_maskz_permutex2var_epi8(__mmask16 k, __m128ia, __m128iidx, __m128ib);

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Exceptions Type E4ANF.nb.

5-20

Ref. # 319433-029

INSTRUCTION SET REFERENCE, A-Z

VPERMT2B—Full Permute of Bytes from Two Tables Overwriting a Table

Opcode/ Op | 64/32 CPUID Feature | Description
Instruction / bit Mode | Flag

En | Support
EVEX.DDS.128.66.0F38.W0 7D /r A VIV AVX512VL Permute bytes in xmm3/m128 and xmm1 using byte
VPERMTZ2B xmm1 {k1¥z}, xmm2, AVX512VBMI indexes in xmm2 and store the byte results in xmm1
xmm3/m128 using writemask k1.
EVEX.NDS.256.66.0F38.W0 7D /r A VIV AVX512VL Permute bytes in ymm3/m256 and ymm1 using byte
VPERMTZ2B ymm1 {k1}{z}, ymm2, AVX512VBMI indexes in ymmZ2 and store the byte results in ymm1
ymm3/m256 using writemask k1.
EVEX.NDS.512.66.0F38.W0 7D /r A VIV AVX512VBMI Permute bytes in zmm3/m512 and zmm1 using byte
VPERMTZB zmm1 {k1}z}, zmm2, indexes in zmmZ2 and store the byte results in zmm1
zmm3/m512 using writemask k1.

Instruction Operand Encoding

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4
A FULLMEM ModRM:reg (r, w) EVEX.vvwv (r) ModRM:r/m (r) NA
Description

Permutes byte values from two tables, comprising of the first operand (also the destination operand) and the third
operand (the second source operand). The second operand (the first source operand) provides byte indices to
select byte results from the two tables. The selected byte elements are written to the destination at byte granu-
larity under the writemask k1.

The first and second operands are ZMM/YMM/XMM registers. The second operand contains input indices to select
elements from the two input tables in the 1st and 3rd operands. The first operand is also the destination of the
result. The second source operand can be a ZMM/YMM/XMM register, or a 512/256/128-bit memory location. In
each index byte, the id bit for table selection is bit 6/5/4, and bits [5:0]/[4:0]/[3:0] selects element within each
input table.

Note that these instructions permit a byte value in the source operands to be copied to more than one location in
the destination operand. Also, the second table and the indices can be reused in subsequent iterations, but the first
table is overwritten.

Bits (MAX_VL-1:256/128) of the destination are zeroed for VL=256,128.

Ref. # 319433-029 5-21

INSTRUCTION SET REFERENCE, A-Z

Operation

VPERMT2B (EVEX encoded versions)
(KL, VL) = (16, 128), (32, 256), (64, 512)
IFVL=128:
id« 3;
ELSE IF VL = 256:
id « 4;
ELSEIFVL=512:
id < 5;
Fl;
TMP_DEST[VL-1:0] <~ DEST[VL-1:0];
FOR j « 0 TOKL-1
off < 8*SRC1[j*8 +id: j*8] ;
IF k1[j] OR *no writemask*:
DEST[j*8 + 7:j*8] « SRC1[j*8+id+1]? SRC2[off+7:0ff] : TMP_DEST[off+7:0ff];
ELSE IF *zeroing-masking*
DEST[j*8 + 7:j*8] « O;
*ELSE
DEST[j*8 + 7: j*8] remains unchanged*
FI;
ENDFOR
DEST[MAX_VL-1:VL] « O;

Intel C/C++ Compiler Intrinsic Equivalent

VPERMT2B __m512i _mm512_permutex2var_epi8(_m512ia, __m512iidx, __m512ib);
VPERMTZ2B _m512i _mm5712_mask_permutex2var_epi8(__m512ia, __mmask64 k, __m512iidx, __m512ib);

VPERMTZ2B __m512i _mm512_maskz_permutex2var_epi8(__mmask64 k, __m512ia, __m512iidx, __m512ib);

VPERMT2B __m256i _mm256_permutex2var_epi8(__m256i a, __m256i idx, __m256i b);
VPERMTZ2B _m256i _mm256_mask_permutex2var_epi8(__m256i a, __mmask32 k, __m256i idx, __m256i b);

VPERMTZB _m256i _mm256_maskz_permutex2var_epi8(__mmask32 k, __m256i a, __m256i idx, __m256i b);

VPERMT2B __m128i _mm_permutex2var_epi8(__m128ia, __m128iidx, __m128ib);
VPERMT2B _m128i _mm_mask_permutex2var_epi8(__m128ia, __mmask16 k, __m128iidx, __m128ib);
VPERMTZ2B __m128i _mm_maskz_permutex2var_epi8(_mmask16 k, __m128ia, __m128iidx, __m128ib);

SIMD Floating-Point Exceptions
None.

Other Exceptions

See Exceptions Type E4ANF.nb.

