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Defintion: Deep architectures are composed of multiple levels of non-linear 
operations, such as neural nets with many hidden layers.  

Deep architectures  

Input layer 

Output layer 

Hidden layers 
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Goal of Deep architectures  

Goal: Deep learning methods aim at  

 learning feature hierarchies 

 where features from higher levels of the 
 hierarchy are formed by lower level features.  

edges, local shapes, object parts 

Figure is from Yoshua Bengio 

Low level representation 
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 Most current learning algorithms are shallow architectures (1-3 levels)  
 (SVM, kNN, MoG, KDE, Parzen Kernel regression, PCA, Perceptron,…) 

 

 

 

 

 

 

 The mammal brain is organized in a deep architecture (Serre, Kreiman, 
Kouh, Cadieu, Knoblich, & Poggio, 2007) 
(E.g. visual system has 5 to 10 levels) 

   

  

Neurobiological Motivation  
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 Inspired by the architectural depth of the brain, researchers wanted 
for decades to train deep multi-layer neural networks. 

 No successful attempts were reported before 2006 … 

 Researchers reported positive experimental results with typically 
 two or three levels (i.e. one or two hidden layers), but training 
 deeper networks consistently yielded poorer results. 

 Exception: convolutional neural networks, LeCun 1998 

 SVM: Vapnik and his co-workers developed the Support Vector 
Machine (1993). It is a shallow architecture.  

 Digression: In the 1990’s, many researchers abandoned neural 
networks with multiple adaptive hidden layers because SVMs worked 
better, and there was no successful attempts to train deep networks. 

 Breakthrough in 2006 

 

Deep Learning History 
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Breakthrough 

  

Deep Belief Networks (DBN) 

Hinton, G. E, Osindero, S., and Teh, Y. W. (2006).  
A fast learning algorithm for deep belief nets.  
Neural Computation, 18:1527-1554. 

 

Autoencoders 

Bengio, Y., Lamblin, P., Popovici, P., Larochelle, H. (2007).  
Greedy Layer-Wise Training of Deep Networks,  
Advances in Neural Information Processing Systems 19 
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 Some functions cannot be efficiently represented (in terms of number 
of tunable elements) by architectures that are too shallow. 

 Deep architectures might be able to represent some functions 
otherwise not efficiently representable. 

 More formally: 

 Functions that can be compactly represented by a depth k 
 architecture might require an exponential number of 
 computational elements to be represented by a depth k − 1 
 architecture 

 The consequences are  

 Computational: We don’t need exponentially many elements in 
the layers 

 Statistical: poor generalization may be expected when using an 
insufficiently deep architecture for representing some functions. 

Theoretical Advantages of Deep 
Architectures 
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The Polynoimal circuit: 

Theoretical Advantages of Deep 
Architectures 
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Deep Convolutional Networks 
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Deep Convolutional Networks 

 Deep supervised neural networks are generally too difficult to train.  

 

 One notable exception: convolutional neural networks (CNN) 

 

 Convolutional nets were inspired by the visual system’s structure 

 

 They typically have five, six or seven layers, a number of layers which 
makes fully-connected neural networks almost impossible to train 
properly when initialized randomly. 
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Deep Convolutional Networks 

LeNet 5 
 

Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning 
Applied to Document Recognition, Proceedings of the IEEE, 

86(11):2278-2324, November 1998 

Compared to standard feedforward neural networks with similarly-sized layers,  

 CNNs have much fewer connections and parameters  

 and so they are easier to train,  

 while their theoretically-best performance is likely to be only slightly 
worse. 
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LeNet 5, LeCun 1998  

 Input: 32x32 pixel image. Largest character is 20x20 
(All important info should be in the center of the receptive field of the 
highest level feature detectors) 

 Cx: Convolutional layer 

 Sx: Subsample layer 

 Fx: Fully connected layer 

 Black and White pixel values are normalized:  
     E.g. White = -0.1, Black =1.175 (Mean of pixels = 0, Std  of pixels =1) 
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LeNet 5, Layer C1 

C1: Convolutional layer with 6 feature maps of size 28x28. C1k (k=1…6) 

Each unit of C1 has a 5x5 receptive field in the input layer. 

 Topological structure 

 Sparse connections 

 Shared weights 

(5*5+1)*6=156 parameters to learn 

Connections: 28*28*(5*5+1)*6=122304 

If it was fully connected we had (32*32+1)*(28*28)*6 parameters 
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S2: Subsampling layer with 6 feature maps of size 14x14 

2x2 nonoverlapping receptive fields in C1 

 

Layer S2: 6*2=12 trainable parameters.  

