

Intel® I/O Acceleration Technology (Intel® IOAT) Overview

Lily Deng Enterprise Marketing Operation - China Digital Enterprise Group

Agenda

- What is Intel IOAT?
- Next Generation IOAT2
- Real world Application Benefits with I/OAT

Network I/O Growing Rapidly

- More network data flowing in/ out of servers
 - Demand stretching resources

More LAN Traffic

IDC: iSCSI storage systems and connected servers ... can drive a 600% packet load increase on Ethernet.**

Virtualization: More Apps / Server

IDC Survey of Senior IT: "22% virtualized today with 45% of all planned server deployments virtualization candidates"*

†Source: IDC Estimates

^{**}Source: 2005 Storage I/O Traffic Set to Dominate Ethernet LAN Packets

Intel® I/O Acceleration Technology

Network Acceleration on the Intel® 5100 Series Server Platforms

Agenda

- What is Intel IOAT?
- Next Generation IOAT2
- Real world Application Benefits with I/OAT

Intel® I/OAT Technical Overview

Network I/O inefficiencies addressed:

- ✓ CPU makes multiple "forced" trips to memory
- ✓ System overheads in Device

 → App signaling

√ System resource utilization

I/OAT1:

LAN Controller (NIC)

- Stateless Offloads
- •TCP Segmentation & checksum offload
- Multiple Queues & Flow Affinitization
- Split Header/Payload

I/OAT2: Direct Cache Access (DCA), MSI-X, Low Latency Interrupts, Header Splitting/ Replication

I/OAT1: Bensley (now)

I/OAT2: '07 Caneland, Stoakley, Cranberry Lake

I/OAT1:

CPU (host)

- •SW interface enhancements
- •SW pre-fetches to CPU
- Affinitize data flows
- Native OS support

I/OAT2: Direct Cache Access (DCA)

I/OAT1:

Chipset

•Intel® QuickData technology in Memory Controller Hub offloads data movement & memory copies

I/OAT2: Direct Cache Access (DCA), MSI-X

IOAT Roadmap

Intel® I/OAT Generations

Feature	IOAT 1 (Bens ley)	IOAT2 (Stoakley Caneland)	IOAT3 (Next Gen Platform)
Intel QuickData Tech (Data Movement Engine) BW	2GB/s	2GB/s	4GB/s
Number of DMA Channels	4	4	8
LAN stateless offloads (Header/data split, Receive Side Scaling, TX/RX checksums, TCP segmentation)	✓	✓	√
Message Signaled Interrupts	MSI	MSI-X	MSI-X
Direct Cache Access		✓	✓
Low Latency Interrupt		✓	✓
Optimized Header-Splitting / Replication		✓	✓
Multi-VM Direct Assignment of Data Movement Engine			✓
Required LAN Si	IOAT1	IOAT2	IOAT3
Gilgal Dual GbE PHY	✓		
Zoar Dual GbE MAC/PHY	✓	✓	✓
Kawela(Adoram) Dual GbE MAC/PHY	✓	✓	✓
Oplin Dual 10 GbE MAC	✓	✓	✓
Niantic(Hadar) Dual 10 GbE MAC	✓	✓	√ w/RSC

DCA Usage Models on Stoakley Platform

Small I/O:

DCA of all data from NIC to CPU

Large I/O:

DCA combined with Data Movement Engine (Crystal Beach 2 only)

Improving Ethernet Latency

- Ethernet Latency can be high
 - >Primary cause is interrupt moderation time
- Latency without interrupt moderation approaches Infiniband latency
 - >See graph
 - >No interrupt moderation = high CPU utilization (~100%)
- Low Latency Interrupt moderation addresses Ethernet latency

Bensley Platform, Red Hat RHEL4 - Kernel Version 2.6.12.4, Netperf Latency Test - Driver ver. 7.0.16, Driver Parameters Tuned for Low Latency - Interrupt Moderation disabled

Virtualized Server Networking

Problem: Server virtualization has a significant I/O performance penalty due to VMM software overhead of sharing NIC ports across multiple VMs

Solution: Platform and NIC hardware improvements for faster, more efficient networking in virtual servers

- I/OAT Moves network data more efficiently through a virtualized system to provide Fast, Scaleable, and Reliable networking
- VMDq NIC acceleration of VMM SW switch functions with multiple HW queues

Intel's goal: Narrow the networking performance gap between virtualized & single-OS servers with HW assistance

Inte

Virtual Machine Device Queues (VMDq)

More effective NIC sharing by sorting and grouping packets

• Receive Path:

- Packets sorted into queues for destination VMs
- Packets sent in groups to the VMM switch
- Reduces number of times VMM switch code executes

Transmit Path:

- Round-robin servicing of the transmit queue
- Ensures transmit fairness
- Prevents head-ofline blocking

Agenda

- What is Intel IOAT?
- Next Generation IOAT2
- Real world Application Benefits with I/OAT

Software Ecosystem Support for I/OAT

Vendor	Product Version	Available
Microsoft [®]	Microsoft Server 2003 Scalable Network Pack	Now
Linux 🐧	Linux Kernel 2.6.18	Now
SUSE	SuSE Enterprise Linux Server 10 (SLES10)	Now
red hat	RedHat Enterprise Linux 5.0 (RHEL5)	Now
wmware°	VMWare ESX Server 3.5 (target)	2H'07

Intel I/OAT is tightly integrated into popular OS & VMM products

- -Safe and flexible I/O acceleration choice for IT customers
- –Avoids support risks of "new" 3rd-party network stacks
- -Preserves existing network requirements Teaming, failover, VLAN

Improving Media Server Performance

Results with Intel I/OAT + Teamed GbE NICs

- Faster Backups
- Media Servers Handle More Clients

Helping IT 'Do More with Less'

Intel® I/OAT Real World Application Benefits

Data Source: Intel Labs, Verified by Ohio Supercomputer Center

E-Document Delivery System

- Document distribution system
- Serves 1600 customers
- •130 remote offices & stations
- •I/OAT reduced response time by 20%
- Database back-up time reduced 28%

Data Source: China Ministry of Railroad, Shanghai Administration Bureau

Data Source: Intel IT and Symantec

Quantum. iSCSI Network Storage

Data Source: Intel Labs, Preliminary Verification by Quantum

Summary

- Network I/O Demand is Increasing Rapidly
- IOAT helps IT to "Do More with Less"
- Next Generation IOAT2
 - Scales with 10GBE, Faster CPU and More cores
 - Low Latency, DCA, Header Replication/ Splitting
 - Better Virtualization Support
 - Tightly Integrates with Major OSes