5-22

Ref. # 319433-029

INSTRUCTION SET REFERENCE, A-Z

VPERMT2W/D/Q/PS/PD—Full Permute from Two Tables Overwriting one Table

VPERMTZ2PD zmm1 {k1¥z},
zmmZ2, zmm3/m512/m64bcst

Opcode/ Op/ | 64/32 CPUID Description
Instruction En bitMode | Feature

Support | Flag
EVEX.DDS.128.66.0F38W17D/r | A VIV AVX512VL | Permute word integers from two tables in xmm3/m128
VPERMT2W xmm1 {k1}z}, xmm2, AVX512BW | and xmm1 using indexes in xmm2 and store the result in
xmm3/m128 xmm?1 using writemask k1.
EVEX.DDS.256.66.0F38W17D/r | A VIV AVX512VL | Permute word integers from two tables in ymm3/m256
VPERMT2W ymm1 {k1}z}, ymm2, AVX512BW | and ymm1 using indexes in ymmZ2 and store the result in
ymm3/m256 ymm1 using writemask k1.
EVEX.DDS.512.66.0F38W17D/r | A VIV AVX512BW | Permute word integers from two tables in zmm3/m512
VPERMT2W zmm1 {k1}z}, zmm2, and zmm1 using indexes in zmmZ2 and store the result in
zmm3/m512 zmm1 using writemask k1.
EVEX.DDS.128.66.0F38WO0 7E/r | B VIV AVX512VL | Permute double-words from two tables in
VPERMTZ2D xmm1 {k1}z}, xmm2, AVX512F xmm3/m128/m32bcst and xmm1 using indexes in xmmZ2
xmm3/m128/m32bcst and store the result in xmm1 using writemask k1.
EVEX.DDS.256.66.0F38W0 7E/r | B VIV AVX512VL | Permute double-words from two tables in
VPERMTZ2D ymm1 {k1¥z}, ymm2, AVX512F ymm3/m256/m32bcst and ymm1 using indexes in ymm2
ymm3/m256/m32bcst and store the result in ymm1 using writemask k1.
EVEX.DDS.512.66.0F38W0 7E/r | B VIV AVX512F Permute double-words from two tables in
VPERMTZ2D zmm1 {k1¥z}, zmm2, zmm3/m512/m32bcst and zmm1 using indices in zmm2
zmm3/m512/m32bcst and store the result in zmm1 using writemask k1.
EVEX.DDS.128.66.0F38W1 7E/r | B VIV AVX512VL | Permute quad-words from two tables in
VPERMT2Q xmm1 {k1}z}, xmm2, AVX512F xmm3/m128/m64bcst and xmm1 using indexes in xmm2
xmm3/m128/m64bcst and store the result in xmm1 using writemask k1.
EVEX.DDS.256.66.0F38W17E/r | B VIV AVX512VL | Permute quad-words from two tables in
VPERMT2Q ymm1 {k1}z}, ymm2, AVX512F ymm3/m256/m64bcst and ymm1 using indexes in ymmZ2
ymm3/m256/m64bcst and store the result in ymm?1 using writemask k1.
EVEX.DDS.512.66.0F38W17€/r | B VIV AVX512F Permute quad-words from two tables in
VPERMT2Q zmm1 {k1}z}, zmmz, zmm3/m512/m64bcst and zmm1 using indices in zmm2
zmm3/m512/m64bcst and store the result in zmm1 using writemask k1.
EVEX.DDS.128.66.0F38W0 7F/r | B VIV AVX512VL | Permute single-precision FP values from two tables in
VPERMTZ2PS xmm1 {k1}z}, AVX512F xmm3/m128/m32bcst and xmm1 using indexes in xmm2
xmm2, xmm3/m128/m32bcst and store the result in xmm1 using writemask k1.
EVEX.DDS.256.66.0F38W0 7F/r | B VIV AVX512VL | Permute single-precision FP values from two tables in
VPERMTZ2PS ymm1 {k1}z}, AVX512F ymm3/m256/m32bcst and ymm1 using indexes in ymm2
ymm2, ymm3/m256/m32bcst and store the result in ymm1 using writemask k1.
EVEX.DDS.512.66.0F38WO 7F/r | B VIV AVX512F Permute single-precision FP values from two tables in
VPERMTZ2PS zmm1 {k1}z], zmm3/m512/m32bcst and zmm1 using indices in zmm2
zmm2, zmm3/m512/m32bcst and store the result in zmm1 using writemask k1.
EVEX.DDS.128.66.0F38W1 7F/r | B VIV AVX512VL | Permute double-precision FP values from two tables in
VPERMT2PD xmm1 {k1Xz}, AVX512F xmm3/m128/m64bcst and xmm1 using indexes in xmm2
xmm2, xmm3/m128/m64bcst and store the result in xmm1 using writemask k1.
EVEX.DDS.256.66.0F38W17F/r | B VIV AVX512VL | Permute double-precision FP values from two tables in
VPERMT2PD ymm1 {k1¥z]}, AVX512F ymm3/m256/m64bcst and ymm1 using indexes in ymm2
ymmZ2, ymm3/m256/m64bcst and store the result in ymm1 using writemask k1.
EVEX.DDS.512.66.0F38W1 7F/r | B VIV AVX512F Permute double-precision FP values from two tables in

zmm3/m5712/m64bcst and zmm1 using indices in zmm2
and store the result in zmm1 using writemask k1.

Ref. # 319433-029

5-23

INSTRUCTION SET REFERENCE, A-Z

Instruction Operand Encoding

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4
A FULLMEM ModRM:reg (r,w) EVEX.vvwv (r) ModRM:r/m (r) NA
B FULL ModRM:reg (r, w) EVEX.vvwv (r) ModRM:r/m (r) NA
Description

Permutes 16-bit/32-bit/64-bit values in the first operand and the third operand (the second source operand) using
indices in the second operand (the first source operand) to select elements from the first and third operands. The
selected elements are written to the destination operand (the first operand) according to the writemask k1.

The first and second operands are ZMM/YMM/XMM registers. The second operand contains input indices to select
elements from the two input tables in the 1st and 3rd operands. The first operand is also the destination of the
result.

D/Q/PS/PD element versions: The second source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit
memory location or a 512/256/128-bit vector broadcasted from a 32/64-bit memory location. Broadcast from the
low 32/64-bit memory location is performed if EVEX.b and the id bit for table selection are set (selecting table_2).

Dword/PS versions: The id bit for table selection is bit 4/3/2, depending on VL=512, 256, 128. Bits
[3:0]/[2:0]/[1:0] of each element in the input index vector select an element within the two source operands, If
the id bit is O, table_1 (the first source) is selected; otherwise the second source operand is selected.

Qword/PD versions: The id bit for table selection is bit 3/2/1, and bits [2:0]/[1:0] /bit O selects element within each
input table.

Word element versions: The second source operand can be a ZMM/YMM/XMM register, or a 512/256/128-bit
memory location. The id bit for table selection is bit 5/4/3, and bits [4:0]/[3:0]/[2:0] selects element within each
input table.

Note that these instructions permit a 16-bit/32-bit/64-bit value in the source operands to be copied to more than
one location in the destination operand. Note also that in this case, the same index can be reused for example for
a second iteration, while the table elements being permuted are overwritten.

Bits (MAX_VL-1:256/128) of the destination are zeroed for VL=256,128.