Connections: 14*14*(2*2+1)*6=5880 

LeNet 5, Layer S2 
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LeNet 5, Layer C3 

 C3: Convolutional layer with 16 feature maps of size 10x10 

 Each unit in C3 is connected to several! 5x5 receptive fields at identical 
locations in S2 

Layer C3:  

1516 trainable parameters.  

Connections: 151600 
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LeNet 5, Layer S4 

 S4: Subsampling layer with 16 feature maps of size 5x5 

 Each unit in S4 is connected to the corresponding 2x2 receptive field at 
C3 

Layer S4: 16*2=32 trainable parameters.  

Connections: 5*5*(2*2+1)*16=2000 
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LeNet 5, Layer C5 

 C5: Convolutional layer with 120 feature maps of size 1x1 

 Each unit in C5 is connected to all 16 5x5 receptive fields in S4 

Layer C5: 120*(16*25+1) = 48120 trainable parameters and connections 
 (Fully connected) 
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LeNet 5, Layer C5 

Layer F6: 84 fully connected units. 84*(120+1)=10164 trainable 
 parameters and connections. 

Output layer: 10RBF (One for each digit) 

84=7x12, stylized image 

Weight update: Backpropagation 
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MINIST Dataset 

60,000 original datasets 

Test error: 0.95% 

540,000 artificial distortions 

+ 60,000 original  

Test error: 0.8% 
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Misclassified examples 
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LeNet 5 in Action 

C1 C3 S4 
Input 
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LeNet 5, Shift invariance 
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LeNet 5, Rotation invariance 
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LeNet 5, Nosie resistance 
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LeNet 5, Unusual Patterns 
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Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton,  

Advances in Neural Information Processing Systems 2012 

ImageNet Classification with Deep  
Convolutional Neural Networks 
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 15M images  

 22K categories 

 Images collected from Web 

 Human labelers (Amazon’s Mechanical Turk crowd-sourcing) 

 ImageNet Large Scale Visual Recognition Challenge (ILSVRC-2010)  

o 1K categories 

o 1.2M training images (~1000 per category) 

o 50,000 validation images 

o 150,000 testing images 
  

 RGB images  

 Variable-resolution, but this architecture scales them to 256x256 size  

ImageNet 
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Classification goals:  

 Make 1 guess about the label (Top-1 error) 

 make 5 guesses about the label (Top-5 error) 

ImageNet 
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The Architecture 

Typical nonlinearities: 

Here, however, Rectified Linear Units (ReLU) are used: 

Empirical observation: Deep convolutional neural networks with 
ReLUs train several times faster than their equivalents with tanh units 

 A four-layer convolutional neural 
network with ReLUs (solid line) 
reaches a 25% training error rate on 
CIFAR-10 six times faster than an 
equivalent network with tanh neurons 

(dashed line) 
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The Architecture 

The first convolutional layer filters the 224×224×3 input image with 
96 kernels of size 11×11×3 with a stride of 4 pixels (this is the distance 
between the receptive field centers of neighboring neurons in the kernel 
map. 224/4=56 

The pooling layer: form of non-linear down-sampling. Max-pooling 
partitions the input image into a set of rectangles and, for each such sub-
region, outputs the maximum value 
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The Architecture 

 

 Trained with stochastic gradient descent 

 on two NVIDIA GTX 580 3GB GPUs  

 for about a week 

 

 650,000 neurons 

 60,000,000 parameters 

 630,000,000 connections 

 5 convolutional layer, 3 fully connected layer 

 Final feature layer: 4096-dimensional 
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Data Augmentation 

The easiest and most common method to reduce overfitting on image 
data is to artificially enlarge the dataset using label-preserving 
transformations.  

 

We employ two distinct forms of data augmentation:   

 image translation 

 horizontal reflections 

 changing RGB intensities 
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Dropout 

 We know that combining different models can be very useful 
(Mixture of experts, majority voting, boosting, etc)  

 

 Training many different models, however, is very time consuming. 

The solution:  
 Dropout: set the output of each hidden neuron to zero w.p. 0.5. 
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Dropout: set the output of each hidden neuron to zero w.p. 0.5. 

 The neurons which are “dropped out” in this way do not contribute to 
the forward pass and do not participate in backpropagation.  

 So every time an input is presented, the neural network samples a 
different architecture, but all these architectures share weights.  

 This technique reduces complex co-adaptations of neurons, since a 
neuron cannot rely on the presence of particular other neurons.  

 It is, therefore, forced to learn more robust features that are useful in 
conjunction with many different random subsets of the other neurons. 

 Without dropout, our network exhibits substantial overfitting.  

 Dropout roughly doubles the number of iterations required to converge. 

