Intel Multimedia Instructions
(MMX, SSE, SSE2, SSE3, SSSE3 and
SSE4)

Priya Periaswamy

Computer Architecture (CSE5302)

Overview

e MMX (MultiMedia eXtention) Architecture

e MMX Instructions

e SSE (Streaming SIMD Extensions)

e SSE2

e SSE3

e SSSE3(Supplemental Streaming SIMD
Extensions 3)

e SSE4

MMX Architecture

Why did Intel go for MMX?

To make the common case fast

A wide range of multimedia applications shows many common, fundamental
characteristics :

* small integer data types (for example: 8-bit pixels, 16-bit audio samples)

e small, highly repetitive loops

* frequent multiplies and accumulates

e compute-intensive algorithms

e highly parallel operations

SO..

The MMX technology focuses

> to accelerate multimedia, communications and numeric intensive
applications

» To exploit the parallelism inherent in many multimedia and communications
algorithms, yet maintains full compatibility with existing operating systems
and applications.

MMX technology

MMX technology allowed later Pentium processors to handle multimedia tasks
without expensive DSPs
-> lowered the cost of multimedia systems

The highlights of the technology are:
 Packed Data types - small data elements packed together into one register
* Enhanced instruction set - 57 new instructions that operate on all data
elements in a register in parallel, in a SIMD fashion
8 64-bit wide MMX registers, named MMO to MM7, that are mapped on the
|A floating point registers
e Full IA compatibility

MMX data types

Supports 4 data-types

Packed byte -> 8 bytes packed into one 64-bit quantity

Packed word -> 4 16-bit words packed into one 64-bit quantity

Packed Double word -> 2 32-bit double words packed into one 64-bit quantity
Packed Quad word -> one 64-bit quantity

Each MMX register processes one of these four data types

Bye7 Byte6 Byte5 Byed Byted Bywe2 Eytel By=0

Eight 2ackec Bytes Four Packed Words

 Why such data types?

Typical elements are small, 8 bits for pixels, 16 bits for audio, 32 bits for graphics
and general computing

Compatibility

* No new exceptions or states are added.

e Aliases to existing FP registers:

The exponent field of the corresponding floating-point register (bits 64-78) and
the sign bit (bit 79) are set to ones (1's), making the value in the register a NaN
(Not a Number) or infinity when viewed as a floating-point value.

Floating-Poinf
Regisfers

FP tag

"]

(4]
! I
-

AT -

MM7

MME

MMS

MMd

53

MM3
M2
MM
MMa

Mmx
Regisfers

Figure 4. Mapping of MR Registers
to Floating- Poird Registers

Saturation and wrap-around modes

Wrap-around mode: Result is truncated and only the lower (least significant) bits of
the result are returned

a’ a2 al FFFFh
¥ ¥ ¥ ¥

PADD[W]: Wrap-around Add b3 b2 b1l | 8000h

a3+b3| a2+b2 | al+bl| ?FFFh

Saturation mode: Results that overflow (from addition) or underflow (from
subtraction) are clamped to the largest or the smallest value representable.

Max Min Max Min
Value Value Value Value
FFFFh 0OX0000 7FFFFh OX&8000

This is important for pixel calculations where this would prevent a wrap-around add
from causing a black pixel to suddenly turn white while, for example, doing a 3D
graphics Gouraud shading loop.

MMX instruction syntax

e Allinstructions operate on 2 operands : source and destination (except EMMS
instruction)

e First operand is destination and second is source

e Instruction overwrites the destination operand

For example, a two-operand instruction OPERATION DEST, SRC
would be decoded as:
DEST = DEST OPERATION SRC
A typical MMX instruction has this syntax:
Prefix: P for Packed
Instruction operation: for example - ADD, CMP, or XOR
Suffix:
US for Unsigned Saturation
S for Signed saturation
B, W, D, Q for the data type: packed byte, packed word, packed
doubleword, or quadword.
As an example, PADDSB is a MMX instruction (P) that sums (ADD) the 8 bytes (B) of
the source and destination operands and saturates the result (S).