Operation

VPERMT2W (EVEX encoded versions)
(KL, VL) = (8,128), (16, 256), (32, 512)
IFVL=128

id €< 2
Fl;
IFVL =256

id < 3
Fl;
IFVL=512

id< 4
Fl;
TMP_DEST <« DEST
FORj <« 0 TOKL-1

i€j*16

off € 16*SRC1[i+id:]

IF k1[j] OR *no writemask*

THEN
DESTI[i+15:i]=SRC1[i+id+1] ? SRC2[off+15:0ff]
: TMP_DEST[off+15:0ff]

ELSE
IF *merging-masking* , merging-masking
THEN *DESTI[i+15:i] remains unchanged*
ELSE ; zeroing-masking

5-24 Ref. # 319433-029

DEST[i+15:i1 €« 0
FI
Fl;
ENDFOR
DEST[MAX_VL-1VL] €« 0

VPERMT2D/VPERMT2PS (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
IFVL=128
id< 1
Fl;
IFVL =256
id <2
Fl;
IFVL=512
id <3
Fl;
TMP_DEST < DEST
FORj <« 0 TOKL-1
i€j*32
off € 32*SRC1[i+id:i]
IF k1[j] OR *no writemask*

THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN
DESTI[i+31:i] € SRC1[i+id+1]?7 SRC2[31:0]
: TMP_DEST[off+31:0ff]
ELSE
DESTI[i+31:i] € SRC1[i+id+1]? SRC2[off+31:0ff]
: TMP_DEST[off+31:0ff]
Fl
ELSE
IF *merging-masking* , merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+31:i1< 0
Fl
Fl;
ENDFOR

DEST[MAX_VL-1:VL] <« O

VPERMT2Q/VPERMT2PD (EVEX encoded versions)
(KL, VL) = (2, 128), (4, 256), (8 512)
IFVL=128
id<0
Fl;
IFVL =256
id< 1
Fl;
IFVL=512
id< 2
Fl;
TMP_DEST < DEST
FORj <« 0 TOKL-1

Ref. # 319433-029

INSTRUCTION SET REFERENCE, A-Z

5-25

INSTRUCTION SET REFERENCE, A-Z

i<j*64
off € 64*SRC1[i+id:]
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory?*)
THEN
DESTI[i+63:i] €« SRC1[i+id+1]? SRC2[63:0]
: TMP_DEST[off+63:0ff]
ELSE
DESTI[i+63:i] € SRC1[i+id+1] ? SRC2[off+63:0ff]
: TMP_DEST[off+63:0ff]
Fl
ELSE
IF *merging-masking* ; merging-masking
THEN *DESTIi+63:i] remains unchanged*
ELSE ; zeroing-masking
DESTI[i+63:i] €« 0
Fl
FI;
ENDFOR

DEST[MAX_VL-1:VL] < O

Intel C/C++ Compiler Intrinsic Equivalent

VPERMTZ2D _m512i _mm512_permutex2var_epi32(__m512ia, __m512iidx, __m512ib);

VPERMTZD _m512i _mm512_mask_permutex2var_epi32(__m512ia, __mmask16 k, __m512iidx, __m512ib);
VPERMTZ2D _m512i _mm512_mask2_permutex2var_epi32(__m512ia, __m512iidx, __mmask16 k, __m512i b);
VPERMTZ2D _m512i _mm512_maskz_permutex2var_epi32(__mmask16 k, __m512ia, __m512iidx, __m512ib);
VPERMTZ2D _m256i _mm256_permutex2var_epi32(__m256i a, __m256i idx, __m256i b);

VPERMTZ2D _m256i _mm256_mask_permutex2var_epi32(__m256i a, __mmask8 k, __m256i idx, __m256i b);
VPERMT2D _m256i _mm256_mask2_permutex2var_epi32(__m256i a, __m256i idx, __mmask8 k, __m256i b);
VPERMTZ2D _m256i _mm256_maskz_permutex2var_epi32(__mmask8 k, __m256i a, __m256i idx, __m256i b);
VPERMTZD _m128i _mm_permutex2var_epi32(_m128ia, __m128iidx, __m128ib);

VPERMT2D __m128i _mm_mask_permutex2var_epi32(__m128ia, __mmask8 k, __m128iidx, __m128ib);
VPERMTZ2D _m128i _mm_mask2_permutex2var_epi32(__m128ia, __m128iidx, __mmask8 k, __m128i b);
VPERMTZ2D _m128i _mm_maskz_permutex2var_epi32(__mmask8 k, __m128ia, __m128iidx, __m128ib);
VPERMT2PD __m512d _mm512_permutex2var_pd(__m512d a, __m512iidx, __m512db);

VPERMTZ2PD _m512d _mm512_mask_permutex2var_pd(__m512d a, __mmask8 k, __m512iidx, __m512d b);
VPERMTZ2PD _m512d _mm512_mask2_permutex2var_pd(__m512d a, __m512iidx, __mmask8 k, __m512d b);
VPERMTZ2PD _m512d _mm512_maskz_permutex2var_pd(__mmask8 k, __m512d a, __m512iidx, __m512d b);
VPERMT2PD __m256d _mm256_permutex2var_pd(__m256d a, __m256i idx, __m256d b);

VPERMTZ2PD __m256d _mm256_mask_permutex2var_pd(__m256d a, __mmask8 k, __m256i idx, __m256d b);
VPERMTZ2PD _m256d _mm256_mask2_permutex2var_pd(__m256d a, __m256i idx, __mmask8 k, __m256d b);
VPERMT2PD __m256d _mm256_maskz_permutex2var_pd(__mmask8 k, __m256d a, __m256i idx, __m256d b);
VPERMTZ2PD _m128d _mm_permutex2var_pd(__m128d a, __m128iidx, __m128d b);

VPERMTZ2PD _m128d _mm_mask_permutex2var_pd(__m128d a, __mmask8 k, __m128iidx, __m128d b);
VPERMT2PD __m128d _mm_mask2_permutex2var_pd(__m128d a, __m128i idx, __mmask8 k, __m128d b);
VPERMTZ2PD _m128d _mm_maskz_permutex2var_pd(__mmask8 k, __m128d a, __m128iidx, __m128d b);
VPERMTZ2PS __m512 _mm512_permutex2var_ps(__m512 a3, __m512iidx, __m512 b);

VPERMTZ2PS _m512 _mm512_mask_permutex2var_ps(__m512 a, __mmask16 k, __m512iidx, __m512 b);
VPERMT2PS __m512 _mm5712_mask2_permutex2var_ps(__m512 a, __m512iidx, __mmask16 k, __m512 b);
VPERMTZ2PS _m512 _mm5712_maskz_permutex2var_ps(__mmask16 k, __m512 3, __m512iidx, __m512 b);

5-26

Ref. # 319433-029

INSTRUCTION SET REFERENCE, A-Z

VPERMT2PS __m256 _mm256_permutex2var_ps(__m256 a, __m256i idx, __m256 b);

