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Preface

Our purpose in writing this book is to provide a gentle introduction to a subject
that is enjoying a surge in interest. We believe that the subject is fascinating
in its own right, but the increase in interest can be attributed to several factors.
One factor is the realization that networks are “everywhere”. From social net-
works such as Facebook, the World Wide Web and the Internet to the complex
interactions between proteins in the cells of our bodies, we face the challenge
of understanding their structure and development. By and large natural net-
works grow in an unpredictable manner and this is often modeled by a random
construction. Another factor is the realization by Computer Scientists that NP-
hard problems are often easier to solve than their worst-case suggests and that
an analysis of running times on random instances can be informative.

History

Random graphs were used by Erdős [274] to give a probabilistic construction
of a graph with large girth and large chromatic number. It was only later that
Erdős and Rényi began a systematic study of random graphs as objects of
interest in their own right. Early on they defined the random graph Gn,m and
founded the subject. Often neglected in this story is the contribution of Gilbert
[367] who introduced the model Gn,p, but clearly the credit for getting the
subject off the ground goes to Erdős and Rényi. Their seminal series of papers
[275], [277], [278], [279] and in particular [276], on the evolution of random
graphs laid the groundwork for other mathematicians to become involved in
studying properties of random graphs.

In the early eighties the subject was beginning to blossom and it received a
boost from two sources. First was the publication of the landmark book of Béla
Bollobás [130] on random graphs. Around the same time, the Discrete Math-
ematics group in Adam Mickiewicz University began a series of conferences
in 1983. This series continues biennially to this day and is now a conference
attracting more and more participants.

The next important event in the subject was the start of the journal Random
Structures and Algorithms in 1990 followed by Combinatorics, Probability and
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Preface vii

Computing a few years later. These journals provided a dedicated outlet for
work in the area and are flourishing today.

Scope of the book

We have divided the book into four parts. Part one is devoted to giving a de-
tailed description of the main properties of Gn,m and Gn,p. The aim is not
to give best possible results, but instead to give some idea of the tools and
techniques used in the subject, as well to display some of the basic results
of the area. There is sufficient material in part one for a one semester course
at the advanced undergraduate or beginning graduate level. Once one has fin-
ished the content of the first part, one is equipped to continue with material of
the remainder of the book, as well as to tackle some of the advanced mono-
graphs such as Bollobás [130] and the more recent one by Janson, Łuczak and
Ruciński [432].

Each chapter comes with a few exercises. Some are fairly simple and these
are designed to give the reader practice with making some the estimations that
are so prevalent in the subject. In addition each chapter ends with some notes
that lead through references to some of the more advanced important results
that have not been covered.

Part two deals with models of random graphs that naturally extend Gn,m and
Gn,p. Part three deals with other models. Finally, in part four, we describe some
of the main tools used in the area along with proofs of their validity.

Having read this book, the reader should be in a good position to pursue
research in the area and we hope that this book will appeal to anyone interested
in Combinatorics or Applied Probability or Theoretical Computer Science.
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Conventions/Notation

Often in what follows, we will give an expression for a large positive integer. It
might not be obvious that the expression is actually an integer. In which case,
the reader can rest assured that he/she can round up or down and obtained any
required property. We avoid this rounding for convenience and for notational
purposes.

In addition we list the following notation:
Mathematical relations

• f (x) = O(g(x)): | f (x)| ≤ K|g(x)| for some constant K > 0 and all x ∈ R.
• f (x) = Θ(g(x)): f (n) = O(g(x)) and g(x) = O( f (x)).
• f (x) = o(g(x)) as x→ a: f (x)/g(x)→ 0 as x→ a.
• A� B: A/B is sufficiently small for the succeeding arguments.
• A� B: A/B is sufficiently large for the succeeding arguments.
• A≈ B: A/B→ 1 as some parameter converges to 0 or ∞ or another limit.
• [n]: This is {1,2, . . . ,n}. In general, if a < b are positive integers, then
[a,b] = {a,a+1, . . . ,b}.

• If S is a set and k is a non-negative integer then
(S

k

)
denotes the set of k-

element subsets of S. In particular,
([n]

k

)
dnotes the set of k-sets of {1,2, . . . ,n}.

Graph Notation

• G = (V,E): V =V (G) is the vertex set and E = E(G) is the edge set.
• e(G): |E(G)|.
• N(S) = NG(S) where S⊆V (G). {w /∈ S : ∃v ∈ Ssuch that {v,w} ∈ E}.
• For a graph H, aut(H) denotes the number of automorphisms of H.

Random Graph Models
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• [n]: The set {1,2, . . . ,n}.
• Gn,m: The family of all labeled graphs with vertex set V = [n] = {1,2, . . . ,n}

and exactly m edges.
• Gn,m:A random graph chosen uniformly at random from Gn,m.
• En,m = E(Gn,m).
• Gn,p: A random graph on vertex set [n] where each possible edge occurs

independently with probability p.
• En,p = E(Gn,p).
• Gδ≥k

n,m : Gn,m, conditioned on having minimum degree at least k.
• Gn,n,p: A random bipartite graph with vertex set consisting of two disjoint

copies of [n] where each of the n2 possible edges occurs independently with
probability p.
• Gn,r: A random r-regular graph on vertex set [n].
• Gn,d: The set of graphs with vertex set [n] and degree sequence

d = (d1,d2, . . . ,dn).
• Gn,d: A random graph chosen uniformly at random from Gn,d.
• Hn,m;k: A random k-uniform hypergraph on vertex set [n] and m edges of

size k.
• Hn,p;k: A random k-uniform hypergraph on vertex set [n] where each of the(n

k

)
possibles edge occurs independently with probability p.

• ~Gk−out : A random digraph on vertex set [n] where each v∈ [n] independently
chooses k random out-neighbors.
• Gk−out : The graph obtained from ~Gk−out by ignoring orientation and coa-

lescing multiple edges.

Probability

• P(A): The probability of event A.
• EZ: The expected value of random variable Z.
• h(Z): The entropy of random variable Z.
• Po(λ ): A random variable with the Poisson distribution with mean λ .
• N(0,1): A random variable with the normal distribution, mean 0 and vari-

ance 1.
• Bin(n, p): A random variable with the binomial distribution with parameters

n, the number of trials and p, the probability of success.
• EXP(λ ): A random variable with the exponential distribution, mean λ i.e.
P(EXP(λ )≥ x) = e−λx. We sometimes say rate 1/λ in place of mean λ .
• w.h.p.: A sequence of events An,n = 1,2, . . . , is said to occur with high

probability (w.h.p.) if limn→∞P(An) = 1.
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• d→: We write Xn
d→ X to say that a random variable Xn converges in distribu-

tion to a random variable X , as n→ ∞. Occasionally we write Xn
d→ N(0,1)

(resp. Xn
d→Po(λ )) to mean that X has the corresponding normal (resp. Pois-

son) distribution.
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1
Random Graphs

Graph theory is a vast subject in which the goals are to relate various graph
properties i.e. proving that Property A implies Property B for various proper-
ties A,B. In some sense, the goals of Random Graph theory are to prove results
of the form “Property A almost always implies Property B”. In many cases
Property A could simply be “Graph G has m edges”. A more interesting exam-
ple would be the following: Property A is “G is an r-regular graph, r ≥ 3” and
Property B is “G is r-connected”. This is proved in Chapter 10.

Before studying questions such as these, we will need to describe the basic
models of a random graph.

1.1 Models and Relationships

The study of random graphs in their own right began in earnest with the sem-
inal paper of Erdős and Rényi [276]. This paper was the first to exhibit the
threshold phenomena that characterize the subject.

Let Gn,m be the family of all labeled graphs with vertex set V = [n] =
{1,2, . . . ,n} and exactly m edges, 0 ≤ m ≤

(n
2

)
. To every graph G ∈ Gn,m, we

assign a probability

P(G) =

((n
2

)
m

)−1

.

Equivalently, we start with an empty graph on the set [n], and insert m edges
in such a way that all possible

((n
2)
m

)
choices are equally likely. We denote such

a random graph by Gn,m = ([n],En,m) and call it a uniform random graph.
We now describe a similar model. Fix 0 ≤ p ≤ 1. Then for 0 ≤ m ≤

(n
2

)
,

assign to each graph G with vertex set [n] and m edges a probability

P(G) = pm(1− p)(
n
2)−m,

where 0 ≤ p ≤ 1. Equivalently, we start with an empty graph with vertex set
[n] and perform

(n
2

)
Bernoulli experiments inserting edges independently with

probability p. We call such a random graph, a binomial random graph and
denote it by Gn,p = ([n],En,p). This was introduced by Gilbert [367]

3



4 Random Graphs

As one may expect there is a close relationship between these two models
of random graphs. We start with a simple observation.

Lemma 1.1 A random graph Gn,p, given that its number of edges is m, is

equally likely to be one of the
((n

2)
m

)
graphs that have m edges.

Proof Let G0 be any labeled graph with m edges. Then since

{Gn,p = G0} ⊆ {|En,p|= m}

we have

P(Gn,p = G0 | |En,p|= m) =
P(Gn,p = G0, |En,p|= m)

P(|En,p|= m)

=
P(Gn,p = G0)

P(|En,p|= m)

=
pm(1− p)(

n
2)−m((n

2)
m

)
pm(1− p)(

n
2)−m

=

((n
2

)
m

)−1

.

Thus Gn,p conditioned on the event {Gn,p has m edges} is equal in distri-
bution to Gn,m, the graph chosen uniformly at random from all graphs with m
edges.
Obviously, the main difference between those two models of random graphs
is that in Gn,m we choose its number of edges, while in the case of Gn,p the
number of edges is the Binomial random variable with the parameters

(n
2

)
and

p. Intuitively, for large n random graphs Gn,m and Gn,p should behave in a
similar fashion when the number of edges m in Gn,m equals or is “close” to the
expected number of edges of Gn,p, i.e., when

m =

(
n
2

)
p≈ n2 p

2
, (1.1)

or, equivalently, when the edge probability in Gn,p

p≈ 2m
n2 . (1.2)

Throughout the book, we will use the notation f ≈ g to indicate that f = (1+
o(1))g, where the o(1) term will depend on some parameter going to 0 or ∞.

We next introduce a useful “coupling technique” that generates the random
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graph Gn,p in two independent steps. We will then describe a similar idea in
relation to Gn,m. Suppose that p1 < p and p2 is defined by the equation

1− p = (1− p1)(1− p2), (1.3)

or, equivalently,

p = p1 + p2− p1 p2.

Thus an edge is not included in Gn,p if it is not included in either of Gn,p1 or
Gn,p2 .

It follows that

Gn,p =Gn,p1 ∪Gn,p2 ,

where the two graphs Gn,p1 ,Gn,p2 are independent. So when we write

Gn,p1 ⊆Gn,p,

we mean that the two graphs are coupled so that Gn,p is obtained from Gn,p1 by
superimposing it with Gn,p2 and replacing eventual double edges by a single
one.

We can also couple random graphs Gn,m1 and Gn,m2 where m2 ≥ m1 via

Gn,m2 =Gn,m1 ∪H.

Here H is the random graph on vertex set [n] that has m = m2 −m1 edges
chosen uniformly at random from

([n]
2

)
\En,m1 .

Consider now a graph property P defined as a subset of the set of all labeled
graphs on vertex set [n], i.e., P ⊆ 2(

n
2). For example, all connected graphs (on

n vertices), graphs with a Hamiltonian cycle, graphs containing a given sub-
graph, planar graphs, and graphs with a vertex of given degree form a specific
“graph property”.

We will state below two simple observations which show a general relation-
ship between Gn,m and Gn,p in the context of the probabilities of having a given
graph property P .

Lemma 1.2 Let P be any graph property and p=m/
(n

2

)
where m=m(n)→ ∞,(n

2

)
−m→ ∞. Then, for large n,

P(Gn,m ∈P)≤ 10m1/2P(Gn,p ∈P).
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Proof By the law of total probability,

P(Gn,p ∈P) =
(n

2)

∑
k=0

P(Gn,p ∈P | |En,p|= k)P(|En,p|= k)

=
(n

2)

∑
k=0

P(Gn,k ∈P)P(|En,p|= k)

≥ P(Gn,m ∈P)P(|En,p|= m).

Recall that the number of edges |En,p| of a random graph Gn,p is a random
variable with the Binomial distribution with parameters

(n
2

)
and p. Applying

Stirling’s Formula:

k! = (1+o(1))
(

k
e

)k√
2πk, (1.4)

and putting N =
(n

2

)
, we get

P(|En,p|= m) =

(
N
m

)
pm(1− p)(

n
2)−m

= (1+o(1))
NN
√

2πN pm(1− p)N−m

mm(N−m)N−m 2π
√

m(N−m)
(1.5)

= (1+o(1))

√
N

2πm(N−m)
,

Hence

P(|En,p|= m)≥ 1
10
√

m
,

so

P(Gn,m ∈P)≤ 10m1/2P(Gn,p ∈P).

We call a graph property P monotone increasing if G ∈P implies G+e ∈
P , i.e., adding an edge e to a graph G does not destroy the property. For ex-
ample, connectivity and Hamiltonicity are monotone increasing properties. A
monotone increasing property is non-trivial if the empty graph K̄n /∈P and
the complete graph Kn ∈P .
A graph property is monotone decreasing if G ∈P implies G− e ∈P , i.e.,
removing an edge from a graph does not destroy the property. Properties of a
graph not being connected or being planar are examples of monotone decreas-
ing graph properties. Obviously, a graph property P is monotone increasing if
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and only if its complement is monotone decreasing. Clearly not all graph prop-
erties are monotone. For example having at least half of the vertices having a
given fixed degree d is not monotone.

From the coupling argument it follows that if P is a monotone increasing
property then, whenever p < p′ or m < m′,

P(Gn,p ∈P)≤ P(Gn,p′ ∈P), (1.6)

and

P(Gn,m ∈P)≤ P(Gn,m′ ∈P), (1.7)

respectively.
For monotone increasing graph properties we can get a much better upper
bound on P(Gn,m ∈P), in terms of P(Gn,p ∈P), than that given by Lemma
1.2.

Lemma 1.3 Let P be a monotone increasing graph property and p = m
N .

Then, for large n and p such that N p,N(1− p)/(N p)1/2→ ∞,

P(Gn,m ∈P)≤ 3P(Gn,p ∈P).

Proof Suppose P is monotone increasing and p = m
N , where N =

(n
2

)
. Then

P(Gn,p ∈P) =
N

∑
k=0

P(Gn,k ∈P)P(|En,p|= k)

≥
N

∑
k=m

P(Gn,k ∈P)P(|En,p|= k)

However, by the coupling property we know that for k ≥ m,

P(Gn,k ∈P)≥ P(Gn,m ∈P).

The number of edges |En,p| in Gn,p has the Binomial distribution with param-
eters N, p. Hence

P(Gn,p ∈P)≥ P(Gn,m ∈P)
N

∑
k=m

P(|En,p|= k)

= P(Gn,m ∈P)
N

∑
k=m

uk, (1.8)

where

uk =

(
N
k

)
pk(1− p)N−k.
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Now, using Stirling’s formula,

um = (1+o(1))
NN pm(1− p)N−m

mm(N−m)N−m(2πm)1/2 =
1+o(1)
(2πm)1/2 .

Furthermore, if k = m+ t where 0≤ t ≤ m1/2 then

uk+1

uk
=

(N− k)p
(k+1)(1− p)

=
1− t

N−m

1+ t+1
m

≥ exp
{
− t

N−m− t
− t +1

m

}
= 1−o(1),

after using Lemma 21.1(a),(b) to obtain the first inequality and our assumptions
on N, p to obtain the second.

It follows that

m+m1/2

∑
k=m

uk ≥
1−o(1)
(2π)1/2

∫ 1

x=0
e−x2/2dx≥ 1

3

and the lemma follows from (1.8).

Lemmas 1.2 and 1.3 are surprisingly applicable. In fact, since the Gn,p

model is computationally easier to handle than Gn,m, we will repeatedly use
both lemmas to show that P(Gn,p ∈P)→ 0 implies that P(Gn,m ∈P)→ 0
when n→ ∞. In other situations we can use a stronger and more widely appli-
cable result. The theorem below, which we state without proof, gives precise
conditions for the asymptotic equivalence of random graphs Gn,p and Gn,m. It
is due to Łuczak [535].

Theorem 1.4 Let 0 ≤ p0 ≤ 1, s(n) = n
√

p(1− p)→ ∞, and ω(n)→ ∞ ar-
bitrarily slowly as n→ ∞.

(i) Suppose that P is a graph property such that P(Gn,m ∈P)→ p0 for all

m ∈
[(

n
2

)
p−ω(n)s(n),

(
n
2

)
p+ω(n)s(n)

]
.

Then P(Gn,p ∈P)→ p0 as n→ ∞,
(ii) Let p− = p−ω(n)s(n)/n3 and p+ = p+ω(n)s(n)/n3 Suppose that P is

a monotone graph property such that P(Gn,p− ∈P)→ p0 and P(Gn,p+ ∈
P)→ p0. Then P(Gn,m ∈P)→ p0, as n→ ∞, where m = b

(n
2

)
pc.
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1.2 Thresholds and Sharp Thresholds

One of the most striking observations regarding the asymptotic properties of
random graphs is the “abrupt” nature of the appearance and disappearance of
certain graph properties. To be more precise in the description of this phe-
nomenon, let us introduce threshold functions (or just thresholds) for mono-
tone graph properties. We start by giving the formal definition of a threshold
for a monotone increasing graph property P .

Definition 1.5 A function m∗ = m∗(n) is a threshold for a monotone increas-
ing property P in the random graph Gn,m if

lim
n→∞

P(Gn,m ∈P) =

{
0 if m/m∗→ 0,

1 if m/m∗→ ∞,

as n→ ∞.

A similar definition applies to the edge probability p = p(n) in a random
graph Gn,p.

Definition 1.6 A function p∗ = p∗(n) is a threshold for a monotone increas-
ing property P in the random graph Gn,p if

lim
n→∞

P(Gn,p ∈P) =

{
0 if p/p∗→ 0,

1 if p/p∗→ ∞,

as n→ ∞.

It is easy to see how to define thresholds for monotone decreasing graph
properties and therefore we will leave this to the reader.

Notice also that the thresholds defined above are not unique since any func-
tion which differs from m∗(n) (resp. p∗(n)) by a constant factor is also a thresh-
old for P .

A large body of the theory of random graphs is concerned with the search for
thresholds for various properties, such as containing a path or cycle of a given
length, or, in general, a copy of a given graph, or being connected or Hamilto-
nian, to name just a few. Therefore the next result is of special importance. It
was proved by Bollobás and Thomason [150].
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Theorem 1.7 Every non-trivial monotone graph property has a threshold.

Proof Without loss of generality assume that P is a monotone increasing
graph property. Given 0 < ε < 1 we define p(ε) by

P(Gn,p(ε) ∈P) = ε.

Note that p(ε) exists because

P(Gn,p ∈P) = ∑
G∈P

p|E(G)|(1− p)N−|E(G|

is a polynomial in p that increases from 0 to 1. This is not obvious from the
expression, but it is obvious from the fact that P is monotone increasing and
that increasing p increases the likelihood that Gn,p ∈P .

We will show that p∗ = p(1/2) is a threshold for P . Let G1,G2, . . . ,Gk

be independent copies of Gn,p. The graph G1 ∪G2 ∪ . . .∪Gk is distributed as
Gn,1−(1−p)k . Now 1− (1− p)k ≤ kp, and therefore by the coupling argument

Gn,1−(1−p)k ⊆Gn,kp,

and so Gn,kp /∈P implies G1,G2, . . . ,Gk /∈P . Hence

P(Gn,kp /∈P)≤ [P(Gn,p /∈P)]k.

Let ω be a function of n such that ω → ∞ arbitrarily slowly as n→ ∞, ω �
log logn. (We say that f (n)� g(n) or f (n) = o(g(n)) if f (n)/g(n)→ 0 as
n→ ∞. Of course in this case we can also write g(n)� f (n).) Suppose also
that p = p∗ = p(1/2) and k = ω . Then

P(Gn,ω p∗ /∈P)≤ 2−ω = o(1).

On the other hand for p = p∗/ω ,

1
2
= P(Gn,p∗ /∈P)≤

[
P(Gn,p∗/ω /∈P)

]ω
.

So

P(Gn,p∗/ω /∈P)≥ 2−1/ω = 1−o(1).

In order to shorten many statements of theorems in the book we say that a
sequence of events En occurs with high probability (w.h.p.) if

lim
n→∞

P(En) = 1.

Thus the statement that says p∗ is a threshold for a property P in Gn,p is the
same as saying that Gn,p 6∈P w.h.p. if p� p∗, while Gn,p ∈P w.h.p. if
p� p∗.
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In many situations we can observe that for some monotone graph properties
more “subtle” thresholds hold. We call them “sharp thresholds”. More pre-
cisely,

Definition 1.8 A function m∗ = m∗(n) is a sharp threshold for a monotone
increasing property P in the random graph Gn,m if for every ε > 0,

lim
n→∞

P(Gn,m ∈P) =

{
0 i f m/m∗ ≤ 1− ε

1 i f m/m∗ ≥ 1+ ε.

A similar definition applies to the edge probability p = p(n) in the random
graph Gn,p.

Definition 1.9 A function p∗ = p∗(n) is a sharp threshold for a monotone
increasing property P in the random graph Gn,p if for every ε > 0

lim
n→∞

P(Gn,p ∈P) =

{
0 i f p/p∗ ≤ 1− ε

1 i f p/p∗ ≥ 1+ ε.

We will illustrate both types of threshold in a series of examples dealing with
very simple graph properties. Our goal at the moment is to demonstrate basic
techniques to determine thresholds rather than to “discover” some “striking”
facts about random graphs.
We will start with the random graph Gn,p and the property

P = {all non-empty (non-edgeless) labeled graphs on n vertices}.

This simple graph property is clearly monotone increasing and we will show
below that p∗ = 1/n2 is a threshold for a random graph Gn,p of having at least
one edge (being non-empty).

Lemma 1.10 Let P be the property defined above, i.e., stating that Gn,p

contains at least one edge. Then

lim
n→∞

P(Gn,p ∈P) =

{
0 if p� n−2

1 if p� n−2.

Proof Let X be a random variable counting edges in Gn,p. Since X has the
Binomial distribution, then EX =

(n
2

)
p, and VarX =

(n
2

)
p(1− p)= (1− p)EX .

A standard way to show the first part of the threshold statement, i.e. that
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w.h.p. a random graph Gn,p is empty when p = o(n−2), is a very simple conse-
quence of Markov’s inequality, called the First Moment Method, see Lemma
20.2. It states that if X is a non-negative integer valued random variable, then

P(X > 0)≤ EX .

Hence, in our case

P(X > 0)≤ n2

2
p→ 0

as n→ ∞, since p� n−2.
On the other hand, if we want to show that P(X > 0)→ 1 as n→ ∞ then

we cannot use the First Moment Method and we should use the Second Mo-
ment Method, which is a simple consequence of the Chebyshev inequality,
see Lemma 20.3. We will use the inequality to show concentration around the
mean. By this we mean that w.h.p. X ≈ EX . The Chebyshev inequality states
that if X is a non-negative integer valued random variable then

P(X > 0)≥ 1− VarX
(EX)2 .

Hence P(X > 0)→ 1 as n→∞ whenever VarX/(EX)2→ 0 as n→∞. (For
proofs of both of the above Lemmas see Section 20.1 of Chapter 20.)

Now, if p� n−2 then EX → ∞ and therefore

VarX
(EX)2 =

1− p
EX

→ 0

as n→ ∞, which shows that the second statement of Lemma 1.10 holds, and
so p∗ = 1/n2 is a threshold for the property of Gn,p being non-empty.

Let us now look at the degree of a fixed vertex in both models of random
graphs. One immediately notices that if deg(v) denotes the degree of a fixed
vertex in Gn,p, then deg(v) is a binomially distributed random variable, with
parameters n−1 and p, i.e., for d = 0,1,2 . . . ,n−1,

P(deg(v) = d) =
(

n−1
d

)
pd(1− p)n−1−d ,

while in Gn,m the distribution of deg(v) is Hypergeometric, i.e.,

P(deg(v) = d) =

(n−1
d

)((n−1
2 )

m−d

)
((n

2)
m

) .
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Consider the monotone decreasing graph property that a graph contains an
isolated vertex, i.e. a vertex of degree zero:

P = {all labeled graphs on n vertices containing isolated vertices}.

We will show that m∗ = 1
2 n logn is the sharp threshold function for the above

property P in Gn,m.

Lemma 1.11 Let P be the property that a graph on n vertices contains at
least one isolated vertex and let m = 1

2 n(logn+ω(n)). Then

lim
n→∞

P(Gn,m ∈P) =

{
1 if ω(n)→−∞

0 if ω(n)→ ∞.

Proof To see that the second statement of Lemma 1.11 holds we use the First
Moment Method. Namely, let X0 = Xn,0 be the number of isolated vertices in
the random graph Gn,m. Then X0 can be represented as the sum of indicator
random variables

X0 = ∑
v∈V

Iv,

where

Iv =

{
1 if v is an isolated vertex in Gn,m

0 otherwise.

So

EX0 = ∑
v∈V

E Iv = n

((n−1
2 )
m

)((n
2)
m

) =

n
(

n−2
n

)m m−1

∏
i=0

(
1− 4i

n(n−1)(n−2)−2i(n−2)

)
=

n
(

n−2
n

)m(
1+O

(
(logn)2

n

))
, (1.9)

assuming that ω = o(logn).
Hence,

EX0 ≤ n
(

n−2
n

)m

≤ ne−
2m
n = e−ω ,

for m = 1
2 n(logn+ω(n)).

(1+ x≤ ex is one of the basic inequalities stated in Lemma 21.1.)
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So EX0→ 0 when ω(n)→ ∞ as n→ ∞ and the First Moment Method im-
plies that X0 = 0 w.h.p.

To show that Lemma 1.11 holds in the case when ω →−∞ we first observe
from (1.9) that in this case

EX0 = (1−o(1))n
(

n−2
n

)m

≥ (1−o(1))nexp
{
− 2m

n−2

}
≥ (1−o(1))e−ω → ∞, (1.10)

The second inequality in the above comes from Lemma 21.1(b), and we have
once again assumed that ω = o(logn) to justify the first equation.

We caution the reader that EX0 → ∞ does not prove that X0 > 0 w.h.p. In
Chapter 5 we will see an example of a random variable XH , where EXH → ∞

and yet XH = 0 w.h.p.
We will now use a stronger version of the Second Moment Method (for

its proof see Section 20.1 of Chapter 20). It states that if X is a non-negative
integer valued random variable then

P(X > 0)≥ (EX)2

EX2 = 1− VarX
EX2 . (1.11)

Notice that

EX2
0 = E

(
∑
v∈V

Iv

)2

= ∑
u,v∈V

E(IuIv)

= ∑
u,v∈V

P(Iu = 1, Iv = 1)

= ∑
u6=v

P(Iu = 1, Iv = 1)+ ∑
u=v

P(Iu = 1, Iv = 1)

= n(n−1)

((n−2
2 )
m

)((n
2)
m

) +EX0

≤ n2
(

n−2
n

)2m

+EX0

= (1+o(1))(EX0)
2 +EX0.

The last equation follows from (1.9).
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Hence, by (1.11),

P(X0 > 0)≥ (EX0)
2

EX2
0

=
(EX0)

2

1+o(1))((EX0)2 +EX0)

=
1

(1+o(1))+(EX0)−1

= 1−o(1),

on using (1.10). Hence P(X0 > 0)→ 1 when ω(n)→−∞ as n→∞, and so we
can conclude that m = m(n) is the sharp threshold for the property that Gn,m

contains isolated vertices.
For this simple random variable, we worked with Gn,m. We will in general

work with the more congenial independent model Gn,p and translate the results
to Gn,m if so desired.

For another simple example of the use of the second moment method, we
will prove

Theorem 1.12 If m/n→ ∞ then w.h.p. Gn,m contains at least one triangle.

Proof Because having a triangle is a monotone increasing property we can
prove the result in Gn,p assuming that np→ ∞.

Assume first that np = ω ≤ logn where ω = ω(n)→ ∞ and let Z be the
number of triangles in Gn,p. Then

EZ =

(
n
3

)
p3 ≥ (1−o(1))

ω3

6
→ ∞.

We remind the reader that simply having EZ→∞ is not sufficient to prove that
Z > 0 w.h.p.

Next let T1,T2, . . . ,TM,M =
(n

3

)
denote the triangles of Kn. Then

EZ2 =
M

∑
i, j=1

P(Ti,Tj ∈Gn,p)

=
M

∑
i=1

P(Ti ∈Gn,p)
M

∑
j=1

P(Tj ∈Gn,p | Ti ∈Gn,p) (1.12)

= MP(T1 ∈Gn,p)
M

∑
j=1

P(Tj ∈Gn,p | T1 ∈Gn,p) (1.13)

= EZ×
M

∑
j=1

P(Tj ∈Gn,p | T1 ∈Gn,p).



16 Random Graphs

Here (1.13) follows from (1.12) by symmetry.
Now suppose that Tj,T1 share σ j edges. Then

M

∑
j=1

P(Tj ∈Gn,p | T1 ∈Gn,p)

= 1+ ∑
j:σ j=1

P(Tj ∈Gn,p | T1 ∈Gn,p)+

∑
j:σ j=0

P(Tj ∈Gn,p | T1 ∈Gn,p)

= 1+3(n−3)p2 +

((
n
3

)
−3n+8

)
p3

≤ 1+
3ω2

n
+EZ.

It follows that

VarZ ≤ (EZ)
(

1+
3ω2

n
+EZ

)
− (EZ)2 ≤ 10ω5

n
.

Applying the Chebyshev inequality we get

P(Z = 0)≤ P(|Z−EZ| ≥ EZ)≤ VarZ
(EZ)2 ≤

60ω5

nω3 = o(1).

This proves the theorem for p≤ logn
n . For larger p we can use (1.6).

We can in fact use the second moment method to show that if m/n→∞ then
w.h.p. Gn,m contains a copy of a k-cycle Ck for any fixed k ≥ 3. See Theorem
5.3, see also Exercise 1.4.7.

1.3 Pseudo-Graphs

We sometimes use one of the two the following models that are related to Gn,m

and have a little more independence. (We will use Model A in Section 7.3 and
Model B in Section 6.4).

Model A: We let x = (x1,x2, . . . ,x2m) be chosen uniformly at random from
[n]2m.

Model B: We let x = (x1,x2, . . . ,x2m) be chosen uniformly at random from([n]
2

)m
.

The (multi-)graph G(X)
n,m, X ∈ {A,B} has vertex set [n] and edge set Em =

{{x2i−1,x2i} : 1≤ i≤ m}. Basically, we are choosing edges with replacement.
In Model A we allow loops and in Model B we do not. We get simple graphs
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from by removing loops and multiple edges to obtain graphs G(X∗)
n,m with m∗

edges. It is not difficult to see that for X ∈ {A,B} and conditional on the value
of m∗ that G(X∗)

n,m is distributed as Gn,m∗ , see Exercise (1.4.11).
More importantly, we have that for G1,G2 ∈ Gn,m,

P(G(X)
n,m = G1 |G(X)

n,m is simple) = P(G(X)
n,m = G2 |G(X)

n,m is simple), (1.14)

for X = A,B.
This is because for i = 1,2,

P(G(A)
n,m = Gi) =

m!2m

n2m and P(G(B)
n,m = Gi) =

m!2m(n
2

)m2m
.

Indeed, we can permute the edges in m! ways and permute the vertices within
edges in 2m ways without changing the underlying graph. This relies on G(X)

n,m

being simple.
Secondly, if m= cn for a constant c> 0 then with N =

(n
2

)
, and using Lemma

21.2,

P(G(X)
n,m is simple)≥

(
N
m

)
m!2m

n2m ≥

(1−o(1))
Nm

m!
exp
{
−m2

2N
− m3

6N2

}
m!2m

n2m

= (1−o(1))e−(c
2+c). (1.15)

It follows that if P is some graph property then

P(Gn,m ∈P) = P(G(X)
n,m ∈P |G(X)

n,m is simple)≤

(1+o(1))ec2+cP(G(X)
n,m ∈P). (1.16)

Here we have used the inequality P(A | B)≤ P(A)/P(B) for events A,B.
We will use this model a couple of times and (1.16) shows that if P(G(X)

n,m ∈
P) = o(1) then P(Gn,m ∈P) = o(1), for m = O(n).

Model G(A)
n,m was introduced independently by Bollobás and Frieze [140] and

by Chvátal [187].

1.4 Exercises

We point out here that in the following exercises, we have not asked for best
possible results. These exercises are for practise. You will need to use the in-
equalities from Section 21.1.
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1.4.1 Suppose that p = d/n where d = o(n1/3). Show that w.h.p. Gn,p has no
copies of K4.

1.4.2 Suppose that p = d/n where d > 1. Show that w.h.p. Gn,p contains an
induced path of length (logn)1/2.

1.4.3 Suppose that p = d/n where d = O(1). Prove that for all S ⊆ [n], |S| ≤
n/ logn, we have e(S) ≤ 2|S|, where e(S) is the number of edges con-
tained in S.

1.4.4 Suppose that p = logn/n. Let a vertex of Gn,p be small if its degree is
less than logn/100. Show that w.h.p. there is no edge of Gn,p joining
two small vertices.

1.4.5 Suppose that p = d/n where d is constant. Prove that w.h.p. no vertex
belongs to more than one triangle.

1.4.6 Suppose that p = d/n where d is constant. Prove that w.h.p. Gn,p con-
tains a vertex of degree at least (logn)1/2.

1.4.7 Suppose that k ≥ 3 is constant and that np→ ∞. Show that w.h.p. Gn,p

contains a copy of the k-cycle, Ck.
1.4.8 Suppose that 0 < p < 1 is constant. Show that w.h.p. Gn,p has diameter

two.
1.4.9 Let f : [n]→ [n] be chosen uniformly at random from all nn functions

from [n]→ [n]. Let X = { j :6 ∃i s.t. f (i) = j}. Show that w.h.p. |X | ≈
e−1n.

1.4.10 Prove Theorem 1.4.
1.4.11 Show that conditional on the value of mX∗ that GX∗

n,m is distributed as
Gn,m∗ , where X = A,B.

1.5 Notes

Friedgut and Kalai [315] and Friedgut [316] and Bourgain [154] and Bourgain
and Kalai [153] provide much greater insight into the notion of sharp thresh-
olds. Friedgut [314] gives a survey of these aspects. For a graph property A

let µ(p,A ) be the probability that the random graph Gn,p has property A . A
threshold is coarse if it is not sharp. We can identify coarse thresholds with
p dµ(p,A )

d p <C for some absolute constant 0 <C. The main insight into coarse
thresholds is that to exist, the occurrence of A can in the main be attributed
to the existence of one of a bounded number of small subgraphs. For exam-
ple, Theorem 2.1 of [314] states that there exists a function K(C,ε) such that
the following holds. Let A be a monotone property of graphs that is invariant
under automorphism and assume that p dµ(p,A )

d p <C for some constant 0 <C.
Then for every ε > 0 there exists a finite list of graphs G1,G2, . . . ,Gm all of
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which have no more than K(ε,C) edges, such that if B is the family of graphs
having one of these graphs as a subgraph then µ(p,A ∆B)≤ ε .



2
Evolution

Here begins our story of the typical growth of a random graph. All the results
up to Section 2.3 were first proved in a landmark paper by Erdős and Rényi
[276]. The notion of the evolution of a random graph stems from a dynamic
view of a graph process: viz. a sequence of graphs:

G0 = ([n], /0),G1,G2, . . . ,Gm, . . . ,GN = Kn.

where Gm+1 is obtained from Gm by adding a random edge em. We see that
there are

(n
2

)
! such sequences and Gm and Gn,m have the same distribution.

In process of the evolution of a random graph we consider properties possessed
by Gm or Gn,m w.h.p., when m = m(n) grows from 0 to

(n
2

)
, while in the case

of Gn,p we analyse its typical structure when p = p(n) grows from 0 to 1 as
n→ ∞.

In the current chapter we mainly explore how the typical component struc-
ture evolves as the number of edges m increases.

2.1 Sub-Critical Phase

The evolution of Erdős-Rényi type random graphs has clearly distinguishable
phases. The first phase, at the beginning of the evolution, can be described
as a period when a random graph is a collection of small components which
are mostly trees. Indeed the first result in this section shows that a random
graph Gn,m is w.h.p. a collection of tree-components as long as m = o(n), or,
equivalently, as long as p = o(n−1) in Gn,p. For clarity, all results presented
in this chapter are stated in terms of Gn,m. Due to the fact that computations
are much easier for Gn,p we will first prove results in this model and then the
results for Gn,m will follow by the equivalence established either in Lemmas
1.2 and 1.3 or in Theorem 1.4. We will also assume, throughout this chapter,
that ω = ω(n) is a function growing slowly with n, e.g. ω = log logn will
suffice.

Theorem 2.1 If m� n, then Gm is a forest w.h.p.

20
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Proof Suppose m = n/ω and let N =
(n

2

)
, so p = m/N ≤ 3/(ωn). Let X be

the number of cycles in Gn,p. Then

EX =
n

∑
k=3

(
n
k

)
(k−1)!

2
pk

≤
n

∑
k=3

nk

2k
3k

ωknk

= O(ω−3)→ 0.

Therefore, by the First Moment Method, (see Lemma 20.2),

P(Gn,p is not a forest) = P(X ≥ 1)≤ EX = o(1),

which implies that

P(Gn,p is a forest)→ 1 as n→ ∞.

Notice that the property that a graph is a forest is monotone decreasing, so by
Lemma 1.3

P(Gm is a forest)→ 1 as n→ ∞.

(Note that we have actually used Lemma 1.3 to show that P(Gn,p is not a
forest)=o(1) implies that P(Gm is not a forest)=o(1).)

We will next examine the time during which the components of Gm are
isolated vertices and single edges only, w.h.p.

Theorem 2.2 If m� n1/2 then Gm is the union of isolated vertices and edges
w.h.p.

Proof Let p = m/N, m = n1/2/ω and let X be the number of paths of length
two in the random graph Gn,p. By the First Moment Method,

P(X > 0)≤ EX = 3
(

n
3

)
p2 ≤ n4

2N2ω2 → 0,

as n→ ∞. Hence

P(Gn,p contains a path of length two) = o(1).

Notice that the property that a graph contains a path of a given length two is
monotone increasing, so by Lemma 1.3,

P(Gm contains a path of length two) = o(1),
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and the theorem follows.
Now we are ready to describe the next step in the evolution of Gm.

Theorem 2.3 If m� n1/2, then Gm contains a path of length two w.h.p.

Proof Let p = m
N ,m = ωn1/2 and X be the number of paths of length two in

Gn,p. Then

EX = 3
(

n
3

)
p2 ≈ 2ω

2→ ∞,

as n→ ∞. This however does not imply that X > 0 w.h.p.! To show that X > 0
w.h.p. we will apply the Second Moment Method

Let P2 be the set of all paths of length two in the complete graph Kn, and let
X̂ be the number of isolated paths of length two in Gn,p i.e. paths that are also
components of Gn,p. We will show that w.h.p. Gn,p contains such an isolated
path. Now,

X̂ = ∑
P∈P2

IP⊆iGn,p .

We always use IE to denote the indicator for an event E . The notation ⊆i in-
dicates that P is contained in Gn,p as a component (i.e. P is isolated). Having
a path of length two is a monotone increasing property. Therefore we can as-
sume that m = o(n) and so np = o(1) and the result for larger m will follow
from monotonicity and coupling. Then

E X̂ = 3
(

n
3

)
p2(1− p)3(n−3)+1

≥ (1−o(1))
n3

2
4ω2n

n4 (1−3np)→ ∞,

as n→ ∞.
In order to compute the second moment of the random variable X̂ notice

that,

X̂2 = ∑
P∈P2

∑
Q∈P2

IP⊆iGn,p IQ⊆iGn,p = ∑
∗
P,Q∈P2

IP⊆iGn,p IQ⊆iGn,p ,

where the last sum is taken over P,Q ∈P2 such that either P = Q or P and
Q are vertex disjoint. The simplification that provides the last summation is
precisely the reason that we introduce path-components (isolated paths). Now

E X̂2 = ∑
P

{
∑
Q
P(Q⊆i Gn,p| P⊆i Gn,p)

}
P(P⊆i Gn,p).
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The expression inside the brackets is the same for all P and so

E X̂2 = E X̂

1+ ∑
Q∩P(1,2,3)= /0

P(Q⊆i Gn,p| P(1,2,3) ⊆i Gn,p)

 ,

where P{1,2,3} denotes the path on vertex set [3] = {1,2,3} with middle vertex
2. By conditioning on the event P(1,2,3) ⊆i Gn,p, i.e, assuming that P(1,2,3) is a
component of Gn,p, we see that all of the nine edges between Q and P(1,2,3)
must be missing. Therefore

E X̂2 ≤ E X̂
(

1+3
(

n
3

)
p2(1− p)3(n−6)+1

)
≤ E X̂

(
1+(1− p)−9E X̂

)
.

So, by the Second Moment Method (see Lemma 20.5),

P(X̂ > 0)≥ (E X̂)2

E X̂2
≥ (E X̂)2

E X̂
(
1+(1− p)−9E X̂

)
=

1
(1− p)−9 +[E X̂ ]−1

→ 1

as n→ ∞, since p→ 0 and E X̂ → ∞. Thus

P(Gn,p contains an isolated path of length two)→ 1,

which implies that P(Gn,p contains a path of length two)→ 1. As the property
of having a path of length two is monotone increasing it in turn implies that

P(Gm contains a path of length two)→ 1

for m� n1/2 and the theorem follows.

From Theorems 2.2 and 2.3 we obtain the following corollary.

Corollary 2.4 The function m∗(n) = n1/2 is the threshold for the property
that a random graph Gm contains a path of length two, i.e.,

P(Gm contains a path of length two) =

{
o(1) if m� n1/2.

1−o(1) if m� n1/2.

As we keep adding edges, trees on more than three vertices start to appear.
Note that isolated vertices, edges and paths of length two are also trees on one,
two and three vertices, respectively. The next two theorems show how long we
have to “wait” until trees with a given number of vertices appear w.h.p.
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Theorem 2.5 Fix k ≥ 3. If m� n
k−2
k−1 , then w.h.p. Gm contains no tree with k

vertices.

Proof Let m = n
k−2
k−1 /ω and then p = m

N ≈
2

ωnk/(k−1) ≤ 3
ωnk/(k−1) . Let Xk denote

the number of trees with k vertices in Gn,p. Let T1,T2, . . . ,TM be an enumeration
of the copies of k-vertex trees in Kn. Let

Ai = {Ti occurs as a subgraph in Gn,p}.

The probability that a tree T occurs in Gn,p is pe(T ), where e(T ) is the number
of edges of T . So,

EXk =
M

∑
t=1

P(At) = Mpk−1.

But M =
(n

k

)
kk−2 since one can choose a set of k vertices in

(n
k

)
ways and then

by Cayley’s formula choose a tree on these vertices in kk−2 ways. Hence

EXk =

(
n
k

)
kk−2 pk−1. (2.1)

Noting also that (see Lemma 21.1(c))(
n
k

)
≤
(ne

k

)k
,

we see that

EXk ≤
(ne

k

)k
kk−2

(
3

ωnk/(k−1)

)k−1

=
3k−1ek

k2ωk−1 → 0,

as n→ ∞, seeing as k is fixed.
Thus we see by the first moment method that,

P(Gn,p contains a tree with k vertices)→ 0.

This property is monotone increasing and therefore

P(Gm contains a tree with k vertices)→ 0.

Let us check what happens if the number of edges in Gm is much larger than
n

k−2
k−1 .

Theorem 2.6 Fix k≥ 3. If m� n
k−2
k−1 , then w.h.p. Gm contains a copy of every

fixed tree with k vertices.
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Proof Let p = m
N ,m = ωn

k−2
k−1 where ω = o(logn) and fix some tree T with k

vertices. Denote by X̂k the number of isolated copies of T (T -components) in
Gn,p. Let aut(H) denote the number of automorphisms of a graph H. Note that
there are k!/aut(T ) copies of T in the complete graph Kk. To see this choose
a copy of T with vertex set [k]. There are k! ways of mapping the vertices of
T to the vertices of Kk. Each map f induces a copy of T and two maps f1, f2

induce the same copy iff f2 f−1
1 is an automorphism of T .

So,

E X̂k =

(
n
k

)
k!

aut(T )
pk−1(1− p)k(n−k)+(k

2)−k+1 (2.2)

= (1+o(1))
(2ω)k−1

aut(T )
→ ∞.

In (2.2) we have used the fact that ω = o(logn) in order to show that (1−
p)k(n−k)+(k

2)−k+1 = 1+o(1).
Next let T be the set of copies of T in Kn and T[k] be a fixed copy of T on

vertices [k] of Kn. Then, arguing as in (2.3),

E(X̂2
k ) = ∑

T1,T2∈T
P(T2 ⊆i Gn,p| T1 ⊆i Gn,p)P(T1 ⊆i Gn,p)

= E X̂k

1+ ∑
T2∈T

V (T2)∩[k]= /0

P(T2 ⊆i Gn,p| T[k] ⊆i Gn,p)


≤ E X̂k

(
1+(1− p)−k2

EXk

)
.

Notice that the (1− p)−k2
factor comes from conditioning on the event

T[k] ⊆i Gn,p which forces the non-existence of fewer than k2 edges.
Hence, by the Second Moment Method,

P(X̂k > 0)≥ (E X̂k)
2

E X̂k
(
1+(1− p)−k2 E X̂k

) → 1.

Then, by a similar reasoning to that in the proof of Theorem 2.3,

P(Gm contains a copy of T )→ 1,

as n→ ∞.

Combining the two above theorems we arrive at the following conclusion.
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Corollary 2.7 The function m∗(n) = n
k−2
k−1 is the threshold for the property

that a random graph Gm contains a tree with k ≥ 3 vertices, i.e.,

P(Gm ⊇ k-vertex-tree) =

{
o(1) if m� n

k−2
k−1

1−o(1) if m� n
k−2
k−1

In the next theorem we show that “on the threshold” for k vertex trees, i.e.,
if m = cn

k−2
k−1 , where c is a constant, c > 0, the number of tree components of a

given order asymptotically follows the Poisson distribution. This time we will
formulate both the result and its proof in terms of Gm.

Theorem 2.8 If m = cn
k−2
k−1 , where c > 0, and T is a fixed tree with k ≥ 3

vertices, then

P(Gm contains an isolated copy of tree T )→ 1− e−λ ,

as n→ ∞, where λ = (2c)k−1

aut(T ) .
More precisely, the number of copies of T is asymptotically distributed as

the Poisson distribution with expectation λ .

Proof Let T1,T2, . . . ,TM be an enumeration of the copies of some k vertex
tree T in Kn.
Let

Ai = {Ti occurs as a component in Gm}.

Suppose J ⊆ [M] = {1,2, . . . ,M} with |J| = t, where t is fixed. Let AJ =⋂
j∈J A j. We have P(AJ) = 0 if there are i, j ∈ J such that Ti,Tj share a ver-

tex. Suppose Ti, i ∈ J are vertex disjoint. Then

P(AJ) =

( (n−kt
2 )

m−(k−1)t

)(N
m

) .

Note that in the numerator we count the number of ways of choosing m edges
so that AJ occurs.
If, say, t ≤ logn, then(

n− kt
2

)
= N

(
1− kt

n

)(
1− kt

n−1

)
= N

(
1−O

(
kt
n

))
,

and so
m2(n−kt

2

) → 0.
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Then from Lemma 21.1(f),( (n−kt
2

)
m− (k−1)t

)
= (1+o(1))

(
N
(
1−O

( kt
n

)))m−(k−1)t

(m− (k−1)t)!

= (1+o(1))
Nm−(k−1)t

(
1−O

(mkt
n

))
(m− (k−1)t)!

= (1+o(1))
Nm−(k−1)t

(m− (k−1)t)!
.

Similarly, again by Lemma 21.1,(
N
m

)
= (1+o(1))

Nm

m!
,

and so

P(AJ) = (1+o(1))
m!

(m− (k−1)t)!
N−(k−1)t = (1+o(1))

(m
N

)(k−1)t
.

Thus, if ZT denotes the number of components of Gm that are copies of T ,
then,

E
(

ZT

t

)
≈ 1

t!

(
n

k,k,k, . . . ,k

)(
k!

aut(T )

)t (m
N

)(k−1)t

≈ nkt

t!(k!)t

(
k!

aut(T )

)t
(

cn(k−2)/(k−1)

N

)(k−1)t

≈ λ t

t!
,

where

λ =
(2c)k−1

aut(T )
.

So by Corollary 20.11 the number of copies of T -components is asymptotically
distributed as the Poisson distribution with expectation λ given above, which
combined with the statements of Theorem 2.1 and Corollary 2.7 proves the the-
orem. Note that Theorem 2.1 implies that w.h.p. there are no non-component
copies of T .

We complete our presentation of the basic features of a random graph in
its sub-critical phase of evolution with a description of the order of its largest
component.



28 Evolution

Theorem 2.9 If m = 1
2 cn, where 0 < c < 1 is a constant, then w.h.p. the order

of the largest component of a random graph Gm is O(logn).

The above theorem follows from the next three lemmas stated and proved in
terms of Gn,p with p = c/n, 0 < c < 1. In fact the first of those three lemmas
covers a little bit more than the case of p = c/n, 0 < c < 1.

Lemma 2.10 If p≤ 1
n −

ω

n4/3 , where ω = ω(n)→ ∞, then w.h.p. every com-
ponent in Gn,p contains at most one cycle.

Proof Suppose that there is a pair of cycles that are in the same component.
If such a pair exists then there is minimal pair C1,C2, i.e., either C1 and C2 are
connected by a path (or meet at a vertex) or they form a cycle with a diagonal
path (see Figure 2.1). Then in either case, C1 ∪C2 consists of a path P plus
another two distinct edges, one from each endpoint of P joining it to another
vertex in P. The number of such graphs on k labeled vertices can be bounded
by k2k!.

Let X be the number of subgraphs of the above kind (shown in Figure 2.1) in
the random graph Gn,p. By the first moment method (see Lemma 20.2),

P(X > 0)≤ EX ≤
n

∑
k=4

(
n
k

)
k2k!pk+1 (2.3)

≤
n

∑
k=4

nk

k!
k2k!

1
nk+1

(
1− ω

n1/3

)k+1

≤
∫

∞

0

x2

n
exp
(
− ωx

n1/3

)
dx

=
2

ω3

= o(1).

We remark for later use that if p = c/n, 0 < c < 1 then (2.3) implies

P(X > 0)≤
n

∑
k=4

k2ck+1n−1 = O(n−1). (2.4)

Hence, in determining the order of the largest component we may con-
centrate our attention on unicyclic components and tree-components (isolated
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Figure 2.1 C1∪C2

trees). However the number of vertices on unicyclic components tends to be
rather small, as is shown in the next lemma.

Lemma 2.11 If p = c/n, where 0 < c < 1 is a constant, then in Gn,p w.h.p.
the number of vertices in components with exactly one cycle, is O(ω) for any
growing function ω .

Proof Let Xk be the number of vertices on unicyclic components with k ver-
tices. Then

EXk ≤
(

n
k

)
kk−2

(
k
2

)
kpk(1− p)k(n−k)+(k

2)−k. (2.5)
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The factor kk−2
(k

2

)
in (2.5) is the number of choices for a tree plus an edge on k

vertices in [k]. This bounds the number C(k,k) of connected graphs on [k] with
k edges. This is off by a factor O(k1/2) from the exact formula which is given
below for completeness:

C(k,k) =
k

∑
r=3

(
k
r

)
(r−1)!

2
rkk−r−1 ≈

√
π

8
kk−1/2. (2.6)

The remaining factor, other than
(n

k

)
, in (2.5) is the probability that the k edges

of the unicyclic component exist and that there are no other edges on Gn,p

incident with the k chosen vertices.
Noting also that by Lemma 21.1(d),(

n
k

)
≤ nk

k!
e−

k(k−1)
2n ,

and so we get

EXk ≤
nk

k!
e−

k(k−1)
2n kk+1 ck

nk e−ck+ ck(k−1)
2n + ck

2n

≤ ek

kk e−
k(k−1)

2n kk+1cke−ck+ k(k−1)
2n + c

2

≤ k
(
ce1−c)k

e
c
2 .

So,

E
n

∑
k=3

Xk ≤
n

∑
k=3

k
(
ce1−c)k

e
c
2 = O(1), (2.7)

since ce1−c < 1 for c 6= 1. By Markov’s inequality, if ω = ω(n)→ ∞, (see
Lemma 20.1)

P

(
n

∑
k=3

Xk ≥ ω

)
= O

(
1
ω

)
→ 0 as n→ ∞,

and the Lemma follows.

After proving the first two lemmas one can easily see that the only remaining
candidate for the largest component of our random graph is an isolated tree.

Lemma 2.12 Let p = c
n , where c 6= 1 is a constant, α = c− 1− logc, and

ω = ω(n)→ ∞, ω = o(log logn). Then

(i) w.h.p. there exists an isolated tree of order

k− =
1
α

(
logn− 5

2
loglogn

)
−ω,
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(ii) w.h.p. there is no isolated tree of order at least

k+ =
1
α

(
logn− 5

2
loglogn

)
+ω

Proof Note that our assumption on c means that α is a positive constant.
Let Xk be the number of isolated trees of order k. Then

EXk =

(
n
k

)
kk−2 pk−1(1− p)k(n−k)+(k

2)−k+1. (2.8)

To prove (i) suppose k = O(logn). Then by using Lemma 21.1(a),(b) and Stir-
lings approximation (1.4) for k! we see that

EXk = (1+o(1))
n
c

kk−2

k!
(ce−c)k (2.9)

=
(1+o(1))

c
√

2π

n
k5/2 (ce1−c)k

=
(1+o(1))

c
√

2π

n
k5/2 e−αk.

Putting k = k− we see that

EXk =
(1+o(1))

c
√

2π

n
k5/2

eαω(logn)5/2

n
≥ Aeαω , (2.10)

for some constant A > 0.
We continue via the Second Moment Method, this time using the Chebyshev

inequality as we will need a little extra precision for the proof of Theorem
2.14. Using essentially the same argument as for a fixed tree T of order k (see
Theorem 2.6), we get

EX2
k ≤ EXk

(
1+(1− p)−k2

EXk

)
.

So

VarXk ≤ EXk +(EXk)
2
(
(1− p)−k2 −1

)
≤ EXk +2ck2(EXk)

2/n.

Thus, by the Chebyshev inequality (see Lemma 20.3), we see that for any fixed
ε > 0,

P(|Xk−EXk| ≥ ε EXk)≤
1

ε2EXk
+

2ck2

ε2n
= o(1). (2.11)

Thus w.h.p. Xk ≥ Aeαω/2 and this completes the proof of (i).
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For (ii) we go back to the formula (2.8) and write, for some new constant
A > 0,

EXk ≤
A√
k

(ne
k

)k
kk−2

(
1− k

2n

)k−1( c
n

)k−1
e−ck+ ck2

2n

≤ 2An
ĉkk5/2

(
ĉke1−ĉk

)k
,

where ĉk = c
(
1− k

2n

)
.

In the case c < 1 we have ĉke1−ĉk ≤ ce1−c and ĉk ≈ c and so we can write

n

∑
k=k+

EXk ≤
3An

c

n

∑
k=k+

(
ce1−c

)k

k5/2 ≤ 3An

ck5/2
+

∞

∑
k=k+

e−αk =

=
3Ane−αk+

ck5/2
+ (1− e−α)

=
(3A+o(1))α5/2e−αω

c(1− e−α)
= o(1). (2.12)

If c > 1 then for k ≤ n
logn we use ĉke1−ĉk = e−α−O(1/ logn) and for k > n

logn we
use ck ≥ c/2 and ĉke1−ĉk ≤ 1 and replace (2.12) by

n

∑
k=k+

EXk ≤
3An

ck5/2
+

n/ logn

∑
k=k+

e−(α+O(1/ logn))k +
6An

c

n

∑
k=n/ logn

1
k5/2 = o(1).

Finally, applying Lemmas 2.11 and 2.12 we can prove the following useful
identity: Suppose that x = x(c) is given as

x = x(c) =

{
c c≤ 1

The solution in (0,1) to xe−x = ce−c c > 1
.

Note that xe−x increases continuously as x increases from 0 to 1 and then de-
creases. This justifies the existence and uniqueness of x.

Lemma 2.13 If p = c
n and c > 0, c 6= 1 is a constant, and x = x(c) is defined

above, then
1
x

∞

∑
k=1

kk−1

k!
(
ce−c)k

= 1.

Proof Assume first that c < 1 and let X be the total number of vertices of
Gn,p that lie in non-tree components. Let Xk be the number of tree-components
of order k. Then,

n =
n

∑
k=1

kXk +X .



2.2 Super-Critical Phase 33

So,

n =
n

∑
k=1

kEXk +EX .

Now,

(i) by (2.4) and (2.7), EX = O(1),
(ii) by (2.9), if k < k+ then

EXk = (1+o(1))
n

ck!
kk−2 (ce−c)k

.

So, by Lemma 2.12,

n = o(n)+
n
c

k+

∑
k=1

kk−1

k!
(
ce−c)k

= o(n)+
n
c

∞

∑
k=1

kk−1

k!
(
ce−c)k

.

Now divide through by n and let n→ ∞.
This proves the identity for the case c < 1. Suppose now that c > 1. Then,

since x is a solution of equation ce−c = xe−x, 0 < x < 1, we have

∞

∑
k=1

kk−1

k!
(
ce−c)k

=
∞

∑
k=1

kk−1

k!
(
xe−x)k

= x,

by the first part of the proof (for c < 1).
We note that in fact, Lemma 2.13 is also true for c = 1.

2.2 Super-Critical Phase

The structure of a random graph Gm changes dramatically when m = 1
2 cn

where c > 1 is a constant. We will give a precise characterisation of this phe-
nomenon, presenting results in terms of Gm and proving them for Gn,p with
p = c/n, c > 1.

Theorem 2.14 If m = cn/2, c > 1, then w.h.p. Gm consists of a unique gi-

ant component, with
(
1− x

c +o(1)
)

n vertices and
(

1− x2

c2 +o(1)
)

cn
2 edges.

Here 0 < x < 1 is the solution of the equation xe−x = ce−c. The remaining
components are of order at most O(logn).
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Proof Suppose that Zk is the number of components of order k in Gn,p. Then,
bounding the number of such components by the number of trees with k ver-
tices that span a component, we get

EZk ≤
(

n
k

)
kk−2 pk−1(1− p)k(n−k) (2.13)

≤ A√
k

(ne
k

)k
kk−2

( c
n

)k−1
e−ck+ck2/n

≤ An
k5/2

(
ce1−c+ck/n

)k

Now let β1 = β1(c) be small enough so that

ce1−c+cβ1 < 1,

and let β0 = β0(c) be large enough so that(
ce1−c+o(1)

)β0 logn
<

1
n2 .

If we choose β1 and β0 as above then it follows that w.h.p. there is no compo-
nent of order k ∈ [β0 logn,β1n].
Our next task is to estimate the number of vertices on small components i.e.
those of size at most β0 logn.

We first estimate the total number of vertices on small tree components, i.e.,
on isolated trees of order at most β0 logn.
Assume first that 1 ≤ k ≤ k0, where k0 = 1

2α
logn, where α is from Lemma

2.12. It follows from (2.9) that

E

(
k0

∑
k=1

kXk

)
≈ n

c

k0

∑
k=1

kk−1

k!
(
ce−c)k

≈ n
c

∞

∑
k=1

kk−1

k!
(
ce−c)k

,

using kk−1/k! < ek, and ce−c < e−1 for c 6= 1 to extend the summation from k0

to infinity.
Putting ε = 1/ logn and using (2.11) we see that the probability that any

Xk, 1≤ k ≤ k0, deviates from its mean by more than 1± ε is at most

k0

∑
k=1

[
(logn)2

n1/2−o(1) +O
(
(logn)4

n

)]
= o(1),

where the n1/2−o(1) term comes from putting ω ≈ k0/2 in (2.10).
Thus, if x = x(c), 0 < x < 1 is the unique solution in (0,1) of the equation
xe−x = ce−c, then w.h.p.,
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k0

∑
k=1

kXk ≈
n
c

∞

∑
k=1

kk−1

k!
(
xe−x)k

=
nx
c
,

by Lemma 2.13.
Now consider k0 < k ≤ β0 logn.

E

(
β0 logn

∑
k=k0+1

kXk

)
≤ n

c

β0 logn

∑
k=k0+1

(
ce1−c+ck/n

)k

= O
(

n(ce1−c)k0
)

= O
(

n1/2+o(1)
)
.

So, by the Markov inequality (see Lemma 20.1), w.h.p.,

β0 logn

∑
k=k0+1

kXk = o(n).

Now consider the number Yk of non-tree components with k vertices, 1 ≤ k ≤
β0 logn.

E

(
β0 logn

∑
k=1

kYk

)
≤

β0 logn

∑
k=1

(
n
k

)
kk−1

(
k
2

)( c
n

)k(
1− c

n

)k(n−k)

≤
β0 logn

∑
k=1

k
(

ce1−c+ck/n
)k

= O(1).

So, again by the Markov inequality, w.h.p.,

β0 logn

∑
k=1

kYk = o(n).

Summarising, we have proved so far that w.h.p. there are approximately nx
c

vertices on components of order k, where 1≤ k≤ β0 logn and all the remaining
giant components are of size at least β1n.
We complete the proof by showing the uniqueness of the giant component. Let

c1 = c− logn
n

and p1 =
c1

n
.
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Define p2 by

1− p = (1− p1)(1− p2)

and note that p2 ≥ logn
n2 . Then, see Section 1.2,

Gn,p =Gn,p1 ∪Gn,p2 .

If x1e−x1 = c1e−c1 , then x1 ≈ x and so, by our previous analysis, w.h.p.,
Gn,p1 has no components with number of vertices in the range [β0 logn,β1n].
Suppose there are components C1,C2, . . . ,Cl with |Ci|> β1n. Here l ≤ 1/β1.
Now we add edges of Gn,p2 to Gn,p1 . Then

P(∃i, j : no Gn,p2 edge joins Ci with C j)≤
(

l
2

)
(1− p2)

(β1n)2

≤ l2e−β 2
1 logn

= o(1).

So w.h.p. Gn,p has a unique component with more than β0 logn vertices and it
has ≈

(
1− x

c

)
n vertices.

We now consider the number of edges in the giant C0. Now we switch to
G = Gn,m. Suppose that the edges of G are e1,e2, . . . ,em in random order. We
estimate the probability that e = e1 = {x,y} is an edge of the giant. Let G1

be the graph induced by {e2,e3, . . . ,em}. G1 is distributed as Gn,m−1 and so
we know that w.h.p. G1 has a unique giant C1 and other components are of
size O(logn). So the probability that e is an edge of the giant is o(1) plus the
probability that x or y is a vertex of C1. Thus,

P
(

e 6∈C0 | |C1| ≈ n
(

1− x
c

))
= P

(
e∩C1 = /0 | |C1| ≈ n

(
1− x

c

))
=

(
1− |C1|

n

)(
1− |C1|−1

n

)
≈
(x

c

)2
. (2.14)

It follows that the expected number of edges in the giant is as claimed. To
prove concentration, it is simplest to use the Chebyshev inequality, see Lemma
20.3. So, now fix i, j ≤ m and let C2 denote the unique giant component of
Gn,m−

{
ei,e j

}
. Then, arguing as for (2.14),

P(ei,e j ⊆C0) =

o(1)+P(e j ∩C2 6= /0 | ei∩C2 6= /0)P(ei∩C2 6= /0)

= (1+o(1))P(ei ⊆C0)P(e j ⊆C0).

In the o(1) term, we hide the probability of the event{
ei∩C2 6= /0,e j ∩C2 = /0,ei∩ e j 6= /0

}
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which has probability o(1). We should double this o(1) probability here to
account for switching the roles of i, j.

The Chebyshev inequality can now be used to show that the number of edges
is concentrated as claimed.

We will see later, see Lemma 2.17, that w.h.p. each of the small components
have at most one cycle.

From the above theorem and the results of previous sections we see that,
when m= cn/2 and c passes the critical value equal to 1, the typical structure of
a random graph changes from a scattered collection of small trees and unicyclic
components to a coagulated lump of components (the giant component) that
dominates the graph. This short period when the giant component emerges
is called the phase transition. We will look at this fascinating period of the
evolution more closely in Section 2.3.

We know that w.h.p. the giant component of Gn,m,m = cn/2, c > 1 has ≈
1− x

c vertices and ≈
(

1− x2

c2

)
cn
2 edges. So, if we look at the graph H induced

by the vertices outside the giant, then w.h.p. H has ≈ n1 = nx
c vertices and

≈ m1 = xn1/2 edges. Thus we should expect H to resemble Gn1.m1 , which is
sub-critical since x < 1. This can be made precise, but the intuition is clear.

Now increase m further and look on the outside of the giant component.
The giant component subsequently consumes the small components not yet
attached to it. When m is such that m/n→ ∞ then unicyclic components dis-
appear and a random graph Gm achieves the structure described in the next
theorem.

Theorem 2.15 Let ω = ω(n)→ ∞ as n→ ∞ be some slowly growing func-
tion. If m≥ ωn but m≤ n(logn−ω)/2, then Gm is disconnected and all com-
ponents, with the exception of the giant, are trees w.h.p.

Tree-components of order k die out in the reverse order they were born, i.e.,
larger trees are ”swallowed” by the giant earlier than smaller ones.

Cores

Given a positive integer k, the k-core of a graph G = (V,E) is the largest set
S ⊆ V such that the minimum degree δS in the vertex induced subgraph G[S]
is at least k. This is unique because if δS ≥ k and δT ≥ k then δS∪T ≥ k. Cores
were first discussed by Bollobás [129]. It was shown by Łuczak [539] that for
k ≥ 3 either there is no k-core in Gn,p or one of linear size, w.h.p. The precise
size and first occurrence of k-cores for k≥ 3 was established in Pittel, Spencer
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and Wormald [627]. The 2-core, C2 which is the set of vertices that lie on at
least one cycle behaves differently to the other cores, k≥ 3. It grows gradually.
We will need the following result in Section 16.2.

Lemma 2.16 Suppose that c> 1 and that x< 1 is the solution to xe−x = ce−c.
Then w.h.p. the 2-core C2 of Gn,p, p = c/n has (1−x)

(
1− x

c +o(1)
)

n vertices

and
(
1− x

c +o(1)
)2 cn

2 edges.

Proof Fix v ∈ [n]. We estimate P(v ∈ C2). Let C1 denote the unique giant
component of G1 = Gn,p− v. Now G1 is distributed as Gn−1,p and so C1 ex-
ists w.h.p. To be in C2, either (i) v has two neighbors in C1 or (ii) v has two
neighbors in some other component. Now because all components other than
C1 have size O(logn) w.h.p., we see that

P((ii)) = o(1)+n
(

O(logn)
2

)( c
n

)2
= o(1).

Now w.h.p. |C1| ≈
(
1− x

c

)
n and it is independent of the edges incident with v

and so

P((i)) = o(1)+1−P(0 or 1 neighbors in C1) =

= o(1)+(1+o(1))E
(

1−
((

1− c
n

)|C1|
+ |C1|

(
1− c

n

)|C1|−1 c
n

))
(2.15)

= o(1)+1− (e−c+x +(c− x)e−c+x)

= o(1)+(1− x)
(

1− x
c

)
,

where the last line follows from the fact that e−c+x = x
c . Also, one has to be

careful when estimating something like E
(
1− c

n

)|C1|. For this we note that
Jensen’s inequality implies that

E
(

1− c
n

)|C1|
≥
(

1− c
n

)E |C1|
= e−c+x+o(1).

On the other hand, if ng =
(
1− x

c

)
n,

E
(

1− c
n

)|C1|
≤

E
((

1− c
n

)|C1|
∣∣∣∣|C1| ≥ (1−o(1))ng

)
P(|C1| ≥ (1−o(1))ng)

+P(|C1| ≤ (1−o(1))ng) = e−c+x+o(1).

It follows from (2.15) that E(|C2|) ≈ (1− x)
(
1− x

c

)
n. To prove concentra-

tion of |C2|, we can use the Chebyshev inequality as we did in the proof of
Theorem 2.14 to prove concentration for the number of edges in the giant.
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To estimate the expected number of edges in C2, we proceed as in Theorem
2.14 and turn to G = Gn,m and estimate the probability that e1 ⊆ C2. If G′ =
G \ e and C′1 is the giant of G′ then e1 is an edge of C2 iff e1 ⊆ C′1 or e1 is
contained in a small component. This latter condition is unlikely. Thus,

P(e1 ⊆C2) = o(1)+E
(
|C′1|

n

)2

= o(1)+
(

1− x
c

)2
.

The estimate for the expectation of the number of edges in the 2-core follows
immediately and one can prove concentration using the Chebyshev inequality.

2.3 Phase Transition

In the previous two sections we studied the asymptotic behavior of Gm (and
Gn,p) in the “sub-critical phase” when m= cn,c< 1/2 (p= c/n,c< 1), as well
as in the “super-critical phase” when m > n/2 (p = c/n,c > 1) of its evolution.

We have learned that when m= cn,c> 1/2 our random graph consists w.h.p.
of tree components and components with exactly one cycle (see Theorem 2.1
and Lemma 2.11). We call such components simple while components which
are not simple, i.e. components with at least two cycles, will be called complex.

All components during the sub-critical phase are rather small, of order logn,
tree-components dominate the typical structure of Gm, and there is no sig-
nificant gap in the order of the first and the second largest component. This
follows from Lemma 2.12. The proof of this lemma shows that w.h.p. there
are many trees of height k−. The situation changes when m > n/2, i.e., when
we enter the super-critical phase and then w.h.p. Gm consists of a single giant
complex component (of the order comparable to n), and some number of sim-
ple components, i.e., tree components and components with exactly one cycle
(see Theorem 2.14). One can also observe a clear gap between the order of the
largest component (the giant) and the second largest component which is of the
order O(logn). This phenomenon of dramatic change of the typical structure
of a random graph is called its phase transition.

A natural question arises as to what happens when m/n→ 1/2, either from
below or above, as n→∞. It appears that one can establish, a so called, scaling
window or critical window for the phase transition in which Gm is undergoing
a rapid change in its typical structure. A characteristic feature of this period is
that a random graph can w.h.p. consist of more than one complex component
(recall: there are no complex components in the sub-critical phase and there is
a unique complex component in the super-critical phase).
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Erdős and Rényi [276] studied the size of the largest tree in the random
graph Gn,m when m = n/2 and showed that it was likely to be around n2/3.
They called the transition from O(logn) through Θ(n2/3) to Ω(n) the “dou-
ble jump”. They did not study the regime m = n/2 + o(n). Bollobás [128]
opened the detailed study of this and Łuczak [537] continued this analysis.
He established the precise size of the “scaling window” by removing a log-
arithmic factor from Bollobás’s estimates. The component structure of Gn,m

for m = n/2+ o(n) is rather complicated and the proofs are technically chal-
lenging. We will begin by stating several results that give a an idea of the
component structure in this range, referring the reader elsewhere for proofs:
Chapter 5 of Janson, Łuczak and Ruciński [432]; Aldous [15]; Bollobás [128];
Janson [419]; Janson, Knuth, Łuczak and Pittel [436]; Łuczak [537], [538],
[542]; Łuczak, Pittel and Wierman [545]. We will finish with a proof by Nach-
mias and Peres that when p = 1/n the largest component is likely to have size
of order n2/3.

The first theorem is a refinement of Lemma 2.10.

Theorem 2.17 Let m = n
2 − s, where s = s(n)≥ 0.

(a) The probability that Gn,m contains a complex component is at most n2/4s3.
(b) If s� n2/3 then w.h.p. the largest component is a tree of size asymptotic to

n
2s2 log s3

n .

The next theorem indicates when the phase in which we may have more than
one complex component “ends”, i.e., when a single giant component emerges.

Theorem 2.18 Let m = n
2 + s, where s = s(n)≥ 0. Then the probability that

Gn,m contains more than one complex component is at most 6n2/9/s1/3.

For larger s, the next theorem gives a precise estimate of the size of the
largest component for s� n2/3. For s > 0 we let s̄ > 0 be defined by(

1− 2s̄
n

)
exp
{

2s̄
n

}
=

(
1+

2s
n

)
exp
{
−2s

n

}
.

Theorem 2.19 Let m = n
2 + s where s� n2/3. Then with probability at least

1−7n2/9/s1/3, ∣∣∣∣L1−
2(s+ s̄)n

n+2s

∣∣∣∣≤ n2/3

5
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where L1 is the size of the largest component in Gn,m. In addition, the largest
component is complex and all other components are either trees or unicyclic
components.

To get a feel for this estimate of L1 we remark that

s̄ = s− 4s2

3n
+O

(
s3

n2

)
.

The next theorem gives some information about `-components inside the
scaling window m = n/2+O(n2/3). An `-component is one that has ` more
edges than vertices. So trees are (-1)-components.

Theorem 2.20 Let m = n
2 + O(n2/3) and let r` denote the number of `-

components in Gn,m. For every 0 < δ < 1 there exists Cδ such that if n is
sufficiently large, then with probability at least 1− δ , ∑`≥3 `r` ≤ Cδ and the
number of vertices on complex components is at most Cδ n2/3.

One of the difficulties in analysing the phase transition stems from the need
to estimate C(k, `), which is the number of connected graphs with vertex set [k]
and ` edges. We need good estimates for use in first moment calculations. We
have seen the values for C(k,k− 1) (Cayley’s formula) and C(k,k), see (2.6).
For ` > 0, things become more tricky. Wright [726], [727], [728] showed that
Ck,k+` ≈ γ`kk+(3`−1)/2 for ` = o(k1/3) where the Wright coefficients γ` satisfy
an explicit recurrence and have been related to Brownian motion, see Aldous
[15] and Spencer [688]. In a breakthrough paper, Bender, Canfield and McKay
[71] gave an asymptotic formula valid for all k. Łuczak [536] in a beautiful
argument simplified a large part of their argument, see Exercise (4.3.6). Bol-
lobás [130] proved the useful simple estimate Ck,k+` ≤ c`−`/2kk+(3`−1)/2 for
some absolute constant c > 0. It is difficult to prove tight statements about
Gn,m in the phase transition window without these estimates. Nevertheless, it
is possible to see that the largest component should be of size order n2/3, us-
ing a nice argument from Nachmias and Peres. They have published a stronger
version of this argument in [599].

Theorem 2.21 Let p = 1
n and A be a large constant. Let Z be the size of the

largest component in Gn,p. Then

(i) P
(

Z ≤ 1
A

n2/3
)
= O(A−1),

(ii) P
(

Z ≥ An2/3
)
= O(A−1).
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Proof We will prove part (i) of the theorem first. This is a standard application
of the first moment method, see for example Bollobás [130]. Let Xk be the
number of tree components of order k and let k ∈

[ 1
A n2/3,An2/3

]
. Then, see

also (2.8),

EXk =

(
n
k

)
kk−2 pk−1(1− p)k(n−k)+(k

2)−k+1.

But

(1− p)k(n−k)+(k
2)−k+1 ≈ (1− p)kn−k2/2

= exp{(kn− k2/2) log(1− p)}

≈ exp
{
−kn− k2/2

n

}
.

Hence, by the above and Lemma 21.2,

EXk ≈
n√

2π k5/2
exp
{
− k3

6n2

}
. (2.16)

So if

X =
An2/3

∑
1
A n2/3

Xk,

then

EX ≈ 1√
2π

∫ A

x= 1
A

e−x3/6

x5/2 dx

=
4

3
√

π
A3/2 +O(A1/2).

Arguing as in Lemma 2.12 we see that

EX2
k ≤ EXk +(1+o(1))(EXk)

2,

E(XkXl)≤ (1+o(1))(EXk)(EXl), k 6= l.

It follows that

EX2 ≤ EX +(1+o(1))(EX)2.

Applying the second moment method, Lemma 20.6, we see that

P(X > 0)≥ 1
(EX)−1 +1+o(1)

= 1−O(A−1),
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which completes the proof of part (i).

To prove (ii) we first consider a breadth first search (BFS) starting from, say,
vertex x. We construct a sequence of sets S1 = {x},S2, . . ., where

Si+1 = {v 6∈ Si : ∃w ∈ Si such that (v,w) ∈ E(Gn,p)}.

We have

E(|Si+1| |Si)≤ (n−|Si|)
(

1− (1− p)|Si|
)

≤ (n−|Si|)|Si|p
≤ |Si|.

So

E |Si+1| ≤ E |Si| ≤ · · · ≤ E |S1|= 1. (2.17)

We prove next that

πk = P(Sk 6= /0)≤ 4
k
. (2.18)

This is clearly true for k ≤ 4 and we obtain (2.18) by induction from

πk+1 ≤
n−1

∑
i=1

(
n−1

i

)
pi(1− p)n−1−i(1− (1−πk)

i). (2.19)

To explain the above inequality note that we can couple the construction of
S1,S2, . . . ,Sk with a (branching) process where T1 = {1} and Tk+1 is obtained
from Tk as follows: each Tk independently spawns Bin(n− 1, p) individuals.
Note that |Tk| stochastically dominates |Sk|. This is because in the BFS process,
each w ∈ Sk gives rise to at most Bin(n−1, p) new vertices. Inequality (2.19)
follows, because Tk+1 6= /0 implies that at least one of 1’s children give rise to
descendants at level k. Going back to (2.19) we get

πk+1 ≤ 1− (1− p)n−1− (1− p+ p(1−πk))
n−1 +(1− p)n−1

= 1− (1− pπk)
n−1

≤ 1−1+(n−1)pπk−
(

n−1
2

)
p2

π
2
k +

(
n−1

3

)
p3

π
3
k

≤ πk−
(

1
2
+o(1)

)
π

2
k +

(
1
6
+o(1)

)
π

3
k

= πk

(
1−πk

((
1
2
+o(1)

)
−
(

1
6
+o(1)

)
πk

))
≤ πk

(
1− 1

4
πk

)
.
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This expression increases for 0 ≤ πk ≤ 1 and immediately gives π5 ≤ 3/4 ≤
4/5. In general we have by induction that

πk+1 ≤
4
k

(
1− 1

k

)
≤ 4

k+1
,

completing the inductive proof of (2.18).

Let Cx be the component containing x and let ρx = max{k : Sk 6= /0} in the
BFS from x. Let

X =
∣∣∣{x : |Cx| ≥ n2/3

}∣∣∣≤ X1 +X2,

where

X1 =
∣∣∣{x : |Cx| ≥ n2/3 and ρx ≤ n1/3

}∣∣∣ ,
X2 =

∣∣∣{x : ρx > n1/3
}∣∣∣ .

It follows from (2.18) that

P(ρx > n1/3)≤ 4
n1/3

and so

EX2 ≤ 4n2/3.

Furthermore,

P
{
|Cx| ≥ n2/3 and ρx ≤ n1/3

}
≤ P

(
|S1|+ . . .+ |Sn1/3 | ≥ n2/3

)
≤

E(|S1|+ . . .+ |Sn1/3 |)
n2/3

≤ 1
n1/3 ,

after using (2.17). So EX1 ≤ n2/3 and EX ≤ 5n2/3.
Now let Cmax denote the size of the largest component. Now

Cmax ≤ |X |+n2/3

where the addition of n2/3 accounts for the case where X = 0.
So we have

ECmax ≤ 6n2/3
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and part (ii) of the theorem follows from the Markov inequality (see Lemma
20.1).

2.4 Exercises

2.4.1 Prove Theorem 2.15.
2.4.2 Show that if p=ω/n where ω =ω(n)→∞ then w.h.p. Gn,p contains no

unicyclic components. (A component is unicyclic if it contains exactly
one cycle i.e. is a tree plus one extra edge).

2.4.3 Prove Theorem 2.17.
2.4.4 Suppose that m= cn/2 where c> 1 is a constant. Let C1 denote the giant

component of Gn,m, assuming that it exists. Suppose that C1 has n′ ≤ n
vertices and m′ ≤ m edges. Let G1,G2 be two connected graphs with n′

vertices from [n] and m′ edges. Show that

P(C1 = G1) = P(C1 = G2).

(I.e. C1 is a uniformly random connected graph with n′ vertices and m′

edges).
2.4.5 Suppose that Z is the length of the cycle in a randomly chosen connected

unicyclic graph on vertex set [n]. Show that, where N =
(n

2

)
,

EZ =
nn−2(N−n+1)

C(n,n)
.

2.4.6 Suppose that c < 1. Show that w.h.p. the length of the longest path in
Gn,p , p = c

n is ≈ logn
log1/c .

2.4.7 Let Gn,n,p denote the random bipartite graph derived from the complete
bipartite graph Kn,n where each edge is included independently with
probability p. Show that if p = c/n where c > 1 is a constant then w.h.p.
Gn,n,p has a unique giant component of size ≈ 2G(c)n where G(c) is as
in Theorem 2.14.

2.4.8 Consider the bipartite random graph Gn,n,p=c/n, with constant c > 1. De-
fine 0 < x < 1 to be the solution to xe−x = ce−c. Prove that w.h.p. the
2-core of Gn,n,p=c/n has ≈ 2(1− x)

(
1− x

c

)
n vertices and ≈ c

(
1− x

c

)2 n
edges.

2.4.9 Let p = 1+ε

n . Show that if ε is a small positive constant then w.h.p. Gn,p

contains a giant component of size (2ε +O(ε2))n.
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2.4.10 Let m = n
2 + s, where s = s(n)≥ 0. Show that if s� n2/3 then w.h.p. the

random graph Gm contains exactly one complex component. (A compo-
nent C is complex if it contains at least two distinct cycles. In terms of
edges, C is complex iff it contains at last |C|+1 edges).

2.4.11 Let mk(n) = n(logn+(k−1) log logn+ω)/(2k), where |ω| →∞, |ω|=
o(logn). Show that

P(Gmk 6⊇ k-vertex-tree-component) =

{
o(1) if ω →−∞

1−o(1) if ω → ∞
.

2.4.12 Let k be fixed and let p = c
n . Show that if c is sufficiently large, then

w.h.p. the k-core of Gn,p is non-empty.

2.4.13 Let k be fixed and let p = c
n . Show that there exists θ = θ(c,k) such that

w.h.p. all vertex sets S with |S| ≤ θn contain fewer than k|S|/2 edges.
Deduce that w.h.p. either the k-core of Gn,p is empty or it has size at
least θn.

2.4.14 Suppose that p = c
n where c > 1 is a constant. Show that w.h.p. the giant

component of Gn,p is non-planar. (Hint: Assume that c = 1+ ε where ε

is small. Remove a few vertices from the giant so that the girth is large.
Now use Euler’s formula).

2.4.15 Show that if ω = ω(n)→ ∞ then w.h.p. Gn,p has at most ω complex
components.

2.4.16 Suppose that np→ ∞ and 3 ≤ k = O(1). Show that Gn,p contains a k-
cycle w.h.p.

2.4.17 Suppose that p = c/n where c > 1 is constant and let β = β (c) be the
smallest root of the equation

1
2

cβ +(1−β )ce−cβ = log
(

c(1−β )(β−1)/β

)
.

1 Show that if ω → ∞ and ω ≤ k ≤ βn then w.h.p. Gn,p contains no
maximal induced tree of size k.

2 Show that w.h.p. Gn,p contains an induced tree of size (logn)2.

3 Deduce that w.h.p. Gn,p contains an induced tree of size at least βn.

2.4.18 Show that if c 6= 1 and xe−x = ce−c where 0 < x < 1 then

1
c

∞

∑
k=1

kk−2

k!
(ce−c)k =

{
1− c

2 c < 1.
x
c

(
1− x

2

)
c > 1.
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2.5 Notes

Phase transition

The paper by Łuczak, Pittel and Wierman [545] contains a great deal of in-
formation about the phase transition. In particular, [545] shows that if m =

n/2 + λn2/3 then the probability that Gn,m is planar tends to a limit p(λ ),
where p(λ )→ 0 as λ → ∞. The landmark paper by Janson, Knuth, Łuczak
and Pittel [436] gives the most detailed analysis to date of the events in the
scaling window.

Outside of the critical window n
2±O(n2/3) the size of the largest component

is asymptotically determined. Theorem 2.17 describes Gn,m before reaching
the window and on the other hand a unique “giant” component of size ≈ 4s
begins to emerge at around m = n

2 + s, for s� n2/3. Ding, Kim, Lubetzky and
Peres [245] give a useful model for the structure of this giant.

Achlioptas processes

Dimitris Achlipotas proposed the following variation on the basic graph pro-
cess. Suppose that instead of adding a random edge ei to add to Gi−1 to create
Gi, one is given a choice of two random edges ei, fi and one chooses one of
them to add. He asked whether it was possible to come up with a choice rule
that would delay the occurrence of some graph property P . As an initial chal-
lenge he asked whether it was possible to delay the production of a giant com-
ponent beyond n/2. Bohman and Frieze [113] showed that this was possible
by the use of a simple rule. Since that time this has grown into a large area of
research. Kang, Perkins and Spencer [463] have given a more detailed analy-
sis of the “Bohman-Frieze” process. Bohman and Kravitz [120] and in greater
generality Spencer and Wormald [690] analyse “bounded size algorithms” in
respect of avoiding giant components. Flaxman, Gamarnik and Sorkin [306]
consider how to speed up the occurrence of a giant component. Riordan and
Warnke [648] discuss the speed of transition at a critical point in an Achlioptas
process.

