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Today, it's clear that Intel's MMX™ 
technology is a success. But the technology 
almost never happened. In the beginning, 
there was little management support for it. 
But a dedicated engineering team believed so 
strongly in the concept that they continued to 
drive the project. The project eventually 
spanned five years and four Intel sites. At its 
peak, more than 300 engineers worked to 
design, build, and test the technology. 
Despite geographical, linguistic, and time 
barriers, Intel employees from around the 
world worked together to create a great new 
product.  

Planting the Seed  

MMX technology was first proposed in 1992. 
For a year and a half, a small group of 
engineers tried to generate interest in their 
concept. Ultimately, a group of technical and 
marketing experts in the Microprocessor 
Products Group sensed the potential and 
supported the concept. I also saw its value 
and asked them to develop a detailed 
proposal.  

A great deal of creativity and innovation 
went into the proposal, but acceptance within 
the rest of Intel was still slow. "Some people 
were ready to quit," remembers Uri Weiser, 
director of the Architecture group at the 
Israel Development Center (IDC) in Haifa 
and one of the people driving the project. Uri 
(named an Intel Fellow for work that 
included developing the architecture for 
MMX technology) co-authors a paper in this 

issue entitled "MMX™ Technology 
Architecture Overview."  

Support Grows  

The moment of truth came in February, 1994, 
when this team presented their findings and 
proposal at a Group Strategic Review. The 
presentation was attended by Chairman and 
CEO Andy Grove, President and COO Craig 
Barrett, and Chairman Emeritus Gordon 
Moore. For two hours, the merit of MMX 
technology was debated. Although the 
performance figures were impressive, there 
were questions about their validity. Some 
doubted that the architecture was viable. The 
deciding moment came when Andy asked a 
critical question about consumer benefits. 
The team was thrown off—nobody answered 
him immediately. Andy rejected the proposal, 
telling them to go back and do their 
homework.  

The team followed Andy's advice. For the 
next two weeks they re-ran the tests, 
performed more simulations, and clearly 
spelled out the benefits of MMX technology. 
They presented the new results at a second 
Group Strategic Review three weeks later 
and the MMX technology project was 
approved.  

Into the Pentium® processor  

Since we had approval, we decided that 
MMX technology should go first into the 
Pentium processor and then into all future 
Intel processors. This was a huge risk for us. 
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Intel faced a brand-new technology where 
lots of details were not developed yet. 
Furthermore, it was going into the "crown 
jewel" of Intel's product line — the Pentium 
processor. Not since the Intel386™ processor 
had Intel made such significant 
enhancements to the instruction set. Intel's 
Israel Design Center in Haifa was chosen to 
design and build the MMX microprocessor. 
This too was a major risk for Intel. This was 
the first time Intel had developed a 
mainstream microprocessor outside the 
United States. But I was convinced that the 
team would pull it off successfully with the 
support of the rest of Intel.  

Intel also took a significant risk in putting so 
much of its marketing prowess behind the 
new microprocessor. Our marketing group 
worked hard to persuade software vendors to 
create programs that took advantage of MMX 
technology. The result: at product 
introduction a large number of MMX 
technology-based software titles were 
available. The 57 new instructions increased 
the speed and quality of these multimedia 
applications such that they really shone.  

Leaving a Legacy  

MMX technology has been a resounding 
success in the marketplace. Many members 
of the MMX technology team have moved on 
to their next assignments, but their 
remarkable achievement will go down in 
Intel history as an example of how Intel's 
risk-taking values and constant innovation 
can pay off. This quarter's ITJ describes their 
research and development efforts in making 
MMX technology a reality.  

. 
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Abstract

 Media (video, audio, graphics, communication)
applications present a unique opportunity for
performance boost via use of Single Instruction Multiple
Data (SIMD) techniques. While several of the compute-
intensive parts of media applications benefit from SIMD
techniques, a significant portion of the code still is best
suited for general purpose instruction set architectures.
MMX™ technology extends the Intel Architecture (IA),
the industry’s leading general purpose processor
architecture, to provide the benefits of SIMD for media
applications.

MMX technology adopts the SIMD approach in a way
that makes it coexist synergistically and compatibly with
the IA. This makes the technology suitable for providing a
boost for a large number of media applications on the
leading computer platform.

This paper provides insight into the process followed for
the definition of MMX technology and the considerations
used in deciding specifics of MMX technology. It
discusses features that enable MMX technology to be fully
compatible with the existing large application and system
software base for IA processors. The paper also presents
examples that highlight performance benefits of the
technology.

Introduction
Intel’s MMX™ technology [1, 2] is an extension to the
basic Intel Architecture (IA) designed to improve
performance of multimedia and communication
algorithms. The technology includes new instructions and
data types, which achieve new levels of performance for
these algorithms on host processors.

MMX technology exploits the parallelism inherent in
many of these algorithms. Many of these algorithms
exhibit the property of “fixed” computation on a large
data set.

The definition of MMX technology evolved from earlier
work in the i860™ architecture [3]. The i860 architecture
was the industry’s first general purpose processor to
provide support for graphics rendering. The i860
processor provided instructions that operated on multiple
adjacent data operands in parallel, for example, four
adjacent pixels of an image.

After the introduction of the i860 processor, Intel
explored extending the i860 architecture in order to
deliver high performance for other media applications, for
example, image processing, texture mapping, and audio
and video decompression. Several of these algorithms
naturally lent themselves to SIMD processing. This effort
laid the foundation for similar support for Intel’s
mainstream general purpose architecture, IA.

The MMX technology extension was the first major
addition to the instruction set since the Intel386™
architecture.  Given the large installed software base for
the IA, a significant extension to the architecture required
special attention to backward compatibility and design
issues.

MMX technology provides benefits to the end user by
improving the performance of multimedia-rich
applications by a factor of 1.5x to 2x, and improving the
performance of key kernels by a factor of 4x on the host
processor.  MMX technology also provides benefits to
software vendors by enabling new multimedia-rich
applications for a general purpose processor with an
established customer base. Additionally, MMX
technology provides an integrated software development
environment for software vendors for media applications.

This paper provides insight into the process and
considerations used to define the MMX technology. It
also provides specifics on MMX instructions that were
added to the IA as well as the approach taken to add this
significant capability without adding a new software-
visible architectural state.
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The paper also presents application examples that show
the usage and benefits of MMX instructions. Data
showing the performance benefits for the applications is
also presented.

Definition Process
MMX technology’s definition process was an outstanding
adventure for its participants, a path with many twists and
turns. It was a bottom-up process. Engineering input and
managerial drive made MMX technology happen.

The definition of MMX technology was guided by a clear
set of priorities and goals set forth by the definition team.
Priority number one was to substantially improve the
performance of multimedia, communications, and
emerging Internet applications. Although targeted at this
market, any application that has execution constructs that
fit the SIMD architecture paradigm can enjoy substantial
performance speed-ups from the technology.

It was also imperative that processors with MMX
technology retain backward compatibility with existing
software, both operating systems and applications. The
addition of MMX technology to the IA processor family
had to be seamless, having no compatibility or negative
performance effect on all existing IA software or
operating systems. Applications that use MMX
technology had to run on any existing IA operating
systems without having to make any operating system
modifications whatsoever and coexist in a seamless way
with the existing IA application base. For example, any
existing version of an operating system (i.e., Windows
NT) would have to run without modifications. New
applications that use MMX technology together with
existing IA applications would also have to run without
modifications on a processor with MMX technology.

The key principle that allowed compatibility to be
maintained was that MMX technology was defined to map
inside the existing IA floating-point architecture and
registers [4]. Since existing operating systems and
applications already knew how to deal with the IA
floating-point (FP) state, mapping the  MMX technology
inside the floating-point architecture was a clean way to
add SIMD without adding any new architectural state.
The operating system does not need to know if an
application is using MMX technology. Existing
techniques to perform multiprocessing (sharing execution
time among multiple applications by frequently switching
among them) would take care of any application with
MMX technology.

Another important guideline that we followed was to make
it possible for application developers to easily migrate
their applications to use MMX technology. Realizing that
IA processors with and without MMX technology would

be on the market for some time, we wanted to make sure
that migration would not become a problem for software
developers. By enabling a software program to detect the
presence of MMX technology during run time, a software
developer need develop only one version of an application
that can run both on newer processors that support MMX
technology and older ones which do not. When reaching a
point in the execution of a program where a code
sequence enhanced with MMX instructions can boost
performance, the program  checks to see if MMX
technology is supported and executes the new code
sequence. On older processors without MMX technology,
a different code sequence would be executed.  This calls
for duplication of some key application code sequences,
but our experience showed it to average less than 10%
growth in program size.

We wanted to keep MMX technology simple so that it
would not depend on any complex implementation which
would not scale easily with future advanced
microarchitecture techniques and increasing processor
frequencies, thus making it a burden on the future. We
made sure MMX technology would add a minimal amount
of incremental die area, making it practical to incorporate
MMX technology into all future Intel microprocessors.

We also wanted to keep MMX technology general enough
so that it would support new algorithms or changes to
existing ones. As a result, we avoided algorithm-specific
solutions, sometimes sacrificing potential performance but
avoiding the risk of having to support features in the
future if they become redundant.

The decision of whether to add specific instructions was
based on a cost-benefit analysis for a large set of existing
and futuristic applications in the area of multimedia and
communications. These applications included MPEG1/2
video, music synthesis, speech compression, speech
recognition, image processing, 3D graphics in games,
video conferencing, modem, and audio applications. The
definition team also met with external software developers
of emerging multimedia applications to understand what
they needed from a new Intel Architecture processor to
enhance their products. Applications were collected from
different sources, and in some cases where no application
was readily available, we developed our own.
Applications we collected were broken down to reveal
that, in most cases, they were built out of a few key
compute-intensive routines where the application spends
most of its execution time. These key routines were then
analyzed in detail using advanced computer-aided
profiling tools. Based on these studies, we found that key
code sequences had the following common characteristics:

� Small, native data types (for example, 8-bit pixels,
16-bit audio samples)
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� Regular and recurring memory access patterns

� Localized, recurring operations performed on the data

� Compute-intensive
 

 This common behavior enabled us to come up with MMX
technology, which is a solution that supports well a wide
variety of applications from different domains.

 Basic Concepts
 Our observations of multimedia and communications
applications pointed us in the direction of an architecture
that would enable exploiting the parallelism noted in our
studies.

 Beyond the obvious performance enhancement potential
gained by packing relatively small data elements (8 and 16
bits) together and operating on them in parallel, this kind
of packing also naturally enables utilizing wide data paths
and execution capabilities of state-of-the-art processors.

