Interrupts in Linux

COMS W4118
Prof. Kaustubh R. Joshi
kri@cs.columbia.edu

http://www.cs.columbia.edu/~krj/os

References: Operating Sys Concepts 9e, Understanding the Linux Kernel, previous W4118s
Copyright notice: care has been taken to use only those web images deemed by the
instructor to be in the public domain. If you see a copyrighted image on any slide and are
the copyright owner, please contact the instructor. It will be removed.

2/13/13 COMS W4118. Spring 2013, Columbia University. Instructor: Dr. Kaustubh Joshi, AT&T Labs.



Why Interrupts?

* Devices require a prompt response from the CPU when
various events occur, even when the CPU is busy running

a program
* Need a mechanism for a device to “gain CPU’ s
attention”



The Kernel as a Multithreaded Server

Syscall Syscall ‘

|

A A

Data structures
In common address space Interrupt




Overview

* Interrupts and Exceptions

* Exception Types and Handling

* Interrupt Request Lines (IRQs)

* Programmable Interrupt Controllers (PIC)
* |Interrupt Descriptor Table (IDT)

* Interrupt Handling

e SoftIRQs, Tasklets

 Work Queues




Interrupts

* Forcibly change normal flow of control
e Similar to context switch (but lighter weight)

— Hardware saves some context on stack; Includes
interrupted instruction if restart needed

— Enters kernel at a specific point; kernel then
figures out which interrupt handler should run

— Execution resumes with special “iret” instruction

 Many different types of interrupts



Types of Interrupts (x86 terminology)

* Asynchronous
— From external source, such as I/O device
— Not related to instruction being executed

* Synchronous (also called exceptions)
— Processor-detected exceptions:
* Faults — correctable; offending instruction is retried
e Traps — often for debugging; instruction is not retried
* Aborts — major error (hardware failure)
— Programmed exceptions:
* Requests for kernel intervention (software intr/syscalls)



* Instruction would be illegal to execute

 Examples:
— Writing to a memory segment marked ‘read-only’
— Reading from an unavailable memory segment (on disk)
— Executing a ‘privileged’ instruction

* Detected before incrementing the IP
e The causes of ‘faults’ can often be ‘fixed’

* Ifa ‘problem’ can be remedied, then the CPU can just
resume its execution-cycle



A CPU might have been programmed to
automatically switch control to a ‘debugger’
program after it has executed an instruction

* That type of situation is known as a ‘trap’
* |tis activated after incrementing the IP



Error Exceptions

* Most error exceptions — divide by zero, invalid
operation, illegal memory reference, etc. — translate

directly into signals
e Thisisn ta coincidence. ..

* The kernel’ s job is fairly simple: send the appropriate
signal to the current process

— force_sig(sig_number, current);

* That will probably kill the process, but that’ s not the
concern of the exception handler

 One important exception: page fault

* An exception can (infrequently) happen in the kernel
— die(); // kernel oops



Interrupt Hardware

Legacy PC Design
(for single-proc IRQs
systems) > >
R o
Ethernet > —
S | Ve (86
: g INTR
SCSI Disk » (8259) J (8259) . CPU
Real-Time Clock > >
Keyboard Controller Programmable Interval-Timer

e |/O devices have (unique or shared) Interrupt Request
Lines (IRQs)

e |IRQs are mapped by special hardware to interrupt vectors,
and passed to the CPU

e This hardware is called a Programmable Interrupt
Controller (PIC)



The ‘Interrupt Controller’

Responsible for telling the CPU when a specific external
device wishes to ‘interrupt’

— Needs to tell the CPU which one among several devices is
the one needing service

PIC translates IRQ to vector

— Raises interrupt to CPU

— Vector available in register

— Waits for ack from CPU

Interrupts can have varying priorities

— PIC also needs to prioritize multiple requests
Possible to “mask” (disable) interrupts at PIC or CPU
Early systems cascaded two 8 input chips (8259A)



Example: Interrupts on 80386

80386 core has one interrupt line, one interrupt
acknowledge line

* Interrupt sequence:
— Interrupt controller raises INT line
— 80386 core pulses INTA line low, allowing INT to go low

— 80386 core pulses INTA line low again, signaling controller to
put interrupt number on data bus

INT: _____/ \
INTA:  \___ / . /
Data bus: (Interrupt # )7




Multiple Logical Processors

Advanced Programmable Interrupt Controller is needed to
perform ‘routing’ of I/O requests from peripherals to CPUs

(The legacy PICs are masked when the APICs are enabled)



APIC, 10-APIC, LAPIC

* Advanced PIC (APIC) for SMP systems

— Used in all modern systems
— Interrupts “routed” to CPU over system bus
— IPI: inter-processor interrupt