The above papers concern component structure. Krivelevich, Loh and Su-
dakov [505] considered rules for avoiding specific subgraphs. Krivelevich, Lu-
betzky and Sudakov [506] discuss rules for speeding up Hamiltonicity.

Graph Minors

Fountoulakis, Kühn and Osthus [312] show that for every ε > 0 there exists Cε

such that if np >Cε and p = o(1) then w.h.p. Gn,p contains a complete minor
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of size (1± ε)
(

n2 p
lognp

)
. This improves earlier results of Bollobás, Catlin and

Erdős [134] and Krivelevich and Sudakov [511]. Ajtai, Komlós and Szemerédi
[9] showed that if np≥ 1+ε and np = o(n1/2) then w.h.p. Gn,p contains a top-
logical clique of size almost as large as the maximum degree. If we know that
Gn,p is non-planar w.h.p. then it makes sense to determine its thickness. This is
the minimum number of planar graphs whose union is the whole graph. Cooper
[197] showed that the thickness of Gn,p is strongly related to its arboricity and
is asymptotic to np/2 for a large range of p.



3
Vertex Degrees

In this chapter we study some typical properties of the degree sequence of a
random graph. We begin by discussing the typical degrees in a sparse random
graph i.e. one with O(n) edges and prove some results on the asymptotic dis-
tribution of degrees. Next we look at the typical values of the minimum and
maximum degrees in dense random graphs. We then describe a simple canoni-
cal labelling algorithm for the graph isomorphism problem on a dense random
graph.

3.1 Degrees of Sparse Random Graphs

Recall that the degree of an individual vertex of Gn,p is a Binomial random
variable with parameters n−1 and p. One should also notice that the degrees
of different vertices are only mildly correlated.

We will first prove some simple but often useful properties of vertex degrees
when p = o(1). Let X0 = Xn,0 be the number of isolated vertices in Gn,p. In
Lemma 1.11, we established the sharp threshold for “disappearance” of such
vertices. Now we will be more precise and determine the asymptotic distribu-
tion of X0 “below”, “on” and “above” the threshold. Obviously,

EX0 = n(1− p)n−1,

and an easy computation shows that, as n→ ∞,

EX0→


∞ if np− logn→−∞

e−c if np− logn→ c, c < ∞,

0 if np− logn→ ∞

(3.1)

We denote by Po(λ ) a random variable with the Poisson distribution with
parameter λ , while N(0,1) denotes the random variable with the Standard Nor-
mal distribution. We write Xn

D→ X to say that a random variable Xn converges
in distribution to a random variable X , as n→ ∞.

The following theorem shows that the asymptotic distribution of X0 passes
through three phases: it starts in the Normal phase; next when isolated vertices

49
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are close to “dying out”, it moves through a Poisson phase; it finally ends up
at the distribution concentrated at 0.

Theorem 3.1 Let X0 be the random variable counting isolated vertices in a
random graph Gn,p. Then, as n→ ∞,

(i) X̃0 = (X0−EX0)/(VarX0)
1/2 D→ N(0,1),

if n2 p→ ∞ and np− logn→−∞,

(ii) X0
D→ Po(e−c), if np− logn→ c, c < ∞,

(iii) X0
D→ 0, if np− logn→ ∞.

Proof For the proof of (i) we refer the reader to Chapter 6 of Janson, Łuczak
and Ruciński [432] (or to [60] and [500]).

To prove (ii) one has to show that if p = p(n) is such that np− logn→ c ,
then

lim
n→∞

P(X0 = k) =
e−ck

k!
e−e−c

, (3.2)

for k = 0,1, ... . Now,

X0 = ∑
v∈V

Iv,

where

Iv =

{
1 if v is an isolated vertex in Gn,p

0 otherwise.

So

EX0 = ∑
v∈V

E Iv = n(1− p)n−1

= nexp{(n−1) log(1− p)}

= nexp

{
−(n−1)

∞

∑
k=1

pk

k

}
= nexp

{
−(n−1)p+O(np2)

}
= nexp

{
−(logn+ c)+O

(
(logn)2

n

)}
≈ e−c. (3.3)

The easiest way to show that (3.2) holds is to apply the Method of Moments
(see Chapter 20). Briefly, since the distribution of the random variable X0 is



3.1 Degrees of Sparse Random Graphs 51

uniquely determined by its moments, it is enough to show, that either the kth
factorial moment EX0(X0− 1) · · ·(X0− k+ 1) of X0, or its binomial moment
E
(X0

k

)
, tend to the respective moments of the Poisson distribution, i.e., to either

e−ck or e−ck/k!. We choose the binomial moments, and so let

B(n)
k = E

(
X0

k

)
,

then, for every non-negative integer k,

B(n)
k = ∑

1≤i1<i2<···<ik≤n
P(Ivi1

= 1, Ivi2
= 1, . . . , Ivik

= 1),

=

(
n
k

)
(1− p)k(n−k)+(k

2).

Hence

lim
n→∞

B(n)
k =

e−ck

k!
,

and part (ii) of the theorem follows by Theorem 20.11, with λ = e−c.
For part (iii), suppose that np = logn+ω where ω → ∞. We repeat the

calculation estimating EX0 and replace≈ e−c in (3.3) by≤ (1+o(1))e−ω → 0
and apply the first moment method.

From the above theorem we immediately see that if np− logn→ c then

lim
n→∞

P(X0 = 0) = e−e−c
. (3.4)

We next give a more general result describing the asymptotic distribution
of the number Xd = Xn,d , d ≥ 1 of vertices of any fixed degree d in a random
graph.

Recall, that the degree of a vertex in Gn,p has the binomial distribution
Bin(n−1, p). Hence,

EXd = n
(

n−1
d

)
pd(1− p)n−1−d . (3.5)

Therefore, as n→ ∞,

EXd →



0 if p� n−(d+1)/d ,

λ1 if p≈ cn−(d+1)/d , c < ∞,

∞ if p� n−(d+1)/d) but

pn− logn−d log logn→−∞,

λ2 if pn− logn−d log logn→ c, c < ∞,

0 if pn− logn−d log logn→ ∞,

(3.6)
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where

λ1 =
cd

d!
and λ2 =

e−c

d!
. (3.7)

The asymptotic behavior of the expectation of the random variable Xd sug-
gests possible asymptotic distributions for Xd , for a given edge probability p.

Theorem 3.2 Let Xd = Xn,d be the number of vertices of degree d,
d ≥ 1, in Gn,p and let λ1,λ2 be given by (3.7). Then, as n→ ∞,

(i) Xd
D→ 0 if p� n−(d+1)/d ,

(ii) Xd
D→ Po(λ1) if p≈ cn−(d+1)/d , c < ∞,

(iii) X̃d := (Xd−EXd)/(VarXd)
1/2 D→ N(0,1) if p� n−(d+1)/d , but

pn− logn−d log logn→−∞

(iv) Xd
D→ Po(λ2) if pn− logn−d log logn→ c, −∞ < c < ∞,

(v) Xd
D→ 0 if pn− logn−d log logn→ ∞

Proof The proofs of statements (i) and (v) are straightforward applications of
the first moment method, while the proofs of (ii) and (iv) can be found in Chap-
ter 3 of Bollobás [123] (see also Karoński and Ruciński [471] for estimates of
the rate of convergence). The proof of (iii) can be found in [60].

The next theorem shows the concentration of Xd around its expectation when
in Gn,p the edge probability p = c/n, i.e., when the average vertex degree is c.

Theorem 3.3 Let p = c/n where c is a constant. Let Xd denote the number
of vertices of degree d in Gn,p. Then, for d = O(1), w.h.p.

Xd ≈
cde−c

d!
n.

Proof Assume that vertices of Gn,p are labeled 1,2, . . . ,n. We first compute
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EXd . Thus,

EXd = nP(deg(1) = d) =

= n
(

n−1
d

)( c
n

)d (
1− c

n

)n−1−d

= n
nd

d!

(
1+O

(
d2

n

))( c
n

)d
exp
{
−(n−1−d)

(
c
n
+O

(
1
n2

))}
= n

cde−c

d!

(
1+O

(
1
n

))
.

We now compute the second moment. For this we need to estimate

P(deg(1) = deg(2) = d)

=
c
n

((
n−2
d−1

)( c
n

)d−1(
1− c

n

)n−1−d
)2

+
(

1− c
n

)((n−2
d

)( c
n

)d (
1− c

n

)n−2−d
)2

= P(deg(1) = d)P(deg(2) = d)
(

1+O
(

1
n

))
.

The first line here accounts for the case where {1,2} is an edge and the second
line deals with the case where it is not.

Thus

VarXd =

=
n

∑
i=1

n

∑
j=1

[P(deg(i) = d,deg( j) = d)−P(deg(1) = d)P(deg(2) = d)]

≤
n

∑
i 6= j=1

O
(

1
n

)
+EXd ≤ An,

for some constant A = A(c).
Applying the Chebyshev inequality ( Lemma 20.3), we obtain

P(|Xd−EXd | ≥ tn1/2)≤ A
t2 ,

which completes the proof.
We conclude this section with a look at the asymptotic behavior of the max-

imum vertex degree, when a random graph is sparse.

Theorem 3.4 Let ∆(Gn,p) (δ (Gn,p)) denotes the maximum (minimum) degree
of vertices of Gn,p.
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(i) If p = c/n for some constant c > 0 then w.h.p.

∆(Gn,p)≈
logn

log logn
.

(ii) If np = ω logn where ω → ∞, then w.h.p. δ (Gn,p)≈ ∆(Gn,p)≈ np.

Proof (i) Let d± =
⌈

logn
log logn±2logloglogn

⌉
. Then, if d = d−,

P(∃v : deg(v)≥ d)≤ n
(

n−1
d

)( c
n

)d

≤ n
(ce

d

)d

= exp{logn−d logd +O(d)} (3.8)

Let λ = log loglogn
log logn . Then

d logd ≥ logn
log logn

· 1
1−2λ

· (log logn− log loglogn+o(1))

=
logn

log logn
(1+2λ +O(λ 2))(log logn− log loglogn+o(1))

=
logn

log logn
(log logn+ log loglogn+o(1)). (3.9)

Plugging this into (3.8) shows that ∆(Gn,p)≤ d− w.h.p.
Now let d = d+ and let Xd be the number of vertices of degree d in Gn,p.

Then

E(Xd) = n
(

n−1
d

)( c
n

)d (
1− c

n

)n−d−1

= exp{logn−d logd +O(d)}

= exp
{

logn− logn
log logn

(log logn− log loglogn+o(1))+O(d)
}

(3.10)

→ ∞.

Here (3.10) is obtained by using −λ in place of λ in the argument for (3.9).
Now, for vertices v,w, by the same argument as in the proof of Theorem 3.3,
we have

P(deg(v) = deg(w) = d) = (1+o(1))P(deg(v) = d)P(deg(w) = d),

and the Chebyshev inequality implies that Xd > 0 w.h.p. This completes the
proof of (i).
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Statement (ii) is an easy consequence of the Chernoff bounds, Corollary
21.7. Let ε = ω−1/3. Then

P(∃v : |deg(v)−np| ≥ εnp)≤ 2ne−ε2np/3 = 2n−ω1/3/3 = o(n−1).

3.2 Degrees of Dense Random Graphs

In this section we will concentrate on the case where edge probability p is con-
stant and see how the degree sequence can be used to solve the graph isomor-
phism problem w.h.p. The main result deals with the maximum vertex degree
in dense random graph and is instrumental in the solution of this problem.

Theorem 3.5 Let d± = (n−1)p+(1± ε)
√

2(n−1)pq logn, where q = 1−
p. If p is constant and ε > 0 is a small constant, then w.h.p.

(i) d− ≤ ∆(Gn,p)≤ d+.
(ii) There is a unique vertex of maximum degree.

Proof We break the proof of Theorem 3.5 into two lemmas.

Lemma 3.6 Let d =(n−1)p+x
√
(n−1)pq, p be constant, x≤ n1/3(logn)2,

where q = 1− p. Then

Bd =

(
n−1

d

)
pd(1− p)n−1−d = (1+o(1))

√
1

2πnpq
e−x2/2.

Proof Stirling’s formula gives

Bd = (1+o(1))

√
1

2πnpq

((
(n−1)p

d

) d
n−1
(

(n−1)q
n−1−d

)1− d
n−1
)n−1

.

(3.11)
Now(

d
(n−1)p

) d
n−1

=

(
1+ x

√
q

(n−1)p

) d
n−1

=

= exp
{(

x
√

q
(n−1)p

− x2q
2(n−1)p

+O
(

x3

n3/2

))(
p+ x

√
pq

n−1

)}
= exp

{
x
√

pq
n−1

+
x2q

2(n−1)
+O

(
x3

n3/2

)}
,
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whereas(
n−1−d
(n−1)q

)1− d
n−1

=

(
1− x

√
p

(n−1)q

)1− d
n−1

=

= exp
{
−
(

x
√

p
(n−1)q

+
x2 p

2(n−1)q
+O

(
x3

n3/2

))(
q− x

√
pq

n−1

)}
= exp

{
−x
√

pq
n−1

+
x2 p

2(n−1)
+O

(
x3

n3/2

)}
,

So (
d

(n−1)p

) d
n−1
(

n−1−d
(n−1)q

)1− d
n−1

= exp
{

x2

2(n−1)
+O

(
x3

n3/2

)}
,

and lemma follows from (3.11).
The next lemma proves a strengthing of Theorem 3.5.

Lemma 3.7 Let ε = 1/10, and p be constant and q = 1− p. If

d± = (n−1)p+(1± ε)
√

2(n−1)pq logn.

then w.h.p.

(i) ∆(Gn,p)≤ d+,
(ii) There are Ω(n2ε(1−ε)) vertices of degree at least d−,

(iii) 6 ∃ u 6= v such that deg(u),deg(v)≥ d− and |deg(u)−deg(v)| ≤ 10.

Proof We first prove that as x→ ∞,

1
x

e−x2/2
(

1− 1
x2

)
≤
∫

∞

x
e−y2/2dy≤ 1

x
e−x2/2. (3.12)

To see this notice∫
∞

x
e−y2/2dy =−

∫
∞

x

1
y

(
e−y2/2

)′
dy

=−
[

1
y

e−y2/2
]∞

x
−
∫

∞

x

1
y2 e−y2/2dy

=
1
x

e−x2/2 +

[
1
y3 e−y2/2

]∞

x
+3

∫
∞

x

1
y4 e−y2/2dy

=
1
x

e−x2/2
(

1− 1
x2

)
+O

(
1
x4 e−x2/2

)
.

We can now prove statement (i).
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Let Xd be the number of vertices of degree d. Then EXd = nBd and so Lemma
3.6 implies that

EXd = (1+o(1))
√

n
2π pq

exp

−1
2

(
d− (n−1)p√

(n−1)pq

)2


assuming that

d ≤ dL = (n−1)p+(logn)2
√

(n−1)pq.

Also, if d > (n−1)p then

Bd+1

Bd
=

(n−d−1)p
(d +1)q

< 1

and so if d ≥ dL,

EXd ≤ EXdL ≤ nexp{−Ω(logn)4}.

It follows that

∆(Gn,p)≤ dL w.h.p. (3.13)

Now if Yd = Xd +Xd+1 + · · ·+XdL for d = d± then

EYd ≈
dL

∑
l=d

√
n

2π pq
exp

−1
2

(
l− (n−1)p√
(n−1)pq

)2


≈
∞

∑
l=d

√
n

2π pq
exp

−1
2

(
l− (n−1)p√
(n−1)pq

)2
 (3.14)

≈
√

n
2π pq

∫
∞

λ=d
exp

−1
2

(
λ − (n−1)p√

(n−1)pq

)2
dλ .

The justification for (3.14) comes from

∞

∑
l=dL

√
n

2π pq
exp

−1
2

(
l− (n−1)p√
(n−1)pq

)2
=

= O(n)
∞

∑
x=(logn)2

e−x2/2 = O(e−(logn)2/3),

and √
n

2π pq
exp

−1
2

(
d+− (n−1)p√

(n−1)pq

)2
= n−O(1).
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If d = (n−1)p+ x
√
(n−1)pq then, from (3.12) we have

EYd ≈
√

n
2π pq

∫
∞

λ=d
exp

−1
2

(
λ − (n−1)p√

(n−1)pq

)2
dλ

=

√
n

2π pq

√
(n−1)pq

∫
∞

y=x
e−y2/2dy

≈ n√
2π

1
x

e−x2/2{
≤ n−2ε(1+ε) d = d+
≥ n2ε(1−ε) d = d−

. (3.15)

Part (i) follows from (3.15).
When d = d− we see from (3.15) that EYd→∞. We use the second moment

method to show that Yd− 6= 0 w.h.p.

EYd(Yd−1) = n(n−1)
dL

∑
d≤d1,d2

P(deg(1) = d1,deg(2) = d2)

= n(n−1)
dL

∑
d≤d1,d2

(pP(d̂(1) = d1−1, d̂(2) = d2−1)

+(1− p)P(d̂(1) = d1, d̂(2) = d2)),

where d̂(x) is the number of neighbors of x in {3,4, . . . ,n}. Note that d̂(1) and
d̂(2) are independent, and

P(d̂(1) = d1−1)
P(d̂(1) = d1)

=

( n−2
d1−1

)
(1− p)(n−2

d1

)
p

=
d1(1− p)

(n−1−d1)p

= 1+ Õ(n−1/2).

In Õ we ignore polylog factors.
Hence

E(Yd(Yd−1))

= n(n−1)
dL

∑
d≤d1,d2

[
P(d̂(1) = d1)P(d̂(2) = d2)(1+ Õ(n−1/2))

]
= n(n−1)

dL

∑
d≤d1,d2

[
P(deg(1) = d1)P(deg(2) = d2)(1+ Õ(n−1/2))

]
= EYd(EYd−1)(1+ Õ(n−1/2)),
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since

P(d̂(1) = d1)

P(deg(1) = d1)
=

(n−2
d1

)(n−1
d1

) (1− p)−1

= 1+ Õ(n−1/2).

So, with d = d−

P
(

Yd ≤
1
2
EYd

)
≤ E(Yd(Yd−1))+EYd− (EYd)

2

(EYd)2/4

= Õ
(

1
nε

)
= o(1).

This completes the proof of statement (ii). Finally,

P(¬(iii))≤ o(1)+
(

n
2

) dL

∑
d1=d−

∑
|d2−d1|≤10

P(deg(1) = d1,deg(2) = d2)

= o(1)+
(

n
2

) dL

∑
d1=d−

∑
|d2−d1|≤10

[
pP(d̂(1) = d1−1)P(d̂(2) = d2−1)

+(1− p)P(d̂(1) = d1)P(d̂(2) = d2)
]
,

Now

dL

∑
d1=d−

∑
|d2−d1|≤10

P(d̂(1) = d1−1)P(d̂(2) = d2−1)

≤ 21(1+ Õ(n−1/2))
dL

∑
d1=d−

[
P(d̂(1) = d1−1)

]2
,

and by Lemma 3.6 and by (3.12) we have with

x =
d−− (n−1)p√

(n−1)pq
≈ (1− ε)

√
2logn,
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dL

∑
d1=d−

[
P(d̂(1) = d1−1)

]2 ≈ 1
2π pqn

∫
∞

y=x
e−y2

dy

=
1√

8π pqn

∫
∞

z=x
√

2
e−z2/2dz

≈ 1√
8π pqn

1
x
√

2
n−2(1−ε)2

,

We get a similar bound for ∑
dL
d1=d−∑|d2−d1|≤10

[
P(d̂(1) = d1

]2
. Thus

P(¬(iii)) = o
(

n2−1−2(1−ε)2
)

= o(1).

Application to graph isomorphism
In this section we describe a procedure for canonically labelling a graph G. It
is taken from Babai, Erdős and Selkow [42]. If the procedure succeeds then
it is possible to quickly tell whether G ∼= H for any other graph H. (Here ∼=
stands for graph isomorphism).
Algorithm LABEL
Step 0: Input graph G and parameter L.
Step 1: Re-label the vertices of G so that they satisfy

dG(v1)≥ dG(v2)≥ ·· · ≥ dG(vn).

If there exists i < L such that dG(vi) = dG(vi+1), then FAIL.
Step 2: For i > L let

Xi = { j ∈ {1,2, . . . ,L} :
{

vi,v j
}
∈ E(G)}.

Re-label vertices vL+1,vL+2, . . . ,vn so that these sets satisfy

XL+1 � XL+2 � ·· · � Xn

where � denotes lexicographic order.
If there exists i < n such that Xi = Xi+1 then FAIL.

Suppose now that the above ordering/labelling procedure LABEL succeeds
for G. Given an n vertex graph H, we run LABEL on H.

(i) If LABEL fails on H then G 6∼= H.
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(ii) Suppose that the ordering generated on V (H) is w1,w2, . . . ,wn. Then

G∼= H⇔ vi→ wi is an isomorphism.

It is straightforward to verify (i) and (ii).

Theorem 3.8 Let p be a fixed constant, q = 1− p, and let ρ = p2 + q2 and
let L = 3log1/ρ n. Then w.h.p. LABEL succeeds on Gn,p.

Proof Lemma 3.7 implies that Step 1 succeeds w.h.p. We must now show that
w.h.p. Xi 6= X j for all i 6= j > L. There is a slight problem because the edges
from vi, i > L to v j, j ≤ L are conditioned by the fact that the latter vertices are
those of highest degree.

Now fix i, j > L and let Ĝ =Gn,p \{vi,v j}. It follows from Lemma 3.7 that
w.h.p. the L largest degree vertices of Ĝ and Gn,p coincide. So, w.h.p., we can
compute Xi,X j with respect to Ĝ and therefore avoid our conditioning problem.
Denote by NĜ(v) the set of the neighbors of vertex v in graph Ĝ. Then

P(Step 2 fails)

≤ o(1)+P(∃vi,v j : NĜ(vi)∩{v1, . . . ,vL}= NĜ(v j)∩{v1, . . . ,vL})

≤ o(1)+
(

n
2

)
(p2 +q2)L

= o(1).

Application to edge coloring
The chromatic index χ ′(G) of a graph G is the minimum number of colors that
can be used to color the edges of G so that if two edges share a vertex, then
they have a different color. Vizing’s theorem states that

∆(G)≤ χ
′(G)≤ ∆(G)+1.

Also, if there is a unique vertex of maximum degree, then χ ′(G) = ∆(G). So, it
follows from Theorem 3.5 (ii) that, for constant p, w.h.p. we have χ ′(Gn,p) =

∆(Gn,p).

3.3 Exercises

3.3.1 Suppose that m = dn/2 where d is constant. Prove that the number of
vertices of degree d in Gn,m is asymptotically equal to dde−d

d! n for any
fixed positive integer d.



62 Vertex Degrees

3.3.2 Suppose that c > 1 and that x < 1 is the solution to xe−x = ce−c. Show
that if d = O(1) is fixed then w.h.p. the giant component of Gn,p, p = c

n

has ≈ yde−y

d! n vertices of degree d, where y = c− x.
3.3.3 Suppose that p≤ 1+εn

n where n1/4εn→ 0. Show that if Γ is the sub-graph
of Gn,p induced by the 2-core C2, then Γ has maximum degree at most
three.

3.3.4 Let p = logn+d log logn+c
n , d ≥ 1. Using the method of moments, prove

that the number of vertices of degree d in Gn,p is asymptotically Poisson
with mean e−c

d! .
3.3.5 Prove parts (i) and (v) of Theorem 3.2.
3.3.6 Show that if 0 < p < 1 is constant then w.h.p. the minimum degree δ in

Gn,p satisfies

|δ − (n−1)q−
√

2(n−1)pq logn| ≤ ε
√

2(n−1)pq logn,

where q = 1− p and ε = 1/10.

3.4 Notes

For the more detailed account of the properties of the degree sequence of Gn,p

the reader is referred to Chapter 3 of Bollobás [130].
Erdős and Rényi [275] and [277] were first to study the asymptotic distribu-

tion of the number Xd of vertices of degree d in relation with connectivity of
a random graph. Bollobás [127] continued those investigations and provided
detailed study of the distribution of Xd in Gn,p when 0 < liminfnp(n)/ logn≤
limsupnp(n)/ logn < ∞. Palka [610] determined certain range of the edge
probability p for which the number of vertices of a given degree of a ran-
dom graph Gn,p has a Normal distribution. Barbour [57] and Karoński and
Ruciński [471] studied the distribution of Xd using the Stein–Chen approach.
A complete answer to the asymptotic Normality of Xd was given by Barbour,
Karoński and Ruciński [60] (see also Kordecki [500]). Janson [425] extended
those results and showed that random variables counting vertices of given de-
gree are jointly normal, when p≈ c/n in Gn,p and m≈ cn in Gn,m, where c is
a constant.

Ivchenko [414] was the first to analyze the asymptotic behavior the kth-
largest and kth smallest element of the degree sequence of Gn,p. In particular
he analysed the span between the minimum and the maximum degree of sparse
Gn,p. Similar results were obtained independently by Bollobás [125] (see also
Palka [611]). Bollobás [127] answered the question for what values of p(n),
Gn,p w.h.p. has a unique vertex of maximum degree (see Theorem 3.5).
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Bollobás [122], for constant p, 0 < p < 1, i.e., when Gn,p is dense, gave
an estimate of the probability that maximum degree does not exceed pn +

O(
√

n logn). A more precise result was proved by Riordan and Selby [645]
who showed that for constant p, the probability that the maximum degree
of Gn,p does not exceed pn + b

√
np(1− p), where b is fixed, is equal to

(c+ o(1))n, for c = c(b) the root of a certain equation. Surprisingly, c(0) =
0.6102... is greater than 1/2 and c(b) is independent of p.

McKay and Wormald [571] proved that for a wide range of functions p =

p(n), the distribution of the degree sequence of Gn,p can be approximated
by {(X1, . . . ,Xn)|∑Xi is even}, where X1, . . . ,Xn are independent random vari-
ables each having the Binomial distribution Bin(n−1, p′), where p′ is itself a
random variable with a particular truncated normal distribution



4
Connectivity

We first establish, rather precisely, the threshold for connectivity. We then view
this property in terms of the graph process and show that w.h.p. the random
graph becomes connected at precisely the time when the last isolated vertex
joins the giant component. This “hitting time” result is the pre-cursor to several
similar results. After this we deal with k-connectivity.

4.1 Connectivity

The first result of this chapter is from Erdős and Rényi [275].

Theorem 4.1 Let m = 1
2 n(logn+ cn). Then

lim
n→∞

P(Gm is connected) =


0 if cn→−∞,

e−e−c
if cn→ c (constant)

1 if cn→ ∞.

Proof To prove the theorem we consider, as before, a random graph Gn,p. It
suffices to prove that, when p = logn+c

n ,

P(Gn,p is connected )→ e−e−c
.

and use Theorem 1.4 to translate to Gm and then use (1.6) and monotonicity
for cn→±∞.

Let Xk = Xk,n be the number of components with k vertices in Gn,p and
consider the complement of the event that Gn,p is connected. Then

P(Gn,p is not connected )

= P

n/2⋃
k=1

(Gn,p has a component of order k)

=

P

n/2⋃
k=1

{Xk > 0}

 .

64
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Note that X1 counts here isolated vertices and therefore

P(X1 > 0)≤ P(Gn,p is not connected )≤ P(X1 > 0)+
n/2

∑
k=2

P(Xk > 0).

Now
n/2

∑
k=2

P(Xk > 0)≤
n/2

∑
k=2

EXk ≤
n/2

∑
k=2

(
n
k

)
kk−2 pk−1(1− p)k(n−k) =

n/2

∑
k=2

uk.

Now, for 2≤ k ≤ 10,

uk ≤ eknk
(

logn+ c
n

)k−1

e−k(n−10) logn+c
n

≤ (1+o(1))ek(1−c)
(

logn
n

)k−1

,

and for k > 10

uk ≤
(ne

k

)k
kk−2

(
logn+ c

n

)k−1

e−k(logn+c)/2

≤ n

(
e1−c/2+o(1) logn

n1/2

)k

.

So
n/2

∑
k=2

uk ≤ (1+o(1))
e−c logn

n
+

n/2

∑
k=10

n1+o(1)−k/2

= O
(

no(1)−1
)
.

It follows that

P(Gn,p is connected ) = P(X1 = 0)+o(1).

But we already know (see Theorem 3.1) that for p = (logn+ c)/n the num-
ber of isolated vertices in Gn,p has an asymptotically Poisson distribution and
therefore, as in (3.4)

lim
n→∞

P(X1 = 0) = e−e−c
,

and so the theorem follows.

It is possible to tweak the proof of Theorem 4.1 to give a more precise result
stating that a random graph becomes connected exactly at the moment when
the last isolated vertex disappears.



66 Connectivity

Theorem 4.2 Consider the random graph process {Gm}. Let

m∗1 = min{m : δ (Gm)≥ 1},

m∗c = min{m : Gm is connected}.

Then, w.h.p.,

m∗1 = m∗c .

Proof Let

m± =
1
2

n logn± 1
2

n log logn,

and

p± =
m±
N
≈ logn± log logn

n
.

We first show that w.h.p.

(i) Gm− consists of a giant connected component plus a set V1 of at most 2 logn
isolated vertices,

(ii) Gm+ is connected.

Assume (i) and (ii). It follows that w.h.p.

m− ≤ m∗1 ≤ m∗c ≤ m+.

Since Gm− consists of a connected component and a set of isolated vertices V1,
to create Gm+ we add m+−m− random edges. Note that m∗1 = m∗c if none of
these edges is contained in V1. Thus

P(m∗1 < m∗c)≤ o(1)+(m+−m−)
1
2 |V1|2

N−m+

≤ o(1)+
2n((logn)2) log logn

1
2 n2−O(n logn)

= o(1).

Thus to prove the theorem, it is sufficient to verify (i) and (ii).
Let

p− =
m−
N
≈ logn− log logn

n
,
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and let X1 be the number of isolated vertices in Gn,p− . Then

EX1 = n(1− p−)n−1

≈ ne−np−

≈ logn.

Moreover

EX2
1 = EX1 +n(n−1)(1− p−)2n−3

≤ EX1 +(EX1)
2(1− p−)−1.

So,

VarX1 ≤ EX1 +2(EX1)
2 p−,

and

P(X1 ≥ 2logn) = P(|X1−EX1| ≥ (1+o(1))EX1)

≤ (1+o(1))
(

1
EX1

+2p−

)
= o(1).

Having at least 2 logn isolated vertices is a monotone property and so w.h.p.
Gm− has less then 2logn isolated vertices.

To show that the rest of Gm is a single connected component we let Xk, 2≤
k ≤ n/2 be the number of components with k vertices in Gp− . Repeating the
calculations for p− from the proof of Theorem 4.1, we have

E

(
n/2

∑
k=2

Xk

)
= O

(
no(1)−1

)
.

Let

E = {∃ component of order 2≤ k ≤ n/2}.

Then

P(Gm− ∈ E )≤ O(
√

n)P(Gn,p− ∈ E )

= o(1),

and this completes the proof of (i).
To prove (ii) (that Gm+ is connected w.h.p.) we note that (ii) follows from

the fact that Gn,p is connected w.h.p. for np− logn→ ∞ ( see Theorem 4.1).
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By implication Gm is connected w.h.p. if n m
N − logn→ ∞. But,

nm+

N
=

n( 1
2 n logn+ 1

2 n log logn)
N

≈ logn+ log logn.

4.2 k-connectivity

In this section we show that the threshold for the existence of vertices of degree
k is also the threshold for the k-connectivity of a random graph. Recall that a
graph G is k-connected if the removal of at most k− 1 vertices of G does not
disconnect it. In the light of the previous result it should be expected that a
random graph becomes k-connected as soon as the last vertex of degree k−1
disappears. This is true and follows from the results of Erdős and Rényi [277].
Here is a weaker statement.

Theorem 4.3 Let m = 1
2 n(logn+(k−1) log logn+ cn) , k = 1,2, . . .. Then

lim
n→∞

P(Gm is k-connected) =


0 if cn→−∞

e−
e−c

(k−1)! if cn→ c

1 if cn→ ∞.

Proof Let

p =
logn+(k−1) log logn+ c

n
.

We will prove that, in Gn,p, with edge probability p above,

(i) the expected number of vertices of degree at most k−2 is o(1),

(ii) the expected number of vertices of degree k−1 is, approximately e−
e−c

(k−1)! .

We have

E(number of vertices of degree t ≤ k−1)

= n
(

n−1
t

)
pt(1− p)n−1−t ≈ n

nt

t!
(logn)t

nt
e−c

n(logn)k−1

and (i) and (ii) follow immediately.
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The distribution of the number of vertices of degree k−1 is asymptotically
Poisson, as may be verified by the method of moments. (See Exercise 3.3.4).

We now show that, if

A (S,T ) =
{

T is a component of Gn,p \S
}

then

P
(
∃S,T, |S|< k, k−|S|+1≤ |T | ≤ 1

2
(n−|S|) : A (S,T )

)
= o(1).

This implies that if δ (Gn,p) ≥ k then Gn,p is k-connected and Theorem 4.3
follows. The lower bound on |T | arises from the fact that in this case each
vertex of S has at least k−|S|+ 1 neighbors outside S. Also, |T | ≥ 2 because
if T = {v} then v has degree less than k.

We can assume that S is minimal and then N(T ) = S and denote s = |S|, t =
|T |. We note that S minimal implies that T is connected, and so it contains a
tree with t−1 edges. Also each vertex of S is incident with an edge from S to
T and so there are at least s edges between S and T . Thus, if p = (1+o(1)) logn

n
then

P(∃S,T )≤ o(1)+

k−1

∑
s=1

(n−s)/2

∑
t=max{2,k−s+1}

(
n
s

)(
n
t

)
tt−2 pt−1

(
st
s

)
ps(1− p)t(n−s−t)

≤ p−1
k−1

∑
s=1

(n−s)/2

∑
t=max{2,k−s+1}

(ne
s
· (te) · p · e

s
· et p
)s(ne

t
· p · e−(n−t)p

)t

≤ p−1
k−1

∑
s=1

(n−s)/2

∑
t=max{2,k−s+1}

AtBs (4.1)

where

A = nepe−(n−t)p = e1+o(1)n−1+(t+o(t))/n logn

B = ne3t pet p = e3+o(1)tn(t+o(t))/n logn.

Now if 2≤ t ≤ logn then A= n−1+o(1) and B=O((logn)2). On the other hand,
if t > logn then we can use A ≤ n−1/3 and B ≤ n2 to see that the sum in (4.1)
is o(1).



70 Connectivity

4.3 Exercises

4.3.1 Let m = m∗1 be as in Theorem 4.2 and let em = (u,v) where u has degree
one. Let 0 < c < 1 be a positive constant. Show that w.h.p. there is no
triangle containing u or v.

4.3.2 Let m = m∗1 as in Theorem 4.2 and let em = (u,v) where u has degree
one. Let 0 < c < 1 be a positive constant. Show that w.h.p. the degree of
v in Gm is at least c logn.

4.3.3 Suppose that m� n logn and let d = m/n. Let Si(v) be the set of vertices
at distance i from vertex v. Show that w.h.p. |Si(v)| ≥ (d/2)i for all v ∈
[n] and 1≤ i≤ 2logn

3logd .
4.3.4 Suppose that m� n logn and let d = m/n. Using the previous question,

show that w.h.p. there are at least d/2 internally vertex disjoint paths of
length at most 4logn

3logd between any pair of vertices in Gn,m.
4.3.5 Suppose that m� n logn and let d = m/n. Suppose that we randomly

color the edges of Gn,m with q colors where q� (logn)2

(logd)2 . Show that w.h.p.
there is a rainbow path between every pair of vertices. (A path is rainbow
if each of its edges has a different color).

4.3.6 Let Ck,k+` denote the number of connected graphs with vertex set [k] and
k+ ` edges where `→ ∞ with k and `= o(k). Use the inequality(

n
k

)
Ck,k+`pk+`(1− p)(

k
2)−k−`+k(n−k) ≤ n

k

and a careful choice of p,n to prove (see Łuczak [536]) that

Ck,k+` ≤
√

k3

`

(
e+O(

√
`/k)

12`

)`/2

kk+(3`−1)/2.

4.3.7 Let Gn,n,p be the random bipartite graph with vertex bi-partition V =

(A,B), A = [1,n],B = [n+1,2n] in which each of the n2 possible edges
appears independently with probability p. Let p = logn+ω

n , where ω →
∞. Show that w.h.p. Gn,n,p is connected.

4.4 Notes

Disjoint paths

Being k-connected means that we can find disjoint paths between any two sets
of vertices A = {a1,a2, . . . ,ak} and B = {b1,b2, . . . ,bk}. In this statement there
is no control over the endpoints of the paths i.e. we cannot specify a path



4.4 Notes 71

from ai to bi for i = 1,2, . . . ,k. Specifying the endpoints leads to the notion
of linkedness. Broder, Frieze, Suen and Upfal [163] proved that when we are
above the connectivity threshold, we can w.h.p. link any two k-sets by edge
disjoint paths, provided some natural restrictions apply. The result is optimal
up to constants. Broder, Frieze, Suen and Upfal [162] considered the case of
vertex disjoint paths. Frieze and Zhao [352] considered the edge disjoint path
version in random regular graphs.

Rainbow Connection

The rainbow connection rc(G) of a connected graph G is the minimum number
of colors needed to color the edges of G so that there is a rainbow path be-
tween every pair of vertices. Caro, Lev, Roditty, Tuza and Yuster [171] proved
that p =

√
logn/n is the sharp threshold for the property rc(G) ≤ 2. This

was sharpened to a hitting time result by Heckel and Riordan [402]. He and
Liang [401] further studied the rainbow connection of random graphs. Specif-
ically, they obtain a threshold for the property rc(G) ≤ d where d is constant.
Frieze and Tsourakakis [351] studied the rainbow connection of G=G(n, p) at
the connectivity threshold p = logn+ω

n where ω → ∞ and ω = o(logn). They
showed that w.h.p. rc(G) is asymptotically equal to max{diam(G),Z1(G)},
where Z1 is the number of vertices of degree one.



5
Small Subgraphs

Graph theory is replete with theorems stating conditions for the existence of a
subgraph H in a larger graph G. For example Turán’s theorem [707] states that
a graph with n vertices and more than

(
1− 1

r

) n2

2 edges must contain a copy of
Kr+1. In this chapter we see instead how many random edges are required to
have a particular fixed size subgraph w.h.p. In addition, we will consider the
distribution of the number of copies.

5.1 Thresholds

In this section we will look for a threshold for the appearance of any fixed
graph H, with vH = |V (H)| vertices and eH = |E(H)| edges. The property that
a random graph contains H as a subgraph is clearly monotone increasing. It
is also transparent that ”denser” graphs appear in a random graph ”later” than
”sparser” ones. More precisely, denote by

d(H) =
eH

vH
, (5.1)

the density of a graph H. Notice that 2d(H) is the average vertex degree in H.
We begin with the analysis of the asymptotic behavior of the expected number
of copies of H in the random graph Gn,p.

Lemma 5.1 Let XH denote the number of copies of H in Gn,p.

EXH =

(
n

vH

)
vH !

aut(H)
peH ,

where aut(H) is the number of automorphisms of H.

Proof The complete graph on n vertices Kn contains
( n

vH

)
aH distinct copies

of H, where aH is the number of copies of H in KvH . Thus

EXH =

(
n

vH

)
aH peH ,

72
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and all we need to show is that

aH ×aut(H) = vH !.

Each permutation σ of [vH ] = {1,2, . . . ,vH} defines a unique copy of H as
follows: A copy of H corresponds to a set of eH edges of KvH . The copy Hσ

corresponding to σ has edges {(xσ(i),yσ(i)) : 1≤ i≤ eH}, where {(x j,y j) : 1≤
j ≤ eH} is some fixed copy of H in KvH . But Hσ = Hτσ if and only if for each
i there is j such that (xτσ(i),yτσ(i)) = (xσ( j),yσ( j)) i.e., if τ is an automorphism
of H.

Theorem 5.2 Let H be a fixed graph with eH > 0. Suppose p= o
(

n−1/d(H)
)

.
Then w.h.p. Gn,p contains no copies of H.

Proof Suppose that p = ω−1n−1/d(H) where ω = ω(n)→ ∞ as n→ ∞. Then

EXH =

(
n

vH

)
vH !

aut(H)
peH ≤ nvH ω

−eH n−eH/d(H) = ω
−eH .

Thus

P(XH > 0)≤ EXH → 0 as n→ ∞.

From our previous experience one would expect that when EXH → ∞ as
n→ ∞ the random graph Gn,p would contain H as a subgraph w.h.p. Let us
check whether such a phenomenon holds also in this case. So consider the
case when pn1/d(H) → ∞, i.e. where p = ωn−1/d(H) and ω = ω(n)→ ∞ as
n→ ∞. Then for some constant cH > 0

EXH ≥ cHnvH ω
eH n−eH/d(H) = cHω

eH → ∞.

However, as we will see, this is not always enough for Gn,p to contain a copy
of a given graph H w.h.p. To see this, consider the graph H given in Figure 5.1
below.

Here vH = 6 and eH = 8. Let p = n−5/7. Now 1/d(H) = 6/8 > 5/7 and so

EXH ≈ cHn6−8×5/7→ ∞.

On the other hand, if Ĥ = K4 then

EXĤ ≤ n4−6×5/7→ 0,
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Figure 5.1 A Kite

and so w.h.p. there are no copies of Ĥ and hence no copies of H.
The reason for such ”strange” behavior is quite simple. Our graph H is in

fact not balanced, since its overall density is smaller than the density of one
of its subgraphs, i.e., of Ĥ = K4. So we need to introduce another density
characteristic of graphs, namely the maximum subgraph density defined as
follows:

m(H) = max{d(K) : K ⊆ H}. (5.2)

A graph H is balanced if m(H) = d(H). It is strictly balanced if d(H)> d(K)

for all proper subgraphs K ⊂ H.
Now we are ready to determine the threshold for the existence of a copy

of H in Gn,p. Erdős and Rényi [276] proved this result for balanced graphs.
The threshold for any graph H was first found by Bollobás in [123] and an
alternative, deterministic argument to derive the threshold was presented in
[470]. A simple proof, given here, is due to Ruciński and Vince [658].
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Theorem 5.3 Let H be a fixed graph with eH > 0. Then

lim
n→∞

P(H ⊆Gn,p) =

{
0 if pn1/m(H)→ 0

1 if pn1/m(H)→ ∞.

Proof Let ω = ω(n)→ ∞ as n→ ∞. The first statement follows from Theo-
rem 5.2. Notice, that if we choose Ĥ to be a subgraph of H with d(Ĥ) = m(H)

(such a subgraph always exists since we do not exclude Ĥ = H), then p =

ω−1n−1/d(Ĥ) implies that EXĤ → 0. Therefore, w.h.p. Gn,p contains no copies
of Ĥ, and so it does not contain H as well.

To prove the second statement we use the Second Moment Method. Sup-
pose now that p = ωn−1/m(H). Denote by H1,H2, . . . ,Ht all copies of H in the
complete graph on {1,2, . . . ,n}. Note that

t =
(

n
vH

)
vH !

aut(H)
, (5.3)

where aut(H) is the number of automorphisms of H. For i = 1,2, . . . , t let

Ii =

{
1 if Hi ⊆Gn,p,

0 otherwise.

Let XH = ∑
t
i=1 Ii. Then

VarXH =
t

∑
i=1

t

∑
j=1

Cov(Ii, I j) =
t

∑
i=1

t

∑
j=1

(E(IiI j)− (E Ii)(E I j))

=
t

∑
i=1

t

∑
j=1

(P(Ii = 1, I j = 1)−P(Ii = 1)P(I j = 1))

=
t

∑
i=1

t

∑
j=1

(
P(Ii = 1, I j = 1)− p2eH

)
.

Observe that random variables Ii and I j are independent iff Hi and H j are edge
disjoint. In this case Cov(Ii, I j) = 0 and such terms vanish from the above
summation. Therefore we consider only pairs (Hi,H j) with Hi ∩H j = K , for
some graph K with eK > 0. So,

VarXH = O
(

∑
K⊆H,eK>0

n2vH−vK
(

p2eH−eK − p2eH
))

= O
(

n2vH p2eH ∑
K⊆H,eK>0

n−vK p−eK
)
.
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On the other hand,

EXH =

(
n

vH

)
vH !

aut(H)
peH = Ω(nvH peH ) ,

thus, by Lemma 20.4,

P(XH = 0)≤ VarXH

(EXH)2 = O

(
∑

K⊆H,eK>0
n−vK p−eK

)

= O

(
∑

K⊆H,eK>0

(
1

ωn1/d(K)−1/m(H)

)eK
)

= o(1).

Hence w.h.p., the random graph Gn,p contains a copy of the subgraph H when
pn1/m(H)→ ∞.

5.2 Asymptotic Distributions

We will now study the asymptotic distribution of the number XH of copies
of a fixed graph H in Gn,p. We start at the threshold, so we assume that
npm(H) → c, c > 0, where m(H) denotes as before, the maximum subgraph
density of H. Now, if H is not balanced, i.e., its maximum subgraph density
exceeds the density of H, then EXH → ∞ as n→ ∞, and one can show that
there is a sequence of numbers an, increasing with n, such that the asymp-
totic distribution of XH/an coincides with the distribution of a random variable
counting the number of copies of a subgraph K of H for which m(H) = d(K).
Note that K is itself a balanced graph. However the asymptotic distribution of
balanced graphs on the threshold, although computable, cannot be given in a
closed form. The situation changes dramatically if we assume that the graph
H whose copies in Gn,p we want to count is strictly balanced, i.e., when for
every proper subgraph K of H, d(K)< d(H) = m(H).

The following result is due to Bollobás [123], and Karoński and
Ruciński [469].

Theorem 5.4 If H is a strictly balanced graph and npm(H)→ c,
c > 0, then XH

D→ Po(λ ), as n→ ∞, where λ = cvH/aut(H).

Proof Denote, as before, by H1,H2, . . . ,Ht all copies of H in the complete
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graph on {1,2, . . . ,n}. For i = 1,2, . . . , t, let

IHi =

{
1 if Hi ⊆Gn,p

0 otherwise

Then XH = ∑
t
i=1 IHi and the kth factorial moment of XH , k = 1,2 . . .,

E(XH)k = E[XH(XH −1) · · ·(XH − k+1)],

can be written as

E(XH)k = ∑
i1,i2,...,ik

P(IHi1
= 1, IHi2

= 1, . . . , IHik
= 1)

= Dk +Dk,

where the summation is taken over all k-element sequences of distinct indices
i j from {1,2, . . . , t}, while Dk and Dk denote the partial sums taken over all (or-
dered) k tuples of copies of H which are, respectively, pairwise vertex disjoint
(Dk) and not all pairwise vertex disjoint (Dk). Now, observe that

Dk = ∑
i1,i2,...,ik

P(IHi1
= 1)P(IHi2

= 1) · · ·P(IHik
= 1)

=

(
n

vH ,vH , . . . ,vH

)
(aH peH )k

≈ (EXH)
k .

So assuming that npd(H) = npm(H)→ c as n→ ∞,

Dk ≈
(

cvH

aut(H)

)k

. (5.4)

On the other hand we will show that

Dk→ 0 as n→ ∞. (5.5)

Consider the family Fk of all (mutually non-isomorphic) graphs obtained
by taking unions of k not all pairwise vertex disjoint copies of the graph H.
Suppose F ∈Fk has vF vertices (vH ≤ vF ≤ kvH − 1) and eF edges, and let
d(F) = eF/vF be its density. To prove that (5.5) holds we need the following
Lemma.

Lemma 5.5 If F ∈Fk then d(F)> m(H).

Proof Define

fF = m(H)vF − eF . (5.6)

We will show (by induction on k≥ 2) that fF < 0 for all F ∈Fk. First note that



78 Small Subgraphs

fH = 0 and that fK > 0 for every proper subgraph K of H, since H is strictly
balanced. Notice also that the function f is modular, i.e., for any two graphs
F1 and F2,

fF1∪F2 = fF1 + fF2 − fF1∩F2 . (5.7)

Assume that the copies of H composing F are numbered in such a way that
Hi1 ∩Hi2 6= /0. If F = Hi1 ∪Hi2 then (5.6) and fH1 = fH2 = 0 implies

fHi1∪Hi2
=− fHi1∩Hi2

< 0.

For arbitrary k ≥ 3, let F ′ =
⋃k−1

j=1 Hi j and K = F ′∩Hik . Then by the inductive
assumption we have fF ′ < 0 while fK ≥ 0 since K is a subgraph of H (in
extreme cases K can be H itself or an empty graph). Therefore

fF = fF ′ + fHik
− fK = fF ′ − fK < 0,

which completes the induction and implies that d(F)> m(H).

Let CF be the number of sequences Hi1 ,Hi2 , . . . ,Hik of k distinct copies of
H, such that

V
( k⋃

j=1

Hi j

)
= {1,2, . . . ,vF} and

k⋃
j=1

Hi j
∼= F.

Then, by Lemma 5.5,

Dk = ∑
F∈Fk

(
n

vF

)
CF peF = O(nvF peF )

= O
((

npd(F)
)v(F)

)
= o(1),

and so (5.5) holds.
Summarizing,

E(XH)k ≈
(

cvH

aut(H)

)k

,

and the theorem follows by the Method of Moments (see Theorem 20.11).

The following theorem describes the asymptotic behavior of the number of
copies of a graph H in Gn,p past the threshold for the existence of a copy of
H. It holds regardless of whether or not H is balanced or strictly balanced. We
state the theorem but we do not supply a proof (see Ruciński [657]).

Theorem 5.6 Let H be a fixed (not-empty) graph. If npm(H)→∞ and n2(1−
p)→ ∞, then (XH −EXH)/(VarXH)

1/2 D→ N(0,1), as n→ ∞
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5.3 Exercises

5.3.1 Draw a graph which is : (a) balanced but not strictly balanced, (b) un-
balanced.

5.3.2 Are the small graphs listed below, balanced or unbalanced: (a) a tree, (b)
a cycle, (c) a complete graph, (d) a regular graph, (d) the Petersen graph,
(e) a graph composed of a complete graph on 4 vertices and a triangle,
sharing exactly one vertex.

5.3.3 Determine (directly, not from the statement of Theorem 5.3) thresholds
p̂ for Gn,p ⊇ G, for graphs listed in exercise (ii). Do the same for the
thresholds of G in Gn,m.

5.3.4 For a graph G a balanced extension of G is a graph F , such that G ⊆
F and m(F) = d(F) = m(G). Applying the result of Győri, Rothschild
and Ruciński [390] that every graph has a balanced extension, deduce
Bollobás’s result (Theorem 5.3) from that of Erdős and Rényi (threshold
for balanced graphs).

5.3.5 Let F be a graph obtained by taking a union of triangles such that not
every pair of them is vertex-disjoint, Show (by induction) that eF > vF .

5.3.6 Let fF be a graph function defined as

fF = a vF +b eF ,

where a,b are constants, while vF and eF denote, respectively, the num-
ber of vertices and edges of a graph F . Show that the function fF is
modular.

5.3.7 Determine (directly, using exercise (v)) when the random variable count-
ing the number of copies of a triangle in Gn,p has asymptotically the
Poisson distribution.

5.3.8 Let Xe be the number of isolated edges (edge-components) in Gn,p and
let

ω(n) = 2pn− logn− log logn.

Prove that

P(Xe > 0)→

{
0 if p� n−2 or ω(n)→ ∞

1 if p� n−2 and ω(n)→ ∞.

5.3.9 Determine when the random variable Xe defined in exercise (vii) has
asymptotically the Poisson distribution.

5.3.10 Use Janson’s inequality, Theorem 21.12, to prove (5.8) below.
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5.4 Notes

Distributional Questions

In 1982 Barbour [57] adapted the Stein–Chen technique for obtaining esti-
mates of the rate of convergence to the Poisson and the normal distribution
(see Section 20.3 or [58]) to random graphs. The method was next applied by
Karoński and Ruciński [471] to prove the convergence results for semi-induced
graph properties of random graphs.

Barbour, Karoński and Ruciński [60] used the original Stein’s method for
normal approximation to prove a general central limit theorem for the wide
class of decomposable random variables. Their result is illustrated by a variety
of applications to random graphs. For example, one can deduce from it the
asymptotic distribution of the number of k-vertex tree-components in Gn,p, as
well as of the number of vertices of fixed degree d in Gn,p (in fact, Theorem
3.2 is a direct consequence of the last result).

Barbour, Janson, Karoński and Ruciński [59] studied the number Xk of max-
imal complete subgraphs (cliques) of a given fixed size k ≥ 2 in the random
graph Gn,p. They show that if the edge probability p = p(n) is such that the
EXk tends to a finite constant λ as n→ ∞, then Xk tends in distribution to the
Poisson random variable with the expectation λ . When its expectation tends
to infinity, Xk converges in distribution to a random variable which is normally
distributed. Poisson convergence was proved using Stein–Chen method, while
for the proof of the normal part, different methods for different ranges of p
were used such as the first projection method or martingale limit theorem (for
details of these methods see Chapter 6 of Janson, Łuczak and Ruciński [432]).

Svante Janson in an a sequence of papers [415],[416], [417], [420] (see also
[433]) developed or accommodated various methods to establish asymptotic
normality of various numerical random graph characteristics. In particular, in
[416] he established the normal convergence by higher semi-invariants of sums
of dependent random variables with direct applications to random graphs. In
[417] he proved a functional limit theorem for subgraph count statistics in
random graphs (see also [433]).

In 1997 Janson [415] answered the question posed by Paul Erdős: What is
the length Yn of the first cycle appearing in the random graph process Gm? He
proved that

lim
n→∞

P(Yn = j) =
1
2

∫ 1

0
t j−1et/2+t2/4√1− t dt, for every j ≥ 3.



5.4 Notes 81

Tails of Subgraph Counts in Gn,p.

Often one needs exponentially small bounds for the probability that XH devi-
ates from its expectation. In 1990 Janson [418] showed that for fixed ε ∈ (0,1],

P(XH ≤ (1− ε)EXH) = exp{−Θ(ΦH)} , (5.8)

where ΦH = minK⊆H:eK>0 nvK peK .
The upper tail P(XH ≥ (1+ ε)EXH) proved to be much more elusive. To

simplify the results, let us assume that ε is fixed, and p is above the exis-
tence threshold, that is, p� n−1/m(H), but small enough to make sure that
(1+ ε)EXH is at most the number of copies of H in Kn.

Given a graph G, let ∆G be the maximum degree of G and α∗G the fractional
independence number of G, defined as the maximum of ∑v∈V (G) w(v) over all
functions w : V (G)→ [0,1] satisfying w(u)+w(v)≤ 1 for every uv ∈ E(G).

In 2004, Janson, Oleszkiewicz and Ruciński [430] proved that

exp{−O(MH log(1/p))} ≤ P(XH ≥ (1+ ε)EXH)≤ exp{−Ω(MH)} , (5.9)

where

MH =

{
minK⊆H(nvK peK )1/α∗K , if n−1/m(H) ≤ p≤ n−1/∆H ,

n2 p∆H , if p≥ n−1/∆H .

For example, if H is k-regular, then MH = n2 pk for every p.
The logarithms of the upper and lower bounds in (5.9) differ by a multi-

plicative factor log(1/p). Recent results suggest that the following conjecture
(stated in [232] for ε = 1) is likely to be true.
Conjecture: For any H and ε > 0,

P(XH ≥ (1+ ε)EXH) = exp(−Θ(min{ΦH ,MH log(1/p)})) . (5.10)

A careful look reveals that in the minimum in (5.10) is ΦH just in the tiny range
above the threshold of existence, that is, when p≤ n−1/m(H)(logn)aH for some
aH > 0. So, only in this range does the upper tail behave similarly to the lower
tail.

DeMarco and Kahn [232] proved (5.10) for cliques H = Kk, k = 3,4, . . . .
Adamczak and Wolff [6] proved a polynomial concentration inequality which

confirms (5.10) for any cycle H =Ck, k = 3,4, . . . and p≥ n−
k−2

2(k−1) . Moreover,
Lubetzky and Zhao [534], via a large deviations framework of Chatterjee and
Dembo [174], showed that (5.10) holds for any H and p≥ n−α for a sufficiently
small constant α > 0.



6
Spanning Subgraphs

The previous chapter dealt with the existence of small subgraphs of a fixed size.
In this chapter we concern ourselves with the existence of large subgraphs,
most notably perfect matchings and Hamilton Cycles. The celebrated theo-
rems of Hall and Tutte give necessary and sufficient conditions for a bipartite
and arbitrary graph respectively to contain a perfect matching. Hall’s theorem
in particular can be used to establish that the threshold for having a perfect
matching in a random bipartite graph can be identified with that of having no
isolated vertices.

For general graphs we view a perfect matching as half a Hamilton cycle and
prove thresholds for the existence of perfect matchings and Hamilton cycles in
a similar way.

Having dealt with perfect matchings and Hamilton cycles, we turn our at-
tention to long paths in sparse random graphs, i.e. in those where we expect a
linear number of edges. We then analyse a simple greedy matching algorithm
using differential equations.

We then consider random subgraphs of some fixed graph G, as opposed to
random subgraphs of Kn. We give sufficient conditions for the existence of long
paths and cycles.

We finally consider the existence of arbitrary spanning subgraphs H where
we bound the maximum degree ∆(H).

6.1 Perfect Matchings

Before we move to the problem of the existence of a perfect matching, i.e., a
collection of independent edges covering all of the vertices of a graph, in our
main object of study, the random graph Gn,p, we will analyse the same problem
in a random bipartite graph. This problem is much simpler than the respective
one for Gn,p, but provides a general approach to finding a perfect matching in
a random graph.

82
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Bipartite Graphs

Let Gn,n,p be the random bipartite graph with vertex bi-partition V = (A,B),
A = [1,n],B = [n+1,2n] in which each of the n2 possible edges appears inde-
pendently with probability p. The following theorem was first proved by Erdős
and Rényi [278].

Theorem 6.1 Let ω = ω(n), c > 0 be a constant, and p = logn+ω

n . Then

lim
n→∞

P(Gn,n,p has a perfect matching) =


0 if ω →−∞

e−2e−c
if ω → c

1 if ω → ∞.

Moreover,

lim
n→∞

P(Gn,n,p has a perfect matching) = lim
n→∞

P(δ (Gn,n,p)≥ 1).

Proof We will use Hall’s condition for the existence of a perfect matching in
a bipartite graph. It states that a bipartite graph contains a perfect matching if
and only if the following condition is satisfied:

∀S⊆ A, |N(S)| ≥ |S|, (6.1)

where for a set of vertices S, N(S) denotes the set of neighbors of S.
It is convenient to replace (6.1) by

∀S⊆ A, |S| ≤ n
2
, |N(S)| ≥ |S|, (6.2)

∀T ⊆ B, |T | ≤ n
2
, |N(T )| ≥ |T |. (6.3)

This is because if |S| > n/2 and |N(S)| < |S| then T = B \N(S) will violate
(6.3).

Now

P(∃v : v is isolated)≤ P(6 ∃ a perfect matching)

≤ P(∃v : v is isolated)+2P(S⊆ A,T ⊆ B,2≤ k = |S| ≤ n/2,

|T |= k−1,N(S)⊆ T and e(S : T )≥ 2k−2).

Here e(S : T ) denotes the number of edges between S and T , and to see why
e(S : T ) must be at least 2k− 2, take a pair S,T with |S|+ |T | as small as
possible. Next

(i) if |S|> |T |+1, remove |S|− |T |−1 vertices from |S|.
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(ii) Suppose ∃w ∈ T such that w has less than 2 neighbors in S. Remove w and
its (unique) neighbor in |S|.

Repeat until (i) and (ii) do not hold. Note that |S| will stay at least 2 if the
minimum degree δ ≥ 1.

Suppose now that p = logn+c
n for some constant c. Then let Y denote the

number of sets S and T satisfying the conditions (6.2), (6.3). Then

EY ≤ 2
n/2

∑
k=2

(
n
k

)(
n

k−1

)(
k(k−1)
2k−2

)
p2k−2(1− p)k(n−k)

≤ 2
n/2

∑
k=2

(ne
k

)k
(

ne
k−1

)k−1(ke(logn+ c)
2n

)2k−2

e−npk(1−k/n)

≤
n/2

∑
k=2

n

(
eO(1)nk/n(logn)2

n

)k

=
n/2

∑
k=2

uk.

Case 1: 2≤ k ≤ n3/4.

uk = n((eO(1)n−1 logn)2)k.

So
n3/4

∑
k=2

uk = O
(

1
n1−o(1)

)
.

Case 2: n3/4 < k ≤ n/2.

uk ≤ n1−k(1/2−o(1))

So
n/2

∑
n3/4

uk = O
(

n−n3/4/3
)
.

So

P(6 ∃ a perfect matching) = P(∃ isolated vertex)+o(1).

Let X0 denote the number of isolated vertices in Gn,n,p. Then

EX0 = 2n(1− p)n ≈ 2e−c.

By previously used techniques we have

P(X0 = 0)≈ e−2e−c
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To prove the case for |ω| → ∞ we can use monotonicity and (1.6) and the fact
that e−e−2c → 0 if c→−∞ and e−e−2c → 1 if c→ ∞.

Non-Bipartite Graphs

We now consider Gn,p. We could try to replace Hall’s theorem by Tutte’s the-
orem. A proof along these lines was given by Erdős and Rényi [279]. We can
however get away with a simpler approach based on simple expansion proper-
ties of Gn,p. The proof here can be traced back to Bollobás and Frieze [140].
By a perfect matching, we now mean a matching of size bn/2c.

Theorem 6.2 Let ω = ω(n), c > 0 be a constant, and let p = logn+cn
n . Then

lim
n→∞

P(Gn,p has a perfect matching) =


0 if cn→−∞

e−e−c
if cn→ c

1 if cn→ ∞.

Moreover,

lim
n→∞

P(Gn,p has a perfect matching) = lim
n→∞

P(δ (Gn,p)≥ 1).

Proof We will for convenience only consider the case where cn =ω→∞ and
ω = o(logn). If cn→−∞ then there are isolated vertices, w.h.p. and our proof
can easily be modified to handle the case cn→ c.

Our combinatorial tool that replaces Tutte’s theorem is the following: We
say that a matching M isolates a vertex v if no edge of M contains v.

For a graph G we let

µ(G) = max{|M| : M is a matching in G} . (6.4)

Let G = (V,E) be a graph without a perfect matching i.e. µ(G) < b|V |/2c.
Fix v ∈ V and suppose that M is a maximum matching that isolates v. Let
S0(v,M) = {u 6= v : M isolates u}. If u ∈ S0(v,M) and e = {x,y} ∈M and f =
{u,x} ∈ E then flipping e, f replaces M by M′ = M+ f − e. Here e is flipped-
out. Note that y ∈ S0(v,M′).

Now fix a maximum matching M that isolates v and let

A(v,M) =
⋃
M′

S0(v,M′)

where we take the union over M′ obtained from M by a sequence of flips.

Lemma 6.3 Let G be a graph without a perfect matching and let M be a
maximum matching and v be a vertex isolated by M. Then |NG(A(v,M))| <
|A(v,M)|.
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Proof Suppose that x∈NG(A(v,M) and that f = {u,x}∈E where u∈A(v,M).
Now there exists y such that e = {x,y} ∈ M, else x ∈ S0(M) ⊆ A(v,M). We
claim that y ∈ A(v,M) and this will prove the lemma. Since then, every neigh-
bor of A(v,M) is the neighbor via an edge of M.

Suppose that y /∈ A(v,M). Let M′ be a maximum matching that (i) isolates
u and (ii) is obtainable from M by a sequence of flips. Now e ∈ M′ because
if e has been flipped out then either x or y is placed in A(v,M). But then we
can do another flip with M′, e and the edge f = {u,x}, placing y ∈ A(v,M),
contradiction.

We now change notation and write A(v) in place of A(v,M), understanding
that there is some maximum matching that isolates v. Note that if u ∈ A(v)
then there is some maximum matching that isolates u and so A(u) is well-
defined. Furthermore, it always that case that if v is isolated by some maximum
matching and u ∈ A(v) then µ(G+{u,v}) = µ(G)+1.

Now let

p =
logn+θ log logn+ω

n
where θ ≥ 0 is a fixed integer and ω → ∞ and ω = o(log logn).

We have introduced θ so that we can use some of the following results for
the Hamilton cycle problem.

We write

Gn,p =Gn,p1 ∪Gn,p2 ,

where

p1 =
logn+θ log logn+ω/2

n
and

1− p = (1− p1)(1− p2) so that p2 ≈
ω

2n
.

Note that Theorem 4.3 implies:

The minimum degree in Gn,p1 is at least θ +1 w.h.p. (6.5)

We consider a process where we add the edges of Gn,p2 one at a time to
Gn,p1 . We want to argue that if the current graph does not have a perfect match-
ing then there is a good chance that adding such an edge {x,y}will increase the
size of a largest matching. This will happen if y ∈ A(x). If we know that w.h.p.
every set S for which |NGn,p1

(S)| < |S| satisfies |S| ≥ αn for some constant
α > 0, then

P(y ∈ A(x))≥
(

αn
2

)
− i(n

2

) ≥ α2

2
, (6.6)
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provided i = O(n).
This is because the edges we add will be uniformly random and there will

be at least
(

αn
2

)
edges {x,y} where y ∈ A(x). Here given an initial x we can

include edges {x′,y′} where x′ ∈ A(x) and y′ ∈ A(x′). We have subtracted i to
account for not re-using edges in f1, f2, . . . , fi−1.

In the light of this we now argue that sets S, with |NGn,p1
(S)| < (1+ θ)|S|

are w.h.p. of size Ω(n).

Lemma 6.4 Let M = 100(θ +7). W.h.p. S⊆ [n], |S| ≤ n
2e(θ+5)M implies |N(S)| ≥

(θ +1)|S|, where N(S) = NGn,p1
(S).

Proof Let a vertex of graph G1 = Gn,p1 be large if its degree is at least λ =
logn
100 , and small otherwise. Denote by LARGE and SMALL, the set of large and

small vertices in G1, respectively.

Claim 1 W.h.p. if v,w ∈ SMALL then dist(v,w)≥ 5.

Proof If v,w are small and connected by a short path P, then v,w will have
few neighbors outside P and conditional on P existing, v having few neighbors
outside P is independent of w having few neighbors outside P. Hence,

P(∃v,w ∈ SMALL in Gn,p1 such that dist(v,w)< 5)

≤
(

n
2

)( 3

∑
l=0

nl pl+1
1

)(
λ

∑
k=0

(
n
k

)
pk

1(1− p1)
n−k−5

)2

≤ n(logn)4

(
λ

∑
k=0

(logn)k

k!
· (logn)(θ+1)/100 · e−ω/2

n logn

)2

≤ 2n(logn)4

(
(logn)λ

λ !
· (logn)(θ+1)/100 · e−ω/2

n logn

)2

(6.7)

= O

(
(logn)O(1)

n
(100e)

2logn
100

)
= O(n−3/4)

= o(1).

The bound in (6.7) holds since l!≥
( l

e

)l
and uk+1

uk
> 100 for k ≤ l, where

uk =
(logn)k

k!
· (logn)(θ+1)/100 · e−ω/2

n logn
.
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Claim 2 W.h.p. Gn,p1 does not have a 4-cycle containing a small vertex.

Proof

P(∃ a 4-cycle containing a small vertex )

≤ 4n4 p4
1

(logn)/100

∑
k=0

(
n−4

k

)
pk

1(1− p1)
n−4−k

≤ n−3/4(logn)4

= o(1).

Claim 3 W.h.p. in Gn,p1 for every S⊆ [n], |S| ≤ n
2eM ,e(S)< |S| logn

M .

Proof

P
(
∃|S| ≤ n

2eM
and e(S)≥ |S| logn

M

)
≤

n/2eM

∑
s=logn/M

(
n
s

)( (s
2

)
s logn/M

)
ps logn/M

1

≤
n/2eM

∑
s=logn/M

ne
s

(
Me1+o(1)s

2n

)logn/M
s

≤
n/2eM

∑
s=logn/M

(( s
n

)−1+logn/M
· (Me1+o(1))logn/M

)s

= o(1).

Claim 4 Let M be as in Claim 3. Then, w.h.p. in Gn,p1 , if S ⊆ LARGE, |S| ≤
n

2e(θ+5)M then |N(S)| ≥ (θ +4)|S|.

Proof Let T = N(S),s = |S|, t = |T |. Then we have

e(S∪T )≥ e(S,T )≥ |S| logn
100

−2e(S)≥ |S| logn
100

− 2|S| logn
M

.
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Then if |T | ≤ (θ +4)|S| we have |S∪T | ≤ (θ +5)|S| ≤ n
2eM and

e(S∪T )≥ |S∪T |
θ +5

(
1

100
− 2

M

)
logn =

|S∪T | logn
M

.

This contradicts Claim 3.
We can now complete the proof of Lemma 6.4. Let |S| ≤ n

2e(θ+5)M and as-
sume that Gn,p1 has minimum degree at least θ +1.

Let S1 = S∩SMALL and S2 = S\S1. Then

|N(S)|
≥ |N(S1)|+ |N(S2)|− |N(S1)∩S2|− |N(S2)∩S1|− |N(S1)∩N(S2)|
≥ |N(S1)|+ |N(S2)|− |S2|− |N(S2)∩S1|− |N(S1)∩N(S2)|.

But Claim 1 and Claim 2 and minimum degree at least θ +1 imply that

|N(S1)| ≥ (θ +1)|S1|, |N(S2)∩S1| ≤min{|S1|, |S2|},
|N(S1)∩N(S2)| ≤ |S2|.

So, from this and Claim 4 we obtain

|N(S)| ≥ (θ +1)|S1|+(θ +4)|S2|−3|S2|= (θ +1)|S|.

We now go back to the proof of Theorem 6.2 for the case c = ω → ∞. Let
the edges of Gn,p2 be { f1, f2, . . . , fs} in random order, where s ≈ ωn/4. Let
G0 =Gn,p1 and Gi =Gn,p1 +{ f1, f2, . . . , fi} for i≥ 1. It follows from Lemmas
6.3 and 6.4 that with µ(G) as in (6.4), and if µ(Gi)< n/2 then, assuming Gn,p1

has the expansion claimed in Lemma 6.4, with θ = 0 and α = 1
10eM ,

P(µ(Gi+1)≥ µ(Gi)+1 | f1, f2, . . . , fi)≥
α2

2
, (6.8)

see (6.6).
It follows that

P(Gn,p does not have a perfect matching)≤
o(1)+P(Bin(s,α2/2)< n/2) = o(1).

We have used the notion of dominance, see Section 21.9 in order to use the
binomial distribution in the above inequality.
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6.2 Hamilton Cycles

This was a difficult question left open in [276]. A breakthrough came with
the result of Pósa [631]. The precise theorem given below can be credited
to Komlós and Szemerédi [494], Bollobás [128] and Ajtai, Komlós and Sze-
merédi [11].

Theorem 6.5 Let p = logn+log logn+cn
n . Then

lim
n→∞

P(Gn,p has a Hamilton cycle) =


0 if cn→−∞

e−e−c
if cn→ c

1 if cn→ ∞.

Moreover,

lim
n→∞

P(Gn,p has a Hamilton cycle ) = lim
n→∞

P(δ (Gn,p)≥ 2).

Proof We will first give a proof of the first statement under the assumption
that cn = ω→ ∞ where ω = o(log logn). The proof of the second statement is
postponed to Section 6.3. Under this assumption, we have δ (Gn,p)≥ 2 w.h.p.,
see Theorem 4.3. The result for larger p follows by monotonicity.

We now set up the main tool, viz. Pósa’s Lemma. Let P be a path with end
points a,b, as in Figure 6.1. Suppose that b does not have a neighbor outside
of P.
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P

a b

y

x

Figure 6.1 The path P

Notice that the P′ below in Figure 6.2 is a path of the same length as P, ob-
tained by a rotation with vertex a as the fixed endpoint. To be precise, suppose
that P = (a, . . . ,x,y,y′, . . . ,b′,b) and {b,x} is an edge where x is an interior
vertex of P. The path P′ = (a, . . . ,x,b,b′, . . . ,y′,y) is said to be obtained from
P by a rotation.
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’

Figure 6.2 The path P′ obtained after a single rotation

Now let END = END(P) denote the set of vertices v such that there exists a
path Pv from a to v such that Pv is obtained from P by a sequence of rotations
with vertex a fixed as in Figure 6.3.
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Figure 6.3 A sequence of rotations

Here the set END consists of all the white vertices on the path drawn below
in Figure 6.4.
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Figure 6.4 The set END

Lemma 6.6 If v ∈ P \END and v is adjacent to w ∈ END then there exists
x ∈ END such that the edge {v,x} ∈ P.

Proof Suppose to the contrary that x,y are the neighbors of v on P and that
v,x,y 6∈END and that v is adjacent to w∈END. Consider the path Pw. Let {r, t}
be the neighbors of v on Pw. Now {r, t} = {x,y} because if a rotation deleted
{v,y} say then v or y becomes an endpoint. But then after a further rotation
from Pw we see that x ∈ END or y ∈ END.
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Figure 6.5 One of r, t will become an endpoint after a rotation

Corollary 6.7
|N(END)|< 2|END|.

It follows from Lemma 6.4 with θ = 1 that w.h.p. we have

|END| ≥ αn where α =
1

12eM
. (6.9)

We now consider the following algorithm that searches for a Hamilton cycle
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in a connected graph G. The probability p1 is above the connectivity threshold
and so Gn,p1 is connected w.h.p. Our algorithm will proceed in stages. At the
beginning of Stage k we will have a path of length k in G and we will try to
grow it by one vertex in order to reach Stage k+1. In Stage n−1, our aim is
simply to create a Hamilton cycle, given a Hamilton path. We start the whole
procedure with an arbitrary path of G.

Algorithm Pósa:

(a) Let P be our path at the beginning of Stage k. Let its endpoints be x0,y0. If
x0 or y0 have neighbors outside P then we can simply extend P to include
one of these neighbors and move to stage k+1.

(b) Failing this, we do a sequence of rotations with x0 as the fixed vertex until
one of two things happens: (i) We produce a path Q with an endpoint y
that has a neighbor outside of Q. In this case we extend Q and proceed to
stage k+1. (ii) No sequence of rotations leads to Case (i). In this case let
END denote the set of endpoints of the paths produced. If y∈END then Py

denotes a path with endpoints x0,y that is obtained from P by a sequence
of rotations.

(c) If we are in Case (bii) then for each y ∈ END we let END(y) denote the
set of vertices z such that there exists a longest path Qz from y to z such
that Qz is obtained from Py by a sequence of rotations with vertex y fixed.
Repeating the argument above in (b) for each y ∈ END, we either extend
a path and begin Stage k+1 or we go to (d).

(d) Suppose now that we do not reach Stage k+ 1 by an extension and that
we have constructed the sets END and END(y) for all y ∈ END. Suppose
that G contains an edge (y,z) where z ∈ END(y). Such an edge would
imply the existence of a cycle C = (z,Qy,z). If this is not a Hamilton cycle
then connectivity implies that there exist u ∈C and v /∈C such that u,v are
joined by an edge. Let w be a neighbor of u on C and let P′ be the path
obtained from C by deleting the edge (u,w). This creates a path of length
k+1 viz. the path w,P′,v, and we can move to Stage k+1.

A pair z,y where z∈ END(y) is called a booster in the sense that if we added
this edge to Gn,p1 then it would either (i) make the graph Hamiltonian or (ii)
make the current path longer. We argue now that Gn,p2 can be used to “boost”
P to a Hamilton cycle, if necessary.

We observe now that when G =Gn,p1 , |END| ≥ αn w.h.p., see (6.9). Also,
|END(y)| ≥ αn for all y ∈ END. So we will have Ω(n2) boosters.

For a graph G let λ (G) denote the length of a longest path in G, when G
is not Hamiltonian and let λ (G) = n when G is Hamiltonian. Let the edges of
Gn,p2 be { f1, f2, . . . , fs} in random order, where s≈ωn/4. Let G0 =Gn,p1 and
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Gi =Gn,p1 +{ f1, f2, . . . , fi} for i≥ 1. It follows from Lemmas 6.3 and 6.4 that
if λ (Gi)< n then, assuming Gn,p1 has the expansion claimed in Lemma 6.4,

P(λ (Gi+1)≥ λ (Gi)+1 | f1, f2, . . . , fi)≥
α2

2
, (6.10)

see (6.6), replacing A(v) by END(v).
It follows that

P(Gn,p is not Hamiltonian)≤ o(1)+P(Bin(s,α2/2)< n) = o(1). (6.11)

6.3 Long Paths and Cycles in Sparse Random Graphs

In this section we study the length of the longest path and cycle in Gn,p when
p = c/n where c = O(logn), most importantly for c is a large constant. We
have seen in Chapter 1 that under these conditions, Gn,p will w.h.p. have iso-
lated vertices and so it will not be Hamiltonian. We can however show that it
contains a cycle of length Ω(n) w.h.p.

The question of the existence of a long path/cycle was posed by Erdős and
Rényi in [276]. The first positive answer to this question was given by Ajtai,
Komlós and Szemerédi [10] and by de la Vega [713]. The proof we give here
is due to Krivelevich, Lee and Sudakov. It is subsumed by the more general
results of [504].

Theorem 6.8 Let p = c/n where c is sufficiently large but c = O(logn). Then
w.h.p.

(a) Gn,p has a path of length at least
(

1− 6logc
c

)
n.

(b) Gn,p has a cycle of length at least
(

1− 12logc
c

)
n.

Proof We prove this theorem by analysing simple properties of Depth First
Search (DFS). This is a well known algorithm for exploring the vertices of a
component of a graph. We can describe the progress of this algorithm using
three sets: U is the set of unexplored vertices that have not yet been reached by
the search. D is the set of dead vertices. These have been fully explored and no
longer take part in the process. A = {a1,a2, . . . ,ar} is the set of active vertices
and they form a path from a1 to ar. We start the algorithm by choosing a vertex
v from which to start the process. Then we let

A = {v} and D = /0 and U = [n]\{v} and r = 1.

We now describe how these sets change during one step of the algorithm.
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Step (a) If there is an edge {ar,w} for some w ∈U then we choose one such
w and extend the path defined by A to include w.

ar+1← w;A← A∪{w};U ←U \{w};r← r+1.

We now repeat Step (a).
If there is no such w then we do Step (b):

Step (b) We have now completely explored ar.

D← D∪{ar};A← A\{ar};r← r−1.

If r ≥ 1 we go to Step (a). Otherwise, if U = /0 at this point then
we terminate the algorithm. If U 6= /0 then we choose some v ∈U to
re-start the process with r = 1. We then go to Step (a).

We make the following simple observations:

• A step of the algorithm increases |D| by one or decreases |U | by one and so
at some stage we must have |D|= |U |= s for some positive integer s.

• There are no edges between D and U because we only add ar to D when
there are no ar,U edges and U never increases from this point on.

Thus at some stage we have two disjoint sets D,U of size s with no edges
between them and a path of length |A|−1 = n−2s−1. This plus the following
claim implies that Gn,p has a path P of length at least

(
1− 6logc

c

)
n w.h.p. Note

that if c is large then

α >
3logc

c
implies c >

2
α

log
( e

α

)
.

Claim 5 Let 0 < α < 1 be a positive constant. If p = c/n and c > 2
α

log
( e

α

)
then w.h.p. in Gn,p, every pair of disjoint sets S1,S2 of size at least αn−1 are
joined by at least one edge.

Proof The probability that there exist sets S1,S2 of size (at least) αn−1 with
no joining edge is at most(

n
αn−1

)2

(1− p)(αn−1)2 ≤

(
e2+o(1)

α2 e−cα

)αn−1

= o(1).

To complete the proof of the theorem, we apply the above lemma to the
vertices S1,S2 on the two sub-paths P1,P2 of length 3logc

c n at each end of P.
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There will w.h.p. be an edge joining S1,S2, creating the cycle of the claimed
length.

Krivelevich and Sudakov [512] used DFS to give simple proofs of good
bounds on the size of the largest component in Gn,p for p = 1+ε

n where ε is a
small constant. Exercises 6.7.19, 6.7.20 and 6.7.21 elaborate on their results.

Completing the proof of Theorem 6.5

We need to prove part (b). So we let 1− p = (1− p1)(1− p2) where p2 =
1

n log logn . Then we apply Theorem 6.8(a) to argue that w.h.p. Gn,p1 has a path

of length n
(

1−O
(

log logn
logn

))
.

Now, conditional on Gn,p1 having minimum degree at least two, the proof
of the statement of Lemma 6.4 goes through without change for θ = 1 i.e.
S ⊆ [n], |S| ≤ n

10000 implies |N(S)| ≥ 2|S|. We can then use use the extension-
rotation argument that we used to prove Theorem 6.5(c). This time we only
need to close O

(
n log logn

logn

)
cycles and we have Ω

(
n

log logn

)
edges. Thus (6.11)

is replaced by

P(Gn,p is not Hamiltonian | δ (Gn,p1)≥ 2)≤

o(1)+P
(

Bin
(

c1n
log logn

,10−8
)
<

c2n log logn
logn

)
= o(1),

for some hidden constants c1,c2.

6.4 Greedy Matching Algorithm

In this section we see how we can use differential equations to analyse the per-
formance of a greedy algorithm for finding a large matching in a random graph.
Finding a large matching is a standard problem in Combinatorial Optimisa-
tion. The first polynomial time algorithm to solve this problem was devised
by Edmonds in 1965 and runs in time O(|V |4) [271]. Over the years, many
improvements have been made. Currently the fastest such algorithm is that of
Micali and Vazirani which dates back to 1980. Its running time is O(|E|

√
|V |)

[578]. These algorithms are rather complicated and there is a natural interest
in the performance of simpler heuristic algorithms which should find large, but
not necessarily maximum matchings. One well studied class of heuristics goes
under the general title of the GREEDY heuristic.

The following simple greedy algorithm proceeds as follows: Beginning with
graph G = (V,E) we choose a random edge e = {u,v} ∈ E and place it in a
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set M. We then delete u,v and their incident edges from G and repeat. In the
following, we analyse the size of the matching M produced by this algorithm.
Algorithm GREEDY

begin
M← /0;
while E(G) 6= /0 do
begin

A: Randomly choose e = {x,y} ∈ E
G← G\{x,y};
M←M∪{e}

end;
Output M
end

(G\{x,y} is the graph obtained from G by deleting the vertices x,y and all
incident edges.)

We will study this algorithm in the context of the pseudo-graph model G(B)
n,m

of Section 1.3 and apply (1.16) to bring the results back to Gn,m. We will argue
next that if at some stage G has ν vertices and µ edges then G is equally likely
to be any pseudo-graph with these parameters.

We will use the method of deferred decisions, a term coined in Knuth, Mot-
wani and Pittel [489]. In this scenario, we do not expose the edges of the
pseudo-graph until we actually need to. So, as a thought experiment, think that
initially there are m boxes, each containing a uniformly random pair of distinct
integers from [n]. Until the box is opened, the contents are unknown except for
their distribution. Observe that opening box A and observing its contents tells
us nothing more about the contents of box B. This would not be the case if as
in Gn,m we insisted that no two boxes had the same contents.

Remark 6.9 Rather than choose the edge {x,y} at random, we will let {x,y}
be the first edge. This will make (6.12) below clearer and because the edges
are in random order anyway, it does not change the algorithm.

Remark 6.10 A step of GREEDY involves choosing the first unopened box
at random to expose its contents x,y.

After this, the contents of the remaining boxes will of course remain uni-
formly random over

(V (G)
2

)
. The algorithm will then ask for each box with x

or y to be opened. Other boxes will remain unopened and all we will learn is
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that their contents do not contain x or y and so they are still uniform over the
remaining possible edges.

We need the following

Lemma 6.11 Suppose that m = cn for some constant c > 0. Then w.h.p. the
maximum degree in G(B)

n,m is at most logn.

Proof The degree of a vertex is distributed as Bin(m,2/n). So, if ∆ denotes
the maximum degree in G(B)

n,m, then with `= logn,

P(∆≥ `)≤ n
(

m
`

)(
2
n

)`

≤ n
(

2ce
`

)`

= o(1).

Now let X(t) = (ν(t),µ(t)), t = 1,2, . . . , denote the number of vertices and
edges in the graph at the start of the tth iterations of GREEDY. Also, let Gt =

(Vt ,Et) = G at this point and let G′t = (Vt ,Et \ e1) where e1 is the first edge of
Et . Thus ν(1) = n,µ(1) = m and G1 =G(B)

n,m. Now ν(t +1) = ν(t)−2 and so
ν(t) = n−2t. Let dt(·) denote degree in G′t and let θt(x,y) denote the number
of copies of the edge {x,y} in Gt , excluding e1. Then we have

E(µ(t +1) | Gt) = µ(t)− (dt(x)+dt(y)+1+θt(x,y)).

