Introduction to Machine Learning

CMU-107/01

Deep Learning

Barnabas Poczos & Aarti Singh

MACHINE LEARNING DEPARTMENT

L

Carnegie Mellon.

Many of the pictures, results, and other materials are taken from:
Ruslan Salakhutdinov
Joshua Bengio
Geoffrey Hinton
Yann LeCun

[Definition and Motivation
O History of Deep architectures

[Deep architectures
d Convolutional networks
O Deep Belief networks

d Applications

Deep architectures

Defintion: Deep architectures are composed of multiple levels of non-linear
operations, such as neural nets with many hidden layers.

Output layer tanh(}_ Wijz; + Wip)

j
c(>_ Wijz; + Wip)
J

Hidden layers 1

14 exp[— (X Wijzj + Wig)]
j

Goal of Deep architectures

Goal: Deep learning methods aim at

very high level representation:
= |earning feature hierarchies van| [SITTING

= where features from higher levels of the ‘

hierarchy are formed by lower level features. ote

A

edges, local Shapesl ObjECt parts slightly higher level representation

A

raw input vector representation:

Low level representation .’=|23]|19(20 18

Figure is from Yoshua Bengio

Neurobiological Motivation

d Most current learning algorithms are shallow architectures (1-3 levels)
(SVM, kNN, MoG, KDE, Parzen Kernel regression, PCA, Perceptron,...)

SVM: J(x) = sign(3. ayyik(x;,x))

1=

d The mammal brain is organized in a deep architecture (Serre, Kreiman,
Kouh, Cadieu, Knoblich, & Poggio, 2007)
(E.g. visual system has 5 to 10 levels)

d

a

Deep Learning History

Inspired by the architectural depth of the brain, researchers wanted
for decades to train deep multi-layer neural networks.

No successful attempts were reported before 2006 ...

Researchers reported positive experimental results with typically
two or three levels (i.e. one or two hidden layers), but training
deeper networks consistently yielded poorer results.

Exception: convolutional neural networks, LeCun 1998

SVM: Vapnik and his co-workers developed the Support Vector
Machine (1993). It is a shallow architecture.

Digression: In the 1990’s, many researchers abandoned neural
networks with multiple adaptive hidden layers because SVMs worked
better, and there was no successful attempts to train deep networks.

Breakthrough in 2006

Breakthrough

Deep Belief Networks (DBN)

Hinton, G. E, Osindero, S., and Teh, Y. W. (2006).
A fast learning algorithm for deep belief nets.
Neural Computation, 18:1527-1554.

Autoencoders

Bengio, Y., Lamblin, P., Popovici, P., Larochelle, H. (2007).
Greedy Layer-Wise Training of Deep Networks,
Advances in Neural Information Processing Systems 19

Theoretical Advantages of Deep

Architectures

d Some functions cannot be efficiently represented (in terms of humber
of tunable elements) by architectures that are too shallow.

A Deep architectures might be able to represent some functions
otherwise not efficiently representable.

O More formally:

Functions that can be compactly represented by a depth k
architecture might require an exponential number of
computational elements to be represented by a depth k — 1
architecture

0 The consequences are

= Computational: We don’t need exponentially many elements in
the layers

= Statistical: poor generalization may be expected when using an
insufficiently deep architecture for representing some functions.

9

Theoretical Advantages of Deep

Architectures

The Polynoimal circuit:

; ; ; " ; "
(172} XaXg) + (2122)(Tary) + [XaXg)™ + (X2Xg)(TyTy)

Aoaxg) + [TaTy)

10

Deep Convolutional Networks

11

Deep Convolutional Networks

O Deep supervised neural networks are generally too difficult to train.

O One notable exception: convolutional neural networks (CNN)

[Convolutional nets were inspired by the visual system’s structure

A They typically have five, six or seven layers, a number of layers which
makes fully-connected neural networks almost impossible to train
properly when initialized randomly.

12

Deep Convolutional Networks

Compared to standard feedforward neural networks with similarly-sized layers,
= CNNs have much fewer connections and parameters
= and so they are easier to train,

= while their theoretically-best performance is likely to be only slightly
WOorse.

