
Introduction to Machine Learning

CMU-10701
Deep Learning

Barnabás Póczos & Aarti Singh

2

Credits

Many of the pictures, results, and other materials are taken from:
 Ruslan Salakhutdinov
 Joshua Bengio
 Geoffrey Hinton
 Yann LeCun

3

Contents

 Definition and Motivation

 History of Deep architectures

 Deep architectures
 Convolutional networks

 Deep Belief networks

 Applications

4

Defintion: Deep architectures are composed of multiple levels of non-linear
operations, such as neural nets with many hidden layers.

Deep architectures

Input layer

Output layer

Hidden layers

5

Goal of Deep architectures

Goal: Deep learning methods aim at

 learning feature hierarchies

 where features from higher levels of the
 hierarchy are formed by lower level features.

edges, local shapes, object parts

Figure is from Yoshua Bengio

Low level representation

6

 Most current learning algorithms are shallow architectures (1-3 levels)
 (SVM, kNN, MoG, KDE, Parzen Kernel regression, PCA, Perceptron,…)

 The mammal brain is organized in a deep architecture (Serre, Kreiman,
Kouh, Cadieu, Knoblich, & Poggio, 2007)
(E.g. visual system has 5 to 10 levels)

Neurobiological Motivation

7

 Inspired by the architectural depth of the brain, researchers wanted
for decades to train deep multi-layer neural networks.

 No successful attempts were reported before 2006 …

 Researchers reported positive experimental results with typically
 two or three levels (i.e. one or two hidden layers), but training
 deeper networks consistently yielded poorer results.

 Exception: convolutional neural networks, LeCun 1998

 SVM: Vapnik and his co-workers developed the Support Vector
Machine (1993). It is a shallow architecture.

 Digression: In the 1990’s, many researchers abandoned neural
networks with multiple adaptive hidden layers because SVMs worked
better, and there was no successful attempts to train deep networks.

 Breakthrough in 2006

Deep Learning History

8

Breakthrough

Deep Belief Networks (DBN)

Hinton, G. E, Osindero, S., and Teh, Y. W. (2006).
A fast learning algorithm for deep belief nets.
Neural Computation, 18:1527-1554.

Autoencoders

Bengio, Y., Lamblin, P., Popovici, P., Larochelle, H. (2007).
Greedy Layer-Wise Training of Deep Networks,
Advances in Neural Information Processing Systems 19

9

 Some functions cannot be efficiently represented (in terms of number
of tunable elements) by architectures that are too shallow.

 Deep architectures might be able to represent some functions
otherwise not efficiently representable.

 More formally:

 Functions that can be compactly represented by a depth k
 architecture might require an exponential number of
 computational elements to be represented by a depth k − 1
 architecture

 The consequences are

 Computational: We don’t need exponentially many elements in
the layers

 Statistical: poor generalization may be expected when using an
insufficiently deep architecture for representing some functions.

Theoretical Advantages of Deep
Architectures

10

The Polynoimal circuit:

Theoretical Advantages of Deep
Architectures

11

Deep Convolutional Networks

12

Deep Convolutional Networks

 Deep supervised neural networks are generally too difficult to train.

 One notable exception: convolutional neural networks (CNN)

 Convolutional nets were inspired by the visual system’s structure

 They typically have five, six or seven layers, a number of layers which
makes fully-connected neural networks almost impossible to train
properly when initialized randomly.

13

Deep Convolutional Networks

LeNet 5

Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning
Applied to Document Recognition, Proceedings of the IEEE,

86(11):2278-2324, November 1998

Compared to standard feedforward neural networks with similarly-sized layers,

 CNNs have much fewer connections and parameters

 and so they are easier to train,

 while their theoretically-best performance is likely to be only slightly
worse.

14

LeNet 5, LeCun 1998

 Input: 32x32 pixel image. Largest character is 20x20
(All important info should be in the center of the receptive field of the
highest level feature detectors)

 Cx: Convolutional layer

 Sx: Subsample layer

 Fx: Fully connected layer

 Black and White pixel values are normalized:
 E.g. White = -0.1, Black =1.175 (Mean of pixels = 0, Std of pixels =1)

15

LeNet 5, Layer C1

C1: Convolutional layer with 6 feature maps of size 28x28. C1k (k=1…6)

Each unit of C1 has a 5x5 receptive field in the input layer.

