
Introduction to Mathematics for Game Development.

James Cowley

(Dated: June 23, 2016)



2

I. INTRODUCTION

This article is intended as an introduction to all the basic mathematical concepts you will need

to understand for game development. It will make the assumption that you are someone who

maybe was never particularly good at maths, or who took maths classes so long ago that you can

barely remember them. Basically, I will not assume much prior knowledge of mathematics.

This guide obviously has it’s limitations; I will not be going into massive depth on any of these

subjects, or treating them with a high degree of rigour. So if you want to get some more details on

any of the topics introduced here, I’ll be providing a reference list at the end.

I’ll wrap up this section with a little bit about myself. I am currently studying physics at

university, in my third year, so maths is like a second language to me (I’m not very good at learning

actual languages, though, unfortunately). I want to go into full-time game development once I

graduate, so I’ve been programming in my spare time, and there are a lot of cases where I have

come across other devs saying “I wish I understood matrices” or “what the hell is a quaternion?”.

So I decided to make this in the hopes that it would help someone out at some point.

Now, on to the meat of the article.

II. TRIGONOMETRY

I’m sure many of you have traumatic memories of high school trigonometry lessons. That is

fair enough, but trig lies at the heart of a large amount of game development, and maths as a whole.

So you are going to have to take this bull by the horns at some point. I will try to cover it in as

nice a way as possible, though.

Firstly: what is trigonometry? Well, it ultimately stems from the study of geometry, specifically

triangles. The overall idea is to relate angles to distances and vice versa. There are many different

trigonometric quantities, but there are six that you need to know about: sin, cos, tan, arcsin,

arccos, and arctan. They may sound very intimidating, but in reality they are pretty simple, if you

have a diagram to help, that is. If you turn your attention to Figure 1, you will see a construction

called the “unit circle”. The word “unit” is one that crops up all the time in maths; it basically

means “length = 1”. So the unit circle is a circle with a radius of one. Specifically “THE” unit

circle is the circle with radius one, and centred at the origin of whatever coordinate system you are

dealing with.
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FIG. 1. The unit circle for trigonometry.

Let us take a look at that triangle marked on the figure. You can see the sides are marked “O”,

“H” and “A”. These stand for “Opposite”, “Hypotenuse” and “Adjacent”. So the “opposite” side

is opposite the angle θ, the “adjacent” side is next to it, and the “hypotenuse” is the longest side.

You may recall being taught in school the “SOH CAH TOA” mnemonic. That is simply a way to

remember the following relations:

sin(θ) =
LO
LH

, cos(θ) =
LA
LH

, tan(θ) =
LO
LA

. (1)

where LA, LO, LH are the lengths of each side of the triangle. If you bear these in mind, and

then look back at the unit circle, you will see that I have marked the y-axis as “sin” and the x-axis

as “cos”. This is because the y coordinate of a point P on the circle is equal to the sin of the angle

θ; this is easy to see, if you remember that the hypotenuse here is the radius of the circle, which is

just 1.

You will also notice a line marked “tan”. Tan is the short name for “tangent”; a tangent is a

line which joins a curve (in this case our unit circle) at one point only (in this case, (1, 0)). So if

sin(θ) is the y coordinate of the point P on the circumference, and cos(θ) is the x coordinate, then

what is tan(θ)? Well, that is the y coordinate of the point at which our line touches the tangent



4

(note we’ll have to continue the line past the unit circle’s edge). Now the unit circle is not great

for finding the exact values of trig functions (except in special cases, such as θ = 90 degrees), but

can come in handy for estimation, and can also give you an intuitive understanding of why some

things occur in trigonometry. For example, if you have a quick look, you will note that if we let

θ = 90 degrees, then sin(θ) = 1,cos(θ) = 0, but you will also notice that no matter how far we

continue our line out, it will never touch the tangent line. so tan(θ) =∞.