 An efficient solution for media applications necessitates
addressing some concepts that are fundamental to the
SIMD approach and multimedia applications:

� Packed data format

� Conditional execution

� Saturating arithmetic vs. wrap-around arithmetic

� Fixed-point arithmetic

� Repositioning data elements within packed data
format

� Data alignment

 

 Packed Data Format
 MMX technology defines new register formats for data
representation. The key feature of multimedia applications
is that the typical data size of operands is small. Most of
the data operands’ sizes are either a byte or a word (16
bits). Also, multimedia processing typically involves
performing the same computation on a large number of
adjacent data elements. These two properties lend
themselves to the use of SIMD computation.

 One question to answer when defining the SIMD
computation model is the width or the data type for SIMD
instructions. How many elements of data should we
operate on in parallel? The answer depends on the
characteristics of the natural organization and alignment
of the data for targeted applications and design
considerations. For example, for a motion estimation
algorithm, data is naturally organized in 16 rows, with
each row containing only 16 bytes of data. In this case,
operating on more than 16 data elements at a time will

require reformatting the input data. Design considerations
involve issues such as the practical width of the data path
and how many times functional units will replicate.

 Given that current Intel processors already have 64-bit
data paths (for example, floating-point data paths, as well
as a data path between the integer register file and
memory subsystem due to dual load/store capability in the
Pentium

®
 processor), we chose the width of MMX data

types to be 64 bits.

 Conditional Execution
 Operating on multiple data operands using a single
instruction presents an interesting issue. What happens
when a computation is only done if the operand value
passes some conditional check? For example, in an
absolute value calculation, only if the number is already
negative do we perform a 2’s complement on it:

 for   I = 1, 100
    if a[i] < 0 then b[i] = - a[i] else b[i] = a[i]
    ; Absolute value calculation

 There are different approaches possible, and some are
simpler than others. Using a branch approach does not
work well for two reasons: first, a branch-based solution is
slower because of the inherent branch misprediction
penalty, and second, because of the need to convert
packed data types to scalars.

 Direct conditional execution support does not work well
for the IA since it requires three independent operands
(source, source/destination, and predicate vector).
Keeping with the philosophy of performance and
simplicity, we chose a simpler solution. The basic idea
was to convert a conditional execution into a conditional
assignment. Conditional assignment in turn can be
implemented through different approaches. One approach
would be to provide the flexibility of specifying a
dynamically generated mask with an assignment
instruction. Such an approach would have required
defining instructions with three operands (source,
source/destination, and mask). Here also, we adopted a
solution that is more amenable to higher performance
designs.

 Compare operations in MMX technology result in a bit
mask corresponding to the length of the operands. For
example, a compare operation operating on packed byte
operands produce byte-wide masks. These masks then can
be used in conjunction with logical operations to achieve
conditional assignment. Consider the following example:

 If  True

      Ra := Rb else  Ra := Rc
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 Let us say register Rx contains all 1’s if the condition is
true and all 0’s if the condition is false. Then we can
compute Ra with the following logical expression:

      Ra = (Rb AND Rx) OR (Rc ANDNOT Rx)

 This approach works for operations with a register as the
destination. Conditional assignment to memory can be
implemented as a sequence of load, conditional
assignment, and store. We rejected more efficient support
for conditional stores for two reasons: first, the support
requires three source operands, which does not map well
to high-performance architectures, and second, the benefit
of such support is dependent on support from the platform
for efficient partial transfers.

 The MMX instruction set contains a packed compare
instruction that generates a bit mask, enabling data-
dependent calculations to be executed without branch
instructions and to be executed on several data elements in
parallel. The bit mask result of the packed compare
instruction has all 1’s in elements where the relation tested
for is true and all 0’s otherwise (see Figure 1).

 

Surround_color Surround_color Surround_color Surround_color

a3 a2 a1 a0

000...00 111...11 000...00 111...11

= = = =

 

 Figure 1. Packed Equal on Word Data Type

 Saturating Arithmetic
 Operand sizes typically used in multimedia are small (for
example, 8 bits for representing a color component). An
8-bit number allows only 256 different shades of a color
to be displayed. While this resolution is more than enough
for what the eye can see, it presents us with a problem in
computation. Given only an 8-bit representation, the
accumulation of color values of a large number of pixels
is likely to exceed the maximum value that can be
represented by the 8-bit number. In the default
computational model, if the addition of two numbers
results in a value that is more than the maximum value
that can be represented by the destination operand, a
wrapped-around value is stored in the destination. If an
application cared to safeguard against such a possibility,
then it has to explicitly examine for an occurrence of an
overflow.

 In media applications, typically the desired behavior is to
provide not the wrap-around value but the maximum value
as the result. MMX technology provides an option to the
application program, which determines whether a wrap-

around result or maximum result is provided in case of an
overflow.

 There may be cases where an application wants to
examine the occurrence of an overflow in a computation.
Providing a flag to indicate this (i.e., indicating whether or
not the value was saturated) would have been desirable.
However, we decided against providing this flag, since we
did not want to add any additional new states to the
architecture to preserve the backward compatibility. Our
analysis also showed that it was not critical to provide this
information in most applications. If needed, an application
can determine if saturation was encountered by comparing
the result of a computation with the maximum and
minimum value; typically, saturation is the correct
behavior.

 Fixed-Point Arithmetic
 Media applications involve working on fraction values,
for example, the use of a weighting coefficient in filtering
averaging, etc. One way to support operations on fraction
values is to provide SIMD operations for floating-point
operands. However, floating-point units are hardware-
intensive. Also, for several media applications, even
precision of 10 to 12 binary bits and dynamic range of 4
to 6 bits are sufficient. Industry-standard floating-point
(IEEE FP) requires a minimum of 23 bits of precision.
Looking at application requirements and the trade-off of
performance and design complexity leads to the use of a
fixed-point arithmetic paradigm for several media
applications. Note that some of the computations may still
require the dynamic range and the precision supported by
IEEE floating-point, for example, geometry
transformation for state-of-the-art 3D applications.

 In fixed-point computation, from the point of view of the
processor architecture, computations are done on integer
values, but programmer/applications interpret the integer
values as fraction values. Some number of leading bits
(determined by the application) are interpreted as an
integer, while the remaining bits of the value are
interpreted as a fraction. It is the application’s
responsibility to perform appropriate shifts in order to
scale the number.

 Repositioning of Data Elements Within Packed
Data Format
 The packed data format presents one other issue. There
are several cases where elements of packed data may be
required to be repositioned within the packed data, or the
elements of two packed data operands may need to be
merged. There are cases where either input or the desired
output representation of a data may not be ideal for
maximizing computation throughput. For example, it may
be preferable to compute on color components of a pixel
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in “planar format” while the input may be in “packed
format.”

 There are also situations where one needs to perform
intermediate computations in wider format (perhaps
packed word format), while the result is presented in
packed byte format.

 In the above cases, there is a need to extract some
elements of a packed data type and write them into a
different position in the packed result.

 One general solution to this issue is to provide an
instruction that takes two packed data operands and allows
merging of their bytes in any arbitrary order into the
destination packed data operand. However, such a general
solution is expensive to implement. This solution
essentially will require a full cross bar connection.

 In the MMX technology architecture, we defined an
instruction that requires a relatively easy swizzle network
and yet allows the efficient repositioning and combining
of elements from packed data operands in most cases.

 The instruction unpack takes two packed data operands
and merges them as shown in Figure 2.

 

Unpack high words into doublewords

b0b1 a0a1

b1 b0b3 b2 a1 a0a3 a2

b2b3 a2a3

a1 a0a3 a2b1 b0b3 b2

Unpack low words into doublewords

 

 Figure 2. MMX Technology Unpacked Instruction

 The unpack instruction can be used for a variety of
efficient repositioning of data elements, including data
replication, within packed data. For example, consider
converting a color representation from packed form (i.e.,
for each pixel, four consecutive bytes represent R, G, B,
and Alpha values) to planar format (i.e., four consecutive
bytes represent the red component of four consecutive
pixels).

 Data Alignment
 Use of packed data also presents data alignment issues. In
some cases, the data may be aligned on its natural
boundary and not on the size of the packed data operand.
For example, in a motion estimation routine, the 16x16
block is aligned at an arbitrary byte boundary and not at a
64-bit boundary. Therefore, in some cases, there is a need

to support efficient access of unaligned data for media
applications. One approach is to support unaligned
accesses directly in hardware, which generally does not
work well with the high-performance cache design.
Alternatively, one can limit memory accesses to aligned
data and extract out the desired data from the accessed
data using explicit instructions.

 MMX technology includes logical shift-left and shift-right
operations on 64 bits. These instructions enable using a
sequence of Shift left, Shift right, and Or operations to
assemble the desired byte from the aligned data that
encompasses the desired bytes.

 Features
 MMX technology features include:

� New data types built by packing independent small
data elements together into one register.

� An enhanced instruction set that operates on all
independent data elements in a register, using a
parallel SIMD fashion.

� New 64-bit MMX registers that are mapped on the IA
floating-point registers.

� Full IA compatibility.

 

 New Data Types
 MMX technology introduces four new data types: three
packed data types and a new 64-bit entity. Each element
within the packed data types is an independent fixed-point
integer. The architecture does not specify the place of the
fixed point within the elements, because it is the user’s
responsibility to control its place within each element
throughout the calculation. This adds a burden on the user,
but it also leaves a large amount of flexibility to choose
and change the precision of fixed-point numbers during
the course of the application in order to fully control the
dynamic range of values.

 The following four data types are defined (see Figure 3):

� Packed byte 8 bytes packed into 64 bits

� Packed word 4 words packed into 64 bits

� Packed doubleword 2 doublewords packed into
                                    64 bits

� Packed quadword 64 bits
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0015156363 1616

006363 31313232

006363

00776363 88
Packed Byte: 8 bytes packed into 64 bits

Packed Word: 4 words packed into 64 bits

Packed Doubleword: 2 doublewords packed into 64 bits

Packed Quadword: One 64 bit quantity

 
 Figure 3. MMX Technology Packed Data Types

 Enhanced Instruction Set
 MMX technology defines a rich set of instructions that
perform parallel operations on multiple data elements
packed into 64 bits (8x8-bit, 4x16-bit, or 2x32-bit fixed-
point integer data elements). We view the MMX
technology instruction set as an extension of the basic
operations one would perform on a single datum in the
SIMD domain. Instructions that operate on packed bytes
were defined to support frequent image operations that
involve 8-bit pixels or one of the 8-bit color components
of 24/32-bit pixels (Red, Green, Blue, Alpha channel). We
defined full support for packed word (16-bit) data types.
This is because we found 16-bit data to be a frequent data
type in many multimedia algorithms (e.g., MODEM,
Audio) and serves as the higher precision backup for
operations on byte data. A basic instruction set is provided
for packed doubleword data types to support operations
that need intermediate higher precision than 16 bits and a
variety of 3D graphics algorithms. Because MMX
technology is a 64-bit capability, new instructions to
support 64 bits were added, such as 64-bit memory moves
or 64-bit logical operations.