Dropout 
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96 convolutional kernels of size 11×11×3 learned by the first 
convolutional layer on the 224×224×3 input images.  

The top 48 kernels were learned on GPU1 while the bottom 48 kernels 
were learned on GPU2 

 

Looks like Gabor wavelets, ICA filters… 

The first convolutional layer 
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Results 

Results on the test data: 
 top-1 error rate: 37.5% 
 top-5 error rate: 17.0% 

ILSVRC-2012 competition:  
  15.3% accuracy 
  2nd best team: 26.2% accuracy  



39 

Results 
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Results: Image similarity 

Test column 
six training images that produce feature vectors in  
the last hidden layer with the smallest Euclidean distance  
from the feature vector for the test image. 
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Deep Belief Networks 
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  It requires labeled training data. 

 Almost all data is unlabeled. 

 The learning time does not scale well. 

 It is very slow in networks with multiple  hidden layers. 

 It can get stuck in poor local optima. 

 Usually in deep nets they are far from optimal.  

 MLP is not a generative model, it only focuses on P(Y|X).  
We would like a generative approach that could learn P(X) as well. 

 Solution: Deep Belief Networks, a generative graphical model  

What is wrong with back 
propagation? 
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Deep Belief Network 

Deep Belief Networks (DBN’s) 

 are probabilistic generative models  

 contain many layers of hidden variables  

 each layer captures high-order correlations between 
   the activities of hidden features in the layer below  

 the top two layers of the DBN form an undirected bipartite graph 
 called Restricted Boltzmann Machine 

 the lower layers forming a directed sigmoid belief network 
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Deep Belief Network 

Restricted  
Boltzmann  
Machine 

sigmoid belief network 

sigmoid belief network 

Data vector 
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Deep Belief Network 

Joint likelihood: 
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Boltzmann Machines 
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Boltzmann machine: a network of symmetrically coupled stochastic  
   binary units {0,1} 

Boltzmann Machines 

Visible layer 

Hidden layer 

Parameters: 

Energy of the Boltzmann machine: 

W: visible-to-hidden 

L: visible-to-visible, diag(L)=0 

J:  hidden-to-hidden, diag(J)=0 
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Energy of the Boltzmann machine: 

Boltzmann Machines 

Generative model: 

Probability of a visible vector v: 

Joint likelihood: 

Exponentially large set  
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Restricted Boltzmann Machines 

Visible layer 

Hidden layer 

No hidden-to-hidden and no visible-to-visible connections. 

W: visible-to-hidden 

L = 0: visible-to-visible 

J = 0:  hidden-to-hidden 

Energy of RBM: 

Joint likelihood: 



50 Figure is taken from R. Salakhutdinov 

Restricted Boltzmann Machines 

Top layer: vector of stochastic binary hidden units h  
Bottom layer: a vector of stochastic binary visible variables v. 
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Due to the special bipartite structure of RBM’s, the hidden units can be 
explicitly marginalized out: 

Training RBM 
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Training RBM 

Gradient descent: 

The exact calculations are intractable because the expectation operator 
in E_P_Model takes exponential time in min(D,F) 

Efficient Gibbs sampling based approximation exists (Contrastive divergence) 
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Inference in RBM 

Inference is simple in RBM: 
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Training Deep Belief Networks 



55 

Training Deep Belief Networks 

Greedy layer-wise unsupervised learning:  

 Much better results could be achieved when pre-training each 
 layer with an unsupervised learning algorithm, one layer after the 
 other, starting with the first layer (that directly takes in the 
 observed x as input).  

 

 The initial experiments used the RBM generative model for each layer. 

 Later variants: auto-encoders for training each layer (Bengio et al., 
2007; Ranzato et al., 2007; Vincent et al., 2008 

 After having initialized a number of layers, the whole neural network 
can be fine-tuned with respect to a supervised training criterion as 
usual 
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The unsupervised greedy layer-wise training serves as initialization, 
replacing the traditional random initialization of multi-layer 
networks. 

Training Deep Belief Networks 

Data 
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Training Deep Belief Networks 
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 Deep architecture trained online with 10 million examples of digit 
images, either with pre-training (triangles) or without (circles).  

 The first 2.5 million examples are used for unsupervised pre-training.  

 One can see that without pre-training, training converges to a poorer 
apparent local minimum: unsupervised pre-training helps to find a 
better minimum of the online error.  Experiments performed by Dumitru Erhan. 
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Results 
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Deep Boltzmann Machines Results 
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Deep Boltzmann Machines Results 
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Deep Boltzmann Machines Results 



63 

Deep Boltzmann Machines Results 
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Thanks for your Attention!  