Taking expectations over Gt we have

E(µ(t +1)) = E(µ(t))− 4E(µ(t))
n−2t

−1+O
(

1
n−2t

)
. (6.12)

Here we use Remark 6.9 to argue that Edt(x),Edt(y) = 2E(µ(t))−1
ν(t) and Remark

6.10 to argue that Eθt(x,y)) = O(1/(n−2t)).
This suggests that w.h.p. µ(t) ≈ nz(t/n) where z(0) = c and z(τ) is the so-

lution to the differential equation

dz
dτ

=− 4z(τ)
1−2τ

−1.

This is easy to solve and gives

z(τ) =
(

c+
1
2

)
(1−2τ)2− 1−2τ

2
.

The smallest root of z(τ) = 0 is τ = c
2c+1 . This suggests the following theo-

rem.

Theorem 6.12 W.h.p., running GREEDY on Gn,cn finds a matching of size
c+o(1)
2c+1 n.
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Proof We will replace Gn,m by G(B)
n,m and consider the random sequence µ(t),

t = 1,2, . . .. The number of edges in the matching found by GREEDY equals
one less than the first value of t for which µ(t) = 0. We show that w.h.p. µ(t)>
0 if and only if t ≤ c+o(1)

2c+1 n. We will use Theorem 22.1 of Chapter 22.
In our set up for the theorem we let

f (τ,x) =− 4x
1−2τ

−1.

D =

{
(τ,x) : 0≤ τ ≤TD =

c
2c+1

,0≤ x≤ 1
2

}
.

We let X(t) = µ(t) for the statement of the theorem. Then we have to check
the conditions:

(P1) |µ(t)| ≤ cn, ∀t < TD = TDn.
(P2) |µ(t +1)−µ(t)| ≤ 2logn ∀t < TD.
(P3) |E(µ(t +1)−µ(t)|Ht ,E )− f (t/n,X(t)/n)| ≤ A

n ,∀t < TD.
Here E = {∆≤ logn} and this is needed for (P2).

(P4) f (t,x) is continuous and satisfies a Lipschitz condition
| f (t,x)− f (t ′,x′)| ≤ (4c+2)‖(t,x)− (t ′,x′)‖∞

for (t,x),(t ′,x′) ∈ D∩{(t,x) : t ≥ 0}

Now let β = n1/5 and λ = n−1/20 and σ = T D−10λ and apply the theorem.
This shows that w.h.p. µ(t) = nz(t/n)+O(n19/20) for t ≤ σn.

The result in Theorem 6.12 is taken from Dyer, Frieze and Pittel [269],
where a central limit theorem is proven for the size of the matching produced
by GREEDY.

The use of differential equations to approximate the trajectory of a stochastic
process is quite natural and is often very useful. It is however not always best
practise to try and use an “off the shelf” theorem like Theorem 22.1 in order to
get a best result. It is hard to design a general theorem that can deal optimally
with terms that are o(n).

6.5 Random Subgraphs of Graphs with Large Minimum
Degree

Here we prove an extension of Theorem 6.8. The setting is this. We have a
sequence of graphs Gk with minimum degree at least k, where k → ∞. We
construct a random subgraph Gp of G = Gk by including each edge of G, in-
dependently with probability p. Thus if G = Kn, Gp is Gn,p. The theorem we
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prove was first proved by Krivelevich, Lee and Sudakov [504]. The argument
we present here is due to Riordan [647].

In the following we abbreviate (Gk)p to Gp where the parameter k is to be
understood.

Theorem 6.13 Let Gk be a sequence of graphs with minimum degree at least
k where k→ ∞. Let p be such that pk→ ∞ as k→ ∞. Then w.h.p. Gp contains
a cycle of length at least (1−o(1))k.

Proof We will assume that G has n vertices. We let T denote the forest pro-
duced by depth first search. We also let D,U,A be as in the proof of Theorem
6.8. Let v be a vertex of the rooted forest T . There is a unique vertical path
from v to the root of its component. We write A (v) for the set of ancestors of
v, i.e., vertices (excluding v) on this path. We write D(v) for the set of descen-
dants of v, again excluding v. Thus w ∈ D(v) if and only if v ∈ A (w). The
distance d(u,v) between two vertices u and v on a common vertical path is just
their graph distance along this path. We write Ai(v) and Di(v) for the set of
ancestors/descendants of v at distance exactly i, and A≤i(v),D≤i(v) for those
at distance at most i. By the depth of a vertex we mean its distance from the
root. The height of a vertex v is max{i : Di(v) 6= /0}. Let R denote the set of
edges of G that are not tested for inclusion in Gp during the exploration.

Lemma 6.14 Every edge e of R joins two vertices on some vertical path in
T .

Proof Let e = {u,v} and suppose that u is placed in D before v. When u
is placed in D, v cannot be in U , else {u,v} would have been tested. Also, v
cannot be in D by our choice of u. Therefore at this time v ∈ A and there is a
vertical path from v to u.

Lemma 6.15 With high probability, at most 2n/p = o(kn) edges are tested
during the depth first search exploration.

Proof Each time an edge is tested, the test succeeds (the edge is found to be
present) with probability p. The Chernoff bound implies that the probability
that more than 2n/p tests are made but fewer than n succeed is o(1). But every
successful test contributes an edge to the forest T , so w.h.p. at most n tests are
successful.

From now on let us fix an arbitrary (small) constant 0 < ε < 1/10. We call
a vertex v full if it is incident with at least (1− ε)k edges in R.
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Lemma 6.16 With high probability, all but o(n) vertices of Tk are full.

Proof Since G has minimum degree at least k, each v ∈ V (G) = V (T ) that
is not full is incident with at least εk tested edges. If for some constant c > 0
there are at least cn such vertices, then there are at least cεkn/2 tested edges.
But the probability of this is o(1) by Lemma 6.15.

Let us call a vertex v rich if |D(v)| ≥ εk, and poor otherwise. In the next
two lemmas, (Tk) is a sequence of rooted forests with n vertices. We suppress
the dependence on k in notation.

Lemma 6.17 Suppose that T = Tk contains o(n) poor vertices. Then, for any
constant C, all but o(n) vertices of T are at height at least Ck.

Proof For each rich vertex v, let P(v) be a set of dεke descendants of v, ob-
tained by choosing vertices of D(v) one-by-one starting with those furthest
from v. For every w ∈ P(v) we have D(w) ⊆ P(v), so |D(w)| < εk, i.e., w is
poor. Consider the set S1 of ordered pairs (v,w) with v rich and w ∈ P(v). Each
of the n−o(n) rich vertices appears in at least εk pairs, so |S1| ≥ (1−o(1))εkn.

For any vertex w we have |A≤i(w)| ≤ i, since there is only one ancestor at
each distance, until we hit the root. Since (v,w) ∈ S1 implies that w is poor
and v ∈A (w), and there are only o(n) poor vertices, at most o(Ckn) = o(kn)
pairs (v,w) ∈ S1 satisfy d(v,w) ≤ Ck. Thus S′1 = {(v,w) ∈ S1 : d(v,w)>Ck}
satisfies |S′1| ≥ (1−o(1))εkn. Since each vertex v is the first vertex of at most
dεke ≈ εk pairs in S1 ⊇ S′1, it follows that n− o(n) vertices v appear in pairs
(v,w) ∈ S′1. Since any such v has height at least Ck, the proof is complete.

Let us call a vertex v light if |D≤(1−5ε)k(v)| ≤ (1− 4ε)k, and heavy other-
wise. Let H denote the set of heavy vertices in T .

Lemma 6.18 Suppose that T = Tk contains o(n) poor vertices, and let X ⊆
V (T ) with |X | = o(n). Then, for k large enough, T contains a vertical path P
of length at least ε−2k containing at most ε2k vertices in X ∪H.

Proof Let S2 be the set of pairs (u,v) where u is an ancestor of v and 0 <

d(u,v) ≤ (1− 5ε)k. Since a vertex has at most one ancestor at any given dis-
tance, we have |S2| ≤ (1− 5ε)kn. On the other hand, by Lemma 6.17 all but
o(n) vertices u are at height at least k and so appear in at least (1−5ε)k pairs
(u,v) ∈ S2. It follows that only o(n) vertices u are in more than (1−4ε)k such
pairs, i.e., |H|= o(n).

Let S3 denote the set of pairs (u,v) where v ∈ X ∪H, u is an ancestor of v,
and d(u,v) ≤ ε−2k. Since a given v can only appear in ε−2k pairs (u,v) ∈ S3,
we see that |S3| ≤ ε−2k|X ∪H|= o(kn). Hence only o(n) vertices u appear in
more than ε2k pairs (u,v) ∈ S3.
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By Lemma 6.17, all but o(n) vertices are at height at least ε−2k. Let u be
such a vertex appearing in at most ε2k pairs (u,v)∈ S3, and let P be the vertical
path from u to some v ∈Dε−2k(u). Then P has the required properties.

Proof of Theorem 6.13
Fix ε > 0. It suffices to show that w.h.p. Gp contains a cycle of length at least
(1−5ε)k, say. Explore Gp by depth-first search as described above. We condi-
tion on the result of the exploration, noting that the edges of R are still present
independently with probability p. By Lemma 6.14, {u,v} ∈ R implies that u is
either an ancestor or a descendant of v. By Lemma 6.16, we may assume that
all but o(n) vertices are full.

Suppose that

|{u : {u,v} ∈ R,d(u,v)≥ (1−5ε)k}| ≥ εk. (6.13)

for some vertex v. Then, since εkp→ ∞, testing the relevant edges {u,v} one-
by-one, w.h.p we find one present in Gp, forming, together with T , the required
long cycle. On the other hand, suppose that (6.13) fails for every v. Suppose
that some vertex v is full but poor. Since v has at most εk descendants, there
are at least (1− 2ε)k pairs {u,v} ∈ R with u ∈ A (v). Since v has only one
ancestor at each distance, it follows that (6.13) holds for v, a contradiction.

We have shown that we can assume that no poor vertex is full. Hence there
are o(n) poor vertices, and we may apply Lemma 6.18, with X the set of ver-
tices that are not full. Let P be the path whose existence is guaranteed by
the lemma, and let Z be the set of vertices on P that are full and light, so
|V (P)\Z| ≤ ε2k. For any v ∈ Z, since v is full, there are at least (1− ε)k ver-
tices u ∈ A (v)∪D(v) with {u,v} ∈ R. Since (6.13) does not hold, at least
(1−2ε)k of these vertices satisfy d(u,v)≤ (1−5ε)k. Since v is light, in turn
at least 2εk of these u must be in A (v). Recalling that a vertex has at most one
ancestor at each distance, we find a set R(v) of at least εk vertices u ∈ A (v)
with {u,v} ∈ R and εk ≤ d(u,v)≤ (1−5ε)k ≤ k.

It is now easy to find a (very) long cycle w.h.p. Recall that Z ⊆ V (P) with
|V (P) \Z| ≤ ε2k. Thinking of P as oriented upwards towards the root, let v0

be the lowest vertex in Z. Since |R(v0)| ≥ εk and kp→ ∞, w.h.p. there is an
edge {u0,v0} in Gp with u0 ∈ R(v0). Let v1 be the first vertex below u0 along
P with v1 ∈ Z. Note that we go up at least εk steps from v0 to u0 and down
at most 1+ |V (P) \Z| ≤ 2ε2k from u0 to v1, so v1 is above v0. Again w.h.p.
there is an edge {u1,v1} in Gp with u1 ∈ R(v1), and so at least εk steps above
v1. Continue downwards from u1 to the first v2 ∈ Z, and so on. Since ε−1 =

O(1), w.h.p. we may continue in this way to find overlapping chords {ui,vi}
for 0 ≤ i ≤

⌊
2ε−1

⌋
, say. (Note that we remain within P as each upwards step
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has length at most k.) These chords combine with P to give a cycle of length at
least (1−2ε−1×2ε2)k = (1−4ε)k, as shown in Figure 6.6.
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Figure 6.6 The path P, with the root off to the right. Each chord {vi,ui} has length
at least εk (and at most k); from ui to vi+1 is at most 2ε2k steps back along P. The
chords and the thick part of P form a cycle.

6.6 Spanning Subgraphs

Consider a fixed sequence H(d) of graphs where n = |V (H(d))| →∞. In partic-
ular, we consider a sequence Qd of d-dimensional cubes where n = 2d and a
sequence of 2-dimensional lattices Ld of order n = d2. We ask when Gn,p or
Gn,m contains a copy of H = H(d) w.h.p.
We give a condition that can be proved in quite an elegant and easy way. This
proof is from Alon and Füredi [25].

Theorem 6.19 Let H be fixed sequence of graphs with n = |V (H)| → ∞ and
maximum degree ∆, where (∆2 +1)2 < n. If

p∆ >
10logbn/(∆2 +1)c
bn/(∆2 +1)c

, (6.14)

then Gn,p contains an isomorphic copy of H w.h.p.

Proof To prove this we first apply the Hajnal-Szemerédi Theorem to the
square H2 of our graph H.
Recall that we square a graph if we add an edge between any two vertices of
our original graph which are at distance two. The Hajnal-Szemerédi Theorem
states that every graph with n vertices and maximum vertex degree at most d
is d+1-colorable with all color classes of size bn/(d+1)c or dn/(d+1)e, i.e,
the (d +1)-coloring is equitable.
Since the maximum degree of H2 is at most ∆2, there exists an equitable ∆2+1-
coloring of H2 which induces a partition of the vertex set of H, say U =U(H),
into ∆2 + 1 pairwise disjoint subsets U1,U2, . . . ,U∆2+1, so that each Uk is an
independent set in H2 and the cardinality of each subset is either bn/(∆2 +1)c
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or dn/(∆2 +1)e.
Next, partition the set V of vertices of the random graph Gn,p into pairwise
disjoint sets V1,V2, . . . ,V∆2+1, so that |Uk|= |Vk| for k = 1,2, . . . ,∆2 +1.
We define a one-to-one function f : U 7→ V , which maps each Uk onto Vk re-
sulting in a mapping of H into a an isomorphic copy of H in Gn,p. In the first
step, choose an arbitrary mapping of U1 onto V1. Now U1 is an independent
subset of H and so Gn,p[V1] trivially contains a copy of H[U1]. Assume, by
induction, that we have already defined

f : U1∪U2∪ . . .∪Uk 7→V1∪V2∪ . . .∪Vk,

and that f maps the induced subgraph of H on U1∪U2∪ . . .∪Uk into a copy of
it in V1∪V2∪ . . .∪Vk. Now, define f on Uk+1, using the following construction.
Suppose first that Uk+1 = {u1,u2, . . . ,um} and Vk+1 = {v1,v2, . . . ,vm} where
m ∈

{
bn/(∆2 +1)c,dn/(∆2 +1)e

}
.

Next, construct a random bipartite graph G(k)
m,m,p∗ with a vertex set V = (X ,Y ),

where X = {x1,x2, . . . ,xm} and Y = {y1,y2, . . . ,ym} and connect xi and y j with
an edge if and only if in Gn,p the vertex v j is joined by an edge to all vertices
f (u), where u is a neighbor of ui in H which belongs to U1 ∪U2 ∪ . . .∪Uk.
Hence, we join xi with y j if and only if we can define f (ui) = v j.
Note that for each i and j, the edge probability p∗ ≥ p∆ and that edges of
G(k)

m,m,p∗ are independent of each other, since they depend on pairwise disjoint
sets of edges of Gn,p. This follows from the fact that Uk+1 is independent in H2.
Assuming that the condition (6.14) holds and that (∆2+1)2 < n, then by Theo-
rem 6.1, the random graph G(k)

m,m,p∗ has a perfect matching w.h.p. Moreover, we

can conclude that the probability that there is no perfect matching in G(k)
m,m,p∗ is

at most 1
(∆2+1)n . It is here that we have used the extra factor 10 in the RHS of

(6.14). We use a perfect matching in G(k)(m,m, p∗) to define f , assuming that
if xi and y j are matched then f (ui) = v j. To define our mapping f : U 7→V we
have to find perfect matchings in all G(k)(m,m, p∗),k = 1,2, . . . ,∆2 + 1. The
probability that we can succeed in this is at least 1− 1/n. This implies that
Gn,p contains an isomorphic copy of H w.h.p.

Corollary 6.20 Let n= 2d and suppose that d→∞ and p≥ 1
2 +od(1), where

od(1) is a function that tends to zero as d → ∞. Then w.h.p. Gn,p contains a
copy of a d-dimensional cube Qd .
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Corollary 6.21 Let n= d2 and p= ω(n) logn
n1/4 , where ω(n),d→∞. Then w.h.p.

Gn,p contains a copy of the 2-dimensional lattice Ld .

6.7 Exercises

6.7.1 Consider the bipartite graph process Γm,m= 0,1,2, . . . ,n2 where we add
the n2 edges in A×B in random order, one by one. Show that w.h.p. the
hitting time for Γm to have a perfect matching is identical with the hitting
time for minimum degree at least one.

6.7.2 Show that if p = logn+(k−1) log logn+ω

n where k = O(1) and ω → ∞ then
w.h.p. Gn,n,p contains a k-regular spanning subgraph.

6.7.3 Consider the random bipartite graph G with bi-partition A,B where |A|=
|B|= n. Each vertex a∈A independently chooses d2logne random neigh-
bors in B. Show that w.h.p. G contains a perfect matching.

6.7.4 Show that if p = logn+(k−1) log logn+ω

n where k = O(1) and ω → ∞ then
w.h.p. Gn,p contains bk/2c edge disjoint Hamilton cycles. If k is odd,
show that in addition there is an edge disjoint matching of size bn/2c.
(Hint: Use Lemma 6.4 to argue that after “peeling off” a few Hamilton
cycles, we can still use the arguments of Sections 6.1, 6.2).

6.7.5 Let m∗k denote the first time that Gm has minimum degree at least k. Show
that w.h.p. in the graph process (i) Gm∗1

contains a perfect matching and
(ii) Gm∗2

contains a Hamilton cycle.

6.7.6 Show that if p = logn+log logn+ω

n where ω → ∞ then w.h.p.Gn,n,p con-
tains a Hamilton cycle. (Hint: Start with a 2-regular spanning subgraph
from (ii). Delete an edge from a cycle. Argue that rotations will always
produce paths beginning and ending at different sides of the partition.
Proceed more or less as in Section 6.2).

6.7.7 Show that if p = logn+log logn+ω

n where n is even and ω → ∞ then w.h.p.
Gn,p contains a pair of vertex disjoint n/2-cycles. (Hint: Randomly par-
tition [n] into two sets of size n/2. Then move some vertices between
parts to make the minimum degree at least two in both parts).

6.7.8 Show that if three divides n and np2 � logn then w.h.p. Gn,p contains
n/3 vertex disjoint triangles. (Hint: Randomly partition [n] into three sets
A,B,C of size n/3. Choose a perfect matching M between A and B and
then match C into M).

6.7.9 Let G = (X ,Y,E) be an arbitrary bipartite graph where the bi-partition
X ,Y satisfies |X |= |Y |= n. Suppose that G has minimum degree at least
3n/4. Let p = K logn

n where K is a large constant. Show that w.h.p. Gp

contains a perfect matching.
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6.7.10 Let p=(1+ε) logn
n for some fixed ε > 0. Prove that w.h.p. Gn,p is Hamil-

ton connected i.e. every pair of vertices are the endpoints of a Hamilton
path.

6.7.11 Show that for any fixed ε > 0 there exists cε such that if c≥ cε then Gn,p

contains a cycle of length (1− ε)n with probability 1− e−cε2n/10.
6.7.12 Let p = (1+ ε) logn

n for some fixed ε > 0. Prove that w.h.p. Gn,p is pan-
cyclic i.e. it contains a cycle of length k for every 3≤ k ≤ n.
(See Cooper and Frieze [202] and Cooper [196], [198]).

6.7.13 Show that if p is constant then

P(Gn,p is not Hamiltonian) = O(e−Ω(np)).

6.7.14 Let T be a tree on n vertices and maximum degree less than c1 logn. Sup-
pose that T has at least c2n leaves. Show that there exists K = K(c1,c2)

such that if p≥ K logn
n then Gn,p contains a copy of T w.h.p.

6.7.15 Let p = 10
n and G = G10n,p. Show that w.h.p. any red-blue coloring of

the edges of G contains a mono-chromatic path of length n. (Hint: Apply
the argument of Section 6.3 to both the red and blue sub-graphs of G).
This question is taken from Dudek and Pralat [259]

6.7.16 Suppose that p = n−α for some constant α > 0. Show that if α > 1
3 then

w.h.p. Gn,p does not contain a maximal spanning planar subgraph i.e. a
planar subgraph with 3n−6 edges. Show that if α < 1

3 then it contains
one w.h.p. (see Bollobás and Frieze [141]).

6.7.17 Show that the hitting time for the existence of k edge-disjoint spanning
trees coincides w.h.p. with the hitting time for minimum degree k, for
k = O(1). (See Palmer and Spencer [612]).

6.7.18 Consider the modified greedy matching algorithm where you first choose
a random vertex x and then choose a random edge {x,y} incident with x.
Show that applied to Gn,m, with m = cn, that w.h.p. it produces a match-

ing of size
(

1
2 +o(1)− log(2−e−2c)

4c

)
n.

6.7.19 Let X1,X2, . . . ,N =
(n

2

)
be a sequence of independent Bernouilli random

variables with common probability p. Let ε > 0 be sufficiently small.
(See [512]).

(a) Let p = 1−ε

n and let k = 7logn
ε2 . Show that w.h.p. there is no interval I

of length kn in [N] in which at least k of the variables take the value
1.

(b) Let p = 1+ε

n and let N0 =
εn2

2 . Show that w.h.p.∣∣∣∣∣ N0

∑
i=1

Xi−
ε(1+ ε)n

2

∣∣∣∣∣≤ n2/3.
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6.7.20 Use the result of Exercise 6.7.19(a) to show that if p = 1−ε

n then w.h.p.
the maximum component size in Gn,p is at most 7logn

ε2 .
6.7.21 Use the result of Exercise 6.7.19(b) to show that if p = 1+ε

n then w.h.p

Gn,p contains a path of length at least ε2n
5 .

6.8 Notes

Hamilton cycles

Multiple Hamilton cycles
There are several results pertaining to the number of distinct Hamilton cycles
in Gn,m. Cooper and Frieze [201] showed that in the graph process Gm∗2

con-
tains (logn)n−o(n) distinct Hamilton cycles w.h.p. This number was improved

by Glebov and Krivelevich [369] to n!pneo(n) for Gn,p and
(

logn
e

)n
eo(n) at

time m∗2. McDiarmid [564] showed that for Hamilton cycles, perfect match-
ings, spanning trees the expected number was much higher. This comes from
the fact that although there is a small probability that m∗2 is of order n2, most
of the expectation comes from here. (m∗k is defined in Exercise 6.7.5).

Bollobás and Frieze [140] (see Exercise 6.7.4) showed that in the graph
process, Gm∗k

contains bk/2c edge disjoint Hamilton cycles plus another edge
disjoint matching of size bn/2c if n is odd. We call this property Ak. This was
the case k =O(1). The more difficult case of the occurrence of Ak at m∗k , where
k→ ∞ was verified in two papers, Krivelevich and Samotij [509] and Knox,
Kühn and Osthus [490].

Conditioning on minimum degree
Suppose that instead of taking enough edges to make the minimum degree in
Gn,m two very likely, we instead condition on having minimum degree at least
two. Let Gδ≥k

n,m denote Gn,m conditioned on having minimum degree at least
k = O(1). Bollobás, Fenner and Frieze [138] proved that if

m =
n
2

(
logn
k+1

+ k log logn+ω(n)
)

then Gδ≥k
n,m has Ak w.h.p.

Bollobás, Cooper, Fenner and Frieze [135] prove that w.h.p. Gδ≥k
n,cn has prop-

erty Ak−1 w.h.p. provided 3 ≤ k = O(1) and c ≥ (k+ 1)3. For k = 3, Frieze
[327] showed that Gδ≥3

n,cn is Hamiltonian w.h.p. for c≥ 10.
The k-core of a random graphs is distributed like Gδ≥k

ν ,µ for some (random)
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ν ,µ . Krivelevich, Lubetzky and Sudakov [508] prove that when a k-core first
appears, k ≥ 15, w.h.p. it has b(k−3)/2c edge disjoint Hamilton cycles.

Algorithms for finding Hamilton cycles
Gurevich and Shelah [389] and Thomason [706] gave linear expected time
algorithms for finding a Hamilton cycle in a sufficiently dense random graph
i.e. Gn,m with m� n5/3 in the Thomason paper. Bollobás, Fenner and Frieze
[137] gave an O(n3+o(1)) time algorithm that w.h.p. finds a Hamilton cycle in
the graph Gm∗2

. Frieze and Haber [329] gave an O(n1+o(1)) time algorithm for
finding a Hamilton cycle in Gδ≥3

n,cn for c sufficiently large.

Resilience
Sudakov and Vu [698] introduced the notion of the resilience of a graph prop-
erty P . Given G = Gn,m ∈P w.h.p. we define the global resilience of the
property to be the maximum number of edges in a subgraph H of G such
G \H ∈P w.h.p. The local resilience is defined to be the maximum r such
that if H is a subgraph H of G and ∆(H) ≤ r then G \H ∈P w.h.p. In the
context of Hamilton cycles, after a sequence of partial results in Frieze and
Krivelevich [334], Ben-Shimon, Krivelevich and Sudakov [75], [76], Lee and
Sudakov [521] proved that if p� logn/n then w.h.p. G\H is Hamiltonian for
all subgraphs H for which ∆(H)≤ ( 1

2 −o(1))np, for a suitable o(1) term. It is
not difficult to see that this bound on ∆ is best possible.

Long cycles
A sequence of improvements, Bollobás [126]; Bollobás, Fenner and Frieze
[139] to Theorem 6.8 in the sense of replacing O(logc/c) by something smaller
led finally to Frieze [321]. He showed that w.h.p. there is a cycle of length
n(1− ce−c(1+ εc)) where εc → 0 with c. Up to the value of εc this is best
possible.

Glebov, Naves and Sudakov [370] prove the following generalisation of
(part of) Theorem 6.5. They prove that if a graph G has minimum degree at
least k and p ≥ logk+log logk+ωk(1)

k then w.h.p. Gp has a cycle of length at least
k+1.

Spanning Subgraphs

Riordan [644] used a second moment calculation to prove the existence of
a certain (sequence of) spanning subgraphs H = H(i) in Gn,p. Suppose that
we denote the number of vertices in a graph H by |H| and the number of
edges by e(H). Suppose that |H| = n. For k ∈ [n] we let eH(k) = max{e(F) :
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F ⊆ H, |F | = k} and γ = max3≤k≤n
eH (k)
k−2 . Riordan proved that if the follow-

ing conditions hold, then Gn,p contains a copy of H w.h.p.: (i) e(H) ≥ n, (ii)
N p,(1− p)n1/2→ ∞, (iii) npγ/∆(H)4→ ∞.

This for example replaces the 1
2 in Corollary 6.20 by 1

4 .

Spanning trees

Gao, Pérez-Giménez and Sato [358] considered the existence of k edge disjoint
spanning trees in Gn,p. Using a characterisation of Nash-Williams [602] they
were able to show that w.h.p. one can find min

{
δ , m

n−1

}
edge disjoint spanning

trees. Here δ denotes the minimum degree and m denotes the number of edges.
When it comes to spanning trees of a fixed structure, Kahn conjectured that

the threshold for the existence of any fixed bounded degree tree T , in terms
of number of edges, is O(n logn). For example, a comb consists of a path P
of length n1/2 with each v ∈ P being one endpoint of a path Pv of the same
length. The paths Pv,Pw being vertex disjoint for v 6= w. Hefetz, Krivelevich
and Szabó [404] proved this for a restricted class of trees i.e. those with a linear
number of leaves or with an induced path of length Ω(n). Kahn, Lubetzky and
Wormald [455], [456] verified the conjecture for combs. Montgomery [585],
[586] sharpened the result for combs, replacing m = Cn logn by m = (1 +

ε)n logn and proved that any tree can be found w.h.p. when m=O(∆n(logn)5),
where ∆ is the maximum degree of T .

Large Matchings

Karp and Sipser [476] analysed a greedy algorithm for finding a large matching
in the random graph Gn,p, p = c/n where c > 0 is a constant. It has a much
better performance than the algorithm described in Section 6.4. It follows from
their work that if µ(G) denotes the size of the largest matching in G then w.h.p.

µ(Gn,p)

n
≈ 1− γ∗+ γ∗+ γ∗γ∗

2c

where γ∗ is the smallest root of x = cexp{−ce−x} and γ∗ = ce−γ∗ .
Later, Aronson, Frieze and Pittel [38] tightened their analysis. This led to

the consideration of the size of the largest matching in Gδ≥2
n,m=cn. Frieze and

Pittel [347] showed that w.h.p. this graph contains a matching of size n/2−Z
where Z is a random variable with bounded expectation. Frieze [325] proved
that in the bipartite analogue of this problem, a perfect matching exists w.h.p.
Building on this work, Chebolu, Frieze and Melsted [176] showed how to find
an exact maximum sized matching in Gn,m,m = cn in O(n) expected time.
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H-factors

By an H-factor of a graph G, we mean a collection of vertex disjoint copies of a
fixed graph H that together cover all the vertices of G. Some early results on the
existence of H-factors in random graphs are given in Alon and Yuster [32] and
Ruciński [659]. For the case of when H is a tree, Łuczak and Ruciński [547]
found the precise threshold. For general H, there is a recent breakthrough paper
of Johansson, Kahn and Vu [451] that gives the threshold for strictly balanced
H and good estimates in general. See Gerke and McDowell [357] for some
further results.



7
Extreme Characteristics

This chapter is devoted to the extremes of certain graph parameters. We look
first at the diameter of random graphs i.e. the extreme value of the shortest
distance between a pair of vertices. Then we look at the size of the largest
independent set and the the related value of the chromatic number. We decribe
an important recent result on “interpolation” that proves certain limits exist.
We end the chapter with the likely values of the first and second eigenvalues of
a random graph.

7.1 Diameter

In this section we will first discuss the threshold for Gn,p to have diameter d,
when d≥ 2 is a constant. The diameter of a connected graph G is the maximum
over distinct vertices v,w of dist(v,w) where dist(v,w) is the minimum number
of edges in a path from v to w. The theorem below was proved independently
by Burtin [165], [166] and by Bollobás [124]. The proof we give is due to
Spencer [687].

Theorem 7.1 Let d ≥ 2 be a fixed positive integer. Suppose that c > 0 and

pdnd−1 = log(n2/c).

Then

lim
n→∞

P(diam(Gn,p) = k) =

{
e−c/2 if k = d

1− e−c/2 if k = d +1.

Proof (a): w.h.p. diam(G)≥ d.
Fix v ∈V and let

Nk(v) = {w : dist(v,w) = k}. (7.1)

It follows from Theorem 3.4 that w.h.p. for 0≤ k < d,

|Nk(v)| ≤ ∆
k ≈ (np)k ≈ (n logn)k/d = o(n). (7.2)

(b) w.h.p. diam(G)≤ d +1

111
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Fix v,w ∈ [n]. Then for 1≤ k < d, define the event

Fk =

{
|Nk(v)| ∈ Ik =

[(np
2

)k
,(2np)k

]}
.

Then for k ≤ dd/2e we have

P(F̄k |F1, . . . ,Fk−1) =

= P

(
Bin

(
n−

k−1

∑
i=0
|Ni(v)|,1− (1− p)|Nk−1(v)|

)
/∈ Ik

)

≤ P
(

Bin
(

n−o(n),
3
4

(np
2

)k−1
p
)
≤
(np

2

)k
)

+P
(

Bin
(

n−o(n),
5
4
(2np)k−1 p

)
≥ (2np)k

)
≤ exp

{
−Ω

(
(np)k

)}
= O(n−3).

So with probability 1−O(n−3),

|Nbd/2c(v)| ≥
(np

2

)bd/2c
and |Ndd/2e(w)| ≥

(np
2

)dd/2e
.
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v wX

Y

If X = Nbd/2c(v) and Y = Ndd/2e(w) then, either

X ∩Y 6= /0 and dist(v,w)≤ bd/2c+ dd/2e= d,
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or since the edges between X and Y are unconditioned by our construction,

P(6 ∃ an X : Y edge )≤ (1− p)(
np
2 )

d
≤ exp

{
−
(np

2

)d
p
}

≤ exp{−(2−o(1))np logn}= o(n−3).

So

P(∃v,w : dist(v,w)> d +1) = o(n−1).

We now consider the probability that d or d + 1 is the diameter. We will use
Janson’s inequality, see Section 21.6. More precisely, we will use the earlier
inequality, Corollary 21.13, from Janson, Łuczak and Ruciński [431].
We will first use this to estimate the probability of the following event: Let
v 6= w ∈ [n] and let

Av,w = {v,w are not joined by a path of length d}.

For x = x1,x2, . . . ,xd−1 let

Bv,x,w = {(v,x1,x2, . . . ,xd−1,w) is a path in Gn,p}.

Let

Z = ∑
x

Zx,

where

Zx =

{
1 if Bv,x,w occurs

0 otherwise.

Janson’s inequality allows us to estimate the probability that Z = 0, which is
precisely the probability of Av,w.

Now

µ = EZ = (n−2)(n−3) · · ·(n−d)pd = log
(

n2

c

)(
1+O

(
1
n

))
.
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Let x = x1,x2, · · · ,xd−1, y = y1,y2, . . . ,yd−1 and

∆ = ∑
x,y:x6=y

v,x,w and v,y,w
share an edge

P(Bx∩By)

≤
d−1

∑
t=1

(
d
t

)
n2(d−1)−t p2d−t , t is the number of shared edges,

= O

(
d−1

∑
t=1

n2(d−1)−t− d−1
d (2d−t)(logn)

2d−t
d

)

= O

(
d−1

∑
t=1

n−t/d+o(1)

)
= o(1).

Applying Corollary 21.13), P(Z = 0)≤ e−µ+∆, we get

P(Z = 0)≤ c+o(1)
n2 .

On the other hand the FKG inequality (see Section 21.3) implies that

P(Z = 0)≥
(

1− pd
)(n−2)(n−3)···(n−d)

=
c+o(1)

n2 .

So

P(Av,w) = P(Z = 0) =
c+o(1)

n2 .

So

E(#v,w : Av,w occurs) =
c+o(1)

2
and we should expect that

P(6 ∃ v,w : Av,w occurs)≈ e−c/2. (7.3)

Indeed if we choose v1,w1,v2,w2, . . . ,vk,wk, k constant, we will find that

P
(
Av1,w1 ,Av2,w2 , . . . ,Avk,wk

)
≈
( c

n2

)k
(7.4)

and (7.3) follows from the method of moments.
The proof of (7.3) is just a more involved version of the proof of the special

case k = 1 that we have just completed. We now let

Bx =
k⋃

i=1

Bvi,x,wi
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and re-define

Z = ∑
x

Zx,

where now

Zx =

{
1 if Bx occurs

0 otherwise.

Then we have {Z = 0} is equivalent to
⋂k

i=1 Avi,wi .
Now,

EZ ≤ k(n−2)(n−3) · · ·(n−d)pd = k log
(

n2

c

)(
1+O

(
1
n

))
.

We need to show that the corresponding ∆ = o(1). But,

∆≤∑
r,s

∑
x,y:x6=y

vr ,x,wr and vs,y,ws
share an edge

P(Bvr ,x,wr ∩Bvs,y,ws)

≤ d2
d−1

∑
t=1

(
d
t

)
n2(d−1)−t p2d−t

= o(1).

This shows that

P(Z = 0)≤ e−k log(n2/c+o(1) =

(
c+o(1)

n2

)k

.

On the other hand, the FKG inequality (see Section 21.3) shows that

P
(
Av1,w1 ,Av2,w2 , . . . ,Avk,wk

)
≥

k

∏
i=1

P(Avi,wi) .

This verifies (7.4) and completes the proof of Theorem 7.1.
We turn next to a sparser case and prove a somewhat weaker result.

Theorem 7.2 Suppose that p = ω logn
n where ω → ∞. Then

diam(Gn,p)≈
logn

lognp
w.h.p.

Proof Fix v ∈ [n] and let Ni = Ni(v) be as in (7.1). Let N≤k =
⋃

i≤k Ni. Using
the proof of Theorem 3.4(b) we see that we can assume that

(1−ω
−1/3)np≤ deg(x)≤ (1+ω

−1/3)np for all x ∈ [n]. (7.5)
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It follows that if γ = ω−1/3 and

k0 =
logn− log3
lognp+ γ

≈ logn
lognp

then w.h.p.

|N≤k0 | ≤ ∑
k≤k0

((1+ γ)np)k ≤ 2((1+ γ)np)k0 =
2n

3+o(1)

and so the diameter of Gn,p is at least (1−o(1)) logn
lognp .

We can assume that np = no(1) as larger p are dealt with in Theorem 7.1.
Now fix v,w ∈ [n] and let Ni be as in the previous paragraph. Now consider a
Breadth First Search (BFS) that constructs N1,N2, . . . ,Nk1 where

k1 =
3logn

5lognp
.

It follows that if (7.5) holds then for k ≤ k1 we have

|Ni≤k| ≤ n3/4 and |Nk|p≤ n−1/5. (7.6)

Observe now that the edges from Ni to [n]\N≤i are unconditioned by the BFS
up to layer k and so for x ∈ [n]\N≤k,

P(x ∈ Nk+1 | N≤k) = 1− (1− p)|Nk| ≥ |Nk|p(1−|Nk|p)≥

ρk = |Nk|p(1−n−1/5).

The events x ∈ Nk+1 are independent and so |Nk+1| stochastically dominates
the binomial Bin(n− n3/4,ρk). Assume inductively that |Nk| ≥ (1− γ)k (np)k

for some k ≥ 1. This is true w.h.p. for k = 1 by (7.5). Let Ak be the event that
(7.6) holds. It follows that

E(|Nk+1| |Ak)≥ np|Nk|(1−O(n−1/5)).

It then follows from the Chernoff bounds (Theorem 21.6) that

P(|Nk+1| ≤ ((1− γ)np)k+1 ≤ exp
{
−γ2

4
|Nk|np

}
= o(n−anyconstant).

There is a small point to be made about conditioning here. We can condition
on (7.5) holding and then argue that this only multiplies small probabilities by
1+o(1) if we use P(A | B)≤ P(A)/P(B).

It follows that if

k2 =
logn

2(lognp+ log(1− γ)
≈ logn

2lognp
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then w.h.p. we have

|Nk2 | ≥ n1/2.

Analogously, if we do BFS from w to create N′k, i = 1,2, . . . ,k2 then |N′k2
| ≥

n1/2. If N≤k2 ∩N′≤k2
6= /0 then dist(v,w)≤ 2k2 and we are done. Otherwise, we

observe that the edges Nk2 : N′k2
between Nk2 and N′k2

are unconditioned (except
for (7.5)) and so

P(Nk2 : N′k2
= /0)≤ (1− p)n1/2×n1/2 ≤ n−ω .

If Nk2 : N′k2
6= /0 then dist(v,w)≤ 2k2+1 and we are done. Note that given (7.5),

all other unlikely events have probability O(n−anyconstant) of occurring and so
we can inflate these latter probabilities by n2 to account for all choices of v,w.
This completes the proof of Theorem 7.2.

7.2 Largest Independent Sets

Let α(G) denote the size of the largest independent set in a graph G.

Dense case
The following theorem was first proved by Matula [556].

Theorem 7.3 Suppose 0 < p < 1 is a constant and b = 1
1−p . Then w.h.p.

α(Gn,p)≈ 2logb n.

Proof Let Xk be the number of independent sets of order k.
(i) Let

k = d2logb ne

Then,

EXk =

(
n
k

)
(1− p)(

k
2)

≤
(

ne
k(1− p)1/2 (1− p)k/2

)k

≤
(

e
k(1− p)1/2

)k

= o(1).
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(ii) Let now

k = b2logb n−5logb lognc.

Let

∆ = ∑
i, j

Si∼S j

P(Si,S j are independent in Gn,p),

where S1,S2, . . . ,S(n
k)

are all the k-subsets of [n] and Si ∼ S j iff |Si ∩ S j| ≥ 2.
By Janson’s inequality, see Theorem 21.12,

P(Xk = 0)≤ exp
{
− (EXk)

2

2∆

}
.

Now

∆

(EXk)2 =

(n
k

)
(1− p)(

k
2)∑

k
j=2
(n−k

k− j

)(k
j

)
(1− p)(

k
2)−(

j
2)((n

k

)
(1− p)(

k
2)
)2

=
k

∑
j=2

(n−k
k− j

)(k
j

)(n
k

) (1− p)−(
j
2)

=
k

∑
j=2

u j.

Notice that for j ≥ 2,

u j+1

u j
=

k− j
n−2k+ j+1

k− j
j+1

(1− p)− j

≤
(

1+O
(

logb n
n

))
k2(1− p)− j

n( j+1)
.

Therefore,

u j

u2
≤ (1+o(1))

(
k2

n

) j−2 2(1− p)−( j−2)( j+1)/2

j!

≤ (1+o(1))
(

2k2e
n j

(1− p)−
j+1
2

) j−2

≤ 1.

So
(EXk)

2

∆
≥ 1

ku2
≥ n2(1− p)

k5 .

Therefore

P(Xk = 0)≤ e−Ω(n2/(logn)5). (7.7)
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Matula used the Chebyshev inequality and so he was not able to prove an
exponential bound like (7.7). This will be important when we come to discuss
the chromatic number.

Sparse Case
We now consider the case where p = d/n and d is a large constant. Frieze
[324] proved

Theorem 7.4 Let ε > 0 be a fixed constant. Then for d ≥ d(ε) we have that
w.h.p. ∣∣∣∣α(Gn,p))−

2n
d
(logd− log logd− log2+1)

∣∣∣∣≤ εn
d
.

Dani and Moore [228] have recently given an even sharper result.
In this section we will prove that if p = d/n and d is sufficiently large then

w.h.p. ∣∣∣∣α(Gn,p)−
2logd

d
n
∣∣∣∣≤ ε logd

d
n. (7.8)

This will follow from the following. Let Xk be as defined in the previous sec-
tion. Let

k0 =
(2− ε/2) logd

d
n.

Then,

P
(∣∣α(Gn,p)−E(α(Gn,p))

∣∣≥ ε logd
2d

n
)
≤ exp

{
−Ω

(
(logd)2

d2

)
n
}
.

(7.9)

P(Xk0 > 0)≥ exp

{
−O

(
(logd)3/2

d2

)
n

}
. (7.10)

Let us see how (7.8) follows from these two. Indeed, together they imply that

|k0−E(α(Gn,p))| ≤
ε logd

2d
n.

We obtain (7.8) by applying (7.9) once more.

Proof of (7.9): This follows directly from the Azuma-Hoeffding inequality –
see Section 21.7, in particular Lemma 21.16. If Z = α(Gn,p) then we write
Z = Z(Y2,Y3, . . . ,Yn) where Yi is the set of edges between vertex i and vertices
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[i− 1] for i ≥ 2. Y2,Y3, . . . ,Yn are independent and changing a single Yi can
change Z by at most one. Therefore, for any t > 0 we have

P(|Z−E(Z)| ≥ t)≤ exp
{
− t2

2n−2

}
.

Setting t = ε logd
2d n yields (7.9).

Proof of (7.10): Now, after using Lemma 21.1(g),

1
P(Xk0 > 0)

≤
E(X2

k0
)

E(Xk0)
2 =

k0

∑
j=0

(n−k0
k0− j

)(k0
j

)( n
k0

) (1− p)−(
j
2)

≤
k0

∑
j=0

(
k0e

j
· exp

{
jd
2n

+O
(

jd2

n2

)}) j

×

(
k0

n

) j(n− k0

n− j

)k0− j

(7.11)

≤
k0

∑
j=0

(
k0e

j
· k0

n
· exp

{
jd
2n

+O
(

jd2

n2

)}) j

×

exp
{
− (k0− j)2

n− j

}
≤b

k0

∑
j=0

(
k0e

j
· k0

n
· exp

{
jd
2n

+
2k0

n

}) j

× exp
{
−

k2
0

n

}

=
k0

∑
j=0

v j. (7.12)

(The notation A≤b B is shorthand for A = O(B) when the latter is considered
to be ugly looking).

We observe first that (A/x)x ≤ eA/e for A > 0 implies that(
k0e

j
· k0

n

) j

× exp
{
−

k2
0

n

}
≤ 1.

So,

j ≤ j0 =
(logd)3/4

d3/2 n =⇒ v j ≤ exp
{

j2d
2n

+
2 jk0

n

}
= exp

{
O

(
(logd)3/2

d2

)
n

}
. (7.13)
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Now put

j =
α logd

d
n where d−1/2 < α < 2− ε

2
.

Then

k0e
j
· k0

n
· exp

{
jd
2n

+
2k0

n

}
≤ 4e logd

αd
· exp

{
α logd

2
+

4logd
d

}
=

4e
αd1−α/2 exp

{
4logd

d

}
< 1.

To see this note that if f (α) = αd1−α/2 then f increases between d−1/2 and
2/ logd after which it decreases. Then note that

min
{

f (d−1/2), f (2− ε)
}
> 4eexp

{
4logd

d

}
.

Thus v j < 1 for j ≥ j0 and (7.10) follows from (7.13).

7.3 Interpolation

The following theorem is taken from Bayati, Gamarnik and Tetali [63]. Note
that it is not implied by Theorem 7.4. This paper proves a number of other
results of a similar flavor for other parameters. It is an important paper in that
it verifies some very natural conjectures about some graph parameters, that
have not been susceptible to proof until now.

Theorem 7.5 There exists a function H(d) such that

lim
n→∞

E(α(Gn,bdnc))

n
= H(d).

Proof For this proof we use the model G(A)
n,m of Section 1.3. This is proper

since we we know that w.h.p.

|α(G(A)
n,m)−α(Gn,m)| ≤ ||E(G(A)

n,m)|−m| ≤ logn.

We will prove that for every 1≤ n1,n2 ≤ n−1 such that n1 +n2 = n,

E(α(G(A)
n,bdnc))≥ E(α(G(A)

n1,m1))+E(α(G(A)
n2,m2)) (7.14)

where mi = Bin(bdnc ,ni/n), i = 1,2.
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Assume (7.14). We have E(|m j −
⌊
dn j
⌋
|) = O(n1/2). This and (7.14) and

the fact that adding/deleting one edge changes α by at most one implies that

E(α(G(A)
n,bdnc))≥ E(α(G(A)

n1,bdn1c
))+E(α(G(A)

n2,bdn2c
))−O(n1/2). (7.15)

Thus the sequence un = E(α(G(A)
n,bdnc)) satisfies the conditions of Lemma 7.6

below and the proof of Theorem 7.5 follows.

Proof of (7.14): We begin by constructing a sequence of graphs interpolat-
ing between G(A)

n,bdnc and a disjoint union of G(A)
n1,m1 and G(A)

n2,m2 . Given n,n1,n2

such that n1 + n2 = n and any 0 ≤ r ≤ m = bdnc, let G(n,m,r) be the ran-
dom (pseudo-)graph on vertex set [n] obtained as follows. It contains pre-
cisely m edges. The first r edges e1,e2, . . . ,er are selected randomly from [n]2.
The remaining m− r edges er+1, . . . ,em are generated as follows. For each
j = r+1, . . . ,m, with probability n j/n, e j is selected randomly from M1 = [n1]

2

and with probability n2/n, e j is selected randomly from M2=[n1 +1,n]2. Ob-
serve that when r = m we have G(n,m,r) = G(A)(n,m) and when r = 0 it is
the disjoint union of G(A)

n1,m1 and G(A)
n2,m2 where m j = Bin(m,n j/n) for j = 1,2.

We will show next that

E(α(G(n,m,r)))≥ E(α(G(n,m,r−1))) for r = 1, . . . ,m. (7.16)

It will follow immediately that

E(α(G(A)
n,m)) = E(α(G(n,m,m)))≥

E(α(G(n,m,0))) = E(α(G(A)
n1,m1))+E(α(G(A)

n2,m2))

which is (7.14).
Proof of (7.16): Observe that G(n,m,r−1) is obtained from

G(n,m,r) by deleting the random edge er and then adding an edge from M1

or M2. Let G0 be the graph obtained after deleting er, but before adding its
replacement. Remember that

G(n,m,r) =G0 + er.

We will show something stronger than (7.16) viz. that

E(α(G(n,m,r)) |G0)≥ E(α(G(n,m,r−1)) |G0) for r = 1, . . . ,m. (7.17)

Now let O∗ ⊆ [n] be the set of vertices that belong to every largest independent
set in G0. Then for er = (x,y), α(G0+e) = α(G0)−1 if x,y∈O∗ and α(G0+

e) = α(G0) if x /∈ O∗ or y /∈ O∗. Because er is randomly chosen, we have

E(α(G0 + er) |G0)−E(α(G0)) =−
(
|O∗|

n

)2

.
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By a similar argument

E(α(G(n,m,r−1) |G0)−α(G0)

=−n1

n

(
|O∗∩M1|

n1

)2

− n2

n

(
|O∗∩M2|

n2

)2

≤−
(

n1

n
|O∗∩M1|

n1
+

n2

n
|O∗∩M2|

n2

)2

=−
(
|O∗|

n

)2

= E(α(G0 + er) |G0)−E(α(G0)),

completing the proof of (7.17).
The proof of the following lemma is left as an exercise.

Lemma 7.6 Given γ ∈ (0,1), suppose that the non-negative sequence un,n≥
1 satisfies

un ≥ un1 +un2 −O(nγ)

for every n1,n2 such that n1 +n2 = n. Then limn→∞
un
n exists.

7.4 Chromatic Number

Let χ(G) denote the chromatic number of a graph G, i.e., the smallest number
of colors with which one can properly color the vertices of G. A coloring is
proper if no two adjacent vertices have the same color.

Dense Graphs

We will first describe the asymptotic behavior of the chromatic number of
dense random graphs. The following theorem is a major result, due to Bollobás
[131]. The upper bound without the 2 in the denominator follows directly from
Theorem 7.3. An intermediate result giving 3/2 instead of 2 was already proved
by Matula [557].

Theorem 7.7 Suppose 0 < p < 1 is a constant and b = 1
1−p . Then w.h.p.

χ(Gn,p)≈
n

2logb n
.
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Proof (i) By Theorem 7.3

χ(Gn,p)≥
n

α(Gn,p)
≈ n

2logb n
.

(ii) Let ν = n
(logb n)2 and k0 = 2logb n−4logb logb n. It follows from (7.7) that

P(∃S : |S| ≥ ν , S does not contain an independent set of order ≥ k0)

≤
(

n
ν

)
exp
{
−Ω

(
ν2

(logn)5

)}
= o(1).

So assume that every set of order at least ν contains an independent set of order
at least k0. We repeatedly choose an independent set of order k0 among the set
of uncolored vertices. Give each vertex in this set a new color. Repeat until
the number of uncolored vertices is at most ν . Give each remaining uncolored
vertex its own color. The number of colors used is at most

n
k0

+ν ≈ n
2logb n

.

It should be noted that Bollobás did not have the Janson inequality available
to him and he had to make a clever choice of random variable for use with the
Azuma-Hoeffding inequality. His choice was the maximum size of a family
of edge independent independent sets. Łuczak [540] proved the corresponding
result to Theorem 7.7 in the case where np→ 0.

Concentration

Theorem 7.8 Suppose 0 < p < 1 is a constant. Then

P(|χ(Gn,p)−Eχ(Gn,p)| ≥ t)≤ 2exp
{
− t2

2n

}
Proof Write

χ = Z(Y1,Y2, . . . ,Yn) (7.18)

where

Yj = {(i, j) ∈ E(Gn,p) : i < j}.

Then

|Z(Y1,Y2, . . . ,Yn)−Z(Y1,Y2, . . . ,Ŷi, . . . ,Yn)| ≤ 1
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and the theorem follows from the Azuma-Hoeffding inequality, see Section
21.7, in particular Lemma 21.16.

Greedy Coloring Algorithm
We show below that a simple greedy algorithm performs very efficiently. It
uses twice as many colors as it “should” in the light of Theorem 7.7. This
algorithm is discussed in Bollobás and Erdős [136] and by Grimmett and Mc-
Diarmid [385]. It starts by greedily choosing an independent set C1 and at
the same time giving its vertices color 1. C1 is removed and then we greedily
choose an independent set C2 and give its vertices color 2 and so on, until all
vertices have been colored.

Algorithm GREEDY

• k is the current color.
• A is the current set of vertices that might get color k in the current round.
• U is the current set of uncolored vertices.

begin
k←− 0, A←− [n], U ←− [n], Ck←− /0.

while U 6= /0 do
k←− k+1 A←−U
while A 6= /0

begin
Choose v ∈ A and put it into Ck

U ←−U \{v}
A←− A\ ({v}∪N(v))

end
end

Theorem 7.9 Suppose 0 < p < 1 is a constant and b = 1
1−p . Then w.h.p.

algorithm GREEDY uses approximately n/ logb n colors to color the vertices
of Gn,p.

Proof At the start of an iteration the edges inside U are un-examined. Sup-
pose that

|U | ≥ ν =
n

(logb n)2 .

We show that approximately logb n vertices get color k i.e. at the end of round
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k, |Ck| ≈ logb n.
Each iteration chooses a maximal independent set from the remaining uncol-
ored vertices. Let k0 = logb n−5logb logb n. Then

P(∃ T : |T | ≤ k0, T is maximally independent in U)

≤
k0

∑
t=1

(
n
t

)
(1− p)(

t
2)
(
1− (1− p)t)n0−t

≤
k0

∑
t=1

(ne
t
(1− p)

t−1
2

)t
e−(n0−t)(1−p)t

≤
k0

∑
t=1

(
ne1+(1−p)t

)t
e−n0(1−p)t

≤ k0
(
ne2)k0 e−(logb n)3 ≤ e−

1
2 (logb n)3

.

So the probability that we fail to use at least k0 colors while |U | ≥ ν is at most

ne−
1
2 (logb ν)3

= o(1).

So w.h.p. GREEDY uses at most

n
k0

+ν ≈ n
logb n

colors.

We now put a lower bound on the number of colors used by GREEDY. Let

k1 = logb n+2logb logb n.

Consider one round. Let U0 = U and suppose u1,u2, . . . ∈Ck and Ui+1 = Ui \
({ui})∪N(ui)).
Then

E( |Ui+1| |Ui )≤ |Ui |(1− p),

and so, for i = 1,2, ..

E |Ui| ≤ n(1− p)i.

So

P(k1 vertices colored in one round)≤ 1
(logb n)2 ,

and

P(2k1 vertices colored in one round)≤ 1
n
.
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So let

δi =

{
1 if at most k1 vertices are colored in round i

0 otherwise

We see that

P(δi = 1|δ1,δ2, . . . ,δi−1) = 1− 1
(logb n)2 .

So the number of rounds that color more than k1 vertices is stochastically
dominated by a binomial with mean n/(logb n)2. The Chernoff bounds imply
that w.h.p. the number of rounds that color more than k1 vertices is less than
2n/(logb n)2. Strictly speaking we need to use Lemma 21.22 to justify the use
of the Chernoff bounds. Because no round colors more than 2k1 vertices we
see that w.h.p. GREEDY uses at least

n−4k1n/(logb n)2

k1
≈ n

logb n
colors.

Sparse Graphs
We now consider the case of sparse random graphs. We first state an important
conjecture about the chromatic number.

Conjecture: Let k ≥ 3 be a fixed positive integer. Then there exists dk >

0 such that if ε is an arbitrary positive constant and p = d
n then w.h.p. (i)

χ(Gn,p)≤ k for d ≤ dk− ε and (ii) χ(Gn,p)≥ k+1 for d ≥ dk + ε .

In the absence of a proof of this conjecture, we present the following result
due to Łuczak [541]. It should be noted that Shamir and Spencer [680] had
already proved six point concentration.

Theorem 7.10 If p < n−5/6−δ ,δ > 0, then the chromatic number of Gn,p is
w.h.p. two point concentrated.

Proof To prove this theorem we need three lemmas.

Lemma 7.11

(a) Let 0 < δ < 1/10, 0≤ p < 1 and d = np. Then w.h.p. each subgraph H of
Gn,p on less than nd−3(1+2δ ) vertices has less than (3/2−δ )|H| edges.
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(b) Let 0 < δ < 1.0001 and let 0≤ p≤ δ/n. Then w.h.p. each subgraph H of
Gn,p has less than 3|H|/2 edges.

The above lemma can be proved easily by the first moment method, see
Exercise 7.6.6. Note also that Lemma 7.11 implies that each subgraph H sat-
isfying the conditions of the lemma has minimum degree less than three, and
thus is 3-colorable, due to the following simple observation (see Bollobás [132]
Theorem V.1)

Lemma 7.12 Let k = maxH⊆G δ (H), where the maximum is taken over all
induced subgraphs of G. Then χ(G)≤ k+1.

Proof This is an easy exercise in Graph Theory. We proceed by induction on
|V (G)|. We choose a vertex of minimum degree v, color G− v inductively and
then color v.

The next lemma is an immediate consequence of the Azuma-Hoeffding in-
equality, see Section 21.7, in particular Lemma 21.16.

Lemma 7.13 9 Let k = k(n) be such that

P(χ(Gn,p)≥ k)>
1

loglogn
. (7.19)

Then w.h.p. all but at most n1/2 logn vertices of Gn,p can be properly colored
using k colors.

Proof Let Z be the maximum number of vertices in Gn,p that can be properly
colored with k colors. Write Z = Z(Y1,Y2, . . . ,Yn) as in (7.18). Then we have

P(Z = n)>
1

loglogn
and P(|Z−EZ)| ≥ t)≤ 2exp

{
− t2

2n

}
. (7.20)

Putting t = 1
2 n1/2 logn into (7.20) shows that EZ≥ n−t and the lemma follows

after applying the concentration inequality in (7.20) once again.
Now we are ready to present Łuczak’s ingenious argument to prove Theorem

7.10. Note first that when p is such that np→ 0 as n→∞, then by Theorem 2.1
Gn,p is a forest w.h.p. and so its chromatic number is either 1 or 2. Furthermore,
for 1/ logn < d < 1.0001 the random graph Gn,p w.h.p. contains at least one
edge and no subgraph with minimal degree larger than two (see Lemma 7.11),
which implies that χ(Gn,p) is equal to 2 or 3 (see Lemma 7.12). Now let us
assume that the edge probability p is such that 1.0001 < d = np < n1/6−δ .
Observe that in this range of p the random graph Gn,p w.h.p. contains an odd
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cycle, so χ(Gn,p)≥ 3.
Let k be as in Lemma 7.13 and let U0 be a set of size at most u0 = n1/2 logn
such that [n] \U0 can be properly colored with k colors. Let us construct a
nested sequence of subsets of vertices U0 ⊆U1 ⊆ . . .⊆Um of Gn,p, where we
define Ui+1 = Ui ∪{v,w}, where v,w 6∈Ui are connected by an edge and both
v and w have a neighbor in Ui. The construction stops at i = m if such a pair
{v,w} does not exist.
Notice that m can not exceed m0 = n1/2 logn, since if m > m0 then a subgraph
of Gn,p induced by vertices of Um0 would have

|Um0 |= u0 +2m0 ≤ 3n1/2 logn < nd−3(1+2δ )

vertices and at least 3m0 ≥ (3/2− δ )|Um0 | edges, contradicting the statement
of Lemma 7.11.
As a result, the construction produces a set Um in Gn,p, such that its size is
smaller than nd−3(1+2δ ) and, moreover, all neighbors N(Um) of Um form an
independent set, thus “isolating” Um from the “outside world”.
Now, the coloring of the vertices of Gn,p is an easy task. Namely, by Lemma
7.13, we can color the vertices of Gn,p outside the set Um ∪N(Um) with k
colors. Then we can color the vertices from N(Um) with color k+1, and finally,
due to Lemmas 7.11 and 7.12, the subgraph induced by Um is 3-colorable and
we can color Um with any three of the first k colors.

7.5 Eigenvalues

Separation of first and remaining eigenvalues

The following theorem is a weaker version of a theorem of Füredi and Komlós
[355], which was itself a strengthening of a result of Juhász [454]. See also
Coja–Oghlan [190] and Vu [718]. In their papers, 2ω logn is replaced by 2+
o(1) and this is best possible.

Theorem 7.14 Suppose that ω → ∞,ω = o(logn) and ω3(logn)2 ≤ np ≤
n−ω3(logn)2. Let A denote the adjacency matrix of Gn,p. Let the eigenvalues
of A be λ1 ≥ λ2 ≥ ·· · ≥ λn. Then w.h.p.

(i) λ1 ≈ np
(ii) |λi| ≤ 2ω logn

√
np(1− p) for 2≤ i≤ n.

The proof of the above theorem is based on the following lemma.

In the following |x| denotes the Euclidean norm of x ∈ R.
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Lemma 7.15 Let J be the all 1’s matrix and M = pJ−A. Then w.h.p.

‖M‖ ≤ 2ω logn
√

np(1− p)

where

‖M‖= max
|x|=1
|Mx|= max{|λ1(M)|, |λn(M)|} .

We first show that the lemma implies the theorem. Let e denote the all 1’s
vector.
Suppose that |ξ |= 1 and ξ⊥e. Then Jξ = 0 and

|Aξ |= |Mξ | ≤ ‖M‖ ≤ 2ω logn
√

np(1− p).

Now let |x|= 1 and let x = αu+βy where u = 1√
n e and y⊥e and |y|= 1. Then

|Ax| ≤ |α||Au|+ |β ||Ay|.

We have, writing A = pJ+M, that

|Au|= 1√
n
|Ae| ≤ 1√

n
(np|e|+‖M‖|e|)

≤ np+2ω logn
√

np(1− p)

|Ay| ≤ 2ω logn
√

np(1− p)

Thus

|Ax| ≤ |α|np+(|α|+ |β |)2ω logn
√

np(1− p)

≤ np+3ω logn
√

np(1− p).

This implies that λ1 ≤ (1+o(1))np.
But

|Au| ≥ |(A+M)u|− |Mu|
= |pJu|− |Mu|

≥ np−2ω logn
√

np(1− p),

implying λ1 ≥ (1+o(1))np, which completes the proof of (i).
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Now

λ2 = min
η

max
06=ξ⊥η

|Aξ |
|ξ |

≤ max
06=ξ⊥u

|Aξ |
|ξ |

≤ max
06=ξ⊥u

|Mξ |
|ξ |

≤ 2ω logn
√

np(1− p)

λn = min
|ξ |=1

ξ
T Aξ ≥ min

|ξ |=1
ξ

T Aξ − pξ
T Jξ

= min
|ξ |=1
−ξ

T Mξ ≥−‖M‖ ≥ −2ω logn
√

np(1− p).

This completes the proof of (ii).
Proof of Lemma 7.15:

As in previously mentioned papers, we use the trace method of Wigner [724].
Putting M̂ = M− pIn we see that

‖M‖ ≤ ‖M̂‖+‖pIn‖= ‖M̂‖+ p

and so we bound ‖M̂‖.
Letting mi j denote the (i, j)th entry of M̂ we have

(i) Emi j = 0

(ii) Varmi j ≤ p(1− p) = σ
2

(iii) mi j,mi′ j′ are independent, unless (i′, j′) = ( j, i),

in which case they are identical.

Now let k ≥ 2 be an even integer.

Trace(M̂k) =
n

∑
i=1

λi(M̂k)

≥max
{

λ1(M̂k),λn(M̂k)
}

= ‖M̂k‖.

We estimate

‖M̂‖ ≤ Trace(M̂k)1/k,

where k = ω logn.
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Now,

E(Trace(M̂k)) = ∑
i0,i1,...,ik−1∈[n]

E(mi0i1mi1i2 · · ·mik−2ik−1mik−1i0).

Recall that the i, jth entry of M̂k is the sum over all products
mi,i1mi1,i2 · · ·mik−1 j.

Continuing, we therefore have

E‖M̂‖k ≤
k

∑
ρ=2

En,k,ρ

where

En,k,ρ = ∑
i0,i1,...,ik−1∈[n]

|{i0,i1,i2,...,ik−1}|=ρ

∣∣∣∣∣E
(

k−1

∏
j=0

mi j i j+1

)∣∣∣∣∣ .
Note that as mii = 0 by construction of M̂ we have that En,k,1 = 0
Each sequence i = i0, i1, . . . , ik−1, i0 corresponds to a walk W (i) on the graph
Kn with n loops added. Note that

E

(
k−1

∏
j=0

mi j i j+1

)
= 0 (7.21)

if the walk W (i) contains an edge that is crossed exactly once, by condition (i).
On the other hand, |mi j| ≤ 1 and so by conditions (ii), (iii),∣∣∣∣∣E

(
k−1

∏
j=0

mi j i j+1

)∣∣∣∣∣≤ σ
2(ρ−1)

if each edge of W (i) is crossed at least twice and if |{i0, i1, . . . , ik−1}|= ρ .
Let Rk,ρ denote the number of (k,ρ) walks i.e closed walks of length k that
visit ρ distinct vertices and do not cross any edge exactly once. We use the
following trivial estimates:

(i) ρ > k
2 +1 implies Rk,ρ = 0. (ρ this large will invoke (7.21)).

(ii) ρ ≤ k
2 +1 implies Rk,ρ ≤ nρ kk,

where nρ bounds from above the the number of choices of ρ distinct vertices,
while kk bounds the number of walks of length k.
We have

E‖M̂‖k ≤
1
2 k+1

∑
ρ=2

Rk,ρ σ
2(ρ−1) ≤

1
2 k+1

∑
ρ=2

nρ kk
σ

2(ρ−1) ≤ 2n
1
2 k+1kk

σ
k.
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Therefore,

P
(
‖M̂‖ ≥ 2kσn

1
2

)
= P

(
‖M̂‖k ≥

(
2kσn

1
2

)k
)
≤ E‖M̂‖k(

2kσn
1
2

)k

≤ 2n
1
2 k+1kkσ k(

2kσn
1
2

)k =

(
(2n)1/k

2

)k

=

(
1
2
+o(1)

)k

= o(1).

It follows that w.h.p. ‖M̂‖ ≤ 2σω(logn)2n1/2 ≤ 2ω(logn)2
√

np(1− p) and
completes the proof of Theorem 7.14.

Concentration of eigenvalues

We show here how one can use Talagrand’s inequality, Theorem 21.17, to show
that the eigenvalues of random matrices are highly concentrated around their
median values. The result is from Alon, Krivelevich and Vu [29].

Theorem 7.16 Let A be an n×n random symmetric matrix with independent
entries ai, j = a j,i, 1≤ i≤ j ≤ n with absolute value at most one. Let its eigen-
values be λ1(A)≥ λ2(A)≥ ·· · ≥ λn(A). Suppose that 1≤ s≤ n. Let µs denote
the median value of λs(A) i.e. µs = infµ {P(λs(A)≤ µ)≥ 1/2}. Then for any
t ≥ 0 we have

P(|λs(A)−µs| ≥ t)≤ 4e−t2/32s2
.

The same estimate holds for the probability that λn−s+1(A) deviates from its
median by more than t.

Proof We will use Talagrand’s inequality, Theorem 21.17. We let m =
(n+1

2

)
and let Ω=Ω1×Ω2×·· ·×Ωm where for each 1≤ k≤m we have Ωk =

{
ai, j
}

for some i≤ j. Fix a positive integer s and let M, t be real numbers. Let A be
the set of matrices A for which λs(A)≤M and let B be the set of matrices for
which λs(B) ≥M+ t. When applying Theorem 21.17 it is convenient to view
A as an m-vector.

Fix B ∈B and let v(1),v(2), . . . ,v(s) be an orthonormal set of eigenvectors
for the s largest eigenvalues of B. Let v(k) = (v(k)1 ,v(k)2 , . . . ,v(k)n ),

αi,i =
s

∑
k=1

(v(k)i )2 for 1≤ i≤ n

and

αi, j = 2

√
s

∑
k=1

(v(k)i )2

√
s

∑
k=1

(v(k)j )2 for 1≤ i < j ≤ n.
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Lemma 7.17

∑
1≤i≤ j≤n

α
2
i, j ≤ 2s2.

Proof

∑
1≤i≤ j≤n

α
2
i, j =

n

∑
i=1

(
s

∑
k=1

(v(k)i )2

)2

+4 ∑
1≤i< j≤n

(
s

∑
k=1

(v(k)i )2
s

∑
k=1

(v(k)j )2

)

≤ 2

(
n

∑
i=1

s

∑
k=1

(v(k)i )2

)2

= 2

(
s

∑
k=1

n

∑
i=1

(v(k)i )2

)2

= 2s2,

where we have used the fact that each v(k) is a unit vector.

Lemma 7.18 For every A = (ai, j) ∈A and B = (bi, j) ∈B,

∑
1≤i≤ j≤n:ai, j 6=bi, j

αi, j ≥ t/2.

Fix A ∈A . Let u = ∑
s
k=1 ckv(k) be a unit vector in the span S of the vectors

v(k), k = 1,2, . . . ,s which is orthogonal to the eigenvectors of the (s−1) largest
eigenvalues of A. Recall that v(k), k = 1,2, . . . ,s are eigenvectors of B. Then
∑

s
k=1 c2

k = 1 and utAu ≤ λs(A) ≤M, whereas utBu ≥ minv∈S vtBv = λs(B) ≥
M + t. Recall that all entries of A and B are bounded in absolute value by 1,
implying that |bi, j−ai, j| ≤ 2 for all 1 ≤ i, j ≤ n. It follows that if X is the set
of ordered pairs (i, j) for which ai, j 6= bi, j then

t ≤ ut(B−A)u = ∑
(i, j)∈X

(bi, j−ai, j)

(
s

∑
k=1

ckv(k)i

)t s

∑
k=1

ckv(k)j

≤ 2 ∑
(i, j)∈X

∣∣∣∣∣ s

∑
k=1

ckv(k)i

∣∣∣∣∣
∣∣∣∣∣ s

∑
k=1

ckv(k)j

∣∣∣∣∣
≤ 2 ∑

(i, j)∈X

(√
s

∑
k=1

c2
k

√
s

∑
k=1

(
v(k)i

)2
)(√

s

∑
k=1

c2
k

√
s

∑
k=1

(
v(k)j

)2
)

= 2 ∑
(i, j)∈X

αi, j

as claimed. (We obtained the third inequality by use of the Cauchy-Schwarz
inequality).
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By the above two lemmas, and by Theorem 21.17 for every M and every
t > 0

P(λs(A)≤M)P(λs(B)≥M+ t)≤ e−t2/(32s2). (7.22)

If M is the median of λs(A) then P(λs(A)≤M)≥ 1/2, by definition, implying
that

P(λs(A)≥M+ t)≤ 2e−t2/(32s2).

Similarly, by applying (7.22) with M + t being the median of λs(A) we con-
clude that

P(λs(A)≤M− t)≤ 2e−t2/(32s2).

This completes the proof of Theorem 7.16 for λs(A). The proof for λn−s+1

follows by applying the theorem to s and −A.

7.6 Exercises

7.6.1 Let p = d/n where d is a positive constant. Let S be the set of vertices
of degree at least logn

2loglogn . Show that w.h.p., S is an independent set.
7.6.2 Let p = d/n where d is a large positive constant. Use the first moment

method to show that w.h.p.

α(Gn,p)≤
2n
d
(logd− log logd− log2+1+ ε)

for any positive constant ε .
7.6.3 Complete the proof of Theorem 7.4.

Let m = d/(logd)2 and partition [n] into n0 = n
m sets S1,S2, . . . ,Sn0 of

size m. Let β (G) be the maximum size of an independent set S that
satisfies |S∩ Si| ≤ 1 for i = 1,2, . . . ,n0. Use the proof idea of Theorem
7.4 to show that w.h.p.

β (Gn,p)≥ k−ε =
2n
d
(logd− log logd− log2+1− ε).

7.6.4 Prove Theorem 7.4 using Talagrand’s inequality, Theorem 21.21.
(Hint: Let A =

{
α(Gn,p)≤ k−ε −1

}
).

7.6.5 Prove Lemma 7.6.
7.6.6 Prove Lemma 7.11.
7.6.7 Prove that if ω = ω(n)→ ∞ then there exists an interval I of length

ωn1/2/ logn such that w.h.p. χ(Gn,1/2) ∈ I. (See Scott [678]).
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7.6.8 A topological clique of size s is a graph obtained from the complete
graph Ks by subdividing edges. Let tc(G) denote the size of the largest
topological clique contained in a graph G. Prove that w.h.p. tc(Gn,1/2) =

Θ(n1/2).

7.6.9 Suppose that H is obtained from Gn,1/2 by planting a clique C of size m
= n1/2 logn inside it. describe a polynomial time algorithm that w.h.p.
finds C. (Think that an adversary adds the clique without telling you
where it is).

7.6.10 Show that if d > k logk for a positive integer k≥ 2 then w.h.p. G(n,d/n)
is not k-colorable. (Hint:Consider the expected number of proper k-
coloring’s).

7.6.11 Let p = K logn/n for some large constant K > 0. Show that w.h.p. the
diameter of Gn,p is Θ(logn/ log logn).

7.6.12 Suppose that 1+ ε ≤ np = o(logn), where ε > 0 is constant. Show that
given A > 0, there exists B = B(A) such that

P
(

diam(K)≥ B
logn

lognp

)
≤ n−A,

where K is the giant component of Gn,p.

7.6.13 Let p = d/n for some constant d > 0. Let A be the adjacency matrix of
Gn,p. Show that w.h.p. λ1(A)≈ ∆1/2 where ∆ is the maximum degree in
Gn,p. (Hint: the maximum eigenvalue of the adjacency matrix of K1,m is
m1/2).

7.6.14 A proper 2-tone k-coloring of a graph G = (V,E) is an assignment of
pairs of colors Cv ⊆ [k], |Cv| = 2 such that (i) |Cv∩Cw| < d(v,w) where
d(v,w) is the graph distance from v to w. If χ2(G) denotes the mini-
mum k for which there exists a 2-tone coloring of G, show that w.h.p.
χ2(Gn,p)≈ 2χ(Gn,p). (This question is taken from [45]).

7.6.15 The set chromatic number χs(G) of a graph G = (V,E) is defined as
follows: Let C denote a set of colors. Color each v ∈ V with a color
f (v) ∈C. Let Cv = { f (w) : {v,w} ∈ G}. The coloring is proper if Cv 6=
Cw whenever {v,w}∈E. χs is the minimum size of C in a proper coloring
of G. Prove that if 0 < p < 1 is constant then w.h.p. χs(Gn,p)≈ r log2 n
where r = 2

log2 1/s and s = min
{

q2`+(1−q`)2 : `= 1,2, . . .
}

where q =

1− p. (This question is taken from Dudek, Mitsche and Pralat [258]).
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7.7 Notes

Chromatic number

There has been a lot of progress in determining the chromatic number of sparse
random graphs. Alon and Krivelevich [26] extended the result in [541] to
the range p ≤ n−1/2−δ . A breakthrough came when Achlioptas and Naor [5]
identified the two possible values for np = d where d = O(1): Let kd be the
smallest integer k such that d < 2k logk. Then w.h.p. χ(Gn,p) ∈ {kd ,kd +1}.
This implies that dk, the (conjectured) threshold for a random graph to have
chromatic number at most k, satisfies dk ≥ 2k logk− 2logk−2+ ok(1) where
ok(1)→ 0 as k→ ∞. Coja–Oghlan, Panagiotou and Steger [192] extended the
result of [5] to np ≤ n1/4−ε , although here the guaranteed range is three val-
ues. More recently, Coja–Oghlan and Vilenchik [193] proved the following.
Let dk,cond = 2k logk− logk−2log2. Then w.h.p. dk ≥ dk,cond−ok(1). On the
other hand Coja–Oghlan [191] proved that dk ≤ dk,cond +(2log2−1)+ok(1).

It follows from Chapter 2 that the chromatic number of Gn,p, p ≤ 1/n is
w.h.p. at most 3. Achlioptas and Moore [3] proved that in fact χ(Gn,p) ≤ 3
w.h.p. for p≤ 4.03/n. Now a graph G is s-colorable iff it has a homomorphism
ϕ : G→ Ks. (A homomorphism from G to H is a mapping ϕ : V (G)→ V (H)

such that if {u,v} ∈ E(G) then (ϕ(u),ϕ(v)) ∈ E(H)). It is therefore of interest
in the context of coloring, to consider homomorphisms from Gn,p to other
graphs. Frieze and Pegden [346] show that for any ` > 1 there is an ε > 0
such that with high probability, Gn, 1+ε

n
either has odd-girth < 2`+ 1 or has

a homomorphism to the odd cycle C2`+1. They also showed that w.h.p. there
is no homomorphism from Gn,p, p = 4/n to C5. Previously, Hatami [397] has
shown that w.h.p. there is no homomorphism from a random cubic graph to
C7.

Alon and Sudakov [31] considered how many edges one must add to Gn,p

in order to significantly increase the chromatic number. They show that if
n−1/3+δ ≤ p≤ 1/2 for some fixed δ > 0 then w.h.p. for every set E of

2−12ε2n2

(logb(np))2 edges, the chromatic number of Gn,p∪E is still at most (1+ε)n
2logb(np) .

Let Lk be an arbitrary function that assigns to each vertex of G a list of k col-
ors. We say that G is Lk-list-colorable if there exists a proper coloring of the
vertices such that every vertex is colored with a color from its own list. A graph
is k-choosable, if for every such function Lk, G is Lk-list-colorable. The mini-
mum k for which a graph is k-choosable is called the list chromatic number,
or the choice number, and denoted by χL(G). The study of the choice number
of Gn,p was initiated in [20], where Alon proved that a.a.s., the choice number
of Gn,1/2 is o(n). Kahn then showed (see [21]) that a.a.s. the choice number of
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Gn,1/2 equals (1+o(1))χ(Gn,1/2). In [503], Krivelevich showed that this holds
for p� n−1/4, and Krivelevich, Sudakov, Vu, and Wormald [514] improved
this to p� n−1/3. On the other hand, Alon, Krivelevich, Sudakov [27] and
Vu [717] showed that for any value of p satisfying 2 < np ≤ n/2, the choice
number is Θ(np/ log(np)). Krivelevich and Vu [515] generalized this to hyper-
graphs; they also improved the leading constants and showed that the choice
number for C/n≤ p≤ 0.9 (where C is a sufficiently large constant) is at most
a multiplicative factor of 2+ o(1) away from the chromatic number, the best
known factor for p≤ n−1/3.

Algorithmic questions
We have seen that the Greedy algorithm applied to Gn,p generally produces a
coloring that uses roughly twice the minimum number of colors needed. Note
also that the analysis of Theorem 7.9, when k = 1, implies that a simple greedy
algorithm for finding a large independent set produces one of roughly half
the maximum size. In spite of much effort neither of these two results have
been significantly improved. We mention some negative results. Jerrum [448]
showed that the Metropolis algorithm was unlikely to do very well in finding
an independent set that was significantly larger than GREEDY. Other earlier
negative results include: Chvátal [186], who showed that for a significant set
of densities, a large class of algorithms will w.h.p. take exponential time to find
the size of the largest independent set and McDiarmid [561] who carried out a
similar analysis for the chromatic number.

Frieze, Mitsche, Pérez-Giménez and Pralat [344] study list coloring in an
on-line setting and show that for a wide range of p, one can asymptotically
match the best known constants of the off-line case. Moreover, if pn≥ logω n,
then they get the same multiplicative factor of 2+o(1).

Randomly Coloring random graphs
A substantial amount of research in Theoretical Computer Science has been
associated with the question of random sampling from complex distributions.
Of relevance here is the following: Let G be a graph and k be a positive in-
teger. Then let Ωk(G) be the set of proper k-coloring’s of the vertices of G.
There has been a good deal of work on the problem of efficiently choosing a
(near) random member of Ωk(G). For example, Vigoda [715] has described an
algorithm that produces a (near) random sample in polynomial time provided
k > 11∆(G)/6. When it comes to Gn,p, Dyer, Flaxman, Frieze and Vigoda
[266] showed that if p = d/n,d = O(1) then w.h.p. one can sample a ran-
dom coloring if k = O(log logn) = o(∆). The bound on k was reduced to
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k = O(dO(1)) by Mossell and Sly [591] and then to k = O(d) by Efthymiou
[272].

Diameter of sparse random graphs

The diameter of the giant component of Gn,p, p = λ/n,λ > 1 was considered
by Fernholz and Ramachandran [299] and by Riordan and Wormald [649]. In
particular, [649] proves that w.h.p. the diameter is logn

logλ
+2 logn

log1/λ ∗ +W where

λ ∗ < 1 and λ ∗e−λ ∗ = λe−λ and W = Op(1) i.e. is bounded in probability for
λ = O(1) and O(1) for λ → ∞. In addition, when λ = 1+ ε where ε3n→ ∞

i.e. the case of the emerging giant, [649] shows that w.h.p. the diameter is
logε3n
logλ

+ 2 logε3n
log1/λ ∗ +W where W = Op(1/ε). If λ = 1− ε where ε3n→ ∞ i.e.

the sub-critical case, then Łuczak [543] showed that w.h.p. the diameter is
log(2ε3n)+Op(1)

− logλ
.



8
Extremal Properties

A typical question in extremal combinatorics can be viewed as “how many
edges of the complete graph (or hypergraph) on n vertices can a graph have
without having some property P”. In recent years research has been carried
out where the complete graph is replaced by a random graph.

8.1 Containers

Ramsey theory and the Turán problem constitute two of the most important
areas in extremal graph theory. For a fixed graph H we can ask how large
should n be so that in any r-coloring of the edges of Kn can we be sure of
finding a monochromatic copy of H – a basic question in Ramsey theory. Or
we can ask for the maximum α > 0 such that we take an α proportion of the
edges of Kn without including a copy of H – a basic question related to the
Turán problem. Both of these questions have analogues where we replace Kn

by Gn,p.
There have been recent breakthroughs in transferring extremal results to the

context of random graphs and hypergraphs. Conlon and Gowers [195], Schacht
[674], Balogh, Morris and Samotij [54] and Saxton and Thomason [672] have
proved general theorems enabling such transfers. One of the key ideas being
to bound the number of independent sets in carefully chosen hypergraphs. Our
presentation will use the framework of [672] where it could just as easily have
used [54]. The use of containers is a developing field and seems to have a
growing number of applications.

In this section, we present a special case of Theorem 2.3 of [672] that will
enable us to deal with Ramsey and Turán properties of random graphs. For a
graph H with e(H)≥ 2 we let

m2(H) = max
H ′⊆H,e(H ′)>1

e(H ′)−1
v(H ′)−2

. (8.1)

Next let

π(H) = lim
n→∞

ex(n,H)(n
2

) (8.2)

140
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where as usual, ex(n,H) is the maximum number of edges in an H-free sub-
graph of Kn.

Theorem 8.1 Let H be a graph with e(H) ≥ 2 and let ε be a positive con-
stant. For some constant h = h(H,ε) > 0 and n sufficiently large, there exists
a collection C of graphs on vertex set [n] such that the following holds. The
graphs C are the containers:

(a) For every H-free graph Γ there exists T ⊆ Γ⊆C(T )∈C such that e(T )≤
hn2−1/m2(H).

(b) C contains at most εnv(H) copies of H and e(C)≤ (π(H)+ε)
(n

2

)
for every

C ∈ C .

We prove Theorem 8.1 in Section 8.4. We have extracted just enough from
Saxton and Thomason [672] and [673] to give a complete proof. But first we
give a couple of examples of the use of this theorem

8.2 Ramsey Properties

The investigation of the Ramsey properties of Gn,p was initiated by Łuczak,
Ruciński and Voigt [548]. Later, Rödl and Ruciński [651], [653] proved that
the following holds w.h.p. for some constants 0 < c <C. Here H is some fixed
graph containing at least one cycle. Suppose that the edges of Gn,m are colored
with r colors. If m < cn2−1/m2(H) then w.h.p. there exists an r-coloring without
a mono-chromatic copy of H, while if m > Cn2−1/m2(H) then w.h.p. in every
r-coloring there is a monochromatic copy of H.

We will give a proof of the 1-statement based on Theorem 8.1. We will
closely follow the argument in a recent paper of Nenadov and Steger [604].
The notation G→ (H)e

r means that in every r-coloring of the edges of G there
is a copy of H with all edges the same color. Rödl and Ruciński [653] proved
the following

Theorem 8.2 For any graph H with e(H) ≥ v(H) and r ≥ 2, there exist
c,C > 0 such that

P(Gn,p→ (H)e
r) =

{
o(1) p≤ cn−1/m2(H)

1−o(1) p≥Cn−1/m2(H)

The density p0 = n−1/m2(H) is the threshold for every edge of Gn,p to be
contained in a copy of H. When p ≤ cp0 for small c, the copies of H in Gn,p

will be spread out and the associated 0-statement is not so surprising. We will
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use Theorem 8.1 to prove the 1-statement for p ≥ Cp0. The proof of the 0-
statement follows [604] and is given in Exercises 8.5.1 to 8.5.6.

We begin with a couple of lemmas:

Lemma 8.3 For every graph H and r ≥ 2 there exist constants α > 0 and n0

such that for all n ≥ n0 every r-coloring of the edges of Kn contains at least
αnv(H) copies of H.