 Overall, 57 new MMX instructions were added to the
Intel Architecture instruction set.

 The MMX instructions vary from one another by a few
characteristics. The first is the data type on which they
operate.  Instructions are supplied to do the same
operation on different data types. There are also
instructions for both signed and unsigned arithmetic.

 MMX technology supports saturation on packed add,
subtract, and data type conversion instructions. This
facilitates a quick way to ensure that values stay within a
given range, which is a frequent need in multimedia
operations. In most cases, it is more important to save the
execution time spent on checking if a value exceeds a
certain range than worry about the inaccuracy introduced
by clamping values to minimum or maximum range
values. Saturation is not a mode activated by setting a
control bit but is determined by the instruction itself.
Some instructions have saturation as part of their
operation.

 MMX technology added data type conversion instructions
to address the need to convert between the new data types
and to enable some intermediate calculations to have more
bits available for extended precision. Also, many
algorithms used in multimedia and communications
applications perform multiply-accumulate computations.
MMX technology addressed this with a special multiply-
add instruction.

 MMX instructions were defined to be scalable to higher
frequencies and newer advanced microarchitectures. We
made them fast. All MMX instructions with the exception
of the multiply instructions execute in one cycle both on
the Pentium processor with MMX technology and on the
Pentium® II processor. The multiply instructions have an
execution latency of three cycles, but the multiply unit’s
pipelined design enables a new multiply instruction to
start every cycle. With the appropriate software loop
unrolling, a throughput of one cycle per SIMD multiply is
achievable.

 MMX instructions are non-privileged instructions and can
be used by any software, applications, libraries, drivers, or
operating systems.

 Table 1 summarizes the instructions introduced by MMX
technology:
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 Opcode  Options  Cycle Count  Description

 PADD[B/W/D]

 PSUB[B/W/D]

 Wrap-around,
and saturate

 1  Packed eight bytes (b), four 16-bit words (w), or two 32-bit
doublewords (d) are added or subtracted in parallel.

 PCMPEQ[B/W/D]

 PCMPGT[B/W/D]

 Equal or
Greater than

 1  Packed eight bytes (b), four 16-bit words (w), or two 32-bit (d)
elements are compared in parallel. Result is mask of 1’s if true

or 0’s if false.

 PMULLW

 PMULHW

 Result is high-
or low-order

bits

 latency: 3

 throughput: 1

 Packed four signed 16-bit words are multiplied in parallel. Low-
order or high-order 16-bits of the 32-bit result are chosen.

 PMADDWD  Word to
doubleword
conversion

 latency: 3

 throughput: 1

 Packed four signed 16-bit words are multiplied and adjacent
pairs of 32 results are added together, in parallel. Result is a

doubleword.

 PSRA[W/D]

 PSLL[W/D/Q]

 PSRL[W/D/Q]

 Shift count in
register or
immediate

 1  Packed four words, two doublewords, or the full 64-bits -
quadword (q) are shifted arithmetic right, logical right and left,

in parallel.

 PUNPCKL[BW/WD/DQ]

 PUNPCKH[BW/WD/DQ]

  1  Packed eight bytes (b), four 16-bit words (w), or two 32-bit
doublewords (d) are merged with interleaving.

 PACKSS[WB/DW]  Always
saturate

 1  Doublewords are packed to words or words are packed to
bytes in parallel.

 PLOGICALS   1  Bitwise and, or, xor, andnot.

 MOV[D/Q]   1 (if data in  cache)  Moves 32 or 64 bits to and from memory to MMX registers, or
between MMX registers. 32-bits can be moved between MMX

and integer registers.

 EMMS   Varies by
implementation

 Empty FP register tag bits.

 

 Table 1 lists all the MMX instructions. If an instruction supports multiple data types (byte (b), word (w),
doubleword (d), or quadword (q)), the data types are listed in brackets.

 

 64-Bit MMX Registers
 MMX technology provides eight new 64-bit general
purpose registers that are mapped on the floating-point
registers. Each can be directly addressed within the
assembly by designating the register names MM0 - MM7
in MMX instructions. MMX registers are random access
registers, that is, they are not accessed via a stack model
like the floating-point registers. MMX registers are used
for holding MMX data only. MMX instructions that
specify a memory operand use the IA integer registers to
address that operand. As the MMX registers are  mapped
over  the floating-point registers, applications that use
MMX technology have 16 registers to use. Eight are the
MMX registers, each 64 bits in size that hold packed data,
and eight are integer registers, which can be used for
different operations like addressing, loop control, or any
other data manipulation. MMX data values reside in the
low order 64 bits (the mantissa) of the IA 80-bit floating-
point registers (see Figure 4).
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 Figure 4. Mapping of MMX Registers to Floating-Point Registers

 

 The exponent field of the corresponding floating-point
register (bits 64-78) and the sign bit (bit 79) are set to
ones (1’s), making the value in the register a NaN (Not a
Number) or infinity when viewed as a floating-point
value. This helps to reduce confusion by ensuring that an
MMX data value will not look like a valid floating-point
value. MMX instructions only access the low-order 64
bits of the floating-point registers and are not affected by
the fact that they operate on invalid floating-point values.

 The dual usage of the floating-point registers does not
preclude applications from using both MMX code and
floating-point code. Inside the application, the MMX code
and floating-point code should be encapsulated in separate
code sequences. After one sequence completes, the
floating-point state is reset and the next sequence can
start. The need to use floating-point data and MMX
(fixed-point integer) data at the same time is infrequent.
At a given time in an application, data being operated
upon is usually of one type. This enabled us to use the
floating-point registers to store the MMX technology
values and achieve our full backward compatibility goal.

 Preserving Full Backward Compatibility
 One of the important requirements for MMX technology
was to enable use of MMX instructions in applications
without requiring any changes in the IA system software.

 An additional requirement was that an application should
be able to utilize performance benefits of MMX
technology in a seamless fashion, i.e., it should be able to
employ MMX instructions in part of the application,

without requiring the whole of the application to be MMX
technology-aware.

 Primary backward compatibility requirements and their
implications are:

� Applications using MMX instructions should work on
all existing multitasking and non-multitasking
operating systems.

 This requires that MMX technology should not add
any new architecturally visible states or events
(exceptions).

 

� Existing applications that do not use MMX
instructions should run unchanged.

 This requires that MMX technology should not
redefine the behavior of any existing IA 32-bit
instructions. Only those undefined opcodes that are
not relied on for causing illegal exceptions by
existing software should be used to define MMX
instructions.

 Also, MMX instructions should only affect the IA 32-
bit state when in use.

 

� Existing applications should be able to utilize MMX
technology without being required to make the whole
application MMX technology-aware. It should be
possible to employ MMX instructions within a
procedure in an existing application without requiring
any changes in the rest of the application.

 This requires that MMX instructions work well
within the context of existing IA calling conventions
for procedure calls.

 

� It should be possible to run an application even in an
older generation of processors that does not support
MMX technology.

 Using dynamically linked libraries (DLLs) for MMX
and non-MMX technology processors is an easy way
to do this.

 

� MMX instructions should be semantically compatible
with other IA instructions, i.e., it should be easy to
support new MMX instructions in existing
assemblers. They should also have minimal impact on
the instruction decoder. Another aspect of this is that
MMX instructions should not require programmers to
think in new ways regarding the basic behavior of
instructions. For example, addressing modes and the
availability of operations with memory should
conceptually work the same.
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 The behavior of the prefix overrides should also be
consistent with the IA.

 No New State
 The MMX technology state overlaps with the Floating-
Point state. Overlapping the MMX state with the FP stack
presented an interesting challenge. For performance
reasons as well as for ease of implementation for some
microarchitectures, we wanted to allow the accessing of
the MMX registers in a flat register model. We needed to
enable overlapping MMX registers with the FP stack
while still allowing a flat register access model for MMX
instructions. This was accomplished by enforcing a fixed
relationship between the logical and physical registers for
the FP stack, when accessed via MMX instructions.
Additionally, every MMX instruction makes the whole
MMX register file valid. This is different from the
floating-point stack model, where new stack entries are
made valid only if the instruction specifies a “push”
operation.

MMX instructions themselves do not update FP
instruction state registers (for example, FP opcode, FOP,
FP Data selector, FDS, FP IP, FIP, etc.). The FP
instruction state is used only by FP exception handlers.
Since MMX instructions do not create any computation
exceptions, this state is really not meaningful for MMX
instructions. Additionally, not updating these states
eliminates the complexity of maintaining this state for
MMX technology implementations. Therefore, we made a
decision to let the FP instruction state register point to the
last FP instruction executed even though future MMX
instructions will update the FP stack and TAG register.
Eventually, when an FP instruction is executed, all of the
FP instruction state gets updated. Therefore, FP exception
handlers always see consistent FP instruction state.

 No New Exceptions
 MMX instructions can be viewed as new non-IEEE
floating-point instructions that do not generate
computation exceptions. However, similar to FP
instructions, they do report any pending FP exceptions.
For compatibility with existing software, it is critical that
any pending FP exception is reported to the software prior
to execution of any MMX instruction which could update
the FP state.

 At the point of raising the pending FP exception, the FP
exception state still points to the last FP instruction
creating the FP condition. Therefore, the fact that the
exception gets reported by an MMX instruction instead of
an FP instruction is transparent to the FP exception
handler.

 Additional exceptions that are pertinent to MMX
technology are memory exceptions, device-not-available
(DNA - INT7) exceptions, and FP emulation exceptions.

 Handling of memory exceptions, in general, does not
depend on the opcode of the instruction causing the
exception. Therefore, MMX technology exceptions do not
cause a malfunction of any memory access-related
exception handler. Our extensive compatibility
verification validated this further.

 A DNA exception is caused when the TS bit in CR0 is set,
and any other instruction that could modify the FP state is
issued. This includes execution of an MMX instruction
when the TS bit is set. In this case, similar to the FP case,
a DNA exception is invoked. The response of this
exception is to save the FP state and free it up for use by
future FP/MMX instructions. This exception handler also
does not have a use for the opcode of the instruction
causing this exception.

 When the CR0.EM bit is set, a floating-point instruction
causes an FP emulation exception. In this case, instead of
using FP hardware, FP functionality is supported via
software emulation. Since the MMX technology
architecture state overlaps with the FP architecture state,
the issue arises as to the correct behavior for MMX
instructions when the CR0.EM bit is set.