LeNet 5
Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning

Applied to Document Recognition, Proceedings of the IEEE,
86(11):2278-2324, November 1998

13

LeNet 5, LeCun 1998

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT
32x32

6@28x28
@28x S2: f. maps

C5:layer gg: jayer OUTPUT
6@14x14 Yer S0

120 84

s
.

|
| | Full conAection | Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

= Input: 32x32 pixel image. Largest character is 20x20
(All important info should be in the center of the receptive field of the
highest level feature detectors)

= (Cx: Convolutional layer
= Sx: Subsample layer
= Fx: Fully connected layer

= Black and White pixel values are normalized:
E.g. White = -0.1, Black =1.175 (Mean of pixels = 0, Std of pixels 1=41)

LeNet 5, Layer C1

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT 6@28x28

32x32 S2: f. maps

6@14x14

CS: layer . jayer OUTPUT
Ir rl_ 120 a7 o

‘ Full conAection | Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

C1: Convolutional layer with 6 feature maps of size 28x28. C1, (k=1...6)

Each unit of C1 has a 5x5 receptive field in the input layer.

= Topological structure ‘
= Sparse connections

= Shared weights

(5*%5+1)*6=156 parameters to learn

Connections: 28*28*(5*5+1)*6=122304

If it was fully connected we had (32*32+1)*(28*28)*6 parameters 15

LeNet 5, Layer S2

C3: f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5
6@28x28
32x32 S2:f. maps
6@14x14

|
| | Full conAection | Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

S2: Subsampling layer with 6 feature maps of size 14x14

2x2 nonoverlapping receptive fields in C1

Layer S2: 6*2=12 trainable parameters.
Connections: 14*14*(2*2+1)*6=5880

16

LeNet 5, Layer C3

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT
32x32

6@28x28

S2: f. maps
6@14x14

C5:layer gg: jayer OUTPUT
120 84 10

s
0

|
| Full conAection | Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

= (C3: Convolutional layer with 16 feature maps of size 10x10

= Each unit in C3 is connected to several! 5x5 receptive fields at identical
locations in S2

01 2 3 4 5 6 7 & 9 10111213 14 15

0| X X X X X X X X X X

Layer C3: 1|X X X X X X XXX X

21X X X X X X X X X X

i 3 X X X X X X X X X X

1516 trainable parameters. : XX x e 5

Connections: 151600 > A2 XXXX XXX
TABLE T

EACH COLUMN INDICATES WHICH FEATURE MAP IN 52 ARE COMBINED
BY THE UNITS IN A PARTICULAR FEATURE MAP OF (3.

LeNet 5, Layer S4

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT
32x32

6@28x28

S2: f. maps

C5:layer gg: jayer OUTPUT
6@14x14 y 10

120 84

s
0

|
| | Full conAection | Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

= S4: Subsampling layer with 16 feature maps of size 5x5

= Each unit in 54 is connected to the corresponding 2x2 receptive field at
C3

Layer S4: 16*2=32 trainable parameters.
Connections: 5*5*(2*2+1)*16=2000

18

LeNet 5, Layer C5

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT 6@28x28

32x32 S2: f. maps

6@14x14

C5:layer gg: jayer OUTPUT
120 84 10

s
0

|
| | Full conAection | Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

= (C5: Convolutional layer with 120 feature maps of size 1x1

= Each unit in C5 is connected to all 16 5x5 receptive fields in S4

Layer C5: 120*(16*25+1) = 48120 trainable parameters and connections
(Fully connected)

19

LeNet 5, Layer C5

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT
32x32

6@28x28
@28x S2: f. maps

C5:layer gg: jayer OUTPUT
6@14x14 y 10

120 84

s
0

|
| | Full conAection | Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

Layer F6: 84 fully connected units. 84*(120+1)=10164 trainable
parameters and connections. ‘

Output layer: 10RBF (One for each digit)