Proof From Ramsey’s theorem we know that there exists N = N(H,r) such
that every r-coloring of the edges of KN contains a monochromatic copy of H.
Thus, in any r-coloring of Kn, every N-subset of the vertices of Kn contains
at least one monochromatic copy of H. As every copy of H is contained in at
most

(n−v(H)
N−v(H)

)
N-subsets, the theorem follows with α = 1/Nv(H).

From this we get

Corollary 8.4 For every graph H and every positive integer r there exist
constants n0 and δ ,ε > 0 such that the following is true: If n ≥ n0, then for
any E1,E2, . . . ,Er ⊆ E(Kn) such that for all 1 ≤ i ≤ r the set Ei contains at
most εnv(H) copies of H, we have

|E(Kn)\ (E1∪E2∪·· ·∪Er)| ≥ δn2.

Proof Let α and n0 be as given in Lemma 8.3 for H and r+ 1. Further, let
Er+1 = E(Kn) \ (E1 ∪E2 ∪ ·· · ∪Er), and consider the coloring f : E(Kn)→
[r+1] given by f (e) = mini∈[r+1] {e ∈ Ei}. By Lemma 8.3 there exist at least
αnv(H) monochromatic copies of H under coloring f , and so by our assumption
on the sets Ei,1 ≤ i ≤ r, Er+1 must contain at least αnv(H) copies. As every
edge is contained in at most e(H)nv(H)−2 copies and E1 ∪E2 ∪ ·· ·Er contains
at most rεnv(H) copies of H, the lemma follows with δ = α−rε

e(H) . Here we take
ε ≤ α

2r .

We can now proceed to the proof of the 1-statement of Theorem 8.2. If
Gn,p 6→ (H)e

r then there must exist a coloring f : E(Gn,p)→ [r] such that for
all 1≤ i≤ r the set Ei = f−1(i) does not contain a copy of H. By Theorem 8.1
we have that for every such Ei there exists Ti and a container Ci such that Ti ⊆
Ei ⊆Ci. The crucial observation is that Gn,p completely avoids E0 = E(Kn) \
(C1∪C2∪ ·· ·∪Cr), which by Corollary 8.4 and a choice of ε has size at least
δn2.

Therefore, we can bound P(Gn,p 6→ (H)e
r) by the probability that there exist

T = {T1, . . . ,Tr} and C = {Ci =C(Ti) : i = 1,2, . . . ,r} such that E0 is edge-
disjoint from Gn,p. Thus,

P((Gn,p 6→ (H)e
r)≤ ∑

Ti,1≤i≤r
P(Ti ⊆Gn,p,1≤ i≤ r∧E(Gn,p)∩E0 = /0).
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Note that the two events in the above probability are independent and can thus
be bounded by pa(1− p)b where a = |

⋃
i Ti| and b = δn2. The sum can be

bounded by first deciding on a≤ rhn2−1/m2(H) (h from Theorem 8.1) and then
choosing a edges (

((n
2)
a

)
choices) and then deciding for every edge in which Ti

it appears (ra choices). Thus,

P((Gn,p 6→ (H)e
r)≤ e−δn2 p

rhn2−1/m2(H)

∑
a=0

((n
2

)
a

)
(rp)a

≤ e−δn2 p
rhn2−1/m2(H)

∑
a=0

(
en2rp

2a

)a

.

Recall that p =Cn−1/m2(H). By choosing C sufficiently large with respect to c
we get

rhn2−1/m2(H)

∑
a=0

(
en2rp

2a

)a

≤ n2
(

erC
2rh

)(rh/C)n2 p

≤ eδn2 p/2,

and thus P((Gn,p 6→ (H)e
r) = o(1) as desired. (Recall that (eA/x)x is unimodal

with a maximum at x = A and then that if C is large, rhn2−1/m2(H) ≤ n2rp/2).

8.3 Turán Properties

Early success on the Turán problem for random graphs was achieved by Haxell,
Kohayakawa and Łuczak [399], [400], Kohayakawa, Kreuter and Steger [492],
Kohayakawa, Łuczak and Rödl [493], Gerke, Prömel, Schickinger and Steger
[362], Gerke, Schickinger and Steger [363], Łuczak [544]. It is only recently
that Turán’s theorem in its full generality has been transferred to Gn,p.

From its definition, every H-free graph with n vertices will have
(π(H)+ o(1))

(n
2

)
edges. In this section we prove a corresponding result for

random graphs. Our proof is taken from [672], although Conlon and Gowers
[195] gave a proof for 2-balanced H and Schacht [674] gave a proof for general
H.

Theorem 8.5 Suppose that 0 < γ < 1. Then there exists A > 0 such that if
p≥ An−1/m2(H) and n is sufficiently large then the following event occurs with
probability at least 1− e−γ3(n

2)p/384.

Every H-free subgraph of Gn,p has at most (π(H)+ γ)

(
n
2

)
p edges.
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To prove the theorem, we first prove the following lemma:

Lemma 8.6 Given 0 < η < 1 and h≥ 1, there is a constant ϕ = ϕ(η ,h) such
that the following holds: Let M be a set, |M|= N. Let t ≥ 1, ϕt/N ≤ p≤ 1 and
let ηN/2≤ d ≤ N. Suppose there exists C : 2M → 2M and T ⊆

(M
≤t

)
such that

for each I ∈ I there exists TI ∈ T such that TI ⊆ I and CI = C(TI) ⊆ M,
where |CI | ≤ d. Let X ⊆M be a random subset where each element is chosen
independently with probability p. Then

P(∃I ∈I : |CI ∩X |> (1+η)pd and I ⊆ X)≤ e−η2d p/24. (8.3)

Proof For T ∈T let ET be the event that

T ⊆ X and |C(T )∩X | ≥ (1+η)pd.

The event ET is contained in FT ∩GT where FT is the event that T ⊆ X and
GT is the event that |(C(T ) \ T )∩ X | ≥ (1+ η)d p− |T |. Since FT and GT

are independent, P(ET ) ≤ P(FT )P(GT ). Now |T | ≤ t ≤ N p/ϕ ≤ 2d p/ϕη ≤
ηd p/2 if ϕ is large. So by the Chernoff bound, see Lemma 21.6,

P(GT )≤ P(Bin(d, p)≥ (1+η/2)d p)≤ e−η2d p/12.

Note that P(FT ) = p|T |. Let x = N p/t ≥ ϕ , so that t ≤ N p/x ≤ 2d p/ηx. If ϕ

is large we may assume that p(N− t)> t. So

∑
T
P(FT )≤

t

∑
i=0

(
N
i

)
pi ≤ 2

(
eN p

t

)t

= 2(xe)t ≤ (xe)2d p/ηx ≤ eη2d p/24,

if ϕ , and therefore x, is large. If there exists I ⊆ X , I ∈ I with |C(TI)∩X | ≥
(1+η)d p then the event ET holds. Hence the probability in (8.3) is bounded
by

∑
T
P(FT )P(GT )≤ eη2d p/24e−η2d p/12 = e−η2d p/24.

With this lemma in hand, we can complete the proof of Theorem 8.5.
Let I be the set of H-free graphs on vertex set [n]. We take M =

([n]
2

)
and X = E(Gn,p) and N =

(n
2

)
. For I ∈ I , let TI and h = h(H,ε) be given

by Theorem 8.1. Each H-free graph I ∈ I is contained in CI and so if Gn,p

contains an H-free subgraph with (π(H)+γ)N p edges then there exists I such
that |X ∩CI | ≥ (π(H)+ γ)N p. Our aim is to apply Lemma 8.6 with

η =
γ

2
, d =

(
π(H)+

γ

4

)
N, t = hn2−1/m2(H).

The conditions of Lemma 8.6 then hold after noting that d ≥ ηN/2 and that
p ≥ An−1/m2(H) ≥ ϕt/N if A is large enough. Note also that |CI | ≤ d. Now
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(1 + η)d p ≤ (π(H) + γ)N p, and so the probability in the statement of the
theorem is bounded by

e−η2d p/24 ≤ exp
{
−γ3N p

384

}
completing the proof.

8.4 Containers and the proof of Theorem 8.1

An `-graph or `-uniform hypergraph G = (V,E) has a set of vertices V and a
collection of edges E ⊆

(V
`

)
, the set of `-element subsets of V . The following

theorem generalises Theorem 8.1 to `-graphs.

Theorem 8.7 Let H be an `-graph with e(H) ≥ 2 and let ε > 0. For some
h > 0 and for every N ≥ h, there exists a collection C of `-graphs on vertex
set [N] such that

(a) for every H-free `-graph I on vertex set [N], there exists C ∈ C with I ⊆C,
(b) for every `-graph C ∈ C , the number of copies of H in C is at most εNv(H),

and e(C)≤ (π(H)+ ε)
(N
`

)
,

(c) moreover, for every I in (a), there exists T ⊆ I, e(T )≤ hN`−1/m(H), such that
C =C(T ).

The degree d(σ) of a subset σ , where |σ | ≤ r, is the number of edges of G
that contain σ and d( j)(σ) = max{d(σ ′) : σ ⊆ σ ′ ∈ [n]( j)}. We write d( j)(v)
instead of d( j)({v}).

Definition 8.8 Let G be an r-graph of order n and average degree d. Let
S⊆V (G). The degree measure µ(S) of S is defined by

µ(S) =
1

nd ∑
u∈S

d(u).

Thus µ is a probability measure on V (G). We note the following inequality,
in which G is an r-graph of order n and average degree d:

e(G[S])≤ 1
r ∑

v∈S
d(v) =

µ(S)nd
r

= µ(S)e(G). (8.4)

We now state the main theorem. An independent set of an `-graph is a set I
such that e ∈ E(G) implies e 6⊆ I.
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Theorem 8.9 Let r ∈ N. Let G be an r-graph with average degree d and
vertex set [n]. Suppose that we can choose 0 < c,τ < 1 such that

d(σ)≤ cdτ
|σ |−1 holds for all σ , |σ | ≥ 2. (8.5)

Then there is a function C : P[n]→P[n], such that, for every independent set
I ⊆ [n] there exists T ⊆ I with

(a) I ⊆C(T ),
(b) µ(T )≤ τ ,
(c) |T | ≤ τn, and
(d) µ(C(T ))≤ 1− c.

Corollary 8.10 Let r ∈ N and let ε > 0. Let G be an r-graph of average
degree d on vertex set [n]. Suppose that we can choose 0 < c,τ < 1 such that
(8.5) holds. Then there is a function C : P[n]→P[n], such that, for every
independent set I ⊆ [n] there exists T ⊆ I with

(a) I ⊆C(T ),
(b) |T | ≤ τn, and
(c) e(G[C])≤ εe(G).

The algorithm

We now describe an algorithm which given independent set I, constructs the
quantities in Theorem 8.9 and Corollary 8.10. It runs in two modes, prune
mode, builds T ⊆ I and build mode, which constructs C ⊇ I.

The algorithm builds multigraphs Ps,s ∈ [r] and then we define the degree
of σ in the multigraph Ps to be

ds(σ) = |{e ∈ E(Ps) : σ ⊆ e}| ,

where we are counting edges with multiplicity in the multiset E(Ps). (Naturally
we may write ds(v) instead of ds({v}) if v ∈ [n].)

The algorithm uses a threshold function which makes use of a real number δ .

Definition 8.11 For s = 2, . . . ,r and σ ∈ [n](≤s), the threshold functions θs

are given as follows, where δ is the minimum real number such that d(σ) ≤
δdτ |σ |−1 holds for all σ , |σ | ≥ 2.

θs(σ) = τ
r−sd(v) for σ = {v}, i.e. |σ |= 1

θs(σ) = δdτ
r−s+|σ |−1 for |σ | ≥ 2
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INPUT
an r-graph G on vertex set [n], with average degree d
parameters τ,ζ > 0
in prune mode a subset I ⊆ [n]
in build mode a subset T ⊆ [n]

OUTPUT
in prune mode a subset T ⊆ [n]
in build mode a subset C ⊆ [n]

INITIALISATION
put B = {v ∈ [n] : d(v)< ζ d}
evaluate the thresholds θs(σ), σ ∈ [n](≤s), 1≤ i≤ r

A: put Pr = E(G), Ps = /0, Γs = /0, s = 1,2, . . . ,r−1
in prune mode put T = /0
in build mode put C = [n]

for v = 1,2, . . . ,n do:
for s = 1,2, . . . ,r−1 do:

let Fv,s = { f ∈ [v+1,n](s) : {v}∪ f ∈ Ps+1, and 6 ∃σ ∈ Γs ,σ ⊆ f }
[here Fv,s is a multiset with multiplicities inherited from Ps+1]

if v /∈ B, and |Fv,s| ≥ ζ τr−s−1d(v) for some s
in prune mode if v ∈ I, add v to T
in build mode if v /∈ T , remove v from C
if v ∈ T then for s = 1,2, . . . ,r−1 do:

add Fv,s to Ps
for each σ ∈ [v+1,n](≤s), if ds(σ)≥ θs(σ), add σ to Γs

Table 8.1 The container algorithm

The container algorithm is set out in Table 8.1.
Note that C =C(T ) here, as opposed to C =C(I). Then observe that

Ps consists of sets {u1,u2, . . . ,us} such that there exist

v1,v2, . . . ,vr−s ∈ T where {v1, . . . ,vr−s,u1, . . . ,us} ∈ E(G). (8.6)

This is clearly true for s = r via line A. If we add f = {u1,u2, . . . ,us} ∈ Fv,s to
Ps then we can inductively assert that {v1, . . . ,vr−s−1,v,u1, . . . ,us} ∈ E(G) for
some v1, . . . ,vr−s−1.

Note also that T ∩Γ1 = /0 else (8.6) implies that T and hence I contains an
edge.

We keep the degree in Ps of each set σ close to its target degree θs(σ) and
Γs comprises those σ that have reached their target degree in Ps. After which,
we add no more to ds(u). This keeps Ps small. The multiset Fv,s is the poten-
tial contribution of v to Ps; it is the edges of Ps+1 that contain v (with v then
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removed), but which don’t contain anything from Γs. If Fv,s is large for some s
then v makes a substantial contribution to that Ps, and we place v in T , updating
all Ps and Γs accordingly. Because Ps is small, this tends to keep T small.

Analysis of the algorithm

Proof of Theorem 8.9

Lemma 8.12 For 1≤ s≤ r, we have

ds(u)≤ τ
r−s(d(u)+ rδd) for all u ∈ [n], and

ds(σ)≤ rδdτ
r−s−|σ |−1 for all σ ⊆ [n], 2≤ |σ | ≤ r.

Proof We prove the bounds by induction on r− s; in fact we show ds(σ) ≤
(r−s+1)δdτr−s+|σ |−1 for |σ | ≥ 2. For s = r the bounds hold by the definition
of δ in Definition 8.11. If σ ∈ Γs then σ entered Γs after some vertex v was
inspected and the set Fv,s was added to Ps. Before this addition, ds(σ)< θs(σ)

was true. The increase in ds(σ) resulting from the addition is the number of s-
sets in Fv,s that contain σ . By definition of Fv,s, these come from edges of Ps+1

that contain both v and σ ; the number of these is at most ds+1({v}∪σ). The
value of ds(σ) remains unchanged after the addition, and so at the end we have
ds(σ) ≤ θs(σ)+ds+1({v}∪σ) (for some v depending on σ ). This inequality
trivially holds if σ /∈ Γs, and so it holds for all σ ∈ [n](≤s). So for |σ | ≥ 2 we
have, by applying the induction hypothesis to {v}∪σ ,

ds(σ)≤ δdτ
r−s+|σ |−1 +(r− s)δdτ

r−s−1+|σ | = (r− s+1)δdτ
r−s+|σ |−1

as claimed. For σ = {u} we apply the induction hypothesis to σ = {v,u} to
obtain

ds(u)≤ τ
r−sd(u)+(r− s)δdτ

r−s−1+2−1 ≤ τ
r−s(d(u)+ rδd)

again as claimed. This completes the proof.

Lemma 8.13 Let G be an r-graph on vertex set [n] with average degree d.
Let Pr = E(G) and let Pr−1, . . . ,P1 be the multisets constructed during the al-
gorithm, either in build mode or in prune mode. Then

∑
u∈U

ds(u) ≤ (µ(U)+ rδ )τ
r−s nd

holds for all subsets U ⊆ [n] and for 1≤ s≤ r.

Proof The inequalities

∑
u∈U

ds(u) ≤ ∑
u∈U

τ
r−s(d(u)+ rδd)≤ (µ(U)+ rδ )τ

r−snd
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follow immediately from Lemma 8.12 and the definition of µ .

Lemma 8.14 Let T be produced by the algorithm in prune mode. Then

µ(T )≤ (r−1)(τ/ζ )(1+ rδ ).

Proof For 1 ≤ s ≤ r− 1, let Ts = {v ∈ T : |Fv,s| ≥ ζ τr−s−1d(v)}. From the
operation of the algorithm we see that T ⊆ T1 ∪ ·· · ∪Tr−1 (the sets here need
not be disjoint). For each s, the sets Fv,s for v ∈ Ts are added to Ps and, because
Ps is a multiset, we obtain

ζ τ
r−s−1ndµ(Ts) = ζ τ

r−s−1
∑

v∈Ts

d(v)≤ |Ps|=
1
s ∑

u∈[n]
ds(u)≤

1
s

τ
r−snd(1+ rδ )

by Lemma 8.13 with U = [n]. Thus µ(Ts)≤ (τ/ζ )(1+rδ ), and µ(T )≤ µ(T1)+

· · ·+µ(Tr−1)≤ (r−1)(τ/ζ )(1+ rδ ).

Lemma 8.15 Let C be the set produced by the algorithm in build mode. Let
D = ([n]\C)∪T ∪B. Define es by the equation |Ps|= esτ

r−snd for 1≤ s≤ r.
Then

es+1 ≤ r2ses +µ(D)+ζ +2rδ , for r−1≥ s≥ 1.

Proof The way the algorithm builds C means that T ∪B ⊆ C. Let C′ = C \
(T ∪B), so D = [n] \C′. For v ∈ [n] let fs+1(v) be the number of sets in Ps+1

for which v is the first vertex in the vertex ordering. Then

|Ps+1|= ∑
v∈[n]

fs+1(v) = ∑
v∈C′

fs+1(v)+ ∑
v∈D

fs+1(v) for 1≤ s < r. (8.7)

By definition of |Fv,s|, of the fs+1(v) sets in Ps+1 beginning with v, fs+1(v)−
|Fv,s| of them contain some σ ∈ Γs. If v ∈C′ then v /∈ B and v /∈ T and so, since
v ∈C, we have |Fv,s|< ζ τr−s−1d(v). Therefore, writing PΓ for the multiset of
edges in Ps+1 that contain some σ ∈ Γs, we have

∑
v∈C′

( fs+1(v)−ζ τ
r−s−1d(v))< |PΓ| ≤ ∑

σ∈Γs

ds+1(σ). (8.8)

By definition, if σ ∈ Γs and |σ | ≥ 2, then ds(σ) ≥ θs(σ) = δdτr−s+|σ |−1.
Using Lemma 8.12, we then see that ds+1(σ)≤ rδdτr−s+|σ |−2 ≤ (r/τ)ds(σ).
Similarly, if σ = {u}∈Γs then ds(σ)≥ τr−sd(u) and ds+1(σ)≤ τr−s−1(d(u)+
rδd)≤ (1/τ)ds(σ)+ rδdτr−s−1. Therefore, for s≥ 1, we obtain

∑
σ∈Γs

ds+1(σ)≤ r
τ

∑
σ∈Γs

ds(σ)+ ∑
{u}∈Γs

rδdτ
r−s−1 ≤ r

τ
2s|Ps|+ rδndτ

r−s−1.

(8.9)
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Finally, making use of (8.7) and (8.8) together with Lemma 8.13, we have

es+1τ
r−s−1nd = |Ps+1|= ∑

v∈C′
fs+1(v)+ ∑

v∈D
fs+1(v)

≤ ∑
v∈C′

ζ τ
r−s−1d(v)+ ∑

σ∈Γs

ds+1(σ)+ ∑
v∈D

ds+1(v)

≤ ζ τ
r−s−1nd + ∑

σ∈Γs

ds+1(σ)+ τ
r−s−1nd(µ(D)+ rδ ) ,

The bound (8.9) for ∑σ∈Γs ds+1(σ) now gives the result claimed.

Proof of Theorem 8.9 We begin by choosing the constant c. Let γ = 1
25r2r2r2

and c = γr. Let G be as in the theorem and let τ be chosen so that (8.5) is
satisfied. Let ζ =

√
2rγ . For later use, we note c≤ γ ≤ ζ/2r ≤ 2rζ < 1.

As might be expected, we prove the theorem by using the containers C and
the sets T supplied by the algorithm. However, the input parameters we supply
to the algorithm are not τ and ζ as just defined, but instead τ∗ = γτ and ζ .

We therefore remind the reader that the values of τ and ζ appearing in the
lemmas above are those values input to the algorithm. Hence in the present
case, where we are using inputs τ∗ and ζ , the conclusions of the lemmas hold
with τ∗ in place of τ . Again, as highlighted earlier, the value of δ in the lemmas
is that supplied by Definition 8.11 with τ∗ in place of τ . Explicitly, δ is (by
definition) minimal such that d(σ)≤ δdτ∗(|σ |−1) for all σ . Now τ was chosen
to satisfy (8.5), so we know that d(σ) ≤ cdτ(|σ |−1). Since h = γr this implies
we know, for all σ , that d(σ) ≤ γrdτ(|σ |−1) ≤ γdτ∗(|σ |−1), because γ ≤ 1 and
|σ | ≤ r. Consequently, by the minimality of δ , we have δ ≤ γ .

What remains is to verify the claims of the theorem. Condition (a) follows
from the general properties of the algorithm.

Now cτr−1 = γτr−1
∗ ≤ (ζ/r)τr−1

∗ , and cτr = τr
∗ ≤ (r/ζ )τr

∗. So, by Lemma 8.14,
µ(T )≤ (rτ∗/ζ )(1+ rδ )≤ 2rτ∗/ζ = 2rγτ/ζ = ζ τ , easily establishing condi-
tion (b). Moreover T ∩B = /0, so |T |ζ d ≤ ∑v∈T d(v) = ndµ(T ) ≤ ndζ τ , giv-
ing condition (c). To show that condition (d) holds, note that 2rδ ≤ 2rγ ≤ ζ ,
and so by Lemma 8.15 we comfortably have es+1 ≤ r2ses + µ(D) + 2ζ for
r− 1 ≥ s ≥ 1. Dividing the bound for es+1 by rs+12(

s+1
2 ) and adding over

s = 1, . . . ,r−1, we obtain

er

rr2(
r
2)
≤ (µ(D)+2ζ )

{
1
r2 +

1
r3

1
23 +

1
r4

1
26 + · · ·

}
≤ (µ(D)+2ζ )

2
r2 .

Recall that ernd = |Pr|= e(G)= nd/r so er = 1/r. Hence µ(D)+2ζ ≥ r−r2−(
r
2) =

5γ1/22r/2 ≥ 5ζ . So µ(D) ≥ 3ζ . By definition, D = [n]− (C− (T ∪B)). Thus
µ(C)≤ 1−µ(D)+µ(T )+µ(B). We showed previously that µ(T )≤ ζ τ ≤ ζ .
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Moreover µ(B) ≤ ζ by definition of B. Therefore µ(C) ≤ 1− 3ζ + ζ + ζ =

1−ζ ≤ 1− c, completing the proof.

We finish with a proof of Corollary 8.10.

Proof of Corollary 8.10 Write c∗ for the constant c from Theorem 8.9. We
prove the corollary with c = ε`−rc∗, where `= d(logε)/ log(1−c∗)e. Let G, I
and τ be as stated in the corollary. We shall apply Theorem 8.9 several times.
Each time we apply the theorem, we do so with with τ∗ = τ/` in place of τ ,
with the same I, but with different graphs G, as follows (we leave it till later
to check that the necessary conditions always hold). Given I, apply the theo-
rem to find T1 ⊆ I and I ⊆C1 =C(T1), where |T1| ≤ τ∗n and µ(C1) ≤ 1− c∗.
It is easily shown that e(G[C1]) ≤ µ(C1)e(G) ≤ (1− c∗)e(G) see (8.4). Now
I is independent in the graph G[C1] so apply the theorem again, to the r-
graph G[C1], to find T2 ⊆ I and a container I ⊆ C2. We have |T2| ≤ τ∗|C1|,
and e(G[C2]) ≤ (1− c∗)e(G[C1]) ≤ (1− c∗)2e(G). We note that, in the first
application, the algorithm in build mode would have constructed C1 from in-
put T1 ∪T2, and would likewise have constructed C2 from input T1 ∪T2 in the
second application. Thus C2 is a function of T1 ∪ T2. We repeat this process
k times until we obtain the desired container C = Ck with e(G[C]) ≤ εe(G).
Since e(G[C]) ≤ (1− c∗)ke(G) this occurs with k ≤ `. Put T = T1 ∪ ·· · ∪Tk.
Then C is a function of T ⊆ I.

We must check that the requirements of Theorem 8.9 are fulfilled at each
application. Observe that, if d j is the average degree of G[C j] for j < k, then
|C j|d j = re(G[C j])> rεe(G) = εnd, and since |C j| ≤ n we have d j ≥ εd. The
conditions of Corollary 8.10 mean that d(σ) ≤ cdτ |σ |−1 = ε`−rc∗dτ |σ |−1 <

c∗d jτ
|σ |−1
∗ ; since the degree of σ in G[C j] is at most d(σ), this means that

(8.5) is satisfied every time Theorem 8.9 is applied.
Finally condition (c) of the theorem implies |Tj| ≤ τ∗|C j| ≤ τ∗n = τn/`, and

so |T | ≤ kτn/`≤ τn, giving condition (b) of the corollary and completing the
proof.

H-free graphs

In this section we prove Theorem 8.7. We will apply the container theorem
given by Corollary 8.10 to the following hypergraph, whose independent sets
correspond to H-free `-graphs on vertex set [N].

Definition 8.16 Let H be an `-graph. Let r = e(H). The r-graph GH has
vertex set V (GH)=

([N]
`

)
, where B= {v1, ...,vr}∈

(V (GH )
r

)
is an edge whenever



152 Extremal Properties

B, considered as an `-graph with vertices in [N] and with r edges, is isomorphic
to H. So B ∈

(M
r

)
where M =

([N]
`

)
.

All that remains before applying the container theorem to GH is to verify
(8.5).

Lemma 8.17 Let H be an `-graph with r = e(H)≥ 2 and let τ = 2`!v(H)!N−1/m(H).
Let N be sufficiently large. Suppose that e(GH) = αH

( N
v(H)

)
where αH ≥ 1 de-

pends only on H. The average degree d in GH satisfies d = re(GH )
v(GH ) = rαH Nv(H)

(N
`)

.

Then,

d(σ)≤ 1
αr

dτ
|σ |−1, holds for all σ , |σ | ≥ 2.

Proof Consider σ ⊆ [N](`) (so σ is both a set of vertices of GH and an `-
graph on vertex set [N]). The degree of σ in GH is at most the number of
ways of extending σ to an `-graph isomorphic to H. If σ as an `-graph is
not isomorphic to any subgraph of H, then clearly d(σ) = 0. Otherwise, let
v(σ) be the number of vertices in σ considered as an `-graph, so there exists
V ⊆ [N], |V | = v(σ) with σ ⊆ V (`). Edges of GH containing σ correspond
to copies of H in [N](`) containing σ , each such copy given by a choice of
v(H)− v(σ) vertices in [N]−V and a permutation of the vertices of H. Hence
for N sufficiently large,

d(σ)≤ v(H)!
(

N− v(σ)

v(H)− v(σ)

)
≤ v(H)!Nv(H)−v(σ)

Now for σ ≥ 2 we have

d(σ)

dτ |σ |−1 ≤
Nv(H)−v(σ)

αHrNv(H)−`−(|σ |−1)/m(H)
=

1
αHr

N−v(σ)+`+
|σ |−1
m(H) ≤ 1

αHr
.

A well-known supersaturation theorem bounds the number of edges in con-
tainers.

Proposition 8.18 (Erdős and Simonovits [281]) Let H be an `-graph and
let ε > 0. There exists N0 and η > 0 such that if C is an `-graph on N ≥ N0

vertices containing at most ηNv(H) copies of H then e(C)≤ (π(H)+ ε)
(N
`

)
.

Proof of Theorem 8.7 Let η = η(ε,H) be given by Proposition 8.18, and let
β =min{ε,η}. Recall that r = e(H). Apply Corollary 8.10 to GH with c= 1

αH r

and τ = 2`!v(H)!N−1/m(H) and with β playing the role of ε in the corollary.
The conditions of Corollary 8.10 are satisfied; denote by c̃ the constant c ap-
pearing in the corollary. The collection of containers C satisfies the following.
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• For every independent set I there exists some C ∈C with I⊆C. This implies
condition (a) of the theorem,

• For each C ∈ C , we have e(GH [C]) ≤ βNv(H). Proposition 8.18 implies
e(C)≤ (π(H)+ ε)

(N
`

)
, because we chose β ≤ η . This gives condition (b).

• Finally, for every set I as above, there exists T ⊆ I such that C = C(T ),
|T | ≤ c̃τ

(N
`

)
. This implies condition (c).

8.5 Exercises

8.5.1 An edge e of G is H-open if it is contained in at most one copy of H
and H-closed otherwise. The H-core ĜH of G is obtained by repeatedly
deleting H-open edges. Show that G→ (H)e

2 implies that ĜH ′ → (H ′)e
2

for every H ′ ⊆ H. (Thus one only needs to prove the 0-statement of
Theorem 8.2 for strictly 2-balanced H. A graph H is strictly 2-balanced
if H ′ = H is the unique maximiser in (8.1)).

8.5.2 A subgraph G′ of the H-core is H-closed if it contains at least one copy
of H and every copy of H in ĜH is contained in G′ or is edge disjoint
from G′. Show that the edges of ĜH can be partitioned into inclusion
minimal H-closed subgraphs.

8.5.3 Show that there exists a sufficiently small c > 0 and a constant L =

L(H,c) such that if H is 2-balanced and p≤ cn−1/m2(H) then w.h.p. every
inclusion minimal H-closed subgraph of Gn,p has size at most L. (Try
c = o(1) first here).

8.5.4 Show that if e(G)/v(G)≤ m2(H) and m2(H)> 1 then G 6→ (H)e
2.

8.5.5 Show that if H is 2-balanced and p = cn−1/m2(H) then w.h.p. every sub-
graph G of Gn,p with v(G)≤ L = O(1) satisfies e(G)/v(G)≤ m2(H).

8.5.6 Prove the 0-statement of Theorem 8.2 for m2(H)> 1.

8.6 Notes

The largest triangle-free subgraph of a random graph

Babai, Simonovits and Spencer [43] proved that if p ≥ 1/2 then w.h.p. the
largest triangle-free subgraph of Gn,p is bipartite. They used Szemerédi’s reg-
ularity lemma in the proof. Using the sparse version of this lemma, Brightwell,
Panagiotou and Steger [158] improved the lower bound on p to n−c for some
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(unspecified) positive constant c. DeMarco and Kahn [233] improved the lower
bound to p ≥ Cn−1/2(logn)1/2, which is best possible up to the value of the
constant C. And in [234] they extended their result to Kr-free graphs.

Anti-Ramsey Property

Let H be a fixed graph. A copy of H in an edge colored graph G is said to
be rainbow colored if all of its edges have a different color. The study of rain-
bow copies of H was initiated by Erdős, Simonovits and Sós [280]. An edge-
coloring of a graph G is said to be b-bounded if no color is used more than b
times. A graph is G said to have property A (b,H) if there is a rainbow copy
of H in every b-bounded coloring. Bohman, Frieze, Pikhurko and Smyth [117]
studied the threshold for Gn,p to have property A (b,H). For graphs H con-
taining at least one cycle they prove that there exists b0 such that if b≥ b0 then
there exist c1,c2 > 0 such that

lim
n→∞

P(Gn,p ∈A (b,H)) =

{
0 p≤ c1n−1/m2(H)

1 p≥ c2n−1/m2(H)
. (8.10)

A reviewer of this paper pointed out a simple proof of the 1-statement. Given
a b-bounded coloring of G, let the edges colored i be denoted ei,1,ei,2, . . . ,ei,bi

where bi ≤ b for all i. Now consider the auxiliary coloring in which edge ei, j

is colored with j. At most b colors are used and so in the auxiliary coloring
there will be a monochromatic copy of H. The definition of the auxiliary col-
oring implies that this copy of H is rainbow in the original coloring. So the
1-statement follows directly from the results of Rödl and Ruciński [653], i.e.
Theorem 8.2.

Nenadov, Person, Škorić and Steger [603] gave further threshold results on
both Ramsey and Anti-Ramsey theory of random graphs. In particular they
proved that in many cases b0 = 2 in (8.10).
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9
Inhomogeneous Graphs

Thus far we have concentrated on the properties of the random graphs Gn,m

and Gn,p. We first consider a generalisation of Gn,p where the probability of
edge (i, j) is pi j is not the same for all pairs i, j. We call this the generalized
binomial graph . Our main result on this model concerns the probability that
it is connected. For this model we concentrate on its degree sequence and the
existence of a giant component. After this we move onto a special case of this
model, viz. the expected degree model. Here pi j is proportional to wiw j for
weights wi. In this model, we prove results about the size of the largest com-
ponents. We finally consider another special case of the generalized binomial
graph, viz. the Kronecker random graph.

9.1 Generalized Binomial Graph

Consider the following natural generalisation of the binomial random graph
Gn,p, first considered by Kovalenko [501].
Let V = {1,2, . . . ,n} be the vertex set. The random graph Gn,P has vertex set
V and two vertices i and j from V , i 6= j, are joined by an edge with probability
pi j = pi j(n), independently of all other edges. Denote by

P = [pi j]

the symmetric n× n matrix of edge probabilities, where pii = 0. Put qi j =

1− pi j and for i,k ∈ {1,2, . . . ,n} define

Qi =
n

∏
j=1

qi j, λn =
n

∑
i=1

Qi.

Note that Qi is the probability that vertex i is isolated and λn is the expected
number of isolated vertices. Next let

Rik = min
1≤ j1< j2<···< jk≤n

qi j1 · · ·qi jk .

Suppose that the edge probabilities pi j are chosen in such a way that the fol-
lowing conditions are simultaneously satisfied as n→ ∞:

max
1≤i≤n

Qi→ 0, (9.1)

157



158 Inhomogeneous Graphs

lim
n→∞

λn = λ = constant, (9.2)

and

lim
n→∞

n/2

∑
k=1

1
k!

(
n

∑
i=1

Qi

Rik

)k

= eλ −1. (9.3)

The next two theorems are due to Kovalenko [501].
We will first give the asymptotic distribution of the number of isolated vertices
in Gn,P, assuming that the above three conditions are satisfied. The next theo-
rem is a generalisation of the corresponding result for the classical model Gn,p

(see Theorem 3.1(ii)).

Theorem 9.1 Let X0 denote the number of isolated vertices in the random
graph Gn,P. If conditions (9.1) (9.2) and (9.3) hold, then

lim
n→∞

P(X0 = k) =
λ k

k!
e−λ

for k = 0,1, . . ., i.e., the number of isolated vertices is asymptotically Poisson
distributed with mean λ .

Proof Let

Xi j =

{
1 with prob. pi j

0 with prob. qi j = 1− pi j.

Denote by Xi, for i= 1,2, . . .n, the indicator of the event that vertex i is isolated
in Gn,P. To show that X0 converges in distribution to the Poisson random vari-
able with mean λ one has to show (see Corollary 20.11) that for any natural
number k

E

(
∑

1≤i1<i2<...<ik≤n
Xi1Xi2 · · ·Xik

)
→ λ k

k!
(9.4)

as n→ ∞. But

E
(
Xi1Xi2 · · ·Xik

)
=

k

∏
r=1

P
(
Xir = 1|Xi1 = . . .= Xir−1 = 1

)
, (9.5)

where in the case of r = 1 we condition on the sure event.
Since the LHS of (9.4) is the sum of E

(
Xi1Xi2 · · ·Xik

)
over all i1 < · · · < ik,

we need to find matching upper and lower bounds for this expectation. Now
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P
(
Xir = 1|Xi1 = . . .= Xir−1 = 1

)
is the unconditional probability that ir is not

adjacent to any vertex j 6= i1, . . . , ir−1 and so

P
(
Xir = 1|Xi1 = . . .= Xir−1 = 1

)
=

∏
n
j=1 qir j

∏
r−1
s=1 qir is

.

Hence

Qir ≤ P
(
Xir = 1|Xi1 = . . .= Xir−1 = 1

)
≤ Qir

Rir ,r−1
≤ Qir

Rirk
.

It follows from (9.5) that

Qi1 · · ·Qik ≤ E
(
Xi1 · · ·Xik

)
≤

Qi1
Ri1k
· · ·

Qik
Rikk

. (9.6)

Applying conditions (9.1) and (9.2) we get that

∑
1≤i1<···<ik≤n

Qi1 · · ·Qik =
1
k! ∑

1≤i1 6=···6=ir≤n
Qi1 · · ·Qik ≥

1
k! ∑

1≤i1,...,ik≤n
Qi1 · · ·Qik −

k
k!

n

∑
i=1

Q2
i

(
∑

1≤i1,...,ik−2≤n
Qi1 · · ·Qik−2

)

≥ λ k
n

k!
− (max

i
Qi)λ

k−1
n =

λ k
n

k!
− (max

i
Qi)λ

k−1
n → λ k

k!
, (9.7)

as n→ ∞.
Now,

n

∑
i=1

Qi

Rik
≥ λn =

n

∑
i=1

Qi,

and if limsup
n→∞

∑
n
i=1

Qi
Rik

> λ then limsup
n→∞

∑
n/2
k=1

1
k!

(
∑

n
i=1

Qi
Rik

)k
> eλ − 1, which

contradicts (9.3). It follows that

lim
n→∞

n

∑
i=1

Qi

Rik
= λ .

Therefore

∑
1≤i1<...<ik≤n

Qi1 · · ·Qik ≤
1
k!

(
n

∑
i=1

Qi

Rik

)k

→ λ k

k!
.

as n→ ∞.
Combining this with (9.7) gives us (9.4) and completes the proof of Theorem
9.1.
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One can check that the conditions of the theorem are satisfied when

pi j =
logn+ xi j

n
,

where xi j’s are uniformly bounded by a constant.

The next theorem shows that under certain circumstances, the random graph
Gn,P behaves in a similar way to Gn,p at the connectivity threshold.

Theorem 9.2 If the conditions (9.1), (9.2) and (9.3) hold, then

lim
n→∞

P(Gn,P is connected) = e−λ .

Proof To prove the this we will show that if (9.1), (9.2) and (9.3) are satisfied
then w.h.p. Gn,P consists of X0 + 1 connected components, i.e., Gn,P consists
of a single giant component plus components that are isolated vertices only.
This, together with Theorem 9.1, implies the conclusion of Theorem 9.2.
Let U ⊆ V be a subset of the vertex set V . We say that U is closed if Xi j = 0
for every i and j, where i ∈U and j ∈ V \U . Furthermore, a closed set U is
called simple if either U or V \U consists of isolated vertices only. Denote the
number of non-empty closed sets in Gn,P by Y1 and the number of non-empty
simple sets by Y . Clearly Y1 ≥ Y .
We will prove first that

liminf
n→∞

EY ≥ 2eλ −1. (9.8)

Denote the set of isolated vertices in Gn,P by J. If V \ J is not empty then
Y = 2X0+1−1 (the number of non-empty subsets of J plus the number of their
complements, plus V itself). If V \ J = /0 then Y = 2n− 1. Now, by Theorem
9.1, for every fixed k = 0,1, . . . ,

lim
n→∞

P(Y = 2k+1−1) = e−λ λ k

k!
.

Observe that for any `≥ 0,

EY ≥
`

∑
k=0

(2k+1−1)P(Y = 2k+1−1)

and hence

liminf
n→∞

EY ≥
`

∑
k=0

(2k+1−1)
λ ke−λ

k!
.
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So,

liminf
n→∞

EY ≥ lim
`→∞

`

∑
k=0

(2k+1−1)
λ ke−λ

k!
= 2eλ −1

which completes the proof of (9.8).
We will show next that

limsup
n→∞

EY1 ≤ 2eλ −1. (9.9)

To prove (9.9) denote by Zk the number of closed sets of order k in Gn,P so that
Y1 = ∑

n
k=1 Zk. Note that

Zk = ∑
i1<...<ik

Zi1...ik ,

where Zi1,...ik indicates whether set Ik = {i1 . . . ik} is closed. Then

EZi1,...ik = P(Xi j = 0, i ∈ Ik, j 6∈ Ik) = ∏
i∈Ik, j 6∈Ik

qi j.

Consider first the case when k ≤ n/2. Then

∏
i∈Ik, j 6∈Ik

qi j =
∏i∈Ik,1≤ j≤n qi j

∏i∈Ik, j∈Ik qi j
= ∏

i∈Ik

Qi

∏ j∈Ik qi j
≤∏

i∈Ik

Qi

Rik
.

Hence

EZk ≤ ∑
i1<...<ik

∏
i∈Ik

Qi

Rik
≤ 1

k!

(
n

∑
i=1

Qi

Rik

)k

.

Now, (9.3) implies that

limsup
n→∞

n/2

∑
k=1

EZk ≤ eλ −1.

To complete the estimation of EZk (and thus for EY1) consider the case when
k > n/2. For convenience let us switch k with n−k, i.e, consider EZn−k, when
0≤ k < n/2. Notice that EZn = 1 since V is closed. So for 1≤ k < n/2

EZn−k = ∑
i1<...<ik

∏
i∈Ik, j 6∈Ik

qi j.

But qi j = q ji so, for such k, EZn−k = EZk. This gives

limsup
n→∞

EY1 ≤ 2(eλ −1)+1,

where the +1 comes from Zn = 1 This completes the proof of (9.9).
Now,

P(Y1 > Y ) = P(Y1−Y ≥ 1)≤ E(Y1−Y ).
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Estimates (9.8) and (9.9) imply that

limsup
n→∞

E(Y1−Y )≤ 0,

which in turn leads to the conclusion that

lim
n→∞

P(Y1 > Y ) = 0.

i.e., asymptotically, the probability that there is a closed set that is not simple,
tends to zero as n→ ∞. It is easy to check that X0 < n w.h.p. and therefore
Y = 2X0+1−1 w.h.p. and so w.h.p. Y1 = 2X0+1−1. If Gn,P has more than X0+1
connected components then the graph after removal of all isolated vertices
would contain at least one closed set, i.e., the number of closed sets would
be at least 2X0+1. But the probability of such an event tends to zero and the
theorem follows.

We finish this section by presenting a sufficient condition for Gn,P to be
connected w.h.p. as proven by Alon [22].

Theorem 9.3 For every positive constant b there exists a constant
c = c(b)> 0 so that if, for every non-trivial S⊂V ,

∑
i∈S, j∈V\S

pi j ≥ c logn,

then probability that Gn,P is connected is at least 1−n−b.

Proof In fact Alon’s result is much stronger. He considers a random subgraph
Gpe of a multi-graph G on n vertices, obtained by deleting each edge e inde-
pendently with probability 1− pe. The random graph Gn,P is a special case of
Gpe when G is the complete graph Kn. Therefore, following in his footsteps,
we will prove that Theorem 9.3 holds for Gpe and thus for Gn,P.

So, let G = (V,E) be a loopless undirected multigraph on n vertices, with
probability pe, 0 ≤ pe ≤ 1 assigned to every edge e ∈ E and suppose that
for any non-trivial S ⊂ V the expectation of the number ES of edges in a cut
(S,V \S) of Gpe satisfies

EES = ∑
e∈(S,V\S)

pe ≥ c logn. (9.10)

Create a new graph G′ = (V,E ′) from G by replacing each edge e by k =

c logn parallel copies with the same endpoints and giving each copy e′ of e a
probability p′e′ = pe/k.



9.1 Generalized Binomial Graph 163

Observe that for S⊂V

EE ′S = ∑
e′∈(S,V\S)

p′e′ = EES.

Moreover, for every edge e of G, the probability that no copy e′ of e survives
in a random subgraph G′p′ is (1− pe/k)k ≥ 1− pe and hence the probability
that Gpe is connected exceeds the probability of G′p′e being connected, and so
in order to prove the theorem it suffice to prove that

P(G′p′e is connected)≥ 1−n−b. (9.11)

To prove this, let E ′1∪E ′2∪ . . .∪E ′k be a partition of the set E ′ of the edges of G′,
such that each E ′i consists of a single copy of each edge of G. For i = 0,1, . . . ,k
define G′i as follows. G′0 is the subgraph of G′ that has no edges, and for all
i ≥ 1, G′i is the random subgraph of G′ obtained from G′i−1 by adding to it
each edge e′ ∈ E ′i independently, with probability p′e′ .

Let Ci be the number of connected components of G′i. Then we have C0 = n
and we have G′k ≡ G′p′e . Let us call the stage i, 1 ≤ i ≤ k, successful if either
Ci−1 = 1 (i.e., G′i−1 is connected) or if Ci < 0.9Ci−1. We will prove that

P(Ci−1 = 1 or Ci < 0.9Ci−1|G′i−1)≥
1
2
. (9.12)

To see that (9.12) holds, note first that if G′i−1 is connected then there is
nothing to prove. Otherwise let Hi = (U,F) be the graph obtained from G′i−1
by (i) contracting every connected component of G′i−1 to a single vertex and (ii)
adding to it each edge e′ ∈ E ′i independently, with probability p′e′ and throwing
away loops. Note that since for every nontrivial S, EE ′S ≥ k, we have that for
every vertex u ∈U (connected component of G′i−1),

∑
u∈e′∈F

p′e′ = ∑
e∈U :Uc

pe

k
≥ 1.

Moreover, the probability that a fixed vertex u ∈U is isolated in Hi is

∏
u∈e′∈F

(1− p′e′)≤ exp

{
− ∑

u∈e′∈F
p′e′

}
≤ e−1.

Hence the expected number of isolated vertices of Hi does not exceed |U |e−1.
Therefore, by the Markov inequality, it is at most 2|U |e−1 with probability at
least 1/2. But in this case the number of connected components of Hi is at most

2|U |e−1 +
1
2
(|U |−2|U |e−1) =

(
1
2
+ e−1

)
|U |< 0.9|U |,
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and so (9.12) follows. Observe that if Ck > 1 then the total number of success-
ful stages is strictly less than logn/ log0.9 < 10logn. However, by (9.12), the
probability of this event is at most the probability that a Binomial random vari-
able with parameters k and 1/2 will attain a value at most 10logn. It follows
from (21.22) that if k = c logn = (20+ t) logn then the probability that Ck > 1
(i.e., that G′p′e is disconnected) is at most n−t2/4c. This completes the proof of
(9.11) and the theorem follows.

9.2 Expected Degree Model

In this section we will consider a special case of Kovalenko’s generalized bi-
nomial model, introduced by Chung and Lu in [181], where edge probabilities
pi j depend on weights assigned to vertices. This was also meant as a model for
“Real World networks”, see Chapter 17.

Let V = {1,2, . . . ,n} and let wi be the weight of vertex i. Now insert edges
between vertices i, j ∈V independently with probability pi j defined as

pi j =
wiw j

W
where W =

n

∑
k=1

wk.

We assume that maxi w2
i < W so that pi j ≤ 1. The resulting graph is denoted

as Gn,Pw . Note that putting wi = np for i ∈ [n] yields the random graph Gn,p.
Notice that loops are allowed here but we will ignore them in what follows.

Moreover, for vertex i ∈V its expected degree is

∑
j

wiw j

W
= wi.

Denote the average vertex weight by w (average expected vertex degree) i.e.,

w =
W
n
,

while, for any subset U of a vertex set V define the volume of U as

w(U) = ∑
k∈U

wk.

Chung and Lu in [181] and [183] proved the following results summarized
in the next theorem.

Theorem 9.4 The random graph Gn,Pw with a given expected degree se-
quence has a unique giant component w.h.p. if the average expected degree is
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strictly greater than one (i.e., w > 1). Moreover, if w > 1 then w.h.p. the giant
component has volume

λ0W +O
(√

n(logn)3.5
)
,

where λ0 is the unique nonzero root of the following equation
n

∑
i=1

wie−wiλ = (1−λ )
n

∑
i=1

wi,

Furthermore w.h.p., the second-largest component has size at most

(1+o(1)µ(w) logn,

where

µ(w) =

{
1/(w−1− logw) if 1 < w < 2,

1/(1+ logw− log4) if w > 4/e.

Here we will prove a weaker and restricted version of the above theorem. In
the current context, a giant component is one with volume Ω(W ).

Theorem 9.5 If the average expected degree w > 4, then a random graph
Gn,Pw w.h.p. has a unique giant component and its volume is at least(

1− 2√
ew

)
W

while the second-largest component w.h.p. has the size at most

(1+o(1))
logn

1+ logw− log4
.

The proof is based on a key lemma given below, proved under stronger con-
ditions on w than in fact Theorem 9.5 requires.

Lemma 9.6 For any positive ε < 1 and w > 4
e(1−ε)2 w.h.p. every connected

component in the random graph Gn,Pw either has volume at least εW or has at
most logn

1+logw−log4+2log(1−ε) vertices.

Proof We first estimate the probability of the existence of a connected com-
ponent with k vertices (component of size k) in the random graph Gn,Pw . Let
S ⊆ V and suppose that vertices from S = {vi1 ,vi2 , . . . ,vik} have respective
weights wi1 ,wi2 , . . . ,wik . If the set S induces a connected subgraph of Gn,Pw
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than it contains at least one spanning tree T . The probability of such event
equals

P(T ) = ∏
{vi j ,vil }∈E(T )

wi j wil ρ,

where

ρ :=
1

W
=

1
nw

.

So, the probability that S induces a connected subgraph of our random graph
can be bounded from above by

∑
T
P(T ) = ∑

T
∏

{vi j ,vil }∈E(T )
wi j wil ρ,

where T ranges over all spanning trees on S.
By the matrix-tree theorem (see West [723]) the above sum equals the determi-
nant of any k−1 by k−1 principal sub-matrix of (D−A)ρ , where A is defined
as

A =


0 wi1wi2 · · · wi1wik

wi2wi1 0 · · · wi2wik
...

...
. . .

...
wik wi1 wik wi2 · · · 0

 ,

while D is the diagonal matrix

D = diag
(
wi1(W −wi1), . . . ,wik(W −wik)

)
.

(To evaluate the determinant of the first principal co-factor of D−A, delete
row and column k of D−A; Take out a factor wi1wi2 · · ·wik−1 ; Add the last k−2
rows to row 1; Row 1 is now (wik ,wik , . . . ,wik), so we can take out a factor wik ;
Now subtract column 1 from the remaining columns to get a (k−1)× (k−1)
upper triangular matrix with diagonal equal to diag(1,w(S),w(S), . . . ,w(S))).

It follows that

∑
T
P(T ) = wi1wi2 · · ·wik w(S)k−2

ρ
k−1. (9.13)

To show that this subgraph is in fact a component one has to multiply by the
probability that there is no edge leaving S in Gn,Pw . Obviously, this probability
equals ∏vi∈S,v j 6∈S(1−wiw jρ) and can be bounded from above

∏
vi∈S,v j∈V\S

(1−wiw jρ)≤ e−ρw(S)(W−w(S)). (9.14)
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Let Xk be the number of components of size k in Gn,Pw . Then, using bounds
from (9.13) and (9.14) we get

EXk ≤∑
S

w(S)k−2
ρ

k−1e−ρw(S)(W−w(S))
∏
i∈S

wi,

where the sum ranges over all S ⊆V, |S|= k. Now, we focus our attention on
k-vertex components whose volume is at most εW . We call such components
small or ε-small. So, if Yk is the number of small components of size k in Gn,Pw

then

EYk ≤ ∑
small S

w(S)k−2
ρ

k−1e−w(S)(1−ε)
∏
i∈S

wi = f (k). (9.15)

Now, using the arithmetic-geometric mean inequality, we have

f (k)≤ ∑
small S

(
w(S)

k

)k

w(S)k−2
ρ

k−1e−w(S)(1−ε).

The function x2k−2e−x(1−ε) achieves its maximum at x = (2k− 2)/(1− ε).
Therefore

f (k)≤
(

n
k

)
ρk−1

kk

(
2k−2
1− ε

)2k−2

e−(2k−2)

≤
(ne

k

)k ρk−1

kk

(
2k−2
1− ε

)2k−2

e−(2k−2)

≤ (nρ)k

4ρ(k−1)2

(
2

1− ε

)2k

e−k

=
1

4ρ(k−1)2

(
4

ew(1− ε)2

)k

=
e−ak

4ρ(k−1)2 ,

where

a = 1+ logw− log4+2log(1− ε)> 0

under the assumption of Lemma 9.6.
Let k0 =

logn
a . When k satisfies k0 < k < 2k0 we have

f (k)≤ 1
4nρ(k−1)2 = o

(
1

logn

)
,
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while, when 2logn
a ≤ k ≤ n, we have

f (k)≤ 1
4n2ρ(k−1)2 = o

(
1

n logn

)
.

So, the probability that there exists an ε-small component of size exceeding k0

is at most

∑
k>k0

f (k)≤ logn
a
×o
(

1
logn

)
+n×o

(
1

n logn

)
= o(1).

This completes the proof of Lemma 9.6.

To prove Theorem 9.5 assume that for some fixed δ > 0 we have

w = 4+δ =
4

e(1− ε)2 where ε = 1− 2
(ew)1/2 (9.16)

and suppose that w1 ≥ w2 ≥ ·· · ≥ wn. We show next that there exists i0 ≥ n1/3

such that

wi0 ≥

√√√√(1+ δ

8

)
W

i0
. (9.17)

Suppose the contrary, i.e., for all i≥ n1/3,

wi <

√√√√(1+ δ

8

)
W

i
.

Then

W ≤ n1/3W 1/2 +
n

∑
i=n1/3

√√√√(1+ δ

8

)
W

i

≤ n1/3W 1/2 +2

√(
1+

δ

8

)
Wn.

Hence

W 1/2 ≤ n1/3 +2
(

1+
δ

8

)
n1/2.

This is a contradiction since for our choice of w

W = nw≥ 4(1+δ )n.

We have therefore verified the existence of i0 satisfying (9.17).
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Now consider the subgraph G of Gn,Pw on the first i0 vertices. The proba-
bility that there is an edge between vertices vi and v j, for any i, j ≤ i0, is at
least

wiw jρ ≥ w2
i0ρ ≥

1+ δ

8
i0

.

So the asymptotic behavior of G can be approximated by a random graph
Gn,p with n = i0 and p > 1/i0. So, w.h.p. G has a component of size Θ(i0) =
Ω(n1/3). Applying Lemma 9.6 with ε as in (9.16) we see that any component
with size� logn has volume at least εW .

Finally, consider the volume of a giant component. Suppose first that there
exists a giant component of volume cW which is ε-small i.e. c≤ ε . By Lemma
9.6, the size of the giant component is then at most logn

2log2 . Hence, there must
be at least one vertex with weight w greater than or equal to the average

w≥ 2cW log2
logn

.

But it implies that w2�W , which contradicts the general assumption that all
pi j < 1.

We now prove uniqueness in the same way that we proved the uniqueness
of the giant component in Gn,p. Choose η > 0 such that w(1−η) > 4. Then
define w′i = (1−η)wi and decompose

Gn,Pw = G1∪G2

where the edge probability in G1 is p′i j =
w′iw

′
j

(1−η)W and the edge probability in G2

is p′′i j where 1− wiw j
W = (1− p′i, j)(1− p′′i j). Simple algebra gives p′′i j ≥

ηwiw j
W . It

follows from the previous analysis that G1 contains between one and 1/ε giant
components. Let C1,C2 be two such components. The probability that there is
no G2 edge between them is at most

∏
i∈C1
j∈C2

(
1−

ηwiw j

W

)
≤ exp

{
−ηw(C1)w(C2)

W

}
≤ e−ηW = o(1).

As 1/ε < 4, this completes the proof of Theorem 9.5.

To add to the picture of the asymptotic behavior of the random graph Gn,Pw

we will present one more result from [181]. Denote by w2 the expected second-
order average degree, i.e.,

w2 = ∑
j

w2
j

W
.
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Notice that

w2 =
∑ j w2

j

W
≥ W

n
= w.

Chung and Lu [181] proved the following.

Theorem 9.7 If the average expected square degree w2 < 1 then, with prob-

ability at least 1−
w
(

w2
)2

C2
(

1−w2
) , all components of Gn,Pw have volume at most

C
√

n.

Proof Let

x = P(∃S : w(S)≥Cn1/2and S is a component).

Randomly choose two vertices u and v from V , each with probability propor-
tional to its weight. Then, for each vertex, the probability that it is in a set S
with w(S) ≥ C

√
n is at least C

√
nρ . Hence the probability that both vertices

are in the same component is at least

x(C
√

nρ)2 =C2xnρ
2. (9.18)

On the other hand, for any two fixed vertices, say u and v, the probability
Pk(u,v) of u and v being connected via a path of length k+1 can be bounded
from above as follows

Pk(u,v)≤ ∑
i1,i2,...,ik

(wuwi1 ρ)(wi1wi2ρ) · · ·(wik wvρ)≤ wuwvρ(w2)k.

So the probability that u and v belong to the same component is at most

n

∑
k=0

Pk(u,v)≤
∞

∑
k=0

wuwvρ(w2)k =
wuwvρ

1−w2
.

Recall that the probabilities of u and v being chosen from V are wuρ and wvρ ,
respectively. so the probability that a random pair of vertices are in the same
component is at most

∑
u,v

wuρ wvρ
wuwvρ

1−w2
=

(
w2
)2

ρ

1−w2
.

Combining this with (9.18) we have

C2xnρ
2 ≤

(
w2
)2

ρ

1−w2
,
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which implies

x≤
w
(

w2
)2

C2
(

1−w2
) ,

and Theorem 9.7 follows.

9.3 Kronecker Graphs

Kronecker random graphs were introduced by Leskovec, Chakrabarti, Klein-
berg and Faloutsos [525] (see also [524]). It is meant as a model of “Real World
networks”, see Chapter 17. Here we consider a special case of this model of an
inhomogeneous random graph. To construct it we begin with a seed matrix

P =

[
α β

β γ

]
,

where 0 < α,β ,γ < 1, and let P[k] be the kth Kronecker power of P. Here P[k]

is obtained from P[k−1] as in the diagram below:

P[k] =

[
αP[k−1] βP[k−1]

βP[k−1] γP[k−1]

]
and so for example

P[2] =


α2 αβ βα β 2

αβ αγ β 2 βγ

βα β 2 γα γβ

β 2 βγ γβ γ2

 .
Note that P[k] is symmetric and has size 2k×2k.

We define a Kronecker random graph as a copy of Gn,P[k] for some k ≥ 1
and n = 2k. Thus each vertex is a binary string of length k, and between any
two such vertices (strings) u,v we put an edge independently with probability

pu,v = α
uv

γ
(1−u)(1−v)

β
k−uv−(1−u)(1−v),

or equivalently

puv = α
i
β

j
γ

k−i− j,

where i is the number of positions t such that ut = vt = 1, j is the number of t
where ut 6= vt and hence k− i− j is the number of t that ut = vt = 0. We observe
that when α = β = γ then Gn,P[k] becomes Gn,p with n = 2k and p = αk.
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Connectivity

We will first examine, following Mahdian and Xu [550], conditions under
which is Gn,P[k] connected w.h.p.

Theorem 9.8 Suppose that α ≥ β ≥ γ . The random graph Gn,P[k] is con-
nected w.h.p. (for k→ ∞) if and only if either (i) β + γ > 1 or (ii) α = β =

1,γ = 0.

Proof We show first that β + γ ≥ 1 is a necessary condition. Denote by 0 the
vertex with all 0’s. Then the expected degree of vertex 0 is

∑
v

p0v =
k

∑
j=0

(
k
j

)
β

j
γ

k− j = (β + γ)k = o(1), when β + γ < 1.

Thus in this case vertex 0 is isolated w.h.p.
Moreover, if β +γ = 1 and 0< β < 1 then Gn,P[k] cannot be connected w.h.p.

since the probability that vertex 0 is isolated is bounded away from 0. Indeed,
0 < β < 1 implies that β jγk− j ≤ ζ < 1, 0≤ j ≤ k for some absolute constant
ζ . Thus, using Lemma 21.1(b),

P(0 is isolated) = ∏
v
(1− p0v)≥

k

∏
j=0

(
1−β

j
γ

k− j
)(k

j)

≥ exp

{
−

k

∑
j=0

(k
j

)
β jγk− j

1−ζ

}
= e−1/ζ .

Now when α = β = 1,γ = 0, the vertex with all 1’s has degree n− 1 with
probability one and so Gn,P[k] will be connected w.h.p. in this case.

It remains to show that the condition β + γ > 1 is also sufficient. To show
that β + γ > 1 implies connectivity we will apply Theorem 9.3. Notice that
the expected degree of vertex 0, excluding its self-loop, given that β and γ are
constants independent of k and β + γ > 1, is

(β + γ)k− γ
k ≥ 2c logn,

for some constant c > 0, which can be as large as needed.
Therefore the cut (0,V \{0}) has weight at least 2c logn. Remove vertex 0

and consider any cut (S,V \ S). Then at least one side of the cut gets at least
half of the weight of vertex 0. Without loss of generality assume that it is S,
i.e.,

∑
u∈S

p0u ≥ c logn.
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Take any vertices u,v and note that puv ≥ pu0 because we have assumed that
α ≥ β ≥ γ . Therefore

∑
u∈S

∑
v∈V\S

puv ≥ ∑
u∈S

pu0 > c logn,

and so the claim follows by Theorem 9.3.

To add to the picture of the structure of Gn,P[k] when β + γ > 1 we state
(without proof) the following result on the diameter of Gn,P[k] .

Theorem 9.9 If β + γ > 1 then w.h.p. Gn,P[k] has constant diameter.

Giant Component

We now consider when Gn,P[k] has a giant component (see Horn and Radcliffe
[412]).

Theorem 9.10 Gn,P[k] has a giant component of order Θ(n) w.h.p., if and
only if (α +β )(β + γ)> 1.

Proof We prove a weaker version of the Theorem 9.10, assuming that for
α ≥ β ≥ γ as in [550]. For the proof of the more general case, see [412].

We will show first that the above condition is necessary. We prove that if

(α +β )(β + γ)≤ 1,

then w.h.p. Gn,P[k] has n−o(n) isolated vertices. First let

(α +β )(β + γ) = 1− ε, ε > 0.

First consider those vertices with weight (counted as the number of 1’s in their
label) less than k/2+ k2/3 and let Xu be the degree of a vertex u with weight l
where l = 0, . . . ,k. It is easily observed that

EXu = (α +β )l(β + γ)k−l . (9.19)

Indeed, if for vertex v, i = i(v) is the number of bits that ur = vr = 1, r =

1, . . . ,k and j = j(v) is the number of bits where ur = 0 and vr = 1, then the
probability of an edge between u and v equals

puv = α
i
β

j+l−i
γ

k−l− j.
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Hence,

EXu = ∑
v∈V

puv =
l

∑
i=0

k−l

∑
j=0

(
l
i

)(
k− l

j

)
α

i
β

j+l−i
γ

k−l− j

=
l

∑
i=0

(
l
i

)
α

i
β

l−i
k−l

∑
j=0

β
j
γ

k−l−l

and (9.19) follows. So, if l < k/2+ k2/3, then assuming that α ≥ β ≥ γ ,

EXu ≤(α +β )k/2+k2/3
(β + γ)k−(k/2+k2/3)

=((α +β )(β + γ))k/2
(

α +β

β + γ

)k2/3

=(1− ε)k/2
(

α +β

β + γ

)k2/3

=o(1). (9.20)

Suppose now that l ≥ k/2+ k2/3 and let Y be the number of 1’s in the label of
a randomly chosen vertex of Gn,P[k] . Since EY = k/2, the Chernoff bound (see
(21.26)) implies that

P
(

Y ≥ k
2
+ k2/3

)
≤ e−k4/3/(3k/2) ≤ e−k1/3/2 = o(1).

Therefore, there are o(n) vertices with l ≥ k/2+ k2/3. It then follows from
(9.20) that the expected number of non-isolated vertices in Gn,P[k] is o(n) and
the Markov inequality then implies that this number is o(n) w.h.p.

Next, when α +β = β + γ = 1, which implies that α = β = γ = 1/2, then
random graph Gn,P[k] is equivalent to Gn,p with p = 1/n and so by Theorem
2.21 it does not have a component of order n, w.h.p.

To prove that the condition (α +β )(β +γ)> 1 is sufficient we show that the
subgraph of Gn,P[k] induced by the vertices of H of weight l ≥ k/2 is connected
w.h.p. This will suffice as there are at least n/2 such vertices. Notice that for
any vertex u ∈ H its expected degree, by (9.19), is at least

((α +β )(β + γ))k/2� logn. (9.21)

We first show that for u ∈V ,

∑
v∈H

puv ≥
1
4 ∑

v∈V
puv. (9.22)

For the given vertex u let l be the weight of u. For a vertex v let i(v) be
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the number of bits where ur = vr = 1, r = 1, . . . ,k, while j(v) stands for the
number of bits where ur = 0 and vr = 1. Consider the partition

V \H = S1∪S2∪S3,

where

S1 = {v : i(v)≥ l/2, j(v)< (k− l)/2},

S2 = {v : i(v)< l/2, j(v)≥ (k− l)/2},

S3 = {v : i(v)< l/2, j(v)< (k− l)/2}.

Next, take a vertex v ∈ S1 and turn it into v′ by flipping the bits of v which
correspond to 0’s of u. Surely, i(v′) = i(v) and

j(v′)≥ (k− l)/2 > j(v).

Notice that the weight of v′ is at least k/2 and so v′ ∈ H. Notice also that
α ≥ β ≥ γ implies that puv′ ≥ puv. Different vertices v ∈ S1 map to different
v′. Hence

∑
v∈H

puv ≥ ∑
v∈S1

puv. (9.23)

The same bound (9.23) holds for S2 and S3 in place of S1. To prove the same
relationship for S2 one has to flip the bits of v corresponding to 1’s in u, while
for S3 one has to flip all the bits of v. Adding up these bounds over the partition
of V \H we get

∑
v∈V\H

puv ≤ 3 ∑
v∈H

puv

and so the bound (9.22) follows.
Notice that combining (9.22) with the bound given in (9.21) we get that for
u ∈ H we have

∑
v∈H

puv > 2c logn, (9.24)

where c can be a large as needed.
We finish the proof by showing that a subgraph of Gn,P[k] induced by vertex

set H is connected w.h.p. For that we make use of Theorem 9.3. So, we will
show that for any cut (S,H \S)

∑
u∈S

∑
v∈H\S

puv ≥ 10logn.
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Without loss of generality assume that vertex 1 ∈ S. Equation (9.24) implies
that for any vertex u ∈ H either

∑
v∈S

puv ≥ c logn, (9.25)

or

∑
v∈H\S

puv ≥ c logn. (9.26)

If there is a vertex u such that (9.26) holds then since u≤ 1 and α ≥ β ≥ γ ,

∑
u∈S

∑
v∈H\S

puv ≥ ∑
v∈H\S

p1v ≥ ∑
v∈H\S

puv > c logn.

Otherwise, (9.25) is true for every vertex u ∈H. Since at least one such vertex
is in H \S, we have

∑
u∈S

∑
v∈H\S

puv ≥ c logn,

and the Theorem follows.

9.4 Exercises

9.4.1 Prove Theorem 9.3 (with c = 10) using the result of Karger and Stein
[464] that in any weighted graph on n vertices the number of r-minimal
cuts is O

(
(2n)2r

)
. (A cut (S,V \S),S⊆V, in a weighted graph G is called

r-minimal if its weight, i.e., the sum of weights of the edges connecting
S with V \ S, is at most r times the weight of minimal weighted cut of
G).

9.4.2 Suppose that the entries of an n× n symmetric matrix A are all non-
negative. Show that for any positive constants c1,c2, . . . ,cn, the largest
eigenvalue λ (A) satisfies

λ (A)≤ max
1≤i≤n

(
1
ci

n

∑
j=1

c jai, j

)
.

9.4.3 Let A be the adjacency matrix of Gn,Pw and for a fixed value of x let

ci =

{
wi wi > x

x wi ≤ x
.

Let m = max{wi : i ∈ [n]}. Let Xi =
1
ci

∑
n
j=1 c jai, j. Show that

EXi ≤ w2 + x and VarXi ≤
m
x

w2 + x.
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9.4.4 Apply Theorem 21.10 with a suitable value of x to show that w.h.p.

λ (A)≤ w2 +(6(m logn)1/2(w2 + logn))1/2 +3(m logn)1/2.

9.4.5 Show that if w2 > m1/2 logn then w.h.p. λ (A) = (1+o(1))w2.
9.4.6 Suppose that 1 ≤ wi�W 1/2 for 1 ≤ i ≤ n and that wiw jw2�W logn.

Show that w.h.p. diameter(Gn,Pw)≤ 2.
9.4.7 Prove, by the Second Moment Method, that if α +β = β + γ = 1 then

w.h.p. the number Zd of the vertices of degree d in the random graph
Gn,P[k] , is concentrated around its mean, i.e., Zd = (1+o(1))EZd .

9.4.8 Fix d ∈ N and let Zd denote the number of vertices of degree d in the
Kronecker random graph Gn,P[k] . Show that

EZd = (1+o(1))
k

∑
w=0

(
k
w

)
(α +β )dw(β + γ)d(k−w)

d!
×

× exp
(
−(α +β )w(β + γ)k−w

)
+o(1).

9.4.9 Depending on the configuration of the parameters 0 < α,β ,γ < 1, show
that we have either

EZd = Θ

((
(α +β )d +(β + γ)d

)k
)
,

or

EZd = o(2k).

9.5 Notes

General model of inhomogeneous random graph

The most general model of inhomogeneous random graph was introduced by
Bollobás, Janson and Riordan in their seminal paper [142]. They concentrate
on the study of the phase transition phenomenon of their random graphs, which
includes as special cases the models presented in this chapter as well as, among
others, Dubins’ model (see Kalikow and Weiss [459] and Durrett [261]), the
mean-field scale-free model (see Riordan [646]), the CHKNS model (see Call-
away, Hopcroft, Kleinberg, Newman and Strogatz [169]) and Turova’s model
(see [708], [709] and [710]).

The model of Bollobás, Janson and Riordan is an extension of one defined
by Söderberg [686]. The formal description of their model goes as follows.
Consider a ground space being a pair (S ,µ), where S is a separable metric
space and µ is a Borel probability measure on S . Let V = (S ,µ,(xn)n≥1)
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be the vertex space, where (S ,µ) is a ground space and (xn)n≥1) is a ran-
dom sequence (x1,x2, . . . ,xn) of n points of S satisfying the condition that for
every µ-continuity set A, A ⊆S , |{i : xi ∈ A}|/n converges in probability to
µ(A). Finally, let κ be a kernel on the vertex space V (understood here as a
kernel on a ground space (S ,µ)), i.e., a symmetric non-negative (Borel) mea-
surable function on S×S. Given the (random) sequence (x1,x2, . . . ,xn) we let
GV (n,κ) be the random graph GV (n,(pi j)) with pi j := min{κ(xi,x j)/n,1}.
In other words, GV (n,κ) has n vertices and, given x1,x2, . . . ,xn, an edge {i, j}
(with i 6= j) exists with probability pi j, independently for all other unordered
pairs {i, j}.

Bollobás, Janson and Riordan present in [142] a wide range of results de-
scribing various properties of the random graph GV (n,κ). They give a neces-
sary and sufficient condition for the existence of a giant component, show its
uniqueness and determine the asymptotic number of edges in the giant com-
ponent. They also study the stability of the component, i.e., they show that its
size does not change much if we add or delete a few edges. They also estab-
lish bounds on the size of small components, the asymptotic distribution of the
number of vertices of given degree and study the distances between vertices
(diameter). Finally they turn their attention to the phase transition of GV (n,κ)
where the giant component first emerges.

Janson and Riordan [434] study the susceptibility, i.e., the mean size of the
component containing a random vertex, in a general model of inhomogeneous
random graphs. They relate the susceptibility to a quantity associated to a cor-
responding branching process, and study both quantities in various examples.

Devroye and Fraiman [237] find conditions for the connectivity of inhomo-
geneous random graphs with intermediate density. They draw n independent
points Xi from a general distribution on a separable metric space, and let their
indices form the vertex set of a graph. An edge i j is added with probability
min{1,κ(Xi,X j) logn/n}, where κ > 0 is a fixed kernel. They show that, un-
der reasonably weak assumptions, the connectivity threshold of the model can
be determined.

Lin and Reinert [528] show via a multivariate normal and a Poisson process
approximation that, for graphs which have independent edges, with a possibly
inhomogeneous distribution, only when the degrees are large can we reason-
ably approximate the joint counts for the number of vertices with given degrees
as independent (note that in a random graph, such counts will typically be de-
pendent). The proofs are based on Stein’s method and the Stein–Chen method
(see Chapter 20.3) with a new size-biased coupling for such inhomogeneous
random graphs.
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Rank one model

An important special case of the general model of Bollobás, Janson and Rior-
dan is the so called rank one model, where the kernel κ has the form κ(x,y) =
ψ(x)ψ(y), for some function ψ > 0 on S . In particular, this model includes
the Chung-Lu model (expected degree model) discussed earlier in this Chapter.
Recall that in their approach we attach edges (independently) with probabili-
ties

pi j = min
{wiw j

W
,1
}

where W =
n

∑
k=1

wk.

Similarly, Britton, Deijfen and Martin-Löf [160] define edge probabilities as

pi j =
wiw j

W +wiw j
,

while Norros and Reittu [608] attach edges with probabilities

pi j = exp
(
−

wiw j

W

)
.

For those models several characteristics are studied, such as the size of the gi-
ant component ([182], [183] and [608]) and its volume ([182]) as well as spec-
tral properties ([184] and [185]). It should be also mentioned here that Janson
[427] established conditions under which all those models are asymptotically
equivalent.

Recently, van der Hofstad [408], Bhamidi, van der Hofstad and
Hooghiemstra[87], van der Hofstad, Kliem and van Leeuwaarden [410] and
Bhamidi, Sen and Wang [88] undertake systematic and detailed studies of var-
ious aspects of the rank one model in its general setting.

Finally, consider random dot product graphs (see Young and Scheinerman
[734]) where to each vertex a vector in Rd is assigned and we allow each
edge to be present with probability proportional to the inner product of the
vectors assigned to its endpoints. The paper [734] treats these as models of
social networks.

Kronecker Random Graph

Radcliffe and Young [641] analysed the connectivity and the size of the giant
component in a generalized version of the Kronecker random graph. Their
results imply that the threshold for connectivity in Gn,P[k] is β + γ = 1. Tabor
[702] proved that it is also the threshold for a k-factor. Kang, Karoński, Koch
and Makai [461] studied the asymptotic distribution of small subgraphs (trees
and cycles) in Gn,P[k] .
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Leskovec, Chakrabarti, Kleinberg and Faloutsos [526] and [527] have shown
empirically that Kronecker random graphs resemble several real world net-
works. Later, Leskovec, Chakrabarti, Kleinberg, Faloutsos and Ghahramani
[527] fitted the model to several real world networks such as the Internet, cita-
tion graphs and online social networks.

The R-MAT model, introduced by Chakrabarti, Zhan and Faloutsos [173],
is closely related to the Kronecker random graph. The vertex set of this model
is also Zn

2 and one also has parameters α,β ,γ . However, in this case one needs
the additional condition that α +2β + γ = 1.

The process of generating a random graph in the R-MAT model creates a
multigraph with m edges and then merges the multiple edges. The advantage of
the R-MAT model over the random Kronecker graph is that it can be generated
significantly faster when m is small. The degree sequence of this model has
been studied by Groër, Sullivan and Poole [386] and by Seshadhri, Pinar and
Kolda [679] when m = Θ(2n), i.e. the number of edges is linear in the number
of vertices. They have shown, as in Kang, Karoński, Koch and Makai [461]
for Gn,P[k] , that the degree sequence of the model does not follow a power law
distribution. However, no rigorous proof exists for the equivalence of the two
models and in the Kronecker random graph there is no restriction on the sum
of the values of α,β ,γ .

Further extensions of Kronecker random graphs can be found [108] and
[109].



10
Fixed Degree Sequence

The graph Gn,m is chosen uniformly at random from the set of graphs with
vertex set [n] and m edges. It is of great interest to refine this model so that
all the graphs chosen have a fixed degree sequence d = (d1,d2, . . . ,dn). Of
particular interest is the case where d1 = d2 = · · · = dn = r, i.e., the graph
chosen is a uniformly random r-regular graph. It is not obvious how to do
this and this is the subject of the current chapter. We discuss the configuration
model in the next section and show its usefulness in (i) estimating the number
of graphs with a given degree sequence and (ii) showing that w.h.p. random
d-regular graphs are connected w.h.p., for 3≤ d = O(1).

We finish by showing in Section 10.3 how for large r, Gn,m can be embedded
in a random r-regular graph. This allows one to extend some results for Gn,m

to the regular case.

10.1 Configuration Model

Let d = (d1,d2, . . . ,dn) where d1 +d2 + · · ·+dn = 2m is even. Let

Gn,d = {simple graphs with vertex set [n] s.t. degree d(i) = di, i ∈ [n]}

and let Gn,d be chosen randomly from Gn,d. We assume that

d1,d2, . . . ,dn ≥ 1 and
n

∑
i=1

di(di−1) = Ω(n).

We describe a generative model of Gn,d due to Bollobás [122]. It is referred
to as the configuration model. Let W1,W2, . . . ,Wn be a partition of a set of
points W , where |Wi|= di for 1≤ i≤ n and call the Wis cells. We will assume
some total order < on W and that x < y if x ∈Wi,y ∈Wj where i < j. For
x ∈W define ϕ(x) by x ∈Wϕ(x). Let F be a partition of W into m pairs (a
configuration). Given F we define the (multi)graph γ(F) as

γ(F) = ([n],{(ϕ(x),ϕ(y)) : (x,y) ∈ F}).

Let us consider the following example of γ(F). Let n = 8 and d1 = 4,d2 =

3,d3 = 4,d4 = 2,d5 = 1,d6 = 4,d7 = 4,d8 = 2. The accompanying diagrams,

181
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Figure 10.1 Partition of W into cells W1, . . . ,W8.
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Figure 10.2 A partition F of W into m = 12 pairs

Figures 10.1, 10.2, 10.3 show a partition of W into W1, . . . ,W8, a configuration
and its corresponding multi-graph.

Denote by Ω the set of all configurations defined above for d1 + · · ·+ dn =

2m and notice that

|Ω|= (2m)!
m!2m = (2m)!! . (10.1)

To see this, take di “distinct” copies of i for i = 1,2, . . . ,n and take a permuta-
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Figure 10.3 Graph γ(F)

tion σ1,σ2, . . . ,σ2m of these 2m symbols. Read off F , pair by pair {σ2i−1,σ2i}
for i = 1,2, . . . ,m. Each distinct F arises in m!2m ways.

We can also give an algorithmic, construction of a random element F of the
family Ω.

Algorithm F-GENERATOR
begin

U ←−W, F ←− /0
for i = 1,2, . . . ,n do

begin
Choose x arbitrarily from U ;
Choose y randomly from U \{x};
F ←− F ∪{(x,y)};
U ←−U \{(x,y)}

end
end

Note that F arises with probability 1/[(2m−1)(2m−3) · · ·1] = |Ω|−1.

Observe that the following relationship between a simple graph G ∈ Gn,d
and the number of configurations F for which γ(F) = G.
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Lemma 10.1 If G ∈ Gn,d, then

|γ−1(G)|=
n

∏
i=1

di! .

Proof Arrange the edges of G in lexicographic order. Now go through the
sequence of 2m symbols, replacing each i by a new member of Wi. We obtain
all F for which γ(F) = G.

The above lemma implies that we can use random configurations to “ap-
proximate” random graphs with a given degree sequence.

Corollary 10.2 If F is chosen uniformly at random from the set of all config-
urations Ω and G1,G2 ∈ Gn,d then

P(γ(F) = G1) = P(γ(F) = G2).

So instead of sampling from the family Gn,d and counting graphs with a
given property, we can choose a random F and accept γ(F) iff there are no
loops or multiple edges, i.e. iff γ(F) is a simple graph.

This is only a useful exercise if γ(F) is simple with sufficiently high proba-
bility. We will assume for the remainder of this section that

∆ = max{d1,d2, . . . ,dn} ≤ n1/6.

We will prove later (see Lemma 10.6 and Corollary 10.7) that if F is chosen
uniformly (at random) from Ω,

P(γ(F) is simple) = (1+o(1))e−λ (λ+1), (10.2)

where

λ =
∑di(di−1)

2∑di
.

Hence, (10.1) and (10.2) will tell us not only how large is Gn,d, (Theorem
10.4) but also lead to the following conclusion.

Theorem 10.3 Suppose that ∆≤ n1/6. For any (multi)graph property P

P(Gn,d ∈P)≤ (1+o(1))eλ (λ+1)P(γ(F) ∈P),

The above statement is particularly useful if λ = O(1), e.g., for random r-
regular graphs, where r is a constant, since then λ = r−1

2 . In the next section
we will apply the above result to establish the connectedness of random regular
graphs.
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Bender and Canfield [70] gave an asymptotic formula for |Gn,d| when ∆ =

O(1). The paper [122] by Bollobás gives the same asymptotic formula when
∆ < (2logn)1/2. The following theorem allows for some more growth in ∆. Its
proof uses the notion of switching introduced by McKay and Wormald [570].

Theorem 10.4 Suppose that ∆≤ n1/6.

|Gn,d| ≈ e−λ (λ+1) (2m)!!
∏

n
i=1 di!

.

In preparation we first prove

Lemma 10.5 Suppose that ∆≤ n1/6. Let F be chosen uniformly (at random)
from Ω. Then w.h.p. γ(F) has

(a) no double loops,

(b) at most ∆ logn loops,

(c) no adjacent double edges,

(d) no triple edges.

(e) at most ∆2 logn double edges,

Proof. We will use the following inequality repeatedly.
Let fi = {xi,yi}, i = 1,2, . . . ,k be k pairwise disjoint pairs of points. Then,

P( fi ∈ F, i = 1,2, . . . ,k)≤ 1
(2m−2k)k . (10.3)

This follows immediately from

P( fi ∈ F | f1, f2, . . . , fi−1 ∈ F) =
1

2m−2i+1
.

This follows from considering Algorithm F-GENERATOR with x = xi and
y = yi in the main loop.

(a) Using (10.3) we obtain

P(F contains a double loop)≤
n

∑
i=1

3
(

di

4

)(
1

2m−4

)2

≤ n∆
4m−2 = o(1).
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(b) Let k1 = ∆ logn.

P(F has at least k1 loops)

≤ o(1)+ ∑
x1+···+xn=k1,

xi=0,1

n

∏
i=1

((
di

2

)
· 1

2m−2k1

)xi

(10.4)

≤ o(1)+
(

∆

2m

)k1

∑
x1+···+xn=k1,

xi=0,1

n

∏
i=1

dxi
i

≤ o(1)+
(

∆

2m

)k1 (d1 + · · ·+dn)
k1

k1!

≤ o(1)+
(

∆e
k1

)k1

= o(1).

The o(1) term in (10.4) accounts for the probability of having a double loop.

(c)

P(F contains two adjacent double edges)

≤
n

∑
i=1

(
di

2

)2(
∆

2m−8

)2

≤ ∆5

(2m−8)2

n

∑
i=1

di

= o(1).

(d)

P(F contains a triple edge)

≤ ∑
1≤i< j≤n

6
(

di

3

)(
d j

3

)(
1

2m−6

)3

≤ ∆
4

(
∑

1≤i≤n
di

)2

m−3

= o(1).
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(e) Let k2 = ∆2 logn.

P(F has at least k2 double edges)

≤ o(1)+ ∑
x1+···+xn=k2,

xi=0,1

n

∏
i=1

((
di

2

)
· ∆

2m−4k2

)xi

(10.5)

≤ o(1)+
(

∆2

m

)k2

∑
x1+···+xn=k2,

xi=0,1

n

∏
i=1

dxi
i

≤ o(1)+
(

∆2

m

)k2 (d1 + · · ·+dn)
k2

k2!

≤ o(1)+
(

2∆2e
k2

)k2

= o(1).

The o(1) term in (10.5) accounts for adjacent multiple edges and triple edges.
The ∆/(2m−4k2) term can be justified as follows: We have chosen two points
x1,x2 in Wi in

(di
2

)
ways and this term bounds the probability that x2 chooses a

partner in the same cell as x1.
Let now Ωi, j be the set of all F ∈Ω such that F has i loops; j double edges

and no double loops or triple edges and no vertex incident with two double
edges. The notation Õ ignores factors of order (logn)O(1).