So, let us have an example: say you have an angle of 30 degrees and an adjacent side of length

3 metres. What is the length of the hypotenuse? First, which of the three trig relations involves the

hypotenuse and the adjacent? That would be cos. So the relation for cos is

cos(θ) =
LA
LH

(2)

and we want to get LH . So we multiply both sides by LH :

LHcos(θ) = LA, (3)

then divide both sides by cos(θ), to get LH on its own:

LH =
LA

cos(θ)
(4)

and there we have it. We have the unknown (LH) in terms of known quantities. Plop these into

a calculator and we obtain 3.46 m (to 3 significant figures).

This is all well and good; but if you recall the start of this section, I mentioned six trig quantities.

Where do the “arc”s come in? Well, you may have noticed we have only dealt with finding a length,

given a length and an angle. What if we want to find an angle, given two lengths? This is where

the arc quantities come into play. Arcsin is the “inverse” of the ‘sin function, and similarly for the

other arcs. What does this mean, though? It means that arcsin “undoes” the action of sin. This

will be better illustrated with an example. Say we want to find the angle between the hypotenuse

and the adjacent sides of a triangle. So we want arccos (remember SOH CAH TOA). Let us work

through this step by step:

cos(θ) =
LA
LH

. (5)
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We want just θ, so we want to undo the cos. So we apply arccos:

arccos(cos(θ)) = arccos(
LA
LH

). (6)

Remember that arccos removes the cos, so we just get θ on the left-hand side:

θ = arccos(
LA
LH

). (7)

And then, again, the right-hand side is something you can do on a calculator (or in code, e.g.

the acos function in C/C++).

Now, any discussion of angles is incomplete without discussing “radians”. The radian is a unit

of angle, just like degrees, except far more useful in mathematics, physics, programming, and

everything really. The basic low-down is that there are 2π radians in a circle, just as there are

360 degrees in a circle. So to convert from degrees to radians, you divide by 180, then multiply

by π. So, for example, 90 degrees is the same as π
2

radians. Radians are handy because a lot of

mathematical results are neatest, or only work, in radians. So radians are good to know. Also,

some maths functions, e.g. in C and C++, only take radians as arguments, so you can get all the

wrong results if you try using degrees. My advice is to use radians always, unless you have a

specific reason not to.

And that is pretty much it for trigonometry. What do I think you should put emphasis on

learning? The unit circle, SOH CAH TOA, and radians. Learn those and you’re set. Note that

trigonometry goes a whole lot deeper than this, with the hyperbolic functions sinh, cosh, tanh

and so on, but you are very unlikely to need them in game development.

III. CALCULUS

Calculus is a key part of game programming, especially in physics programming. I am going

to limit this to differential calculus, and you can research integral calculus on your own if you

wish/need to.

Differential calculus is the study of rates. If you are familiar with gradients in geometry, then

finding the gradient of a line is simple differential calculus. You find the change in y, divide it

by the change in x, and that is your gradient. But what if you have a curve? No straight lines

there. This is where you use differentiation. With a curve, we approximate it by assuming that the

curve is made up of an infinite number of infinitesimally small straight lines. Then we say that
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the gradient of the curve at a given point is the gradient of the straight line at that point. But how

do we work this out practically? Well, say we have a curve described by the equation (this is a

parabola, if you are interested; parabolae come into play with projectiles such as balls or bullets):

y = ax2, (8)

where a is some constant. To differentiate this, we take the power of x (2 in this case) down,

and multiply it with the a, then take one away from the power. That is,

dy

dx
= 2ax1 = 2ax. (9)

In general:

d

dx
(axn) = naxn−1. (10)

where d
dx

is the “derivative with respect to x”. It’s as simple as that. From this, you can also

see how to reverse a differentiation, which is called “integration”. I’ll leave that as an exercise for

the reader.

That is pretty much all you need to know about calculus to be starting off with. There is a lot

more you can look into, and what you need to know will be dependent on what sort of things you

want to do. I urge you to look into integral calculus at least.