VPERMTZ2PS _m256 _mm256_mask_permutex2var_ps(__m256 a, __mmask8 k, __m256i idx, __m256 b);
VPERMTZ2PS __m256 _mm256_maskZ2_permutex2var_ps(__m256 a, __m256i idx, __mmask8 k, __m256 b);
VPERMT2PS __m256 _mm256_maskz_permutex2var_ps(__mmask8 k, __m256 a, __m256i idx, __m256 b);
VPERMTZ2PS _m128 _mm_permutex2var_ps(__m128 3, __m128iidx, __m128 b);

VPERMTZ2PS __m128 _mm_mask_permutex2var_ps(__m128 a, __mmask8 k, _ m128iidx, __ m128b);
VPERMTZ2PS _m128 _mm_mask2_permutex2var_ps(__m128a, __m128iidx, __mmask8 k, __m128 b);
VPERMT2PS __m128 _mm_maskz_permutex2var_ps(__mmask8k, __m128 a, __m128iidx, __m128b);
VPERMT2Q _m512i _mm512_permutex2var_epi64(__m512ia, __m512iidx, __m512ib);

VPERMT2Q _m512i _mm512_mask_permutex2var_epi64(__m512ia, __mmask8 k, __m512iidx, __m512ib);
VPERMT2Q __m512i _mm512_mask2_permutex2var_epi64(__m512ia, __m512iidx, __mmask8 k, __m512ib);
VPERMT2Q _m512i _mm512_maskz_permutex2var_epi64(__mmask8 k, __m512ia, __m512iidx, __m512ib);
VPERMT2Q _m256i _mm256_permutex2var_epib4(__m256i a, __m256i idx, __m256i b);

VPERMT2Q _m256i _mm256_mask_permutex2var_epi64(__m256i a, __mmask8 k, __m256i idx, __m256i b);
VPERMT2Q _m256i _mm256_mask2_permutex2var_epi64(__m256i a, __m256i idx, __mmask8 k, __m256i b);
VPERMT2Q _m256i _mm256_maskz_permutex2var_epi64(_mmask8 k, __m256i a, __m256i idx, __m256i b);
VPERMT2Q _m128i _mm_permutex2var_epi64(_m128ia, __m128iidx, __m128ib);

VPERMT2Q __m128i _mm_mask_permutex2var_epi64(__m128ia, __mmask8 k, __m128i idx, __m128i b);
VPERMT2Q _m128i _mm_mask2_permutex2var_epi64(__m128ia, __m128iidx, __mmask8 k, __m128ib);
VPERMT2Q _m128i _mm_maskz_permutex2var_epi64(__mmask8 k, __m128ia, __m128iidx, __m128ib);
VPERMT2W __m512i _mm512_permutex2var_epi16(_m512ia, __m512iidx, __m512ib);

VPERMT2W _m512i _mm512_mask_permutex2var_epi16(_m512ia, __mmask32 k, __m512iidx, __m512ib);
VPERMT2W __m512i _mm512_mask2_permutex2var_epi16(_m512ia, __m512iidx, __mmask32 k, __m512ib);
VPERMT2W _m512i _mm512_maskz_permutex2var_epi16(__mmask32 k, __m512ia, __m512iidx, __m512ib);
VPERMT2W __m256i _mm256_permutex2var_epi16(_m256i a, __m256i idx, __m256i b);

VPERMT2W __m256i _mm256_mask_permutex2var_epi16(_m256ia, __mmask16 k, __m256i idx, __m256i b);
VPERMT2W _m256i _mm256_mask2_permutex2var_epil16(_m256i a, __m256i idx, __mmask16 k, __m256i b);
VPERMT2W __m256i _mm256_maskz_permutex2var_epi16(_mmask16 k, __m256i a, __m256i idx, __m256i b);
VPERMT2W _m128i _mm_permutex2var_epi16(_m128ia, __m128iidx, __m128ib);

VPERMT2W __m128i _mm_mask_permutex2var_epi16(_m128ia, __mmask8 k, __m128iidx, __m128i b);
VPERMT2W _m128i _mm_maskZ2_permutex2var_epi16(_m128ia, __m128iidx, __mmask8 k, __m128i b);
VPERMT2W _m128i _mm_maskz_permutex2var_epi16(_mmask8 k, __m128ia, __m128iidx, __m128ib);

SIMD Floating-Point Exceptions
None.

Other Exceptions
VPERMT2D/Q/PS/PD: See Exceptions Type E4NF.
VPERMT2W: See Exceptions Type E4ANF.nb.

Ref. # 319433-029

5-27

INSTRUCTION SET REFERENCE, A-Z

VPMADD52LUQ—Packed Multiply of Unsigned 52-bit Integers and Add the Low 52-bit Products
to Qword Accumulators

Opcode/ Op/En |32/64 CPUID Description
Instruction bit Mode
Support
EVEX.DDS.128.66.0F38.W1 B4 /r A VIV AVX512IFMA | Multiply unsigned 52-bit integers in xmmZ2 and
VPMADD52LUQ xmm1 {k1}{z}, AVX512VL xmm3/m128 and add the low 52 bits of the 104-bit
xmm2,xmm3/m128/m64bcst product to the qword unsigned integers in xmm1
using writemask k1.
EVEX.DDS.256.66.0F38.W1 B4 /r A VIV AVX512IFMA | Multiply unsigned 52-bit integers in ymmZ2 and
VPMADD52LUQ ymm1 {k1}z]}, AVX512VL ymm3/m128 and add the low 52 bits of the 104-bit
ymmZ2, ymm3/m256/m64bcst product to the qword unsigned integers in ymm1
using writemask k1.
EVEX.DDS.512.66.0F38.W1 B4 /r A VIV AVX512IFMA | Multiply unsigned 52-bit integers in zmm2 and
VPMADD52LUQ zmm1 {k1}z}, zmm3/m128 and add the low 52 bits of the 104-bit
zmm2,zmm3/m512/m64bcst product to the qword unsigned integers in zmm1
using writemask k1.

Instruction Operand Encoding

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4
A FULL ModRM:reg (r, w) EVEX.vvwv (r) ModRM:r/m(r) NA
Description

Multiplies packed unsigned 52-bit integers in each qword element of the first source operand (the second oper-
and) with the packed unsigned 52-bit integers in the corresponding elements of the second source operand (the
third operand) to form packed 104-bit intermediate results. The low 52-bit, unsigned integer of each 104-bit
product is added to the corresponding qword unsigned integer of the destination operand (the first operand)
under the writemask k1.

The first source operand is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM reg-
ister, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 64-bit memory loca-
tion. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1 at 64-bit
granularity.