Lemma 10.6 (Switching Lemma) Suppose that ∆ ≤ n1/6. Let M1 = 2m and
M2 = ∑i di(di−1). For i≤ k1 and j≤ k2, where k1 = ∆ logn and k2 = ∆2 logn,

|Ωi−1, j|
|Ωi, j|

=
2iM1

M2

(
1+ Õ

(
∆3

n

))
,

and
|Ω0, j−1|
|Ω0, j|

=
4 jM2

1

M2
2

(
1+ Õ

(
∆3

n

))
.

The corollary that follows is an immediate consequence of the Switching
Lemma. It immediately implies Theorem 10.4.

Corollary 10.7 Suppose that ∆≤ n1/6. Then,

|Ω0,0|
|Ω|

= (1+o(1))e−λ (λ+1),

where

λ =
M2

2M1
.
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Proof It follows from the Switching Lemma that i≤ k1 and j ≤ k2 implies

|Ωi, j|
|Ω0,0|

= (1+ Õ(n−1/2))
λ i+2 j

i! j!
.

Therefore, because λ = o(k1) and k1 ≤ k2, we have

(1−o(1))|Ω|= (1+o(1))|Ω0,0|
k1

∑
i=0

k2

∑
j=0

λ i+2 j

i! j!

= (1+o(1))|Ω0,0|eλ (λ+1).
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Figure 10.4 l-switch

To prove the Switching Lemma we need to introduce two specific operations
on configurations, called an “l-switch” and a “d-switch”.
Figure 10.4 illustrates the “loop removal switch” (“l-switch”) operation. Here
we have six points x1,x2, . . . ,x6 and three pairs {x1,x6}, {x2,x3}, {x4,x5} from
five different cells, where x2 and x3 are in the same cell. We assume that x2 <

x3. The l-switch operation replaces these pairs by a new set of pairs: {x1,x2},
{x3,x4}, {x5,x6} and, in this operation, no new loops or multiple edges are
created.

In general, an l-switch operation takes F , a member of Ωi, j, to F ′, a member
Ωi−1, j, see Figure 10.4. To estimate the number of choices η for a loop removal
switch we note that for a forward switching operation,

iM2
1 − Õ(iM1∆

2)≤ η ≤ iM2
1 , (10.6)

while, for the reverse procedure, taking F ′ ∈Ωi−1, j to F ∈Ωi, j, we have

M1M2/2− Õ(∆3M1)≤ η ≤M1M2/2. (10.7)



10.1 Configuration Model 189

Proof of (10.6):
In the case of the forward loop removal switch, given Ωi, j, we can choose
points x1 and x4 in M1(M1− 1) ways and the point x2 in i ways, giving the
upper bound in (10.6). For some choices of x1,x2 and x4 the switch does not
lead to a member of Ωi−1, j, when the switch itself cannot be performed due
to the creation of or destruction of other loops or multiple pairs (edges). The
number of such “bad” choices has to be subtracted from iM2

1 . We estimate
those cases by Õ(iM1∆2) as follows: The factor i accounts for our choice of
loop to destroy. So, consider a fixed loop {x2,x3}. A forward switch will be
good unless

(a) {x1,x6} or {x4,x5} form a loop or multiple edge.
There are at most k1 choices (respectively 2k2) for {x1,x6} as a loop (re-
spectively multiple edge) and then 2M1 choices for x4,x5. This removes at
most 2k1M1 (respectively 4k2M1) choices. Thus all in all this case accounts
for Õ(M1∆2) choices.

(b) {x1,x2} or {x3,x4} form a loop.
Having chosen x2 there are at most ∆ choices for x1 to make a loop with
it. After this there are at most M1 choices for x4. Thus all in all this case
accounts for at most 2∆M1 choices.

(c) {x1,x2} or {x3,x4} form a multiple edge.
Having chosen x2 there are at most ∆2 choices for x1 to make a multiple
edge with it. Indeed, we choose x′2 in the same cell as x2. Then we choose
x1 in the same cell as the partner of x′2. After this there are at most M1

choices for x4. Thus all in all this case accounts for O(∆2M1) choices.
(d) {x5,x6} forms a loop.

Having chosen x1,x6, in at most M1 ways, there are at most ∆ choices for
x5 in the same cell as x6 that make {x5,x6} a loop. Thus all in all this case
accounts for at most O(∆M1) choices.

(e) {x5,x6} forms a multiple edge.
Having chosen x1,x6, in at most M1 ways, there are at most ∆2 choices for
{x4,x5} that make {x5,x6} a multiple edge. Indeed, we choose x′6 in the
same cell as x6. Then we choose x5 in the same cell as the partner of x′6.
Thus all in all this case accounts for at most O(∆2M1) choices.

Proof of (10.7):

For the reverse removal switch, to obtain an upper bound, we can choose a
pair {x2,x3} contained in a cell in M2/2 ways and then x5,x6 in M1 ways. For
the lower bound, there are several things that can go wrong and not allow the
move from Ωi−1, j to Ωi, j:
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(a) The cell containing x2,x3 contains a loop of F .
This creates a double loop. There are i choices for {x2,x3} and given this,
there are at most M1 choices for x5. Thus all in all this case accounts for
O(k1M1) choices.

(b) {x5,x6} is a loop or multiple edge of F .
In this case there are at most k1 + k2 choices for {x5,x6} and then at most
M1 choices for x2,x3. Thus all in all this case accounts for O((k1 +k2)M1)

choices.
(c) {x1,x6} or {x4,x5} become loops.

In this case there are at most M1 choices for {x5,x6} and then at most ∆

choices for x1 and then at most ∆ choices for x3, if the loop created is
{x1,x6}. Thus all in all this case accounts for O(∆2M1) choices.

(d) {x1,x6} or {x4,x5} become multiple edges.
In this case there are at most M1 choices for {x5,x6} and then at most ∆2

choices for x1. Indeed we choose x′6 in the same cell as x6 and then x1 in the
same cell as the partner x′1 of x′5. After this there are at most ∆ choices for
x3, if the multiple edge created is {x1,x6}. Thus all in all this case accounts
for O(∆3M1) choices.

This completes the proof of (10.6) and (10.7).

Ωi, j Ωi−1, j
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L 

Figure 10.5 Moving between Ωi, j and Ωi−1, j

Now for F ∈ Ωi, j let dL(F) denote the number of F ′ ∈ Ωi−1, j that can be
obtained from F by an l-switch. Similarly, for F ′ ∈ Ωi−1, j let dR(F ′) denote
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Figure 10.6 d-switch

the number of F ∈Ωi, j that can be transformed into F ′ by an l-switch. Then,

∑
F∈Ωi, j

dL(F) = ∑
F ′∈Ωi−1, j

dR(F ′).

But

iM2
1 |Ωi, j|(1− Õ(∆2/M1))≤ ∑

F∈Ωi, j

dL(F)≤ iM2
1 |Ωi, j|,

while

1
2

M1M2|Ωi−1, j|
(

1− Õ
(

∆3

M2

))
≤ ∑

F ′∈Ωi−1, j

dR(F ′)≤
1
2

M1M2|Ωi−1, j|.

So,

|Ωi−1, j|
|Ωi, j|

=
2iM1

M2

(
1+ Õ

(
∆3

n

))
,

which shows that the first statement of the Switching Lemma holds.

Now consider the second operation on configurations, described as a “dou-
ble edge removal switch”(“d-switch”), Figure 10.6. Here we have eight points
x1,x2, . . . ,x8 from six different cells, where x2 and x3 are in the same cell, as
are x6 and x7. Take pairs {x1,x5}, {x2,x6}, {x3,x7}, {x4,x8}where {x2,x6} and
{x3,x7} are double pairs (edges). The d-switch operation replaces these pairs
by a set of new pairs: {x1,x2}, {x3,x4}, {x5,x6}, {x7,x8} and, in this operation,
none of the pairs created or destroyed is allowed to be a part of a multiple pair,
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except the double pair {x2,x6} and {x3,x7}. Note also that those four new pairs
(edges) form two 2-paths. In general a d-switch operation takes a member F of
Ω0, j to a member F ′ of Ω0, j−1 unless it creates new loops or double edges. In
particular, it takes a member of Ω0, j to a member of Ω0, j−1 (see Figure 10.7).
We estimate the number of choices η during a double edge removal switch of

Ω0, j Ω0, j−1
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Figure 10.7 Moving between Ω0, j and Ω0, j−1

F ∈Ω0, j. For a forward switching operation

jM2
1 − Õ( jM1∆

2)≤ η ≤ jM2
1 , (10.8)

while, for the reverse procedure,

M2
2/4− Õ(M2∆

3)≤ η ≤M2
2/4. (10.9)

Proof of (10.8):
To see why the above bounds hold, note that in the case of the forward double
edge removal switch, for each of j double edges we have M1(M1−1) choices
of two additional edges. To get the lower bound we subtract the number of
“bad” choices as in the case of the forward operation of the l-switch above.
We can enumerate these bad choices as follows: The factor j accounts for our
choice of double edge to destroy. So we consider a fixed double edge.

(a) {x1,x5} or {x4,x8} are part of a double pair
There are at most 4 j choices for part of a pair and after this there are
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at most M1 choices for the other edge. All in all this case accounts for
O(k2M1) choices.

(b) One of the edges created, {x1,x2} etc., forms a loop.
Given x2 there are at most ∆ choices of x1 that will make a loop. Given
this, there are at most M1 choices for the other edge. All in all this case
accounts for O(∆M1) choices.

(c) One of the edges created, {x1,x2} etc., forms part of a double edge.
Given x2 there are at most ∆2 choices of x1 that will make a double edge.
Indeed we choose x′2 in the same cell as x2 and then x1 in the same cell as
the point x′1 that is paired with x′2. Given this, there are at most M1 choices
for the other edge. All in all this case accounts for at most O(∆2M1)

choices.

Proof of (10.9):
In the reverse procedure, we choose a pair {x2,x3} in M2/2 ways and a pair
{x6,x7} also in M2/2 ways, to arrive at the upper bound. For the lower bound,
as in the reverse l-switch, there are several things which can go wrong and not
allow the move from Ω0, j−1 to Ω0, j.

(a) {x2,x3} or {x6,x7} are part of a double edge.
There are 2k2 choices for {x2,x3} as part of a double edge and then there
are at most M2/2 choices for the other edge. All in all this case accounts
for O(k2M2) choices.

(b) {x1,x5} or {x4,x8} form loops
Our choice of the pair {x2,x3}, in M2 ways, determines x1 and x4. Then
there are at most ∆ choices for x5 in the same cell as x1. Choosing x5

determines x6 and now there are only at most ∆ choices left for x7. All in
all this case accounts for at most O(∆2M2) choices.

(c) {x1,x5} or {x4,x8} are part of a double edge.
Given our choice of the pair {x2,x3} there are at most ∆2 choices for x5

that make {x1,x5} part of a double edge. Namely, choose x′1 in the same
cell as x1 and then x5 in the same cell as the partner x′5 of x′1. Finally, there
will be at most ∆ choices for x7. All in all this case accounts for at most
O(∆3M2) choices.

Hence the lower bound for the reverse procedure holds. Now for F ∈ Ω0, j let
dL(F) denote the number of F ′ ∈ Ω0, j−1 that can be obtained from F by a d-
switch. Similarly, for F ′ ∈ Ω0, j−1 let dR(F ′) denote the number of F ∈ Ω0, j

that can be transformed into F ′ by a d-switch. Then,

∑
F∈Ω0, j

dL(F) = ∑
F ′∈Ω0, j−1

dR(F ′).
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But

jM2
1 |Ω0, j|(1− Õ(∆2/M1))≤ ∑

F∈Ω0, j

dL(F)≤ jM2
1 |Ω0, j|,

while

1
4

M2
2 |Ω0, j−1|

(
1− Õ

(
∆3

M2

))
≤ ∑

F ′∈Ω0, j−1

dR(F ′)≤
1
4

M2
2 |Ω0, j−1|.

So

|Ω0, j−1|
|Ω0, j|

=
4 jM2

1

M2
2

(
1+ Õ

(
∆3

n

))
.

10.2 Connectivity of Regular Graphs

For an excellent survey of results on random regular graphs, see Wormald
[729].

Bollobás [122] used the configuration model to prove the following: Let Gn,r

denote a random r-regular graph with vertex set [n] and r ≥ 3 constant.

Theorem 10.8 Gn,r is r-connected, w.h.p.

Since an r-regular, r-connected graph, with n even, has a perfect matching,
the above theorem immediately implies the following Corollary.

Corollary 10.9 Let Gn,r be a random r-regular graph, r ≥ 3 constant, with
vertex set [n] even. Then w.h.p. Gn,r has a perfect matching.

Proof (of Theorem 10.8)
Partition the vertex set V = [n] of Gn,r into three parts, K,L and V \ (K ∪L),
such that L = N(K), i.e., such that L separates K from V \ (K ∪L) and |L| =
l ≤ r− 1. We will show that w.h.p. there are no such K,L for k ranging from
2 to n/2. We will use the configuration model and the relationship stated in
Theorem 10.3. We will divide the whole range of k into three parts.

(i) 2≤ k ≤ 3.

Put S := K ∪ L, s = |S| = k+ l ≤ r + 2. The set S contains at least 2r− 1
edges (k = 2) or at least 3r−3 edges (k = 3). In both cases this is at least s+1
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edges.

P(∃S,s = |S| ≤ r+2 : S contains s+1 edges)

≤
r+2

∑
s=4

(
n
s

)(
rs

s+1

)( rs
rn

)s+1
(10.10)

≤
r+2

∑
s=4

ns2rsss+1n−s−1

= o(1).

Explanation for (10.10): Having chosen a set of s vertices, spanning rs points
R, we choose s+ 1 of these points T . rs

rn bounds the probability that one of
these points in T is paired with something in a cell associated with S. This
bound holds conditional on other points of R being so paired.

(ii) 4≤ k ≤ ne−10.
The number of edges incident with the set K, |K|= k, is at least (rk+ l)/2.

Indeed let a be the number of edges contained in K and b be the number of
K : L edges. Then 2a+b = rk and b≥ l. This gives a+b≥ (rk+ l)/2. So,

P(∃K,L)≤
ne−10

∑
k=4

r−1

∑
l=0

(
n
k

)(
n
l

)(
rk

rk+l
2

)(
r(k+ l)

rn

)(rk+l)/2

≤
ne−10

∑
k=4

r−1

∑
l=0

n−(
r
2−1)k+ l

2
ek+l

kkll 2rk (k+ l)(rk+l)/2

Now (
k+ l

l

)l/2

≤ ek/2 and
(

k+ l
k

)k/2

≤ el/2,

and so

(k+ l)(rk+l)/2 ≤ ll/2krk/2e(lr+k)/2.

Therefore, with Cr a constant,

P(∃K,L)≤Cr

ne−10

∑
k=4

r−1

∑
l=0

n−(
r
2−1)k+ l

2 e3k/2 2rk k(r−2)k/2

=Cr

ne−10

∑
k=4

r−1

∑
l=0

(
n−(

r
2−1)+ l

2k e3/2 2r k
r
2−1
)k

= o(1).
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(iii) ne−10 < k ≤ n/2

Assume that there are rl− a edges between sets L and V \ (K ∪L). Denote
also

ϕ(2m) =
(2m)!
m! 2m ≈ 21/2

(
2m
e

)m

.

Then, remembering that r, l,a = O(1) we can estimate that

P(∃K,L)

≤ ∑
k,l,a

(
n
k

)(
n
l

)(
rl
a

)
ϕ(rk+ rl−a)ϕ(r(n− k− l)+a)

ϕ(rn)
(10.11)

≤Cr ∑
k,l,a

(ne
k

)k(ne
l

)l
×

(rk+ rl−a)rk+rl−a(r(n− k− l)+a)r(n−k−l)+a

(rn)rn

≤C′r ∑
k,l,a

(ne
k

)k(ne
l

)l (rk)rk+rl−a(r(n− k))r(n−k−l)+a

(rn)rn

≤C′′r ∑
k,l,a

(ne
k

)k (ne
l

)l
(

k
n

)rk (
1− k

n

)r(n−k)

≤C′′r ∑
k,l,a

((
k
n

)r−1

e1−r/2 nr/k

)k

= o(1).

Explanation of (10.11): Having chosen K,L we choose a points in WK∪L =⋃
i∈K∪L Wi that will be paired outside WK∪L. This leaves rk+ rl− a points in

WK∪L to be paired up in ϕ(rk+ rl−a) ways and then the remaining points can
be paired up in ϕ(r(n− k− l)+a) ways. We then multiply by the probability
1/ϕ(rn) of the final pairing.

10.3 Gn,r versus Gn,p

The configuration model is most useful when the maximum degree is bounded.
When r is large, one can learn a lot about random r-regular graphs from the
following theorem of Kim and Vu [483]. They proved that if logn � r �
n1/3/(logn)2 then there is a joint distribution G0,G =Gn,r,G1 such that w.h.p.
(i) G0 ⊆ G, (ii) the maximum degree ∆(G1 \G) ≤ (1+o(1)) logn

log(ϕ(r)/ logn) where ϕ(r) is
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any function satisfying (r logn)1/2 ≤ ϕ(r)� r. Here Gi =Gn,pi , i = 0,1 where
p0 = (1−o(1)) r

n and p1 = (1+o(1)) r
n . In this way we can deduce properties

of Gn,r from Gn,r/n. For example, G0 is Hamiltonian w.h.p. implies that Gn,r is
Hamiltonian w.h.p. Recently, Dudek, Frieze, Ruciński and Šilekis [256] have
increased the range of r for which (i) holds. The cited paper deals with random
hypergraphs and here we describe the simpler case of random graphs.

Theorem 10.10 There is a positive constant C such that if

C
(

r
n
+

logn
r

)1/3

≤ γ = γ(n)< 1,

and m = b(1− γ)nr/2c, then there is a joint distribution of G(n,m) and Gn,r

such that

P(Gn,m ⊂Gn,r)→ 1.

Corollary 10.11 Let Q be an increasing property of graphs such that Gn,m

satisfies Q w.h.p. for some m = m(n), n logn�m� n2. Then Gn,r satisfies Q

w.h.p. for r = r(n)≈ 2m
n .

Our approach to proving Theorem 10.10 is to represent Gn,m and Gn,r as the
outcomes of two graph processes which behave similarly enough to permit a
good coupling. For this let M = nr/2 and define

GM = (ε1, . . . ,εM)

to be an ordered random uniform graph on the vertex set [n], that is, Gn,M with
a random uniform ordering of edges. Similarly, let

Gr = (η1, . . . ,ηM)

be an ordered random r-regular graph on [n], that is, Gn,r with a random
uniform ordering of edges. Further, write GM(t) = (ε1, . . . ,εt) and Gr(t) =
(η1, . . . ,ηt), t = 0, . . . ,M.

For every ordered graph G of size t and every edge e ∈ Kn \G we have

Pr(εt+1 = e |GM(t) = G) =
1(n

2

)
− t

.

This is not true if we replace GM by Gr, except for the very first step t = 0.
However, it turns out that for most of time the conditional distribution of the
next edge in the process Gr(t) is approximately uniform, which is made precise
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in the lemma below. For 0 < ε < 1, and t = 0, . . . ,M consider the inequalities

Pr(ηt+1 = e |Gr(t))≥
1− ε(n
2

)
− t

for every e ∈ Kn \Gr(t), (10.12)

and define a stopping time

Tε = max{u : ∀t ≤ u condition (10.12) holds } .

Lemma 10.12 There is a positive constant C′ such that if

C′
(

r
n
+

logn
r

)1/3

≤ ε = ε(n)< 1, (10.13)

then

Tε ≥ (1− ε)M w.h.p.

From Lemma 10.12, which is proved in Section 10.3, we deduce Theorem
10.10 using a coupling.

Proof of Theorem 10.10 Let C = 3C′, where C′ is the constant from Lemma
10.12. Let ε = γ/3. The distribution of Gr is uniquely determined by the con-
ditional probabilities

pt+1(e|G) := Pr(ηt+1 = e |Gr(t) = G) , t = 0, . . . ,M−1. (10.14)

Our aim is to couple GM and Gr up to the time Tε . For this we will define a
graph process G′r := (η ′t ), t = 1, . . . ,M such that the conditional distribution of
(η ′t ) coincides with that of (ηt) and w.h.p. (η ′t ) shares many edges with GM .

Suppose that Gr = G′r(t) and GM = GM(t) have been exposed and for every
e /∈ Gr the inequality

pt+1(e|Gr)≥
1− ε(n
2

)
− t

(10.15)

holds (we have such a situation, in particular, if t ≤ Tε ). Generate a Bernoulli
(1− ε) random variable ξt+1 independently of everything that has been re-
vealed so far; expose the edge εt+1. Moreover, generate a random edge ζt+1 ∈
Kn \Gr according to the distribution

P(ζt+1 = e|G′r(t) = Gr,GM(t) = GM) :=
pt+1(e|Gr)− 1−ε

(n
2)−t

ε
≥ 0,

where the inequality holds because of the assumption (10.15). Observe also
that

∑
e 6∈Gr

P(ζt+1 = e|G′r(t) = Gr,GM(t) = GM) = 1,
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so ζt+1 has a well-defined distribution. Finally, fix a bijection fGr ,GM : Gr \
GM → GM \Gr between the sets of edges and define

η
′
t+1 =


εt+1, if ξt+1 = 1,εt+1 /∈ Gr,

fGr ,GM (εt+1), if ξt+1 = 1,εt+1 ∈ Gr,

ζt+1, if ξt+1 = 0.

Note that

ξt+1 = 1 ⇒ εt+1 ∈G′r(t +1). (10.16)

We keep generating ξt ’s even after the stopping time has passed, that is, for t >
Tε , whereas η ′t+1 is then sampled according to probabilities (10.14), without
coupling. Note that ξt ’s are i.i.d. and independent of GM . We check that

P(η ′t+1 = e |G′r(t) = Gr,GM(t) = GM)

= P(εt+1 = e)P(ξt+1 = 1)+P(ζt+1 = e)P(ξt+1 = 0)

=
1− ε(n
2

)
− t

+

 pt+1(e|Gr)− 1−ε

(n
2)−t

ε

ε

= pt+1(e|Gr)

for all admissible Gr,GM , i.e., such that P(Gr(t) = Gr,GM(t) = GM)> 0, and
for all e 6∈ Gr.

Further, define a set of edges which are potentially shared by GM and Gr:

S := {εi : ξi = 1 ,1≤ i≤ (1− ε)M} .

Note that

|S|=
b(1−ε)Mc

∑
i=1

ξi

is distributed as Bin(b(1− ε)Mc,1− ε).
Since (ξi) and (εi) are independent, conditioning on |S| ≥ m, the first m

edges in the set S comprise a graph which is distributed as Gn,m. Moreover, if
Tε ≥ (1− ε)M, then by (10.16) we have S⊂Gr, therefore

P(Gn,m ⊂Gn,r)≥ P(|S| ≥ m,Tε ≥ (1− ε)M) .

We have E |S| ≥ (1− 2ε)M. Recall that ε = γ/3 and therefore m = b(1−
γ)Mc = b(1− 3ε)Mc. Applying the Chernoff bounds and our assumption on
ε , we get

P(|S|< m)≤ e−Ω(γ2m) = o(1).
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Finally, by Lemma 10.12 we have Tε ≥ (1− ε)M w.h.p., which completes the
proof of the theorem.

Proof of Lemma 10.12

In all proofs of this section we will assume the condition (10.13). To prove
Lemma 10.12 we will start with a fact which allows one to control the degrees
of the evolving graph Gr(t).

For a vertex v ∈ [n] and t = 0, . . . ,M, let

degt(v) = |{i≤ t : v ∈ ηi}| .

Lemma 10.13 Let τ = 1− t/M. We have that w.h.p.

∀t ≤ (1− ε)M, ∀v ∈ [n], |degt(v)− tr/M| ≤ 6
√

τr logn. (10.17)

In particular w.h.p.

∀t ≤ (1− ε)M, ∀v ∈ [n], degt(v)≤ (1− ε/2)r. (10.18)

Proof Observe that if we fix an r-regular graph H and condition Gr to be a
permutation of the edges of H, then X := degt(v) is a hypergeometric random
variable with expected value tr/M = (1−τ)r. Using the result of Section 21.5
and Theorem 21.10, and checking that the variance of X is at most τr, we get

P(|X− tr/M| ≥ x)≤ 2exp
{
− x2

2(τr+ x/3)

}
.

Let x = 6
√

τr logn. From (10.13), assuming C′ ≥ 1, we get

x
τr

= 6

√
logn
τr
≤ 6

√
logn
εr
≤ 6ε,

and so x≤ 6τr. Using this, we obtain

1
2
P(|X− tr/M| ≥ x)≤ exp

{
− 36τr logn

2(τr+2τr)

}
= n−6.

Inequality (10.17) now follows by taking a union bound over nM ≤ n3 choices
of t and v.

To get (10.18), it is enough to prove the inequality for t = (1−ε)M. Inequal-
ity (10.17) implies

deg(1−ε)M(v)≤ (1− ε)r+6
√

εr logn.
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Thus it suffices to show that

6
√

εr logn≤ εr/2,

or, equivalently, ε ≥ 144logn/r, which is implied by (10.13) with C′ ≥ 144.

Given an ordered graph G = (e1, . . . ,et), we say that an ordered r-regular
graph H is an extension of G if the first t edges of H are equal to G. Let
GG(n,r) be the family of extensions of G and GG =GG(n,r) be a graph chosen
uniformly at random from GG(n,r).

Further, for a graph H ∈ GG(n,r) and u,v ∈ [n] let

degH|G(u,v) = |{w ∈ [n] : {u,w} ∈ H \G,{v,w} ∈ H}|.

Note that degH|G(u,v) is not in general symmetric in u and v, but for G = /0
coincides with the usual co-degree in a graph H.

The next fact is used in the proof of Lemma 10.15 only.

Lemma 10.14 Let graph G with t ≤ (1− ε)M edges be such that GG(n,r) is
nonempty. For each e /∈ G we have

P(e ∈GG)≤
4r
εn

. (10.19)

Moreover, if l ≥ l0 := 4r2/(εn), then for every u,v ∈ [n] we have

P
(

degGG|G(u,v)> l
)
≤ 2−(l−l0). (10.20)

Proof To prove (10.19) define the families

Ge∈ = {H ∈ GG(n,r) : e ∈ H} and Ge/∈ =
{

H ′ ∈ GG(n,r) : e /∈ H ′
}
.

Let us define an auxiliary bipartite graph B between Ge∈ and Ge/∈ in which
H ∈ Ge∈ is connected to H ′ ∈ Ge/∈ whenever H ′ can be obtained from H by the
following switching operation. Fix an ordered edge {w,x} in H \G which is
disjoint from e = {u,v} and such that there are no edges between {u,v} and
{w,x} and replace the edges {u,v} and {w,x} by {u,w} and {v,x} to obtain
H ′. Writing f (H) for the number of graphs H ′ ∈ Ge/∈ which can be obtained
from H by a switching, and b(H ′) for the number of graphs H ∈ Ge∈ such that
H ′ can be obtained H by a switching, we get that

|Ge∈|min
H

f (H)≤ |E(B)| ≤ |Ge/∈|max
H ′

b(H ′). (10.21)
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v

u′

Figure 10.8 Switching between G (l) and G (l−1): Before and after.

We have b(H ′) ≤ degH ′(u)degH ′(v) ≤ r2. On the other hand, recalling that
t ≤ (1− ε)M, for every H ∈ Ge∈ we get

f (H)≥M− t−2r2 ≥ εM
(

1− 2r2

εM

)
≥ εM

2
,

because, assuming C′ ≥ 8, we have

2r2

εM
≤ 4r

C′n

(n
r

)1/3
≤ 4

C′
≤ 1

2
.

Therefore (10.21) implies that

P(e ∈GG)≤
|Ge∈|
|Ge/∈|

≤ 2r2

εM
=

4r
εn

,

which concludes the proof of (10.19).
To prove (10.20), fix u,v ∈ [n] and define the families

G (l) =
{

H ∈ GG(n,r) : degH|G(u,v) = l
}
, l = 0,1, . . . .

We compare sizes of G (l) and G (l−1) in a similar way as above. For this we
define the following switching which maps a graph H ∈ G (l) to a graph H ′ ∈
G (l− 1). Select a vertex w contributing to degH|G, that is, such that {u,w} ∈
H \G and {v,w} ∈ H; pick an ordered pair u′,w′ ∈ [n] \ {u,v,w} such that
{u′,w′} ∈ H \G and there are no edges of H between {u,v,w} and {u′,w′};
replace edges {u,w} and {u′,w′} by {u,u′} and {w,w′} (see Figure 10.8).

The number of ways to apply a forward switching to H is

f (H)≥ 2l(M− t−3r2)≥ 2lεM
(

1− 3r2

εM

)
≥ lεM,

since, assuming C′ ≥ 12 we have

3r2

εM
=

6r
εn
≤ 6

C′

( r
n

)2/3
≤ 1

2
,
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and the number of ways to apply a backward switching is b(H)≤ r3. So,

|G (l)|
|G (l−1)|

≤
maxH∈G (l−1) b(H)

minH∈G (l) f (H)
≤ 2r2

εln
≤ 1

2
,

by the assumption l ≥ l0 := 4r2/(εn). Then

P
(

degGG|G(u,v)> l
)
≤∑

i>l

|G (i)|
|GG(n,r)|

≤∑
i>l

|G (i)|
|G (l0)|

= ∑
i>l

i

∏
j=l0+1

|G ( j)|
|G ( j−1)|

≤∑
i>l

2−(i−l0) = 2−(l−l0),

which completes the proof of (10.20).
For the last lemma, which will be directly used in Lemma 10.12, we need to

provide a few more definitions regarding random r-regular multigraphs.
Let G be an ordered graph with t edges. Let MG(n,r) be a random multi-

graph extension of G to an ordered r-regular multigraph. Namely, MG(n,r)
is a sequence of M edges (some of which may be loops), the first t of which
comprise G, while the remaining ones are generated by taking a uniform ran-
dom permutation Π of the multiset {1, . . . ,1, . . . ,n, . . . ,n} with multiplicities
r−degG(v), v ∈ [n], and splitting it into consecutive pairs.

Recall that the number of such permutations is

NG :=
(2(M− t))!

∏v∈[n] (r−degG(v))!
,

and note that if a multigraph extension H of G has l loops, then

P(MG(n,r) = H) = 2M−t−l/NG. (10.22)

Thus, MG(n,r) is not uniformly distributed over all multigraph extensions of
G, but it is uniform over GG(n,r). Thus, MG(n,r), conditioned on being simple,
has the same distribution as GG(n,r). Further, for every edge e /∈G, let us write

Me =MG∪e(n,r) and Ge = GG∪e(n,r). (10.23)

The next claim shows that the probabilities of simplicity P(Me ∈ Ge) are
asymptotically the same for all e 6∈ G.

Lemma 10.15 Let G be graph with t ≤ (1− ε)M edges such that GG(n,r) is
nonempty. If ∆G ≤ (1− ε/2)r, then for every e′,e′′ /∈ G we have

P(Me′′ ∈ Ge′′)

P(Me′ ∈ Ge′)
≥ 1− ε

2
.
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Proof Set

M′ =Me′ M′′ =Me′′ , G ′ = Ge′ , and G ′′ = Ge′′ , (10.24)

for convenience. We start by constructing a coupling of M′ and M′′ in which
they differ in at most three positions (counting in the replacement of e′ by e′′

at the (t +1)st position).
Let e′ = {u′,v′} and e′′ = {u′′,v′′}. Suppose first that e′ and e′′ are disjoint.

Let Π′ be the permutation underlying the multigraph M′. Let Π∗ be obtained
from Π′ by replacing a uniform random copy of u′′ by u′ and a uniform random
copy of v′′ by v′. If e′ and e′′ share a vertex, then assume, without loss of
generality, that v′ = v′′, and define Π∗ by replacing only a random u′′ in Π′ by
u′. Then define M∗ by splitting Π∗ into consecutive pairs and appending them
to G∪ e′′.

It is easy to see that Π∗ is uniform over permutations of the multiset {1, . . . ,
1, . . . ,n, . . . ,n}with multiplicities d−degG∪e′′(v),v∈ [n], and therefore M∗ has
the same distribution as M′′. Thus, we will further identify M∗ and M′′.

Observe that if we condition M′ on being a simple graph H, then M∗ =M′′
can be equivalently obtained by choosing an edge incident to u′′ in H \ (G∪
e′) uniformly at random, say, {u′′,w}, and replacing it by {u′,w}, and then
repeating this operation for v′′ and v′. The crucial idea is that such a switching
of edges is unlikely to create loops or multiple edges.

It is, however, possible, that for certain H this is not true. For example, if
e′′ ∈ H \ (G∪ e′), then the random choice of two edges described above is
unlikely to destroy this e′′, but e′ in the non-random part will be replaced by
e′′, thus creating a double edge e′′. Moreover, if almost every neighbor of u′′ in
H \ (G∪ e′) is also a neighbor of u′, then most likely the replacement of u′′ by
u′ will create a double edge. To avoid such instances, we want to assume that

(i) e′′ /∈ H
(ii) max

(
degH|G∪e′(u

′,u′′),degH|G∪e′(v
′,v′′)

)
≤ l0 + log2 n,

where l0 = 4r2/εn is as in Lemma 10.14. Define the following subfamily of
simple extensions of G∪ e′:

G ′nice =
{

H ∈ G ′ : H satisfies (i) and (ii)
}
.

Since M′, conditioned on M′ ∈ G ′, is distributed as GG∪e′(n,r), by Lemma
10.14 and the assumption (10.13) with C′ ≥ 20,

Pr
(
M′ /∈ G ′nice |M′ ∈ G ′

)
= P

(
GG∪e′(n,r) 6∈ G ′nice

)
≤ 4r

εn
+2×2− log2 n ≤ ε

4
. (10.25)
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We have

Pr
(
M′′ ∈ G ′′ |M′ ∈ G ′nice

)
Pr
(
M′ ∈ G ′nice |M′ ∈ G ′

)
=

P(M′′ ∈ G ′′,M′ ∈ G ′nice)

P(M′ ∈ G ′nice)
·
P(M′ ∈ G ′nice,M′ ∈ G ′)

P(M′ ∈ G ′)
≤

P(M′′ ∈ G ′′)

P(M′ ∈ G ′)
. (10.26)

To complete the proof of the claim, it suffices to show that

Pr
(
M′′ ∈ G ′′ |M′ ∈ G ′nice

)
≥ 1− ε

4
, (10.27)

since plugging (10.25) and (10.27) into (10.26) will complete the proof of the
statement.

To prove (10.27), fix H ∈ G ′nice and condition on M′ =H. A loop can only be
created in M′′ when u′′ is incident to u′ in H \(G∪e′) and the randomly chosen
edge is {u′,u′′}, or, provided v′ 6= v′′, when v′′ is incident to v′ in H \ (G∪ e′)
and we randomly choose {v′,v′′}. Therefore, recalling that ∆G ≤ (1− ε/2)r,
we get

Pr
(
M′′ has a loop |M′ = H

)
≤ 1

degH\(G∪e′)(u′′)
+

1
degH\(G∪e′)(v′′)

≤ 4
εr
≤ ε

8
, (10.28)

where the second term is present only if e′ ∩ e′′ = /0, and the last inequality is
implied by (10.13).

A multiple edge can be created in three ways: (i) by choosing, among the
edges incident to u′′, an edge {u′′,w} ∈ H \ (G∪ e′) such that {u′,w} ∈ H;
(ii) similarly for v′′ (if v′ 6= v′′); (iii) choosing both edges {u′′,v′} and {v′′,u′}
(provided they exist in H \ (G∪ e′)). Therefore, by (ii) and assumption ∆G ≤
(1− ε/2)r,

Pr
(
M′′ has a multiple edge |M′ = H

)
≤

degH|G∪e′(u
′′,u′)

degH\(G∪e′)(u′′)
+

degH|G∪e′(v
′′,v′)

degH\(G∪e′)(v′′)

+
1

degH\(G∪e′)(u′′)degH\(G∪e′)(v′′)

≤ 2
(

8r
ε2n

+
2log2 n

εr

)
+

4
ε2r2 ≤

ε

8
, (10.29)
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because (10.13) implies ε >C′(r/n)1/3 and

ε >C′(logn/r)1/3 >C′(logn/r)1/2

and we can choose arbitrarily large C′. (Again, in case when |e′∩ e′′| = 1, the
R-H-S of (10.29) reduces to only the first summand.)

Combining (10.28) and (10.29), we have shown (10.27).

Proof of Lemma 10.12 In view of Lemma 10.13 it suffices to show that

Pr(ηt+1 = e |Gr(t) = G)≥ 1− ε(n
2

)
− t

, e /∈ G.

for every t ≤ (1− ε)M and G such that

r(τ +δ )≥ r−degG(v)≥ r(τ−δ )≥ εr
2
, v ∈ [n], (10.30)

where

τ = 1− t/M, δ = 6
√

τ logn/r.

For every e′,e′′ /∈ G we have (recall the definitions (10.23) and (10.24))

Pr(ηt+1 = e′′ |Gr(t) = G)

Pr(ηt+1 = e′ |Gr(t) = G)
=
|GG∪e′′(n,r)|
|GG∪e′(n,r)|

=
|G ′′|
|G ′|

. (10.31)

By (10.22) we have

P
(
M′ ∈ G ′

)
=
|G ′|2M−t

NG
=
|G ′|2M−t

∏v∈[n](r−degG∪e′(v))!
(2(M− t))!

,

and similarly for the family G ′′. This yields, after a few cancellations, that

|G ′′|
|G ′|

=
∏v∈e′′\e′ (r−degG(v))

∏v∈e′\e′′ (r−degG(v))
· P(M

′′ ∈ G ′′)

P(M′ ∈ G ′)
(10.32)

By (10.30), the ratio of products in (10.32) is at least(
τ−δ

τ +δ

)2

≥
(

1− 2δ

τ

)2

≥ 1−24

√
logn
τr
≥ 1−24

√
logn
εr
≥ 1− ε

2
,

where the last inequality holds by the assumption (10.13). Since by
Lemma 10.15 the ratio of probabilities in (10.32) is

P(M′′ ∈ G ′′)

P(M′ ∈ G ′)
≥ 1− ε

2
,

we have obtained that

Pr(ηt+1 = e′′ |Gr(t) = G)

Pr(ηt+1 = e′ |Gr(t) = G)
≥ 1− ε.
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Finally, noting that

max
e′ /∈G

Pr
(
ηt+1 = e′ |Gr(t) = G

)
is at least as large as the average over all e′ /∈ G, which is 1

(n
2)−t

, we conclude

that for every e /∈ G

Pr(ηt+1 = e |Gr(t) = G)≥ (1− ε)max
e′ /∈G

Pr
(
ηt+1 = e′ |Gr(t) = G

)
≥ 1− ε(n

2

)
− t

,

which finishes the proof.

10.4 Exercises

10.4.1 Suppose that max{di, i = 1,2, . . . ,n} = O(1). Show that Gn,d has a
component of size Ω(n) w.h.p. if and only if (see Molloy and Reed
[583])

n

∑
i=1

di(di−2) = Ω(n).

10.4.2 Let H be a subgraph of Gn,r,r≥ 3 obtained by independently including
each vertex with probability 1+ε

r−1 , where ε > 0 is small and positive.
Show that w.h.p. H contains a component of size Ω(n).

10.4.3 Let x = (x1,x2, . . . ,x2m) be chosen uniformly at random from [n]2m.
Let Gx be the multigraph with vertex set [n] and edges (x2i−1,x2i), i =
1,2, . . . ,m. Let dx(i) be the number of times that i appears in x.

Show that conditional on dx(i) = di, i ∈ [n], Gx has the same distri-
bution as the multigraph γ(F) of Section 10.1.

10.4.4 Suppose that we condition on dx(i) ≥ k for some non-negative integer
k. For r ≥ 0, let

fr(x) = ex−1− x−·· ·− xk−1

(k−1)!
.

Let Z be a random variable taking values in {k,k+1, . . . ,} such that

P(Z = i) =
λ ie−λ

i! fk(λ )
for i≥ k,

where λ is arbitrary and positive.
Show that the degree sequence of Gx is distributed as independent

copies Z1,Z2, . . . ,Zn of Z, subject to Z1 +Z2 + · · ·+Zn = 2m.
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10.4.5 Show that

E(Z) =
λ fk−1(λ )

fk(λ )
.

Show using the Local Central Limit Theorem (see e.g. Durrett [263])
that if E(Z) = 2m

n then

P

(
v

∑
j=1

Z j = 2m− k

)
=

1
σ
√

2πn

(
1+O((k2 +1)v−1

σ
−2)
)

where σ2 = E(Z2)−E(Z)2 is the variance of Z.
10.4.6 Use the model of (i)–(iii) to show that if c = 1+ ε and ε is sufficiently

small and ω→ ∞ then w.h.p. the 2-core of Gn,p, p = c/n does not con-
tain a cycle C, |C| = ω in which more than 10% of the vertices are of
degree three or more.

10.4.7 Let G = Gn,r,r ≥ 3 be the random r-regular configuration multigraph
of Section 10.2. Let X denote the number of Hamilton cycles in G.
Show that

E(X)≈
√

π

2n

(
(r−1)

(
r−2

r

)(r−2)/2
)n

.

10.4.8 Show that w.h.p. Gn,2 consists of O(logn) disjoint cycles.
10.4.9 Show that if graph G = G1 ∪G2 then its rainbow connection satisfies

rc(G) ≤ rc(G1)+ rc(G2)+ |E(G1)∩E(G2)|. Using the contiguity of
Gn,r to the union of r independent matchings, (see Chapter 19), show
that rc(Gn,r) = O(logr n) for r ≥ 6.

10.4.10 Show that w.h.p. Gn,3 is not planar.

10.5 Notes

Giant Components and Cores

Molloy and Reed [583] introduced the criterion for a giant component dis-
cussed in Exercise 10.4.1. They allow the maximum degree to grow with n.
They find the likely size of the giant component. Hatami and Molloy [398]
discuss the size of the largest component in the scaling window for a random
graph with a fixed degree sequence.

Cooper [199] and Janson and Luczak [429] discuss the sizes of the cores of
random graphs with a given degree sequence.
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Hamilton cycles

Robinson and Wormald [650], [652] showed that random r-regular graphs are
Hamiltonian for 3 ≤ r = O(1). In doing this, they introduced the important
new method of small subgraph conditioning. It is a refinement on the Cheby-
shev inequality. Somewhat later Cooper, Frieze and Reed [224] and Krivele-
vich, Sudakov, Vu Wormald [513] removed the restriction r = O(1). Frieze,
Jerrum, Molloy, Robinson and Wormald [331] gave a polynomial time algo-
rithm that w.h.p. finds a Hamilton cycle in a random regular graph. Cooper,
Frieze and Krivelevich [218] considered the existence of Hamilton cycles in
Gn,d for certain classes of degree sequence.

Chromatic number

Frieze and Łuczak [340] proved that w.h.p. χ(Gn,r) = (1 + or(1)) r
2logr for

r = O(1). Here or(1)→ 0 as r→∞. Achlioptas and Moore [4] determined the
chromatic number of a random r-regular graph to within three values, w.h.p.
Kemkes, Pérez-Giménez and Wormald [480] reduced the range to two val-
ues. Shi and Wormald [684], [685] consider the chromatic number of Gn,r for
small r. In particular they show that w.h.p. χ(Gn,4) = 3. Frieze, Krivelevich
and Smyth [335] gave estimates for the chromatic number of Gn,d for certain
classes of degree sequence.

Eigenvalues

The largest eigenvalue of the adjacency matrix of Gn,r is always r. Kahn and
Szemerédi [457] showed that w.h.p. the second eigenvalue is of order O(r1/2).
Friedman [317] proved that w.h.p. the second eigenvalue is at most 2(r−
1)1/2 + o(1). Broder, Frieze, Suen and Upfal [163] considered Gn,d where
C−1d ≤ di ≤Cd for some constant C > 0 and d ≤ n1/10. They show that w.h.p.
the second eigenvalue of the adjacency matrix is O(d1/2).

First Order Logic

Haber and Krivelevich [391] studied the first order language on random d-
regular graphs. They show that if r = Ω(n) or r = nα where α is irrational,
then Gn,r obeys a 0-1 law.
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Rainbow Connection

Dudek, Frieze and Tsourakakis [257] studied the rainbow connection of ran-
dom regular graphs. They showed that if 4≤ r =O(1) then rc(Gn,r)=O(logn).
This is best possible up to constants, since rc(Gn,r)≥ diam(Gn,r) = Ω(logn).
Kamčev, Krivelevich and Sudakov [460] gave a simpler proof when r≥ 5, with
a better hidden constant.



11
Intersection Graphs

Let G be a (finite, simple) graph. We say that G is an intersection graph if we
can assign to each vertex v∈V (G) a set Sv, so that {v,w} ∈ E(G) exactly when
Sv ∩ Sw 6= /0. In this case, we say G is the intersection graph of the family of
sets S = {Sv : v ∈V (G)}.

Although all graphs are intersection graphs (see Marczewski [555]) some
classes of intersection graphs are of special interest. Depending on the choice
of family S , often reflecting some geometric configuration, one can consider,
for example, interval graphs defined as the intersection graphs of intervals on
the real line, unit disc graphs defined as the intersection graphs of unit discs on
the plane etc. In this chapter we will discuss properties of random intersection
graphs, where the family S is generated in a random manner.

11.1 Binomial Random Intersection Graphs

Binomial random intersection graphs were introduced by Karoński,
Scheinerman and Singer-Cohen in [472] as a generalisation of the classical
model of the binomial random graph Gn,p.

Let n,m be positive integers and let 0 ≤ p ≤ 1. Let V = {1,2, . . . ,n} be the
set of vertices and for every 1 ≤ k ≤ n, let Sk be a random subset of the set
M = {1,2, . . . ,m} formed by selecting each element of M independently with
probability p. We define a binomial random intersection graph G(n,m, p) as
the intersection graph of sets Sk, k = 1,2, . . .n. Here S1,S2, . . . ,Sn are generated
independently. Hence two vertices i and j are adjacent in G(n,m, p) if and only
if Si∩S j 6= /0.

There are other ways to generate binomial random intersection graphs. For
example, we may start with a classical bipartite random graph Gn,m,p, with
vertex set bipartition

(V,M),V = {1,2, . . . ,n},M = {1,2, . . . ,m},

where each edge between V and M is drawn independently with probability p.
Next, one can generate a graph G(n,m, p) with vertex set V and vertices i and
j of G(n,m, p) connected if and only if they share a common neighbor (in M)

211
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in the random graph Gn,m,p. Here the graph Gn,m,p is treated as a generator of
G(n,m, p).

One observes that the probability that there is an edge {i, j} in G(n,m, p)
equals 1− (1− p2)m, since the probability that sets Si and S j are disjoint is
(1− p2)m, however, in contrast with Gn,p, the edges do not occur independently
of each other.

Another simple observation leads to some natural restrictions on the choice
of probability p. Note that the expected number of edges of G(n,m, p) is,(

n
2

)
(1− (1− p2)m)≈ n2mp2,

provided mp2→ 0 as n→ ∞. Therefore, if we take p = o((n
√

m)−1) then the
expected number of edges of G(n,m, p) tends to 0 as n→ ∞ and therefore
w.h.p. G(n,m, p) is empty.

On the other hand the expected number of non-edges in G(n,m, p) is(
n
2

)
(1− p2)m ≤ n2e−mp2

.

Thus if we take p = (2logn+ω(n))/m)1/2, where ω(n)→ ∞ as n→ ∞, then
the random graph G(n,m, p) is complete w.h.p. One can also easily show that
when ω(n)→−∞ then G(n,m, p) is w.h.p. not complete. So, when studying
the evolution of G(n,m, p) we may restrict ourselves to values of p in the range
between ω(n)/(n

√
m) and ((2logn−ω(n))/m)1/2, where ω(n)→ ∞.

Equivalence

One of the first interesting problems to be considered is the question as to
when the random graphs G(n,m, p) and Gn,p have asymptotically the same
properties. Intuitively, it should be the case when the edges of G(n,m, p) oc-
cur “almost independently”, i.e., when there are no vertices of degree greater
than two in M in the generator Gn,m,p of G(n,m, p). Then each of its edges
is induced by a vertex of degree two in M, “almost” independently of other
edges. One can show that this happens w.h.p. when p = o

(
1/(nm1/3)

)
, which

in turn implies that both random graphs are asymptotically equivalent for all
graph properties P . Recall that a graph property P is defined as a subset of
the family of all labeled graphs on vertex set [n], i.e., P ⊆ 2(

n
2). The follow-

ing equivalence result is due to Rybarczyk [664] and Fill, Scheinerman and
Singer-Cohen [300].
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Theorem 11.1 Let 0≤ a≤ 1, P be any graph property, p = o
(
1/(nm1/3)

)
and

p̂ = 1− exp
(
−mp2(1− p)n−2). (11.1)

Then

P(Gn,p̂ ∈P)→ a

if and only if

P(G(n,m, p) ∈P)→ a

as n→ ∞.

Proof Let X and Y be random variables taking values in a common finite
(or countable) set S. Consider the probability measures L (X) and L (Y ) on S
whose values at A ⊆ S are P(X ∈ A) and P(Y ∈ A). Define the total variation
distance between L (X) and L (Y ) as

dTV (L (X),L (Y )) = sup
A⊆S
|P(X ∈ A)−P(Y ∈ A)|,

which is equivalent to

dTV (L (X),L (Y )) =
1
2 ∑

s∈S
|P(X = s)−P(Y = s)|.

Notice (see Fact 4 of [300]) that if there exists a probability space on which ran-
dom variables X ′ and Y ′ are both defined, with L (X) = L (X ′) and L (Y ) =
L (Y ′), then

dTV (L (X),L (Y ))≤ P(X ′ 6= Y ′). (11.2)

Furthermore (see Fact 3 in [300]) if there exist random variables Z and Z′ such
that L (X |Z = z) = L (Y |Z′ = z), for all z, then

dTV (L (X),L (Y ))≤ 2dTV (L (Z),L (Z′)). (11.3)

We will need one more observation. Suppose that a random variable X has dis-
tribution the Bin(n, p), while a random variable Y has the Poisson distribution,
and EX = EY . Then

dTV (X ,Y ) = O(p). (11.4)

We leave the proofs of (11.2), (11.3) and (11.4) as exercises.
To prove Theorem 11.1 we also need some auxiliary results on a special coupon
collector scheme.

Let Z be a non-negative integer valued random variable, r a non-negative
integer and γ a real, such that rγ ≤ 1. Assume we have r coupons Q1,Q2, . . . ,Qr
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and one blank coupon B. We make Z independent draws (with replacement),
such that in each draw,

P(Qi is chosen) = γ, for i = 1,2, . . . ,r,

and

P(B is chosen) = 1− rγ.

Let Ni(Z), i = 1,2, . . . ,r be a random variable counting the number of times
that coupon Qi was chosen. Furthermore, let

Xi(Z) =
{

1 if Ni(Z)≥ 1,
0 otherwise.

The number of different coupons selected is given by

X(Z) =
r

∑
i=1

Xi(Z). (11.5)

With the above definitions we observe that the following holds.

Lemma 11.2 If a random variable Z has the Poisson distribution with ex-
pectation λ then Ni(Z), i = 1,2, . . . ,r, are independent and identically Poisson
distributed random variables, with expectation λγ . Moreover the random vari-
able X(Z) has the distribution Bin(r,1− e−λγ).

Let us consider the following special case of the scheme defined above,
assuming that r =

(n
2

)
and γ = 1/

(n
2

)
. Here each coupon represents a distinct

edge of Kn.

Lemma 11.3 Suppose p = o(1/n) and let a random variable Z be the
Bin
(
m,
(n

2

)
p2(1− p)n−2

)
distributed, while a random variable Y be the

Bin
((n

2

)
,1− e−mp2(1−p)n−2

)
distributed. Then

dTV (L (X(Z)),L (Y )) = o(1).

Proof Let Z′ be a Poisson random variable with the same expectation as Z,
i.e.,

EZ′ = m
(

n
2

)
p2(1− p)n−2.

By Lemma 11.2, X(Z′) has the binomial distribution

Bin
((

n
2

)
,1− e−mp2(1−p)n−2

)
,
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and so, by (11.3) and (11.4), we have

dTV (L (Y ),L (X(Z)))

= dTV (L (X(Z′)),L (X(Z)))≤ 2dTV (L (Z′),L (Z))

≤ O
((

n
2

)
p2(1− p)n−2

)
= O

(
n2 p2)= o(1).

Now define a random intersection graph G2(n,m, p) as follows. Its vertex set
is V = {1,2, . . . ,n}, while e= {i, j} is an edge in G2(n,m, p) iff in a (generator)
bipartite random graph Gn,m,p, there is a vertex w ∈M of degree two such that
both i and j are connected by an edge with w.

To complete the proof of our theorem, notice that,

dTV (L (G(n,m, p)),L (Gn,p̂))≤
dTV (L (G(n,m, p)),L (G2(n,m, p)))+dTV (L (G2(n,m, p)),L (Gn,p̂))

where p̂ is defined in (11.1). Now, by (11.2)

dTV (L (G(n,m, p)),L (G2(n,m, p)))

≤ P(L (G(n,m, p)) 6= L (G2(n,m, p)))

≤ P(∃w ∈M of Gn,m,p s.t. deg(w)> 2)≤ m
(

n
3

)
p3 = o(1),

for p = o(1/(nm1/3).
Hence it remains to show that

dTV (L (G2(n,m, p)),L (Gn,p̂)) = o(1). (11.6)

Let Z be distributed as Bin
(
m,
(n

2

)
p2(1− p)n−2

)
, X(Z) is defined as in (11.5)

and let Y be distributed as Bin
((n

2

)
,1− e−mp2(1−p)n−2

)
. Then the number of

edges |E(G2(n,m, p))| = X(Z) and |E(Gn,p̂))| = Y . Moreover for any two
graphs G and G′ with the same number of edges

P(G2(n,m, p) = G) = P(G2(n,m, p) = G′)

and

P(Gn,p̂ = G) = P(Gn,p̂ = G′).

Equation (11.6) now follows from Lemma 11.3. The theorem follows immedi-
ately.



216 Intersection Graphs

For monotone properties (see Chapter 1) the relationship between the clas-
sical binomial random graph and the respective intersection graph is more pre-
cise and was established by Rybarczyk [664].

Theorem 11.4 Let 0≤ a≤ 1, m = nα ,α ≥ 3, Let P be any monotone graph
property. For α > 3, assume

Ω(1/(nm1/3)) = p = O(
√

logn/m)

while for α = 3 assume
(
1/(nm1/3)

)
= o(p). Let

p̂ = 1− exp
(
−mp2(1− p)n−2).

If for all ε = ε(n)→ 0

P(Gn,(1+ε)p̂ ∈P)→ a,

then

P(G(n,m, p) ∈P)→ a

as n→ ∞.

Small subgraphs

Let H be any fixed graph. A clique cover C is a collection of subsets of vertex
set V (H) such that, each induces a complete subgraph (clique) of H, and for
every edge {u,v} ∈ E(H), there exists C ∈ C , such that u,v ∈ C. Hence, the
cliques induced by sets from C exactly cover the edges of H. A clique cover is
allowed to have more than one copy of a given set. We say that C is reducible
if for some C ∈ C , the edges of H induced by C are contained in the union of
the edges induced by C \C, otherwise C is irreducible. Note that if C ∈ C and
C is irreducible, then |C| ≥ 2.

In this section, |C | stands for the number of cliques in C , while ∑C denotes
the sum of clique sizes in C , and we put ∑C = 0 if C = /0.

Let C = {C1,C2, . . . ,Ck} be a clique cover of H. For S ⊆ V (H) define the
following two restricted clique covers

Ct [S] := {Ci∩S : |Ci∩S| ≥ t, i = 1,2, . . . ,k},

where t = 1,2. For a given S and t = 1,2, let

τt = τt(H,C ,S) =
(

n|S|/∑Ct [S]m|Ct [S]|/∑Ct [S]
)−1

.
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Finally, let

τ(H) = min
C

max
S⊆V (H)

{τ1,τ2},

where the minimum is taken over all clique covers C of H. We can in this cal-
culation restrict our attention to irreducible covers.
Karoński, Scheinerman and Singer-Cohen [472] proved the following theo-

rem.

Theorem 11.5 Let H be a fixed graph and mp2→ 0. Then

lim
n→∞

P(H ⊆ G(n,m, p)) =

{
0 if p/τ(H)→ 0

1 if p/τ(H)→ ∞.

As an illustration, we will use this theorem to show the threshold for com-
plete graphs in G(n,m, p), when m = nα , for different ranges of α > 0.

Corollary 11.6 For a complete graph Kh with h≥ 3 vertices and m = nα , we
have

τ(Kh) =

{
n−1m−1/h for α ≤ 2h/(h−1)

n−1/(h−1)m−1/2 for α ≥ 2h/(h−1).

Proof There are many possibilities for clique covers to generate a copy of a
complete graph Kh in G(n,m, p). However in the case of Kh only two play a
dominating role. Indeed, we will show that for α ≤ α0, α0 = 2h/(h− 1) the
clique cover C = {V (Kh)} composed of one set containing all h vertices of Kh

only matters, while for α ≥ α0 the clique cover C =
(Kh

2

)
, consisting of

(h
2

)
pairs of endpoints of the edges of Kh, takes the leading role.

Let V =V (Kh) and denote those two clique covers by {V} and {E}, respec-
tively. Observe that for the cover {V} the following equality holds.

max
S⊆V
{τ1(Kh,{V},S),τ2(Kh,{V},S)}= τ1(Kh,{V},V ). (11.7)

To see this, check first that for |S|= h,

τ1(Kh,{V},V ) = τ2(Kh,{V},V ) = n−1m−1/h.

For S of size |S|= s, 2≤ s≤ h−1 restricting the clique cover {V} to S, gives
a single s-clique, so for t = 1,2

τt(Kh,{V},S) = n−1m−1/s < n−1m−1/h.
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Finally, when |S| = 1, then τ1 = (nm)−1, while τ2 = 0, both smaller than
n−1m−1/h, and so equation (11.7) follows.
For the edge-clique cover {E} we have a similar expression, viz.

max
S⊆V
{τ1(Kh,{E},S),τ2(Kh,{E},S)}= τ1(Kh,{E},V ). (11.8)

To see this, check first that for |S|= h,

τ1(Kh,{E},V ) = n−1/(h−1)m−1/2.

Let S ⊂ V , with s = |S| ≤ h− 1, and consider restricted clique covers with
cliques of size at most two, and exactly two.

For τ1, the clique cover restricted to S is the edge-clique cover of Ks, plus a
1-clique for each of the h− s external edges for each vertex of Ks, so

τ1(Kh,{E},S)

=
(

ns/[s(s−1)+s(h−s)]m[s(s−1)/2+s(h−s)]/[s(s−1)+s(h−s)]
)−1

=
(

n1/(h−1)m[h−(s+1)/2]/(h−1)
)−1

≤
(

n1/(h−1)mh/(2(h−1))
)−1

<
(

n1/(h−1)m1/2
)−1

,

while for τ2 we have

τ2(Kh,{E},S) =
(

n1/(s−1)m1/2
)−1

<
(

n1/(h−1)m1/2
)−1

,

thus verifying equation (11.8).
Let C be any irreducible clique cover of Kh (hence each clique has size at

least two). We will show that for any fixed α

τ1(Kh,C ,V )≥

{
τ1(Kh,{V},V ) for α ≤ 2h/(h−1)

τ1(Kh,{E},V ) for α ≥ 2h/(h−1).

Thus,

τ1(Kh,C ,V )≥min{τ1(Kh,{V},V ),τ1(Kh,{E},V )} . (11.9)

Because m = nα we see that

τ1(Kh,C ,V ) = n−xC (α),

where

xC (α) =
h

∑C
+
|C |
∑C

α, x{V}(α) = 1+
α

h
, x{E}(α) =

1
h−1

+
α

2
.
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(To simplify notation, below we have replaced x{V},x{E} by xV ,xE , respec-
tively). Notice, that for α0 = 2h/(h−1) exponents

xV (α0) = xE(α0) = 1+
2

h−1
.

Moreover, for all values of α < α0 the function xV (α) > xE(α), while for
α > α0 the function xV (α)< xE(α).

Now, observe that xC (0) = h
∑C ≤ 1 since each vertex is in at least one clique

of C . Hence xC (0) ≤ xV (0) = 1. We will show also that xC (α) ≤ xV (α) for
α > 0. To see this we need to bound |C |/∑C .

Suppose that u ∈ V (Kh) appears in the fewest number of cliques of C , and
let r be the number of cliques Ci ∈ C to which u belongs. Then

∑C = ∑
i:Ci3u

|Ci|+ ∑
i:Ci 63u

|Ci| ≥ ((h−1)+ r)+2(|C |− r),

where h− 1 counts all other vertices aside from u since they must appear in
some clique with u.
For any v ∈V (Kh) we have

∑C + |{i : Ci 3 v}|− (h−1)≥∑C + r− (h−1)

≥ (h−1)+ r+2(|C |− r)+ r− (h−1)

= 2|C |.

Summing the above inequality over all v ∈V (Kh),

h∑C +∑C −h(h−1)≥ 2h|C |,

and dividing both sides by 2h∑C , we finally get

|C |
∑C

≤ h+1
2h
− h−1

2∑C
.

Now, using the above bound,

xC (α0) =
h

∑C
+
|C |
∑C

(
2h

h−1

)
≤ h

∑C
+

(
h+1

2h
− h−1

2∑C

)(
2h

h−1

)
= 1+

2
h−1

= xV (α0).

Now, since xC (α)≤ xV (α) at both α = 0 and α = α0, and both functions are
linear, xC (α)≤ xV (α) throughout the interval (0,α0).
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Since xE(α0) = xV (α0) we also have xC (α0)≤ xE(α0). The slope of xC (α)

is |C |
∑C , and by the assumption that C consists of cliques of size at least 2,

this is at most 1/2. But the slope of xE(α) is exactly 1/2. Thus for all α ≥
α0, xC (α)≤ xE(α). Hence the bounds given by formula (11.9) hold.

One can show (see [662]) that for any irreducible clique-cover C that is not
{V} nor {E},

max
S
{τ1(Kh,C ,S),τ2(Kh,C ,S)} ≥ τ1(Kh,C ,V ).

Hence, by (11.9),

max
S
{τ1(Kh,C ,S),τ2(Kh,C ,S)} ≥min{τ1(Kh,{V},V ),τ1(Kh,{E},V )}.

This implies that

τ(Kh) =

{
n−1m−1/h for α ≤ α0

n−1/(h−1)m−1/2 for α ≥ α0,

which completes the proof of Corollary 11.6.

To add to the picture of asymptotic behavior of small cliques in
G(n,m, p) we will quote the result of Rybarczyk and Stark [662], who with
use of Stein’s method (see Chapter 20.3) obtained an upper bound on the total
variation distance between the distribution of the number of h-cliques and a
respective Poisson distribution for any fixed h.

Theorem 11.7 Let G(n,m, p) be a random intersection graph, where m= nα .
Let c> 0 be a constant and h≥ 3 a fixed integer, and Xn be the random variable
counting the number of copies of a complete graph Kh in G(n,m, p).

(i) If α < 2h
h−1 , p≈ cn−1m−1/h then

λn = EXn ≈ ch/h!

and

dTV (L (Xn),Po(λn)) = O
(

n−α/h
)

;

(ii) If α = 2h
h−1 , p≈ cn−(h+1)/(h−1) then

λn = EXn ≈
(

ch + ch(h−1)
)
/h!

and

dTV (L (Xn),Po(λn)) = O
(

n−2/(h−1)
)

;
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(iii) If α > 2h
h−1 , p≈ cn−1/(h−1)m−1/2 then

λn = EXn ≈ ch(h−1)/h!

and

dTV (L (Xn),Po(λn)) = O
(

n
(

h− α(h−1)
2 − 2

h−1

)
+n−1

)
.

11.2 Random Geometric Graphs

The graphs we consider in this section are the intersection graphs that we ob-
tain from the intersections of balls in the d-dimensional unit cube, D = [0,1]d

where d ≥ 2. For simplicity we will only consider d = 2 in the text.
We let X = {X1,X2, . . . ,Xn} be independently and uniformly chosen from

D = [0,1]2. For r = r(n) let GX ,r be the graph with vertex set X . We join
Xi,X j by an edge iff X j lies in the disk

B(Xi,r) =
{

X ∈ [0,1]2 : |X−Xi| ≤ r
}
.

Here | | denotes Euclidean distance.
For a given set X we see that increasing r can only add edges and so thresh-

olds are usually expressed in terms of upper/lower bounds on the size of r.
The book by Penrose [619] gives a detailed exposition of this model. Our

aim here is to prove some simple results that are not intended to be best possi-
ble.

Connectivity

The threshold (in terms of r) for connectivity was shown to be identical with
that for minimum degree one, by Gupta and Kumar [388]. This was extended
to k-connectivity by Penrose [618]. We do not aim for tremendous accuracy.
The simple proof of connectivity was provided to us by Tobias Müller [593].

Theorem 11.8 Let ε > 0 be arbitrarily small and let r0 = r0(n) =
√

logn
πn .

Then w.h.p.

GX ,r contains isolated vertices if r ≤ (1− ε)r0 (11.10)

GX ,r is connected if r ≥ (1+ ε)r0 (11.11)
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Proof First consider (11.10) and the degree of X1. Let E1 be the event that X1

is within distance r of the boundary ∂D of D. Then

P(X1 is isolated | Ē1)≥ (1−πr2)n−1.

The factor (1− πr2)n−1 is the probability that none of X2,X3, . . . ,Xn lie in
B(X1,r), given that B(X1,r)⊆ D.

Now

(1−πr2)n−1 ≥
(

1− (1− ε) logn
n

)n

= nε−1+o(1).

Now the area with distance r of ∂D is 4r(1− r) and so P(Ē1) = 1−4r(1− r).
So if I is the set of isolated vertices at distance greater than r of ∂D then

E(|I|)≥ nε−1+o(1)(1−4r)→ ∞. Now

P(X1 ∈ I | X2 ∈ I)≤ (1−4r(1− r))
(

1− πr2

1−πr2

)n−2

≤ (1+o(1))P(X1 ∈ I).

The expression
(

1− πr2

1−πr2

)
is the probability that a random point lies in

B(X1,r), given that it does not lie in B(X2,r), and that |X2−X1| ≥ 2r. Equation
(11.10) now follows from the Chebyshev inequality (20.3).

Now consider (11.11). Let η� ε be a sufficiently small constant and divide
D into `2

0 sub-squares of side length ηr, where `0 = 1/ηr. We refer to these
sub-squares as cells. We can assume that η is chosen so that `0 is an integer.
We say that a cell is good if contains at least i0 = η3 logn members of X and
bad otherwise.

We next let K = 100/η2 and consider the number of bad cells in a K×K
square block of cells.

Lemma 11.9 Let B be a K ×K square block of cells. The following hold
w.h.p.:

(a) If B is further than 100r from the closest boundary edge of D then B con-
tains at most k0 = (1− ε/10)π/η2 bad cells.

(b) If B is within distance 100r of exactly one boundary edge of D then B
contains at most k0/2 bad cells.

(c) If B is within distance 100r of two boundary edges of D then B contains
no bad cells.
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Proof (a) There are less than `2
0 < n such blocks. Furthermore, the probability

that a fixed block contains k0 or more bad cells is at most(
K2

k0

)( i0

∑
i=0

(
n
i

)
(ηr2)i(1−η

2r2)n−i

)k0

≤
(

K2e
k0

)k0
(

2
(

ne
i0

)i0
(ηr2)i0 e−η2r2(n−i0)

)k0

. (11.12)

Here we have used Corollary 21.4 to obtain the LHS of (11.12).
Now(

ne
i0

)i0
(ηr2)i0e−η2r2(n−i0)

≤ nO(η3 log(1/η)−η2(1+ε−o(1))/π ≤ n−η2(1+ε/2)/π , (11.13)

for η sufficiently small. So we can bound the RHS of (11.12) by(
2K2en−η2(1+ε/2)/π

(1− ε/10)π/η2

)(1−ε/10)π/η2

≤ n−1−ε/3. (11.14)

Part (a) follows after inflating the RHS of (11.14) by n to account for the num-
ber of choices of block.

(b) Replacing k0 by k0/2 replaces the LHS of (11.14) by(
4K2en−η2(1+ε/2)/π

(1− ε/10)π/2η2

)(1−ε/10)π/2η2

≤ n−1/2−ε/6. (11.15)

Observe now that the number of choices of block is O(`0) = o(n1/2) and then
Part (b) follows after inflating the RHS of (11.15) by o(n1/2) to account for the
number of choices of block.

(c) Equation (11.13) bounds the probability that a single cell is bad. The num-
ber of cells in question in this case is O(1) and (c) follows.
We now do a simple geometric computation in order to place a lower bound
on the number of cells within a ball B(X ,r).

Lemma 11.10 A half-disk of radius r1 = r(1−η
√

2) with diameter part of
the grid of cells contains at least (1−2η1/2)π/2η2 cells.

Proof We place the half-disk in a 2r1× r1 rectangle. Then we partition the
rectangle into ζ1 = r1/rη rows of 2ζ1 cells. The circumference of the circle
will cut the ith row at a point which is r1(1− i2η2)1/2 from the centre of the
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row. Thus the ith row will contain at least 2
⌊
r1(1− i2η2)1/2/rη

⌋
complete

cells. So the half-disk contains at least

2r1

rη

1/η

∑
i=1

((1− i2η
2)1/2−η)≥ 2r1

rη

∫ 1/η−1

x=1
((1− x2

η
2)1/2−η)dx

=
2r1

rη2

∫ arcsin(1−η)

θ=arcsin(η)
(cos2(θ)−η cos(θ))dθ

≥ 2r1

rη2

[
θ

2
− sin(2θ)

4
−η

]arcsin(1−η)

θ=arcsin(η)

.

Now

arcsin(1−η)≥ π

2
−2η

1/2 and arcsin(η)≤ 2η .

So the number of cells is at least

2r1

rη2

(
π

4
−η

1/2−η

)
.

This completes the proof of Lemma 11.10.
We deduce from Lemmas 11.9 and 11.10 that

X ∈ X implies that B(X ,r1) ∩ D contains at least one good cell. (11.16)

Now let Γ be the graph whose vertex set consists of the good cells and where
cells c1,c2 are adjacent iff their centres are within distance r1. Note that if c1,c2

are adjacent in Γ then any point in X ∩ c1 is adjacent in GX ,r to any point in
X ∩ c2. It follows from (11.16) that all we need to do now is show that Γ is
connected.
It follows from Lemma 11.9 that at most π/η2 rows of a K×K block contain
a bad cell. Thus more than 95% of the rows and of the columns of such a block
are free of bad cells. Call such a row or column good. The cells in a good
row or column of some K×K block form part of the same component of Γ.
Two neighboring blocks must have two touching good rows or columns so the
cells in a good row or column of some block form part of a single component
of Γ. Any other component C must be in a block bounded by good rows and
columns. But the existence of such a component means that it is surrounded
by bad cells and then by Lemma 11.10 that there is a block B with at least
(1− 3η1/2)π/η2 bad cells if it is far from the boundary and at least half of
this if it is close to the boundary. But this contradicts Lemma 11.9. To see this,
consider a cell in C whose center c has largest second component i.e. is highest
in C. Now consider the half disk H of radius r1 that is centered at c. We can
assume (i) H is contained entirely in B and (ii) at least (1−2η1/2)π/2η2−(1−
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η
√

2)/η ≥ (1− 3η1/2)π/2η2 cells in H are bad. Property (i) arises because
cells above c whose centers are at distance at most r1 are all bad and for (ii)
we have discounted any bad cells on the diameter through c that might be in
C. This provides half the claimed bad cells. We obtain the rest by considering
a lowest cell of C. Near the boundary, we only need to consider one half disk
with diameter parallel to the closest boundary. Finally observe that there are
no bad cells close to a corner.

Hamiltonicity

The first inroads on the Hamilton cycle problem were made by Diaz, Mitsche
and Pérez-Giménez [241]. Best possible results were later given by Balogh,
Bollobás, Krivelevich, Müller and Walters [49] and by Müller, Pérez and
Wormald [594]. As one might expect Hamiltonicity has a threshold at r close
to r0. We now have enough to prove the result from [241].
We start with a simple lemma, taken from [49].

Lemma 11.11 The subgraph Γ contains a spanning tree of maximum degree
at most six.

Proof Consider a spanning tree T of γ that minimises the sum of the lengths
of the edges joining the centres of the cells. Then T does not have any vertex
of degree greater than 6. This is because, if centre v were to have degree at
least 7, then there are two neighboring centres u,w of v such that the angle
between the line segments [v,u] and [v,w] is strictly less than 60 degrees. We
can assume without loss of generality that [v,u] is shorter than [v,w]. Note that
if we remove the edge {v,w} and add the edge {u,w} then we obtain another
spanning tree but with strictly smaller total edge-length, a contradiction. Hence
T has maximum degree at most 6.

Theorem 11.12 Suppose that r ≥ (1+ ε)r0. Then w.h.p. GX ,r is Hamilto-
nian.

Proof We begin with the tree T promised by Lemma 11.11. Let c be a good
cell. We partition the points of X ∩c into 2d roughly equal size sets P1,P2, . . . ,

P2d where d≤ 6 is the degree of c in T . Since, the points of X ∩c form a clique
in G = GX ,r we can form 2d paths in G from this partition.
We next do a walk W through T e.g. by Breadth First Search that goes through
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each edge of T twice and passes through each node of Γ a number of times
equal to twice its degree in Γ. Each time we pass through a node we traverse
the vertices of a new path described in the previous paragraph. In this way we
create a cycle H that goes through all the points in X that lie in good cells.
Now consider the points P in a bad cell c with centre x. We create a path in
G through P with endpoints x,y, say. Now choose a good cell c′ contained in
the ball B(x,r1) and then choose an edge {u,v} of H in the cell c′. We merge
the points in P into H by deleting {u,v} and adding {x,u} ,{y,v}. To make
this work, we must be careful to ensure that we only use an edge of H at most
once. But there are Ω(logn) edges of H in each good cell and there are O(1)
bad cells within distance 2r say of any good cell and so this is easily done.

Chromatic number

We look at the chromatic number of GX ,r in a limited range. Suppose that
nπr2 = logn

ωr
where ωr → ∞,ωr = O(logn). We are below the threshold for

connectivity here. We will show that w.h.p.

χ(GX ,r)≈ ∆(GX ,r)≈ cl(GX ,r)

where will use cl to denote the size of the largest clique. This is a special case
of a result of McDiarmid [565].
We first bound the maximum degree.

Lemma 11.13

∆(GX ,r)≈
logn

logωr
w.h.p.

Proof Let Zk denote the number of vertices of degree k and let Z≥k denote
the number of vertices of degree at least k. Let k0 =

logn
ωd

where ωd → ∞ and
ωd = o(ωr). Then

E(Z≥k0)≤ n
(

n
k0

)
(πr2)k0 ≤ n

(
neωd logn
nωr logn

) logn
ωd

= n
(

eωd

ωr

) logn
ωd

.

So,

log(E(Z≥k0))≤
logn
ωd

(ωd +1+ logωr− logωr) . (11.17)

Now let ε0 = ω
−1/2
r . Then if

ωd + logωd +1≤ (1− ε0) logωr
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then (11.17) implies that E(Zk)→ 0. This verifies the upper bound on ∆ claimed
in the lemma.
Now let k1 =

logn
ω̂d

where ω̂d is the solution to

ω̂d + log ω̂d +1 = (1+ ε0) logωr.

Next let M denote the set of vertices that are at distance greater than r from
any edge of D. Let Mk be the set of vertices of degree k in M. If Ẑk = |Mk| then

E(Ẑk1)≥ nP(X1 ∈M)×
(

n−1
k1

)
(πr2)k1(1−πr2)n−1−k1 .

P(X1 ∈M)≥ 1−4r. Using Lemma 21.1 we get

E(Ẑk1)≥

(1−4r)
n

3k1/2
1

(
(n−1)e

k1

)k1

(πr2)k1e−nπr2/(1−πr2)

≥ (1−o(1))
n1−1/ωr

3k1/2
1

(
eω̂d

ωr

) logn
ω̂d

.

So,

log(E(Ẑk1))≥

−o(1)−O(log logn)+
logn
ω̂d

(
ω̂d +1+ log ω̂d− logωr−

ω̂d

ωr

)
= Ω

(
ε0 logn logωr

ω̂d

)
= Ω

(
logn

ω
1/2
r

)
→ ∞.

An application of the Chebyshev inequality finishes the proof of the lemma.
Indeed,

P(X1,X2 ∈Mk)≤ P(X1 ∈M)P(X2 ∈M)×(
P(X2 ∈ B(X1,r))+

((
n−1

k1

)
(πr2)k1(1−πr2)n−2k1−2

)2
)

≤ (1+o(1))P(X1 ∈Mk)P(X2 ∈Mk).

Now cl(GX ,r) ≤ ∆(GX ,r)+ 1 and so we now lower bound cl(GX ,r) w.h.p.
But this is easy. It follows from Lemma 11.13 that w.h.p. there is a vertex X j

with at least (1− o(1)) logn
log(4ωr)

vertices in its r/2 ball B(X j,r/2). But such a

ball provides a clique of size (1−o(1)) logn
log(4ωr)

. We have therefore proved
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Theorem 11.14 Suppose that nπr2 = logn
ωr

where ωr → ∞,ωr = O(logn).
Then w.h.p.

χ(GX ,r)≈ ∆(GX ,r)≈ cl(GX ,r)≈
logn

logωr
.

We now consider larger r.

Theorem 11.15 Suppose that nπr2 =ωr logn where ωr→∞,ωr = o(n/ logn).
Then w.h.p.

χ(GX ,r)≈
ωr
√

3logn
2π

.

Proof First consider the triangular lattice in the plane. This is the set of points
T = {m1a+m2b : m1,m2 ∈ Z} where a = (0,1),b = (1/2,

√
3/2), see Figure

11.1.

Figure 11.1 The small hexagon is an example of a Cv.

As in the diagram, each v ∈ T can be placed at the centre of a hexagon Cv.
The Cv’s intersect on a set of measure zero and each Cv has area

√
3/2 and is

contained in B(v,1/
√

3). Let Γ(T,d) be the graph with vertex set T where two
vertices x,y ∈ T are joined by an edge if their Euclidean distance |x− y|< d.

Lemma 11.16 [McDiarmid and Reed [567]]

χ(Γ(T,d))≤ (d +1)2.
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Proof Let δ = dde. Let R denote a δ × δ rhombus made up of triangles of
T with one vertex at the origin. This rhombus has δ 2 vertices, if we exclude
those at the top and right hand end. We give each of these vertices a distinct
color and then tile the plane with copies of R. This is a proper coloring, by
construction.
Armed with this lemma we can easily get an upper bound on χ(GX ,r). Let δ =

1/ω
1/3
r and let s = δ r. Let sT be the contraction of the lattice T by a factor s

i.e. sT = {sx : x ∈ T}. Then if v∈ sT let sCv be the hexagon with centre v, sides
parallel to the sides of Cv but reduced by a factor s. |X ∩ sCv| is distributed
as Bin(n,s2

√
3/2). So the Chernoff bounds imply that with probability 1−

o(n−1),

sCv contains ≤ θ =
⌈
(1+ω

−1/8
r )ns2

√
3/2
⌉

members of X . (11.18)

Let ρ = r + 2s/
√

3. We note that if x ∈ Cv and y ∈ Cw and |x− y| ≤ r then
|v−w| ≤ ρ . Thus, given a proper coloring ϕ of Γ(sT,ρ) with colors [q] we can
w.h.p. extend it to a coloring ψ of GX ,r with color’s [q]× [θ ]. If x ∈ sCv and
ϕ(x) = a then we let ψ(x) = (a,b) where b ranges over [θ ] as x ranges over
sCv∩X . So, w.h.p.

χ(GX ,r)≤ θ χ(Γ(sT,ρ)) = θ χ(Γ(T,ρ/s))≤ θ

(
ρ

s
+1
)2
≈

ns2
√

3
2
× r2

s2 =
ωr
√

3logn
2π

. (11.19)

For the lower bound we use a classic result on packing disks in the plane.

Lemma 11.17 Let An = [0,n]2 and C be a collection of disjoint disks of unit
area that touch An. Then |C | ≤ (1+o(1))πn2/

√
12.

Proof Thue’s theorem states that the densest packing of disjoint same size
disks in the plane is the hexagonal packing which has density λ = π/

√
12. Let

C ′ denote the disks that are contained entirely in An. Then we have

|C ′| ≥ |C |−O(n) and |C ′| ≤ πn2
√

12
.

The first inequality comes from the fact that if C ∈ C \C ′ then it is contained
in a perimeter of width O(1) surrounding An.
Now consider the subgraph H of GX ,r induced by the points of X that belong
to the square with centre (1/2,1/2) and side 1− 2r. It follows from Lemma
11.17 that if α(H) is the size of the largest independent set in H then α(H)≤
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(1+o(1))2/r2
√

3. This is because if S is an independent set of H then the disks
B(x,r/2) for x∈ S are necessarily disjoint. Now using the Chernoff bounds, we
see that w.h.p. H contains at least (1−o(1))n vertices. Thus

χ(GX ,r)≥ χ(H)≥ |V (H)|
α(H)

≥ (1−o(1))
r2
√

3n
2

= (1−o(1))
ωr
√

3logn
2π

.

This completes the proof of Theorem 11.15.

11.3 Exercises

11.3.1 Show that if p = ω(n)/(n
√

m), and ω(n)→ ∞, then G(n,m, p) has
w.h.p. at least one edge.

11.3.2 Show that if p = (2logn+ω(n))/m)1/2 and ω(n)→−∞ then w.h.p.
G(n,m, p) is not complete.

11.3.3 Prove that the bound (11.2) holds.
11.3.4 Prove that the bound (11.3) holds.
11.3.5 Prove that the bound (11.4) holds.
11.3.6 Prove the claims in Lemma 11.2.
11.3.7 Let X denotes the number of isolated vertices in the binomial random

intersection graph G(n,m, p), where m = nα , α > 0. Show that if

p =

{
(logn+ϕ(n))/m when α ≤ 1√

(logn+ϕ(n))/(nm) when α > 1,

then EX → e−c if limn→∞ ϕ(n)→ c, for any real c.
11.3.8 Find the variance of the random variable X counting isolated vertices

in G(n,m, p).
11.3.9 Let Y be a random variable which counts vertices of degree greater than

one in G(n,m, p), with m= nα and α > 1. Show that for p2m2n� logn

lim
n→∞

P
(
Y > 2p2m2n

)
= 0.

11.3.10 Suppose that r ≥ (1+ ε)r0, as in Theorem 11.8. Show that if 1 ≤ k =

O(1) then GX ,r is k-connected w.h.p.

11.3.11 Show that if 2≤ k = O(1) and r� n−
k

2(k−1) then w.h.p. GX ,r contains

a k-clique. On the other hand, show that if r = o(n−
k

2(k−1) ) then GX ,r

contains no k-clique.

11.3.12 Suppose that r �
√

logn
n . Show that w.h.p. the diameter of GX ,r =

Θ
( 1

r

)
.
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11.3.13 Given X and an integer k we define the k-nearest neighbor graph
Gk−NN,X as follows: We add an edge between x and y of X iff y is one
of x’s k nearest neighbors, in Euclidean distance or vice-versa. Show
that if k ≥C logn for a sufficiently large C then Gk−NN,X is connected
w.h.p.

11.3.14 Suppose that we independently deposit n random black points Xb and
n random white points Xw into D. Let BXb,Xw,r be the bipartite graph
where we connect x ∈Xb with Xw iff |x− y| ≤ r. Show that if r�√

logn
n then w.h.p. BXb,Xw,r contains a perfect matching.

11.4 Notes

Binomial Random Intersection Graphs

For G(n,m, p) with m = nα , α constant, Rybarczyk and Stark [663] provided
a condition, called strictly α-balanced for the Poisson convergence for the
number of induced copies of a fixed subgraph, thus complementing the re-
sults of Theorem 11.5 and generalising Theorem 11.7. (Thresholds for small
subgraphs in a related model of random intersection digraph are studied by
Kurauskas [518]).
Rybarczyk [665] introduced a coupling method to find thresholds for many
properties of the binomial random intersection graph. The method is used to
establish sharp threshold functions for k-connectivity, the existence of a perfect
matching and the existence of a Hamilton cycle.
Stark [691] determined the distribution of the degree of a typical vertex of
G(n,m, p), m = nα and showed that it changes sharply between α < 1,α = 1
and α > 1.
Behrisch [66] studied the evolution of the order of the largest component in
G(n,m, p), m = nα when α 6= 1. He showed that when α > 1 the random graph
G(n,m, p) behaves like Gn,p in that a giant component of size order n appears
w.h.p. when the expected vertex degree exceeds one. This is not the case when
α < 1. There is a jump in the order of size of the largest component, but not to
one of linear size. Further study of the component structure of G(n,m, p) for
α = 1 is due to Lageras and Lindholm in [520].
Behrisch, Taraz and Ueckerdt [67] study the evolution of the chromatic number
of a random intersection graph and showed that, in a certain range of parame-
ters, these random graphs can be colored optimally with high probability using
various greedy algorithms.
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Uniform Random Intersection Graphs

Uniform random intersection graphs differ from the binomial random inter-
section graph in the way a subset of the set M is defined for each vertex of V .
Now for every k = 1,2, . . . ,n, each Sk has fixed size r and is randomly chosen
from the set M. We use the notation G(n,m,r) for an r-uniform random inter-
section graph. This version of a random intersection graph was introduced by
Eschenauer and Gligor [284] and, independently, by Godehardt and Jaworski
[373].