MMX instruction set

Unsigned
Category Wraparound Signed Saturation Saturation
PADDD PADDSW PADDUSW
Subtraction PSUBE, PSUBW, | PSUBSE, PEUBUSE,
PSLBD PSLIBSW PSUBUSW
Musitiplication PMULL, PMULH
Musitiply and Add PMADD
Camparison Compare for Equal PCMPEQB,
PCMPEQW,
PCMPEQD
Compare for Greater | PCMPGETRE,
Than PCMPGTPW.,
PCMPGTPD
Canversion Pack PACKSSWE, PACKLSWE
PACKISDW
Unpack Ungack Hagh PUMPCEHEW,
PUNPCKHWD,
FUNPCKHDOQ
Linpack Low PUNPCELBW.
PUNPCELWD,
FUNPCELDG

MMX instruction set (contd..)

Packed Full Queaciwasrd

Logical And PAND

And Mol FAMDN

Or POR

Exclusive OR PXOR
Shift Ehift Left Logical BESLLW, PSLLD PELLO

Shaft Raght Logical PSRLW. PSRLD PSRLO

Shilt Right Arithrmetic | PSRAW, PSRAD

Doubleword Transfers QAuadword Transfers

Data Transfer Register to Register MOVD MOV

Load from Memaory MOVD MOV

Shore o Memory MOoVD MO
Emply MMX EMMS
Rabe

EMMS : To switch back to FP mode safely, the EMMS instruction must be issued.

 mandatory 53 cycle stall

 Empties the MMX state before calling FP routines

MMX instruction examples

PMADD (Packed multiply add)

The PMADD instruction starts from a 16-bit, packed data type and generates a 32-bit
packed, data type result

al a2 al al
A A H #
b3 b2 bl b0

a3*b3+a2*b2 |al*b1+aﬂ*b0

PMADDWD: 16b x 16b -> 32b Multiply Add

Multiply-accumulate operations used in many signal processing algorithms like vector-
dot-products, matrix multiplies, FIR and IIR Filters, FFTs, DCTs etc.

MMX instruction examples

PCMPGT[W]: Parallel Compares

* no new condition code flags

23 45 16 34

gt ? gt ? gt ? at?

31 7 16 67
0000h | FFFFh | 0000h ‘ 0000h ‘

PCMPGT|W]|: Parallel Compares

* No existing IA condition code flags affected

e EQ/GT, no LT

e Result can be used as a mask to select elements from different inputs using a logical

operation, eliminating branch instructions

MMX instruction examples

Pack

e Important when an algorithm needs higher precision in its intermediate calculations, as

in image filtering.
e convert UNICODE to ASCII (ANSI), to translate a 16-bit audio stream to an eight-bit

stream
53 (]
Source

0

I f R I / * I Destination

Destination

Word 3 Word 2 Word 1 Wond O

PACKSSDW Operation

MMX instruction examples

Unpack

e sequence of smaller, packed, values and translate them into larger values.

e produces a 64-bit result from a single 32-bit result

e two sets of unpack instructions: one set unpacks the data from the L.O. double word
of a 64-bit object, the other set of instructions unpacks the H.O. double word of a 64-

bit object. . 0

,) ’ ' Source
o2 S/ [o
/ » » , ® Destination
63 / / 0
AR AN SE AN S

Word 3 Word 2 Word 1 Word 0

Destination

PUNPCKLBW Operation

Unpack from lower order bytes

MMX instruction examples

Unpack (from higher order bytes)

63

.

o
sl N\ N\
ha

NN

0

P T W™

Word 3 Waord 2 Word 1

PUNPCKHBW Operation

Word 0

Source

Destination

Destination

MMX Application examples

Chroma Keying :

-> conditional selection using the MMX instruction set removes branch mis-
predictions, in addition to performing multiple selection operations in parallel

0 -

MMX code sequence for performing a conditional select

Movq mm3,mem1l
Movq mm4,mem?2
Pcmpeqb mm1,mm3
Pand mm4,mm1
Pandn mml,mm3

Por mm4,mm1

//Load eight pixels from woman’s image
//Load eight pixels from the map image
//generating the selection bit mask

//

Chroma Keying (cont..)