IV. IMAGINARY NUMBERS

Imaginary numbers may sound very abstract, but they have many real-world uses, and under-

standing them is crucial to understanding quaternions (which we’ll be dealing with later), so I shall

give a quick introduction here.

The “imaginary unit”, i, is defined as

i =
√
−1. (11)

A “complex number” is a number which has an imaginary part and a real part. An imaginary

number is usually denoted by z. So

z = x+ iy, (12)
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with x being the real component and y the imaginary component. To picture the complex

numbers, you can imagine the usual “real” number line, going from −∞ to∞. Then, we add a

second line at right-angles to that, to give us the “complex plane”, where the y-axis is the imaginary

axis. In this plane, we represent the complex number z by a point with coordinates (x, y).

If you go back to the unit circle, you can see that we can represent a point in 2D space as a

combination of a sin and a cos term. This can be readily applied to complex numbers, to give us

another representation:

z = |z|(cos(θ) + isin(θ)), (13)

where |z| is the “magnitude” of z, i.e. the “length” of z, with

|z| =
√
x2 + y2. (14)

The sin, cos representation is called “Euler’s formula”, and provides a very nice geometric

interpretation of complex numbers. The final representation you will want to know is the complex

exponential notation. I assume you are somewhat aware of the number e? If you are not, then it

suffices to say that e has the remarkable quality of being its own derivative:

d

dx
(ex) = ex. (15)

In the realm of complex numbers, e has another use:

z = x+ iy = |z|eiθ. (16)

This has an obvious advantage when dealing with differentiation, as differentiating an expo-

nential is pretty easy.

This is pretty much all you will need to know for game development, usually. However, if you

are interested, do check out the internet for some really interesting information.

V. VECTORS

Now we get to the nitty-gritty of what game dev deals with.

Vectors are a type of mathematical object which have a size, or “magnitude”, and a direction.

Compare that to normal numbers, which are called “scalars”. Those just have a size, and no
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direction. The difference is best seen in an example: temperature is a scalar; it makes no sense to

say “it is 15 degrees Celsius in the westerly direction”. An example of a vector is displacement,

basically the combination of the distance to something, and the direction to it (e.g. “To get to

that hill, walk 3 kilometres North-West”).

Vectors are represented mathematically in terms of components:

~u = (x, y, z) = x~i+ y~j + z~k (17)

where x, y and z are the components of the vector ~u. ~i, ~j and ~k are the so-called “unit vectors”

(there’s the word “unit” again). These are basically vectors with magnitude 1, pointing in the x,

yand z directions respectively. These are strictly necessary because the (x, y, z) representation is

ambiguous; the x could mean x metres to the left, x metres to the slightly-left-and-behind-you, or

something else entirely. The unit vectors tell you specifically which direction each component is

going in.

A. Basic Vector Arithmetic

Adding and subtracting vectors is easy; you just go “component-wise”, i.e. adding the x com-

ponents, adding the ys and so on. You can also multiply and divide vectors by scalars; again we

do this component-wise, so 2~u = (2x, 2y, 2z). However, multiplying two vectors together is more

complicated, as there are two ways in which we can do so: the dot (or “scalar”) product and the

cross (“vector”) product.

B. Dot Product

Also known as the scalar product, the result of this is a scalar. It basically tells us “how much”

of vector ~u is pointing in the direction of ~v. You can think of this as “projecting” ~u onto ~v. How do

we calculate this? All we do is multiply the x components, the y components and z components,

then add the results together. Simple.