5-28 Ref. # 319433-029

INSTRUCTION SET REFERENCE, A-Z

Operation

VPMADD52LUQ (EVEX encoded)
(KL, VL) = (2, 128), (4, 256), (8,512)
FOR j « 0 TOKL-1
i <j*64,
IF k1[j] OR *no writemask* THEN
IF src2 is Memory AND EVEX.b=1 THEN
tsrc2[63:0] « ZeroExtend64(src2[51:0]);
ELSE
tsrc2[63:0] «— ZeroExtend64(src2[i+51:];
Fl;
Temp128[127:0] < ZeroExtend64(src1[i+571:i]) * tsrc2[63:0];
Temp2[63:0] <« DEST[i+63:i] + ZeroExtend64(temp128[51:0]);
DEST[i+63:i] « Temp2[63:0];
ELSE
IF *zeroing-masking* THEN
DESTI[i+63:i] « O;
ELSE *merge-masking*
DESTI[i+63:i] is unchanged;
Fl;
Fl;
ENDFOR
DEST[MAX_VL-1:VL] « 0;
Intel C/C++ Compiler Intrinsic Equivalent
VPMADD52LUQ __m512i _mm512_madd52lo_epub4(__m512ia, __m512ib, __m512ic);
VPMADD52LUQ __m512i _mm512_mask_madd52lo_epu64(_m512is, __mmask8 k, __m512ia,_m512ib, __m512ic);
VPMADD52LUQ __m512i _mm512_maskz_madd52lo_epub4(__mmask8k, __m512ia, __m512ib, __m512ic);
VPMADD52LUQ __m256i _mm256_madd52lo_epub4(__m256ia, __m256ib, __m256i c);
VPMADD52LUQ __m256i _mm256_mask_madd52lo_epub4(_m256is, __mmask8 k, __m256ia, __m256i b, __m256i c);
VPMADD52LUQ __m256i _mm256_maskz_madd52lo_epub4(__mmask8 k, __m256i a, __m256i b, __m256i c);
VPMADD52LUQ __m128i _mm_madd52lo_epub4(_m128ia, __m128ib, _m128ic);

VPMADD52LUQ __m128i _mm_mask_madd52lo_epub4(_m128is, __mmask8k, __m128ia,__m128ib, __m128ic);
VPMADD52LUQ __m128i _mm_maskz_madd52lo_epu64(_mmask8 k, __m128ia, __m128ib, __m128ic);

Flags Affected

None.

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type E4.

Ref. # 319433-029 5-29

INSTRUCTION SET REFERENCE, A-Z

VPMADD52HUQ—Packed Multiply of Unsigned 52-bit Unsigned Integers and Add High 52-bit
Products to 64-bit Accumulators

Opcode/ Op/ |32/64 CPUID Description
Instruction En |bit Mode
Support
EVEX.DDS.128.66.0F38.W1 B5 /r A VIV AVX512IFMA | Multiply unsigned 52-bit integers in xmm2 and
VPMADD52HUQ xmm1 {k1}z}, xmm2, AVX512VL xmm3/m128 and add the high 52 bits of the 104-
xmm3/m128/m64bcst bit product to the qword unsigned integers in
xmm?1 using writemask k1.
EVEX.DDS.256.66.0F38.W1 B5 /r A VIV AVX512IFMA | Multiply unsigned 52-bit integers in ymmZ2 and
VPMADD52HUQ ymm1 {k1}z}, ymme, AVX512VL ymm3/m128 and add the high 52 bits of the 104-
ymm3/m256/m64bcst bit product to the qword unsigned integers in
ymm1 using writemask k1.
EVEX.DDS.512.66.0F38.W1 B5 /r A VIV AVX512IFMA | Multiply unsigned 52-bit integers in zmm2 and
VPMADD52HUQ zmm1 {k1¥z}, zmm2, zmm3/m128 and add the high 52 bits of the 104-
zmm3/m512/m64bcst bit product to the qword unsigned integers in
zmm1 using writemask k1.

Instruction Operand Encoding

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4
FV FULL ModRM:reg (r, w) EVEX.vvwv (r) ModRM:r/m(r) NA
Description

Multiplies packed unsigned 52-bit integers in each qword element of the first source operand (the second oper-
and) with the packed unsigned 52-bit integers in the corresponding elements of the second source operand (the
third operand) to form packed 104-bit intermediate results. The high 52-bit, unsigned integer of each 104-bit
product is added to the corresponding qword unsigned integer of the destination operand (the first operand)
under the writemask k1.

The first source operand is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM reg-
ister, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 64-bit memory loca-
tion. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1 at 64-bit
granularity.

5-30 Ref. # 319433-029

INSTRUCTION SET REFERENCE, A-Z

Operation

VPMADD52HUQ (EVEX encoded)
(KL, VL) = (2, 128), (4, 256), (8,512)
FOR j « 0 TOKL-1
i €j*64;
IF k1[j] OR *no writemask* THEN
IF src2 is Memory AND EVEX.b=1 THEN
tsrc2[63:0] « ZeroExtend64(src2[51:0]);
ELSE
tsrc2[63:0] «— ZeroExtend64(src2[i+51:];
Fl;
Temp128[127:0] < ZeroExtend64(src1[i+571:i]) * tsrc2[63:0];
Temp2[63:0] «— DEST[i+63:i] + ZeroExtend64(temp128[103:52]);
DEST[i+63:i] « Temp2[63:0];
ELSE
IF *zeroing-masking* THEN
DESTI[i+63:i] « O;
ELSE *merge-masking*
DESTI[i+63:i] is unchanged;
Fl;
Fl;
ENDFOR
DEST[MAX_VL-1:VL] « O

Intel C/C++ Compiler Intrinsic Equivalent
VPMADD52HUQ __m512i _mm512_madd52hi_epu64(__m512ia, __m512ib, __m512ic);

VPMADD52HUQ _m512i _mm512_mask_madd52hi_epub4(__m512is, __mmask8k, __m512ia, __m512ib, __m512ic);
VPMADD52HUQ _m512i _mm512_maskz_madd52hi_epub4(_mmask8 k, __m512ia, __m512ib, __m512ic);
VPMADD52HUQ __m256i _mm256_madd52hi_epub4(_m256ia, __m256ib, __m256i c);

VPMADD52HUQ _m256i _mm256_mask_madd52hi_epub4(__m256is, __mmask8 k, __m256i a, __m256i b, __m256i c);
VPMADD52HUQ _m256i _mm256_maskz_madd52hi_epub4(_mmask8 k, __m256i a, __m256i b, __m256i c);
VPMADD52HUQ __m128i _mm_madd52hi_epu64(_m128ia,__m128ib, __m128ic);

VPMADD52HUQ _m128i _mm_mask_madd52hi_epub4(_m128is, __mmask8 k, __m128ia, __m128ib, __m128ic);
VPMADD52HUQ __m128i _mm_maskz_madd52hi_epub4(_mmask8 k, __m128ia, __m128ib, __m128ic);

Flags Affected

None.