PCMPEQ (packed compare for equality) is performed on the weathercaster and blue-
screen images, yielding a bitmask that traces the outline of the weathercaster.

o -l - b

This bitmask image is PANDNed (packed and not) with the weathercaster image,
yieIding the first intermediate image: now the weathercaster has no background

The same bitmask image is PANDed (packed and) with the weather map image,
yielding the second intermediate image.

The two intermediate images are PORed (packed or) together, resulting in final
composite of the weathercaster over weather map

+ [ER] -

Chroma Keying (cont..)

hMM1

MM3

PCMPEQB MM1, MM3
Blue Blue Blue f Blue Blue Blue Blue Blue
X7!=blue | X6!=blue | X5=blue | X4=blue | X3!=blue | X2!=blue | X1=blue | X0=blue
0x0000 | Ox0000 | OxFFFF | OxFFFF | Ox0000 | 0xQ000 | OxFFFF | OxFFFF

MM1

1Y

Bitmask

Generating the selection bit mask.

PAND MM4, MM

Mma| Vs |

MM1 [0:0000]0x0000]0FFFF [0xFFFF[0-0000]0x0000[0<FFFFO-FFFF] MM3[X; [X [X5 |

PAMDN MM1, MM3

Ys I

Yo | Ya |

Vel Vil Yol mwluxmuulmum[uxﬁfF]ﬂxFFPFquuduu[nxﬂmnmeFFF{uerFr]

X | X | [X [%]

MM4 [00000]0x0000] Ys | Y. [0x0000(0x0000] Y | Yo |Mmi[X; [X; [oxoo00ox0000] X [X }nxuum}nxﬂnﬂ

)

POR

.

Mma| X

Xs | ¥s |

Y

MM4. MM1 / m
| X3 Xo | V1

MMX technology

Merits:

e According to Intel, an MMX microprocessor runs a multimedia application up
to 60% faster. In addition, it runs other applications about 10% faster

* In a Pentium processor architecture, the MMX code processes eight pixels in
3 cycles, ie., 3/8 cycles per pixel. Regular IA integer instruction requires 3
cycles per pixel.

e Advantage in instruction count resulting from the multiple parallel operations
performed in each SIMD MMX instruction

e Exploiting parallelism between instructions via the advanced micro
architectural implementations of Intel processors

Demerits:

In MMX

e An application cannot perform MMX and floating-point operations
simultaneously.

e AN expensive EMMS instruction need to be executed to change the state from
MMX to FP operations

SSE (Streaming SIMD Extensions) technology

e Introduced in Pentium Il processor

e 8 new 128-bit SIMD floating-point registers (XMMO - XMM7)

* 50 new instructions that work on packed floating-point data

e 12 new instructions that extend the MMX instruction set. Eg., PAVG
 Most SSE instructions require 16-aligned addresses

Since media apps are

-> inherently parallel

-> wide dynamic range, hence floating-point based
-> regular memory access patterns

-> data independent control flow

Programmers can mix and match data types

SSE (Streaming SIMD Extensions) instructions

Defines 2 types of instructions
e Scalar -> operates on the least-significant data element (bit 0~31)
* Packed -> operates on all four elements in parallel

SSE instructions have a suffix -ss for scalar operations (Single Scalar) and -ps for
packed operations (Parallel Scalar).

mulss xmml, xmml mulps xmml, xmml(

127 a5 63 H 0 127 05 63 ¢y 0
XMMO 40 3.0 2.0 1.0 4.0 3.0 2.0 1.0
* * * * *
XMM1 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
XMMA 4.0 3.0 20 5.0 20.0 15.0 10.0 5.0

Note that upper 3 elements in xmmO for scalar operation remain unchanged.