But where do we actually use this in game development? Well, we use it all over the goddamn

place, but two simple example are: you can use it to easily tell if two vectors are perpendicular

(“orthogonal”) to each other; if they are, their dot product will be zero (which is easy to see if you
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consider the projection of one onto the other). Another simple way the dot product can be used is

in calculating the magnitude of a vector. The magnitude of a three-dimensional vector is given by

|~v| =
√
x2 + y2 + z2. (18)

Now, you could calculate that manually, but the better way to do it is to take the dot product

of the vector with itself, and square-root that. This is better for two main reasons: firstly, it better

represents the actual mathematical basis. The magnitude of a vector is strictly defined as

|~v|2 = ~v · ~v. (19)

So using this method just better shows the underlying maths. The other main advantage is that

it gives self-consistency. Ideally, when you are implementing maths in a program, you want it to

be self-consistent. For example (a simple one), you might want to define comparison operators !=

and ==. Now, you could implement them completely separately, but the better way is to define

one in terms of the other. This means that if you do something wrong in programming the first,

you will at least get consistent results in the second; != will still return the opposite of ==, even if

== returns the wrong result.

I’ll finish this subsection off with a little bit of pseudocode illustrating how to do the dot prod-

uct, and how to use it in finding the magnitude of a vector:

function Dot (Vector u , Vector v )

{

r e t u r n (u .x ∗ v .x + u .y ∗ v .y ) ;

}

function Magnitude (Vector u )

{

r e t u r n (sqrt (Dot (u , u ) ) ) ;

}

C. Cross Product

This is more complicated. This method is also referred to as the “vector product”, because it

returns (shock!) a vector. If the dot product may be thought of as the projection of one vector
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onto another, we can picture the cross product as being how much of the first vector is pointing

perpendicular to the other. It returns a vector at right-angles to both the input vectors; this is very

useful throughout physics and game dev. But before we get to uses, let’s see how to calculate it.

There are two ways I use to remember how to do this: the first is more simple, while the second

is more mathematically “rigorous”, as it were. The first method is to imagine a circular route with

“x” at the twelve ‘o’ clock position, “y” at four and “z” at eight. Then imagine arrows going from

x→ y → z → x. In order to find the x component of the result, you multiply along the arrows to

get to the x (so you go y times z) and then subtract back along the arrows (subtract z of the first

vector times y of the second vector) and so on. This gets you

~v × ~u = (vyuz − vzuy)~i+ (vzux − vxuz)~j + (vxuy − vyux)~k. (20)

The other method for remembering it uses the determinant of a matrix, which I won’t go into

here.

So that is the cross product. Unwieldy, but mad useful. How do we use it in practice? One

use is in coordinate systems. A coordinate system is basically how you define your space; where

the origin (0, 0, 0) is, what direction is up, left, forward, and how you split your space up (you

can use the Cartesian grid style that you’ll be used to, which is a square/cubic grid, or you could

use polar coordinates of various sorts, which rely more on angles). Now for a coordinate space to

work, you need 3 (in 3D; 2 in 2D) orthogonal vectors. See where I’m going with this? If we define

where up and left are, we can find the forward direction using the cross-product. This is handy

as it reduces the memory footprint of our program (in a 3D engine each object needs a different

coordinate system, so reducing the number of vectors stored per coordinate system even by one

is really helpful). We don’t mind the extra calculation, because memory tends to be slower these

days than computation.

The other major use is in rotational mechanics. For example, the vector torque on an object is

given by the cross product between the force applied and the vector location at which the force is

applied:

~Γ = ~r × ~F . (21)

Let us again have a code snippet showing how we calculate our cross product:
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function Cross (vector u , Vector v )

{

resX = (u .y ∗ v .z − u .z ∗ v .y ) ;

resY = (u .z ∗ v .x − u .x ∗ v .z ) ;

resZ = (u .x ∗ v .y − u .y ∗ v .x ) ;

r e t u r n Vector (resX , resY , resZ ) ;

}

VI. MATRICES

This is where things really start to ramp up. We will start with the question: what is a matrix?

Well, a matrix is an array of values which are related in some way. We can represent a vector in

matrix form, as either a row or a column. The main use of matrices is in what are called “linear

systems of equations”. That will sound mighty daunting, but basically it is a way of referring to a

set of equations which are all simultaneously true, and which are coupled in some way (i.e. both

equation 1 and equation 2 will have the variables x and y in them). This makes it difficult/impos-

sible to separate the equations from one another, so you have to treat them as a single system. In

pretty much any game development scenario, you will only be dealing with square matrices i.e.

ones with the same number of rows as columns).