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type E4.

Ref. # 319433-029

5-31

INSTRUCTION SET REFERENCE, A-Z

VPMULTISHIFTQB - Select Packed Unaligned Bytes from Quadword Sources

Opcode / Op/ | 64/32 CPUID Description
Instruction En bitMode | Feature Flag

Support
EVEX.NDS.128.66.0F38.W1 83 /r A VIV AVX512VBMI | Select unaligned bytes from qwords in
VPMULTISHIFTQB xmm1 {k1¥z}, AVX512VL xmm3/m128/m64bcst using control bytes in
xmmZ2,xmm3/m128/m64bcst xmmZ2, write byte results to xmm1 under k1.
EVEX.NDS.256.66.0F38.W1 83 /r A VIV AVX512VBMI | Select unaligned bytes from qwords in
VPMULTISHIFTQB ymm1 {k1}{z]}, AVX512VL ymm3/m256/m64bcst using control bytes in
ymmZ2,ymm3/m256/m64bcst ymmZ2, write byte results to ymm1 under k1.
EVEX.NDS.512.66.0F38.W1 83 /r A VIV AVX512VBMI | Select unaligned bytes from qwords in
VPMULTISHIFT@B zmm1 {k1}{z}, zmm3/m512/m64bcst using control bytes in
zmm2,zmm3/m512/m64bcst zmmZ2, write byte results to zmm1 under k1.

Instruction Operand Encoding

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4
A FULL ModRM:reg (w) EVEX.vwwv (r) ModRM:r/m (r) NA
Description

This instruction selects eight unaligned bytes from each input gqword element of the second source operand (the
third operand) and writes eight assembled bytes for each gword element in the destination operand (the first
operand). Each byte result is selected using a byte-granular shift control within the corresponding gword element
of the first source operand (the second operand). Each byte result in the destination operand is updated under the
writemask k1.

Only the low 6 bits of each control byte are used to select an 8-bit slot to extract the output byte from the qword
data in the second source operand. The starting bit of the 8-bit slot can be unaligned relative to any byte boundary
and is left-shifted from the beginning of the input qword source by the amount specified in the low 6-bit of the
control byte. If the 8-bit slot would exceed the qword boundary, the out-of-bound portion of the 8-bit slot is
wrapped back to start from bit O of the input gword element.

The first source operand is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM reg-
ister, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 64-bit memory loca-
tion. The destination operand is a ZMM/YMM/XMM register.

5-32 Ref. # 319433-029

INSTRUCTION SET REFERENCE, A-Z

Operation

VPMULTISHIFTQB DEST, SRC1, SRC2 (EVEX encoded version)
(KL, VL) = (2, 128),(4, 256), (8,512)
FOR i« 0 TOKL-1
IF EVEX.b=1 AND src2 is memory THEN
tcur « src2.qword[0]; //broadcasting

ELSE
tcur « src2.qword[i];
Fl;
FORj«O0to7
ctrl « src1.qword[i].byte[j] & 63;
FORk«0Oto7
res.bit[k] « tcur.bit[(ctrl+k) mod 64 J;
ENDFOR
IF k1[i*8+]] or no writemask THEN
dst.qword[i].byte[j] < res;
ELSE IF zeroing-masking THEN
dst.qword[i].byte[j] < O;
ENDFOR
ENDFOR

DEST.qword[MAX_VL-1:VL] « O;

Intel C/C++ Compiler Intrinsic Equivalent

VPMULTISHIFTQB _m512i _mm512_multishift_epi64_epi8(_m512ia, __m512ib);

VPMULTISHIFTQB _m512i _mm512_mask_multishift_epi64_epi8(__m512is, __mmask64 k, __m512ia, __m512ib);
VPMULTISHIFTQB _m512i _mm512_maskz_multishift_epi64_epi8(__mmask64 k, __m512ia, __m512ib);
VPMULTISHIFTQB _m256i _mm256_multishift_epi64_epi8(_m256i a, __m256i b);

VPMULTISHIFTQB _m256i _mm256_mask_multishift_epi64_epi8(__m256is, __mmask32 k, __m256i a, __m256i b);
VPMULTISHIFTQB _m256i _mm256_maskz_multishift_epi64_epi8(_mmask32 k, __m256i a, __m256i b);
VPMULTISHIFTQB _m128i _mm_multishift_epi64_epi8(_m128ia, __m128ib);

VPMULTISHIFTQB _m128i _mm_mask_multishift_epi64_epi8(_m128is, __mmask8 k, __m128ia, __m128ib);
VPMULTISHIFTQB _m128i _mm_maskz_multishift_epi64_epi8(_mmask8 k, __m128ia, __m128ib);

SIMD Floating-Point Exceptions
None.

Other Exceptions

See Exceptions Type E4NF.

Ref. # 319433-029 5-33

INSTRUCTION SET REFERENCE, A-Z

VPOPCNTD/VPOPCNTQ — Return the Count of Number of Bits Set to 1 in DWORD/QWORD

Opcode/ Op/ 64/32 CPUID Feature Description
Instruction En bitMode | Flag

Support
EVEX.512.66.0F38.W0 55 /r A VIV AVX512_VPOPCN | Counts the number of bits set to one in
VPOPCNTD zmm1{k1}z}, TDQ zmm2/m512/m32bcst and puts the result in
zmm2/m512/m32bcst zmm1 with writemask k1.
EVEX.512.66.0F38.W1 55 /r A VIV AVX512_VPOPCN | Counts the number of bits set to one in
VPOPCNTQ zmm1{k1}z}, TDQ zmm2/m512/m64bcst and puts the result in
zmm2/m512/m64bcst zmm1 with writemask k1.

Instruction Operand Encoding

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4
A FULL ModRM:reg (w) ModRM:r/m (r) NA NA
Description

This instruction counts the number of bits set to one in each dword or gword element of its source (e.g., zmm2 or
memory) and places the results in the destination register (zmm1). The EVEX encoded form of this instruction

supports memory fault suppression.