84=7x12, stylized image
Weight update: Backpropagation

20

21

—boeFTotOrmN
wdWo™N T B
o v o |0—T %N
DL e Do~ xigY o
S ~~=T\wMNOY
NN CQNNNd O 75
NN NT T
cwnN=—=0nN e YN
CN-SWNXAd -\
MNNT N Q N

a....;.,d Ao N N % ller
GIWEHS&?EQ
- Q= | ||| || N[O\) &
o - 3
- 2 _AU ?JHJT\. NN 0ol &
e m% Ol}_ﬂ:n}u:sr.u_?ugnu.
% ﬂm% AU.]RTJ#E.&?EG.
4 ”mJ.Or. Q—| %[A| > | | & ®| e
(O S &
— Wm Ql == ||| w]|e
0p)
]
=z
(-
>

540,000 artificial distortions

+ 60,000 original
Test error: 0.8%

E} > »5
7 3 &

¥

A 1 3%
2-»1 5E-»3 d-»8 Z-=8
;ﬁiﬁ E—»3 B-=>7 [0-=8

0p)
Q
ol
&
O
e
D
©
D
&
0p
0]
(O
O
&
>

d-=f 3I-»5 B-=2
G->d4 H-=0

4B

>4

1

8-> 4->9 &->1 9->=4 9->1

-»7 B-23 8-

7

x4

W 2%
i-=9 6->0

5-»>3 4-»2B 3-:

8
9->4 2-=0 6-

& 5 ¥ 3
4

H-22

(a0
o !
[Ym
]
LU o
-
]
9
Lk
~
=
Lk
s
L)
[
L)
oy
A
[
[T
My
1ﬂw_
[
Lo |
-~

¥ 7 49 4

#1

9

Az
T-»3 0-»4 4-=§ 2->7

q

bk 7

4

4->3 9-»4 9->4 9->

-=7

d-=h

3i->5

0

8->7T 4->2 8->4

e
7
6->5 9->5

/

-

/

o

)} 9

1-»k

at L]
G->2

-8 £->3

2-»>8 8->5 4->9 T-=

2 = &

22

LeNet 5 In Action

%ﬂ“ \ LeNel 5 E!FFF’-“F!‘.‘

answer:)

& el

FAF A+ - | &

J
Ui
A
ET —
o
")
=
-
Y
J

<k

Input
C1 c3 54

23

LeNet 5, Shift invariance

RESEARCH

riisaiser,

S
Ty
- — [}
ik
ey N
= =
L
i
Lp—
L . |
——
— |
—_— -
regt— g
ey
.I."I-
]
—_—
 —
—_—
[
-
i
i
-,
= =
i

LeNet 5, Rotation Invariance

LeNel S | peseancy

LR iT T §iEibE

1| I g

i

.

-

»

»

-
EN
&

[&

Ly
£
i
N

3

A

s
W
L
B\

LeNet 5, Nosie resistance

%WI LeNel 5 | geseanch

answer: 6

%M | fLeNel 5 | peseancw

answer: 3

4

DA T W L L7

{

[

I

A"

LeNet 5, Unusual Patterns

LeNet 5 RESEARCH
answer: 3

RESEARCH

Il
el

R Pgid- 5
0l B
CHTRE Ly

4] g
L

IR FE N2
151 B0 ETEe

5
o LB o S 136)]

EY

A 1
L

o |,

RESEARCH i NVEL Y | pesEARcH

I | 1]

aars g TR v UIHE e w g e Y
g, o el 70

el

ImageNet Classification with Deep

Convolutional Neural Networks

Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton,

Advances in Neural Information Processing Systems 2012

28

ImageNet

O 15M images

Q 22K categories

d Images collected from Web

d Human labelers (Amazon’s Mechanical Turk crowd-sourcing)

O ImageNet Large Scale Visual Recognition Challenge (ILSVRC-2010)
o 1K categories
o 1.2M training images (~1000 per category)
o 50,000 validation images

o 150,000 testing images

0 RGB images

[Variable-resolution, but this architecture scales them to 256x256 size

29

ImageNet

Classification goals:
d Make 1 guess about the label (Top-1 error)

O make 5 guesses about the label (Top-5 error)

The Architecture

Training error rate

Typical nonlinearities:

f(x) = tanh(x)
fl@)y=Q4e !