SSE Instruction - shuffle

 Requires 2 operands and 1 mask

e Selects 2 elements from each operand (register) based on the

mask.

* Frequent usages of shufps are broadcast, swap and rotate.

Application in Broadcasting:
It copies all 4 fields with a single
masks are 00h (copies LS element),

data element. The possible
55h (copies 2" element),

AAh (copies 3" element), FFh (copies 4t element)

shufps =xmm0, xmmO, 0Oh

127 25 63 3 0 1

shufps xmm0, xmm0, 55h

27 25 63 3 0

ad I a2 I al I al I

ad I a2 I al I al I

xmmo [=2 | =2 | a1] =0] Xmmo |
xmmo [=2 [=2 | =1] a0] Xxumo |
xmmo [~ =0 | a0 | =] =0] Xxumo |

al I al I al I al I

7 6 5 4 3 2 140

7T 6 5 4 3 2 1 0

oh [i 55h |

0 1|a 1|a 1|0 1|

SSE2

First introduced on the Intel Pentium 4 and Intel Xeon processors

* Work with double precision floating-point values (64 bit) as well as single precision
(32 bits)

 Means to accelerate operations typical of 3D graphics, real-time physics, spatial
(3D) audio, video encoding/decoding, encryption, and scientific application.

-> SSE instruction set worked on 32-bit floating-point data elements, processing 4 of
them in parallel (4x32 = 128 bit)

SSE2 Instruction set:

e Can only be executed on Intel 64 and IA-32 processors

* 144 new instructions

e MMX instructions can work on 128-bit data blocks -> doubling parallelism
e Support for these instructions can be detected with the CPUID instruction

The instructions are divided into four subgroups (note that the first subgroup is
further divided into subordinate subgroups):

e Packed and scalar double-precision floating-point instructions

» Packed single-precision floating-point conversion instructions

e 128-bit SIMD integer instructions

e Cacheability-control and instruction ordering instructions

SSE3

SSE3: Streaming SIMD Extensions 3

13 new instructions

 Some instructions does horizontal operations (operating across a single register
instead of down through multiple registers) and asymmetric processing

e Unaligned access instructions are new type of instructions.

e Process control instructions to boost performance with Intel's hyper-threading
o feature.

SSE3

. Asymmetric processing
. Horizontal data movement

X1 X0 Xi X0
Vi Vb i ;!

1 |
ADD @ ADD ADD
X+ X0-¥0 YO+ Y1 ¥+ X1

ADDSUBPD HADDPD

SSSE3 and SSE4

SSE3: Supplemental Streaming SIMD Extensions 3

e SIMD instructions added with the Pentium Xeon and Core 2 processors

* 32 new instructions designed to accelerate a variety of multimedia and signal
processing applications

SSEA4:

e SSE4 comprises of two sets of extensions
- SSE4.1: targeted to improve the performance of media,imaging and 3D
graphics. It also adds instructions for improving compiler vectorization and
significantly
increase support for packed dword computation. It has 47 new instructions.
- SSE4.2: improves performance in string and text processing. It has 7 new
instructions.
e SSE4 instructions do not use MMX registers. Two of the SSE4.2 instructions operate
on general-purpose registers; the rest of SSE4.2 instruction and SSE4.1 instructions
operate on XMM registers

MMX technology

e http://www.engr.uconn.edu/~zshi/course/cse5302/ref/peleg96mmx.pdf
* Intel Developer Service’s - MMX Technology Technical Overview

e Chapter Eleven The MMX Instruction Set, The Art of Assembly

* About MMX/SSE/SSE2 by S Tommesani

* Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 1