Bloznelis, Jaworski and Rybarczyk [101] determined the emergence of the gi-
ant component in G(n,m,r) when n(logn)2 = o(m). A precise study of the
phase transition of G(n,m,r) is due to Rybarczyk [666]. She proved that if
c > 0 is a constant, r = r(n)≥ 2 and r(r−1)n/m≈ c, then if c < 1 then w.h.p.
the largest component of G(n,m,r) is of size O(logn), while if c > 1 w.h.p.
there is a single giant component containing a constant fraction of all vertices,
while the second largest component is of size O(logn).

The connectivity of G(n,m,r) was studied by various authors, among them by
Eschenauer and Gligor [284] followed by DiPietro, Mancini, Mei, Panconesi
and Radhakrishnan [247],
Blackbourn and Gerke [90] and Yagan and Makowski [731]. Finally, Rybar-
czyk [666] determined the sharp threshold for this property. She proved that
if c > 0 is a constant, ω(n)→ ∞ as n→ ∞ and r2n/m = logn+ω(n), then
similarly as in Gn,p, the uniform random intersection graph G(n,m,r) is dis-
connected w.h.p. if ω(n)→ ∞, is connected w.h.p. if ω(n)→ ∞, while the
probability that G(n,m,r) is connected tends to e−e−c

if ω(n)→ c. The Hamil-
tonicity of G(n,m,r) was studied in [104] and by Nicoletseas, Raptopoulos
and Spirakis [607].

If in the uniform model we require |Si∩S j| ≥ s to connect vertices i and j by an
edge, then we denote this random intersection graph by Gs(n,m,r). Bloznelis,
Jaworski and Rybarczyk [101] studied phase transition in Gs(n,m,r). Bloznelis
and Łuczak [103] proved that w.h.p. for even n the threshold for the property
that Gs(n,m,r) contains a perfect matching is the same as that for Gs(n,m,r)
being connected. Bloznelis and Rybarczyk [105] show that w.h.p. the edge
density threshold for the property that each vertex of Gs(n,m,r) has degree at
least k is the same as that for Gs(n,m,r) being k-connected (for related results
see [736]).
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Generalized Random Intersection Graphs

Godehardt and Jaworski [373] introduced a model which generalizes both the
binomial and uniform models of random intersection graphs. Let P be a prob-
ability measure on the set {0,1,2, . . . ,m}. Let V = {1,2, . . . ,n} be the vertex
set. Let M = {1,2, . . . ,m} be the set of attributes. Let S1,S2, . . . ,Sn be inde-
pendent random subsets of M such that for any v ∈ V and S ⊆ M we have
P(Sv = S) = P(|S|)/

(m
|S|
)
. If we put an edge between any pair of vertices i

and j when Si ∩ S j 6= /0, then we denote such a random intersection graph
as G(n,m,P), while if the edge is inserted if |Si ∩ Si| ≥ s, s ≥ 1, the respec-
tive graph is denoted as Gs(n,m,P). Bloznelis [94] extends these definitions to
random intersection digraphs.
The study of the degree distribution of a typical vertex of G(n,m,P) is given
in [446], [230] and [92], see also [447]. Bloznelis ( see [93] and [95]) shows
that the order of the largest component L1 of G(n,m,P) is asymptotically equal
to nρ , where ρ denotes the non-extinction probability of a related multi-type
Poisson branching process. Kurauskas and Bloznelis [519] study the asymp-
totic order of the clique number of the sparse random intersection graph
Gs(n,m,P).
Finally, a dynamic approach to random intersection graphs is studied by Bar-
bour and Reinert [61], Bloznelis and Karoński [102], Bloznelis and Goetze
[99] and Britton, Deijfen, Lageras and Lindholm [159].
One should also notice that some of the results on the connectivity of random
intersection graphs can be derived from the corresponding results for random
hyperghraphs, see for example [499], [676] and [374].

Inhomogeneous Random Intersection Graphs

Nicoletseas, Raptopoulos and Spirakis [606] have introduced a generalisation
of the binomial random intersection graph G(n,m, p) in the following way.
As before let n,m be positive integers and let 0 ≤ pi ≤ 1, i = 1,2, . . . ,m. Let
V = {1,2, . . . ,n} be the set of vertices of our graph and for every 1 ≤ k ≤ n,
let Sk be a random subset of the set M = {1,2, . . . ,m} formed by selecting ith
element of M independently with probability pi. Let p = (pi)

m
i=1. We define the

inhomogeneous random intersection graph G(n,m,p) as the intersection graph
of sets Sk, k = 1,2, . . .n. Here two vertices i and j are adjacent in G(n,m,p)
if and only if Si ∩ S j 6= /0. Several asymptotic properties of the random graph
G(n,m,p) were studied, such as: large independent sets (in [607]), vertex de-
gree distribution (by Bloznelis and Damarackas in [96]), sharp threshold func-
tions for connectivity, matchings and Hamiltonian cycles (by Rybarczyk in
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[665]) as well as the size of the largest component (by Bradonjić, Elsässer,
Friedrich, Sauerwald and Stauffer in [156]).
To learn more about different models of random intersection graphs and about
other results we refer the reader to recent review papers [97] and [98].

Random Geometric Graphs

McDiarmid and Müller [566] gives the leading constant for the chromatic num-
ber when the average degree is Θ(logn). The paper also shows a “surprising”
phase change for the relation between χ and ω . Also the paper extends the
setting to arbitrary dimensions. Müller [592] proves a two-point concentration
for the clique number and chromatic number when nr2 = o(logn).
Blackwell, Edmonson-Jones and Jordan [91] studied the spectral properties of
the adjacency matrix of a random geometric graph (RGG). Rai [642] studied
the spectral measure of the transition matrix of a simple random walk. Preci-
ado and Jadbabaie [635] studied the spectrum of RGG’s in the context of the
spreading of viruses.
Sharp thresholds for monotone properties of RGG’s were shown by McColm
[560] in the case d = 1 viz. a graph defined by the intersection of random
sub-intervals. And for all d ≥ 1 by Goel, Rai and Krishnamachari [375].
First order expressible properties of random points
X = {X1,X2, . . . ,Xn} on a unit circle were studied by McColm [559]. The
graph has vertex set X and vertices are joined by an edge if and only if their
angular distance is less than some parameter d. He showed among other things
that for each fixed d, the set of a.s. FO sentences in this model is a complete
non-categorical theory. McColm’s results were anticipated in a more precise
paper [372] by Godehardt and Jaworski, where the case d = 1, i.e., the evolu-
tion a random interval graph, was studied.
Diaz, Penrose, Petit and Serna [244] study the approximability of several lay-
out problems on a family of RGG’s. The layout problems that they consider
are bandwidth, minimum linear arrangement, minimum cut width, minimum
sum cut, vertex separation, and edge bisection. Diaz, Grandoni and Marchetti-
Spaccemela [243] derive a constant expected approximation algorithm for the
β -balanced cut problem on random geometric graphs: find an edge cut of min-
imum size whose two sides contain at least βn vertices each.
Bradonjić, Elsässer, Friedrich, Sauerwald and Stauffer [155] studied the broad-
cast time of RGG’s. They study a regime where there is likely to be a sin-
gle giant component and show that w.h.p. their broadcast algorithm only re-
quires O(n1/2/r + logn) rounds to pass information from a single vertex, to
every vertex of the giant. They show on the way that the diameter of the giant
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is Θ(n1/2/r) w.h.p. Friedrich, Sauerwald and Stauffer [319] extended this to
higher dimensions.
A recent interesting development can be described as Random Hyperbolic
Graphs. These are related to the graphs of Section 11.2 and are posed as mod-
els of real world networks. Here points are randomly embedded into hyper-
bolic, as opposed to Euclidean space. See for example Bode, Fountoulakis and
Müller [106], [107]; Candellero and Fountoulakis [170]; Chen, Fang, Hu and
Mahoney [179]; Friedrich and Krohmer [318]; Krioukov, Papadopolous, Kit-
sak, Vahdat and Boguñá [502]; Fountoulakis [309]; Gugelmann, Panagiotou
and Peter [387]; Papadopolous, Krioukov, Boguñá and Vahdat [615]. One ver-
sion of this model is described in [309]. The models are a little complicated to
describe and we refer the reader to the above references.
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Digraphs

In graph theory, we sometimes orient edges to create a directed graph or di-
graph. It is natural to consider randomly generated digraphs and this chapter
discusses the component size and connectivity of the simplest model Dn,p.
Hamiltonicity is discussed in the final section.

12.1 Strong Connectivity

In this chapter we study the random digraph Dn,p. This has vertex set [n] and
each of the n(n− 1) possible edges occurs independently with probability p.
We will first study the size of the strong components of Dn,p.
Recall the definition of strong components: Given a digraph D = (V,A) we
define the relation ρ on V by xρy if there is a path from x to y in D and there is
a path from y to x in D. It is easy to show that ρ is an equivalence relation and
the equivalence classes are called the strong components of D.

Strong component sizes: sub-critical region.

Theorem 12.1 Let p = c/n, where c is a constant, c < 1. Then w.h.p.

(i) all strong components of Dn,p are either cycles or single vertices,
(ii) the number of vertices on cycles is at most ω , for any ω = ω(n)→ ∞.

Proof The expected number of cycles is

n

∑
k=2

(
n
k

)
(k−1)!

( c
n

)k
≤

n

∑
k=2

ck

k
= O(1).

Part (ii) now follows from the Markov inequality.
To tackle (i) we observe that if there is a component that is not a cycle or a
single vertex then there is a cycle C and vertices a,b ∈C and a path P from a
to b that is internally disjoint from C.

236



12.1 Strong Connectivity 237

However, the expected number of such subgraphs is bounded by

n

∑
k=2

n−k

∑
l=0

(
n
k

)
(k−1)!

( c
n

)k
k2
(

n
l

)
l!
( c

n

)l+1

≤
∞

∑
k=2

∞

∑
l=0

k2ck+l+1

kn
= O(1/n).

Here l is the number of vertices on the path P, excluding a and b.

Strong component sizes: super-critical region.
We will prove the following beautiful theorem that is a directed analogue of
the existence of a giant component in Gn,p. It is due to Karp [474].

Theorem 12.2 Let p = c/n, where c is a constant, c > 1, and let x be defined
by x < 1 and xe−x = ce−c. Then w.h.p. Dn,p contains a unique strong com-
ponent of size ≈

(
1− x

c

)2 n. All other strong components are of logarithmic
size.

We will prove the above theorem through a sequence of lemmas.
For a vertex v vet

D+(v) ={w : ∃ path v to w in Dn,p}
D−(v) ={w : ∃ path w to v in Dn,p}.

We will first prove

Lemma 12.3 There exist constants α,β , dependent only on c, such that w.h.p.
6 ∃ v such that |D±(v)| ∈ [α logn,βn].

Proof If there is a v such that |D+(v)|= s then Dn,p contains a tree T of size
s, rooted at v such that

(i) all arcs are oriented away from v, and
(ii) there are no arcs oriented from V (T ) to [n]\V (T ).

The expected number of such trees is bounded above by

s
(

n
s

)
ss−2

( c
n

)s−1(
1− c

n

)s(n−s)
≤ n

cs

(
ce1−c+s/n

)s
.
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Now ce1−c < 1 for c 6= 1 and so there exists β such that when s ≤ βn we can
bound ce1−c+s/n by some constant γ < 1 (γ depends only on c). In which case

n
cs

γ
s ≤ n−3 for

4
log1/γ

logn≤ s≤ βn.

Fix a vertex v ∈ [n] and consider a directed breadth first search from v. Let
S+0 = S+0 (v) = {v} and given S+0 ,S

+
1 = S+1 (v), . . . ,S

+
k = s+k (v) ⊆ [n] let T+

k =

T+
k (v) =

⋃k
i=1 S+i and let

S+k+1 =
{

w 6∈ T+
k : ∃x ∈ T+

k such that (x,w) ∈ E(Dn,p)
}
.

We similarly define S−0 = S−0 (v),S
−
1 = S−1 (v), . . . ,S

−
k = S−k ,T

−
k (v) ⊆ [n] with

respect to a directed breadth first search into v.
Not surprisingly, we can show that the subgraph Γk induced by T+

k is close
in distribution to the tree defined by the first k+ 1 levels of a Galton-Watson
branching process with Po(c) as the distribution of the number of offspring
from a single parent. See Chapter 23 for some salient facts about such a pro-
cess. Here Po(c) is the Poisson random variable with mean c i.e.

P(Po(c) = k) =
cke−c

k!
for k = 0,1,2, . . . , .

Lemma 12.4 If Ŝ0, Ŝ1, . . . , Ŝk and T̂k are defined with respect to the Galton-
Watson branching process and if k ≤ k0 = (logn)3 and s0,s1, . . . ,sk ≤ (logn)4

then

P
(
|S+i |= si,0≤ i≤ k

)
=

(
1+O

(
1

n1−o(1)

))
P
(
|Ŝi|= si,0≤ i≤ k

)
.

Proof We use the fact that if Po(a),Po(b) are independent then
Po(a)+Po(b) has the same distribution as Po(a+b). It follows that

P
(
|Ŝi|= si,0≤ i≤ k

)
=

k

∏
i=1

(csi−1)
sie−csi−1

si!
.

Furthermore, putting ti−1 = s0 + s1 + . . .+ si−1 we have for v /∈ T+
i−1,

P(v ∈ S+i ) = 1− (1− p)si−1 = si−1 p
(

1+O
(
(logn)7

n

))
. (12.1)
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P
(
|S+i |= si,0≤ i≤ k

)
= (12.2)

=
k

∏
i=1

(
n− ti−1

si

)(
si−1c

n

(
1+O

(
(logn)7

n

)))si

×
(

1− si−1c
n

(
1+O

(
(logn)7

n

)))n−ti−1−si

Here we use the fact that given si−1, ti−1, the distribution of |S+i | is the bino-
mial with n− ti−1 trials and probability of success given in (12.1). The lemma
follows by simple estimations.

Lemma 12.5 For 1≤ i≤ (logn)3

(a) P
(
|S+i | ≥ s logn||S+i−1|= s

)
≤ n−10

(b) P
(
|Ŝi| ≥ s logn||Ŝi−1|= s

)
≤ n−10.

Proof

(a) P
(
|S+i | ≥ s logn||S+i−1|= s

)
≤ P(Bin(sn,c/n)≥ s logn)

≤
(

sn
s logn

)( c
n

)s logn

≤
(

snec
sn logn

)s logn

≤
(

ec
logn

)logn

≤ n−10.

The proof of (b) is similar.

Keeping v fixed we next let

F =
{
∃ i : |T+

i |> (logn)2}
=
{
∃ i≤ (logn)2 : |T+

0 |, |T
+

1 |, . . . , |T
+

i−1|< (logn)2 < |T+
i |
}
.

Lemma 12.6

P(F ) = 1− x
c
+o(1).
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Proof Applying Lemma 12.4 we see that

P(F ) = P(F̂ )+o(1), (12.3)

where F̂ is defined with respect to the branching process.
Now let Ê be the event that the branching process eventually becomes extinct.
We write

P(F̂ ) = P(F̂ |¬Ê )P(¬Ê )+P(F̂ ∩ Ê ). (12.4)

To estimate (12.4) we use Theorem 23.1. Let

G(z) =
∞

∑
k=0

cke−c

k!
zk = ecz−c

be the probability generating function of Po(c). Then Theorem 23.1 implies
that ρ = P(Ê ) is the smallest non-negative solution to G(ρ) = ρ . Thus

ρ = ecρ−c.

Substituting ρ = ξ

c we see that

P(Ê ) =
ξ

c
where

ξ

c
= eξ−c, (12.5)

and so ξ = x.
The lemma will follow from (12.4) and (12.5) and P(F̂ |¬Ê ) = 1+o(1)
(which follows from Lemma 12.5) and

P(F̂ ∩ Ê ) = o(1).

This in turn follows from

P(Ê | F̂ ) = o(1), (12.6)

which will be established using the following lemma.

Lemma 12.7 Each member of the branching process has probability at least
ε > 0 of producing (logn)2 descendants at depth logn. Here ε > 0 depends
only on c.

Proof If the current population size of the process is s then the probability
that it reaches size at least c+1

2 s in the next round is

∑
k≥ c+1

2 s

(cs)ke−cs

k!
≥ 1− e−αs

for some constant α > 0 provided s≥ 100, say.
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Now there is a positive probability ε1 say that a single member spawns at least
100 descendants and so there is a probability of at least

ε1

(
1−

∞

∑
s=100

e−αs

)
that a single object spawns(

c+1
2

)logn

� (logn)2

descendants at depth logn.

Given a population size between (logn)2 and (logn)3 at level i0, let si denote
the population size at level i0 + i logn. Then Lemma 12.7 and the Chernoff
bounds imply that

P
(

si+1 ≤
1
2

εsi(logn)2
)
≤ exp

{
−1

8
ε

2si(logn)2
}
.

It follows that

P(Ê | F̂ )≤ P

(
∃i : si ≤

(
1
2

ε(logn)2
)i

s0

∣∣∣∣s0 ≥ (logn)2

)

≤
∞

∑
i=1

exp

{
−1

8
ε

2
(

1
2

ε(logn)2
)i

(logn)2

}
= o(1).

This completes the proof (12.6) and of Lemma 12.6.
We must now consider the probability that both D+(v) and D−(v) are large.

Lemma 12.8

P
(
|D−(v)| ≥ (logn)2 | |D+(v)| ≥ (logn)2)= 1− x

c
+o(1).

Proof Expose S+0 ,S
+
1 , . . . ,S

+
k until either S+k = /0 or we see that |T+

k | ∈ [(logn)2,

(logn)3]. Now let S denote the set of edges/vertices defined by
S+0 ,S

+
1 , . . . ,S

+
k .

Let C be the event that there are no edges from T−l to S+k where T−l is the set of
vertices we reach through our BFS into v, up to the point where we first realise
that D−(v)< (logn)2 (because S−i = /0 and |T−i | ≤ (logn)2) or we realise that
D−(v)≥ (logn)2. Then

P(¬C ) = O
(
(logn)4

n

)
=

1
n1−o(1)
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and, as in (12.2),

P
(
|S−i |= si, 0≤ i≤ k | C

)
=

=
k

∏
i=1

(
n′− ti−1

si

)(
si−1c

n

(
1+O

(
(logn)7

n

)))si

×
(

1− si−1c
n

(
1+O

(
(logn)7

n

)))n′−ti−1−si

where n′ = n−|T+
k |.

Given this we can prove a conditional version of Lemma 12.4 and continue as
before.

We have now shown that if α is as in Lemma 12.3 and if

S =
{

v : |D+(v)|, |D−(v)|> α logn
}

then the expectation

E(|S|) = (1+o(1))
(

1− x
c

)2
n.

We also claim that for any two vertices v,w

P(v,w ∈ S) = (1+o(1))P(v ∈ S)P(w ∈ S) (12.7)

and therefore the Chebyshev inequality implies that w.h.p.

|S|= (1+o(1))
(

1− x
c

)2
n.

But (12.7) follows in a similar manner to the proof of Lemma 12.8.
All that remains of the proof of Theorem 12.2 is to show that

S is a strong component w.h.p. (12.8)

Recall that any v 6∈ S is in a strong component of size ≤ α logn and so the
second part of the theorem will also be done.
We prove (12.8) by arguing that

P
(
∃ v,w ∈ S : w 6∈ D+(v)

)
= o(1). (12.9)

In which case, we know that w.h.p. there is a path from each v ∈ S to every
other vertex w 6= v in S.
To prove (12.9) we expose S+0 ,S

+
1 , . . . ,S

+
k until we find that

|T+
k (v)| ≥ n1/2 logn. At the same time we expose S−0 ,S

−
1 , . . . ,S

−
l until we find

that |T−l (w)| ≥ n1/2 logn. If w 6∈ D+(v) then this experiment will have tried at
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least
(
n1/2 logn

)2
times to find an edge from D+(v) to D−(w) and failed every

time. The probability of this is at most(
1− c

n

)n(logn)2

= o(n−2).

This completes the proof of Theorem 12.2.

Threshold for strong connectivity

Here we prove

Theorem 12.9 Let ω = ω(n), c > 0 be a constant, and let p = logn+ω

n . Then

lim
n→∞

P(Dn,p is strongly connected) =


0 if ω →−∞

e−2e−c
if ω → c

1 if ω → ∞.

= lim
n→∞

P(6 ∃ v s.t. d+(v) = 0 or d−(v) = 0)

Proof We leave as an exercise to prove that

lim
n→∞

P(∃ v s.t. d+(v) = 0 or d−(v) = 0) =


1 if ω →−∞

1− e−2e−c
if ω → c

0 if ω → ∞.

Given this, one only has to show that if ω 6→ −∞ then w.h.p. there does not
exist a set S such that (i) 2 ≤ |S| ≤ n/2 and (ii) E(S : S̄) = /0 or E(S̄ : S) = /0
and (iii) S induces a connected component in the graph obtained by ignoring
orientation. But, here with s = |S|,

P(∃ S)≤ 2
n/2

∑
s=2

(
n
s

)
ss−2(2p)s−1(1− p)s(n−s)

≤ 2n
logn

n/2

∑
s=2

(ne
s

)s
ss−2

(
2logn

n

)s

n−s(1−s/n)eωs/n

≤ 2n
logn

n/2

∑
s=2

(2n−(1−s/n)eω/n logn)s

= o(1).
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12.2 Hamilton Cycles

Existence of a Hamilton Cycle

Here we prove the following remarkable inequality: It is due to McDiarmid
[562]

Theorem 12.10

P(Dn,p is Hamiltonian)≥ P(Gn,p is Hamiltonian)

Proof We consider an ordered sequence of random digraphs
Γ0,Γ1,Γ2, . . . ,ΓN , N =

(n
2

)
defined as follows: Let e1,e2, . . . ,eN be an enumer-

ation of the edges of the complete graph Kn. Each ei = {vi,wi} gives rise to
two directed edges −→ei = (vi,wi) and ←−ei = (wi,vi). In Γi we include −→e j and
←−e j independently of each other, with probability p, for j ≤ i. While for j > i
we include both or neither with probability p. Thus Γ0 is just Gn,p with each
edge {v,w} replaced by a pair of directed edges (v,w),(w,v) and ΓN = Dn,p.
Theorem 12.10 follows from

P(Γi is Hamiltonian)≥ P(Γi−1 is Hamiltonian).

To prove this we condition on the existence or otherwise of directed edges
associated with e1, . . . ,ei−1,ei+1, . . . ,eN . Let C denote this conditioning.
Either

(a) C gives us a Hamilton cycle without arcs associated with ei, or
(b) ∃ a Hamilton cycle if at least one of −→ei ,

←−ei is present.

In Γi−1 this happens with probability p, while in Γi this happens with proba-
bility 1− (1− p)2 > p.
Note that we will never require that both −→ei ,

←−ei occur.

Theorem 12.10 was subsequently improved by Frieze [323], who proved the
equivalent of Theorem 6.5.

Theorem 12.11 Let p = logn+cn
n . Then

lim
n→∞

P(Dn,p has a Hamilton cycle) =


0 if cn→−∞

e−2e−c
if cn→ c

1 if cn→ ∞.



12.2 Hamilton Cycles 245

Number of Distinct Hamilton Cycles

Here we give an elegant result of Ferber, Kronenberg and Long [294].

Theorem 12.12 Let p = ω

(
log2 n

n

)
. Then w.h.p. Dn,p contains eo(n)n!pn di-

rected Hamilton cycles.

Proof The upper bound follows from the fisrt moment method. Let XH de-
note the number of Hamilton cycles in D =Dn,p. Now EXH = (n−1)!pn, and
therefore the Markov inequality implies that w.h.p. we have XH ≤ eo(n)n!pn.

For the lower bound let α := α(n) be a function tending slowly to infinity
with n. Let S ⊆ V (G) be a fixed set of size s, where s ≈ n

α logn and let V ′ =
V \ S. Moreover, assume that s is chosen so that |V ′| is divisible by integer
`= 2α logn. From now on the set S will be fixed and we will use it for closing
Hamilton cycles. Our strategy is as follows: we first expose all the edges within
V ′, and show that one can find the “correct” number of distinct families P

consisting of m := |V ′|/` vertex-disjoint paths which span V ′. Then, we expose
all the edges with at least one endpoint in S, and show that w.h.p. one can turn
“most” of these families into Hamilton cycles and that all of these cycles are
distinct.
We take a random partitioning V ′ = V1 ∪ . . .∪V` such that all the Vi’s are of
size m. Let us denote by D j the bipartite graph with parts Vj and Vj+1. Observe

that D j is distributed as Gm,m,p, and therefore, since p = ω

(
logn

m

)
, by Exercise

12.3.2, with probability 1−n−ω(1) we conclude that D j contains (1−o(1))m
edge-disjoint perfect matchings (in particular, a (1−o(1))m regular subgraph).
The Van der Waerden conjecture proved by Egorychev [273] and by Falikman
[287] implies the following: Let G = (A∪B,E) be an r-regular bipartite graph
with part sizes |A|= |B|= n. Then, the number of perfect matchings in G is at
least

( r
n

)n n!.
Applying this and the union bound, it follows that w.h.p. each D j contains at
least (1− o(1))mm!pm perfect matchings for each j. Taking the union of one
perfect matching from each of the D j’s we obtain a family P of m vertex
disjoint paths which spans V ′. Therefore, there are

((1−o(1))mm!pm)` = (1−o(1))n−s (m!)` pn−s

distinct families P obtained from this partitioning in this manner. Since this
occurs w.h.p. we conclude (applying the Markov inequality to the number
of partitions for which the bound fails) that this bound holds for (1− o(1))-
fraction of such partitions. Since there are (n−s)!

(m!)`
such partitions, one can find
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at least

(1−o(1))
(n− s)!

(m!)`
(1−o(1))n−s (m!)` pn−s

= (1−o(1))n−s(n− s)!pn−s = (1−o(1))nn!pn

distinct families, each of which consists of exactly m vertex-disjoint paths of
size ` (for the last equality, we used the fact that s = o(n/ logn)).

We show next how to close a given family of paths into a Hamilton cycle. For
each such family P , let A := A(P) denote the collection of all pairs (sP, tP)
where sP is a starting point and tP is the endpoint of a path P∈P , and define an
auxiliary directed graph D(A) as follows. The vertex set of D(A) is V (A) = S∪
{zP =(sP, tP) : zP ∈A}. Edges of D(A) are determined as follows: if u,v∈ S and
(u,v) ∈ E(D) then (u,v) is an edge of D(A). The in-neighbors (out-neighbors)
of vertices zP in S are the in-neighbors of sP in D (out-neighbors of tP). Lastly,
(zP,zQ) is an edge of D(A) if (tP,sQ) is an edge D.
Clearly D(A) is distributed as Ds+m,p, and that a Hamilton cycle in D(A) cor-
responds to a Hamilton cycle in D after adding the corresponding paths be-
tween each sP and tP. Now distinct families P 6= P ′ yield distinct Hamilton
cycles (to see this, just delete the vertices of S from the Hamilton cycle, to re-
cover the paths). Using Theorem 12.11 we see that for p=ω (logn/(s+m)) =

ω (log(s+m)/(s+m)), the probability that D(A) does not have a Hamilton cy-
cle is o(1). Therefore, using the Markov inequality we see that for almost all of
the families P , the corresponding auxiliary graph D(A) is indeed Hamiltonian
and we have at least (1−o(1))nn!pn distinct Hamilton cycles, as desired.

12.3 Exercises

12.3.1 Let p= logn+(k−1) log logn+ω

n for a constant k = 1,2, . . .. Show that w.h.p.
Dnp is k-strongly connected.

12.3.2 The Gale-Ryser theorem states: Let G = (A∪B,E) be a bipartite graph
with parts of sizes |A| = |B| = n. Then, G contains an r-factor if and
only if for every two sets X ⊆ A and Y ⊆ B, we have

eG(X ,Y )≥ r(|X |+ |Y |−n).

Show that if p = ω(logn/n) then with probability 1− o(1/n), Gn,n,p

contains (1−n−ω(1) edge disjoint perfect matchings.
12.3.3 Show that if p = ω((logn)2/n) then w.h.p. Gn,p contains eo(n)n!pn dis-

tinct Hamilton cycles.
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12.3.4 A tournament T is an orientation of the complete graph Kn. In a random
tournament, edge {u,v} is oriented from u to v with probability 1/2 and
from v to u with probability 1/2. Show that w.h.p. a random tournament
is strongly connected.

12.3.5 Let T be a random tournament. Show that w.h.p. the size of the largest
acyclic sub-tournament is asymptotic to 2 log2 n. (A tournament is acyclic
if it contains no directed cycles).

12.3.6 Suppose that 0 < p < 1 is constant. Show that w.h.p. the size of the
largest acyclic tournament contained in Dnp is asymptotic to 2 logb n
where b = 1/p.

12.3.7 Let mas(D) denote the number of vertices in the largest acyclic sub-
graph of a digraph D. Suppose that 0 < p < 1 is constant. Show that
w.h.p. mas(Dn,p)≤ 4logn

logq where q = 1
1−p .

12.3.8 Consider the random digraph Dn obtained from Gn,1/2 by orienting
edge (i, j) from i to j when i < j. This can be viewed as a partial or-
der on [n] and is called a Random Graph Order. Show that w.h.p. Dn

contains a path of length at least 0.51n. (In terms of partial orders, this
bounds the height of the order).

12.4 Notes

Packing

The paper of Frieze [323] was in terms of the hitting time for a digraph process
Dt . It proves that the first time that the δ+(Gt),δ

−(Gt) ≥ k is w.h.p. the time
when Gt has k edge disjoint Hamilton cycles. The paper of Ferber, Kronenberg
and Long [294] shows that if p = ω((logn)4/n) then w.h.p. Dn,p contains (1−
o(1))np edge disjoint Hamilton cycles.

Long Cycles

The papers by Hefetz, Steger and Sudakov [405] and by Ferber, Nenadov,
Noever, Peter and Škorić [297] study the local resilience of having a Hamilton
cycle. In particular, [297] proves that if p� (logn)8

n then w.h.p. one can delete
any subgraph H of Dn,p with maximum degree at most ( 1

2 − ε)np and still
leave a Hamiltonian subgraph.
Krivelevich, Lubetzky and Sudakov [507] proved that w.h.p. the random di-
graph Dn,p, p = c/n contains a directed cycle of length (1− (1 + εc)e−c)n
where εc→ 0 as c→ ∞.
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Cooper, Frieze and Molloy [220] showed that a random regular digraph with
indegree = outdegree = r is Hamiltonian w.h.p. iff r ≥ 3.

Connectivity

Cooper and Frieze [209] studied the size of the largest strong component in a
random digraph with a given degree sequence. The strong connectivity of an
inhomogeneous random digraph was studied by Bloznelis, Götze and Jaworski
in [100].



13
Hypergraphs

In this chapter we discuss random k-uniform hypergraphs. We are concerned
with the models Hn,p;k and Hn,m;k. For Hn,p;k we consider the hypergraph with
vertex set [n] in which each possible k-set in

([n]
k

)
is included as an edge with

probability p. In Hn,m;k the edge set is a random m-subset of
([n]

k

)
. The param-

eter k is fixed and independent of n throughout this chapter.
Many of the properties of Gn,p and Gn,m have been generalized without too
much difficulty to these models of hypergraphs. Hamilton cycles have only re-
cently been tackled with any success. Surprisingly enough, in some cases it is
enough to use the Chebyshev inequality and we will describe these cases. Per-
fect matchings have also been tackled recently. Here the proof is a remarkable
tour de force and we will include it as some of the ideas will likely be of use
in other places.

13.1 Hamilton Cycles

Suppose that 1 ≤ ` < k. An `-overlapping Hamilton cycle C in a k-uniform
hypergraph H = (V,E ) on n vertices is a collection of m` = n/(k− `) edges of
H such that for some cyclic order of [n] every edge consists of k consecutive
vertices and for every pair of consecutive edges Ei−1,Ei in C (in the natural
ordering of the edges) we have |Ei−1 ∩Ei| = `. Thus, in every `-overlapping
Hamilton cycle the sets Ci = Ei \ Ei−1, i = 1,2, . . . ,m`, are a partition of V
into sets of size k− `. Hence, m` = n/(k− `). We thus always assume, when
discussing `-overlapping Hamilton cycles, that this necessary condition, k− `

divides n, is fulfilled. In the literature, when `= k−1 we have a tight Hamilton
cycle and when `= 1 we have a loose Hamilton cycle.
In this section we will restrict our attention to the case ` = k− 1 i.e. tight
Hamilton cycles. So when we say that a hypergraph is Hamiltonian, we mean
that it contains a tight Hamilton cycle. The proof extends easily to ` ≥ 2. The
case `= 1 poses some more problems and is discussed in Frieze [326], Dudek,
Frieze [252] and Dudek, Frieze, Loh and Speiss [254] and in Ferber [292]. The
following theorem is from Dudek and Frieze [253]. Furthermore, we assume
that k ≥ 3.

249
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Theorem 13.1
(i) If p≤ (1− ε)e/n, then w.h.p. Hn,p;k is not Hamiltonian.

(ii) If k = 3 and np→ ∞ then Hn,p;k is Hamiltonian w.h.p.
(iii) For all fixed ε > 0, if k ≥ 4 and p ≥ (1+ ε)e/n, then w.h.p. Hn,p;k is

Hamiltonian.

Proof We will prove parts (i) and (ii) and leave the proof of (iii) as an exer-
cise, with a hint.
Let ([n],E ) be a k-uniform hypergraph. A permutation π of [n] is Hamilton
cycle inducing if

Eπ(i) = {π(i−1+ j) : j ∈ [k]} ∈ E f or all i ∈ [n].

(We use the convention π(n+r) = π(r) for r > 0.) Let the term hamperm refer
to such a permutation.
Let X be the random variable that counts the number of hamperms π for Hn,p;k.
Every Hamilton cycle induces at least one hamperm and so we can concentrate
on estimating P(X > 0).
Now

E(X) = n!pn.

This is because π induces a Hamilton cycle if and only if a certain n edges are
all in Hn,p;k.
For part (i) we use Stirling’s formula to argue that

E(X)≤ 3
√

n
(np

e

)n
≤ 3
√

n(1− ε)n = o(1).

This verifies part (i).
We see that

E(X)≥
(np

e

)n
→ ∞ (13.1)

in parts (ii) and (iii).
Fix a hamperm π . Let H(π)= (Eπ(1),Eπ(2), . . . ,Eπ(n)) be the Hamilton cycle
induced by π . Then let N(b,a) be the number of permutations π ′ such that
|E(H(π))∩E(H(π ′))|= b and E(H(π))∩E(H(π ′)) consists of a edge disjoint
paths. Here a path is a maximal sub-sequence F1,F2, . . . ,Fq of the edges of
H(π) such that Fi∩Fi+1 6= /0 for 1≤ i < q. The set

⋃q
j=1 Fj may contain other

edges of H(π). Observe that N(b,a) does not depend on π .
Note that

E(X2)

E(X)2 =
n!N(0,0)p2n

E(X)2 +
n

∑
b=1

b

∑
a=1

n!N(b,a)p2n−b

E(X)2 .
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Since trivially, N(0,0)≤ n!, we obtain,

E(X2)

E(X)2 ≤ 1+
n

∑
b=1

b

∑
a=1

n!N(b,a)p2n−b

E(X)2 . (13.2)

We show that
n

∑
b=1

b

∑
a=1

n!N(b,a)p2n−b

E(X)2 =
n

∑
b=1

b

∑
a=1

N(b,a)pn−b

E(X)
= o(1). (13.3)

The Chebyshev inequality implies that

P(X = 0)≤ E(X2)

E(X)2 −1 = o(1),

as required.
It remains to show (13.3). First we find an upper bound on N(b,a). Choose a
vertices vi, 1≤ i≤ a, on π . We have at most

na (13.4)

choices. Let

b1 +b2 + · · ·+ba = b,

where bi ≥ 1 is an integer for every 1 ≤ i ≤ a. Note that this equation has
exactly (

b−1
a−1

)
< 2b (13.5)

solutions. For every i, we choose a path of length bi in H(π) which starts at vi.
Suppose a path consists of edges F1,F2, . . . ,Fq, q= bi. Assuming that F1, . . . ,Fj

are chosen, we have at most k possibilities for Fj+1. Hence, every such a path
can be selected in most kbi ways. Consequently, we have at most

a

∏
i=1

kbi = kb

choices for all a paths.
Thus, by the above considerations we can find a edge disjoint paths in H(π)

with the total of b edges in at most

na(2k)b (13.6)

many ways.
Let P1,P2, . . . ,Pa be any collection of the above a paths. Now we count the
number of permutations π ′ containing these paths.
First we choose for every Pi a sequence of vertices inducing this path in π ′. We
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see the vertices in each edge of Pi in at most k! orderings. Crudely, every such
sequence can be chosen in at most (k!)bi ways. Thus, we have

a

∏
i=1

(k!)bi = (k!)b (13.7)

choices for all a sequences.
Now we bound the number of permutations containing these
sequences. First note that

|V (Pi)| ≥ bi + k−1.

Thus we have at most

n−
a

∑
i=1

(bi + k−1) = n−b−a(k−1) (13.8)

vertices not in V (P1)∪·· ·∪V (Pa). We choose a permutation σ of V \ (V (P1)∪
·· ·∪V (Pa)). Here we have at most

(n−b−a(k−1))!

choices. Now we extend σ to a permutation of [n]. We mark a positions on σ

and then insert the sequences. We can do it in(
n
a

)
a! < na

ways. Therefore, the number of permutations containing P1,P2, . . . ,Pa is smaller
than

(k!)b(n−b−a(k−1))!na. (13.9)

Thus, by (13.6) and (13.9) and the Stirling formula we obtain

N(b,a)< n2a(2k!k)b(n−b−a(k−1))! <

n2a(2k!k)b
√

2πn
(n

e

)n−b−a(k−1)
.

Since

E(X) = n!pn =
√
(2+o(1))πn

(n
e

)n
pn,

we get

N(b,a)pn−b

E(X)
< (1+o(1))n2a(2k!k)b

( e
n

)b+a(k−1)
p−b.
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Finally, since a≤ b we estimate eb+a(k−1) ≤ ekb, and consequently,

N(b,a)pn−b

E(X)
<

(
2k!kek

np

)b 1+o(1)
na(k−3) . (13.10)

Proof of (ii):
Here k = 3 and np≥ ω . Hence, we obtain in (13.10)

N(b,a)pn−b

E(X)
≤ (1+o(1))

(
2k!kek

ω

)b

.

Thus,

n

∑
b=1

b

∑
a=1

N(b,a)pn−b

E(X)
< (1+o(1))

n

∑
b=1

b
(

2k!kek

ω

)b

= o(1). (13.11)

This completes the proof of part (ii).
We prove Part (iii) by estimating N(b,a) more carefully, see Exercise 13.3.2 at
the end of the chapter.
Before leaving Hamilton cycles, we note that Allen, Böttcher,
Kohayakawa, and Person [19] describe a polynomial time algorithm for finding
a tight Hamilton cycle in Hn,p;k w.h.p. when p = n−1+ε for a constant ε > 0.
There is a weaker notion of Hamilton cycle due to Berge [79] viz. an alternating
sequence v1,e1,v2, . . . ,vn,en of vertices and edges such that (i) v1,v2, . . . ,vn

are distinct and (ii) vi ∈ ei−1∩ ei for i = 1,2, . . . ,n. The cycle is weak if we do
not insist that the edges are distinct. Poole [630] proves that the threshold for
the existence of a weak Hamilton cycle in Hn,m;k is equal to the threshold for
minimum degree one.

13.2 Perfect Matchings

A 1-factor or perfect matching of Hn,m;k is a set of disjoint edges ei, i= 1,2, . . . ,
n/k that partition [n]. The existence of a perfect matching or 1-factor requires
that n is a multiple of k. When k = 2 this reduces to the ordinary notion of a
perfect matching in a graph. In the literature, the problem of the existence of a
perfect matching was first discussed in Schmidt and Shamir [675] and became
known as the “Shamir problem”.
The following theorem, which is a special case of the result of Johansson, Kahn
and Vu [451] constituted a considerable breakthrough. Restricting ourselves to
matchings enables us to present a simplified version of the proof in [451]. (In
truth it is not so simple, but it avoids a lot of the technical problems faced in
[451]).
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Theorem 13.2 Fix k ≥ 2. Then there exists a constant K > 0 such that if
m≥ Kn logn then

lim
n→∞

P(Hn,m;k has a 1-factor) = 1.

Proof In the following, K will be taken to be sufficiently large so that all
inequalities involving it are valid. Assume from now on that k divides n and
let e1,e2, . . . ,eN ,N =

(n
k

)
be a random ordering of the edges of Hn,m;k, the

complete k-uniform hypergraph Hn,N;k on vertex set V = [n]. Let Hi =Hn,N;k−
{e1, . . . ,ei} and Ei = E(Hi) and mi = N− i = |Ei|.
Hi is distributed as Hn,mi;k and the idea is to show that w.h.p. Hi has many 1-
factors as long as mi ≥ Kn logn. Thus we start with Hn,N;k and remove N−
m edges one by one in random order, checking that the number of 1-factors
remains large w.h.p.
For a k-uniform hypergraph H = (V,E), where k | |V | we let F (H) denote the
set of 1-factors of H and

Φ(H) = |F (H)|.

Let Φt = Φ(Ht). Then if

1−ξi =
Φi

Φi−1
=

Φ(Hi−1− ei)

Φi−1

we have

Φt = Φ0
Φ1

Φ0
· · · Φt

Φt−1
= Φ0(1−ξ1) · · ·(1−ξt)

or

logΦt = logΦ0 +
t

∑
i=1

log(1−ξi).

where

logΦ0 = log
n!

(n/k)!(k!)n/k =
k−1

k
n logn− c1n (13.12)

where

|c1| ≤ 1+
1
k

logk!.

We also have

Eξi = γi =
n/k

N− i+1
≤ 1

kK logn
. (13.13)



13.2 Perfect Matchings 255

for i≤ T = N−Kn logn.
Equation (13.13) with

pt =
N− t

N
, (so that |Et |= N pt ),

gives rise to

t

∑
i=1

Eξi =
t

∑
i=1

γi =
n
k

(
log

N
N− t

+O
(

1
N− t

))
=

n
k

(
log

1
pt

+o
(

1
n

))
(13.14)

using the fact that ∑
m
i=1

1
i = logm+(Euler′s constant)+O(1/m). Recall that

Eulers constant is about 0.577 · · · .
For t = T this will give

pT =
Kn logn

N

and so
T

∑
i=1

γi =
k−1

k
n logn− n

k
log logn+ c2n

where

|c2| ≤ 1+ logk!+
1
k

logK.

Our basic goal is to prove that if

L = K1/4

and

At =

{
log |Ft |> log |F0|−

t

∑
i=1

γi−
n
L

}

then

P( ¯At)≤ n−L/10 for t ≤ T. (13.15)

Note that if AT occurs then

Φ(HT ) = eΩ(n log logn). (13.16)
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Partition of At into sub-events

We need the following notation: Suppose w : A→ [0,∞) where A is a finite set.
Then

w(A) = ∑
a∈A

w(a),

w̄(A) =
w(A)
|A|

,

maxw(A) = max
a∈A

w(a),

maxr w(A) =
maxw(A)

w̄(A)

and

medw(A) is the median value of w(a),a ∈ A,

i.e the smallest value w(a) such that at least half of the a′ ∈ A satisfy w(a′)≤
w(a).
We let Vr =

(V
r

)
. For Z ∈Vk we let Hi−Z be the sub-hypergraph of Hi induced

by V \Z and let

wi(Z) = |Φ(Hi−Z)|.

So, if Z ∈ E then wi(Z) is the number of perfect matchings that contain Z as
an edge.
Now define property

Bi = {maxr wi(Ei)≤ L} .

We also define

Ri =

{∣∣∣∣D(x,Hi)−
(

n−1
k−1

)
pi

∣∣∣∣≤ 1
L

(
n−1
k−1

)
pi, for all x ∈V

}
where

D(x,Hi) = |{e ∈ Ei : x ∈ e}|

is the number of edges of Hi that contain x.
We consider the first time t ≤ T , if any, where At fails. Then,

¯At ∩
⋂
i<t

Ai ⊆

[⋃
i<t

R̄i

]
∪

[⋃
i<t

AiRiB̄i

]
∪

[
¯At ∩
⋂
i<t

(BiRi)

]
Indeed, if the first two events in square brackets fail and

⋂
i<t AiRiBi occurs,

then for the LHS to occur, we must have the occurrence of the third event in
square brackets.
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We can therefore write

P

(
¯At ∩
⋂
i<t

Ai

)
<

∑
i<t

P(R̄i)+∑
i<t

P(AiRiB̄i)+P

(
¯At ∩
⋂
i<t

(BiRi)

)
. (13.17)

Dealing with Ri

The hypergraph Hi is distributed as Hn,mi;k, the random k-uniform hypergraph
on vertex set [n] with mi = N− i edges. It is a little easier to work with Hn,pi;k

where each possible edge occurs independently with probability pi. Now the
probability that Hn,pi;k has exactly mi edges is Ω(m−1/2

i ) and so we can use
Hn,pi;k as our model if we multiply the probability of unlikely events by O(m1/2

i )

– using the simple inequality, P(A | B)≤ P(A)/P(B).
It then follows that the Chernoff bounds imply that

P(∃i≤ T : ¬Ri) = O(n−L2/4). (13.18)

This deals with the first sum in (13.17).

Dealing with the third term in (13.17)

We show next that

Bi−1⇒ ξi ≤
1

K3/4 logn
.

This enables us to use a standard concentration argument to show that At holds
w.h.p., given that

⋂
i<t(BiRi) holds.

We first compute

wi−1(Ei−1) = ∑
e∈Ei−1

∑
F∈Fi−1

1e∈F

= ∑
F∈Fi−1

n
k
.

Hence, for any e ∈ Ei−1,

Φi−1 =
k
n

wi−1(Ei−1)

≥ k
Ln
|Ei−1|maxwi−1(Ei−1)

≥ kN pi−1

Ln
wi−1(e).
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Hence, if the event Ei =
{
B j,R j, j < i

}
holds then

ξi =
wi−1(ei)

Φi−1
≤ max

e∈Ei−1

wi−1(e)
Φi−1

≤ Ln
kN pi−1

≤ L
kK logn

≤ 1
K3/4 logn

. (13.19)

Now define

Zi =

{
ξi− γi if B j,R j hold for j < i,

0 otherwise

and

Xt =
t

∑
i=1

Zi.

We show momentarily that

P(Xt ≥ n)≤ e−Ω(n). (13.20)

So if we do have Bi,Ri for i < t ≤ T (so that Xt = ∑
t
i=1(ξi− γi)) and Xt ≤ n

then
t

∑
i=1

ξi <
t

∑
i=1

γi +n≤ k−1
k

n logn

and hence
t

∑
i=1

ξ
2
i ≤

1
K3/4 logn

t

∑
i=1

ξi ≤
n

K3/4 .

So,

log |Ft |> log |F0|−
t

∑
i=1

(ξi +ξ
2
i )> log |F0|−

t

∑
i=1

γi−
n

K3/4 .

This deals with the third term in (13.17). (If
⋂

i<t(BtRt) holds then At holds
with sufficient probability).
Let us now verify (13.20). Note that |Zi| ≤ 1

K3/4 logn
and that for any h > 0

P(Xt ≥ n) = P(eh(Z1+···+Zt ) ≥ ehn)≤ E(eh(Z1+···+Zt ))e−hn. (13.21)

Now Zi = ξi− γi (whenever Ei holds) and E(ξi | Ei) = γi. The conditioning
does not affect the expectation since we have the same expectation given any
previous history. Also 0 ≤ ξi ≤ ε = 1

logn (whenever Ei holds). So, with h ≤ 1,
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by convexity

E(ehZi) = E(ehZi | Ei)P(Ei)+E(ehZi | ¬Ei)P(¬Ei)≤

e−hγi E
(

1− ξi

ε
+

ξi

ε
ehε

∣∣∣∣Ei

)
P(Ei)+P(¬Ei)

= e−hγi
(

1− γi

ε
+

γi

ε
ehε

)
P(Ei)+1−P(Ei)≤ eh2εγi .

Here we used the fact that in putting P(Ei) = x, we maximise the LHS of the
penultimate expression by putting x = 1.
So,

E(eh(Z1+···+Zt ))≤ eh2ε ∑
t
i=1 γi

and going back to (13.21) we get

P(Xt ≥ n)≤ eh2ε ∑
t
i=1 γi−hn.

Now ∑
t
i=1 γi = O(n logn) and ε = 1/ logn and so putting h equal to a small

enough positive constant makes the RHS of the above less than e−hn/2 and
(13.20) follows.

Dealing with the second term in (13.17)

It only remains to deal with the second term in (13.17) and show that

P(AiRiB̄i)< n−K/4. (13.22)

For |Y | ≤ k we let

Vk,Y = {Z ∈Vk : Z ⊃ Y} (13.23)

and

Ci =
{

maxwi(Vk,Y )≤max
{

n−k
Φ(Hi),2medwi(Vk,Y )

}
,∀Y ∈Vk−1

}
This event “replaces” the average of wi by the median of wi. A subtle, but
important idea.
We will prove

P(RiCiB̄i)< ε = n−δ1K where δ1 = 2−(k+3). (13.24)

P(AiRiC̄i)< n−L. (13.25)

And then use

AiRiB̄i ⊆AiRiC̄i∪RiCiB̄i.

Proof of (13.24)
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We make the following assumption:

P(RiCi)≥ ε.

For if this doesn’t hold, (13.24) will be trivially satisfied.
Suppose that |V |= n and w : Vk→R+. For X ⊆V with |X | ≤ k we let ψ(X) =

maxw(Vk,X ). (See (13.23) for the definition of Vk,X ).
We need the following simple lemma:

Lemma 13.3 Suppose that for each Y ∈Vk−1 and ψ(Y )≥ B we have∣∣∣∣{Z ∈Vk,Y : w(Z)≥ 1
2

ψ(Y )
}∣∣∣∣≥ n− k

2
.

Then for any X ⊆V with |X |= k− j and ψ(X)≥ 2 j−1B we have∣∣∣∣{Z ∈Vk,X : w(Z)≥ 1
2 j ψ(X)

}∣∣∣∣≥ (n− k
2

) j 1
( j−1)!

. (13.26)

Proof Write N j for the RHS of (13.26). We proceed by induction on j, with
the case j = 1 given. Assume that X is as in the statement of the lemma and
choose Z ∈ Vk,X with w(Z) maximum (i.e. w(Z) = ψ(X)). Let y ∈ Z \X and
Y = X ∪{y}. Then |Y |= k− ( j−1) and ψ(Y ) = ψ(X)≥ 2 j−1B ≥ 2 j−2B. So
by our induction hypothesis there are at least N j−1 sets Z′ ∈Vk,Y with w(Z′)≥
2−( j−1)ψ(Y ) = 2−( j−1)ψ(X). For each such Z′,Z′ \ {y} is a (k− 1)-subset of
V with ψ(Z′ \{y})≥ w(Z′)≥ 2−( j−1)B. So for each such Z′ there are at least
(n− k)/2 sets Z′′ ∈Vk,Z′\{y} with

w(Z′′)≥ 1
2

ψ(Z′ \{y})≥ 2− j
ψ(X).

The number of these pairs (Z′,Z′′) is thus at least (n− k)N j−1/2. On the other
hand, each Z′ associated with a given Z′′ is (Z′′ \{u})∪{y} for some u ∈ Z′′ \
(X∪{y}); so the number of such Z′ is at most j−1 and the lemma follows.
Now maxwi(Vk,Y )≥Φ(Hi)/

(n
k

)
. So, applying Lemma 13.3 with B= n−kΦ(Hi)

we see that if Ci and a fortiori if RiCi holds then
maxwi(Vk,Y )> B implies that 2medwi(Vk,Y )≥maxwi(Vk,Y ) and so∣∣∣∣{Z ∈Vk,Y : wi(Z)≥

1
2

ψ(Y )
}∣∣∣∣≥ n− k

2
.

Putting j = k so that X = /0 and ψ( /0) = maxwi(Vk), we see that if RiCi holds
then ∣∣∣∣{K ∈Vk =Vk, /0 : wi(K)≥ maxwi(Vk)

2k

}∣∣∣∣≥ δ (n− k)k

(k−1)!
(13.27)
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where δ = 2−k.
Let

E∗i = {e ∈ Ei : wi(e)≥ δ maxwi(Ei)/2} .

We show that (13.27) implies

P
(
|E∗i | ≤

δ 2nk pi

2k!

∣∣∣∣RiCi

)
≤ n−δK/10. (13.28)

Now let X1 denote the set of vertices for which there are at least δnk−1/k!
choices for x2, . . . ,xk such that

wi(x1, . . . ,xk)> δ maxwi(Ei). (13.29)

Now (13.27) implies that

|X1|×
nk−1

(k−1)!
+(n−|X1|)×

δnk−1

k!
≥ δ (n− k)k

(k−1)!

which implies that

|X1| ≥
δn
2
.

Now fix 0 ≤ ` ≤ 2n logn and let L = 2`. Fix a vertex x1 ∈ X1 and let AL ={
e ∈
([n]

k

)
: x1 ∈ e and wi(e)≥ L

}
. Here L will be an approximation to the ran-

dom variable δ maxwi(Ei). Using L in place of maxwi(Ei) reduces the condi-
tioning. There are not too many choices for L and so we will be able to use the
union bound over L.
Note that without the conditioning RiCi, the two events {S⊆ AL,T ∩AL = /0}
and {S⊆ Ei,T ∩Ei = /0}will be independent for all S,T ∈

(n]
k

)
. This is because

wi(e) depends only on the existence of edges f where e∩ f = /0. Hence, if
we work with the model Hn,pi;k, without the conditioning, |AL ∩Ei| will be
distributed as Bin(|AL|, pi). Hence, if |AL| ≥ ∆ = δnk−1/k! then

P(|AL∩Ei| ≤ ∆/2 |RiCi)≤
P(|AL∩Ei| ≤ ∆/2)

P(RiCi)
≤

ε
−1e−∆pi/8 ≤ n−δK/9.

There are at most n choices for x1. The number of choices for ` is 2n logn and
for one of these we will have 2` ≤ δ maxwi(Ei)≤ 2`+1 and so with probability
1− n2+o(1)−δK/9 we have that for each choice of x1 ∈ X1 there are δ

2k! nk−1 pi

choices for x2, . . . ,xk such that {x1, . . . ,xk} is an edge and wi(x1, . . . ,xk) >
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δ maxwi(Ei). This verifies (13.28) and we have

∑e∈Ei wi(e)
maxwi(Ei)

≥
∑e∈E∗i

wi(e)

maxwi(Ei)
≥ δ |E∗i | ≥

δ 3

2k!
nk pi ≥

δ 3

2
|Ei|

which implies property Bi if K ≥ 212k+4.

Proof of (13.25)
Given y∈V we let X(y,H) denote the edge containing y in a uniformly random
1-factor of H. We let

h(y,H) =−∑
e3y

P(X(y,H) = e) logP(X(y,H) = e)

denote the entropy of X(y,H). Here log still refers to natural logarithms. See
Chapter 24 for a brief discussion of the properties of entropy that we need.

Lemma 13.4

logΦ(H)≤ 1
k ∑

y∈V
h(y,H).

Proof This follows from Shearer’s Lemma, Lemma 24.4. To get Lemma 13.4
from this, let X be the indicator of a random 1-factor so that we can take B =([n]

k

)
and A = (Av : v ∈ [n]), where Av is the set of edges of Hn,m;k containing

v. Finally note that the entropy h(X) of the random variable X satisfies h(X) =

logΦ(H) since X is (essentially) a random 1-factor.

For the next lemma let S be a finite set and w : S→R+ and let X be the random
variable with

P(X = x) =
w(x)
w(S)

.

Lemma 13.5 If h(X)≥ log |S|−M then there exist a,b ∈ range(w) with

a≤ b≤ 24(M+log3)a

such that for J = w−1[a,b] we have

|J| ≥ e−2M−2|S| and w(J)> .7w(S).
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Proof Let

h(X) = log |S|−M (13.30)

and define C by logC = 4(M+ log3). With w̄=w(S)/|S|, let a= w̄/C,b=Cw̄,
L = w−1([0,a)),U = w−1((b,∞]), and J = S\ (L∪U). We have

h(X) = ∑
A∈{L,J,U}

w(A)
w(S) ∑

x∈A

w(x)
w(A)

(
log

w(x)
w(A)

+ log
w(A)
w(S)

)
.

It follows from (24.4) that

∑
x∈A

w(x)
w(A)

log
w(x)
w(A)

≤ log |A|

and that

∑
A∈{L,J,U}

w(A)
w(S)

log
w(A)
w(S)

≤ log3.

So,

h(X)≤ log3+
w(L)
w(S)

log |L|+ w(J)
w(S)

log |J|+ w(U)

w(S)
log |U |. (13.31)

Then we have a few observations. First, the Markov inequality implies that
|U |< |S|/C and this then implies that the r.h.s. of (13.31) is less than

log3+ log |S|− w(U)

w(S)
logC

which with (13.30) implies

w(U)<
M+ log3

logC
w(S) = w(S)/4. (13.32)

Of course this also implies |U |< |S|/4. Then, combining (13.32) with w(L)≤
a|S|= w(S)/C, we have w(J)≥ 0.7w(S). But then since the RHS of (13.31) is
at most

log3+ log |S|+ w(J)
w(S)

log
|J|
|S|
≤ log3+ log |S|+0.7log

|J|
|S|

, (13.33)

we have from (13.30) and (13.32) that

|J| ≥ e−(0.7)
−1(M+log3)|S|.

To verify (13.33) observe that it is equivalent to

w(L)
w(S)

log |L|+ w(J)
w(S)

log |J|+ w(U)

w(S)
log |S| ≤ log |S|
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or
w(L)
w(S)

log |L|+ w(J)
w(S)

log |J| ≤ w(L)+w(J)
w(S)

log |S|.

Assume that we have Ai and Ri and that Ci fails at Y . Let e = Y ∪{x} ∈ Vk

satisfy wi(e) = maxwi(Vk,Y ). Note that if Hi− e is the sub-hypergraph of Hi

induced by V \ e then, using (13.16),

wi(e) = Φ(Hi− e)> n−k
Φ(Hi) = eΩ(n log logn). (13.34)

Define for all u ∈
([n]

k

)
Ri,u =

{∣∣∣∣D(z,Hi−u)−
(

n−1
k−1

)
pi

∣∣∣∣≤ 1
L

(
n−1
k−1

)
pi, for all z ∈V \u

}
.

Arguing as in (13.18) we see that

P
(
∃i≤ T,u ∈

(
[n]
k

)
: ¬Ri,u

)
= O(nk−L2/4). (13.35)

Choose y ∈V \Y with wi(Y ∪{y})≤medwi(Vk,Y ) and with h(y,Hi− e) max-
imum subject to this restriction and set f = Y ∪ {y}. Note that y 6= x by its
definition.
We have

wi(e)> 2medwi(Vk,Y )≥ 2wi( f ).

Since we have Ai, we have

log |Φ(Hi)|> log |Φ(H0)|−
i

∑
t=1

γt −
n
L
=

k−1
k

n logn+
n
k

log pi− c3n,

where c3 = c1 +1/L+o(1).
This and (13.34) implies that

logΦ(Hi− e) = logwi(e)≥
k−1

k
n logn+

n
k

log pi− c4n, (13.36)

where c4 = c3 +o(1).
But Lemma 13.4 with H = Hi− e implies that

logΦ(Hi− e)≤ 1
k ∑

z∈V\e
h(z,Hi− e)

and by our choice of y we have h(z,Hi− e) ≤ h(y,Hi− e) for at least half the
z’s in V \ e and that for all z ∈V \ e we have,

h(z,Hi− e)≤ logD(z,Hi− e)≤ log
((

1+
1
L

)(
n−1
k−1

)
pi

)
.
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We have used (13.35) for the last inequality.
This implies that

logΦ(Hi− e)≤ n
2k

(
log
((

1+
1
L

)(
n−1
k−1

)
pi

)
+h(y,Hi− e)

)
. (13.37)

Combining (13.36) and (13.37) we get

h(y,Hi− e)≥ (k−1) logn+ log pi−2kc4− log(1+1/L)

= logD(y,Hi− e)− c5 (13.38)

where

|c5| ≤ 2kc4 + log(k−1)!+2log(1+1/L)+o(1).

Recall the definition of Y, f following (13.34). Let W = V \ (Y + {x,y}) and
for Z ∈Wk−1 = {Z ⊆W : |Z|= k−1} let

w′i(Z) = Φ(Hi− (Y ∪Z∪{x,y})).

Then define

wy on Wy = {K ⊆V \ e : |K|= k,y ∈ K}

and

wx on Wx = {K ⊆V \ f : |K|= k,x ∈ K}

by

wy(K) = w′i(K \{y}) and wx(K) = w′i(K \{x}).

Recall next that X(y,Hi − e) denotes the edge containing y in a random 1-
factor of Hi−e. In which case, X(y,Hi−e) is chosen according to the weights
wy and X(x,Hi − f ) is chosen according to the weights wx. Note also that
wy(Wy) = wi(e) and wx(Wx) = wi( f ).
Let a,b ∈ range(wy)⊆ range(w′i) be as defined in Lemma 13.5, using (13.38).
Let J = w−1

y [a,b] and let Z1,Z2, . . . ,ZM be an enumeration of the sets in J.
Then

M = |J| ≥ e−2(c5+1)
(

n− k
k−1

)
. (13.39)
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Now

wy(J) =
M

∑
j=1

Φ(Hi− (Y +Z j + x+ y))1Z j+y∈E

=
M

∑
j=1

a jζ
(A)
1 > .7wy(Wy) = .7wi(e). (13.40)

wx(J) =
M

∑
j=1

Φ(Hi− (Y +Z j + x+ y))1Z j+x∈E

=
M

∑
j=1

a jζ
(B)
1 ≤ wx(Wx) = wi( f )≤ .5wi(e). (13.41)

For (13.40) we let a j = Φ(Hi−(Y +Z j +x+y)) and ζ
(A)
j = 1Z j+y∈E . Similarly

for (13.41).
But

P

(
M

∑
j=1

a jζ
(A)
j ≤ 5

7

M

∑
j=1

a jζ
(B)
j

)
≤

P

(
M

∑
j=1

a jζ
(A)
j ≤ 9

10
µ

)
+P

(
M

∑
j=1

a jζ
(B)
j ≥ 11

10
µ

)

where µ = ∑
M
j=1 a j pi.

Let

X =
M

∑
j=1

α jζ
(A)
j

where

e−4(c5+log3) ≤ α j =
a j

b
≤ 1.

Then

EX ≥ e−4(c5+log3)Mpi ≥

e−4(c5+log3)e−2(c5+1)
(

n− k
k−1

)
K logn

N
≥ L2 logn

for K sufficiently large.
It follows from Corollary 21.7 that

P

(
M

∑
j=1

a jζ
(A)
j ≤ 9

10
µ

)
= P(X ≤ 0.9EX)≤ e−EX/200 ≤ n−L2/200. (13.42)
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A similar argument gives

P

(
M

∑
j=1

a jζ
(B)
j ≥ 11

10
µ

)
≤ n−L2/300. (13.43)

We have room to multiply the RHS’s of (13.42) and (13.43) by nk+1 to account
for the number of choices for x,y,Y . This completes the proof of (13.25).

13.3 Exercises

13.3.1 Generalise the notion of configuration model to k-uniform hypergraphs.
Use it to show that if r = O(1) then the number of r-regular, k-uniform
hypergraphs with vertex set [n] is asymptotically equal to

(rkn)!
(k!)rn(rn)!

e−(k−1)(r−1)/2.

13.3.2 Prove Part (iii) of Theorem 13.1 by showing that

N(b,a)≤ n2a
(

b−1
a−1

)
∑
t≥0

2t+a(n−b−a(k−1)− t)!(k!)a+t

≤ ck(2k!)a(n−b−a(k−1))!,

where ck depends only on k.
Then use (13.2).

13.3.3 In a directed k-uniform hypergraph, the vertices of each edge are totally
order. Thus each k-set has k! possible orientations. Given a permutation
i1, i2, . . . , in of [n] we construct a directed `-overlapping Hamilton cycle
~E1 = (i1, . . . , ik),~E2 = (ik−`+1 . . . , i2k−`), . . . ,~Em`

= (in−(k−`)+1, . . . , i`).
Let ~Hn,p:k be the directed hypergraph in which each possible directed
edge is included with probability p. Use the idea of McDiarmid in Sec-
tion 12.2 to show (see Ferber [292]) that

P(~Hn,p:k contains a directed `-overlapping Hamilton cycle)

≥ P(Hn,p;k contains an `-overlapping Hamilton cycle).

13.3.4 A hypergraph H = (V,E) is 2-colorable if there exists a partition of
V into two non-empty sets A,B such that e∩A 6= /0, e∩B 6= /0 for all
e ∈ E. Let m =

(n
k

)
p. Show that if c is sufficiently large and m = c2kn

then w.h.p. Hn,p;k is not 2-colorable.
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13.3.5 Let ck = 1
k(k−1) . Show that if c < ck then w.h.p. the maximum com-

ponent in Hn,cn:k is of size O(logn). (Here two vertices u,v are in the
same component if there exists a sequence of edges e1,e2, . . . ,e` such
that u ∈ e1,v ∈ e` and ei∩ ei+1 6= /0 for 1≤ i < `.

13.3.6 Show that if c > ck then w.h.p. Hn,cn:k contains a linear size component.
13.3.7 Given a hypergraph H, let a vertex coloring be strongly proper if no

edge contains two vertices of the same color. The strong chromatic
number χ1(H) is the minimum number of color’s in a strongly proper
coloring. Suppose that k≥ 3 and 0< p< 1 is constant. Show that w.h.p.

χ1(Hn,p;k)≈
d

2logd
where d =

nk−1 p
(k−2)!

.

13.3.8 Let U1,U2, . . . ,Uk denote k disjoint sets of size n. Let H Pn,m,k denote
the set of k-partite, k-uniform hypergraphs with vertex set V = U1 ∪
U2∪ ·· ·∪Uk and m edges. Here each edge contains exactly one vertex
from each Ui,1 ≤ i ≤ k. The random hypergraph HPn,m,k is sampled
uniformly from H Pn,m,k. Prove the k-partite analogue of Theorem
13.2 viz there exists a constant K > 0 such that if m≥ Kn logn then

lim
n→∞

P(HPn,m,k has a 1-factor) = 1.

13.4 Notes

Components and cores

If H = (V,E) is a k-uniform hypergraph and 1≤ j≤ k−1 then two sets J1,J2 ∈(V
j

)
are said to be j-connected if there is a sequence of serts E1,E2, . . . ,E` such

that J1 ⊆ E1,J2 ⊆ E` and |Ei ∩Ei+1| ≥ j for 1 ≤ i < `. This defines an equiv-
alence relation on

(V
j

)
and the equivalance classes are called j-components.

Karoński and Łuczak [467] studied the sizes of the 1-components of the ran-
dom hypergraph Hn,m;k and proved the existence of a phase transition at m ≈

n
k(k−1) . Cooley, Kang and Koch [194] generalised this to j-components and

proved the existence of a phase transition at m ≈ (n
k)(

(k
j)−1

)
( n

k− j)
. As usual, a

phase transition corresponds to the emergence of a unique giant, i.e. one of
order

(n
j

)
.

The notion of a core extends simply to hypergraphs and the sizes of cores in
random hypergraphs has been considered by Molloy [582]. The r-core is the
largest sub-hypergraph with minimum degree r. Molloy proved the existence
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of a constant ck,r such that if c< cr,k then w.h.p. Hn,cn;k has no r-core and that if
c > cr,k then w.h.p. Hn,cn;k has a r-core. The efficiency of the peeling algorithm
for finding a core has been considered by Jiang, Mitzenmacher and Thaler
[449]. They show that w.h.p. the number of rounds in the peeling algorithm is
asymptotically log logn

log(k−1)(r−1) if c < cr,k and Ω(logn) if c > cr,k. Gao and Molloy

[357] show that for |c−cr,k| ≤ n−δ , 0 < δ < 1/2, the number of rounds grows
like Θ̃(nδ/2). In this discussion, (r,k) 6= (2,2).

Chromatic number

Krivelevich and Sudakov [510] studied the chromatic number of the random
k-uniform hypergraph Hn,p;k. For 1≤ γ ≤ k−1 we say that a set of vertices S
is γ-independent in a hypergraph H if |S∩e| ≤ γ . The γ-chromatic number of a
hypergraph H = (V,E) is the minimum number of sets in a partition of V into
γ-independent sets. They show that if d(γ) = γ

(k−1
γ

)(n−1
k−1

)
p is sufficiently large

then w.h.p. d(γ)

(γ+1) logd(γ)
is a good estimate of the γ-chromatic number of Hn,p;k.

Dyer, Frieze and Greenhill [267] extended the results of [5] to hypergraphs.
Let uk,` = `k−1 log`. They show that if uk,`−1 < c < uk,` then w.h.p. the (weak
(γ = k−1)) chromatic number of Hn,cn;k is either k or k+1.

Achlioptas, Kim, Krivelevich and Tetali [2] studied the 2-colorability of H =

Hn,p;k. Let m =
(n

k

)
p be the expected number of edges in H. They show that if

m = c2kn and c > log2
2 then w.h.p. H is not 2-colorable. They also show that if

c is a small enough constant then w.h.p. H is 2-colorable.

Orientability

Gao and Wormald [359], Fountoulakis, Khosla and Panagiotou [311] and
Lelarge [522] discuss the orientability of random hypergraphs. Suppose that
0 < ` < k. To `-orient an edge e of a k-uniform hypergraph H = (V,E), we
assign positive signs to ` of its vertices and k− ` negative signs to the rest. An
(`,r)-orientation of H consists of an `-orientation of each of its edges so that
each vertex receives at most r positive signs due to incident edges. This notion
has uses in load balancing. The papers establish a threshold for the existence
of an (`,r)-orientation. Describing it is somewhat complex and we refer the
reader to the papers themselves.
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VC-dimension

Ycart and Ratsaby [732] discuss the VC-dimension of H = Hn,p;k. Let p =

cn−α for constants c,α . They give the likely VC-dimension of H for various
values of α . For example if h ∈ [k] and α = k− h(h−1)

h+1 then the VC-dimension
is h or h−1 w.h.p.

Erdős-Ko-Rado

The famous Erdős-Ko-Rado theorem states that if n > 2k then the maximum
size of a family of mutually intersecting k-subsets of [n] is

(n−1
k−1

)
and this is

achieved by all the subsets that contain the element 1. Such collections will
be called stars. Balogh, Bohman and Mubayi [47] considered this problem in
relation to the random hypergraph Hn,p;k. They consider for what values of k, p
is it true that maximum size intersecting family of edges is w.h.p. a star. More
recently Hamm and Kahn [392], [393] have answered some of these questions.
For many ranges of k, p the answer is as yet unknown.
Bohman, Cooper, Frieze, Martin and Ruszinko [111] and Bohman,
Frieze, Martin, Ruszinko and Smyth [112] studied the k-uniform hypergraph H
obtained by adding random k-sets one by one, only adding a set if it intersects
all previous sets. They prove that w.h.p. H is a star for k = o(n1/3) and were
able to analyse the structure of H for k = o(n5/12).

Perfect matchings and Hamilton cycles in regular hypergraphs

The perfect matching probelm turns out to be a much easier problem than that
discussed in Section 13.2. Cooper, Frieze, Molloy and Reed [222] used small
subgraph conditioning to prove that Hn,r;k has a perfect matching w.h.p. iff
k > kr where kr =

logr
(r−1) log(( r

r−1))
+1.

Dudek, Frieze, Ruciński and Šilekis [255] made some progress on loose Hamil-
ton cycles in random regular hypergraphs. Their approach was to find an em-
beddding of Hn,m;k in a random regular k-uniform hypergraph.
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14
Trees

The properties of various kinds of trees are one of the main objects of study in
graph theory mainly due to their wide range of application in various areas of
science. Here we concentrate our attention on the “average” properties of two
important classes of trees: labeled and recursive. The first class plays an im-
portant role in both the sub-critical and super-critical phase of the evolution of
random graphs. On the other hand random recursive trees serve as an example
of the very popular random preferential attachment models. In particular we
will point out, an often overlooked fact, that the first demonstration of a power
law for the degree distribution in the preferential attachment model was shown
in a special class of inhomogeneous random recursive trees.
The families of random trees, whose properties are analyzed in this chapter, fall
into two major categories according to the order of their heights: they are ei-
ther of square root (labeled trees) or logarithmic (recursive trees) height. While
most of square-root-trees appear in probability context, most log-trees are en-
countered in algorithmic applications.

14.1 Labeled Trees

Consider the family Tn of all nn−2 labeled trees on vertex set [n] = {1,2, . . . ,n}.
Let us choose a tree Tn uniformly at random from the family Tn. The tree Tn is
called a random tree (random Cayley tree).
The Prüfer code [638] establishes a bijection between labeled trees on vertex
set [n] and the set of sequences [n]n−2 of length n− 2 with items in [n]. Such
a coding also implies that there is a one-to-one correspondence between the
number of labeled trees on n vertices with a given degree sequence d1,d2, . . . ,dn

and the number of ways in which one can distribute n−2 particles into n cells,
such that ith cell contains exactly di−1 particles.
If the positive integers di, i = 1,2, . . . ,n satisfy

d1 +d2 + · · ·+dn = 2(n−1),

then there exist (
n−2

d1−1,d2−1, . . . ,dn−1

)
(14.1)

273
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trees with n labeled vertices, the ith vertex having degree di.
The following observation is a simple consequence of the Prüfer bijection.
Namely, there are (

n−2
i−1

)
(n−1)n−i−1 (14.2)

trees with n labeled vertices in which the degree of a fixed vertex v is equal to
i.
Let Xv be the degree of the vertex v in a random tree Tn, and let X∗v = Xv− 1.
Dividing the above formula by nn−2, it follows that, for every i, X∗i has the
Bin(n− 2,1/n) distribution, which means that the asymptotic distribution of
X∗i tends to the Poisson distribution with mean one.
This observation allows us to obtain an immediate answer to the question of
the limiting behavior of the maximum degree of a random tree. Indeed, the
proof of Theorem 3.4 yields:

Theorem 14.1 Denote by ∆ = ∆(Tn) the maximum degree of a random tree.
Then w.h.p.

∆(Tn)≈
logn

log logn
.

The classical approach to the study of the properties of labeled trees chosen
at random from the family of all labeled trees was purely combinatorial, i.e.,
via counting trees with certain properties. In this way, Rényi and Szekeres
[640], using complex analysis, found the height of a random labeled tree on n
vertices (see also Stepanov [694], while for a general probabilistic context of
their result, see a survey paper by Biane, Pitman and Yor [89]).
Assume that a tree with vertex set V = [n] is rooted at vertex 1. Then there is
a unique path connecting the root with any other vertex of the tree. The height
of a tree is the length of the longest path from the root to any pendant vertex of
the tree. Pendant vertices are the vertices of degree one.

Theorem 14.2 Let h(Tn) be the height of a random tree Tn. Then

lim
n→∞

P
(

h(Tn)√
2n

< x
)
= η(x),

where

η(x) =
4π5/2

x3

∞

∑
k=1

k2e−(kπ/x)2
.
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Moreover,

Eh(Tn)≈
√

2πn and Varh(Tn)≈
π(π−3)

3
n.

We will now introduce a useful relationship between certain characteristics of
random trees and branching processes. Consider a Galton-Watson branching
process µ(t), t = 0,1, . . . , starting with M particles, i.e., with µ(0) = M, in
which the number of offspring of a single particle is equal to r with probability
pr,∑

∞
r=0 pr = 1. Denote by ZM the total number of offspring in the process

µ(t). Dwass [264] (see also Viskov [716]) proved the following relationship.

Lemma 14.3 Let Y1,Y2, . . . ,YN be a sequence of independent identically dis-
tributed random variables, such that

P(Y1 = r) = pr for r = 1,2, . . . ,N.

Then

P(ZM = N) =
M
N

P(Y1 +Y2 + . . .+YN = N−M).

Now, instead of a random tree Tn chosen from the family of all labeled trees Tn

on n vertices, consider a tree chosen at random from the family of all (n+1)n−1

trees on n+ 1 vertices, with the root labeled 0 and all other vertices labeled
from 1 to n. In such a random tree, with a natural orientation of the edges from
the root to pendant vertices, denote by Vt the set of vertices at distance t from
the root 0. Let the number of outgoing edges from a given vertex be called
its out-degree and X+

r,t be the number of vertices of out-degree r in Vt . For our
branching process, choose the probabilities pr, for r = 0,1, . . ., as equal to

pr =
λ r

r!
e−λ ,

i.e., assume that the number of offspring has the Poisson distribution with mean
λ > 0. Note that λ is arbitrary here.
Let Zr,t be the number of particles in the tth generation of the process, having
exactly r offspring. Next let X = [mr,t ], r, t = 0,1, . . . ,n be a matrix of non-
negative integers. Let st = ∑

n
r=0 mr,t and suppose that the matrix X satisfies the

following conditions:

(i) s0 = 1,

st = m1,t−1 +2m2,t−1 + . . .nmn,t−1 for t = 1,2, . . .n.

(ii) st = 0 implies that st+1 = . . .= sn = 0.
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(iii) s0 + s1 + . . .+ sn = n+1.

Then, as proved by Kolchin [496], the following relationship holds between
the out-degrees of vertices in a random rooted tree and the number of offspring
in the Poisson process starting with a single particle.

Theorem 14.4

P([X+
r,t ] = X) = P([Zr,t ] = X |Z = n+1).

Proof In Lemma 14.3 let M = 1 and N = n+1. Then,

P(Z1 = n+1) =
1

n+1
P(Y1 +Y2 + . . .+Yn+1 = n)

=
1

n+1 ∑
r1+...+rn+1=n

n+1

∏
i=1

λ ri

ri!
e−λ

=
(n+1)nλ ne−λ (n+1)

(n+1)!
.

Therefore

P([Zr,t ] = X |Z = n+1) =

=
∏

n
t=0
( st

m0,t ,...,mn,t

)
p

m0,t
0 . . . pmn,t

n

P(Z = n+1)

=
(n+1)!∏

n
t=0

st !
m0,t ! m1,t ! ... mn,t ! ∏

n
r=0

(
λ r

r! e−λ

)mr,t

(n+1)nλ ne−λ (n+1)

=
(n+1)! s1! s2! . . . sn!

(n+1)n

n

∏
t=0

n

∏
r=0

1
mr,t ! (r!)mr,t

. (14.3)

On the other hand, one can construct all rooted trees such that [X+
r,t ] = X in the

following manner. We first layout an unlabelled tree in the plane. We choose
a single point (0,0) for the root and then points St = {(i, t) : i = 1,2, . . . ,st}
for t = 1,2, . . . ,n. Then for each t,r we choose mr,t points of St that will be
joined to r points in St+1. Then, for t = 0,1, . . . ,n−1 we add edges. Note that
Sn, if non-empty, has a single point corresponding to a leaf. We go through St

in increasing order of the first component. Suppose that we have reached (i, t)
and this has been assigned out-degree r. Then we join (i, t) to the first r vertices
of St+1 that have not yet been joined by an edge to a point in St . Having put
in these edges, we assign labels 1,2, . . . ,n to

⋃n
t=1 St . The number of ways of
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doing this is
n

∏
t=1

st !
∏

n
r=1 mr,t !

×n!.

The factor n! is an over count. As a set of edges, each tree with [X+
r,t ] = X

appears exactly ∏
n
t=0 ∏

n
r=0(r!)mr,t times, due to permutations of the trees below

each vertex. Summarising, the total number of tree with out-degrees given by
the matrix X is

n! s1! s2! . . . sn!
n

∏
t=0

n

∏
r=0

1
mr,t ! (r!)mr,t

,

which, after division by the total number of labeled trees on n+ 1 vertices,
i.e., by (n+1)n−1, results in an identical formula to that given for the random
matrix [X r,t

+ ] in the case of [Zr,t ], see (14.3). To complete the proof one has to
notice that for those matrices X which do not satisfy conditions (i) to (iii) both
probabilities in question are equal to zero.

Hence, roughly speaking, a random rooted labeled tree on n vertices has asymp-
totically the same shape as a branching process with Poisson, parameter one in
terms of family sizes. Grimmett [384] uses this probabilistic representation to
deduce the asymptotic distribution of the distance from the root to the nearest
pendant vertex in a random labeled tree Tn, n≥ 2. Denote this random variable
by d(Tn).

Theorem 14.5 As n→ ∞,

P(d(Tn)≥ k)→ exp

{
k−1

∑
i=1

αi

}
,

where the αi are given recursively by

α0 = 0, αi+1 = eαi − e−1−1.

Proof Let k be a positive integer and consider the sub-tree of Tn induced by
the vertices at distance at most k from the root. Within any level (strata) of Tn,
order the vertices in increasing lexicographic order, and then delete all labels,
excluding that of the root. Denote the resulting tree by T k

n .
Now consider the following branching process constructed recursively accord-
ing to the following rules:

(i) Start with one particle (the unique member of generation zero).
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(ii) For k ≥ 0, the (k+ 1)th generation Ak+1 is the union of the families of de-
scendants of the kth generation together with one additional member which
is allocated at random to one of these families, each of the |Ak| families
having equal probability of being chosen for this allocation. As in Theorem
14.4, all family sizes are independent of each other and the past, and are
Poisson distributed with mean one.

Lemma 14.6 As n→ ∞ the numerical characteristics of T k
n have the same

distribution as the corresponding characteristics of the tree defined by the first
k generations of the branching process described above.

Proof For a proof of Lemma 14.6, see the proof Theorem 3 of [384].

Let Yk be the size of the kth generation of our branching process and let Nk

be the number of members of the kth generation with no offspring. Let i =
(i1, i2, . . . , ik) be a sequence of positive integers, and let

A j = {N j = 0} and B j = {Yj = i j} for j = 1,2, . . . ,k.

Then, by Lemma 14.6, as n→ ∞,

P(d(Tn)≥ k)→ P(A1∩A2∩ . . .∩Ak) .

Now,

P(A1∩A2∩ . . .∩Ak) = ∑
i

k

∏
j=1

P(A j|A1∩ . . .∩A j−1∩B1∩ . . .B j)

×P(B j|A1∩ . . .∩A j−1∩B1∩ . . .B j−1),

Using the Markov property,

P(A1∩A2∩ . . .∩Ak) = ∑
i

k

∏
j=1

P(A j|B j)P(B j|A j−1∩B j−1)

= ∑
i

k

∏
j=1

(
1− e−1)i j−1

C j(i j), (14.4)

where C j(i j) = P(B j|A j−1 ∩B j−1) is the coefficient of xi j in the probability
generating function D j(x) of Yj conditional upon Yj−1 = i j−1 and N j = 0. Thus

Yj = 1+Z +R1 + . . .+Ri j−1−1,
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where Z has the Poisson distribution and the Ri are independent random vari-
ables with Poisson distribution conditioned on being non-zero. Hence

D j(x) = xex−1
(

ex−1
e−1

)i j−1−1

.

Now,
∞

∑
ik=1

(1− e−1)ik−1Ck(ik) =
Dk(1− e−1)

1− e−1 .

We can use this to eliminate ik in (14.4) and give

P(A1∩A2∩ . . .∩Ak) =

∑
(i1,...,ik−1)

k−1

∏
j=1

β
i j−1
1 C j(i j)eβ1−1

(
eβ1 −1
e−1

)ik−1−1

, (14.5)

where β1 = 1− e−1. Eliminating ik−1 from (14.5) we get

P(A1∩A2∩ . . .∩Ak) =

∑
(i1,...,ik−2)

k−2

∏
j=1

β
i j−1
1 C j(i j)eβ1+β2−2

(
eβ2 −1
e−1

)ik−2−1

,

where β2 = (eβ1 −1). Continuing we see that, for k ≥ 1,

P(A1∩A2∩ . . .∩Ak) = exp

{
k

∑
i=1

(βi−1)

}
= exp

{
k

∑
i=1

αi

}
,

where β0,β1, . . . are given by the recurrence

β0 = 1, βi+1 =
(

eβi −1
)

e−1,

and αi = βi− 1. One can easily check that βi remains positive and decreases
monotonically as i→ ∞, and so αi→−1.