 Local APIC (LAPIC) versus “frontend” 10-APIC

— Devices connect to front-end 10-APIC
— |O-APIC communicates (over bus) with Local APIC

* [nterrupt routing
— Allows broadcast or selective routing of interrupts
— Ability to distribute interrupt handling load
— Routes to lowest priority process
* Special register: Task Priority Register (TPR)
— Arbitrates (round-robin) if equal priority



Assigning IRQs to Devices

* [RQassignment is hardware-dependent

« Sometimes it’ s hardwired, sometimes it s set physically, sometimes
it' s programmable

* PCl bus usually assigns IRQs at boot
 Some IRQs are fixed by the architecture
— IRQQO: Interval timer
— |RQ2: Cascade pin for 8259A

* Linux device drivers request IRQs when the device is opened

* Note: especially useful for dynamically-loaded drivers, such as for USB
or PCMCIA devices

« Two devices that aren’ t used at the same time can share an IRQ, even
if the hardware doesn’ t support simultaneous sharing



Assigning Vectors to IRQs

* Vector: index (0-255) into interrupt descriptor table

* Vectors usually IRQ# + 32
— Below 32 reserved for non-maskable intr & exceptions
— Maskable interrupts can be assigned as needed

— Vector 128 used for syscall
— Vectors 251-255 used for IPI



Xx86 Interrupt Handling via IDT

Memory Bus

IRQs O

IDT

\ Ly handler

Mask points

255
Kernel must setup idtr during system startup (set-and-forget)

LIDT and SIDT used to set/get the pointer to this table




Interrupt Descriptor Table

* The entry-point to the interrupt-handler is located via
the Interrupt Descriptor Table (IDT)

* |DT: gate descriptors, one per vector
— Address of handler
— Current Privilege Level (CPL)
— Descriptor Privilege Level (DPL)
— Gates (slightly different ways of entering kernel)

* Task gate: includes TSS to transfer to (not used by
Linux)

* Interrupt gate: disables further interrupts
* Trap gate: further interrupts still allowed



IDT Initialization

* Initialized once by BIOS in real mode

— Linux re-initializes during kernel init

* Must not expose kernel to user mode access
— start by zeroing all descriptors
* Linuxlingo:
— Interrupt gate (same as Intel; no user access)
* Not accessible from user mode
— System gate (Intel trap gate; user access)
* Used forint, int3, into, bounds

— Trap gate (same as Intel; no user access)
* Used for exceptions



Dispatching Interrupts

* On entry hardware:
— Checks which vector?
— Get corresponding descriptor in IDT
— Find specified descriptor in GDT (for handler)
— Check privilege levels (CPL, DPL)

* If entering kernel mode, set kernel stack
— Save eflags, cs, (original) eip on stack
* Jump to appropriate handler
— Assembly code prepares C stack, calls handler
 Onreturn (i.e. iret):
— Restore registers from stack
— If returning to user mode, restore user stack

— Clear seiment reiisters iif irivileied selectorsi



Interrupt Masking

 Two different types: global and per-IRQ
* Global — delays all interrupts

e Se
se

e Se

ective — individual IRQs can be masked
ectively

ective masking is usually what s needed —

interference most common from two
interrupts of the same type



Nested Interrupts

 What if a second interrupt occurs while an
interrupt routine is excuting?

* Generally a good thing to permit that — is it
possible?

* And why is it a good thing?



Maximizing Parallelism

* You want to keep all I/O devices as busy as
possible

* In general, an I/O interrupt represents the end
of an operation; another request should be
iIssued as soon as possible

* Most devices don’ t interfere with each
others’ data structures: there’ s no reason to
block out other devices



Handling Nested Interrupts

* As soon as possible, unmask the global
interrupt

* As soon as reasonable, re-enable interrupts
from that IRQ

» But thatisn’ t always a great idea, since it
could cause re-entry to the same handler

e |RQ-specific mask is not enabled during
interrupt-handling



Nested Execution

* Interrupts can be interrupted
— By different interrupts; handlers need not be reentrant
— No notion of priority in Linux
— Small portions execute with interrupts disabled
— Interrupts remain pending until acked by CPU
* Exceptions can be interrupted

— By interrupts (devices needing service)

* Exceptions can nest two levels deep

— Exceptions indicate coding error
— Exception code (kernel code) shouldn’ t have bugs
— Page fault is possible (trying to touch user data)



First-Level Interrupt Handler

Often in assembler

Perform minimal, common functions: saving
registers, unmasking other interrupts

Eventually, undoes that: restores registers,
returns to previous context

Most important: call proper second-level
interrupt handler (C program)



Interrupt Handling

* Do as little as possible in the interrupt handler

* Defer non-critical actions ftill later
* Three types of actions:
— Critical: Top-half (interrupts disabled — briefly!)