Here, however, Rectified Linear Units (ReLU) are used: f(xz) = max(0, z)

Empirical observation: Deep convolutional neural networks with
RelLUs train several times faster than their equivalents with tanh units

075

0.5

U251

A four-layer convolutional neural
network with ReLUs (solid line)
reaches a 25% training error rate on
CIFAR-10 six times faster than an
equivalent network with tanh neurons

(dashed line)

31

The Architecture

(e e\ | I = [
.......... : :_'_. .._-H_I_'_-_.“ _,-_:E'." a 3 - ..-.--:"5""
., e 187 192 128 203 \ [2038 \Oense
v ..)’ e, 13 13 \
Y e e E VY
B 3 ‘-... :’h,_ 3 L -' I----u-a:.:";,:‘_ i A
3+ 3 B . :-[3_:._}___ - 13 dense dEHEé
] 1000
1492 192 128 Max —_— |
Max 128 Max DDO”HQ o e
poaling pooling

3 48

The first convolutional layer filters the 224x224x3 input image with
96 kernels of size 11x11x3 with a stride of 4 pixels (this is the distance

between the receptive field centers of neighboring neurons in the kernel
map. 224/4=56

The pooling layer: form of non-linear down-sampling. Max-pooling

partitions the input image into a set of rectangles and, for each such sub-
region, outputs the maximum value

32

The Architecture

= Trained with stochastic gradient descent
= on two NVIDIA GTX 580 3GB GPUs

= for about a week

650,000 neurons

a 60,000,000 parameters

3 630,000,000 connections

d 5 convolutional layer, 3 fully connected layer

A Final feature layer: 4096-dimensional

33

Data Augmentation

The easiest and most common method to reduce overfitting on image
data is to artificially enlarge the dataset using label-preserving
transformations.

We employ two distinct forms of data augmentation:
= image translation
= horizontal reflections

= changing RGB intensities

34

d We know that combining different models can be very useful
(Mixture of experts, majority voting, boosting, etc)

d Training many different models, however, is very time consuming.

The solution:
Dropout. set the output of each hidden neuron to zero w.p. 0.5.

35

Dropout: set the output of each hidden neuron to zero w.p. 0.5.

The neurons which are “dropped out” in this way do not contribute to
the forward pass and do not participate in backpropagation.

So every time an input is presented, the neural network samples a
different architecture, but all these architectures share weights.

This technique reduces complex co-adaptations of neurons, since a
neuron cannot rely on the presence of particular other neurons.

It is, therefore, forced to learn more robust features that are useful in
conjunction with many different random subsets of the other neurons.

Without dropout, our network exhibits substantial overfitting.

Dropout roughly doubles the number of iterations required to converge.

36

The first convolutional layer

96 convolutional kernels of size 11x11x3 learned by the first
convolutional layer on the 224x224x3 input images.

The top 48 kernels were learned on GPU1 while the bottom 48 kernels
were learned on GPU2

Looks like Gabor wavelets, ICA filters... -

Results on the test data:
top-1 error rate: 37.5%
top-5 error rate: 17.0%

ILSVRC-2012 competition:
15.3% accuracy
2"d best team: 26.2% accuracy

38

mﬁe

container shi

motor scooter

mite container ship motor scooter leapard

black widow lifeboat go-kart Jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car []_J snow leopard

starfish drilling platform golfcart Egyptian cat
. . ;

b/
: = -
Y

9! e musnroom C eg a ggva'scar cat
convertible agaric dalmatian squirrel monkey
grille mushroom grape spider monkey

:"l pickup jelly fungus elderberry _]_, titi
beach wagon gill fungus |ffordshire bullterrier indri
fire engine | dead-man’'s-fingers currant howler monkey

39

Results: Image similarity

/ six training images that produce feature vectors in
Test column the last hidden layer with the smallest Euclidean distance
from the feature vector for the test image. 40

Deep Belief Networks

What is wrong with back

propagation?

d It requires labeled training data.

= Almost all data is unlabeled.
A The learning time does not scale well.

= Jtis very slow in networks with multiple hidden layers.
A It can get stuck in poor local optima.

= Usually in deep nets they are far from optimal.

A MLP is not a generative model, it only focuses on P(Y|X).
We would like a generative approach that could learn P(X) as well.