Another consequence of Lemma 14.3 is that, for a given N, one can associated
with the sequence Y1,Y2, . . . ,YN , a generalized occupancy scheme of distribut-
ing n particles into N cells (see [496]). In such scheme, the joint distribution of
the number of particles in each cell (ν1,ν2, . . . ,νN) is given, for r = 1,2, . . . ,N
by

P(νr = kr) = P

(
Yr = kr

∣∣∣∣ N

∑
r=1

Yr = n

)
. (14.6)

Now, denote by X+
r = ∑

n
t=0 X+

r,t the number of vertices of out-degree r in a
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random tree on n+ 1 vertices, rooted at a vertex labeled 0. Denote by Z(r) =

∑
n
t=0 Zr,t , the number of particles with exactly r offspring in the Poisson process

µ(t). Then by Theorem 14.4,

P(X+
r = kr, r = 0,1, . . . ,n) =

P(Z(r) = kr, r = 0,1, . . . ,n|Z1 = n+1).

Hence by equation (14.1), the fact that we can choose λ = 1 in the process
µ(t) and (14.6), the joint distribution of out-degrees of a random tree coincides
with the joint distribution of the number of cells containing the given number
of particles in the classical model of distributing n particles into n+ 1 cells,
where each choice of a cell by a particle is equally likely.
The above relationship, allows us to determine the asymptotic behavior of the
expectation of the number Xr of vertices of degree r in a random labeled tree
Tn.

Corollary 14.7

EXr ≈
n

(r−1)! e
.

14.2 Recursive Trees

We call a tree on n vertices labeled 1,2, . . . ,n a recursive tree (or increasing
tree) if the tree is rooted at vertex 1 and, for 2≤ i≤ n, the labels on the unique
path from the root to vertex i form an increasing sequence. It is not difficult
to see that any such tree can be constructed “recursively”: Starting with the
vertex labeled 1 and assuming that vertices “arrive” in order of their labels, and
connect themselves by an edge to one of the vertices which “arrived” earlier.
So the number of recursive (increasing) trees on n vertices is equal to (n−1)!.
A random recursive tree is a tree chosen uniformly at random from the family
of all (n− 1)! recursive trees. Or equivalently, it can be generated by a recur-
sive procedure in which each new vertex chooses a neighbor at random from
previously arrived vertices. We assume that our tree is rooted at vertex 1 and
all edges are directed from the root to the leaves.
Let Tn be a random recursive tree and let D+

n,i be the out-degree of the vertex
with label i, i.e the number of “children” of vertex i. We start with the exact
probability distribution of these random variables.
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Theorem 14.8 For i = 1,2, . . . ,n and r = 1,2, . . . ,n−1,

P(D+
n,i = r) =

(i−1)!
(n−1)!

n−i

∑
k=r

(
k
r

)
(i−1)k−r|s(n− i,k)| (14.7)

where s(n− i,k) is the Stirling number of the first kind.

Proof Conditioning on tree Tn−1 we see that, for r ≥ 1,

P(D+
n,i = r) =

n−2
n−1

P(D+
n−1,i = r)+

1
n−1

P(D+
n−1,i = r−1). (14.8)

Fix i and let

Φn,i(z) =
n−i

∑
r=0

P(D+
n,i = r)zr

be the probability generating function of D+
n,i.

Multiplying (14.8) by zr and then summing over r ≥ 1 we see that

Φn,i(z)−P(D+
n,i = 0) =

n−2
n−1

(
Φn−1,i(z)−P(D+

n−1,i = 0)
)
+

z
n−1

Φn−1,i(z).

Notice, that the probability that vertex i is a leaf equals

P(D+
n,i = 0) =

n−1

∏
j=i

(
1− 1

j

)
=

i−1
n−1

. (14.9)

Therefore

Φn,i(z) =
n−2
n−1

Φn−1,i(z)+
z

n−1
Φn−1,i(z).

With the boundary condition,

Φi,i(z) = P(D+
i,i = 0) = 1.

One can verify inductively that

Φn,i(z) =
n−i

∏
k=1

(
z+ i+ k−2

i+ k−1

)
=

(i−1)!
(n−1)!

(z+ i−1)(z+ i) . . .(z+n−2). (14.10)

Recall the definition of Stirling numbers of the first kind s(n,k). For non-
negative integers n and k

z(z−1) . . .(z−n+1) =
n

∑
k=1

s(n,k)zk.
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Hence

Φn,i(z) =
(i−1)!
(n−1)!

n−i

∑
k=1
|s(n− i,k)|(z+ i−1)k

=
(i−1)!
(n−1)!

n−i

∑
k=1

k

∑
r=0

(
k
r

)
zr(i−1)k−r|s(n− i,k)|

=
n−i

∑
r=0

(
(i−1)!
(n−1)!

n−i

∑
k=r

(
k
r

)
(i−1)k−r|s(n− i,k)|

)
zr.

It follows from (14.10), by putting z = 0, that the expected number of vertices
of out-degree zero is

n

∑
i=1

i−1
n−1

=
n
2
.

Then (14.8) with i = r = 1 implies that P(D+
n,1 = 1) = 1/(n−1). Hence, if Ln

is the number of leaves in Tn, then

ELn =
n
2
+

1
n−1

. (14.11)

For a positive integer n, let ζn(s) = ∑
n
k=1 k−s be the incomplete Riemann zeta

function, and let Hn = ζ (1) = ∑
n
k=1 k−1 be the nth harmonic number, and let

δn,k denote the Kronecker function 1n=k.

Theorem 14.9 For 1 ≤ i ≤ n, let Dn,i be the degree of vertex i in a random
recursive tree Tn. Then

EDn,i = Hn−1−Hi−1 +1−δ1,i,

while

VarDn,i = Hn−1−Hi−1−ζn−1(2)+ζi−1(2).

Proof Let N j be the label of that vertex among vertices 1,2, . . . j−1 which is
the parent of vertex j. Then for j ≥ 1 and 1≤ i < j

Dn,i =
n

∑
j=i+1

δN j ,i. (14.12)

By definition N2,N3, . . . ,Nn are independent random variables and for all i, j,

P(N j = i) =
1

j−1
. (14.13)
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The expected value of Dn,i follows immediately from (14.12) and (14.13). To
compute the variance observe that

VarDn,i =
n

∑
j=i+1

1
j−1

(
1− 1

j−1

)
.

From the above theorem it follows that VarDn,i ≤ EDn,i. Moreover, for fixed i
and n large, EDn,i ≈ logn, while for i growing with n the expectation EDn,i ≈
logn− log i. The following theorem, see Kuba and Panholzer [516], shows a
standard limit behavior of the distribution of Dn,i.

Theorem 14.10 Let i≥ 1 be fixed and n→ ∞. Then

(Dn,i− logn)/
√

logn d→ N(0,1).

Now, let i = i(n)→ ∞ as n→ ∞. If

(i) i=o(n), then

(Dn,i− (logn− log i))/
√

logn− log i d→ N(0,1),

(ii) i = cn, 0 < c < 1, then

Dn,i
d→ Po(− logc),

(iii) n− i = o(n), then

P(D+
n,i = 0)→ 1.

Now, consider another parameter of a random recursive tree.

Theorem 14.11 Let r ≥ 1 be fixed and let Xn,r be the number of vertices of
degree r in a random recursive tree Tn. Then, w.h.p.

Xn,r ≈ n/2r,

and
Xn,r−n/2r
√

n
d→ Yr,

as n→ ∞, where Yr has the N(0,σ2
r ) distribution.
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In place of proving the above theorem we will give a simple proof of its imme-
diate implication, i.e., the asymptotic behavior of the expectation of the random
variable Xn,r. The proof of asymptotic normality of suitably normalized Xn,r is
due to Janson and can be found in [424]. (In fact, in [424] a stronger statement
is proved, namely, that, asymptotically, for all r ≥ 1, random variables Xn,r are
jointly Normally distributed.)

Corollary 14.12 Let r ≥ 1 be fixed. Then

EXn,r ≈ n/2r.

Proof Let us introduce a random variable Yn,r counting the number of vertices
of degree at least r in Tn. Obviously,

Xn,r = Yn,r−Yn,r+1. (14.14)

Moreover, using a similar argument to that given for formula (14.7), we see
that for 2≤ r ≤ n,

E[Yn,r|Tn−1] =
n−2
n−1

Yn−1,r +
1

n−1
Yn−1,r−1 (14.15)

Notice, that the boundary condition for the recursive formula (14.15) is, triv-
ially given by

EYn,1 = n.

We will show, that EYn,r/n→ 2−r+1 which, by (14.14), will imply the theorem.
Set

an,r := n2−r+1−EYn,r. (14.16)

EYn,1 = n implies that an,1 = 0. We see from (14.11) that the expected number
of leaves in a random recursive tree on n vertices is given by

EXn,1 =
n
2
+

1
n−1

.

Hence an,2 = 1/(n−1) as EYn,2 = n−EXn,1.
Now we show that,

0 < an,1 < an,2 < · · ·< an,n−1. (14.17)

From the relationships (14.15) and (14.16) we get

an,r =
n−2
n−1

an−1,r +
1

n−1
an−1,r−1. (14.18)
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Inductively assume that (14.17) holds for some n≥ 3. Now, by (14.18), we get

an,r >
n−2
n−1

an−1,r−1 +
1

n−1
an−1,r−1 = an−1,r−1.

Finally, notice that

an,n−1 = n22−n− 2
(n−1)!

,

since there are only two recursive trees with n vertices and a vertex of degree
n−1. So, we conclude that a(n,r)→ 0 as n→∞, for every r, and our theorem
follows.

Finally, consider the maximum degree ∆n = ∆n(Tn) of a random recursive tree
Tn. It is easy to see that for large n, its expected value should exceed logn, since
it is as large as the expected degree of the vertex 1, which by Theorem 14.9
equals Hn−1≈ logn. Szymański [700] proved that the upper bound is O(log2 n)
(see Goh and Schmutz [376] for a strengthening of his result). Finally, Devroye
and Lu (see [240]) have shown that in fact ∆n ≈ log2 n . This is somewhat
surprising. While each vertex in [1,n1−o(1)] only has a small chance of having
such a degree, there are enough of these vertices to guarantee one w.h.p..

Theorem 14.13 In a random recursive tree Tn, w.h.p.

∆n ≈ log2 n.

The next theorem was originally proved by Devroye [235] and Pittel [625].
Both proofs were based on an analysis of certain branching processes. The
proof below is related to [235].

Theorem 14.14 Let h(Tn) be the height of a random recursive tree Tn. Then
w.h.p.

h(Tn)≈ e logn.

Proof
Upper Bound: For the upper bound we simply estimate the number ν1 of
vertices at height h1 = (1+ε)e logn where ε = o(1) but is sufficiently large so
that claimed inequalities are valid. Each vertex at this height can be associated
with a path i0 = 1, i1, . . . , ih of length h in Tn. So, if S = {i1, . . . , ih} refers to



286 Trees

such a path, then

Eν1 = ∑
|S|=h1

∏
i∈S

1
i−1

≤ 1
h1!

(
n

∑
i=1

1
i

)h1

≤

(
(1+ logn)e

h1

)h1

= o(1), (14.19)

assuming that h1ε → ∞.
Explanation: If S =

{
i1 = 1, i2, . . . , ih1

}
then the term ∏

h1
j=1 1/i j is the proba-

bility that i j chooses i j−1 in the construction of Tn.
Lower Bound: The proof of the lower bound is more involved. We consider
a different model of tree construction and relate it to Tn. We consider a Yule
process. We run the process for a specific time t and construct a tree Y (t). We
begin by creating a single particle x1 at time 0 this will be the root of a tree
Y (t). New particles are generated at various times τ1 = 0,τ2, . . . ,. Then at time
τk there will be k particles Xk = {x1,x2, . . . ,xk} and we will have Y (t) = Y (τk)

for τk ≤ t < τk+1. After xk has been added to Y (τk), each x ∈ Xk is associated
with an exponential random variable Ex with mean one1. If zk is the particle
in Xk that minimizes Ex,x ∈ Xk then a new particle xk+1 is generated at time
τk+1 = τk +Ezk and an edge {zk,xk+1} is added to Y (τk) to create Y (τk+1).
After this we independently generate new random variables Ex,x ∈ Xk+1.

Remark 14.15 The memory-less property of the exponential random vari-
able, i.e. P(Z ≥ a+b | Z ≥ a) = P(Z ≥ b), implies that we could equally well
think that at time t ≥ τk the Ex are independent exponentials conditional on
being at least τk. In which case the choice of zk is uniformly random from Xk,
even conditional on the processes prior history.

Suppose then that we focus attention on Y (y;s, t), the sub-tree rooted at y con-
taining all descendants of y that are generated after time s and before time t.
We observe three things:

(T1) The tree Y (τn) has the same distribution as Tn. This is because each par-
ticle in Xk is equally likely to be zk.

(T2) If s < t and y ∈Y (s) then Y (y;s, t) is distributed as Y (t− s). This follows
from Remark 14.15, because when zk /∈Y (y;s, t) it does not affect any of
the the variables Ex,x ∈ Y (y;s, t).

1 An exponential random variable Z with mean λ is characterised by P(Z ≥ x) = e−x/λ .
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(T3) If x,y ∈ Y (s) then Y (x;s, t) and Y (y;s, t) are independent. This also fol-
lows from Remark 14.15 for the same reasons as in (T2).

It is not difficult to prove (see Exercise (vii) or Feller [290]) that if Pn(t) is the
probability there are exactly n particles at time t then

Pn(t) = e−t(1− e−t)n−1. (14.20)

Next let

t1 = (1− ε) logn.

Then it follows from (14.20) that if ν(t) is the number of particles in our Yule
process at time t then

P(ν(t1)≥ n)≤ ∑
k≥n

e−t1(1− e−t1)k−1 =

(
1− 1

n1−ε

)n−1

= o(1). (14.21)

We will show that w.h.p. the tree Tν(t1) has height at least

h0 = (1− ε)et1

and this will complete the proof of the theorem.
We will choose s→ ∞, s = O(log t1). It follows from (14.20) that if ν0 = εes

then

P(ν(s)≤ ν0) =
ν0

∑
k=0

e−s(1− e−s)k−1 ≤ ε = o(1). (14.22)

Suppose now that ν(s)≥ ν0 and that the vertices of T1;0,s are{
x1,x2, . . . ,xν(s)

}
. Let σ = ν

1/2
0 and consider the sub-trees

A j, j = 1,2, . . . ,τ of T1;0,t1 rooted at x j, j = 1,2, . . . ,ν(s). We will show that

P(Tx1;s,t1 has height at least (1− ε)3e logn)≥ 1
2σ logσ

. (14.23)

Assuming that (14.23) holds, since the trees A1,A2, . . . ,Aτ are independent, by
T3, we have

P(h(Tn)≤ (1− ε)3e logn)≤

o(1)+P(h(T1;0,t1)≤ (1− ε)3e logn)≤ o(1)+
(

1− 1
2σ logσ

)ν0

= o(1).

To prove all this we will associate a Galton-Watson branching process with
each of x1,x2, . . . ,xτ . Consider for example x = x1 and let τ0 = logσ . The ver-
tex x will be the root of a branching process Π, which we now define. We will
consider the construction of Y (x;s, t) at times τi = s+ iτ0 for i = 1,2, . . . , i0 =
(t1−s)/τ0. The children of x in Π are the vertices at depth at least (1−ε)eτ0 in
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Y (x;s,τ1). In general, the particles in generation i will correspond to particles
at depth at least (1− ε)eτ0 in the tree Y (ξ ;τi−1,τi) where ξ is a particle of
Y (x;s, t) included in generation i−1 of Π.
If the process Π does not ultimately become extinct then generation i0 corre-
sponds to vertices in Y (t) that are at depth

i0× (1− ε)eτ0 = (1− ε)e(t1− s)≥ (1− ε)3e logn.

We will prove that

P(Π does not become extinct)≥ 1
2σ logσ

, (14.24)

and this implies (14.23) and the theorem.
To prove (14.24) we first show that µ , the expected number of progeny of a
particle in Π satisfies µ > 1 and after that we prove (14.24).
Let D(h,m) denote the expected number of vertices at depth h in the tree Tm.
Then for any ξ ∈Π,

µ ≥ D((1− ε)eτ0,σ)×P(ν(τ0)≥ σ). (14.25)

It follows from (14.20) and σ = eτ0 that

P(|Y (ξ ,0,τ0)| ≥ σ) =
∞

∑
k=σ

e−τ0(1− e−τ0)k

= (1− e−τ0)σ ≥ 1
2e

. (14.26)

We show next that for m� h we have

D(h,m)≥ (logm− logh−1)h

h!
. (14.27)

To prove this, we go back to (14.19) and write

D(h,m) =
1
h

m

∑
i=2

1
i−1 ∑

S∈([2,m]\{i}
h−1 )

∏
j∈S\{i}

1
j−1

=
1
h ∑

S∈([2,m]
h−1)

∏
j∈S

1
j−1

m

∑
16=k/∈S

1
k−1

≥ 1
h ∑

S∈([2,m]
h−1)

∏
j∈S

1
j−1

m

∑
k=h+1

1
k

≥ logm− logh−1
h

D(h−1,m). (14.28)

Equation (14.27) follows by induction since D(1,m)≥ logm.
Explanation of (14.28): We choose a path of length h by first choosing a vertex
i and then choosing S ⊆ [2,m]\ {i}. We divide by h because each h-set arises
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h times in this way. Each choice will contribute ∏ j∈S∪{i}
1

j−1 . We change the
order of summation i,S and then lower bound ∑

m
16=k/∈S

1
k−1 by ∑

m
k=h+1

1
k .

We now see from (14.25), (14.26) and (14.27) that

µ ≥ (τ0− log((1− ε)eτ0)−1)(1−ε)eτ0

((1− ε)eτ0)!
× 1

2e
≥

1
2e
√

2π
× 1

(1− ε/2)(1−ε)eτ0
� 1,

if we take ετ0/ logτ0→ ∞.
We are left to prove (14.24). Let G(z) be the probability generating function for
the random variable Z equal to the number of descendants of a single particle.
We first observe that for any θ ≥ 1,

P(Z ≥ θσ)≤ P(|Y (ξ ,0,τ0)| ≥ θσ) =
∞

∑
k=θσ

e−τ0(1− e−τ0)k ≤ e−θ .

Note that for 0≤ x≤ 1, any k ≥ 0 and a≥ k it holds that(
1− k

a

)
+

k
a

xa ≥ xk.

We then write for 0≤ x≤ 1,

G(x)≤
θσ

∑
k=0

pkxk +P(Z ≥ θσ)≤
θσ

∑
k=0

pkxk + e−θ

≤
θσ

∑
k=0

((
1− k

θσ

)
pk +

k
θσ

pkxθσ

)
+ e−θ

≤
∞

∑
k=0

((
1− k

θσ

)
pk +

k
θσ

pkxθσ

)
+ e−θ

= H(x) = 1− µ

θσ
+

µ

θσ
xθσ + e−θ .

The function H is monotone increasing in x and so ρ = P(Π becomes extinct)
being the smallest non-negative solution to x = G(x) (see Theorem 23.1) im-
plies that ρ is at most the smallest non-negative solution q to x = H(x). The
convexity of H and the fact that H(0)> 0 implies that q is at most the value ζ

satisfying H ′(ζ ) = 1 or

q≤ ζ =
1

µ1/(θσ−1) < 1.
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But ρ = G(ρ)≤ G(q)≤ H(q) and so

1−ρ ≥ µ

θσ

(
1− 1

µθσ/(θσ−1)

)
− e−θ ≥ µ−1

θσ
− e−θ ≥ 1

2σ logσ
,

after putting θ = 2logσ and using µ � 1.

Devroye, Fawzi and Fraiman [236] give another proof of the above theorem
that works for a wider class of random trees called scaled attachment random
recursive trees, where each vertex i attaches to the random vertex biXic and
X0, . . . ,Xn is a sequence of independent identically distributed random vari-
ables taking values in [0,1).

14.3 Inhomogeneous Recursive Trees

Plane-oriented recursive trees

This section is devoted to the study of the properties of a class of inhomoge-
neous recursive trees that are closely related to the Barabási-Albert “preferen-
tial attachment model”, see [56]. Bollobás, Riordan, Spencer and Tusnády gave
a proper definition of this model and showed how to reduce it to random plane-
oriented recursive trees, see [149]. In this section we present some results that
preceded [56] and created a solid mathematical ground for the further develop-
ment of general preferential attachment models, which will be discussed later
in the book (see Chapter 17).
Suppose that we build a recursive tree in the following way. We start as before
with a single vertex labeled 1 and add n−1 vertices labeled 2,3, . . . ,n, one by
one. We assume that the children of each vertex are ordered (say, from left to
right). At each step a new vertex added to the tree is placed in a position “in
between” old vertices. A tree built in this way is called a plane-oriented recur-
sive tree. To study this model it is convenient to introduce an extension of a
plane-oriented recursive tree: given a plane-oriented recursive tree we connect
each vertex with external nodes, representing a possible insertion position for
an incoming new vertex. See Figure 14.3 for a diagram of all plane-oriented
recursive trees on n = 3 vertices, together with their extensions.
Assume now, as before that all the edges of a tree are directed toward the
leaves, and denote the out-degree of a vertex v by d+(v). Then the total number
of extensions of an plane-oriented recursive tree on n vertices is equal to

∑
v∈V

(d+(v)+1) = 2n−1.

So a new vertex can choose one those those 2n−1 places to join the tree and
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Figure 14.1 Plane-oriented recursive trees and their extensions, n = 3

create a tree on n+1 vertices. If we assume that this choice in each step is made
uniformly at random then a tree constructed this way is called a random plane-
oriented recursive tree. Notice that the probability that the vertex labeled n+1
is attached to vertex v is equal to d+(v)+1

2n−1 i.e., it is proportional to the degree
of v. Such random trees, called plane-oriented because of the above geometric
interpretation, were introduced by Szymański [699] under the name of non-
uniform recursive trees. Earlier, Prodinger and Urbanek [637] described plane-
oriented recursive trees combinatorially, as labeled ordered (or plane) trees
with the property that labels along any path down from the root are increasing.
Such trees are also known in the literature as heap-ordered trees (see Chen and
Ni [178], Prodinger [636], Morris, Panholzer and Prodinger [590]) or, more
recently, as scale-free trees. So, random plane-oriented recursive trees are the
simplest example of random preferential attachment graphs.
Denote by an the number of plane-oriented recursive trees on n vertices. This
number, for n≥ 2 satisfies an obvious recurrence relation

an+1 = (2n−1)an.

Solving this equation we get that

an = 1 ·3 ·5 · · (2n−3) = (2n−3)!!.

This is also the number of Stirling permutations, introduced by Gessel and
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Stanley [366], i.e. the number of permutations of the multiset
{1,1,2,2,3,3, . . . ,n,n}, with the additional property that, for each value of
1≤ i≤ n, the values lying between the two copies of i are greater than i.
There is a one-to-one correspondence between such permutations and plane-
oriented recursive trees, given by Koganov [491] and, independently, by Janson
[426]. To see this relationship consider a plane-oriented recursive tree on n+1
vertices labelled 0,1,2, . . . ,n, where the vertex with label 0 is the root of the
tree and is connected to the vertex labeled 1 only, and the edges of the tree are
oriented in the direction from the root. Now, perform a depth first search of
the tree in which we start from the root. Next we go to the leftmost child of
the root, explore that branch recursively, go to the next child in order etc., until
we stop at the root. Notice that every edge in such a walk is traversed twice. If
every edge of the tree gets a label equal to the label of its end-vertex furthest
from the root, then the depth first search encodes each tree by a string of length
2n, where each label 1,2, . . . ,n appears twice. So the unique code of each tree
is a unique permutation of the multiset {1,1,2,2,3,3, . . . ,n,n} with additional
property described above. Note also that the insertion of a pair (n+ 1,n+ 1)
into one of the 2n−1 gaps between labels of the permutation of this multiset,
corresponds to the insertion of the vertex labeled n+ 1 into a plane-oriented
recursive tree on n vertices.
Let us start with exact formulas for probability distribution of the out-degree
D+

n,i of a vertex with label i, i = 1,2, . . . ,n in a random plane-oriented recursive
tree. Kuba and Panholzer [516] proved the following theorem.

Theorem 14.16 For i = 1,2, . . . ,n and r = 1,2, . . . ,n−1,

P(D+
n,i = r) =

r

∑
k=0

(
r
k

)
(−1)k Γ(n−3/2)Γ(i−1/2)

Γ(i−1− k/2)Γ(n−1/2)
,

where Γ(z) =
∫

∞

0 tz−1e−tdt is the Gamma function. Moreover,

E(D+
n,i) =

(2i−2
i−1

)
4n−i(2n−2

n−1

) −1 (14.29)

For simplicity, we show below that the formula (14.29) holds for i = 1, i.e.,
the expected value of the out-degree of the root of a random plane-oriented
recursive tree, and investigate its behavior as n→ ∞. It is then interesting to
compare the latter with the asymptotic behavior of the degree of the root of a
random recursive tree. Recall that for large n this is roughly logn (see Theorem
14.10).
The result below was proved by Mahmoud, Smythe and Szymański [554].
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Corollary 14.17 For n ≥ 2 the expected value of the degree of the root of a
random plane-oriented recursive tree is

E(D+
n,1) =

4n−1(2n−2
n−1

) −1,

and,

E(D+
n,1)≈

√
πn.

Proof Denote by

un =
4n(2n
n

) = n

∏
i=1

2i
2i−1

=
(2n)!!

(2n−1)!!
.

Hence, in terms of un, we want to prove that E(D+
n,1) = un−1−1.

It is easy to see that the claim holds for n = 1,2 and that

P(D+
n,1 = 1) =

n−1

∏
i=1

(
1− 2

2i−1

)
=

1
2n−3

,

while, for r > 1 and n≥ 1,

P(D+
n+1,1 = r) = (

1− r+1
2n−1

)
P(D+

n,1 = r)+
r

2n−1
P(D+

n,1 = r−1).

Hence

E(D+
n+1,1)

=
n

∑
r=1

r
(

2n− r−2
2n−1

P(D+
n,1 = r)+

r
2n−1

P(D+
n,1 = r−1)

)
=

1
2n−1

(
n−1

∑
r=1

r(2n− r−2)P(D+
n,1 = r)+

n−1

∑
r=1

(r+1)2P(D+
n,1 = r)

)

=
1

2n−1

n

∑
r=1

(2nr+1)P(D+
n,1 = r).

So, we get the following recurrence relation

E(D+
n+1,1) =

2n
2n−1

E(D+
n,1)+

1
2n−1

and the first part of the theorem follows by induction.
To see that the second part also holds one has to use the Stirling approximation
to check that

un =
√

πn−1+
3
8

√
π/n+ · · · .
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The next theorem, due to Kuba and Panholzer [516], summarizes the asymp-
totic behavior of the suitably normalized random variable D+

n,i.

Theorem 14.18 Let i≥ 1 be fixed and let n→ ∞. If

(i) i = 1, then

n−1/2D+
n,1

d→ D1, with density fD1(x) = (x/2)e−x2/2,

i.e., is asymptotically Rayleigh distributed with parameter σ =
√

2,

(ii) i≥ 2, then n−1/2D+
n,i

d→ Di, with density

fDi(x) =
2i−3

22i−1(i−2)!

∫
∞

x
(t− x)2i−4e−t2/4dt.

Let i = i(n)→ ∞ as n→ ∞. If

(i) i = o(n), then the normalized random variable (n/i)−1/2D+
n,i is asymptot-

ically Gamma distributed γ(α,β ), with parameters α =−1/2 and β = 1,
(ii) i = cn, 0 < c < 1, then the random variable D+

n,i is asymptotically nega-
tive binomial distributed NegBinom(r, p) with parameters r = 1 an p =√

c,
(iii) n− i = o(n), then P(D+

n,i = 0)→ 1, as n→ ∞.

We now turn our attention to the number of vertices of a given out-degree. The
next theorem shows a characteristic feature of random
graphs built by preferential attachment rule where every new vertex prefers to
attach to a vertex with high degree (rich get richer rule). The proportion of
vertices with degree r in such a random graph with n vertices grows like n/rα ,
for some constant α > 0, i.e., its distribution obeys a so called power law. The
next result was proved by Szymański [699] (see also [554] and [701]) and it
indicates such a behavior for the degrees of the vertices of a random plane-
oriented recursive tree, where α = 3.

Theorem 14.19 Let r be fixed and denote by X+
n,r the number of vertices of

out-degree r in a random plane-oriented recursive tree Tn. Then,

EX+
n,r =

4n
(r+1)(r+2)(r+3)

+O
(

1
r

)
.
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Proof Observe first that conditional on Tn,

E(X+
n+1,r|Tn) = X+

n,r−
r+1

2n−1
X+

n,r +
r

2n−1
X+

n,r−1 +1r=0, (14.30)

which gives

EX+
n+1,r =

2n− r−2
2n−1

EX+
n,r +

r
2n−1

EX+
n,r−1 +1r=0 (14.31)

for r ≥ 1, (X+
n,−1 = 0).

We will show that the difference

an,r
de f
= EX+

n,r−
4n

(r+1)(r+2)(r+3)
.

is asymptotically negligible with respect to the leading term in the statement
of the theorem. Substitute an,r in the equation (14.31) to get that for r ≥ 1,

an+1,r =
2n− r−2

2n−1
an,r +

r
2n−1

an,r−1−
1

2n−1
. (14.32)

We want to show that |an,r| ≤ 2
max{r,1} , for all n≥ 1,r≥ 0. Note that this is true

for all n and r = 0,1, since from (14.31) it follows (inductively) that for n≥ 2

EX+
n,0 =

2n−1
3

and so an,0 =−
1
3
.

For n≥ 2,

EX+
n,1 =

n
6
− 1

12
+

3
4(2n−3)

and so an,1 =−
1
12

+
3

4(2n−3)
.

We proceed by induction on r. By definition

ar,r =−
4r

(r+1)(r+2)(r+3)
,

and so,

|ar,r|<
2
r
.

We then see from (14.32) that for and r ≥ 2 and n≥ r that

|an+1,r| ≤
2n− r−2

2n−1
· 2

r
+

r
2n−1

· 2
r−1

− 1
2n−1

.

=
2
r
− 2

(2n−1)r

(
r+1− r2

r−1
− r

2

)
≤ 2

r
,

which completes the induction and the proof of the theorem.
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In fact much more can be proved.

Theorem 14.20 Let ε > 0 and r be fixed. Then, w.h.p.

(1− ε)ar ≤
X+

n,r

n
≤ (1+ ε)ar, (14.33)

where

ar =
4

(r+1)(r+2)(r+3)
.

Moreover, (
X+

n,r−nar
)

√
n

d→ Yr, (14.34)

as n→ ∞, jointly for all r ≥ 0, where the Yr are jointly Normally distributed
with expectations EYr = 0 and covariances σrs = Cov(Yr,Ys) given by

σrs = 2
r

∑
k=0

s

∑
l=0

(−1)k+l

k+ l +4

(
r
k

)(
s
l

)(
2(k+ l +4)!

(k+3)!(l +3)!
−1− (k+1)(l +1)

(k+3)(l +3)

)
.

Proof For the proof of asymptotic normality of a suitably normalized random
variable X+

n,r, i.e., for the proof of statement (14.34)) see Janson [424]. We will
give a short proof of the first statement (14.33), due to Bollobás, Riordan,
Spencer and Tusnády [149] (see also Mori [588]).
Consider a random plane-oriented recursive tree Tn as an element of a process
(Tt)

∞
t=o. Fix n≥ 1 and r ≥ 0 and for 0≤ t ≤ n define the martingale

Yt = E(X+
n,r|Tt) where Y0 = E(X+

n,r) and Yn = X+
n,r.

One sees that the differences

|Yt+1−Yt | ≤ 2.

For a proof of this, see the proof of Theorem 17.3. Applying the
Hoeffding- Azuma inequality (see Theorem 21.15) we get, for any fixed r,

P(|X+
n,r−EX+

n,r| ≥
√

n logn)≤ e−(1/8) logn = o(1).

But Theorem 14.19 shows that for any fixed r, EX+
n,r �

√
n logn and (14.33)

follows.

Similarly, as for uniform random recursive trees, Pittel [625] established the
asymptotic behavior of the height of a random plane-oriented recursive tree.
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Theorem 14.21 Let h∗n be the height of a random plane-oriented recursive
tree. Then w.h.p.

h∗n ≈
logn
2γ

,

where γ is the unique solution of the equation

γeγ+1 = 1,

i.e., γ = 0.27846.., so 1
2γ

= 1.79556....

Inhomogeneous recursive trees: a general model

As before, consider a tree that grows randomly in time. Each time a new vertex
appears, it chooses exactly one of the existing vertices and attaches to it. This
way we build a tree Tn of order n with n + 1 vertices labeled {0,1, . . . ,n},
where the vertex labeled 0 is the root. Now assume that for every n ≥ 0 there
is a probability distribution

P(n) = (p0, p1, . . . , pn),
n

∑
j=0

p j = 1.

Suppose that Tn has been constructed for some n ≥ 1. Given Tn we add an
edge connecting one of its vertices with a new vertex labeled n+ 1 and thus
forming a tree Tn+1. A vertex vn ∈ {0,1,2, . . . ,n} is chosen to be a neighbor of
the incoming vertex with probability

P(vn = j|Tn) = p j, for j = 0,1, . . . ,n.

Note that for the uniform random recursive tree we have

p j =
1

n+1
, for 0≤ j ≤ n.

We say that a random recursive tree is inhomogeneous if the attachment rule
of new vertices is determined by a non-uniform probability distribution. Most
often the probability that a new vertex chooses a vertex j ∈ {0,1, . . . ,n} is
proportional to w(dn( j)), the value of a weight function w applied to the degree
dn( j) of vertex j after n-th step. Then the probability distribution P(n) is defined

p j =
w(dn( j))

∑
n
k=0 w(dn(k))

.

Consider a special case when the weight function is linear and, for 0≤ j ≤ n,

w(dn( j)) = dn( j)+β , β >−1, (14.35)
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so that the total weight

wn =
n

∑
k=0

(dn(k)+β ) = 2n+(n+1)β . (14.36)

Obviously the model with such probability distribution is only a small gen-
eralisation of plane-oriented random recursive trees and we obtain the latter
when we put β = 0 in (14.35). Inhomogeneous random recursive trees of this
type are known in the literature as either scale free random trees or Barabási-
Albert random trees. For obvious reasons, we will call such graphs generalized
random plane-oriented recursive trees.
Let us focus the attention on the asymptotic behavior of the maximum degree
of such random trees. We start with some useful notation and observations.
Let Xn, j denote the weight of vertex j in a generalized plane-oriented random
recursive tree, with initial values X1,0 = X j, j = 1+β for j > 0. Let

cn,k =
Γ

(
n+ β

β+2

)
Γ

(
n+ β+k

β+2

) , n≥ 1, k ≥ 0,

be a double sequence of normalising constants. Note that
cn+1,k

cn,k
=

wn

wn + k
, (14.37)

and, for any fixed k,

cn,k = n−k/(β+2)(1+O(n−1)).

Let k be a positive integer and

Xn, j;k = cn,k

(
Xn, j + k−1

k

)
.

Lemma 14.22 Let Fn be the σ -field generated by the first n steps. If n ≥
max{1, j}, then

(
Xn, j;k,Fn

)
is a martingale.

Proof Because Xn+1, j−Xn, j ∈ {0,1}, we see that(
Xn+1, j + k−1

k

)
=

(
Xn, j + k−1

k

)
+

(
Xn, j + k−1

k−1

)(
Xn+1, j−Xn, j

1

)
=

(
Xn, j + k−1

k

)(
1+

k(Xn+1, j−Xn, j)

Xn, j

)
.
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Hence, noting that

P(Xn+1, j−Xn, j = 1|Fn) =
Xn, j

wn
,

and applying (14.37)

E(Xn+1, j;k|Fn) = Xn, j;k
cn+1,k

cn,k

(
1+

k
wn

)
= Xn, j;k,

we arrive at the lemma.

Thus, the random variable Xn, j;k, as a non-negative martingale, is
bounded in L1 and it almost surely converges to Xk

j /k!, where X j is the limit
of Xn, j;1. Since Xn, j;k ≤ cXn, j;2k, where the constant c does not depend on n, it
is also bounded in L2, which implies that it converges in L1. Therefore we can
determine all moments of the random variable X j. Namely, for j ≥ 1,

Xk
j

k!
= lim

n→∞
EXn, j;k = X j, j;k = c j,k

(
β + k

k

)
. (14.38)

Let ∆n be the maximum degree in a generalized random plane-oriented recur-
sive tree Tn and let, for j ≤ n,

∆n, j = max
0≤i≤ j

Xn,i;1 = max
0≤i≤ j

cn,1Xn,i.

Note that since Xn,i is the weight of vertex i, i.e., its degree plus β , we find that
∆n,n = cn,1(∆n +β ). Define

ξ j = max
0≤i≤ j

Xi and ξ = ξ∞ = sup
j≥0

X j. (14.39)

Now we are ready to prove the following result, due to Móri [589].

Theorem 14.23
P
(

lim
n→∞

n−1/(β+2)
∆n = ξ

)
= 1.

The limiting random variable ξ is almost surely finite and positive and it has
an absolutely continuous distribution. The convergence also holds in Lp, for
all p, 1≤ p < ∞.

Proof In the proof we skip the part dealing with the positivity of ξ and the
absolute continuity of its distribution.
By Lemma 14.22, ∆n,n is the maximum of martingales, therefore
(∆n,n|F ) is a non-negative sub-martingale, and so

E∆
k
n,n ≤

n

∑
j=0

EXk
n, j;1 ≤

∞

∑
j=0

EXk
j = k!

(
β + k

k

)
∞

∑
j=0

c j,k < ∞,
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if k > β + 2. (Note c0,k is defined here as equal to c1,k). Hence (∆n,n|F ) is
bounded in Lk, for every positive integer k, which implies both almost sure
convergence and convergence in Lp, for any p≥ 1.
Assume that k > β +2 is fixed. Then, for n≥ k,

E(∆n,n−∆n, j)
k ≤

n

∑
i= j+1

EXn,i;1.

Take the limit as n→∞ of both sides of the above inequality. Applying (14.39)
and (14.38), we get

E
(

lim
n→∞

n−1/(β+2)
∆n−ξ j

)k
≤

∞

∑
i= j+1

Eξ
k
i = k!

(
β + k

k

)
∞

∑
i= j+1

c j,k.

The right-hand side tends to 0 as j→ ∞, which implies that
n−1/(β+2)∆n tends to ξ , as claimed.

To conclude this section, setting β = 0 in Theorem 14.23, one can obtain the
asymptotic behavior of the maximum degree of a plane-oriented random re-
cursive tree.

14.4 Exercises

(i) Use the Prüfer code to show that there is one-to-one correspondence be-
tween the family of all labeled trees with vertex set [n] and the family of all
ordered sequences of length n−2 consisting of elements of [n].

(ii) Prove Theorem 14.1.
(iii) Let ∆ be the maximum degree of a random labeled tree on n vertices. Use

(14.1) to show that for every ε > 0, P(∆ > (1+ ε) logn/ log logn) tends to
0 as n→ ∞.

(iv) Let ∆ be defined as in the previous exercise and let t(n,k) be the number
of labeled trees on n vertices with maximum degree at most k. Knowing
that t(n,k) < (n− 2)!

(
1+1+ 1

2! + . . .+ 1
(k−1)!

)n
, show that for every ε >

0, P(∆ < (1− ε) logn/ log logn) tends to 0 as n→ ∞.
(v) Determine a one-to-one correspondence between the family of permutations

on {2,3, . . . ,n} and the family of recursive trees on the set [n].
(vi) Let Ln denote the number of leaves of a random recursive tree with n ver-

tices. Show that ELn = n/2 and VarLn = n/12.
(vii) Prove (14.20).
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(viii) Show that Φn,i(z) given in Theorem 14.8 is the probability generating func-
tion of the convolution of n− i independent Bernoulli random variables with
success probabilities equal to 1/(i+ k−1) for k = 1,2, . . . ,n− i.

(ix) Let L∗n denotes the number of leaves of a random plane-oriented recursive
tree with n vertices. Show that

EL∗n =
2n−1

3
and VarL∗n =

2n(n−2)
9(2n−3)

.

(x) Prove that L∗n/n (defined above) converges in probability, to 2/3.

14.5 Notes

Labeled trees

The literature on random labeled trees and their generalizations is very exten-
sive. For a comprehensive list of publications in this broad area we refer the
reader to a recent book of Drmota [250], to a chapter of Bollobás’s book [130]
on random graphs, as well as to the book by Kolchin [498]. For a review of
some classical results, including the most important contributions, forming the
foundation of the research on random trees, mainly due to Meir and Moon
(see, for example : [574], [575]and [577]), one may also consult a survey by
Karoński [465].

Recursive trees

Recursive trees have been introduced as probability models for system gen-
eration (Na and Rapoport [597]), spread of infection (Meir and Moon [576]),
pyramid schemes (Gastwirth [360]) and stemma construction in philology (Na-
jock and Heyde [601]). Most likely, the first place that such trees were intro-
duced in the literature, is the paper by Tapia and Myers [704], presented there
under the name “concave node-weighted trees”. Systematic studies of random
recursive trees were initiated by Meir and Moon ([576] and [587]) who inves-
tigated distances between vertices as well as the process of cutting down such
random trees. Observe that there is a bijection between families of recursive
trees and binary search trees, and this has opened many interesting directions
of research, as shown in a survey by Mahmoud and Smythe [553] and the book
by Mahmoud [551].
Early papers on random recursive trees (see, for example, [597], [360] and
[249]) were focused on the distribution of the degree of a given vertex and of
the number of vertices of a given degree. Later, these studies were extended
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to the distribution of the number of vertices at each level, which is referred to
as the profile. Recall, that in a rooted tree, a level (strata) consists of all those
vertices that are at the same distance from the root.
The profile of a random recursive tree is analysed in many papers. For example,
Drmota and Hwang [251] derive asymptotic approximations to the correlation
coefficients of two level sizes in random recursive trees and binary search trees.
These coefficients undergo sharp sign-changes when one level is fixed and the
other is varying. They also propose a new means of deriving an asymptotic
estimate for the expected width, which is the number of nodes at the most
abundant level.
Devroye and Hwang [238] propose a new, direct, correlation-free approach
based on central moments of profiles to the asymptotics of width in a class of
random trees of logarithmic height. This class includes random recursive trees.
Fuchs, Hwang, Neininger [354] prove convergence in distribution for the pro-
file, normalized by its mean, of random recursive trees when the limit ratio
α of the level and the logarithm of tree size lies in [0,e). Convergence of all
moments is shown to hold only for α ∈ (0,1) (with only convergence of finite
moments when α ∈ (1,e)).
van der Hofstadt, Hooghiemstra and Van Mieghem [409] study the covariance
structure of the number of nodes k and l steps away from the root in random
recursive trees and give an analytic expression valid for all k, l and tree sizes n.
For an arbitrary positive integer i ≤ in ≤ n− 1, a function of n, Su, Liu and
Feng [697] demonstrate the distance between nodes i and n in random recursive
trees Tn, is asymptotically normal as n→ ∞ by using the classical limit theory
method.
Holmgren and Janson [411] proved limit theorems for the sums of functions
of sub-trees of binary search trees and random recursive trees. In particular,
they give new simple proofs of the fact that the number of fringe trees of size
k = kn in a binary search tree and the random recursive tree (of total size n)
asymptotically has a Poisson distribution if k→ ∞, and that the distribution
is asymptotically normal for k = o(

√
n). Recall that a fringe tree is a sub-tree

consisting of some vertex of a tree and all its descendants (see Aldous [14]).
For other results on that topic see Devroye and Janson [239].
Feng, Mahmoud and Panholzer [291] study the variety of sub-trees lying on the
fringe of recursive trees and binary search trees by analysing the distributional
behavior of Xn,k, which counts the number of sub-trees of size k in a random
tree of size n, with k = k(n). Using analytic methods, they characterise for both
tree families the phase change behavior of Xn,k.
One should also notice interesting applications of random recursive trees. For
example, Mehrabian [573] presents a new technique for proving logarithmic
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upper bounds for diameters of evolving random graph models, which is based
on defining a coupling between random graphs and variants of random re-
cursive trees. Goldschmidt and Martin [377] describe a representation of the
Bolthausen-Sznitman coalescent in terms of the cutting of random recursive
trees.
Bergeron, Flajolet, Salvy [80] have defined and studied a wide class of ran-
dom increasing trees. A a tree with vertices labeled {1,2, . . . ,n} is increasing
if the sequence of labels along any branch starting at the root is increasing.
Obviously, recursive trees and binary search trees (as well as the general class
of inhomogeneous trees, including plane-oriented trees) are increasing. Such a
general model, which has been intensively studied, yields many important re-
sults for random trees discussed in this chapter. Here we will restrict ourselves
to pointing out just a few papers dealing with random increasing trees authored
by Dobrow and Smythe [248], Kuba and Panholzer [516] and Panholzer and
Prodinger [613], as well as with their generalisations, i.e., random increasing
k-trees, published by Zhang, Rong, and Comellas [735], Panholzer and Seitz
[614] and Darrasse, Hwang and Soria [229],

Inhomogeneous recursive trees

Plane-oriented recursive trees
As we already mentioned in Section 14.3, Prodinger and Urbanek [637], and,
independently, Szymański [699] introduced the concept of plane-oriented ran-
dom trees (more precisely, this notion was introduced in an unpublished pa-
per by Dondajewski and Szymański [249]), and studied the vertex degrees of
such random trees. Mahmoud, Smythe and Szymański [554], using Pólya urn
models, investigated the exact and limiting distributions of the size and the
number of leaves in the branches of the tree (see [426] for a follow up). Lu
and Feng [532] considered the strong convergence of the number of vertices
of given degree as well as of the degree of a fixed vertex (see also [553]). In
Janson’s [424] paper, the distribution of vertex degrees in random recursive
trees and random plane recursive trees are shown to be asymptotically normal.
Brightwell and Luczak [157] investigate the number Dn,k of vertices of each
degree k at each time n, focusing particularly on the case where k = k(n) is a
growing function of n. They show that Dn,k is concentrated around its mean,
which is approximately 4n/k3, for all k ≤ (n logn)−1/3, which is best possible
up to a logarithmic factor.
Hwang [413] derives several limit results for the profile of random plane-
oriented recursive trees. These include the limit distribution of the normalized
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profile, asymptotic bimodality of the variance, asymptotic approximation to
the expected width and the correlation coefficients of two level sizes.
Fuchs [353] outlines how to derive limit theorems for the number of sub-trees
of size k on the fringe of random plane-oriented recursive trees.
Finally, Janson, Kuba and Panholzer [428] consider generalized Stirling per-
mutations and relate them with certain families of generalized plane recursive
trees.

Generalized recursive trees
Móri [588] proves the strong law of large numbers and central limit theorem for
the number of vertices of low degree in a generalized random plane-oriented
recursive tree. Szymański [701] gives the rate of concentration of the number
of vertices with given degree in such trees. Móri [589] studies maximum de-
gree of a scale-free trees. Zs. Katona [478] shows that the degree distribution
is the same on every sufficiently high level of the tree and in [477] investigates
the width of scale-free trees.
Rudas, Toth, Valko [661], using results from the theory of general branching
processes, give the asymptotic degree distribution for a wide range of weight
functions. Backhausz and Móri [44] present sufficient conditions for the almost
sure existence of an asymptotic degree distribution constrained to the set of
selected vertices and describe that distribution.
Bertoin, Bravo [81] consider Bernoulli bond percolation on a large scale-free
tree in the super-critical regime, i.e., when there exists a giant cluster with high
probability. They obtain a weak limit theorem for the sizes of the next largest
clusters, extending a result in Bertoin [83] for large random recursive trees.
Devroye, Fawzi, Fraiman [236] study depth properties of a general class of
random recursive trees called attachment random recursive trees. They prove
that the height of such tree is asymptotically given by αmax logn where αmax

is a constant. This gives a new elementary proof for the height of uniform
random recursive trees that does not use branching random walk. For further
generalisations of random recursive trees see Mahmoud [552].
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In the evolution of the random graph Gn,p, during its sub-critical phase, tree
components and components with exactly one cycle, i.e. graphs with the same
number of vertices and edges, are w.h.p. the only elements of its structure.
Similarly, they are the only graphs outside the giant component after the phase
transition, until the random graph becomes connected w.h.p. In the previous
chapter we studied the properties of random trees. Now we focus our attention
on random mappings of a finite set into itself. Such mappings can be repre-
sented as digraphs with the same number of vertices and edges. So the study of
their “average” properties may help us to better understand the typical structure
of classical random graphs. We start the chapter with a short look at the basic
properties of random permutations (one-to-one mappings) and then continue
to the general theory of random mappings.

15.1 Permutations

Let f be chosen uniformly at random from the set of all n! permutations on
the set [n], i.e., from the set of all one-to-one functions [n]→ [n]. In this sec-
tion we will concentrate our attention on the properties of a functional digraph
representing a random permutation.
Let D f be the functional digraph ([n],(i, f (i))). The digraph D f consists of
vertex disjoint cycles of any length 1,2, . . . ,n. Loops represent fixed points,
see Figure 15.1.
Let Xn,t be the number of cycles of length t, t = 1,2, . . . ,n in the digraph D f .
Thus Xn,1 counts the number of fixed points of a random permutation. One can
easily check that

P(Xn,t = k) =
1

k!tk

bn/tc

∑
i=0

(−1)i

t ii!
→ e−1/t

tkk!
as n→ ∞, (15.1)

for k= 0,1,2, . . . ,n. Indeed, convergence in (15.1) follows directly from Lemma
20.10 and the fact that

Bi = E
(

Xn,t

i

)
=

1
n!
· n!
(t!)i(n− ti)!

((t−1)!)i(n− ti)!
i!

=
1

t ii!
.
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Figure 15.1 A permutation digraph example

This means that Xn,t converges in distribution to a random variable with Pois-
son distribution with mean 1/t.
Moreover, direct computation gives

P(Xn,1 = j1,Xn,2 = j2, . . . ,Xn,n = jn)

=
1
n!

n!
∏

n
t=1 jt !(t!) jt

n

∏
t=1

((t−1)!) jt

=
n

∏
t=1

(
1
t

) jt 1
jt !

,

for non-negative integers j1, j2, . . . , jn satisfying ∑
n
t=1 t jt = n.

Hence, asymptotically, the random variables Xn,t have independent Poisson
distributions with expectations 1/t, respectively (see Goncharov [380] and
Kolchin [495]).
Next, consider the random variable Xn = ∑

n
j=1 Xn, j counting the total number

of cycles in a functional digraph D f of a random permutation. It is not difficult
to show that Xn has the following probability distribution.
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Theorem 15.1 For k = 1,2, . . . ,n,

P(Xn = k) =
|s(n,k)|

n!
,

where the s(n,k) are Stirling numbers of the first kind, i.e., numbers satisfying
the following relation:

x(x−1) · · ·(x−n+1) =
n

∑
k=0

s(n,k)xk .

Moreover,

EXn = Hn =
n

∑
j=1

1
j
, VarXn = Hn−

n

∑
j=1

1
j2 .

Proof Denote by c(n,k) the number of digraphs D f (permutations) on n ver-
tices and with exactly k cycles. Consider a vertex n in D f . It either has a loop
(belongs to a unit cycle) or it doesn’t. If it does, then D f is composed of a
loop in n and a cyclic digraph (permutation) on n− 1 vertices with exactly
k−1 cycles. and there are c(n−1,k−1) such digraphs (permutations). Other-
wise, the vertex n can be thought as dividing (lying on) one of the n− 1 arcs
which belongs to cyclic digraph on n− 1 vertices with k cycles and there are
(n−1)c(n−1,k) such permutations (digraphs) of the set [n]. Hence

c(n,k) = c(n−1,k−1)+(n−1)c(n−1,k) .

Now, multiplying both sides by xk, dividing by n! and summing up over all k,
we get

Gn(x) = (x+n−1)Gn−1(x).

where Gn(x) is the probability generating function of Xn. But G1(x) = x, so

Gn(x) =
x(x+1) · · ·(x+n−1)

n!
,

and the first part of the theorem follows. Note that

Gn(x) =
(

x+n−1
n

)
=

Γ(x+n)
Γ(x)Γ(n+1)

,

where Γ is the Gamma function.

The results for the expectation and variance of Xn can be obtained by calculat-
ing the first two derivatives of Gn(x) and evaluating them at x = 1 in a standard
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way but one can also show them using only the fact that the cycles of functional
digraphs must be disjoint. Notice, for example, that

EXn = ∑
/0 6=S⊂[n]

P(S induces a cycle)

=
n

∑
k=1

(
n
k

)
(k−1)!(n− k)!

n!
= Hn.

Similarly one can derive the second factorial moment of Xn counting ordered
pairs of cycles (see Exercises 15.3.2 and 15.3.3) which implies the formula for
the variance.
Goncharov [380] proved a Central Limit Theorem for the number Xn of cy-
cles.

Theorem 15.2

lim
n→∞

P
(

Xn− logn√
logn

≤ x
)
=
∫ x

−∞

e−t2/2dt,

i.e., the standardized random variable Xn converges in distribution to the stan-
dard Normal random variable.

Another numerical characteristic of a digraph D f is the length Ln of its longest
cycle. Shepp and Lloyd [683] established the asymptotic behavior of the ex-
pected value of Ln.

Theorem 15.3

lim
n→∞

ELn

n
=
∫

∞

0
exp
{
−x−

∫
∞

x

1
y

e−ydy
}

dx = 0.62432965....

15.2 Mappings

Let f be chosen uniformly at random from the set of all nn mappings from
[n]→ [n]. Let D f be the functional digraph ([n],(i, f (i))) and let G f be the
graph obtained from D f by ignoring orientation. In general, D f has unicyclic
components only, where each component consists of a directed cycle C with
trees rooted at vertices of C, see the Figure 15.2.
Therefore the study of functional digraphs is based on results for permutations
of the set of cyclical vertices (these lying on cycles) and results for forests
consisting of trees rooted at these cyclical vertices (we allow also trivial one
vertex trees). For example, to show our first result on the connectivity of G f

we will need the following enumerative result for the forests.
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Figure 15.2 A mapping digraph example

Lemma 15.4 Let T (n,k) denote the number of forests with vertex set [n],
consisting of k trees rooted at the vertices 1,2, . . . ,k. Then,

T (n,k) = knn−k−1.

Proof Observe first that by (14.2) there are
(n−1

k−1

)
nn−k trees with n+1 labelled

vertices in which the degree of a vertex n+1 is equal to k. Hence there are(
n−1
k−1

)
nn−k

/(n
k

)
= knn−k−1

trees with n+1 labeled vertices in which the set of neighbors of the vertex n+1
is exactly [k]. An obvious bijection (obtained by removing the vertex n+ 1
from the tree) between such trees and the considered forests leads directly to
the lemma.

Theorem 15.5

P(G f is connected ) =
1
n

n

∑
k=1

(n)k

nk ≈
√

π

2n
.
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Proof If G f is connected then there is a cycle with k vertices say such that
after removing the cycle we have a forest consisting of k trees rooted at the
vertices of the cycle. Hence,

P(G f is connected ) = n−n
n

∑
k=1

(
n
k

)
(k−1)! T (n,k)

=
1
n

n

∑
k=1

(n)k

nk =
1
n

n

∑
k=1

k−1

∏
j=0

(
1− j

n

)
=

1
n

n

∑
k=1

uk.

If k ≥ n3/5, then

uk ≤ exp
{
−k(k−1)

2n

}
≤ exp

{
−1

3
n1/5

}
,

while, if k < n3/5,

uk = exp
{
− k2

2n
+O

(
k3

n2

)}
.

So

P(G f is connected ) =
1+o(1)

n

n3/5

∑
k=1

e−k2/2n +O
(

ne−n1/5/3
)

=
1+o(1)

n

∫
∞

0
e−x2/2ndx+O

(
ne−n1/5/3

)
=

1+o(1)√
n

∫
∞

0
e−y2/2dy+O

(
ne−n1/5/3

)
≈
√

π

2n
.

Let Zk denote the number of cycles of length k in a random mapping. Then

EZk =

(
n
k

)
(k−1)! n−k =

1
k

k−1

∏
j=0

(
1− j

n

)
=

uk

k
.

If Z = Z1 +Z2 + · · ·+Zn, then

EZ =
n

∑
k=1

uk

k
≈
∫

∞

1

1
x

e−x2/2ndx≈ 1
2

logn.
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Moreover the expected number of vertices of cycles in a random mapping is
equal to

E

(
n

∑
k=1

kZk

)
=

n

∑
k=1

uk ≈
√

πn
2
.

Note that the functional digraph of a random mapping can be interpreted as a
representation of a process in which vertex i ∈ [n] chooses its image indepen-
dently with probability 1/n. So, it is natural to consider a general model of a
random mapping f̂ : [n]→ [n] where, independently for all i ∈ [n],

P
(

f̂ (i) = j
)
= p j, j = 1,2, . . . ,n, (15.2)

and

p1 + p2 + . . .+ pn = 1.

This model was introduced (in a slightly more general form) independently by
Burtin [168] and Ross [655]. We will first prove a generalisation of Theorem
15.5.

Theorem 15.6

P(G f̂ is connected ) =

= ∑
i

p2
i

(
1+∑

j 6=i
p j +∑

j 6=i
∑

k 6=i, j
p j pk +∑

j 6=i
∑

k 6=i, j
∑

l 6=i, j,k
p j pk pl + · · ·

)
.

To prove this theorem we use the powerful “Burtin–Ross Lemma”. The short
and elegant proof of this lemma given here is due to Jaworski [439] (His gen-
eral approach can be applied to study other characteristics of a random map-
pings, not only their connectedness).

Lemma 15.7 (Burtin–Ross Lemma) Let f̂ be a generalized random mapping
defined above and let G f̂ [U ] be the subgraph of G f̂ induced by U ⊂ [n]. Then

P(G f̂ [U ] does not contain a cycle) = ∑
k∈[n]\U

pk.

Proof The proof is by induction on r = |U |. For r = 0 and r = 1 it is obvious.
Assume that the result holds for all values less than r, r≥ 2. Let /0 6= S⊂U and
denote by A the event that G f̂ [S] is the union of disjoint cycles and by B the
event that G f̂ [U \S] does not contain a cycle . Notice that events A and B are
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independent, since the first one depends on choices of vertices from S, only,
while the second depends on choices of vertices from U \S. Hence

P(G f̂ [U ] contains a cycle ) = ∑
/0 6=S⊂U

P(A )P(B).

But if A holds then f̂ restricted to S defines a permutation on S. So,

P(A ) = |S|!∏
j∈S

p j.

Since |U \S|< r, by the induction assumption we obtain

P(G f̂ [U ] contains a cycle ) =

= ∑
/0 6=S⊂U

|S|!∏
j∈S

p j ∑
k∈[n]\(U\S)

pk

= ∑
/0 6=S⊂U

|S|!∏
j∈S

p j

(
1− ∑

k∈(U\S)
pk

)
= ∑

S⊂U, |S|≥1
|S|!∏

k∈S
pk− ∑

S⊂U, |S|≥2
|S|!∏

k∈S
pk

= ∑
k∈U

pk,

completing the induction.

Before we prove Theorem 15.6 we will point out that Lemma 15.4 can be
immediately derived from the above result. To see this, in Lemma 15.7 choose
p j = 1/n, for j = 1,2, · · ·n, and U such that |U | = r = n− k. Then, on one
hand,

P(G f [U ] does not contain a cycle) = ∑
i∈[n]\U

1
n
=

k
n
.

On the other hand,

P(G f [U ] does not contain a cycle) =
T (n,k)
nn−k ,

where T (n,k) is the number of forests on [n] with k trees rooted in vertices
from the set [n] \U . Comparing both sides we immediately get the result of
Lemma 15.4, i.e., that

T (n,k) = knn−k−1.

Proof (of Theorem 15.6). Notice that G f̂ is connected if and only if there is
a subset U ⊆ [n] such that U spans a single cycle while there is no cycle on
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[n]\U . Moreover, the events “U ⊆ [n] spans a cycle” and “there is no cycle on
[n]\U” are independent. Hence, by Lemma 15.7,

Pr(G f̂ is connected) =

= ∑
/0 6=U⊆[n]

P(U ⊂ [n] spans a cycle)P(there is no cycle on [n]\U)

= ∑
/0 6=U⊂[n]

(|U |−1)! ∏
j∈U

p j ∑
k∈U

pk

= ∑
i

p2
i

(
1+∑

j 6=i
p j +∑

j 6=i
∑

k 6=i, j
p j pk +∑

j 6=i
∑

k 6=i, j
∑

l 6=i, j,k
p j pk pl + · · ·

)
.

Using the same reasoning as in the above proof, one can show the following
result due to Jaworski [439].

Theorem 15.8 Let X be the number of components in G f̂ and Y be the num-
ber of its cyclic vertices (vertices belonging to a cycle). Then for k = 1,2, . . . ,n,

P(X = k) = ∑
U⊂[n]
|U |≥k

∏
j∈U

p j|s(|U |,k)|− ∑
U⊂[n]
|U |≥k+1

∏
j∈U

p j|s(|U |−1,k)||U |,

where s(·, ·) is the Stirling number of the first kind. On the other hand,

P(Y = k) = k! ∑
U⊂[n]
|U |=k

∏
j∈U

p j− (k+1)! ∑
U⊂[n]
|U |=k+1

∏
j∈U

p j.

The Burtin–Ross Lemma has another formulation which we present below.

Lemma 15.9 (Burtin-Ross Lemma - the second version) Let ĝ : [n]→ [n]∪
{0} be a random mapping from the set [n] to the set [n]∪{0}, where, indepen-
dently for all i ∈ [n],

P(ĝ(i) = j) = q j, j = 0,1,2, . . . ,n,

and

q0 +q1 +q2 + . . .+qn = 1.

Let Dĝ be the random directed graph on the vertex set [n]∪{0}, generated by
the mapping ĝ and let Gĝ denote its underlying simple graph. Then

P(Gĝ is connected ) = q0.
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Notice that the event that Gĝ is connected is equivalent to the event that Dĝ is
a (directed) tree, rooted at vertex {0}, i.e., there are no cycles in Gĝ[[n]].
We will use this result and Lemma 15.9 to prove the next theorem (for more
general results, see [440]).

Theorem 15.10 Let D f̂ be the functional digraph of a mapping f̂ defined in
(15.2) and let ZR be the number of predecessors of a set R⊂ [n], |R|= r, r≥ 1,
of vertices of D f̂ , i.e.,

ZR = |{ j ∈ [n] : for some non-negative integer k, f̂ (k)( j) ∈ R}|,

where f̂ (0)( j) = j and for k ≥ 1, f̂ (k)( j) = f̂ ( f̂ (k−1)( j)).
Then, for k = 0,1,2, . . . ,n− r,

P(ZR = k+ r) = ΣR ∑
U⊂[n]\R
|U |=k

(ΣU∪R)
k−1 (1−ΣU∪R)

n−k ,

where for A⊆ [n], ΣA = ∑ j∈A p j.

Proof The distribution of ZR follows immediately from the next observation
and the application of Lemma 15.9. Denote by A the event that there is a forest
spanned on the set W =U∪R, where U ⊂ [n]\R, composed of r (directed) trees
rooted at vertices of R. Then

P(ZR = k+ r) = ∑
U⊂[n]\R
|U |=k

P(A |B∩C )P(B)P(C ), (15.3)

where B is the event that all edges that begin in U end in W , while C denotes
the event that all edges that begin in [n]\W end in [n]\W . Now notice that

P(B) = (ΣW )k, while P(C ) = (1−ΣW )n−k .

Furthermore,

P(A |B∩C) = P(Gĝ is connected ),

where ĝ : U →U ∪{0}, where {0} stands for the set R collapsed to a single
vertex, is such that for all u ∈U independently,

q j = P(ĝ(u) = j) =
p j

ΣW
, for j ∈U, while q0 =

ΣR

ΣW
.

So, applying Lemma 15.9, we arrive at the thesis.

We will finish this section by stating the central limit theorem for the number
of components of G f , where f is a uniform random mapping f : [n]→ [n]
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(see Stepanov [695]). It is an analogous result to Theorem 15.2 for random
permutations.

Theorem 15.11

lim
n→∞

P

Xn− 1
2 logn√

1
2 logn

≤ x

=
∫ x

−∞

e−t2/2dt,

the standardized random variable Xn converges in distribution to the standard
Normal random variable.

15.3 Exercises

15.3.1 Prove directly that if Xn,t is the number of cycles of length t in a random
permutation then EXn,t = 1/t.

15.3.2 Find the expectation and the variance of the number Xn of cycles in
a random permutation using fact that the rth derivative of the gamma
function equals dr

(dx)r Γ(x) =
∫

∞

0 (log t)rtx−1e−tdt,
15.3.3 Determine the variance of the number Xn of cycles in a random per-

mutation (start with computation of the second factorial moment of Xn,
counting ordered pairs of cycles).

15.3.4 Find the probability distribution for the length of a typical cycle in a
random permutation, i.e., the cycle that contains a given vertex (say
vertex 1). Determine the expectation and variance of this characteristic.

15.3.5 Find the probability distribution of the number of components in a
functional digraph D f of a uniform random mapping f : [n]→ [n].

15.3.6 Determine the expectation and variance of the number of components
in a functional digraph D f̂ of a generalized random mapping f̂ (see
Theorem 15.8)

15.3.7 Find the expectation and variance of the number of cyclic vertices in a
functional digraph D f̂ of a generalized random mapping f̂ (see Theo-
rem 15.8).

15.3.8 Prove Theorem 15.8.
15.3.9 Show that Lemmas 15.7 and 15.9 are equivalent.
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15.3.10 Prove the Burtin-Ross Lemma for a bipartite random mapping, i.e. a
mapping with bipartition ([n], [m]), where each vertex i∈ [n] chooses its
unique image in [m] independently with probability 1/m, and, similarly,
each vertex j ∈ [m] selects its image in [n] with probability 1/n.

15.3.11 Consider an evolutionary model of a random mapping (see [441],[442]),
i.e., a mapping f̂q[n]→ [n], such that for i, j ∈ [n], P( f̂q(i) = j) = q if
i = j while, P( f̂q(i) = j) = (1−q)/(n−1) if i 6= j, where 0 ≤ q ≤ 1.
Find the probability that f̂q is connected.

15.3.12 Show that there is one-to-one correspondence between the family of nn

mappings f : [n]→ [n] and the family of all doubly-rooted trees on the
vertex set [n] (Joyal bijection)

15.4 Notes

Permutations

Systematic studies of the properties of random permutations of n objects were
initiated by Goncharov in [379] and [380]. Golomb [378] showed that the ex-
pected length of the longest cycle of D f , divided by n is monotone decreas-
ing and gave a numerical value for the limit, while Shepp and Lloyd in [683]
found the closed form for this limit (see Theorem 15.3). They also gave the
corresponding result for kth moment of the rth longest cycle, for k,r = 1,2, . . .
and showed the limiting distribution for the length of the rth longest cycle.
Kingman [485] and, independently, Vershik and Schmidt [714], proved that
for a random permutation of n objects, as n→ ∞, the process giving the pro-
portion of elements in the longest cycle, the second longest cycle, and so on,
converges in distribution to the Poisson-Dirichlet process with parameter 1 (for
further results in this direction see Arratia, Barbour and Tavaré [39]). Arratia
and Tavaré [40] provide explicit bounds on the total variation distance between
the process which counts the sizes of cycles in a random permutations and a
process of independent Poisson random variables.
For other results, not necessarily of a “graphical” nature, such as, for example,
the order of a random permutation, the number of derangements, or the number
of monotone sub-sequences, we refer the reader to the respective sections of
books by Feller [290], Bollobás [131] and Sachkov [669] or, in the case of
monotone sub-sequences, to a recent monograph by Romik [654].



15.4 Notes 317

Mappings

Uniform random mappings were introduced in the mid 1950’s by Rubin and
Sitgraves [656], Katz [479] and by Folkert [307]. More recently, much atten-
tion has been focused on their usefulness as a model for epidemic processes,
see for example the papers of Gertsbakh [365], Ball, Mollison and Scalia-
Tomba [53], Berg [78], Mutafchiev [596], Pittel [622] and Jaworski [442]. The
component structure of a random functional digraph D f has been studied by
Aldous [12]. He has shown, that the joint distribution of the normalized order
statistics for the component sizes of D f converges to the Poisson-Dirichlet dis-
tribution with parameter 1/2. For more results on uniform random mappings
we refer the reader to Kolchin’s monograph [497], or a chapter of Bollobás’
[131].
The general model of a random mapping f̂ , introduced by Burtin [168] and
Ross [655], has been intensively studied by many authors. The crucial Burtin-
Ross Lemma (see Lemmas: 15.7 and 15.9) has many alternative proofs (see
[37]) but the most useful seems to be the one used in this chapter, due to Ja-
worski [439]. His approach can also be applied to derive the distribution of
many other characteristics of a random digraph D f , as well as it can be used to
prove generalisations of the Burtin-Ross Lemma for models of random map-
pings with independent choices of images. (For an extensive review of results
in that direction see [440]). Aldous, Miermont, Pitman ([17],[18]) study the
asymptotic structure of D f̂ using an ingenious coding of the random mapping
f̂ as a stochastic process on the interval [0,1] (see also the related work of Pit-
man [621], exploring the relationship between random mappings and random
forests).
Hansen and Jaworski (see [394], [395]) introduce a random mapping f D : [n]→
[n] with an in-degree sequence, which is a collection of exchangeable random
variables (D1,D2, . . . ,Dn). In particular, they study predecessors and succes-
sors of a given set of vertices, and apply their results to random mappings with
preferential and anti-preferential attachment.
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Several interesting graph properties require that the minimum degree of a graph
be at least a certain amount. E.g. having a Hamilton cycle requires that the min-
imum degree is at least two. In Chapter 6 we saw that Gn,m being Hamiltonian
and having minimum degree at least two happen at the same time w.h.p. One
is therefore interested in models of a random graph which guarantee a certain
minimum degree. We have already seen d-regular graphs in Chapter 10. In this
chapter we consider another simple and quite natural model Gk−out that gen-
eralises random mappings. It seems to have first appeared in print as Problem
38 of “The Scottish Book” [558]. We discuss the connectivity of this model
and then matchings and Hamilton cycles. We also consider a related model of
“Nearest Neighbor Graphs”.

16.1 Connectivity

For an integer k, 1 ≤ k ≤ n− 1, let ~Gk−out be a random digraph on vertex
set V = {1,2, . . . ,n} with arcs (directed edges) generated independently for
each v ∈V by a random choice of k distinct arcs (v,w), where w ∈V \{v}, so
that each of the

(n−1
k

)
possible sets of arcs is equally likely to be chosen. Let

Gk−out be the random graph(multigraph) obtained from ~Gk−out by ignoring the
orientation of its arcs, but retaining all edges.
Note that ~G1−out is a functional digraph of a random mapping f : [n]→ [n],
with a restriction that loops (fixed points) are not allowed. So for k = 1 the
following result holds.

Theorem 16.1

lim
n→∞

P(G1−out is connected ) = 0.

The situation changes when each vertex is allowed to choose more than one
neighbor. Denote by κ(G) and λ (G) the vertex and edge connectivity of a
graph G respectively, i.e., the minimum number of vertices (respectively edges)

318
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the deletion of which disconnects G. Let δ (G) be the minimum degree of G.
The well known Whitney’s Theorem states that, for any graph G,

κ(G)≤ λ (G)≤ δ (G).

In the next theorem we show that for random k−out graphs these parameters
are equal w.h.p. It is taken from Fenner and Frieze [298]. The Scottish Book
[558] contains a proof that Gk−out is connected for k ≥ 2.

Theorem 16.2 Let κ = κ(Gk−out),λ = λ (Gk−out) and δ = δ (Gk−out). Then,
for 2≤ k = O(1),

lim
n→∞

P(κ = λ = δ = k) = 1.

Proof In the light of Whitney’s Theorem, to prove our theorem we have to
show that the following two statements hold:

lim
n→∞

P(κ(Gk−out)≥ k) = 1, (16.1)

and

lim
n→∞

P(δ (Gk−out)≤ k) = 1. (16.2)

Then, w.h.p.

k ≤ κ ≤ λ ≤ δ ≤ k,

and the theorem follows.
To prove statement (16.1) consider the deletion of r vertices from the random
graph Gk−out , where 1≤ r≤ k−1. If Gk−out can be disconnected by deleting r
vertices, then there exists a partition (R,S,T ) of the vertex set V , with | R |= r,
| S |= s and | T |= t = n−r−s, with k−r+1≤ s≤ n−k−1, such that Gk−out

has no edge joining a vertex in S with a vertex in T . The probability of such an
event, for an arbitrary partition given above, is equal to((r+s−1

k

)(n−1
k

) )s((n−s−1
k

)(n−1
k

) )n−r−s

≤
(

r+ s
n

)sk(n− s
n

)(n−r−s)k

Thus

P(κ(Gk−out)≤ r)≤
b(n−r)/2c

∑
s=k−r+1

n!
s!r!(n− r− s)!

(
r+ s

n

)sk(n− s
n

)(n−r−s)k
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We have replaced n−k−1 by b(n− r)/2c because we can always interchange
S and T so that |S| ≤ |T |.
But, by Stirling’s formula,

n!
s!r!(n− r− s)!

≤ αs
nn

ss(n− r− s)n−r−s

where

αs = α(s,n,r)≤ c
(

n
s(n− r− s)

)1/2

≤ 2c
s1/2 ,

for some absolute constant c > 0.
Thus

P(κ(Gk−out)≤ r)≤ 2c
b(n−r)/2c

∑
s=k−r+1

1
s1/2

(
r+ s

s

)s( n− s
n− r− s

)(n−r−s)

us

where

us = (r+ s)(k−1)s(n− s)(k−1)(n−r−s)nn−k(n−r).

Now, (
r+ s

s

)s( n− s
n− r− s

)n−r−s

≤ e2r,

and

(r+ s)s(n− s)n−r−s

decreases monotonically, with increasing s, for s ≤ (n− r)/2. Furthermore, if
s≤ n/4 then the decrease is by a factor of at least 2.
Therefore

P(κ(Gk−out)≤ r)≤ 2ce2r

(
n/4

∑
s=k−r+1

2−(k−1)(s−k+r−1)+
2

n1/2 ·
n
4

)
uk−r+1

≤ 5ce2rn1/2uk−r+1 ≤ 5ce2ran3/2−k(k−r),

where

a = (k+1)(k−1)(k−r+1).

It follows that

lim
n→∞

P(κ(Gk−out)≤ r) = lim
n→∞

P(κ(Gk−out)≤ k−1) = 0,

which implies that

lim
n→∞

P(κ(Gk−out)≥ k) = 1,
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i.e., that equation (16.1) holds.
To complete the proof we have to show that equation (16.2) holds, i.e., that

P(δ (Gk−out) = k)→ 1 as n→ ∞.

Since δ ≥ k in Gk−out , we have to show that w.h.p. there is a vertex of degree
k in Gk−out .
Let Ev be the event that vertex v has indegree zero in ~Gk−out . Thus the degree
of v in Gk−out is k if and only if Ev occurs. Now

P(Ev) =

((n−2
k

)(n−1
k

))n−1

=

(
1− k

n−1

)n−1

→ e−k.

Let Z denote the number of vertices of degree k in Gk−out . Then we have shown
that E(Z)≈ ne−k. Now the random variable Z is determined by kn independent
random choices. Changing one of these choices can change the value of Z by
at most one. Applying the Azuma-Hoeffding concentration inequality – see
Section 21.7, in particular Lemma 21.16 we see that for any t > 0

P(Z ≤ E(Z)− t)≤ exp
{
−2t2

kn

}
.

Putting t = ne−k/2 we see that Z > 0 w.h.p. and the theorem follows.

16.2 Perfect Matchings

Non-bipartite graphs

Assuming that the number of vertices n of a random graph Gk−out is even,
Frieze [322] proved the following result.

Theorem 16.3

lim
n→∞
n even

P(Gk−out has a perfect matching) =

{
0 if k = 1

1 if k ≥ 2.

We will only prove a weakening of the above result to where k≥ 15. We follow
the ideas of Section 6.1. So, we begin by examining the expansion properties
of G =Ga−out ,a≥ 3.

Lemma 16.4 W.h.p. |NG(S)| ≥ |S| for all S ⊆ [n], |S| ≤ κan where κa =
1
2

( 1
30

)1/(a−2)
.
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Proof The probability there exists a set S with insufficient expansion is at
most

κan

∑
s=3

(
n
s

)(
n

s−1

)(
2s
n

)as

≤
κan

∑
s=3

(ne
s

)2s
(

2s
n

)as

=
κan

∑
s=3

(( s
n

)a−2
e22a

)s

= o(1). (16.3)

Lemma 16.5 Let b =
⌈
(1+κ−2

a )/2
⌉
. Then as n→∞, n even, G(a+b)−out has

a perfect matching w.h.p.

Proof First note that G(a+b)−out contains H =Ga−out ∪Gb−out in the follow-
ing sense. Start the construction of G(a+b)−out with H. If there is a v ∈ [n] that
chooses edge {v,w} in both Ga−out and Gb−out then add another random choice
for v.
Let us show that H has a perfect matching w.h.p. Enumerate the edges of
Gb−out as e1,e2, . . . ,ebn. Here e(i−1)n+ j is the ith edge chosen by vertex j. Let
G0 = Ga−out and let Gi = G0 + {e1,e2, . . . ,ei}. If Gi does not have a perfect
matching, consider the sets A,A(x),x∈ A defined prior to (6.6). It follows from
Lemma 16.4 that w.h.p. all of these sets are of size at least κan. Furthermore,
if i+ 1 mod n = x and x ∈ A and ei = {x,y} then P(y ∈ A(x)) ≥ κan−i

n . (We
subtract i to account for the i previously inspected edges associated with x’s
choices).
It follows that

P(G(a+b)−out does not have a perfect matching)

≤ P(H does not have a perfect matching)

≤ P(Bin(bκan,κa−b/n)≤ n/2) = o(1).

Putting a = 8 gives b = 7 and a proof that G15−out , n even, has a perfect match-
ing w.h.p.

Bipartite graphs

We now consider the related problem of the existence of a perfect matching in
a random k-out bipartite graph.
Let U = {u1,u2, . . . ,un},V = {v1,v2, . . . ,vn} and let each vertex from U choose
independently and without repetition, k neighbors in V , and let each vertex
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from V choose independently and without repetition k neighbors in U . Denote
by ~Bk−out the digraphs generated by the above procedure and let Bk−out be its
underlying simple bipartite graph.

Theorem 16.6

lim
n→∞

P(Bk−out has a perfect matching) =

{
0 if k = 1

1 if k ≥ 2.

We will give two different proofs. The first one - existential- of a combinatorial
nature is due to Walkup [719]. The second one - constructive- of an algorith-
mic nature, is due to Karp, Rinnooy-Kan and Vohra [475]. We start with the
combinatorial approach.

Existence proof

Let X denote the number of perfect matchings in Bk−out . Then

P(X > 0)≤ E(X)≤ n! 2n(k/n)n.

The above bound follows from the following observations. There are n! ways
of pairing the vertices of U with the vertices of V . For each such pairing there
are 2n ways to assign directions for the connecting edges, and then each possi-
ble matching has probability (k/n)n of appearing in Bk−out .
So, by Stirling’s formula,

P(X > 0)≤ 3n1/2(2k/e)n,

which, for k = 1 tends to 0 as n→ ∞, and the first statement of our theorem
follows.
To show that Bk−out has a perfect matching w.h.p. notice that since this is an
increasing graph property, it is enough to show that it is true for k = 2. Note
also, that if there is no perfect matching in Bk−out , then there must exist a set
R ⊂U (or R ⊂ V ) such that the cardinality of neighborhood of S = N(R) of
R in U ( respectively, in V ) is smaller than the cardinality of the set R itself,
i.e., | S |<| R |. We will call such a pair (R,S) a bad pair, and, in particular, we
will restrict our attention to the “minimal bad pairs”, i.e., such that there is no
R′ ⊂ R for which (R′,N(R′)) is bad.
If (R,S) is a bad pair with R ⊆U then (V \ S,U \R) is also a bad pair. Given
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this, we can concentrate on showing that w.h.p. there are no bad pairs (R,S)
with 2≤ |R| ≤ (n+1)/2.
Every minimal bad pair has to have the following two properties:

(i) | S |=| R | −1,
(ii) every vertex in S has at least two neighbors in R.

The first property is obvious. To see why property (ii) holds, suppose that there
is a vertex v ∈ S with at most one neighbor u in R. Then the pair (R\{u} ,S \
{v}) is also “bad pair” and so the pair (R,S) is not minimal.
Let r ∈ [2,(n+ 1)/2] and let Yr be the number of minimal bad pairs (R,S),
with | R |= r in Bk−out . To complete the proof of the theorem we have to
show that ∑r EYr → 0 as n→ ∞. By symmetry, choose (R,S), such that R =

{u1,u2, . . .ur}⊂U and S = {v1,v2, . . .vr−1}⊂V is a minimal “bad pair”. Then

EYr = 2
(

n
r

)(
n

r−1

)
PrQr, (16.4)

where

Pr = P((R,S) is bad)

and

Qr = P((R,S) is minimal | (R,S) is bad).

We observe that, for any fixed k,

Pr =

((r−1
k

)(n
k

) )r((n−r
k

)(n
k

) )n−r+1

.

Hence, for k = 2,

Pr ≤
( r

n

)2r
(

n− r
n

)2(n−r)

. (16.5)

Then we use Stirling’s formula to show,(
n
r

)(
n

r−1

)
=

r
n− r+1

(
n
r

)2

≤ r
n− r+1

n
r(n− r)

(n
r

)
2r
(

n
n− r

)2(n−r)

. (16.6)

To estimate Qr we have to consider condition (ii) which a minimal bad pair
has to satisfy. This implies that a vertex v ∈ S = N(R) is chosen by at least one
vertex from R (denote this event by Av), or it chooses both its neighbors in R
(denote this event by Bv). Then the events Av,v ∈ S are negatively correlated
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(see Section 21.2) and the events Bv,v ∈ S are independent of other events in
this collection. Let S = {v1,v2, . . . ,vr−1}. Then we can write

Qr≤P

(
r−1⋂
i=1

(Avi ∪Bvi)

)

=
r−1

∏
i=1

P

(
Avi ∪Bvi

∣∣∣∣ i−1⋃
j=1

(Av j ∪Bv j)

)

≤
r−1

∏
i=1

P(Avi ∪Bvi)

≤
(
1−P(Ac

v1
)P(Bc

v1
)
)r−1

≤

(
1−
(

r−2
r−1

)2r
(

1−
(r

2

)(n
2

)))r−1

≤ η
r−1 (16.7)

for some absolute constant 0 < η < 1 when r ≤ (n+1)/2.
Going back to (16.4), and using (16.5), (16.6), (16.7)

(n+1)/2

∑
r=2

EXr ≤ 2
(n+1)/2

∑
r=2

ηr−1n
(n− r)(n− r+1)

= o(1).

Hence ∑r EXr → 0 as n→ ∞, which means that w.h.p. there are no bad pairs,
implying that Bk−out has a perfect matching w.h.p.
Frieze and Melsted [343] considered the related question. Suppose that M,N
are disjoint sets of size m,n and that each v ∈ M chooses d ≥ 3 neighbors
in N. Suppose that we condition on each vertex in N being chosen at least
twice. They show that w.h.p. there is a matching of size equal to min{m,n}.
Fountoulakis and Panagiotou [310] proved a slightly weaker result, in the same
vein.

Algorithmic Proof

We will now give a rather elegant algorithmic proof of Theorem 16.6. It is
due to Karp, Rinnooy-Kan and Vohra [475]. We do this for two reasons. First,
because it is a lovely proof and second this proof is the basis of the proof that
2-in,2-out is Hamiltonian in [206]. In particular, this latter example shows that
constructive proofs can sometimes be used to achieve results not obtainable
through existence proofs alone.
Start with the random digraph ~B2−out and consider two multigraphs, GU and
GV with labeled vertices and edges, generated by ~B2−out on the sets of the
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bipartition (U,V ) in the following way. The vertex set of the graph GU is U
and two vertices, u and u′, are connected by an edge, labeled v, if a vertex v∈V
chooses u and u′ as its two neighbors in U . Similarly, the graph GU has vertex
set V and we put an edge labeled u between two vertices v and v′, if a vertex
u ∈U chooses v and v′ as its two neighbors in V . Hence graphs GU and GV are
random multigraphs with exactly n labeled vertices and n labeled edges.
We will describe below, a randomized algorithm which w.h.p. finds a perfect
matching in B2−out in O(n) expected number of steps.

Algorithm PAIR

• Step 0. Set HU = GU and let HV be empty graph on vertex set V . Initially
all vertices in HU are unmarked and all vertices in GV are unchecked. Let
CORE denote the set of edges of GU that lie on cycles in GU i.e. the edges
of the 2-core of GU .

• Step 1. If every isolated tree in HU contains a marked vertex, go to Step
5. Otherwise, select any isolated tree T in HU in which all vertices are un-
marked. Pick a random vertex u in T and mark it.

• Step 2. Add the edge {x,y} ,x,y ∈V that has label u to the graph HV .
• Step 3. Let Cx,Cy be the components of HV just before the edge labeled u is

added. Let C = Cx ∪Cy. If all vertices in C are checked, go to Step 6. Oth-
erwise, select an unchecked vertex v in C. If possible, select an unchecked
vertex v for which the edge labeled v in HU belongs to CORE.