 Causing an emulation exception for MMX instructions
when CR0.EM is set is not the right behavior since the
existing FP emulator does not know about MMX
instructions. Therefore, the first natural choice seemed to
ignore CR0.EM for MMX technology. However, this
choice has a problem. Ignoring CR0.EM for MMX
instructions would result in two separate contexts for the
FP Stack and TAG words: one context in the emulator
memory for FP and one context in the hardware for MMX
instructions. This leads to an architectural inconsistency
between the cases when CR0.EM is set and when it is not
set.

 We had to find some other logical way to deal with this
without defining any new exceptions. We chose to define
the CR0.EM = 1 case to result in an illegal opcode
exception. Thus, essentially when CR0.EM is set, the
MMX technology architecture extension is disabled.

 Choice of Opcodes for MMX Instructions
 The MMX instruction opcodes were chosen after
extensive analysis of the undefined opcode map. We had
to make sure that the available opcodes were really
unused. This required ensuring that no software was
relying on the illegal opcode fault behavior of these
opcodes. Intel was already working with software vendors
to ensure that they relied only on one specific encoding
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0FFF to cause an illegal opcode fault. Other encoding may
cause an illegal exception fault in future implementations.

 Except for a few cases, we found that software was using
only prescribed encoding for causing a program-
controlled invalid opcode fault.

 Only address prefixes are defined to be meaningful for
MMX instructions. Use of a Repeat, Lock, or Data prefix
is illegal for MMX instructions. The address prefix has
the same behavior as for any other instruction.

 Use of FP DLL Model for MMX Code
 To enable common multimedia applications for
processors with and without MMX technology, we chose
to promote the Dynamic Linked Library (DLL) model as
the primary model to support MMX instructions.

 In the DLL model, depending upon whether the processor
provides MMX technology support in hardware (the
processor CPUID provides this information), the
appropriate version of the media library function is linked
dynamically.

 MMX technology DLLs suggest the same guidelines as
that of FP DLLs. The primary guidelines are:

� At the end of a DLL, leave the floating-point registers
in the correct state for the calling procedure. This
generally means leaving the floating-point stack
empty, unless a procedure has a return value. This
also means that the caller should check for, and
handle, any FP exceptions that it might have
generated. Essentially, the callee should not see an
exception invocation due to an exception result
generated by the caller.

� Do not assume that the floating-point state remains
the same across procedures. The callee can typically
assume that at entry, the FP stack is empty unless
there is some set convention for parameter passing.

Note that nothing in the MMX technology architecture
depends on these guidelines for functional correctness.
MMX technology can be used in any other usage models.

MMX technology provides an instruction to clear all of
FP state with a single instruction (EMMS instruction). If
some DLL is written to return with the FP stack only
partially empty, one needs to use a combination of EMMS
and floating-point loads to create the correct FP stack
state. Clean the state of MMX with EMMS instruction.

Performance Advantage
We will analyze the performance enhancement due to
MMX technology through an example of a matrix-vector

multiplication very much like the one in Figure 5. The
multiply-accumulate (MAC) operation is one of the most
frequent operations in multimedia and communications
applications used in basic mathematical primitives like
matrix multiply and filters.

m10 m11m00 m01

v0 v1v0 v1

* * * *
m12 m13m02 m03

v2 v3v2 v3

* * * *

v0*m10+v1*m11v0*m00+v1*m01 v2*m12+v3*m13v2*m02+v3*m03

Second resultFirst result
Paddd

+

Pmaddwd

Figure 5. MMX Technology Matrix-Vector Multiplication

A multiply-accumulate operation (MAC) is defined as the
product of two operands added to a third operand (the
accumulator). This operation requires two loads (operands
of the multiplication operation), a multiply, and an add (to
the accumulator). MMX technology does not support
three operand instructions; therefore, it does not have a
full MAC capability. On the other hand, the packed
multiply-add instruction (PMADDWD) is defined, which
computes four 16-bit x 16-bit multiplies generating four
32-bit products and does two 32-bit adds (out of the four
needed). A separate packed add doubleword (PADDD)
adds the two 32-bit results of the packed multiply-add to
another MMX register, which is used as an accumulator.

For this performance example, we will assume both input
vectors to be the length of 16 elements, each element in
the vectors being signed 16 bits. Accumulation will be
performed in 32-bit precision. The Pentium processor, for
example, would have to process each of the operations
one at a time in a sequential fashion. This amounts to 32
loads, 16 multiplies, and 15 additions, a total of 63
instructions. Assuming we perform 4 MACs (out of the
16) per iteration, we need to add 12 instructions for loop
control (3 instructions per iteration, increment, compare,
branch), and one instruction for storing the result. The
total is 76 instructions. Assuming all data and instructions
are in the on-chip caches and that exiting the loop will
incur one branch misprediction, the integer assembly
optimized version of this code (utilizing both pipelines)
takes just over 200 cycles on a Pentium processor
microarchitecture. The cycle count is dominated by the
integer multiply being a non-pipelined 11-cycle operation.
Under the same conditions but assuming the data is in a
floating-point format, the floating-point optimized
assembly version executes in 74 cycles. The floating-point
version is faster (assuming the data is in floating-pointing
format) since the floating-point multiply takes three cycles
to execute and is a pipelined unit.

MMX technology, on the other hand, computes four
elements at a time. This reduces the instruction count to
eight loads, four PMADDWD instructions, three PADDD
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instructions, one store instruction, and three additional
instructions (overhead due to packed data types), totaling
19 instructions. Performing loop unrolling of four
PMADDWD instructions eliminates the need to insert any
loop control instructions. This is because four
PMADDWDs already perform all the 16 required MACs.
The MMX instruction count is four times less than when
using integer or floating-point operations! With the same
assumptions as above on a Pentium processor with MMX
technology, an MMX technology-optimized assembly
version of the code utilizing both pipelines will execute in
only 12 cycles.

Continuing the above example, assume a 16x16 matrix is
multiplied by a 16-element vector. This operation is built
of 16 Vector-Dot-Products (VDP) of length 16. Repeating
the same exercise as before and assuming a loop unrolling
that performs four VDPs each iteration, the regular
Pentium processor code will total 4*(4*76+3) = 1228
instructions. Using MMX technology will require
4*(4*19+3) = 316 instructions. The MMX instruction
count is 3.9 times less than when using regular operations.
The best regular code implementation (floating-point
optimized version) takes just under 1200 cycles to
complete in comparison to 207 cycles for the MMX code
version.

Intel has introduced two processor families with MMX
technology: the Pentium processor with MMX technology
and the Pentium II processor. The performance of both
processors was compared on the Intel Media Benchmark
(IMB) [5,6], which measures the performance of
processors running algorithms found in multimedia
applications. The IMB incorporates audio and video
playback, image processing, wave sample rate conversion,
and 3D geometry. Figure 6 and Table 2 compare the
Pentium processor with MMX technology and the
Pentium II processor against the Pentium processor and
the Pentium® Pro processor.

Figure 6. Intel Media Benchmark Performance
Comparison

Intel Media Benchmark

Performance Comparison

Pentium
processor
200MHz

Pentium
processor
200MHz�
MMX
Technology

Pentium Pro
processor
200MHz�
256KB L2

Pentium II
processor
233MHz�
512KB L2

Pentium II
processor
266MHz�
512Kb L2

Overall 156.00 255.43 194.38 310.40 350.77

Video 155.52 268.70 158.34 271.98 307.24

Image
Processing

159.03 743.92 220.75 1,026.55 1,129.01

3D
Geometry*

161.52 166.44 209.24 247.68 281.61

Audio 149.80 318.90 240.82 395.79 446.72

Pentium processor and Pentium processor with MMX technology are measured with
512K L2 cache

* No MMX� technology code

Table 2. Intel Media Benchmark Performance Comparison -
Breakdown Per Application

Summary
MMX technology implements a high-performance
technique that enhances the performance of Intel
Architecture microprocessors for media applications. The
core algorithms in these applications are compute-
intensive. These algorithms perform operations on a large
amount of data, use small data types, and provide many
opportunities for parallelism. These algorithms are a
natural fit for SIMD architecture. MMX technology
defines a general purpose and easy-to-implement set of
primitives to operate on packed data types.

MMX technology, while delivering performance boost to
media applications, is fully compatible with the existing
application and operating system base.

MMX technology is general by design and can be applied
to a variety of software media problems. Some examples
of this variety were described in this paper. Future media-
related software technologies for use on the Intranet and
Internet should benefit from MMX technology.

Pentium processors with MMX technology provide a
significant performance boost (approximately 4x for some
of the kernels) for media applications.Performance gains
from the technology will scale well with an increased
processor operating frequency and future
microarchitectures.
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Abstract

The MMX™ technology is an extension to the Intel
Architecture (IA) aimed at boosting the performance of
multimedia applications. This technology is the most
significant IA extension since the introduction of the
Intel386™ microprocessor. The challenge in
implementing this technology came from retrofitting the
new functionality into existing Pentium

®
 and

Pentium
® 

Pro processor designs.

The main challenge was how to incorporate the new
instructions while also keeping upcoming products on the
Intel performance curve. Both projects had to deliver
higher performance than their predecessors on legacy
applications, using both frequency gain and CPI (Clocks
Per Instruction) microarchitecture improvements.

On the other hand, new instructions had to be
implemented in a cost-effective way, e.g., provide a
breakthrough performance boost on multimedia
applications while maintaining reasonably low die size
cost. Moreover, the Pentium processor with MMX
technology and Pentium

®
 II processor, being the first

microprocessors to implement the new Instruction Set
Architecture (ISA), had to deliver superior multimedia
performance to demonstrate that the benefit of the ISA
extension would be compelling enough for Independent
Software Vendors (ISVs) to develop software using these
new instructions and fuel up the software spiral.

The new instructions operate on packed data types (single
operand represents more than one datum) and use a flat
register file that is architecturally aliased to an existing
register file of the Floating-Point (FP) stack. This
definition allows a variety of implementation alternatives.

Additional changes were introduced in the micro-
architecture of the predecessor microprocessor in order
to stay on the performance curve, improving the
frequency and clock per instruction performance.

Introduction

During the ramp of the Pentium
®

 processor in 1993, it
became evident that the home market was becoming a
major consumer of PCs, with a major boost coming from
multimedia applications.

Traditionally, multimedia applications were supported by
expansion hardware with dedicated software, thereby
increasing the cost of the machine and lacking common
standards. Engineers in the Intel Architecture group
envisioned the need of executing operations for
multimedia on the core CPU. This would establish a
standard for the industry, reduce the cost of the system,
and free up motherboard expansion slots.

A distinct characteristic of multimedia applications is the
execution of the same operation on multiple small-size
data items (e.g., 8 and 16 bits). The Single Instruction
Multiple Data (SIMD) architecture provides a cost-
effective solution for such applications, and therefore it
was decided to extend the IA with 57 new MMX™
SIMD-type instructions.