O Solution: Deep Belief Networks, a generative graphical model

42

Deep Belief Network

Deep Belief Networks (DBN'’s)

are probabilistic generative models
contain many layers of hidden variables

each layer captures high-order correlations between
the activities of hidden features in the layer below

the top two layers of the DBN form an undirected bipartite graph
called Restricted Boltzmann Machine

the lower layers forming a directed sigmoid belief network

43

Deep Belief Network

_ 3
Restricted h
Boltzmann 2 2.3
Machine P(h) h) ~ RBM
_ _ hz
sigmoid belief network ™)
- h!
sigmoid belief network _
— X

Data vector

Deep Belief Network

P01 « exp(bTht~1 4+ cTh! + '’ whi-1) h’
P(h’,h’) ~ RBM
h2
o(z) =(1+e*)7 1
k k k
P(hf = 1h*H1) = o] T + - Wi Rt
J hl
P(z; = 1Y) = o (b + Y Wihh))
J
. . . X
Joint likelihood: o
P(x,hl, nY) = P w1 (I1 P(hk|hk+1)) P(x/h!)
k=1 45

Boltzmann Machines

46

Boltzmann Machines

Boltzmann machine: a network of symmetrically coupled stochastic
binary units {0,1}
General Boltzmann

Parameters: Machine
o ={W,L,J}
Hidden layer
. . he{0,1}”
W: visible-to-hidden
L: visible-to-visible, diag(L)=0
J: hidden-to-hidden, diag(J)=0
Visible layer
v e {0,1}¢

vO
Energy of the Boltzmann machine:)

1 1
E(v,h|0) = —EVTLV — §hTJh — vI'wnh

47

Boltzmann Machines

Energy of the Boltzmann machine:

E(v,h|0) = —%VTLV - %hTJh — vI'wnh

Generative model:

Joint likelihood: P (V, h|@) o< exp(—E(Vv, h; 0))

Probability of a visible vector v:

P(v|0) = > P(v,h|0)
h

> exp(—E(v,h;0))
h

Exponentially large set —

Z(0)
Z(0) =) » exp(—E(v,h;0))
vV h

48

Restricted Boltzmann Machines

No hidden-to-hidden and no visible-to-visible connections.

Restricted Boltzmann

W: visible-to-hidden Machine

L = 0: visible-to-visible Hidden layer
J = 0: hidden-to-hidden

Energy of RBM: Visible layer
E(v,h|0) = —vIwh-blv—-a’n
Joint likelihood:
P(v,h|0) =

1 |
Z(0) exp(—FE(v,h;0)) }

0p)
D
p=
o
O
(O
>
-
-
(O
&
N
=
@
o0
©
Q
+J
O
-
)
O
o'

XSk
,/ﬁf«# KL

e ﬁﬁ@m)

AR ST N LA
KASNNIA W D LA A
RS W el itd.
NN XA LA

= i |
AN S A ol LA A ai.....
NNz
NN\ AV 2.0 syl

A A AL /
SRS WL Rl BN
R WAL 54

B R A R v
el WAL JADES AT .

Z W ”,w#?ﬁ 21418 Pssufpf_.ﬁ."

A B R
@ﬂ....w._.@m “7
e

Rk N

PRI Houpr_.)
T RAC RN

Oy

et e W s gy

RSN RIS RO

O EAY ﬂ.__.. fl L\ ;‘_ /

. : ._.f_._,..’.... O\ ;5..3. /

§ -~

X T\
RUASA AT)

~JL AN LJ-.,..”_r...‘_f ﬁﬂ HPM“.‘_
AT AT AV VA W &
N Y
R BN AR RS

RN
N\
1 e bﬁﬁ«ff/

Lo

AR XY
25 N

vector of stochastic binary hidden units h

Bottom layer

Top layer

a vector of stochastic binary visible variables v.

Figure is taken from R. Salakhutdinov 50

Training RBM

Due to the special bipartite structure of RBM’s, the hidden units can be
explicitly marginalized out:

)ZE‘XP (v,h;0)).

% Z exp (VTI«Vh +b'v+ aTh)
h

F

D
1
Z(0) exp(b'v) H Z exp (ajhj + Zﬂf}jwhj)

J=1 h;e{0,1} i=1

F D
1 T
Z(0) exp(b' v) H (1 + exp (uj + ; H&ﬁr@)) .