Operation

VPOPCNTD
(KL, VL) = (4, 128), (8, 256), (16, 512)
FORj« 0 TOKL-1
IF MaskBit(j) OR *no writemask*
DEST.dword[j] <~ POPCNT(SRC.dword[j])
ELSE IF *merging-masking*
DEST.dword[j] remains unchanged
ELSE
DEST.dword[j] < O
DEST[MAX_VL-T:VL] « 0

VPOPCNTQ
(KL, VL) = (2, 128), (4, 256), (8,512)
FORj <« 0 TOKL-1
IF MaskBit(j) OR *no writemask*
DEST.qword[j] <« POPCNT(SRC.qword[j])
ELSE IF *merging-masking*
DEST.qword[j] remains unchanged
ELSE
DEST.qword[j] < O
DEST[MAX_VL-T:VL] « 0

Intel C/C++ Compiler Intrinsic Equivalent
VPOPCNTD _m512i _mm512_popcnt_epi32(__m512i);

VPOPCNTD _m512i _mm512_mask_popcnt_epi32(__m512i, __mmask16, __m512i);

VPOPCNTD _m512i _mm512_maskz_popcnt_epi32(__mmask16, __m512i);
VPOPCNTQ _m512i _mm512_popcnt_epi64(__m512i);

VPOPCNTQ _m512i _mm512_mask_popcnt_epi64(_m512i, __mmask8, __m512i);
VPOPCNTQ _m512i _mm512_maskz_popcnt_epi64(__mmask8, __m512i);

5-34

Ref. # 319433-029

INSTRUCTION SET REFERENCE, A-Z

SIMD Floating-Point Exceptions
None.

Other Exceptions
See Type E4

Ref. # 319433-029 5-35

INSTRUCTION SET REFERENCE, A-Z

5-36 Ref. # 319433-029

INDEX

B

Brand information 2-38
processor brand index 2-40
processor brand string 2-38

C

Cache and TLB information 2-33

Cache Inclusiveness 2-14

CLFLUSH instruction
CPUID flag 2-32

CMOVcc flag 2-32

CMOVecc instructions
CPUID flag 2-32

CMPXCHG16B instruction
CPUID bit 2-30

CMPXCHGS8B instruction
CPUID flag 2-32

CPUID instruction 2-12, 2-32
36-bit page size extension 2-32
APIC on-chip 2-32
basic CPUID information 2-13
cache and TLB characteristics 2-13, 2-33
CLFLUSH flag 2-32
CLFLUSH instruction cache line size 2-28
CMPXCHG16B flag 2-30
CMPXCHGS8B flag 2-32
CPL qualified debug store 2-29
debug extensions, CR4.DE 2-31
debug store supported 2-32
deterministic cache parameters leaf 2-13, 2-15, 2-17, 2-18, 2-19, 2-20, 2-21
extended function information 2-24
feature information 2-31
FPU on-chip 2-31
FSAVE flag 2-32
FXRSTOR flag 2-32
I1A-32e mode available 2-24
input limits for EAX 2-26
L1 Context ID 2-30
local APIC physical ID 2-28
machine check architecture 2-32
machine check exception 2-32
memory type range registers 2-32
MONITOR feature information 2-36
MONITOR/MWAIT flag 2-29
MONITOR/MWAIT leaf 2-14, 2-15, 2-16, 2-17, 2-22
MWAIT feature information 2-36
page attribute table 2-32
page size extension 2-31
performance monitoring features 2-36
physical address bits 2-25
physical address extension 2-32
power management 2-36, 2-37, 2-38
processor brand index 2-28, 2-38
processor brand string 2-25, 2-38
processor serial number 2-32
processor type field 2-27
RDMSR flag 2-31
returned in EBX 2-28
returned in ECX & EDX 2-28
self snoop 2-33
SpeedStep technology 2-29
SS2 extensions flag 2-33

Ref. #319433-029

SSE extensions flag 2-33

SSE3 extensions flag 2-29
SSSE3 extensions flag 2-29
SYSENTER flag 2-32

SYSEXIT flag 2-32

thermal management 2-36, 2-37, 2-38
thermal monitor 2-29, 2-32, 2-33
time stamp counter 2-31

using CPUID 2-12

vendor ID string 2-26

version information 2-13, 2-35
virtual 8086 Mode flag 2-31
virtual address bits 2-25

WRMSR flag 2-31

E
EVEX.R 5-4

E
Feature information, processor 2-12
FXRSTOR instruction

CPUID flag 2-32
FXSAVE instruction

CPUID flag 2-32

|
1A-32e mode
CPUID flag 2-24

L
L1 Context ID 2-30

M
Machine check architecture

CPUID flag 2-32

description 2-32
MAXSD- Return Maximum Scalar Double-Precision Floating-Point Value 1-3
MMX instructions

CPUID flag for technology 2-32
Model & family information 2-35
MONITOR instruction

CPUID flag 2-29

feature data 2-36
MWAIT instruction

CPUID flag 2-29

feature data 2-36

P

Pending break enable 2-33

Performance-monitoring counters
CPUID inquiry for 2-36

R
RDMSR instruction
CPUID flag 2-31

S
Self Snoop 2-33
SpeedStep technology 2-29
SSE extensions
CPUID flag 2-33
SSE2 extensions

I Ref. # 319433-029

CPUID flag 2-33
SSE3

CPUID flag 2-29
SSE3 extensions

CPUID flag 2-29
SSSE3 extensions

CPUID flag 2-29
Stepping information 2-35
SYSENTER instruction

CPUID flag 2-32
SYSEXIT instruction

CPUID flag 2-32

T
Thermal Monitor
CPUID flag 2-33
Thermal Monitor 2 2-29
CPUID flag 2-29
Time Stamp Counter 2-31

Vv

Version information, processor 2-12

VEX 5-1

VEX.B 5-2

VEX.L 5-2, 5-3

VEX.mmmmm 5-2

VEX.pp 5-2, 5-3

VEX.R 5-3

VEX.vvvv 5-2

VEX.W 5-2

VEX.X 5-2

VPERMI2B - Full Permute of Bytes from Two Tables Overwriting the Index 5-11

VPERMT2B- Full Permute of Bytes from Two Tables Overwriting a Table 5-21

VPERMT2W/D/Q/PS/PD—Full Permute from Two Tables Overwriting one Table 5-23

VPMADD52HUQ—Packed Multiply of Unsigned 52-bit Unsigned Integers and Add High 52-bit Products to 64-bit Accumulators 5-
30

VPMADD52LUQ—Packed Multiply of Unsigned 52-bit Integers and Add the Low 52-bit Products to Qword Accumulators 5-28