At the time of this decision, two design projects were in
their initial development stages: a high-end Pentium
processor, and the Pentium® II processor, a
Pentium® Pro processor compaction, both based on
Intel’s 0.35u CMOS process. In order to allow a fast ramp
and a top-to-bottom penetration of the new extensions into
the PC market, it was decided to incorporate new
instructions in both projects and have them become the
flagships of the new architecture extension.
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At that time, the Pentium and Pentium Pro processors
were both in advanced development stages with a much
more mature database and silicon experience. In order to
stay on the performance curve and catch up on frequency,
we had to set a more aggressive frequency goal than our
predecessors and also improve CPI performance. In the
Pentium processor with MMX technology, this resulted in
restructuring the entire machine by adding one more stage
to the processor main pipeline. The Pentium II processor
design team improved the performance of graphics
applications and achieved a higher frequency through less
aggressive architectural changes.

Both design teams delivered excellent results. The
Pentium processor with MMX technology achieved both
its CPI and frequency goals. It is 20% higher in frequency
(running at 233MHz in production) and 15% faster on
CPI than other Pentium processors. The Pentium II
processor significantly improved the performance of
graphics  code and achieved a 300MHz frequency at
introduction. The speedup goal for multimedia
applications was achieved as well. Most applications
using the new instructions improved by a factor of 1.6X,
with some having improved up to 4X.

Pentium Processor With MMX Technology
Microarchitecture

In order to exceed the performance of its predecessor, the
design team had to improve both the frequency and CPI
performance of the microprocessor. Both of these goals
could be achieved with microarchitecture changes
implemented in the new processor.

Frequency Speedup
Frequency is the most significant factor that determines
the performance of a microprocessor and is a major (and
sometimes only) performance indicator used by
customers. Therefore, it was not possible to come up with
a new product running at a lower frequency than its
predecessor.

The frequency improvement of a product approaches
asymptotically the architectural limit of the device by
cleaning up escapes and by making slight design
improvements in critical paths. Therefore, in order to
match a predecessor’s frequency, a product that comes to
market later must have higher architectural frequency
limits. Figure 1 illustrates frequency improvement trends
for the Pentium processor and Pentium processor with
MMX technology.
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3.00

q1/95 q2/95 q3/95 q4/95 q1/96 q2/96 q3/96 q4/96 q1/97 q2/97
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Pentium speedup trend

PP/MT* speedup trend,
data prior to Q4’96 are
pre-production.

PP/MT* architecture limit

Pentium architecture limit

*Pentium processor with MMX technology

Figure 1. Frequency Improvement Trends

In order to improve the architectural limit of the device,
we had to identify and resolve the major speed bottlenecks
of the Pentium processor’s architecture. After a thorough
analysis, two major bottlenecks were identified: the
decoder and the data cache access. The two bottlenecks
were dependent. In other words, resolving one of them
would help to speed up the other one. We decided to
resolve the decoder bottleneck, since it was simpler and
less risky, and it would also allow a smooth
implementation of MMX instruction decoding. The
Pentium processor execution pipeline originally consisted
of five pipeline stages: Pre-fetch (PF), Decode1 (D1),
Decode2 (D2), Execute (E), and Writeback (WB). We
added an additional pipeline stage in the front end of the
machine, rebalanced the entire pipeline to take advantage
of the extra clock cycle, and added a queue between the F
and D1 stages to decouple freezes, which are the most
critical signals generated in every pipeline stage. Figure 2
illustrates the difference between the original Pentium
processor pipeline and the MMX technology pipeline.

Pentium pipeline

Pentium with MMX technology pipeline

F D1 D2 E WB

PF F D1

queue

D2 E WB

Figure 2. Pentium Processor and
Pentium Processor With MMX Technology Pipeline

An additional clock cycle in the front end of the pipeline
resolved the decoder speed bottleneck and reduced fan-
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out for the data cache freeze (generated in the E stage),
which in turn relaxed a requirement for this freeze signal.
This was the first step in the resolution of the data cache
bottleneck.

The next step was to improve the timing of the data freeze
signal generated by the data cache. The cache access path
starts with address generation in the D2 stage, followed by
a subsequent cache access in the E stage. The entire path
was redesigned to self-time pipelined execution with time
borrowing between the stages. The address generation
logic was changed, incorporating simplified and faster
adders, thereby allowing faster address generation.

The third step was the cache circuit architecture. It was
performance-crucial to execute a single clock read and
write operation in each cache port. As a result, the
Pentium processor’s cache access windows were designed
to support two access windows per clock, as illustrated in
Figure 3.

Data read

Data write to array

precharge

precharge

Tag lookup

Tag lookup

Read
timing

Write
timing

Data read Data write prechargeCache access
windows

Pentium cache array access windows

Figure 3. Pentium Processor’s Cache Array Access Windows

Although read and write operations to the same port were
never performed in the same cycle, cache timers had to
support two access windows, thereby limiting the overall
cache access time. On the other hand, since read and write
operations never happen in the same clock to the same
port, both access windows could never be active in the
same clock cycle. In other words, during a read operation,
no data access could be performed in a write access
window and vice versa. Therefore, we decided to have
just one data access window in the front end of the cycle
(e.g., read window timing) and use it for both read and
write accesses. The read access works as in other Pentium
processors; it is a speculative operation and can be thrown
away. Write access depends on the result of a tag lookup
and cannot be executed if the same clock tags are looked
up. Therefore, the Pentium processor with MMX
technology implemented a cache store hit buffer. If a store
hit is encountered at the cache lookup phase, the data is
stored to this buffer. The actual store to the data array will
be done at the data access window of the next write
operation, while this window is idle. Meanwhile, before
the next write, the data can be delivered from the store hit
buffer to subsequent reads from this address. In other
words, the Pentium processor with MMX technology

pipelines write operations among each other. Each time a
store is executed, the tag lookup is performed for the
current store, while the data array is updated with data
from the previous store. This way we could have only one
data array access window, which allowed a significant
speedup of cache access.

Figure 4 illustrates the Pentium processor with MMX
technology’s cache access windows architecture.

Data read

Data write to array

precharge

precharge

Tag lookup

Tag lookup

Read
timing
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timing

Data read/write prechargeCache access
windows

Pentium processor with MMX technology
cache arra y access windows

data write to hit buffer

timing relaxation

Figure 4. Pentium Processor With MMX Technology’s
Cache Array Access Windows Architecture

The solutions described above resolved major Pentium
processor speed paths, allowing a frequency leap.
Additional local changes were performed in every
functional block to keep all the rest of the circuitry in line
with this new goal.

In summary, the Pentium processor with MMX
technology designers addressed two major bottlenecks at a
global architecture level (adding a pipeline stage and re-
balancing the entire machine), made few changes on the
intermediate level (time borrowing between pipe stages
for a specific operation), and implemented numerous local
changes to keep the machine balanced. This top-down
approach allowed us to achieve a 20% frequency boost
over the original Pentium processor design.

CPI Performance
Although adding a pipeline stage improves frequency, it
decreases CPI performance, i.e., the longer the pipeline,
the more work done speculatively by the machine and
therefore more work is being thrown away in the case of
branch miss prediction. The additional pipeline stage costs
decreased the CPI performance of the processor by 5-6%.

In order to stay on the performance curve, we had to gain
back this loss and, in addition, speed up the machine
further.

The Pentium processor with MMX technology’s CPI
performance was increased in three major ways:

1. Improved branch prediction. We implemented a more
advanced branch prediction algorithm that was
developed by the Pentium Pro processor design team.
This algorithm improved the prediction of branches,
which resulted in fewer miss-predictions of branches
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and caused less work to be thrown away. On top of
the Branch Target Buffer (BTB), we also
implemented a Return Stack Buffer (RSB)—a
dedicated branch prediction logic for call/return
instructions. The combination of the updated BTB
algorithm and the RSB improved CPI performance by
about 8%. This helped close the performance gap
opened while adding the new pipeline stage and gave
us some advantage over the Pentium processor.

2. Improving core/bus protocols. The original Pentium
processor design was tuned to a 1:1 ratio between the
core and bus clocks. As a result, some
price/performance tradeoffs that were made for a 1:1
clock ratio were not optimal for use when the gap
between the core and bus frequency increased.
Several enhancements were made by the design team
to tune the protocols. Write buffers were combined
into a single pool, thereby allowing both pipes to
share the same hardware, the clock crossover
mechanism was changed, and the DP protocol was
completely redesigned to decouple core and bus
frequencies. These improvements gained about a 5%
CPI performance improvement and simplified the
design and testing (e.g., crossover, DP protocols).

3. Creating larger caches and fully-associative
Translation Lookaside Buffers (TLB). In general,
increasing cache size is the most cost-effective way to
improve performance. The Pentium processor with
MMX technology increased the size of both caches
from 8Kbyte to 16Kbyte and made them four-way
set-associative. Fully-associative TLBs improved CPI
to some extent,  making address translation faster than
in the original TLB design. Larger caches and fully-
associative TLBs bought us about a 7-10% CPI
performance improvement.

In summary, by improving the BTB, redesigning the
core/bus protocol, and making larger caches, the Pentium
processor with MMX technology achieved about a 15%
higher CPI performance than the Pentium processor
despite the CPI loss due to the additional pipeline stage.

MMX Technology Implementation
After setting the stage for frequency and CPI performance,
we could incorporate the MMX instructions relatively
straightforwardly.

The instruction decode logic had to be modified to
decode, schedule, and issue the new instructions at a rate
of up to two instructions per clock. The MMX opcodes
are mapped to a 0F prefix, which is rarely used in
previous IA native software. Therefore, decoding of these
instructions in the original Pentium processor design was
slow, with a throughput of two clock cycles per

instruction. The Pentium processor with MMX technology
decoder was redesigned to quadruple the throughput of 0F
instructions, allowing two instructions per cycle
throughput.

Additional modifications were made to the MMX
technology pipeline to incorporate the MMX execute
stage (MEX) and the MMX writeback stage. To improve
the performance of MMX ARITH-MEM instructions, the
integer-execute stage is used as an MMX “read-stage,”
where the source operands as well as the memory
operands are read. As a result, an ARITH-MEM
instruction is executed in a single clock cycle. Since the
Pentium processor with MMX technology may pair an
ARITH-MEM instruction with an ARITH instruction, it is
equivalent to having three execution units (two ARITH,
one LOAD) working in parallel, similar in concept to a
Pentium II processor.

According to the MMX technology architecture definition,
the MMX register file is aliased to the FP mantissa
register file.  It was decided to design dedicated hardware
to execute the MMX instructions (the Munit). This unit
has a dedicated MMX register file, capable of delivering
four 64-bit operands and storing three 64-bit results in a
single clock cycle. The Munit also incorporates the MMX
execution units, which were defined and designed as a
module, and which allowed the design to be shared with
the Pentium II processor.