 Topological structure

 Sparse connections

 Shared weights

(5*5+1)*6=156 parameters to learn

Connections: 28*28*(5*5+1)*6=122304

If it was fully connected we had (32*32+1)*(28*28)*6 parameters

16

S2: Subsampling layer with 6 feature maps of size 14x14

2x2 nonoverlapping receptive fields in C1

Layer S2: 6*2=12 trainable parameters.

Connections: 14*14*(2*2+1)*6=5880

LeNet 5, Layer S2

17

LeNet 5, Layer C3

 C3: Convolutional layer with 16 feature maps of size 10x10

 Each unit in C3 is connected to several! 5x5 receptive fields at identical
locations in S2

Layer C3:

1516 trainable parameters.

Connections: 151600

18

LeNet 5, Layer S4

 S4: Subsampling layer with 16 feature maps of size 5x5

 Each unit in S4 is connected to the corresponding 2x2 receptive field at
C3

Layer S4: 16*2=32 trainable parameters.

Connections: 5*5*(2*2+1)*16=2000

19

LeNet 5, Layer C5

 C5: Convolutional layer with 120 feature maps of size 1x1

 Each unit in C5 is connected to all 16 5x5 receptive fields in S4

Layer C5: 120*(16*25+1) = 48120 trainable parameters and connections
 (Fully connected)

20

LeNet 5, Layer C5

Layer F6: 84 fully connected units. 84*(120+1)=10164 trainable
 parameters and connections.

Output layer: 10RBF (One for each digit)

84=7x12, stylized image

Weight update: Backpropagation

21

MINIST Dataset

60,000 original datasets

Test error: 0.95%

540,000 artificial distortions

+ 60,000 original

Test error: 0.8%

22

Misclassified examples

23

LeNet 5 in Action

C1 C3 S4
Input

24

LeNet 5, Shift invariance

25

LeNet 5, Rotation invariance

26

LeNet 5, Nosie resistance

27

LeNet 5, Unusual Patterns

28

Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton,

Advances in Neural Information Processing Systems 2012

ImageNet Classification with Deep
Convolutional Neural Networks

29

 15M images

 22K categories

 Images collected from Web

 Human labelers (Amazon’s Mechanical Turk crowd-sourcing)

 ImageNet Large Scale Visual Recognition Challenge (ILSVRC-2010)

o 1K categories

o 1.2M training images (~1000 per category)

o 50,000 validation images

o 150,000 testing images

 RGB images

 Variable-resolution, but this architecture scales them to 256x256 size

ImageNet

30

Classification goals:

 Make 1 guess about the label (Top-1 error)

 make 5 guesses about the label (Top-5 error)

ImageNet

31

The Architecture

Typical nonlinearities:

Here, however, Rectified Linear Units (ReLU) are used:

Empirical observation: Deep convolutional neural networks with
ReLUs train several times faster than their equivalents with tanh units

 A four-layer convolutional neural
network with ReLUs (solid line)
reaches a 25% training error rate on
CIFAR-10 six times faster than an
equivalent network with tanh neurons

(dashed line)

32

The Architecture

The first convolutional layer filters the 224×224×3 input image with
96 kernels of size 11×11×3 with a stride of 4 pixels (this is the distance
between the receptive field centers of neighboring neurons in the kernel
map. 224/4=56

The pooling layer: form of non-linear down-sampling. Max-pooling
partitions the input image into a set of rectangles and, for each such sub-
region, outputs the maximum value

33

The Architecture

 Trained with stochastic gradient descent

 on two NVIDIA GTX 580 3GB GPUs

 for about a week

 650,000 neurons

 60,000,000 parameters

 630,000,000 connections

 5 convolutional layer, 3 fully connected layer

 Final feature layer: 4096-dimensional

34

Data Augmentation

The easiest and most common method to reduce overfitting on image
data is to artificially enlarge the dataset using label-preserving
transformations.

We employ two distinct forms of data augmentation:

 image translation

 horizontal reflections

 changing RGB intensities

35

Dropout

 We know that combining different models can be very useful
(Mixture of experts, majority voting, boosting, etc)

 Training many different models, however, is very time consuming.

The solution:
 Dropout: set the output of each hidden neuron to zero w.p. 0.5.

36

Dropout: set the output of each hidden neuron to zero w.p. 0.5.

 The neurons which are “dropped out” in this way do not contribute to
the forward pass and do not participate in backpropagation.

 So every time an input is presented, the neural network samples a
different architecture, but all these architectures share weights.

 This technique reduces complex co-adaptations of neurons, since a
neuron cannot rely on the presence of particular other neurons.

 It is, therefore, forced to learn more robust features that are useful in
conjunction with many different random subsets of the other neurons.