So let’s look at a simple matrix:

A B

C D

 (22)

So this is what we call a “2 × 2” matrix. The 2 × 2 is called the dimension of the matrix; two

rows, two columns. Another thing to note is how we denote the different “elements”: we number

them left-to-right and top-to-bottom, so that A is element 1,1 and C is element 2,1.
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A. Vectors as Matrices

We have seen that vectors are essentially three related values. This sounds like our definition

of a matrix, doesn’t it? Turns out that we can write a vector in matrix form, either as a column


x

y

z

 (23)

or as a row

(xyz). (24)

This is important, as it allows us to multiply matrices and vectors together, which is the key to

graphics programming, for example.

B. Matrix Arithmetic

1. Addition and Subtraction

Adding matrices is simple you just add corresponding elements:A B

C D

+

E F

G H

 =

A+ E B + F

C +G D +H

 (25)

Subtraction, of course, follows the same pattern.

2. Multiplication

Multiplying a matrix by a scalar (just a number) is simple; just multiply each element in the

matrix by the scalar.

Multiplying two matrices is a little more complicated. The short explanation is that you mul-

tiply the rows of the first with the columns of the second matrix. Let’s illustrate this with an

example:

A B

C D

×
E F

G H

 =

AE +BG AF +BH

CE +DG CF +DH

 (26)
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Note that this means that you can only multiply two matrices whose “inner” dimensions match.

So a 3× 3 multiplied by a 3× 2 works (the 3 on the right of the first matches with the 3 on the left

of the second) but not the other way round. So the order of multiplication matters! This is very

important. Very. This rule for the dimensions is something you must account for if you wish to

make your own matrix implementation.

Here is some pseudocode for multiplying matrices:

function MatrixMultiply (Matrix a , Matrix b )

{

i f (a .columns .count != b .rows .count )

{

Error (Cannot multiply the matrices ! ) ;

}

e l s e

{

loop (a .rows )

{

loop (a .columns )

{

result .elements [i ] [j ] += a .elements [i ] [j ] ∗ b .elements [j ] [i ] ;

}

}

}

}

Finally, we’ll look at multiplying vectors and matrices. If we represent our vector as a row or

a column, we can literally treat it identically to any other matrix. Note that this means that you

have to put thought into whether your vectors will be stored as columns or as rows, because that

will affect how you lay out your matrices. If you have row (1 × 3) vectors, then if you want to

multiply them with, say, a 3× 3 transformation matrix, then you have to put the vector in front of

the matrix when multiplying them. But if you are representing the vectors as columns (3× 1) then

you “post-multiply” the matrix by the vector (i.e. you put the vector after the matrix).
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C. Important Definitions

1. Cofactors

The “cofactor” of the i, j element of a matrix is the determinant (see later) of the smaller matrix

formed by the elements not on row i or column j, multiplied by (−1)i+j . If we have a matrix

M =


A B C

D E F

G H I

 (27)

and we refer to the i, j element as mij and the i, j cofactor as Mij , then

M11 = (−1)2det

E F

H I

 (28)

2. Determinant

The determinant of a (square) matrix is a very important quantity. It is defined as the sum of

each element along a single row or column (e.g. along the top row) multiplied by the corresponding

cofactor, i.e. the sum of mijMij. The determinant of our 2× 2 matrix is just AD −BC.

3. Transpose

The transpose of a matrix is the matrix when reflected along the top-left-to-bottom-right (“lead-

ing”) diagonal. So the transpose of the matrix M from earlier is

MT =


A D G

B E H

C F I

 . (29)

4. Inverse

When you want to “divide” by a matrix, what you do is you multiply by its inverse. We denote

the inverse of a matrix M−1. You may ask why, why the power of minus one? Well, this follows
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from the fact that dividing by x to some power is the same as multiplying by x to the negative of

that power. That is, y
xa

= yx−a.