Clean partitioning of the MMX technology design and an
additional pipeline stage in the decoder resulted in no
speed issues associated with the new units. The area
penalty for the Munit was small.

Pentium Processor With MMX Technology
Block Diagram
The block diagram of the Pentium processor with MMX
technology is shown in Figure 5, outlining parts that were
redesigned for speed, CPI, and MMX technology.
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Figure 5. Block Diagram of the Pentium Processor
With MMX Technology

Results
The Pentium processor with MMX technology design
achieved its goals. The processor taped out in late  1995,
and samples were delivered to customers less than a week
after the first silicon. With six months of extensive silicon
debug, we closed the frequency gap with the Pentium
processor and, half a year later, achieved 233MHz in
production, which is one bin above the Pentium
processor’s production frequency.

Figure 6 shows the actual speed improvement of the
Pentium processor and the Pentium processor with MMX
technology versus the anticipated trend.
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Figure 6. Actual Versus Anticipated Speed Improvement
Trend

The Pentium processor with MMX technology also met its
CPI goals. Figure 7 shows the CPI performance of the
Pentium processor with MMX technology compared to
the Pentium

 
processor.

iSpec95 fSpec95 iSpec92
0%

10%

20%

30%

iSpec95 fSpec95 iSpec92

Figure 7. CPI Performance of the Pentium Processor with
MMX Technology Compared to the Pentium Processor

And at last, multimedia applications gained significant
performance using new instructions. Figure 8 illustrates

the performance gain that can be achieved by several
applications when using the new instructions.
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Figure 8. Performance Improvement Using New Instructions

Pentium II Processor Microarchitecture

While the Pentium processor with MMX technology made
microarchitecture changes to improve frequency and
performance as well as implement the MMX technology,
the Pentium II processor improved upon the Pentium Pro
processor’s microarchitecture and brought MMX
technology to a new level of performance. The Pentium II
processor is based on the dynamic execution
microarchitecture of the Pentium Pro processor. Changes
were made in the Pentium II processor’s microarchitecture
to improve graphics performance and to implement MMX
technology. In addition, the entire back-side bus interface
that connects the processor to an off-chip second-level
cache was redesigned to allow low-cost commodity
SRAMs to be used as second-level cache. Doing so
significantly reduced the system cost compared to the
Pentium Pro processor’s Multi-Chip Module (MCM) that
houses the processor as well as the second-level cache. A
higher frequency was achieved through aggressive circuit
techniques and other changes.

Overview
The Pentium II processor is the second Intel
microprocessor to implement MMX technology. The
Pentium II processor’s MMX technology implementation
offers multimedia applications the benefits of an out-of-
order execution, aggressive memory speculation, a
superpipelined and superscalar microarchitecture, etc.
These are the same features that the Pentium Pro
microprocessor provides. The Pentium II processor
supports two packed ALU operations, one packed shift,
and one packed multiply operation. Pack and unpack
operations are implemented by the packed shifter. The
Pentium II processor allows packed shift and packed
multiply to be executed concurrently.
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MMX Technology Implementation
The Pentium II processor’s microarchitecture is similar to
that of the Pentium Pro microprocessor. The Pentium Pro
processor’s high-level microarchitecture consists of the
following pipelines: instruction pre-fetch, length decode,
instruction decode, rename/resource allocation, uop
scheduling/dispatch, execution, writeback, and retirement.
The length decoder was modified to include decoding for
the new instructions. Some of the Pentium Pro processor’s
microarchitecture was modified to add MMX technology.
The Instruction Decoder logic was modified to convert the
new MMX instructions to Pentium Pro processor-specific
uops (new Single Instruction Multiple Data [SIMD] uops
were added to implement the new functionality). The
renamer (RAT) was modified to handle MMX technology
management of the floating-point stack because MMX
registers are aliased onto the floating-point stack to avoid
the need to modify operating systems. The resource
allocator (ALLOC) was changed to provide static
scheduling binding for the new SIMD uops. A new
execution unit, the SIMD unit (MMX instructions are
primarily SIMD instructions), was added. The Reservation
Station (RS) was changed to accommodate the new SIMD
64-bit datapath. In addition, minor changes were made to
expand some buses to accommodate the 64-bit MMX
technology requirement.

Performance data showed a need for a dual execution
pipeline for MMX instructions. Of the five execution
ports (port 0 - FP, integer; port 1 - integer; port 2 - load;
port 3 - store address; and port 4 - store data), it was
decided to put the SIMD unit in ports 0 and 1. Due to area
constraints, the SIMD unit implemented only one shifter
and one multiplier. The multiplier and shifter are on
different ports so that the two operations can execute in
parallel. Arithmetic and logical execution hardware was
duplicated to provide concurrent execution. The three-
clock latency, fully pipelined multiplier was placed in port
0 because the Reservation Station (RS) already had logic
to handle a multiple clock latency in port 0.

Floating-point registers are stacked. Although multimedia
registers are aliased onto the floating-point stack, they are
not used as stack registers. Like integer registers,
multimedia registers are general purpose, randomly-
accessed registers. The RAT treats the stack-based
floating-point registers and the randomly-accessed
multimedia registers the same way in terms of register
renaming. This simplifies the floating-point rename logic.
However, this approach only works if the floating-point
Top-of-Stack (TOS) is zero. All floating-point registers
are converted from stack-based logical registers to real
logical registers by adding the stack register number with
the floating-point TOS. If the floating-point TOS is zero,

the stack adjustment is transparent to multimedia registers.
For all floating-point and multimedia registers, the RAT
converts the stack-based register number into a logical
register number by factoring in the TOS reference. The
logical register number is used to read-write the floating-
point rename tables. In addition, each uop that presents
stack-referenced registers as source/destination can
modify the TOS. The RAT needs to perform the TOS
reference and manipulation logic on the fly, as uops enter
the rename pipeline stage.

Since the existing floating-point register logic works
transparently for multimedia registers only if the floating-
point TOS is zero prior to an MMX instruction, the
rename logic will produce errors if the floating-point TOS
is not zero. A microcode assist was created to correct the
problem and redo the operation. An assist is a customer-
invisible event that flushes out the machine and allows
microcode to handle rare but difficult-to-handle problems.
Since all MMX instructions zero the TOS, the assist needs
to write the TOS to zero and restart the operation. Then,
the operation sees zero TOS and the rename can occur
correctly.

The MMX technology specification requires that all
MMX instructions, except EMMS, set all floating-point
stack registers to full. This logic is performed by the RAT
as well. The setting of the stack valid bits to full is
accomplished by setting all stack valid bits at once. This
logic can get complicated when an MMX instruction is
issued or retired at the same time as a floating-point
instruction that performs a stack pop or otherwise clears
one or more stack valid bits. To avoid the complexity,
MMX instructions and floating-point instructions that
check for stack valid or perform a pop are not allowed to
issue or retire in the same clock. Due to timing
constraints, the function of disallowing MMX instructions
and floating-point instructions that check for stack valid or
perform a pop to retire in the same clock is performed by
another microcode assist. This assist can be avoided by
following the MMX technology programming guidelines,
i.e., placing an EMMS instruction between the last MMX
instruction and the first floating-point instruction.

Challenges were encountered in the Instruction Decoder
(ID) when adding functionality to decode the MMX
instructions. All MMX instructions are placed on the 0F
opcode map. However, these instructions are not arranged
in blocks or in regular patterns. Opcode holes are
sprinkled among the new instructions. The ID has three
decoders: decoder 0, 1, and 2. Decoder 0 is a full-function
decoder capable of decoding all instructions, with a
maximum output of four uops. Decoders 1 and 2 are
capable of decoding a subset of instructions that require
only one uop. If the ID encounters an illegal instruction, a
pair of uops are inserted into the uop stream by decoder 0,
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so the Re-order Buffer (ROB) knows to signal an illegal
opcode fault. Thus, decoders 1 and 2 were  not capable of
handling illegal opcodes. There is a PLA (Programmable
Logic Array) that determines whether an instruction can
be decoded by any decoder. If not, the instruction must be
decoded by decoder 0. This was a very speed-critical PLA
and a new way of thinking was needed.

Since decoders 1 and 2 can decode one uop instruction, all
register-register forms of MMX instructions, as well as the
MOVD and MOVQ load instructions, can be decoded by
these decoders. To reduce the minterm count of the
critical PLA, we considered reducing the number of MMX
instructions decodable by all decoders. This led to a
noticeable performance loss. In order to avoid this
performance loss while still meeting frequency goals, a
new assist was created so that decoders 1 and 2 could
handle illegal opcodes. This way, opcode holes and single
uop instructions look the same to the two decoders. They
all cause one uop to be generated. Illegal opcodes that are
instruction holes in the MMX instruction opcode map are
defined to generate a one uop assist call. This assist call
instructs the ROB to flush the machine and causes an
assist microcode flow to cause the processor to handle
illegal opcode faults. All legal MMX instructions that
decoders 1 and 2 can handle generate signal uops that
implement the instructions. This optimization results in a
minterm count increase of only 3 (out of 30). This enabled
the PLA to meet the Pentium II processor’s frequency
target.

All MMX operations except load and store are executed
by the SIMD unit. Each SIMD adder is capable of
performing add, subtract, and compare of 8-byte, 4-word,
and 2-doubleword data types. The adders are optimized to
perform these operations with roughly the same speed as a
normal 32-bit adder. The SIMD shifter can perform left
and right parallel shifts of word, doubleword, and
quadword. The SIMD multiplier performs the parallel
multiply and multiply-add operations.

Summary
The challenges of implementing MMX technology in the
Pentium II processor were in adding a major functionality
while creating minimal disturbance to the base
microarchitecture, which the processor inherited from the
Pentium Pro processor. Furthermore, the changes made to
the microarchitecture were such that the processor could
run at the same frequency whether or not the functionality
was present. To meet these objectives, novel
microarchitecture, logic, and circuit techniques had to be
used. The result of the Pentium II processor MMX
technology implementation was a processor that can run at
300MHz at introduction, surpassing Pentium Pro
processor performance.

Conclusion

The Pentium processor with MMX technology and
Pentium II microprocessors are now available in the
marketplace, introducing the next step in desktop,
workstation, and server computing. The Pentium
processor with MMX technology and Pentium II
processors’ acceptance into the marketplace is beyond
expectations, and their ramp-up is the fastest in Intel
history.

Both design projects successfully implemented the IA
extension with a small  cost in silicon area and with no
architecture or logic bugs.
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Abstract

Dolby* Digital is a high-quality audio compression
format widely used in feature films and, more recently,
on DVD1. PCs now offer DVD drives, and providing a
Dolby Digital decoder in software allows decoding of
Dolby Digital to become a baseline capability on the
PC. Intel’s MMX™ technology provides instructions
that can significantly speed up the execution of the
Dolby Digital decoder, freeing up the processor to
perform other tasks such as video decoding and/or
audio enhancement.