W

WBINVD/INVD bit 2-14

WRMSR instruction
CPUID flag 2-31

X

XFEATURE_ENALBED_MASK 2-1
XRSTOR 1-1, 2-1, 2-37, 5-6

XSAVE 1-1, 2-1, 2-4, 2-30, 2-37, 5-6

Ref. #319433-029 I

	Revision History
	Chapter 1 Future Intel® Architecture Instruction Extensions
	1.1 About This Document
	1.2 Intel® AVX-512 Instructions Architecture Overview
	1.2.1 512-Bit Wide SIMD Register Support
	1.2.2 32 SIMD Register Support
	1.2.3 Eight Opmask Register Support
	1.2.4 Instruction Syntax Enhancement
	1.2.5 EVEX Instruction Encoding Support

	Chapter 2 Intel® AVX-512 Application Programming Model
	2.1 Detection of AVX-512 Foundation Instructions
	2.2 Detection of 512-bit Instruction Groups of Intel® AVX-512 Family
	2.3 Detection of Intel AVX-512 Instruction Groups Operating at 256 and 128-bit Vector Lengths
	2.4 Accessing XMM, YMM AND ZMM Registers
	2.5 Enhanced Vector Programming Environment Using EVEX Encoding
	2.5.1 OPMASK Register to Predicate Vector Data Processing
	2.5.1.1 Opmask Register K0
	2.5.1.2 Example of Opmask Usages

	2.5.2 OpMask Instructions
	2.5.3 Broadcast
	2.5.4 STATIC ROUNDING MODE AND SUPPRESS ALL EXCEPTIONS
	2.5.5 Compressed Disp8*N Encoding

	2.6 Memory Alignment
	2.7 SIMD Floating-Point Exceptions
	2.8 Instruction Exception Specification
	2.9 CPUID Instruction
	CPUID—CPU Identification

	Chapter 3 System Programming For Intel® AVX-512
	3.1 AVX-512 State, EVEX Prefix and Supported Operating Modes
	3.2 AVX-512 State Management
	3.2.1 Detection of ZMM and Opmask State Support
	3.2.2 Enabling of ZMM and Opmask Register State
	3.2.3 Enabling of SIMD Floating-Exception Support
	3.2.4 The Layout of XSAVE Sate Save Area
	3.2.5 XSAVE/XRSTOR Interaction with YMM State and MXCSR
	3.2.6 XSAVE/XRSTOR/XSAVEOPT and Managing ZMM and Opmask States

	3.3 Reset Behavior
	3.4 Emulation
	3.5 Writing floating-point exception handlers

	Chapter 4 Intel® AVX-512 Instruction Encoding
	4.1 Overview Section
	4.2 Instruction Format and EVEX
	4.3 Register Specifier Encoding and EVEX
	4.3.1 Opmask Register Encoding

	4.4 MAsking support in EVEX
	4.5 Compressed displacement (disp8*N) support in EVEX
	4.6 EVEX encoding of broadcast/Rounding/SAE Support
	4.6.1 Embedded Broadcast Support in EVEX
	4.6.2 Static Rounding Support in EVEX
	4.6.3 SAE Support in EVEX
	4.6.4 Vector Length Orthogonality

	4.7 #UD equations for EVEX
	4.7.1 State Dependent #UD
	4.7.2 Opcode Independent #UD
	4.7.3 Opcode Dependent #UD

	4.8 Device Not Available
	4.9 Scalar Instructions
	4.10 Exception Classifications of EVEX-Encoded instructions
	4.10.1 Exceptions Type E1 and E1NF of EVEX-Encoded Instructions
	4.10.2 Exceptions Type E2 of EVEX-Encoded Instructions
	4.10.3 Exceptions Type E3 and E3NF of EVEX-Encoded Instructions
	4.10.4 Exceptions Type E4 and E4NF of EVEX-Encoded Instructions
	4.10.5 Exceptions Type E5 and E5NF
	4.10.6 Exceptions Type E6 and E6NF
	4.10.7 Exceptions Type E7NM
	4.10.8 Exceptions Type E9 and E9NF
	4.10.9 Exceptions Type E10
	4.10.10 Exception Type E11 (EVEX-only, mem arg no AC, floating-point exceptions)
	4.10.11 Exception Type E12 and E12NP (VSIB mem arg, no AC, no floating-point exceptions)

	4.11 Exception Classifications of Opmask instructions

	Chapter 5 Instruction Set Reference, A-Z
	5.1 Interpreting InstructIon Reference Pages
	5.1.1 Instruction Format
	ADDPS—Add Packed Single-Precision Floating-Point Values (THIS IS AN EXAMPLE)

	5.1.2 Opcode Column in the Instruction Summary Table
	5.1.3 Instruction Column in the Instruction Summary Table
	5.1.4 64/32 bit Mode Support column in the Instruction Summary Table
	5.1.5 CPUID Support column in the Instruction Summary Table
	5.1.5.1 Operand Encoding Column in the Instruction Summary Table

	5.2 Summary of Terms
	5.3 Ternary Bit Vector Logic Table
	5.4 Instruction SET Reference
	V4FMADDPS/V4FNMADDPS — Packed Single-Precision Floating-Point Fused Multiply-Add (4-iterations)
	V4FMADDSS/V4FNMADDSS —Scalar Single-Precision Floating-Point Fused Multiply-Add (4-iterations)
	VP4DPWSSD — Dot Product of Signed Words with Dword Accumulation (4-iterations)
	VP4DPWSSDS — Dot Product of Signed Words with Dword Accumulation and Saturation (4-iterations)
	VPERMB—Permute Packed Bytes Elements
	VPERMI2B—Full Permute of Bytes from Two Tables Overwriting the Index
	VPERMT2B—Full Permute of Bytes from Two Tables Overwriting a Table
	See Exceptions Type E4NF.nb.
	VPERMT2W/D/Q/PS/PD—Full Permute from Two Tables Overwriting one Table
	VPMADD52LUQ—Packed Multiply of Unsigned 52-bit Integers and Add the Low 52-bit Products to Qword Accumulators
	VPMADD52HUQ—Packed Multiply of Unsigned 52-bit Unsigned Integers and Add High 52-bit Products to 64-bit Accumulators
	VPMULTISHIFTQB – Select Packed Unaligned Bytes from Quadword Sources
	VPOPCNTD/VPOPCNTQ — Return the Count of Number of Bits Set to 1 in DWORD/QWORD