J=1

51

Training RBM

F D
P(v; 9) — Zi’ﬁ) exp(b ' v) H (1 + exp (uj + Z Hf}ﬂri-))
= i=1

j=1

Gradient descent:

dlog P(v;0) s .
aHf - EP"IM"“ Vh] B EP]"VIUdEl [Vh]1
Jdlog P(v;8) _
@a - EP"'""L“ h] o EPI""Iudel [h]'
Jdlog P(v;8) _
db = EPjuta V] — EPyioder vl

The exact calculations are intractable because the expectation operator
in E_P_Model takes exponential time in min(D,F)

Efficient Gibbs sampling based approximation exists (Contrastive divergence)
52

Inference in RBM

Inference is simple in RBM:

P(hlv;0) = |[p(hjlv), P(vh;0) = |]p(vih).
j i
p(vi=1h) = g (Z Wijhj + bz) ,
J

where g(z) = 1/(1+exp(—=)) is the logistic function.

53

Training Deep Belief Networks

Training Deep Belief Networks

Greedy layer-wise unsupervised learning:

Much better results could be achieved when pre-training each
layer with an unsupervised learning algorithm, one layer after the
other, starting with the first layer (that directly takes in the
observed x as input).

= The initial experiments used the RBM generative model for each layer.

= |ater variants: auto-encoders for training each layer (Bengio et al.,
2007; Ranzato et al., 2007; Vincent et al., 2008

= After having initialized a number of layers, the whole neural network
can be fine-tuned with respect to a supervised training criterion as
usual

55

Training Deep Belief Networks

The unsupervised greedy layer-wise training serves as initialization,
replacing the traditional random initialization of multi-layer
networks.

OOOOOO0) hs

RBM

OOOOOOY . OOOOOO) h

w0

OQOOOOOQ) M @OOPOOO) hy @OOPOOO) hi
RBM I :

O©000000) x OO00000) x QOO0

Data 56

Training Deep Belief Networks

Algorithm 1 Recursive Greedy Learning Procedure for the DBN.

1: Fit parameters W' of the 15* layer RBM to data.

2: Freeze the parameter vector W' and use samples h! from Q(h'|v) = P(h'|v. W) as the data for
training the next layer of binary features with an RBM.

3: Freeze the parameters W2 that define the 2°d layer of features and use the samples h? from
Q(h?/h!) = P(h%|h!, W?) as the data for training the 3°¢ layer of binary features.

4: Proceed recursively for the next layers.

QOOOOO0) hs

RBM
OOOO00O0CY) A @OOPOO@ hz
RBM
L Y
OOOOQOQ) M @OOPOOO) hy @OOPOO@ hy
RBM : :

O©000000) x ©O000000) x QO00000)

57

. 3-layer net, budget of 10000000 iterations
10 r : - ' -

== 0 unsupervised + 10000000 supervised
—XF— 2500000 unsupervised + 700000 supervised

Online classification error

1 1 1 L 1 1 L 1 1
0 1 2 3 4 5 4] T B -] 10
Mumber of examples seen x 10"

Deep architecture trained online with 10 million examples of digit
images, either with pre-training (triangles) or without (circles).

The first 2.5 million examples are used for unsupervised pre-training.

One can see that without pre-training, training converges to a poorer
apparent local minimum: unsupervised pre-training helps to find a
better mlnlmum Of the Onllne error. Experiments performed by Dumitru Erhan.

59

Deep Boltzmann Machines Results

| 1000 units)

I

(1000 units) [500 units |
| |
[500 units | [500 units |
1 1
28 x 28 28 x 28

pixel pixel
image image

60

%
E—
-
d
Y
W
U
=
e
O
(C
>
-
-
(C
&
N
E—
@
an
ol
<,
U
o

w..p..,u..nuﬂf/r:f.
W 00 3} N I~

*)

61

Deep Boltzmann Machines Results

Deep Boltzmann Machine
(4000 units)

!

| 4000 units]

I

(4000 units
Preprocessed
transfnrmatmn
é é Stereo pair

Gaussian visible units
(raw pixel data)

62

Deep Boltzmann Machines Results

Training Samples

-

Generated Samples

L)
4
™
~
o

SR Sk AR

Thanks for your Attention! ©