The inverse is calculated by forming a matrix of the cofactors:


M11 M12 M13

M21 M22 M23

M31 M32 M33

 . (30)

taking the transpose of that, then multiplying that by 1
det(M)

.

D. In Practice

The main case in which you’ll use matrices for game development is graphics programming.

This is a very extensive topic which I won’t cover fully here, but I will give an example. The

example is the transformation matrices used for rendering.

You will somehow generate a couple of matrices when rendering: the first is the model matrix,

which describes the position and rotation of the object relative to the global coordinate system, and

the second is the view matrix, which describes how to go from the global coordinate system to the

camera’s coordinate system. You will then have a projection matrix which transforms a position

in the camera space to a screen position.

But how do you use these to work out where to render a vertex of your model? Well, you take

the vector position of that vertex and then multiply that by the model, view and projection matrices

in turn:

function RenderVertex (Vector vertPosition )

{

screenCoord = projection ∗ view ∗ model ∗ vertPosition ;

Render (screenCoord ) ;

}

VII. QUATERNIONS

We’ve come a long way, and now we face what is probably the most difficult part of this article,

conceptually, but is actually not too bad if you are content with just knowing the equations and
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not needing any in-depth understanding. Quaternions. Those dreaded things which are like black

magic.

First: what is a quaternion? I won’t give a full answer, but suffice it to say that they are like

a 4-element vector. Why do we use them? Well, unit quaternions (quaternions with a magnitude

- a “size” - of one) are handy for representing rotations. This is due to the fact that they avoid

the dreaded gimbal lock. Gimbal lock occurs when you use “Euler angles” (a method where you

represent a rotation as a series of rotations about the x, y, and z axes) and try to “pitch up” beyond

90 degrees. What happens is that you basically have two of the rotation axes “collapsing” onto

each other so that a rotation about either one is identical to a rotation about the other. This means

you lose the ability to rotate in one of the directions (referred to as losing a “degree of freedom”).

Which is bad.

Quaternions fix this. They are not subject to gimbal lock. Which is great. So what you do is

you represent rotations as quaternions internally in the belly of your engine, and then expose a

more easily-understood Euler angle rotation system to the user, so the user can put in Euler angle

rotations, then you convert those to quaternions in the bowels of your engine in order to prevent

gimbal lock.

The quaternion for a rotation θ about some axis ~a is:

q =
(
~asin

(θ
2

)
, cos

(θ
2

))
. (31)

We can refer to that vector bit at the start as ~qv, and the cosine part as qs (s for scalar).

We define the inverse of a unit quaternion as

q−1 = (−~qv, qs). (32)

So let us apply this to rotating a vector: our vector will be called ~u. To rotate ~u by a quaternion

q, we do

~v = q~uq−1. (33)

Finally, we may want to do one quaternion rotation after another (called “concatenating”), so

how do we do that? Well, we just do

~v = q3q2q1~uq
−1
1 q−12 q−13 . (34)
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but how do we multiply quaternions together? Well we use what’s called the Grassman product:

pq =
[
(ps~qv + qs ~pv + ~ps × ~qv, psqs − pv · qv)

]
(35)

Note how the first bit with the cross product generates the vector part of the result, and the

second bit with the dot product generates the scalar part of the result.

VIII. CLOSING REMARKS

Thank you for sticking with this all the way through, and I hope you learned a lot! Now you

should be able to understand most of the maths you will encounter in game development, which is

great, because understanding something means you can use it so much better.

IX. FURTHER READING

A good intro to vectors and matrices, with a view towards graphics programming in particular.

A cool introduction to trigonometry, by making a little game.

A good, more in-depth look at quaternions.

A primer on linear algebra for game dev.

http://learnopengl.com/#!Getting-started/Transformations
https://www.raywenderlich.com/35866/trigonometry-for-game-programming-part-1
http://www.3dgep.com/understanding-quaternions/
http://blog.wolfire.com/2009/07/linear-algebra-for-game-developers-part-1/
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