* Example: acknowledge interrupt
— Non-critical: Top-half (interrupts enabled)
* Example: read key scan code, add to buffer

— Non-critical deferrable: Bottom half, do it “later” (interrupts
enabled)

* Example: copy keyboard buffer to terminal handler process
* Softirgs, tasklets

* No process context available



No Process Context

* Interrupts (as opposed to exceptions) are not
associated with particular instructions

* They’ re also not associated with a given

process

 The currently-running process, at the time of
the interrupt, as no relationship whatsoever

to that interru
* |Interrupt hanc

o]t
lers cannot refer to current

* |Interrupt hanc

lers cannot sleep!



Interrupt Stack

* When an interrupt occurs, what stack is used?

— Exceptions: The kernel stack of the current
process, whatever it is, is used (There’ s always
some process running — the “idle” process, if
nothing else)

— Interrupts: hard IRQ stack (1 per processor)
— SoftIRQs: soft IRQ stack (1 per processor)

* These stacks are configured in the IDT and TSS
at boot time by the kernel



Finding the Proper Handler

* On modern hardware, multiple I/O devices
can share a single IRQ and hence interrupt
vector

* First differentiator is the interrupt vector

 Multiple interrupt service routines (ISR) can be
associated with a vector

e Each device’ s ISR for that IRQ is called; the
determination of whether or not that device
has interrupted is device-dependent



Deferrable Work

* We don’ t want to do too much in regular interrupt
handlers:
— Interrupts are masked
— We don’ t want the kernel stack to grow too much

* Instead, interrupt handlers schedule work to be
performed later

* Three deferred work mechanisms: softirgs, tasklets, and
work queues

e Tasklets are built on top of softirgs
* For all of these, requests are queued



e Statically allocated: specified at kernel compile time
* Limited number:
Priority  Type
High-priority tasklets
Timer interrupts
Network transmission
Network reception
SCSI disks
Regular tasklets

o b W N B O



Running Softirgs

 Run at various points by the kernel

 Most important: after handling IRQs and after
timer interrupts

e Softirg routines can be executed
simultaneously on multiple CPUs:

— Code must be re-entrant
— Code must do its own locking as needed



Rescheduling Softirgs

* A softirg routine can reschedule itself
* This could starve user-level processes

e Softirg scheduler only runs a limited number
of requests at a time

* The rest are executed by a kernel thread,

ksoftirgd, which competes with user
processes for CPU time



* Similar to softirgs
* Created and destroyed dynamically

* Individual tasklets are locked during

execution; no problem about re-entrancy, and
no need for locking by the code

* Only one instance of tasklet can run, even
with multiple CPUs

e Preferred mechanism for most deferred
activity



* Always run by kernel threads

e Softirgs and tasklets run in an interrupt
context; work queues have a process context

* Because they have a process context, they can
sleep

* However, they re kernel-only; there is no user
mode associated with it



SoftIRQs vs. Tasklet vs. WQ

ISR SoftIRQ | Tasklet | WorkQueue
Will disable all interrupts? Briefly No No No
Will disable other instances of self? Yes Yes No No
Higher priority than regular scheduled tasks? Yes Yes* Yes* No
Will be run on same processor as ISR? N/A Yes Maybe | Maybe
More than one run can on same CPU? No No No Yes
Same one can run on multiple CPUs? Yes Yes No Yes
Full context switch? No No No Yes
Can sleep? (Has own kernel stack) No No No Yes
Can access user space? No No No No




Return Code Path

* Interleaved assembly entry points:
— ret_from_exception()
— ret_from_intr()
— ret_from_sys_call()
— ret_from_fork()
* Things that happen:
— Run scheduler if necessary

— Return to user mode if no nested handlers
* Restore context, user-stack, switch mode
* Re-enable interrupts if necessary

— Deliver pending signals



Demo: /proc/interrupts

S cat /proc/interrupts

CPUO
0: 865119901 I0-APIC-edge timer
1: 4 I0-APIC-edge keyboard
2: 0 XT-PIC cascade
8: 1 I0-APIC-edge rtc
12: 20 I0-APIC-edge PS/2 Mouse
14: 6532494 I0-APIC-edge ide0
15: 34 I0-APIC-edge idel
16: 0 10-APIC-level usb-uhci
19: 0 10-APIC-level usb-uhci
23: 0 I0-APIC-level ehci-hcd
32: 40 10-APIC-level ioc0
33: 40 10-APIC-level iocl
48: 273306628 10-APIC-level ethO
NMI: 0
ERR: 0

* Columns: IRQ, count, interrupt controller, devices