A simple port of Dolby Digital to MMX technology using
only a 16-bit data type introduces quantization noise
that makes the decoder unsatisfactory for high-quality
audio. However, MMX technology provides additional
flexibility through 32-bit operations which, combined
with other software techniques, allows the implementer
to increase the audio quality of the decoder while still
providing a significant speedup over implementations
that do not use MMX technology. Intel has worked
closely with Dolby Laboratories to define an
implementation of Dolby Digital based on MMX
technology that has achieved Dolby’s certification of
quality. This paper describes the research performed
and the resultant techniques Intel used in creating its
Dolby Digital decoder.

Introduction
Dolby* Digital is a transform-based audio coding
algorithm designed to provide data-rate reduction for
wide-band signals while maintaining the high quality of
the original content [1]. MMX™ technology can be used
to provide a processor-efficient implementation of

                                                          
1 DVD is often referred to as Digital Versatile Disk or
Digital Video Disk.

Dolby Digital for a PC based on a Pentium® processor
with MMX technology. It is important to maintain high
audio quality, and Dolby Laboratories has developed a
stringent test suite to ensure that a certified decoder
indeed provides high quality. In addition, trained
listeners evaluate prospective decoders using both test
and program material. Only after a decoder has passed
both the analytical and subjective tests is the decoder
certified.

Intel’s MMX instructions operate on 8, 16, and 32 bits.
The human ear has an overall dynamic range of 120 dB
and an instantaneous dynamic range of 85 dB [2]. The
dynamic range of a binary value is 6.0206 dB per bit.
Eight bits (48 dB of dynamic range, about that of AM
radio) is obviously insuff icient for high-quality audio.
Sixteen bits (96 dB of dynamic range, as is used on
Compact Disks) is usually considered high-quality
audio, and we will  accept this notion for this paper.
However, due to rounding errors during the intermediate
calculations, the accuracy at the output of a Dolby
Digital decoder is significantly less than the accuracy of
the intermediate values (assuming a uniform accuracy
throughout the algorithm). This is typical in signal
processing algorithms. Using 16 bits of accuracy
uniformly through a Dolby Digital decoder is
insufficient to pass the test suite. The challenge was to
obtain both good execution speed and good audio
quality. 32-bit floating-point numbers could be used
throughout the data path and only use MMX technology
for bit manipulation, but this would not be the most
processor-efficient method. MMX technology provides
integer operations that are more processor-effi cient than
existing floating-point operations; we strove to use the
MMX instructions as much as possible.

The goal of this investigation was to find a minimal
CPU implementation at an acceptable audio quality
level. If the CPU requirements could be made small
enough, Dolby Digital decoding entirely in software
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would be feasible, even in combination with other
operations (such as video playback). In order to do this,
we had to determine the accuracy required in the various
stages of the Dolby Digital decoder while maintaining
effective use of MMX technology. We found that by
using the flexibility of the 16-bit and 32-bit data types in
the MMX instruction set, we were able to increase the
accuracy of the Dolby Digital decoder significantly
beyond that of a simple 16-bit approach with only a
small impact on CPU performance. We also found that
MMX technology can be used to speed up the bit
manipulation, dithering, and downmix sections of the
decoder.

An additional benefit of performing the audio decode in
software is the resultant flexibility possible in the audio
subsystem. If the Dolby Digital decoder is in software, it
is easier to route the decoded audio to other audio
subsystems. For example, simultaneous mixing of the
PC’s system sounds (i.e., via the Microsoft Windows
Wave Device API) with the decoded audio is possible.

Dolby Digital Decoder
A block diagram of the Dolby Digital decoder is shown

in Figure 1 [3].

Figure 1. The Dolby Digital Decoder

The Dolby Digital bit stream contains Synchronization
Information (SI), Bit Stream Information (BSI), Audio
Block information (AB),  Auxiliary (AUX) information,
and Cyclic Redundancy Check (CRC).  See Figure 2 for
the Dolby Digital bit stream.

During our investigation, each block was inspected to
determine if it could benefit from MMX technology.
The following operations benefit significantly from
MMX technology:

• Bit Stream Parsing

• Scaling

• TDAC Transform (DCT twiddles, FFT, Windowed-
Overlapped-Add)

• Dithering

• Downmixing

We will now describe the five major operations from the
input to the output (Bit Stream Parsing, Coefficient
Extraction, TDAC Transform, Dithering, and
Downmixing). We will also describe how MMX
technology was used to provide a speedup.  General
precision and performance enhancements will also be
discussed.
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Figure 2. Dolby Digital Frame and Audio Block

Bit Stream Parsing
Each audio block (AB 0 through AB 5 in Figure 2)
contains various pieces of information that tell the
decoder how to decode the audio. These are bit fields
that are extracted M bits at a time, where M is 0 to 16.
MMX technology can be used to perform bit extraction
[4], so we can efficiently parse the bit stream. From this
information, we obtain the transform coefficients for the
synthesis filter bank (TDAC transform).

Transform Coefficients Extraction
The audio block contains the information required to
obtain the transform coefficients that will be sent to the
synthesis filter bank. In Dolby Digital, the bit allocation,
i.e., the number of bits used to represent a particular
mantissa, is derived from the exponents (the spectral
envelope). The mantissas are de-quantized and
combined with the exponents in the denormalization
process to create the transform coefficient values.
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TDAC Transform
The Time Domain Aliasing Cancellation (TDAC)
transform [5] converts the spectral information back to
time domain, pulse-code modulated (PCM) samples.
The TDAC provides perfect reconstruction (in the
absence of quantization or other noise) and is critically
sampled.

The TDAC transform is implemented as two DCT
twiddle stages with an inverse Fast Fourier Transform
(iFFT) in the middle [6]. A block diagram of this
implementation of the TDAC transform is shown in
Figure 3.

Figure 3. TDAC Transform Implementation

In our implementation, we created coefficient values
with 24-bits of accuracy that are stored in 32-bit values.
24 bits of accuracy was chosen to prevent overflow
during the intermediate denormalization and scaling
processes. This 32-bit number was used in the first three
stages of the TDAC transform. After the first two stages
of the iFFT, the value was rounded to 16 bits of
accuracy. The remainder of the operations were
performed using pass-to-pass representations of 16 bits.
MMX technology provides multiply accumulations to
32 bits, therefore many intermediate values were 32 bits.

The sine, cosine, and windowing values required in the
TDAC transform were implemented via 16-bit lookup
tables. Since these values are full-scale, 16 bits was
sufficient for our needs. Errors introduced by imprecise
coefficients are negligible compared to roundoff errors
[7,8]. The technique of 32-bit data and 16-bit lookup
tables has been shown to provide high-quality audio
decoding [9].

Quantization errors introduced early in the transform
process manifest themselves as tones in the output.
Tonal noise is highly objectionable [10]. Output noise, if
it must be present, should be broad-band or “white”
noise. Therefore, the goal was to significantly reduce the
peak spectral error. In a mixed-precision
implementation, the question is how far into the TDAC
transform do we need to carry 32 bits? In other words,
where can we switch to 16 bits? Under subjective

listening tests, we decided that performing the first three
stages in 32 bits and the remainder in 16 bits reduced the
tonal noise to a level of acceptability (see Figure 3). This
also resulted in the decoder passing the measurement
tests.

Multiplication in the MMX instruction set is 16 bits by
16 bits, yielding a 32-bit result. A 16-bit by 31-bit
multiply is also possible in software, at a cost of at least
five instructions and a pipelined output of two clocks per
result [11]. Minimizing the number of 16-by-31 bit
multiplies was important. It was discovered that the first
two stages of the Decimation in Time (DIT) FFT contain
only trivial coefficients, i.e., -1 and +1. This allowed
these stages to be performed using only add and subtract
instructions (no table lookup operations). These 32-bit
operations are available in the MMX instruction set.
This optimization allowed us to only use the more
computationally intensive 16/31 bit operations only on
the first DCT twiddle stage. The first two stages of the
iFFT were performed with 32-bit adds and subtracts,
which are efficient in the MMX instruction set.

The Windowed-Overlapped-Add (WOLA) block also
fits well into the MMX instruction set.  To perform the
WOLA, the current and previous output arrays from the
last DCT twiddle stage are windowed and then added
together [5]. The windowing and addition operations
were implemented as two 16-bit by 16-bit multiplies
(the windowing) and then added as 32-bit quantities.
This is provided by the PMADDWD instruction. The
32-bit results were then rounded to 16 bits for the
output.

Mantissa Dithering
Dithering is required in a Dolby Digital decoder.  How
dithering is used by a decoder is determined by the
Dolby Digital encoder used to create the frame.
Dithering is used when the encoder determines that a
transform mantissa doesn’t get any bits (only an
exponent) and that it is best to dither the mantissa (as
opposed to having a mantissa of zero).  This is
implemented as a pseudo-random number generator that
is random to 14 bits (the Dolby Digital specification
states that the random number generator must be random
to 8 bits or greater [3], so we exceed that specification).
The calculation is given in Listing 1.

Listing 1. Dither Generation

C code:

x(t) = (x(t-1) * 47989) & 0xffff;

MMX Technology Assembly Code:

// dither multiplier value is linear
// congruential multiplier ^ 4,
// i.e. 0x4f31, packed 4 times

Quadword DithMultVal = 0x4f314f314f314f31;
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32 bits 16 bits

1 2 5 1 1Stages:

Data:

iFFT

32/16 16/16Operation:
(Data/Table)

32
bi
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// [63:48] = linear congruential multiplier ^ 4
// [47:32] = linear congruential multiplier ^ 3
// [31:16] = linear congruential multiplier ^ 2
// [15:0]  = linear congruential multiplier ^ 1
Quadword DithregInit = 0x4f31994d2379bb75;

Initialization:
;4 16-bit packed values
MOVQ MM0, DithregInit

Generation Loop:
; dither register * dither multiplier
; to get next set of values in dither
; register
PMULLW MM0, DithMultVal
;result is 4 16-bit values
MOVQ [result64], MM0

PMULLW has a latency of 3 but a throughput of
1.  This program can be pipelined to achieve
one result per clock written out to memory (for
example, on a Pentium processor PMULLW in the V
Pipe, MOVQ in the U Pipe).

Calculating four dither values with a single PMULLW
instruction provides a high throughput for this part of the
decoder. This instruction multiplies two 16-bit values
and provides the lower 16 bits of the result (four of these
are performed per instruction).