 Without dropout, our network exhibits substantial overfitting.

 Dropout roughly doubles the number of iterations required to converge.

Dropout

37

96 convolutional kernels of size 11×11×3 learned by the first
convolutional layer on the 224×224×3 input images.

The top 48 kernels were learned on GPU1 while the bottom 48 kernels
were learned on GPU2

Looks like Gabor wavelets, ICA filters…

The first convolutional layer

38

Results

Results on the test data:
 top-1 error rate: 37.5%
 top-5 error rate: 17.0%

ILSVRC-2012 competition:
 15.3% accuracy
 2nd best team: 26.2% accuracy

39

Results

40

Results: Image similarity

Test column
six training images that produce feature vectors in
the last hidden layer with the smallest Euclidean distance
from the feature vector for the test image.

41

Deep Belief Networks

42

 It requires labeled training data.

 Almost all data is unlabeled.

 The learning time does not scale well.

 It is very slow in networks with multiple hidden layers.

 It can get stuck in poor local optima.

 Usually in deep nets they are far from optimal.

 MLP is not a generative model, it only focuses on P(Y|X).
We would like a generative approach that could learn P(X) as well.

 Solution: Deep Belief Networks, a generative graphical model

What is wrong with back
propagation?

43

Deep Belief Network

Deep Belief Networks (DBN’s)

 are probabilistic generative models

 contain many layers of hidden variables

 each layer captures high-order correlations between
 the activities of hidden features in the layer below

 the top two layers of the DBN form an undirected bipartite graph
 called Restricted Boltzmann Machine

 the lower layers forming a directed sigmoid belief network

44

Deep Belief Network

Restricted
Boltzmann
Machine

sigmoid belief network

sigmoid belief network

Data vector

45

Deep Belief Network

Joint likelihood:

46

Boltzmann Machines

47

Boltzmann machine: a network of symmetrically coupled stochastic
 binary units {0,1}

Boltzmann Machines

Visible layer

Hidden layer

Parameters:

Energy of the Boltzmann machine:

W: visible-to-hidden

L: visible-to-visible, diag(L)=0

J: hidden-to-hidden, diag(J)=0

48

Energy of the Boltzmann machine:

Boltzmann Machines

Generative model:

Probability of a visible vector v:

Joint likelihood:

Exponentially large set

49

Restricted Boltzmann Machines

Visible layer

Hidden layer

No hidden-to-hidden and no visible-to-visible connections.

W: visible-to-hidden

L = 0: visible-to-visible

J = 0: hidden-to-hidden

Energy of RBM:

Joint likelihood:

50 Figure is taken from R. Salakhutdinov

Restricted Boltzmann Machines

Top layer: vector of stochastic binary hidden units h
Bottom layer: a vector of stochastic binary visible variables v.

51

Due to the special bipartite structure of RBM’s, the hidden units can be
explicitly marginalized out:

Training RBM

52

Training RBM

Gradient descent:

The exact calculations are intractable because the expectation operator
in E_P_Model takes exponential time in min(D,F)

Efficient Gibbs sampling based approximation exists (Contrastive divergence)

53

Inference in RBM

Inference is simple in RBM:

54

Training Deep Belief Networks

55

Training Deep Belief Networks

Greedy layer-wise unsupervised learning:

 Much better results could be achieved when pre-training each
 layer with an unsupervised learning algorithm, one layer after the
 other, starting with the first layer (that directly takes in the
 observed x as input).

 The initial experiments used the RBM generative model for each layer.

 Later variants: auto-encoders for training each layer (Bengio et al.,
2007; Ranzato et al., 2007; Vincent et al., 2008

 After having initialized a number of layers, the whole neural network
can be fine-tuned with respect to a supervised training criterion as
usual

56

The unsupervised greedy layer-wise training serves as initialization,
replacing the traditional random initialization of multi-layer
networks.

Training Deep Belief Networks

Data

57

Training Deep Belief Networks

58

 Deep architecture trained online with 10 million examples of digit
images, either with pre-training (triangles) or without (circles).

 The first 2.5 million examples are used for unsupervised pre-training.

 One can see that without pre-training, training converges to a poorer
apparent local minimum: unsupervised pre-training helps to find a
better minimum of the online error. Experiments performed by Dumitru Erhan.

59

Results

60

Deep Boltzmann Machines Results

61

Deep Boltzmann Machines Results

62

Deep Boltzmann Machines Results

63

Deep Boltzmann Machines Results

64

Thanks for your Attention! 