Downmixing
Dolby Digital can contain up to six audio channels: five
full-bandwidth channels and a low-frequency effect
(LFE) channel. This mode is often referred to as 5.1
channels, where 5 is the number of full-bandwidth
channels and .1 is the LFE. The vast majority of PCs
have only two audio output channels, so downmixing is
often used. Also, for our two-channel downmix, the LFE
is discarded.  Downmixing is generally an additive
process.   Scaling (which is discussed below,  see “Early
Scaling”)  is also part of downmixing in Dolby Digital.
It is used to set relative levels between downmixed
channels. Since we perform it up front as part of the
denormalization process, downmixing becomes additive.
MMX technology provides SIMD addition, which
speeds up downmixing.

Precision Enhancements
To increase the audio quality, some precision
enhancements were made.  Even though these
techniques increased the processing requirement
slightly, they added a significant quality improvement
and were judged to be worth the additional overhead.

Rounding
Rounding is important to perform every time a higher-
precision number is being converted to a lower-precision
number (e.g., 32 to 16 bits). This is encountered often in
multiplications in the  MMX instruction set.  For
example, the PMADDWD instruction (packed multiply-
accumulate) multiplies 16-bit numbers, yielding a 32-bit
result.  If this 32-bit result is to be converted to a 16-bit

value, rounding should be used. Rounding can provide a
significantly reduced error compared to truncation [7].
While the MMX instruction set does not provide a
rounding mode, it is easy to accomplish in software.
Listing 2 provides an example.

Listing 2. Rounding Using MMX Technology

// Round 2.30 number
// RoundVal is ½ LSB of 16-bit result

RoundVal = 0x0000400000004000;
pmaddwd mm6,mm5 ;2.30 number
paddd mm6,RoundVal ;round
psrad mm6,15 ;2.30 to 1.15

Since the values are represented in two’s complement,
this technique works with both positive and negative
numbers. In our Dolby Digital decoder, rounding was
used extensively.

Gain Ranging
Dolby Digital provides Gain Ranging [3], which allows
block scaling for low-level signals. This enhances the
dynamic range of the decoder and was used in our
implementation. Gain Ranging can contribute to noise
modulation as the gain ranging levels are crossed. For
our decoder, we decided the benefit of the additional
dynamic range outweighed the potential of
discontinuous noise modulation.

Additional performance enhancements were made that
are general to the implementation of a Dolby Digital
decoder on a PC. These are included here, even though
they are not unique to optimizations that utilize MMX
technology.

Additional Performance Enhancements

Frequency Domain Downmixing
Since the TDAC transform is a linear process,
downmixing can be accomplished in the frequency
domain. This reduces the number of transforms from the
number of input channels from the Dolby Digital stream
(2 to 5) to the number of output channels (2). However,
the transform block sizes in Dolby Digital can change
from 512 to 256 in the presence of transients [3]. It is
not possible to downmix in the frequency domain for
differing block sizes, so in this case an additional
downmix stage is required after the TDAC transform to
perform the remainder of the downmix in the time
domain. The transform coefficients are contained in 32-
bits. Using the 32-bit adds in the MMX instruction set
provides an efficient downmix.

Early Scaling
There are several factors in the scale factor of a
particular channel: Dynamic Range Control, Gain
Ranging, and Downmix Scaling. We found it
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computationally beneficial to perform this operation
during denormalization, essentially combining scaling
and denormalization into one operation. This is
performed by adjusting all of the exponents and
mantissas by a particular amount. We stored the
exponents as 8-bit quantities (the range is only 5 bits in
Dolby Digital) and used MMX technology 8-bit add
instructions (PADDB) to scale 8 exponents at a time.
The unpack instruction (PUNPCKLBW) was used to
efficiently replicate the 8-bit scale value eight times
across the 64-bit register.

When the values are scaled up front, then downmixing
becomes a simple addition as opposed to a
multiplication by a constant. Since the transform
coefficients are represented in 32 bits, downmixing in
the frequency domain is performed by 32-bit adds using
the packed add (PADDD)  instruction. This avoids 32-
bit multiplies.

Exponent and Bit Allocation Reuse
A Dolby Digital stream only has exponents in an audio
block when the encoder determines that they have
changed enough to be resent. This is called exponent
reuse. Therefore, if exponent reuse is in effect, it is more
processor-efficient to save the exponents in an array and
use the values from the array (as opposed to re-
extracting the bits from the bit stream).

The bit allocation information is derived from the
exponents. Therefore if exponent reuse is in effect, bit
allocation may be also (depending on new bit allocation
information, SNR offset information, delta bit allocation
information and coupling information - see [3] for
details). Since recalculating the bit allocation
information is computationally expensive, the bit
allocation information should be saved in an array and
reused if possible. This does not benefit from MMX
technology per se, but shows the advantages of decoding
on a system that has a relatively large amount of cache
memory as opposed to a DSP that may have to
recalculate these values since it does not have sufficient
memory for all of these arrays.

Results
Compared to an optimized version that does not use
MMX technology, the processor speedup is about 1.5X
for a two-channel, surround-compatible (also known as
LtRt) downmix from 5.1 channel source material. For
5.1 channels of output, the speedup increases to about
1.8X. Typically, two TDAC transforms are performed
for a two-channel downmix, and six are required for a
full 5.1 channels of output. The greater speedup is due to
the fact that the TDAC transform benefits greatly from
MMX technology and the increased number of TDAC
transforms performed for 5.1 channels (versus a two-

channel downmix).  One caveat is that six channels of
audio output is not common on today’s mainstream PC.
However, sound cards with four channels of discrete
audio output are on the market today, so six channels
may become available in the future via analog outputs or
the 1394 high-speed serial bus.

Intel’s Dolby Digital decoder provides significantly
better audio quality than a 16-bit only approach, while
offering an efficient implementation. The included audio
clips contrast the 16-bit only approach with the
enhanced approach. Note that these are very low-level
signals (you may have to increase the volume to hear
them).

noisfl16.wav

noisfl_m.wav

Intel’s Dolby Digital decoder compares favorably with
floating-point based implementations. Typically Intel’s
decoder has about 5 to 10 dB of additional noise as
compared to a floating-point implementation. The
improvement over a simple 16-bit truncation model is
approximately 5 to 15 dB, depending on the program
material. The most striking improvement is the
reduction in peak spectral error, or the “tonality.”

Figures 4 through 10 show how Intel’s decoder
compares to the 16-bit truncation model and floating-
point reference.

Figures 4 through 7 show a spectral plot of a 200 Hz
sine wave at -60 dB. Figure 4 is a composite of Figures
5 through 7. These are separated out since, in the
composite, it is difficult to distinguish between the three
plots. This illustrates the peak spectral error (graphical
peaks) in the 300 to 20 kHz region. These peaks show
the presence of tonal noise. The 16-bit truncation
decoder has by far the worst peaks, as high as -105 dB.
The MMX technology decoder reduces these peaks by
13 dB to -118 dB.

Figure 8 shows the Total Harmonic Distortion (THD)
vs. Frequency. The THD vs. Frequency is improved by
about 10 dB over the 16-bit truncation decoder.

Figure 9 is the noise modulation plot. This is a plot of
the output noise in a third octave band at 4 kHz as a
function of the input level of a 41 Hz sinusoid
decremented from 0 dBFS to -120 dBFS. The improved
(lowered) noise level is between 15 dB for high-level
signals and 5 dB for low-level signals.

Low-level noise decoded by a simple
16-bit implementation.  Notice the
tonal artifacts. (Sound file is only
availiable in online HTML version.)

Low-level noise decoded by Intel’s
mixed 16/32-bit implementation.  The
noise is lower and broad-band (white).
(Sound file is only available in online
HTML version.)
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Figure 10 is a noise plot of a 4 kHz sine wave reduced in
level 1 dB per second from 0 dBFS to -120 dBFS, with
the sine wave removed via a notch filter. This shows that
the noise for a full-level signal is still small (-78 dB),

going to -88 dB for a medium- to low-level signal. This
is approximately a 12 dB improvement for high-level
signals and approximately a 6 dB improvement for low-
level signals.

Figure 4. 200 Hz at -60 dB. a) 16-Bit Truncation, b) MMX Technology, c) Dolby Reference Decoder
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Figure 5. 200 Hz at -60 dB. 16-Bit Truncation Decoder

Figure 6. 200 Hz at -60 dB. MMX Technology Decoder

Figure 7. 200 Hz at -60 dB. Dolby Reference Decoder
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Figure 8. THD vs. Frequency

Figure 9. Noise Modulation at 4 kHz, 41 Hz Input
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Figure 10. THD vs. Level, 4 kHz Input

Decoding a Dolby Digital stream consumes less than 8%
of a Pentium® II processor running at 233 MHz. Figure
11 shows the processor requirements for several DVD
audio tracks (5.1 channels, 384K bits/second, 48K
samples/second, downmixed to LtRt, except for
TWISTER which is two channels, 192K bits/second).
Clearly, this is small enough to make software Dolby
decoding quite feasible in real-world applications. The
remaining 92% of the processor can be used for other
things, such as a software MPEG 2 video decoder for a
software DVD player.

Dolby* Digital Decoder
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Figure 11. Processor Requirements. Note - DATA384 and
DNMIX20 are test materials. BATTLE10 and CHASE10 are

from the movie Outbreak. TWISTER is from the movie
Twister.
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Discussion
Making intelligent use of MMX technology requires a
good understanding of the algorithm being coded. By
understanding the strengths and flexibility of MMX
technology, many clever techniques can be devised.
While high-quality audio is a subjective term, we believe
this decoder lives up to the name.

Table 1 shows the CPU breakdown for each part of the
Dolby Digital decoder. After the data path has been sped
up by MMX technology, the Bit Unpacking section
becomes the next major consumer of the CPU. This is
mainly due to the sequential nature of extracting variable-
length bit fields from the bit stream.

Table 1. CPU Breakdown

Processing Block % of Full Decoder

Bit Unpacking 28.3

TDAC/WOLA/Downmix 27.7

Scaling/Denormalization 27.2

Bit Allocation 10.2

Miscellaneous 6.6

Based on measurements (see Figure 10), the Intel decoder
has a Signal-to-Noise Ratio (SNR) for a full-scale signal
of about 78 dB. This compares reasonably well to the
instantaneous sensitivity of the ear of about 85 dB [2].
The Dynamic Range (maximum output level vs. noise
floor for a low-level signal) is about 88 dB. This
compares reasonably well to a consumer CD player,
which is typically at about 95 dB.

Conclusion
Intel’s Dolby Digital decoder provides a processor-
efficient implementation that meets a high-quality
standard. By offering this decoder as a baseline capability
on PCs with MMX technology, decoding and playback of
compressed audio is possible with no additional hardware
cost. The low processor usage allows additional features
such as software video decoding and audio enhancement
to occur concurrently.
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