• Step 4. Delete the edge labeled v from HU , return to Step 1.
• Step 5. STOP and declare success.
• Step 6. STOP and declare failure.

We next argue that Algorithm PAIR, when it finishes at Step 5, does indeed
produce a perfect matching in B2−out . There are two simple invariants of this
process that explain this:

(I1) The number of marked vertices plus the number of edges in HU is equal
to n.

(I2) The number of checked vertices is equal to the number of edges in HV .

For I1, we observe that each round marks one vertex and deletes one edge of
HU . Similarly, for I2, we observe that each round checks one vertex and adds
one edge to HV .

Lemma 16.7 Up until (possible) failure in Step 6, the components of HV are
either trees with a unique unchecked vertex or are unicyclic components with
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all vertices checked. Also, failure in Step 6 means that PAIR tries to add an
edge to a unicyclic component.

Proof This is true initially, as initially HV has no edges and all vertices are
unchecked. Assume this to be the case when we add an edge {x,y} to HV . If
Cx 6= Cy are both trees then we will have a choice of two unchecked vertices
in C =Cx ∪Cy and C will be a tree. After checking one vertex, our claim will
still hold. The other possibilities are that Cx is a tree and Cy is unicyclic. In
this case there is one unchecked vertex and this will be checked and C will be
unicyclic. The other possibility is that C = Cx = Cy is a tree. Again there is
only one unchecked vertex and adding {x,y} will make C unicyclic.

Lemma 16.8 If HU consists of trees and unicyclic components then all the
trees in HU contain a marked vertex.

Proof Suppose that HU contains k trees with marked vertices and ` trees with
no marked vertices and that the rest of the components are unicyclic. It follows
that HU contains n− k− ` edges and then (I1) implies that `= 0.

Lemma 16.9 If the algorithm stops in Step 5, then we can extract a perfect
matching from HU ,HV .

Proof Suppose that we arrive at Step 5 after k rounds. Suppose that there are
k trees with a marked vertex. Let the component sizes in HU be n1,n2, . . . ,nk

for the trees and m1,m2, . . . ,m` for the remaining components. Then,

n1 +n2 + · · ·+nk +m1 +m2 + · · ·+m` = |V (HU )|= n.

|E(HU )|= n− k,

from I1 and so

(n1−1)+(n2−1)+ · · ·+(nk−1)+

(≥ m1)+(≥ m2)+(≥ m`) = n− k.

It follows that the components of HU that are not trees with a marked vertex
have as many edges as vertices and so are unicyclic.
We now show, given that HU ,HV only contain trees and unicyclic components,
that we can extract a perfect matching. The edges of HU define a matching
of B2−out of size n− k. Consider a tree T component with marked vertex ρ .
Orient the edges of T away from ρ . Now consider an edge {x,y} of T , oriented
from x to y. Suppose that this edge has label z ∈ V . We add the edge {y,z} to
M1. These edges are disjoint: z appears as the label of exactly one edge and y
is the head of exactly one oriented edge.
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For the unicyclic components, we orient the unique cycle
C = (u1,u2, . . . ,us) arbitrarily in one of two ways. We then consider the trees
attached to each of the ui and orient them away from the ui. An oriented edge
{x,y} with label z yields a matching edge {y,z} as before.
The remaining k edges needed for a perfect matching come from HV . We ex-
tract a set of k matching edges out of HV in the same way we extracted n− k
edges from HU . We only need to check that these k edges are disjoint from
those chosen from HU . Let {y,z} be such an edge, obtained from the edge
{x,y} of HV , which has label z. z is marked in HU and so is the root of a tree
and does not appear in any matching edge of M1. y is a checked vertex and so
the edge labelled y has been deleted from HU and this prevents y appearing in
a matching edge of M1.

Lemma 16.10 W.h.p. Algorithm PAIR cannot reach Step 6 in fewer than
0.49n iterations.

Proof It follows from Lemma 2.10 that w.h.p. after ≤ 0.499n rounds, HV

only contains trees and unicyclic components. The lemma now follows from
Lemma 16.7.
To complete our analysis, it only remains to show

Lemma 16.11 W.h.p., at most 0.49n rounds are needed to make HU the union
of trees and unicyclic components.

Proof Recall that each edge of HU corresponds to an unchecked vertex of HV ,
the edges corresponding to checked vertices having been deleted. Moreover,
each tree component T of HV has one unchecked vertex, uT say. If uT is the
label of an edge of HU belonging to CORE then due to the choice rule for
vertex checking in Step 3, every vertex of T must be the label of an edge of
CORE. Hence the number of edges left in CORE, after a given iteration of
the algorithm, is equal to the number of tree components of HV , where every
vertex labels an edge of CORE. We use this to estimate the number of edges
of CORE that remain in HU after .49n iterations.
Let xe−x = 2e−2, where 0 < x < 1. One can easily check that 0.40 < x < 0.41.
It follows from Lemma 2.16 that w.h.p. |CORE| ≈

(
1− x

2

)2 n, which implies,
that 0.63 n≤ |CORE| ≤ 0.64 n.
Let Z be the number of tree components in HV made up of vertices which are
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the labels of edges belong to CORE. Then, after at most 0.49n rounds,

EZ ≤ o(1)+
(logn)2

∑
k=1

(
n
k

)
kk−2

(
0.49n
k−1

)
(k−1)!

(0.64)k(n
2

)k−1 ×

×

(
1− k(n− k)(n

2

) ).49n−(k−1)

(16.8)

≤ (1+o(1))n
(logn)2

∑
k=1

kk−2

k!
(0.64)ke−0.98k

≤ (1+o(1))n×[(
0.64θ +

(0.64θ)2

2
+

(0.64θ)3

2
+

2(0.64θ)4

3

)
+

∞

∑
k=5

(
(0.64)e.02

)k

2k5/2

]
where θ = e−0.98

≤ (1+o(1))n
[

0.279+
1

2×55/2 (1− (0.64)e.02)

]
≤ (1+o(1))n [0.279+0.026]

≤ (0.305)n.

Explanation of (16.8); The o(1) term corresponds to components of size greater
than (logn)2 and w.h.p. there are none of these. For the summand, we choose k
vertices and a tree on these k vertices in

(n
k

)
kk−2 ways. The term

(0.49n
k−1

)
(k−1)!

gives the number of sequences of edge choices that lead to a given tree. The
term

(n
2

)−(k−1) is the probability that these edges exist and (0.64)k bounds the
probability that the vertices of the tree correspond to edges in CORE. The final
term is the probability that the tree is actually a component.
So after 0.49n rounds, in expectation, the number of edges left in CORE, is at
most 0.305

0.63 < 0.485 of its original size, and the Chebyshev inequality (applied
to Z) can be used to show that w.h.p. it is at most 0.49 of its original size.
However, randomly deleting approximately 0.51 fraction of COREs will w.h.p.
leave just trees and unicyclic components in HU . To see this, observe that if
we delete 0.505n random edges from GU then we will have a random graph
in the sub-critical stage and so w.h.p. it will consist of trees and unicyclic
components. But deleting 0.505n random edges will w.h.p. delete less than
a 0.51 fraction of CORE.
This completes the proof that w.h.p. Algorithm PAIR finishes before 0.49n
rounds with a perfect matching. In summary,
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Theorem 16.12 W.h.p. the algorithm PAIR finds a perfect matching in the
random graph B2−out in at most .49n steps.

One can ask whether one can w.h.p. secure a perfect matching in a bipartite
random graph having more edges then B1−out , but less than B2−out . To see that
it is possible, consider the following two-round procedure. In the first round
assume that each vertex from the set U chooses exactly one neighbor in V and,
likewise, every vertex from the set V chooses exactly one neighbor in U . In the
next round, only those vertices from U and V which have not been selected in
the first round get a second chance to make yet another random selection. It
is easy to see that, for large n, such a second chance is, on the average, given
to approximately n/e vertices on each side. I.e, that the average out-degree of
vertices in U and V is approximately 1+1/e. Therefore the underlying simple
graph is denoted as B(1+1/e)−out , and Karoński and Pittel [468] proved that the
following result holds.

Theorem 16.13 With probability 1−O(n−1/2) a random graph B(1+1/e)−out
contains a perfect matching.

16.3 Hamilton Cycles

Bohman and Frieze [114] proved the following:

Theorem 16.14

lim
n→∞

P(Gk−out has a Hamiltonian Cycle) =

{
0 if k ≤ 2

1 if k ≥ 3.

To see that this result is best possible note that one can show that w.h.p. the
random graph G2−out contains a vertex adjacent to three vertices of degree two,
which prevents the existence of a Hamiltonian Cycle. The proof that G3−out

w.h.p. contains a Hamiltonian Cycle is long and complicated, we will therefore
prove the weaker result given below which has a straightforward proof, using
the ideas of Section 6.2. It is taken from Frieze and Łuczak [338].

Theorem 16.15

lim
n→∞

P(Gk−out has a Hamiltonian Cycle) = 1, if k ≥ 5.
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Proof Let H =G0∪G1∪G2 where Gi =Gki−out , where (i) k0 = 1,k1 = k2 = 2
and (ii) G0,G1,G2 are generated independently of each other. Then we can
couple the construction of H and G5−out so that H ⊆ G5−out . This is because
in the construction of H, some random choices in the construction of the as-
sociated digraphs might be repeated. In which case, having constructed H, we
can give G5−out some more edges.
It follows from Theorem 16.3 that w.h.p. Gi, i = 1,2 contain perfect matchings
Mi, i = 1,2. Here we allow n to be odd and so a perfect matching may leave
one vertex isolated. By symmetry M1,M2 are uniform random
matchings. Let M = M1∪M2. The components of M are cycles. There could be
degenerate 2-cycles consisting of two copies of the same edge and there may
be a path in the case n is odd.

Lemma 16.16 Let X be the number of components of M. Then w.h.p.

X ≤ 3logn.

Proof Let C be the cycle containing vertex 1. We show that

P
(
|C| ≥ n

2

)
≥ 1

2
. (16.9)

To see this note that

P(|C|= 2k) =
k−1

∏
i=1

(
n−2i

n−2i+1

)
1

n−2k+1
<

1
n−2k+1

.

Indeed, consider the M1-edge {1= i1, i2}∈C containing vertex 1. Let {i2, i3}∈
C be the M2-edge containing i2, Now, P(i3 6= 1) = (n−2)/(n−1). Assume that
i3 6= 1 and let {i3, i4} ∈C be the M1-edge containing i3. Let {i4, i5} ∈C be the
M2-edge containing i4. Then P(i5 6= 1) = (n− 4)/(n− 3), and so on until we
close the cycle with probability 1/(n−2k+1). Hence

P
(
|C|< n

2

)
<
bn/4c

∑
k=1

1
n−2k+1

<
1
2
,

and the bound given in (16.9) follows.
Consider next the following experiment. Choose the size s of the cycle contain-
ing vertex 1. Next choose the size of the cycle containing a particular vertex
from the remaining n− s vertices. Continue until the cycle chosen contains
all remaining vertices. Observe now, that deleting any cycle from M leaves a
random pair of matchings of the remaining vertices. So, by this observation
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and the fact that the bound (16.9) holds, whatever the currently chosen cycle
sizes, with probability at least 1/2, the size of the remaining vertex set halves,
at least. Thus,

P(X ≥ 3logn)≤ P(Bin(3logn,1/2)≤ log2 n) = o(1).

We use rotations as in Section 6.2. Lemma 16.16 enables us to argue that we
only need to add random edges trying to find x,y where y ∈ END(x), at most
O(logn) times. We show next that H1 = G1∪G2 has sufficient expansion.

Lemma 16.17 W.h.p. S⊆ [n], |S| ≤ n/1000 implies that |NH1(S)| ≥ 2|S|.

Proof Let X be the number of vertex sets that violate the claim. Then,

EX ≤
n/1000

∑
k=1

(
n
k

)(
n
2k

)( (3k
2

)(n−1
2

))2
k

≤
n/1000

∑
k=1

(
e3n3

4k3
81k4

n4

)k

=
n/1000

∑
k=1

(
81e3k

4n

)k

= o(1).

If n is even then we begin our search for a Hamilton cycle by choosing a cycle
of H1 and removing an edge. This will give us our current path P. If n is odd
we use the path P joining the two vertices of degree one in M1 ∪M2. We can
ignore the case where the isolated vertex is the same in M1 and M2 because
this only happens with probability 1/n. We run Algorithm Pósa of Section 6.2
and observe the following: At each point of the algorithm we will have a path P
plus a collection of vertex disjoint cycles spanning the vertices not in P. This is
because in Step (d) the edge {u,v} will join two cycles, one will be the newly
closed cycle and the other will be a cycle of M. It follows that w.h.p. we will
only need to execute Step (d) at most 3 logn times.
We now estimate the probability that we reach the start of Step (d) and fail
to close a cycle. Let the edges of G0 be {e1,e2, . . . ,en} where ei is the edge
chosen by vertex i. Suppose that at the beginning of Step (d) we have identified
END. We can go through the vertices of END until we find x ∈ END such that
ex = {x,y} where y ∈ END(x). Because G0 and H1 are independent, we see
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by Lemma 16.17 that we can assume P(y ∈ END(x))≥ 1/1000. Here we use
the fact that adding edges to H1 will not decrease the size of neighborhoods. It
follows that with probability 1− o(1/n) we will examine fewer than (logn)2

edges of G0 before we succeed in closing a cycle.
Now we tryclosing cycles O(logn) times and w.h.p. each time we look at
O((logn)2) edges of G0. So, if we only examine an edge of G0 once, we
will w.h.p. still always have n/1000−O((logn)3) edges to try. The proba-
bility we fail to find a Hamilton cycle this way, given that H1 has sufficient ex-
pansion, can therefore be bounded by P(Bin(n/1000−O((logn)3),1/1000)≤
3logn) = o(1).

16.4 Nearest Neighbor Graphs

Consider the complete graph Kn, on vertex set V = {1,2, , . . . ,n}, in which each
edge is assigned a cost Ci, j, i 6= j, and the costs are independent identically
distributed continuous random variables. Color an edge green if it is one of
the k shortest edges incident to either end vertex, and color it blue otherwise.
The graph made up of the green edges only is called the k-th nearest neighbor
graph and is denoted by Gk−nearest . Note that in the random graph Gk−nearest

the edges are no longer independent, as in the case of Gk−out or in the classical
model Gn,p. Assume without loss of generality that the Ci, j are exponential
random variables of mean one. Cooper and Frieze [205] proved

Theorem 16.18

lim
n→∞

P(Gk−nearest is connected ) =


0 if k = 1,

γ if k = 2,

1 if k ≥ 3,

where 0.99081≤ γ ≤ 0.99586.

A similar result holds for a random bipartite k-th nearest neighbor graph, gen-
erated in a similar way as Gk−nearest but starting with the complete bipartite
graph Kn,n with vertex sets V1,V2 = {1,2, , . . . ,n}, and denoted by Bk−nearest .
The following result is from Pittel and Weishar [629].
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Theorem 16.19

lim
n→∞

P(Bk−nearest is connected ) =


0 if k = 1,

γ if k = 2,

1 if k ≥ 3,

where 0.996636≤ γ .

The paper [629] contains an explicit formula for γ .

Consider the related problem of the existence of a perfect matching in the
bipartite k-th nearest neighbor graph Bk−nearest . For convenience, to simplify
computations, we will assume here that the Ci, j are iid exponential random
variables with rate 1/n. Coppersmith and Sorkin [226] showed that the ex-
pected size of the largest matching in B1−nearest (which itself is a forest) is
w.h.p. asymptotic to (

2− e−e−1 − e−e−e−1
)

n≈ 0.807n.

The same expression was obtained independently in [629]. Also, w.h.p.,
B2−nearest does not have a perfect matching. Moreover, w.h.p., in a maximal
matching there are at least 2logn

13loglogn unmatched vertices, see [629].
The situation changes when each vertex chooses three, instead of one or two,
of its “green” edges. Then the following theorem was proved in [629]:

Theorem 16.20 B3−nearest has a perfect matching, w.h.p.

Proof The proof is analogous to the proof of Theorem 16.6 and uses Hall’s
Theorem. We use the same terminology. We can, as in Theorem 16.6, consider
only bad pairs of “size” k ≤ n/2. Consider first the case when k < εn, where
ε < 1/(2e2), i.e., “small” bad pairs. Notice, that in a bad pair, each of the k
vertices from V1 must choose its neighbors from the set of k−1 vertices from
V2. Let Ak be the number of such sets. Then,

EAk ≤ 2
(

n
k

)(
n

k−1

)(
k
n

)3k

≤ 2
n2k

(k!)2

(
k
n

)3k

≤ 2
(

ke2

n

)k

.

(The factor 2 arises from allowing R to be chosen from V1 or V2.)
Let Pk be the probability that there is a bad pair of size k in B3−nearest . Then
the probability that B3−nearest contains a bad pair of size less than t = bεnc is,
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letting l = b(logn)2c, at most

t

∑
k=4

Pk ≤ 2
t

∑
k=4

(
ke2

n

)k

= 2
l

∑
k=4

(
ke2

n

)k

+2
t

∑
k=l+1

(
ke2

n

)k

≤ 2
l

∑
k=4

(
le2

n

)k

+2
t

∑
k=l+1

(
εe2)k

≤ 2l2e8

n4 +
(
εe2)l

.

So, if ε < 1/(2e2), then
bεnc

∑
k=4

Pk→ 0.

It suffices to show that
n/2

∑
k=bεnc+1

Pk→ 0.

To prove that there are no “large” bad pairs, note that for a pair to be bad it must
be the case that there is a set of n− k+1 vertices of V2 that do not choose any
of the k vertices from V1. Let R ⊂ V1, |R| = k and S ⊂ V2, |S| = k−1. Without
loss of generality, assume that R = {1,2, . . .k},S = {1,2, . . .k− 1}. Then let
Yi, i = 1,2, . . .k be the smallest weight in Kn,n among the weights of edges
connecting vertex i ∈ R with vertices from V2 \ S, and let Z j, j = k,k+ 1, . . .n
be the smallest weight among the weights of edges connecting vertex j ∈V2 \S
with vertices from R. Then, each Yi has an exponential distribution with rate
(n− k+1)/n and each Z j has the exponential distribution with rate k/n.
Notice that in order for there not to be any edge in B3−nearest between respective
sets R and V2 \ S the following property should be satisfied: each vertex i ∈ R
has at least three neighbors in Kn,n with weights smaller than Yi and each vertex
j ∈ V2 \ S has at least three neighbors in Kn,n with weights smaller than the
corresponding Z j. If we condition on the value Yi = y, then the probability that
vertex i has at least three neighbors with respective edge weight smaller than
Yi, is given by

Pn,k(y) = 1−
(

e−y/n
)k−1

− (k−1)
(

1− e−y/n
)(

e−y/n
)k−2

−
(

k−1
2

)(
1− e−y/n

)2(
e−y/n

)k−3
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Putting a = k/n

Pn,k(y)≈ f (a,y) = 1− e−ay−aye−ay− 1
2

a2y2e−ay.

Similarly, the probability that there are three neighbors of vertex j ∈V2 \S with
edge weights smaller than Z j is ≈ f (1−a,Z j).
So, the probability that there is a bad pair in B3−nearest can be bounded by

Pk ≤ 2
(

n
k

)(
n

k−1

)
Ek,

where, by the Cauchy-Schwarz inequality and independence separately of Y1,

. . . ,Yn and Z1, . . . ,Zn,

Ek = E

(
k

∏
i=1

f (a,Yi)
n

∏
j=k

f (1−a,Z j)

)

≤

(
E

(
k

∏
i=1

f 2(a,Yi)

))1/2(( n

∏
j=k

f 2(1−a,Z j)

))1/2

=
k

∏
i=1

E( f 2(a,Yi))
1/2

n

∏
j=k

E( f 2(1−a,Z j))
1/2

= E( f 2(a,Y1))
k/2E( f 2(1−a,Zn))

(n−k+1)/2.

Asymptotically, Y1 has an exponential (1−a) distribution, so

E( f 2(a,Y1))

≈
∫

∞

0

(
1− e−ay−aye−ay− 1

2
a2y2e−ay

)2

(1−a)e−(1−a)ydy

= (1−a)
∫

∞

0
(e−(1−a)y−2ey−2aye−y−a2y2e−y + e−(1+a)y

+2aye−(1+a)y +2a2y2e−(1+a)y +a3y3e−(1+a)y +
1
4

a4y4e−(1+a)y)dy.

Now using

∫
∞

0
yie−cydy =

i!
ci+1 ,
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we obtain

E( f 2(a,Y1)) = (1−a)
(

1
1−a

−2−2a−2a2 +
1

1+a

+
2a

(1+a)2 +
4a2

(1+a)3 +
6a3

(1+a)4 +
6a4

(1+a)5

)
=

2a6(10+5a+a2)

(1+a)5 .

Letting

g(a) = E( f 2(a,Y1))
a/2,

we have

Pk ≤ 2
(

n
k

)(
n

k−1

)
(g(a)g(1−a))n ≈ 2

(
g(a)g(1−a)

a2a(1−a)2(1−a)

)n

= 2h(a)n.

Numerical examination of the function h(a) shows that it is bounded below 1
for a in the interval [δ ,0.5], which implies that the expected number of bad
pairs is exponentially small for any k > δn, with k ≤ n/2. Taking δ < ε <

1/(2e2), we conclude that, w.h.p., there are no bad pairs in B3−nearest , and so
we arrive at the theorem.

16.5 Exercises

16.5.1 Let p = logn+(m−1) log logn+ω

n where ω → ∞. Show that w.h.p. it is pos-
sible to orient the edges of Gn,p to obtain a digraph D such that the
minimum out-degree δ+(D)≥ m.

16.5.2 The random digraph Dk−in,`−out is defined as follows: each vertex v ∈
[n] independently randomly chooses k-in-neighbors and `-out-neighbors.
Show that w.h.p. Dm−in,m−out is m-strongly connected for m≥ 2 i.e. to
destroy strong connectivity, one must delete at least m vertices.

16.5.3 Show that w.h.p. the diameter of Gk−out is asymptotically equal to
log2k n for k ≥ 2.

16.5.4 For a graph G = (V,E) let f : V →V be a G-mapping if (v, f (v)) is an
edge of G for all v ∈V . Let G be a connected graph with maximum de-
gree d. Let H =

⋃k
i=0 Hi where (i) k≥ 1, (ii) H0 is an arbitrary spanning

tree of G and (iii) H1,H2, . . . ,Hk are independent uniform random G-
mappings. Let θk = 1−

(
1− 1

d

)2k
and let α = 16/θk. Show that w.h.p.
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for every A⊂V , we have

|eH(A)| ≥
θk

16logn
· |eG(A)|.

where eG(A) (resp. eH(A)) is the number of edges of G (resp. H) with
exactly one endpoint in A.

16.5.5 Let G be a graph with n vertices and minimum degree ( 1
2 +ε)n for some

fixed ε > 0. Let H =
⋃k

i=1 Hi where (i) k ≥ 2 and (ii) H1,H2, . . . ,Hk

are independent uniform random G-mappings. Show that w.h.p. H is
connected.

16.5.6 Show that w.h.p. Gk−out contains k edge disjoint spanning trees. (Hint:
Use the Nash-Williams condition [602] – see Frieze and Łuczak [339]).

16.6 Notes

k-out process

Jaworski and Łuczak [443] studied the following process that generates Gk−out

along the way. Starting with the empty graph, a vertex v is chosen uniformly
at random from the set of vertices of minimum out-degree. We then add the
arc (v,w) where w is chosen uniformly at random from the set of vertices that
are not out-neighbors of v. After kn steps the digraph in question is precisely
~Gk−out . Ignoring orientation, we denote the graph obtained after m steps by
U(n,m). The paper [443] studied the structure of U(n,m) for n ≤ m ≤ 2m.
These graphs sit between random mappings and G2−out .

Nearest neighbor graphs

There has been some considerable research on the nearest neighbor graph gen-
erated by n points X = {X1,X2, . . . ,Xn} chosen randomly in the unit square.
Given a positive integer k we define the k-nearest neighbor graph GX ,k by
joining vertex X ∈ X to its k nearest neighbors in Euclidean distance. We
first consider the existence of a giant component. Teng and Yao [705] showed
that if k ≥ 213 then there is a giant component w.h.p. Balister and Bollobás
[50] reduced this number to 11. Now consider connectivity. Balister, Bollobás,
Sarkar and Walters [52] proved that there exists a critical constant c∗ such that
if k ≤ c logn and c < c∗ then w.h.p. GX ,k is not connected and if k ≥ c logn
and if c > c∗ then w.h.p. GX ,k is connected. The best estimates for c∗ are given
in Balister, Bollobás, Sarkar and Walters [51] i.e. 0.3043 < c∗ < 0.5139.
When distances are independently generated then the situation is much clearer.
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Cooper and Frieze [205] proved that if k = 1 then the k-nearest neighbor
graph O1 is not connected; the graph O2 is connected with probability γ ∈
[.99081, .99586]; for k ≥ 2, the graph Ok is k-connected w.h.p.

Directed k-in, `-out

There is a natural directed version of Gk−out called Dk−in,`−out where each
vertex randomly chooses k in-neighbors and ` out-neighbors.
Cooper and Frieze [203] studied the connectivity of such graphs. They prove
for example that if 1≤ k, `≤ 2 then

lim
n→∞

P(Dk−in,`−out is strongly connected) =

(1− (2− k)e−`)(1− (2− `)e−k).

In this result, one can in a natural way allow k, ` ∈ [1,2]. Hamiltonicity was
discussed in [206] where it was shown that w.h.p. D2−in,2−out is Hamiltonian.
The random digraph Dn,p as well as ~Gk−out are special cases of a random di-
graph where each vertex, independently of others, first chooses its out-degree d
according to some probability distribution and then the set of its images - uni-
formly from all d-element subsets of the vertex set. If d is chosen according
to the binomial distribution then it is Dn,p while if d equals k with probabil-
ity 1, then it is ~Gk−out . Basic properties of the model (monotone properties,
k-connectivity), were studied in Jaworski and Smit [445] and in Jaworski and
Palka [444] .

k-out subgraphs of large graphs

Just as in Section 6.5, we can consider replacing the host graph Kn by graphs of
large degree. Let an n vertex graph G be strongly Dirac if its minimum degree
is at least cn for some constant c > 0. Frieze and Johansson [332] consider the
subgraph Gk obtained from G by letting each vertex independently choose k
neighbors in G. They show that w.h.p. Gk is k-connected for k≥ 2 and that Gk is
Hamiltonian for k sufficiently large. The paper by Frieze, Goyal, Rademacher
and Vempala [328] shows the use of Gk as a cut-sparsifier.

k-out with preferential attachment

Peterson and Pittel [620] considered the following model: Vertices
1,2, . . . ,n in this order, each choose k random out-neighbors one at a time,
subject to a “preferential attachment” rule: the current vertex selects vertex i
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with probability proportional to a given parameter α = α(n) plus the number
of times i has already been selected. Intuitively, the larger α gets, the closer
the resulting k-out mapping is to the uniformly random k-out mapping. They
prove that α = Θ(n1/2) is the threshold for α growing “fast enough” to make
the random digraph approach the uniformly random digraph in terms of the
total variation distance. They also determine an exact limit of this distance for
α = βn1/2.



17
Real World Networks

There has recently been an increased interest in the networks that we see
around us in our every day lives. Most prominent are the Internet or the World
Wide Web or social networks like Facebook and Linked In. The networks are
constructed by some random process. At least we do not properly understand
their construction. It is natural to model such networks by random graphs.
When first studying so-called “real world networks”, it was observed that of-
ten the degree sequence exhibits a tail that decays polynomially, as opposed
to classical random graphs, whose tails decay exponentially. See, for example,
Faloutsos, Faloutsos and Faloutsos [288]. This has led to the development of
other models of random graphs such as the ones described below.

17.1 Preferential Attachment Graph

Fix an integer m > 0, constant and define a sequence of graphs G1,G2, . . . ,Gt .
The graph Gt has vertex set [t] and G1 consists of m loops on vertex 1. Suppose
we have constructed Gt . To obtain Gt+1 we apply the following rule. We add
vertex t +1 and connect it to m randomly chosen vertices y1,y2, . . . ,ym ∈ [t] in
such a way that for i = 1,2, . . . ,m,

P(yi = w) =
deg(w,Gt)

2mt
.

In this way, Gt+1 is obtained from Gt by adding vertex t + 1 and m randomly
chosen edges, in such a way that the neighbors of t + 1 are biased towards
higher degree vertices.
When m = 1, Gt is a tree and this is basically a plane-oriented recursive tree as
considered in Section 14.5.

This model was considered by Barabási and Albert [56]. This was followed
by a rigorous analysis of a marginally different model in Bollobás, Riordan,
Spencer and Tusnády [149].

341
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Expected Degree Sequence: Power Law

Fix t and let Vk(t) denote the set of vertices of degree k in Gt , where m≤ k =

Õ(t1/2). Let Dk(t) = |Vk(t)|. Then (compare with (14.30) when m = 1)

E(Dk(t +1)|Gt) =

Dk(t)+m
(
(k−1)Dk−1(t)

2mt
− kDk(t)

2mt

)
+1k=m + ε(k, t). (17.1)

Explanation of (17.1): The total degree of Gt is 2mt and so
(k−1)Dk−1(t)

2mt is the probability that yi is a vertex of degree k− 1, creating a
new vertex of degree k. Similarly, kDk(t)

2mt is the probability that yi is a vertex of
degree k, destroying a vertex of degree k. At this point t +1 has degree m and
this accounts for the term 1k=m. The term ε(k, t) is an error term that accounts
for the possibility that yi = y j for some i 6= j.
Thus

ε(k, t) = O
((

m
2

)
k

mt

)
= Õ(t−1/2). (17.2)

Taking expectations over Gt , we obtain

D̄k(t +1) = D̄k(t)+1k=m +m
(
(k−1)D̄k−1(t)

2mt
− kD̄k(t)

2mt

)
+ ε(k, t). (17.3)

Under the assumption D̄k(t)≈ dkt (justified below) we are led to consider the

recurrence

dk =


1k=m +

(k−1)dk−1−kdk
2 if k ≥ m,

0 if k < m,

(17.4)

or

dk =


k−1
k+2 dk−1 +

2·1k=m
k+2 if k ≥ m,

0 if k < m.

Therefore

dm =
2

m+2

dk = dm

k

∏
l=m+1

l−1
l +2

=
2m(m+1)

k(k+1)(k+2)
. (17.5)
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So for large k, under our assumption D̄k(t)≈ dkt, we see that

D̄k(t)≈
2m(m+1)

k3 .

We now show that the assumption D̄k(t) ≈ dkt can be justified. Note that the

following theorem is vacuous for k� t1/6.

Theorem 17.1

|D̄k(t)−dkt|= Õ(t1/2) for k = Õ(t1/2).

Proof Let

∆k(t) = D̄k(t)−dkt.

Then, replacing D̄k(t) by ∆k(t)+dkt in (17.3) and using (17.2) and (17.4) we
get

∆k(t +1) =
k−1

2t
∆k−1(t)+

(
1− k

2t

)
∆k(t)+ Õ(t−1/2). (17.6)

Now assume inductively on t that for every k ≥ 0

|∆k(t)| ≤Ct1/2(log t)β ,

where (log t)β is the hidden power of logarithm in Õ(t−1/2) of (17.6) and C is
an unspecified constant.
This is trivially true for k < m also for small t if we make A large enough. So,
replacing Õ(t−1/2) in (17.6) by the more explicit
αt−1/2(log t)β we get

∆k(t +1)≤

≤
∣∣∣∣k−1

2t
∆k−1(t)

∣∣∣∣+ ∣∣∣∣(1− k
2t

)
∆k(t)

∣∣∣∣+αt−1/2(log t)β

≤ k−1
2t

At1/2(log t)β +

(
1− k

2t

)
At1/2(log t)β +αt−1/2(log t)β

≤ (log t)β (At1/2 +αt−1/2).

Note that if t is sufficiently large then

(t +1)1/2 = t1/2
(

1+
1
t

)1/2

≥ t1/2 +
1

3t1/2 ,
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and so

∆k(t +1)≤ (log(t +1))β

(
A
[
(t +1)1/2− 1

3t1/2

]
+

α

t1/2

)
≤ A(log(t +1))β (t +1)1/2,

assuming that A≥ 3α .
In the next section, we will justify our bound of Õ(t1/2) for vertex degrees.
After that we will prove concentration of the number of vertices of degree k,
for small k.

Maximum Degree

Fix s≤ t and let Xl be the degree of vertex s in Gl for s≤ l ≤ t.

Lemma 17.2

P(Xt ≥ Aem(t/s)1/2(log(t +1))2) = O(t−A).

Proof Note first that Xs = m. If 0 < λ < εt =
1

log(t+1) then,

E
(

eλXl+1 |Xl

)
= eλXl

m

∑
k=0

(
m
k

)(
Xl

2ml

)k(
1− Xl

2ml

)m−k

eλk

≤ eλXl
m

∑
k=0

(
m
k

)(
Xl

2ml

)k(
1− Xl

2ml

)m−k

(1+ kλ (1+ kλ ))

= eλXl

(
1+

mλXl

2m
+

(m−1)λ 2X2
l

4ml2

)
≤ eλXl

(
1+

Xl

2l
λ (1+mλ )

)
, since Xl < ml,

≤ eλ

(
1+ (1+mλ )

2l

)
Xl .

We define a sequence λ = (λl ,λl+1, . . . ,λt) where

λ j+1 =

(
1+

1+mλ j

2 j

)
λ j < εt .

Here our only choice will be λl . We show below that we can find a suitable
value for this, but first observe that if we manage this then

E
(

eλXt
)
≤ E

(
eλl+1Xt−1

)
· · · ≤ E

(
eλt Xl

)
≤ 1+o(1).
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Now

λ j+1 ≤
(

1+
1+mεt

2 j

)
λ j,

implies that

λt = λl

t

∏
j=l

(
1+

1+mεt

2 j

)
≤ λl exp

{
t

∑
j=l

1+mεt

2 j

}
≤ em

( t
l

)1/2
λl .

So a suitable choice for λ = λl is

λl = e−m
εt

(
l
t

)1/2

.

This gives

E
(

exp
{

e−m
εt(l/t)1/2Xt

})
≤ 1+o(1).

So,

P
(

Xt ≥ Aem(t/l)1/2(log(t +1))2)
)
≤

e−λAem(t/l)1/2(log(t+1)2)E
(

eλXt
)
= O(t−A).

Thus with probability 1−o(1) as t→ ∞ we have that the maximum degree in
Gt is O(t1/2(log t)2). This is not best possible. One can prove that w.h.p. the
maximum degree is O(t1/2ω(t)) and Ω(t1/2/ω(t)) for any ω(t)→ ∞, see for
example Flaxman, Frieze and Fenner [303].

Concentration of Degree Sequence

Fix a value k for a vertex degree. We show that Dk(t) is concentrated around
its mean D̄k(t).

Theorem 17.3

P(|Dk(t)− D̄k(t)| ≥ u)≤ 2exp
{
− u2

8mt

}
. (17.7)

Proof Let Y1,Y2, . . . ,Ymt be the sequence of edge choices made in the con-
struction of Gt , and for Y1,Y2, . . . ,Yi let

Zi = Zi(Y1,Y2, . . . ,Yi) = E(Dk(t) | Y1,Y2, . . . ,Yi).

We will prove next that |Zi−Zi−1| ≤ 4 and then (17.7) follows directly from
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Figure 17.1 Constructing ~G from G.

the Azuma-Hoeffding inequality, see Section 21.7, in particular Lemma 21.16.
Fix Y1,Y2, . . . ,Yi and Ŷi 6= Yi. We define a map (measure preserving projection)
ϕ of

Y1,Y2, . . . ,Yi−1,Yi,Yi+1, . . . ,Ymt

to

Y1,Y2, . . . ,Yi−1,Ŷi,Ŷi+1, . . . ,Ŷmt

such that

|Zi(Y1,Y2, . . . ,Yi)−Zi(Y1,Y2, . . . ,Ŷi)| ≤ 4.

In the preferential attachment model we can view vertex choices in the graph
G as random choices of arcs in a digraph ~G, which is obtained by replacing
every edge of G by a directed 2-cycle (see Figure 17.1).
Indeed, if we choose a random arc and choose its head then v will be cho-
sen with probability proportional to the number of arcs with v as head i.e. its
degree. Hence Y1,Y2, . . . can be viewed as a sequence of arc choices. Let

Yi = (x,y) where x > y

Ŷi = (x̂, ŷ) where x̂ > ŷ.

Note that x = x̂ if i mod m 6= 1.
Now suppose j > i and Yj = (u,v) arises from choosing (w,v). Then we define

ϕ(Yj) =

{
Yj (w,v) 6= Yi

(w, ŷ) (w,v) = Yi
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This map is measure preserving since each sequence ϕ(Y1,Y2, . . . ,Yt) occurs
with probability ∏

tm
j=i+1 j−1. Only x, x̂,y, ŷ change degree under the map ϕ so

Dk(t) changes by at most four.

17.2 A General Model of Web Graphs

In the model presented in the previous section a new vertex is added at time t
and this vertex chooses m random neighbors, with probability proportional to
their current degree. Cooper and Frieze [208] generalise this in the following
ways: they allow (a) new edges to be inserted between existing vertices, (b)
a variable number of edges to be added at each step and (c) endpoint vertices
to be chosen by a mixture of uniform selection and copying. This results in
a large number of parameters, which will be described below. We first give a
precise description of the process.
Initially, at step t = 0, there is a single vertex v0. At any step t = 1,2, . . . ,T, . . . ,
there is a birth process in which either new vertices or new edges are added.
Specifically, either a procedure NEW is followed with probability 1−α , or
a procedure OLD is followed with probability α . In procedure NEW, a new
vertex v is added to Gt−1 with one or more edges added between v and Gt−1.
In procedure OLD, an existing vertex v is selected and extra edges are added at
v.
The recipe for adding edges at step t typically permits the choice of initial
vertex v (in the case of OLD) and of terminal vertices (in both cases) to be made
from Gt−1 either u.a.r (uniformly at random) or according to vertex degree, or
a mixture of these two based on further sampling. The number of edges added
to vertex v at step t by the procedures (NEW, OLD) is given by distributions
specific to the procedure.
Notice that the edges have an intrinsic direction, arising from the way they are
inserted, which one can ignore or not. Here the undirected model is considered
with a sampling procedure based on vertex degree. The process allows multiple
edges, and self-loops can arise from the OLD procedure. The NEW procedure,
as described, does not generate self-loops, although this could easily be modi-
fied.

Sampling parameters, notation and main properties

Our undirected model Gt has sampling parameters α,β ,γ,δ , p,q whose mean-
ing is given below:
Choice of procedure at step t.
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α: Probability that an OLD vertex generates edges.
1−α: Probability that a NEW vertex is created.

Procedure NEW

p = (pi : i≥ 1): Probability that the new node generates i new edges.
β : Probability that choices of terminal vertices are made uniformly.
1−β : Probability that choices of terminal vertices are made according to

degree.
Procedure OLD

q = (qi : i≥ 1): Probability that the old node generates i new edges.
δ : Probability that the initial node is selected uniformly.
1−δ : Probability that the initial node is selected according to degree.
γ: Probability that choices of terminal vertices are made uniformly.
1− γ: Probability that choices of terminal vertices are made according to

degree.

The models require α < 1 and p0 = q0 = 0. It is convenient to assume a finite-
ness condition for the distributions {p j}, {q j}. This means that there exist
j0, j1 such that p j = 0, j > j0 and q j = 0, j > j1. Imposing the finiteness
condition helps simplify the difference equations used in the analysis.

The model creates edges in the following way: An initial vertex v is selected. If
the terminal vertex w is chosen u.a.r, we say v is assigned uniformly to w. If the
terminal vertex w is chosen according to its vertex degree, we say v is copied
to w. In either case the edge has an intrinsic direction (v,w), which we may
choose to ignore. Note that sampling according to vertex degree is equivalent
to selecting an edge u.a.r and then selecting an endpoint u.a.r.

Let

µp =
j0

∑
j=1

jp j, µq =
j1

∑
j=1

jq j

be the expected number of edges added by NEW or OLD and let

θ = 2((1−α)µp +αµq).
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To simplify subsequent notation, we introduce new parameters as follows:

a = 1+β µp +
αγµq

1−α
+

αδ

1−α
,

b =
(1−α)(1−β )µp

θ
+

α(1− γ)µq

θ
+

α(1−δ )

θ
,

c = β µp +
αγµq

1−α
,

d =
(1−α)(1−β )µp

θ
+

α(1− γ)µq

θ
,

e =
αδ

1−α
,

f =
α(1−δ )

θ
.

We note that

c+ e = a−1 and b = d + f . (17.8)

Now define the sequence (d0,d1, . . . ,dk, . . .) by d0 = 0, and for k ≥ 1

dk(a+bk) = (1−α)pk +(c+d(k−1))dk−1 +
k−1

∑
j=1

(e+ f (k− j))q jdk− j.

(17.9)
For convenience we define dk = 0 for k < 0. Since a≥ 1, this system of equa-
tions has a unique solution.
The main quantity we study is the random variable Dk(t), the number of ver-
tices of degree k at step t. Cooper and Frieze [208] prove that, as t → ∞, for
small k, Dk(t)≈ dkt.

Theorem 17.4 There exists a constant M > 0 such that almost surely for all
t, k ≥ 1

|Dk(t)− tdk| ≤Mt1/2 log t.

This will be proved in Section 17.2.
It is shown in (17.10), that the number of vertices ν(t) at step t is w.h.p. asymp-
totic to (1−α)t. It follows that the proportion of vertices of degree k is w.h.p.
asymptotic to

d̄k =
dk

1−α
.

The next theorem summarises what is known about the sequence (dk) defined
by (17.9).



350 Real World Networks

Theorem 17.5 There exist constants C1,C2,C3,C4 > 0 such that

(i) C1k−ζ ≤ dk ≤C2 min{k−1,k−ζ/ j1} where ζ = (1+d + f µq)/(d + f ).

(ii) If j1 = 1 then dk ≈C3k−(1+1/(d+ f )).

(iii) If f = 0 then dk ≈C4k−(1+1/d).

Evolution of the degree sequence of Gt

Let ν(t) = |V (t)| be the number of vertices and let η(t) = |2E(t)| be the total
degree of the graph at the end of step t. Eν(t) = (1−α)t and Eη(t) = θ t. The
random variables ν(t), η(t) are sharply concentrated provided t → ∞. Indeed
ν(t) has distribution Bin(t,1−α) and so by Theorem 21.6 and its corollaries,

P(|ν(t)− (1−α)t| ≥ t1/2 log t) = O(t−K) (17.10)

for any constant K > 0.
Similarly, η(t) has expectation θ t and is the sum of t independent random vari-
ables, each bounded by max{ j0, j1}. Hence, by Theorem 21.6 and its corollar-
ies,

P(|η(t)−θ t| ≥ t1/2 log t) = O(t−K) (17.11)

for any constant K > 0.
These results are almost sure in the sense that they hold for all t ≥ t0 with
probability 1−O(t−K+1

0 ). Thus we can focus on processes such that this is
true.
We remind the reader that Dk(t) is the number of vertices of degree k at step t
and that Dk(t) is its expectation. Here D j(t) = 0 for all j ≤ 0, t ≥ 0, D1(0) =
1, Dk(0) = 0, k ≥ 2.
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Using (17.10) and (17.11) we see that

Dk(t +1) = Dk(t)+(1−α)pk +O(t−1/2 log t) (17.12)

+(1−α)
j0

∑
j=1

p j

(
β

(
jDk−1(t)
(1−α)t

− jDk(t)
(1−α)t

)
+ (1−β )

(
j(k−1)Dk−1(t)

θ t
− jkDk(t)

θ t

))
(17.13)

−α

(
δDk(t)
(1−α)t

+
(1−δ )kDk(t)

θ t

)
+α

j1

∑
j=1

q j

(
δDk− j(t)
(1−α)t

+
(1−δ )(k− j)Dk− j(t)

θ t

)
(17.14)

+α

j1

∑
j=1

jq j

(
γ

(
Dk−1(t)
(1−α)t

− Dk(t)
(1−α)t

)
+

(1− γ)

(
(k−1)Dk−1(t)

θ t
− kDk(t)

θ t

))
. (17.15)

Here (17.13), (17.14), (17.15) are (respectively) the main terms of the change
in the expected number of vertices of degree k due to the effect on: terminal
vertices in NEW, the initial vertex in OLD and the terminal vertices in OLD.
Rearranging the right hand side, we find:

Dk(t +1) = Dk(t)+(1−α)pk +O(t−1/2 log t)

− Dk(t)
t

(
β µp +

αγµq

1−α
+

αδ

1−α
+

(1−α)(1−β )µpk
θ

+

+
α(1− γ)µqk

θ
+

α(1−δ )k
θ

)
+

Dk−1(t)

t

(
β µp +

αγµq

1−α
+

(1−α)(1−β )µp(k−1)
θ

+

+
α(1− γ)µq(k−1)

θ

)
+

j1

∑
j=1

q j
Dk− j(t)

t

(
αδ

1−α
+

α(1−δ )(k− j)
θ

)
.
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Thus for all k ≥ 1 and almost surely for all t ≥ 1,

Dk(t +1) = Dk(t)+(1−α)pk +O(t−1/2 log t) (17.16)

+
1
t
((1− (a+bk))Dk(t)+(c+d(k−1))Dk−1(t)

+
j1

∑
j=1

q j(e+ f (k− j))Dk− j(t)).

The following Lemma establishes an upper bound on dk given in Theorem
17.5(i).

Lemma 17.6 The solution of (17.9) satisfies dk ≤ C2
k .

Proof Assume that k > k0 where k0 is sufficiently large, and thus pk = 0.
Smaller values of k can be dealt with by adjusting C2. We proceed by induction
on k. From (17.9),

(a+bk)dk ≤ (c+d(k−1))
C2

k−1
+

j1

∑
j=1

(e+ f (k− j))q j
C2

k− j

≤C2(d + f )+
C2(c+ e)

k− j1

=C2b+
C2(a−1)

k− j1
,

from (17.8). So

dk−
C2

k
≤ C2b

a+bk
+

C2(a−1)
(k− j1)(a+bk)

− C2

k

=
C2(a−1)

(k− j1)(a+bk)
− C2a

k(a+bk)
≤ 0,

for k ≥ j1a.
We can now prove Theorem 17.4, which is restated here for convenience.

Theorem 17.7 There exists a constant M > 0 such that almost surely for
t, k ≥ 1,

|Dk(t)− tdk| ≤Mt1/2 log t. (17.17)
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Proof Let ∆k(t) = Dk(t)− tdk. It follows from (17.9) and (17.16) that

∆k(t +1) = ∆k(t)
(

1− a+bk−1
t

)
+O(t−1/2 log t)

+
1
t

(
(c+d(k−1))∆k−1(t)+

j1

∑
j=1

(e+ f (k− j))q j∆k− j(t)

)
. (17.18)

Let L denote the hidden constant in O(t−1/2 log t). We can adjust M to deal with
small values of t, so we assume that t is sufficiently large. Let k0(t) =

⌊ t+1−b
a

⌋
.

If k > k0(t) then we observe that (i) Dk(t) ≤ t max{ j0, j1}
k0(t)

= O(1) and (ii) tdk ≤
t C2

k0(t)
= O(1) follows from Lemma 17.6, and so (17.17) holds trivially.

Assume inductively that ∆κ(τ) ≤ Mτ1/2 logτ for κ + τ ≤ k+ t and that k ≤
k0(t). Then (17.18) and k ≤ k0 implies that for M large,

|∆k(t +1)| ≤ L
log t
t1/2 +Mt1/2 log t ×(

1+
1
t

(
c+dk+

j1

∑
j=1

(e+ f k)q j− (a+bk−1)

))

= L
log t
t1/2 +Mt1/2 log t

≤M(t +1)1/2 log(t +1)

provided M� 2L. We have used (17.8) to obtain the second line.
This completes the proof by induction.

A general power law bound for dk

The following lemma completes the proof of Theorem 17.5(i).

Lemma 17.8 For k > j0 we have,

(i) dk > 0.
(ii) C1k−(1+d+ f µq)/b ≤ dk ≤C2k−(1+d+ f µq)/b j1 .

Proof (i) Let κ be the first index such that pκ > 0, so that, from (17.9), dκ > 0.
It is not possible for both c and d to be zero. Therefore the coefficient of dk−1

in (17.9) is non-zero and thus dk > 0 for k ≥ κ .
(ii) Re-writing (17.9) we see that for k > j0, pk = 0 and then dk satisfies

dk = dk−1
c+d(k−1)

a+bk
+

j1

∑
j=1

dk− jq j
e+ f (k− j)

a+bk
, (17.19)
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which is a linear difference equation with rational coefficients (see [581]).
We let di = 0 for i < 0 to handle the cases where k− j < 0 in the above sum.
Let y = 1+d + f µq, then

c+d(k−1)
a+bk

+
j1

∑
j=1

q j
e+ f (k− j)

a+bk
= 1− y

a+bk
≥ 0

and thus(
1− y

a+bk

)
min{dk−1, . . . ,dk− j1} ≤ dk ≤(

1− y
a+bk

)
max{dk−1, . . . ,dk− j1}. (17.20)

It follows that

d j0

k

∏
j= j0+1

(
1− y

a+b j

)
≤ dk ≤

max{d1,d2, . . . ,d j0}
b(k− j0)/ j1c

∏
s=0

(
1− y

a+b(k− s j1)

)
. (17.21)

The lower bound in (17.21) is proved by induction on k. It is trivial for k = j0
and for the inductive step we have

dk ≥ d j0

(
1− y

a+bk

)
min

i= j0,...,k−1

{
i

∏
j= j0+1

(
1− y

a+b j

)}

= d j0

k

∏
j= j0+1

(
1− y

a+b j

)
.

The upper bound in (17.21) is proved as follows: Let di1 = max{dk−1, . . . ,

dk− j1}, and in general, let dit+1 = max{dit−1, . . . ,dit− j1}. Using (17.20) we see
there is a sequence k−1≥ i1 > i2 > · · ·> ip > j0 ≥ ip+1 such that |it− it−1| ≤
j1 for all t, and p≥ b(k− j0)/ j1c. Thus

dk ≤ dip+1

p

∏
t=0

(
1− y

a+bit

)
,

and the RHS of (17.21) now follows.
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Now consider the product in the LHS of (17.21).

k

∏
j= j0+1

(
1− y

a+b j

)

= exp

{
k

∑
j= j0+1

(
− y

a+b j
− 1

2

(
y

a+b j

)2

−·· ·

)}

= exp

{
O(1)−

k

∑
j= j0+1

y
a+b j

}
=C1k−y/b.

This establishes the lower bound of the lemma. The upper bound follows sim-
ilarly, from the upper bound in (17.21).

The case j1 = 1

We prove Theorem 17.5(ii). When q1 = 1, p j = 0, j > j0 = Θ(1), the general
value of dk, k > j0 can be found directly, by iterating the recurrence (17.9).
Thus

dk =
1

a+bk
(dk−1 ((a−1)+b(k−1)))

= dk−1

(
1− 1+b

a+bk

)
= d j0

k

∏
j= j0+1

(
1− 1+b

a+ jb

)
.

Thus, for some constant C6 > 0,

dk ≈C6(a+bk)−x

where

x = 1+
1
b
= 1+

2
α(1−δ )+(1−α)(1−β )+α(1− γ)

.

The case f = 0

We prove Theorem 17.5(iii). The case ( f = 0) arises in two ways. Firstly if
α = 0 so that a new vertex is added at each step. Secondly, if α 6= 0 but δ = 1
so that the initial vertex of an OLD choice is sampled u.a.r.
Observe that b = d now, see (17.8).
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We first prove that for a sufficiently large absolute constant A2 > 0 and for all
sufficiently large k, that

dk

dk−1
= 1− 1+d

a+dk
+

ξ (k)
k2 (17.22)

where |ξ (k)| ≤ A2.
We first re-write (17.9) as

dk

dk−1
=

c+d(k−1)
a+dk

+
j1

∑
j=1

eq j

a+dk

k−1

∏
t=k− j+1

dt−1

dt
. (17.23)

(We assume here that k > j0, so that pk = 0.)
Now use induction to write

k−1

∏
t=k− j+1

dt−1

dt
= 1+( j−1)

d +1
a+dk

+
ξ ∗( j,k)

k2 (17.24)

where |ξ ∗( j,k)| ≤ A3 for some constant A3 > 0. (We use the fact that j1 is
constant here.)
Substituting (17.24) into (17.23) gives

dk

dk−1
=

c+d(k−1)
a+dk

+
e

a+dk
+

e(µq−1)(d +1)
(a+dk)2 +

ξ ∗∗(k)
(a+dk)k2

where |ξ ∗∗(k)| ≤ eA3.
Equation (17.22) follows immediately from this and c+e = a−1. On iterating
(17.22) we see that for some constant C7 > 0,

dk ≈C7k−(1+ 1
d ).

17.3 Small World

In an influential paper Milgram [580] describes the following experiment. He
chose a person X to receive mail and then randomly chose a person Y to send
it. If Y did not know X then Y was to send the mail to someone he/she thought
more likely to know X and so on. Surprisingly, the mail got through in 64 out of
296 attempts and the number of links in the chain was relatively small, between
5 and 6. More recently, Kleinberg [488] described a model that attempts to
explain this phenomenon.
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Kleinberg’s Model

The model can be generalized significantly, but to be specific we consider
the following. We start with the n× n grid G0 which has vertex set [n]2 and
where (i, j) is adjacent to (i′, j′) iff d((i, j),(i′, j′)) = 1 where d((i, j),(k, `)) =
|i− k|+ | j− `|. In addition, each vertex u = (i, j) will choose another random
neighbor ϕ(u) where

P(ϕ(u) = v = (k, `)) =
d(u,v)−2

Du

where

Dx = ∑
y6=x

d(x,y)−2.

The random neighbors model “long range contacts”. Let the grid G0 plus the
extra random edges be denoted by G.
It is not difficult to show that w.h.p. these random contacts reduce the diam-
eter of G to order logn. This however, would not explain Milgram’s success.
Instead, Kleinberg proposed the following decentralized algorithm A for find-
ing a path from an initial vertex u0 = (i0, j0) to a target vertex uτ = (iτ , jτ):
when at u move to the neighbor closest in distance to uτ .

Theorem 17.9 Algorithm A finds a path from initial to target vertex of order
O((logn)2), in expectation.

Proof Note that each step of A finds a node closer to the target than the
current node and so the algorithm must terminate with a path.
Observe next that for any vertex x of G we have

Dx ≤
2n−2

∑
j=1

4 j× j−2 = 4
2n−2

∑
j=1

j−1 ≤ 4log(3n).

As a consequence, v is the long range contact of vertex u, with probability at
least (4log(3n)d(u,v)2)−1.
For 0 < j ≤ log2 n, we say that the execution of A is in Phase j if the distance
of the current vertex u to the target is greater than 2 j, but at most 2 j+1. We say
that A is in Phase 0 if the distance from u to the target is at most 2.
Let B j denote the set of nodes at distance 2 j or less from the target. Then

|B j| ≥ 1+
2 j

∑
i=1

i > 22 j−1.
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Note that by the triangle inequality, each member of B j is within distance
2 j+1 +2 j < 22 j+2 of u.
Let X j ≤ 2 j+1 be the time spent in Phase j. Assume first that
log2 log2 n≤ j≤ log2 n. Phase j will end if the long range contact of the current
vertex lies in B j. The probability of this is at least

22 j−1

4log(3n)22 j+4 =
1

128log(3n)
.

We can reveal the long range contacts as the algorithm progresses. In this way,
the long range contact of the current vertex will be independent of the previous
contacts of the path. Thus

EX j =
∞

∑
i=1

P(X j ≥ i)≤
∞

∑
i=1

(
1− 1

128log(3n)

)i

< 128log(3n).

Now if 0≤ j≤ log2 log2 n then X j ≤ 2 j+1 ≤ 2log2 n. Thus the expected length
of the path found by A is at most 128log(3n)× log2 n.
In the same paper, Kleinberg showed that replacing d(u,v)−2 by
d(u,v)−r for r 6= 2 led to non-polylogarithmic path length.

17.4 Exercises

17.4.1 Show that w.h.p. the Preferential Attachment Graph of Section 17.1 has
diameter O(logn). (Hint: Using the idea that vertex t chooses a random
edge of the current graph, observe that half of these edges appeared at
time t/2 or less).

17.4.2 For the next few questions we modify the Preferential Attachment Graph
of Section 17.1 in the following way: First let m = 1 and preferentially
generate a sequence of graphs Γ1,Γ2, . . . ,Γmn. Then if the edges of Γmn

are (ui,vi), i = 1,2, . . . ,mn let the edges of Gn be (udi/me,vdi/me), i =
1,2, . . . ,mn. Show that (17.1) continues to hold.

17.4.3 Show that Gn of the previous question can also be generated in the
following way:

(a) Let π be a random permutation of [2mn]. Let
X = {(ai,bi), i = 1,2, . . . ,mn} where ai = min{π(2i−1),π(2i)}
and bi = max{π(2i−1),π(2i)}.

(b) Let the edges of Gn be (adi/me,bdi/me), i = 1,2, . . . ,mn.

This model was introduced in [149].
17.4.4 Show that the edges of the graph in the previous question can be gen-

erated as follows:
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(a) Let ζ1,ζ2, . . . ,ζ2mn be independent uniform [0,1] random variables.
Let {xi < yi} = {ζ2i−1,ζ2i} for i = 1,2, . . . ,mn. Sort the yi in in-
creasing order R1 < R2 < · · ·< Rmn and let R0 = 0. Then let

Wj = Rm j and I j = (Wj−1,Wj] for j = 1,2, . . . ,n.

This model was introduced in [148].
(b) The edges of Gn are (ui,vi), i = 1,2, . . . ,mn where xi ∈ Iui ,yi ∈ Ivi .

17.4.5 Prove that (R1,R2, . . . ,Rmn) can be generated as

Ri =

(
ϒi

ϒmn+1

)1/2

where ϒN = ξ1 + ξ2 + · · ·+ ξN for N ≥ 1 and ξ1,ξ2, . . . ,ξmn+1 are in-
dependent exponential copies of EXP(1).

17.4.6 Let L be a large constant and let ω =ω(n)→∞ arbitrarily slowly. Then
let E be the event that

ϒk ≈ k for
k
m
∈ [ω,n] or k = mn+1.

Show that

(a) P(¬E ) = o(1).
(b) Let ηi = ξ(i−1)m+1 +ξ(i−1)m+2 + · · ·+ξim. If E occurs then

(1) Wi ≈
(

i
n

)1/2

for ω ≤ i≤ n, and

(2) wi =Wi−Wi−1 ≈
ηi

2m(in)1/2 for ω ≤ i≤ n.

(c) ηi ≤ logn for i ∈ [n] w.h.p.
(d) ηi ≤ log logn for i ∈ [(logn)10] w.h.p.
(e) If ω ≤ i < j ≤ n then P(edge i j exists)≈ ηi

2(i j)1/2 .

(f) ηi ≥ 1
loglogn and i≤ n

ω(logn)3 implies the degree dn(i)≈ ηi
( n

i

)1/2
.

17.5 Notes

There are by now a vast number of papers on different models of “Real World
Networks”. We point out a few additional results in the area. The books by
Durrett [262] and Bollobás, Kozma and Miklós [146] cover the area. See also
van der Hofstadt [407].
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Preferential Attachment Graph

Perhaps the most striking result is due to Bollobás and Riordan [148]. There
they prove that the diameter of Gn is asymptotic to logn

log logn w.h.p. To prove
this they introduced the model in question 4 above. Cooper [200] and Peköz,
Röllin and Ross [617] discuss the degree distribution of Gn in some detail.
Flaxman, Frieze and Fenner [303] show that the if ∆k,λk are the kth largest
degree, eigenvalue respectively, then k≈ ∆

1/2
k for k = O(1). The proof follows

ideas from Mihail and Papadimitriou [579] and Chung, Lu and Vu [184], [185].
Cooper and Frieze [208] discussed the likely proportion of vertices visited by
a random walk on a growing preferential attachment graph. They show that
w.h.p. this is just over 40% at all times. Borgs, Brautbar, Chayes, Khanna and
Lucier [152] discuss “local algorithms” for finding a specific vertex or the
largest degree vertex. Frieze and Pegden [346] describe an algorithm for the
same problem, but with reduced storage requirements.

Geometric models

Some real world graphs have a geometric constraint. Flaxman, Frieze and
Vera [304], [305] considered a geometric version of the preferential attach-
ment model. Here the vertices X1,X2, . . . ,Xn are randomly chosen points on
the unit sphere in R3. Xi+1 chooses m neighbors and these vertices are chosen
with probability P(deg,dist) dependent on (i) their current degree and (ii) their
distance from Xi+1. van den Esker [285] added fitness to the models in [304]
and [305]. Jordan [452] considered more general spaces than R3. Jordan and
Wade [453] considered the case m = 1 and a variety of definitions of P that
enable one to interpolate between the preferential attachment graph and the
on-line nearest neighbor graph.
The SPA model was introduced by Aiello, Bonato, Cooper, Janssen and Pralat
[7]. Here the vertices are points in the unit hyper-cube D in Rm, equipped with
a toroidal metric. At time t each vertex v has a domain of attraction S(v, t) of
volume A1 deg−(v,t)+A2

t . Then at time t we generate a uniform random point Xt+1

as a new vertex. If the new point lies in the domain S(v, t) then we join Xt+1 to
v by an edge directed to v, with probability p. The paper [7] deals mainly with
the degree distribution. The papers by Jannsen, Pralat and Wilson [437], [438]
show that for graphs formed according to the SPA model it is possible to infer
the metric distance between vertices from the link structure of the graph. The
paper Cooper, Frieze and Pralat [221] shows that w.h.p. the directed diameter
at time t lies between c1 log t

log log t and c2 log t.
Random Apollonian networks were introduced by Zhou, Yan and Wang [737].
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Here we build a random triangulation by inserting a vertex into a randomly
chosen face. Frieze and Tsourakakis [350] studied their degree sequence and
eigenvalue structure. Ebrahimzadeh, Farczadi, Gao, Mehrabian, Sato, Wormald
and Zung [270] studied their diameter and length of the longest path. Cooper
and Frieze [216] gave an improved longest path estimate and this was further
improved by Collevecchio, Mehrabian and Wormald [225].

Interpolating between Erdős-Rényi and Preferential Attachment

Pittel [626] considered the following model: G0,G1, . . . ,Gm is a random (multi)
graph growth process Gm on a vertex set [n]. Gm+1 is obtained from Gm by in-
serting a new edge e at random. Specifically, the conditional probability that e
joins two currently disjoint vertices, i and j, is proportional to (di+α)(d j+α),
where di, d j are the degrees of i, j in Gm, and α > 0 is a fixed parameter. The
limiting case α = ∞ is the Erdős-Rényi graph process. He shows that w.h.p.
Gm contains a unique giant component iff c := 2m/n > cα = α/(1+α), and
the size of this giant is asymptotic to n

[
1−
(

α+c∗
α+c

)α], where c∗ < cα is the root
of c

(α+c)2+α = c∗
(α+c∗)2+α . A phase transition window is proved to be contained,

essentially, in [cα −An−1/3,cα +Bn−1/4], and he conjectured that 1/4 may be
replaced with 1/3. For the multigraph version, MGm, he showed that MGm is
connected w.h.p. iff m� mn := n1+α−1

. He conjectured that, for α > 1, mn is
the threshold for connectedness of Gm itself.



18
Weighted Graphs

There are many cases in which we put weights Xe,e∈E on the edges of a graph
or digraph and ask for the minimum or maximum weight object. The optimi-
sation questions that arise from this are the backbone of Combinatorial Opti-
misation. When the Xe are random variables we can ask for properties of the
optimum value, which will be a random variable. In this chapter we consider
three of the most basic optimisation problems viz. minimum weight spanning
trees; shortest paths and minimum weight matchings in bipartite graphs.

18.1 Minimum Spanning Tree

Let Xe, e ∈ E(Kn) be a collection of independent uniform [0,1] random vari-
ables. Consider Xe to be the length of edge e and let Ln be the length of the
minimum spanning tree (MST) of Kn with these edge lengths.
Frieze [320] proved the following theorem. The proof we give utilises the
rather lovely integral formula (18.1) due to Janson [421], (see also the related
equation (7) from [341].

Theorem 18.1

lim
n→∞

ELn = ζ (3) =
∞

∑
k=1

1
k3 = 1.202 · · ·

Proof Suppose that T = T ({Xe}) is the MST, unique with probability one.
We use the identity

a =
∫ 1

0
1{x≤a}dx.

362
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Therefore

Ln = ∑
e∈T

Xe

= ∑
e∈T

∫ 1

p=0
1{p≤Xe}d p

=
∫ 1

p=0
∑
e∈T

1{p≤Xe}d p

=
∫ 1

p=0
|{e ∈ T : Xe ≥ p}|d p

=
∫ 1

p=0
(κ(Gp)−1)d p,

where κ(Gp) denote the number of components of graph Gp. Here Gp is the
graph induced by the edges e with Xe ≤ p, i.e., Gp ≡Gn,p. The last line may be
considered to be a consequence of the fact that the greedy algorithm solves the
minimum spanning tree problem. This algorithm examines edges in increasing
order of edge weight. It builds a tree, adding one edge at a time. It adds the
edge to the forest F of edges accepted so far, only if the two endpoints lie in
distinct components of F . Otherwise it moves onto the next edge. Thus the
number of edges to be added given F , is κ(F)− 1 and if the longest edge in
e ∈ F has Xe = p then κ(F) = κ(Gp), which follows by an easy induction.
Hence

ELn =
∫ 1

p=0
(Eκ(Gp)−1)d p. (18.1)

We therefore estimate Eκ(Gp). We observe first that

p≥ 6logn
n
⇒ Eκ(Gp) = 1+o(1).

Indeed, 1≤ Eκ(Gp) and

Eκ(Gp)≤ 1+nP(Gp is not connected)

≤ 1+n
n/2

∑
k=1

(
n
k

)
kk−2 pk−1(1− p)k(n−k)

≤ 1+
n
p

n/2

∑
k=1

(
ne
k

6k logn
n

1
n3

)k

= 1+o(1).
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Hence, if p0 =
6logn

n then

ELn =
∫ p0

p=0
(Eκ(Gp)−1)d p+o(1)

=
∫ p0

p=0
Eκ(Gp)d p+o(1).

Write

κ(Gp) =
(logn)2

∑
k=1

Ak +
(logn)2

∑
k=1

Bk +C,

where Ak stands for the number of components which are k vertex trees, Bk is
the number of k vertex components which are not trees and, finally, C denotes
the number of components on at least (logn)2 vertices. Then, for 1 ≤ k ≤
(logn)2 and p≤ p0,

EAk =

(
n
k

)
kk−2 pk−1(1− p)k(n−k)+(k

2)−k+1

= (1+o(1))nk kk−2

k!
pk−1(1− p)kn.

EBk ≤
(

n
k

)
kk−2

(
k
2

)
pk(1− p)k(n−k)

≤ (1+o(1))(npe1−np)k

≤ 1+o(1).

C ≤ n
(logn)2 .

Hence ∫ 6logn
n

p=0

(logn)2

∑
k=1

EBkd p≤ 6logn
n

(logn)2(1+o(1)) = o(1),

and ∫ 6logn
n

p=0
Cd p≤ 6logn

n
n

(logn)2 = o(1).

So

ELn = o(1)+(1+o(1))
(logn)2

∑
k=1

nk kk−2

k!

∫ 6logn
n

p=0
pk−1(1− p)knd p.
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But

(logn)2

∑
k=1

nk kk−2

k!

∫ 1

p= 6logn
n

pk−1(1− p)knd p

≤
(logn)2

∑
k=1

nk kk−2

k!

∫ 1

p= 6logn
n

n−6kd p

= o(1).

Therefore

ELn = o(1)+(1+o(1))
(logn)2

∑
k=1

nk kk−2

k!

∫ 1

p=0
pk−1(1− p)knd p

= o(1)+(1+o(1))
(logn)2

∑
k=1

nk kk−2

k!
(k−1)!(kn))!
(k(n+1))!

= o(1)+(1+o(1))
(logn)2

∑
k=1

nkkk−3
k

∏
i=1

1
kn+ i

= o(1)+(1+o(1))
(logn)2

∑
k=1

1
k3

= o(1)+(1+o(1))
∞

∑
k=1

1
k3 .

One can obtain the same result if the uniform [0,1] random variable is re-
placed by any random non-negative random variable with distribution F hav-
ing a derivative equal to one at the origin, e.g. an exponential variable with
mean one. See Steele [692].

18.2 Shortest Paths

Let the edges of the complete graph Kn on [n] be given independent lengths
Xe, e ∈ [n]2. Here Xe is exponentially distributed with mean 1. The following
theorem was proved by Janson [423]:

Theorem 18.2 Let Xi j be the distance from vertex i to vertex j in the complete
graph with edge weights independent EXP(1) random variables. Then, for
every ε > 0, as n→ ∞,
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(i) For any fixed i, j,

P
(∣∣∣∣ Xi j

logn/n
−1
∣∣∣∣≥ ε

)
→ 0.

(ii) For any fixed i,

P
(∣∣∣∣max j Xi j

logn/n
−2
∣∣∣∣≥ ε

)
→ 0.

(iii)

P
(∣∣∣∣maxi, j Xi j

logn/n
−3
∣∣∣∣≥ ε

)
→ 0.

Proof We will prove statements (i) and (ii), only. First, recall the following
two properties of the exponential X :

(P1) P(X > α +β |X > α) = P(X > β ).

(P2) If X1,X2, . . . ,Xm are independent EXP(1) exponential random variables then
min{X1,X2, . . . ,Xm} is an exponential with mean 1/m.

Suppose that we want to find shortest paths from a vertex s to all other vertices
in a digraph with non-negative arc-lengths. Recall Dijkstra’s algorithm. After
several iterations there is a rooted tree T such that if v is a vertex of T then
the tree path from s to v is a shortest path. Let d(v) be its length. For x /∈ T
let d(x) be the minimum length of a path P that goes from s to v to x where
v ∈ T and the sub-path of P that goes to v is the tree path from s to v. If
d(y) = min{d(x) : x /∈ T} then d(y) is the length of a shortest path from s to y
and y can be added to the tree.
Suppose that vertices are added to the tree in the order v1,v2, . . . ,vn and that
Yj = dist(v1,v j) for j = 1,2, . . . ,n. It follows from property P1 that

Yk+1 = min
i=1,2,...,k
v6=v1,...,vk

[Yi +Xvi,v] = Yk +Ek

where Ek is exponential with mean 1
k(n−k) and is independent of Yk.

This is because Xvi,v j is distributed as an independent exponential X condi-
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tioned on X ≥ Yk−Yi. Hence

EYn =
n−1

∑
k=1

1
k(n− k)

=
1
n

n−1

∑
k=1

(
1
k
+

1
n− k

)
=

2
n

n−1

∑
k=1

1
k

=
2logn

n
+O(n−1).

Also, from the independence of Ek,Yk,

VarYn =
n−1

∑
k=1

VarEk

=
n−1

∑
k=1

(
1

k(n− k)

)2

≤ 2
n/2

∑
k=1

(
1

k(n− k)

)2

≤ 8
n2

n/2

∑
k=1

1
k2

= O(n−2)

and we can use the Chebyshev inequality (20.3) to prove (ii).
Now fix j = 2. Then if i is defined by vi = 2, we see that i is uniform over
{2,3, . . . ,n}. So

EX1,2 =
1

n−1

n

∑
i=2

i−1

∑
k=1

1
k(n− k)

=
1

n−1

n−1

∑
k=1

n− k
k(n− k)

=
1

n−1

n−1

∑
k=1

1
k

=
logn

n
+O(n−1).

For the variance of X1,2 we have

X1,2 = δ2Y2 +δ3Y3 + · · ·+δnYn,
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where

δi ∈ {0,1}; δ2 +δ3 + · · ·+δn = 1; P(δi = 1) =
1

n−1
.

VarX1,2 =
n

∑
i=2

Var(δiYi)+∑
i 6= j

Cov(δiYi,δ jYj)

≤
n

∑
i=2

Var(δiYi).

The last inequality holds since

Cov(δiYi,δ jYj) = E(δiYiδ jYj)−E(δiYi)E(δ jYj)

=−E(δiYi)E(δ jYj)≤ 0.

So

VarX1,2 ≤
n

∑
i=2

Var(δiYi)

≤
n

∑
i=2

1
n−1

i−1

∑
k=1

(
1

k(n− k)

)2

= O(n−2).

We can now use the Chebyshev inequality.
We can as for Spanning Trees, replace the exponential random variables by
random variables that behave like the exponential close to the origin. The paper
of Janson [423] allows for any random variable X satisfying P(X ≤ t)= t+o(t)
as t→ 0.

18.3 Minimum Weight Assignment

Consider the complete bipartite graph Kn,n and suppose that its edges are as-
signed independent exponentially distributed weights, with rate 1. (The rate
of an exponential variable is one over its mean). Denote the minimum total
weight of a perfect matching in Kn,n by Cn. Aldous [13], [16] proved that
limn→∞ECn = ζ (2) = ∑

∞
k=1

1
k2 . The following theorem was conjectured by

Parisi [616]. It was proved independently by Linusson and Wästlund [531]
and Nair, Prabhakar and Sharma [600]. The proof given here is from Wästlund
[721].
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Theorem 18.3

ECn =
n

∑
k=1

1
k2 = 1+

1
4
+

1
9
+

1
16

+ · · ·+ 1
n2 (18.2)

From the above theorem we immediately get the following corollary, first
proved by Aldous [16].

Corollary 18.4

lim
n→∞

ECn = ζ (2) =
∞

∑
k=1

1
k2 =

π2

6
= 1.6449 · · ·

Let us introduce a more general model of minimum weight assignment. Con-
sider an m by n complete bipartite graph Km,n, with bipartition
(A,B), where A = {a1,a2, . . . ,am} and B = {b1,b2, . . . ,bn}, and with edge
weights which are independent and exponentially distributed, with rate 1. A
k-assignment is defined to be a set of k independent edges, i.e., a set of k
edges, no two of them having end vertices in common. The weight of an as-
signment is the sum of the weights of its edges. Let Ck,m,n denote the minimum
weight of a k-assignment in such an edge weighted Km,n. Then as conjectured
by Coppersmith and Sorkin [226] the following holds:

Theorem 18.5

ECk,m,n = ∑
i, j≥0
i+ j<k

1
(m− i)(n− j)

(18.3)

We will first prove the above theorem and then show that equation (18.3) re-
duces to equation (18.2) for k = m = n.

Proof (of Theorem 18.5).
In order to establish (18.3) inductively it suffices to show that

ECk,m,n−ECk−1,m,n−1 =
1

mn
+

1
(m−1)n

+ · · ·+ 1
(m− k+1)n

(18.4)

For then we obtain (18.3) by summing EC`,m,n−k+`−EC`−1,m,n−k+`−1 for `=
1,2, . . . ,k.
Let σr, 0≤ r < k, be the minimum weight r-assignment in Km,n.
First notice that since the edge weights of Km,n are exponentially distributed,
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we have that with probability 1, no two disjoint sets of edges have the same
total weight. It implies that, every vertex v which participates in σr (i.e., is
incident to an edge from σr and denoted v ∈ σr), participates in σr+1 also.
Briefly,

v ∈ σr⇒ v ∈ σr+1 (18.5)

To see this let H be a subgraph of Km,n induced by the symmetric difference
σr4σr+1, i.e., by those edges of minimum r and r + 1 assignments, which
do not belong to both of them. Observe that each vertex of H has degree at
most two and so H consists of vertex disjoint paths and cycles. We claim that
with probability one, H is in fact a single path. If this is not the case then there
would exist a subgraph H1 of H, being either a cycle or two paths, contain-
ing the same number of edges from σr as from σr+1. With probability one the
edge sets in H1 ∩σr and H1 ∩σr+1 have different total weight. But then ei-
ther H14σr has smaller weight than σr, or H14σr+1 has smaller weight than
σr+1, a contradiction.
To proceed with the proof, let us introduce a slightly modified model. Namely,
consider a weighted complete graph Km+1,n which is obtained from Km,n by
adding a new vertex am+1 to A and connecting it with all n vertices of B by
edges with independent, exponentially distributed weights with rate λ > 0 (re-
call that all weights of Km,n are exponential with rate one.)
We will show that, in Km+1,n, as λ → 0,

P(am+1 ∈ σk) =

(
1
m
+

1
m−1

+ · · ·+ 1
m− k+1

)
λ +O(λ 2) (18.6)

We will show that (18.6) is an immediate consequence of the fact that,

P(am+1 ∈ σr+1|am+1 6∈ σr) =
λ

m− r+λ
. (18.7)

Indeed, (18.7) implies that

P(am+1 ∈ σk) = 1− m
m+λ

· m−1
m−1+λ

· · · m− k+1
m− k+1+λ

= 1−
(

1+
λ

m

)−1

· · ·
(

1+
λ

m− k+1

)−1

=

(
1
m
+

1
m−1

+ · · ·+ 1
m− k+1

)
λ +O(λ 2),

as λ → 0, and (18.6) follows.
To see that (18.7) holds, suppose, without loss of generality that the vertices of
A participating in σr are a1,a2, . . . ,ar. Let K′ be a multi-graph obtained from
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Km+1,n by identifying vertices ar+1, . . . ,am,am+1 to a single “super- vertex”
a′r+1, of degree (m− r+1)n, where a′r+1, j = min

{
ar+1, j, . . . ,am+1, j

}
.

Now, by (18.5), σr+1 cannot contain two edges incident with
ar+1, . . . ,am+1. Hence, once we know the edge incident with a′r+1 which be-
longs to σ ′r+1 in K′, we know that it corresponds to a unique edge emanating
from one of vertices from ar+1, . . . ,am+1 that belongs to σr+1.
By conditioning on the values a′i, j we see that the probability that a vertex from
the set am+1 participates in σr+1 is λ/(m−r+λ ). (We use the fact that if E1,E2

are exponentials with rates λ1,λ2 respectively, then P(E1 ≤ E2) =
λ1

λ1+λ2
, even

if min{E1,E2} is given).
Now let W denote the cost of the edge (am+1,bn), and let X = Ck,m,n of Km,n,
while Y = Ck−1,m,n−1 of Km,n−1, with bipartition (A,B \ {bn}). Let I be the
indicator variable for the event that the cost of the cheapest k-assignment that
contains (am+1,bn) is smaller than the cost of the cheapest k-assignment that
does not use am+1. In other words, I is the indicator variable for the event that
Y +W < X .

Lemma 18.6 As λ → 0, we have

E I =
(

1
mn

+
1

(m−1)n
+ · · ·+ 1

(m− k+1)n

)
λ +O(λ 2).

Proof (of Lemma 18.6)
Observe first that if (am+1,bn) ∈ σk then we have Y +W < X . Conversely,
if Y +W < X and no other edge incident with am+1 has weight smaller than
X then (am+1,bn) ∈ σk. But, when λ → 0, the probability that there are two
distinct edges incident to am+1 of weight smaller than X is of order O(λ 2) (the
hidden constant depends on n here). Hence

E I = P((am+1,bn) ∈ σk)+O(λ 2) =
1
n
P(am+1 ∈ σk)+O(λ 2), (18.8)

where P(am+1 ∈ σk) is given by (18.6).
Since W is exponentially distributed with rate λ , we have

E I = P(W < X−Y ) = E
(

1− e−λ (X−Y )
)
= 1−E

(
e−λ (X−Y )

)
. (18.9)

Hence

E(X−Y ) =
d

dλ

[
−E

(
e−λ (X−Y )

)]
λ=0

=

d
dλ

(E I −1)
λ=0 =

d
dλ

E I|λ=0.
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It follows from Lemma 18.6 that

E(X−Y ) =
d

dλ

[
1
n

(
1
m
+

1
m−1

+ · · ·+ 1
m− k+1

)
λ +O(λ 2)

]
λ=0

=
1

mn
+

1
(m−1)n

+ · · ·+ 1
(m− k+1)n

,

arriving at the formula (18.4) and so proving Theorem 18.5.

Now we will show that with k = m = n the statement of Theorem 18.5 reduces
to the statement of Theorem 18.3. So, let

Sn = ECn,n,n = ∑
i, j≥0
i+ j<n

1
(n− i)(n− j)

= ∑
i′, j′≥1

i′+ j′<n+2

1
(n+1− i′)(n+1− j′)

It follows that

Sn+1−Sn =

= ∑
i=0, j≤n

or
i≤n, j=0

1
(n+1− i)(n+1− j)

− ∑
i, j≥1

i+ j=n+1

1
(n+1− i)(n+1− j)

=
1

(n+1)2 +
n

∑
i=1

2
(n+1)(n+1− i)

−
n

∑
i=1

1
i(n+1− i)

=
1

(n+1)2 , (18.10)

since
1

i(n+1− i)
=

1
n+1

(
1
i
+

1
n+1− i

)
.

S1 = 1 and so (18.2) follows from (18.10).

18.4 Exercises

18.4.1 Suppose that the edges of the complete bipartite graph Kn,n are given
independent uniform [0,1] edge weights. Show that if L(b)

n is the length
of the minimum spanning tree, then

lim
n→∞

EL(b)
n = 2ζ (3).
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18.4.2 Tighten Theorem 18.1 and prove that

ELn = ζ (3)+O
(

1
n

)
.

18.4.3 Suppose that the edges of Kn are given independent uniform [0,1] edge
weights. Let Zk denote the minimum total edge cost of the union of k
edge-disjoint spanning trees. Show that limk→∞ Zk/k2 = 1.

18.4.4 Suppose that the edges of Gn,p where 0 < p≤ 1 is a constant, are given
exponentially distributed weights with rate 1. Show that if Xi j is the
shortest distance from i to j then

1 For any fixed i, j,

P
(∣∣∣∣ Xi j

logn/n
− 1

p

∣∣∣∣≥ ε

)
→ 0.

2

P
(∣∣∣∣max j Xi j

logn/n
− 2

p

∣∣∣∣≥ ε

)
→ 0.

18.4.5 The quadratic assignment problem is to

Minimise
Z = ∑

n
i, j,p,q=1 ai jpqxipx jq

Sub ject to
∑

n
i=1 xip = 1 p = 1,2, . . . ,n

∑
n
p=1 xip = 1 i = 1,2, . . . ,n

xip = 0/1.

Suppose now that the ai jpq are independent uniform [0,1] random vari-
ables. Show that w.h.p. Zmin ≈ Zmax where Zmin (resp. Zmax) denotes
the minimum (resp. maximum) value of Z, subject to the assignment
constraints.

18.4.6 The 0/1 knapsack problem is to

Maximise
Z = ∑

n
i=1 aixi

Sub ject to
∑

n
i=1 bixi ≤ L

xi = 0/1 for i = 1,2, . . . ,n.

Suppose that the (ai,bi) are chosen independently and uniformly from
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[0,1]2 and that L = αn. Show that w.h.p. the maximum value of Z,
Zmax, satisfies

Zmax ≈


α1/2n

2 α ≤ 1
4 .

(8α−8α2−1)n
2

1
4 ≤ α ≤ 1

2
n
2 α ≥ 1

2

.

18.4.7 Suppose that X1,X2, . . . ,Xn are points chosen independently and uni-
formly at random from [0,1]2. Let Zn denote the total Euclidean length
of the shortest tour (Hamilton cycle) through each point. Show that
there exist constants c1,c2 such that c1n1/2 ≤ Zn ≤ c2n1/2 w.h.p.

18.4.8 Prove equation (18.11) below.
18.4.9 Prove equation (18.12) below.

18.5 Notes

Shortest paths

There have been some strengthenings and generalisations of Theorem 18.2. For
example, Bhamidi and van der Hofstad [86] have found the (random) second-
order term in (i), i.e., convergence in distribution with the correct norming.
They have also studied the number of edges in the shortest path.

Spanning trees

Beveridge, Frieze and McDiarmid [85] considered the length of the minimum
spanning tree in regular graphs other than complete graphs. For graphs G of
large degree r they proved that the length MST (G) of an n-vertex randomly
edge weighted graph G satisfies MST (G) = n

r (ζ (3)+or(1)) w.h.p., provided
some mild expansion condition holds. For r regular graphs of large girth g they
proved that if

cr =
r

(r−1)2

∞

∑
k=1

1
k(k+ρ)(k+2ρ)

,

then w.h.p. |MST (G)− crn| ≤ 3n
2g .

Frieze, Ruszinko and Thoma [348] replaced expansion in [85] by connectivity
and in addition proved that MST (G) ≤ n

r (ζ (3)+ 1+ or(1)) for any r-regular
graph.
Cooper, Frieze, Ince, Janson and Spencer [217] show that Theorem 18.1 can
be improved to yield ELn = ζ (3)+ c1

n + c2+o(1)
n4/3 for explicit constants c1,c2.
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Bollobás, Gamarnik, Riordan and Sudakov [143] considered the
Steiner Tree problem on Kn with independent random edge weights, Xe,e ∈
E(Kn). Here they assume that the Xe have the same distribution X ≥ 0 where
P(X ≤ x) = x+ o(x) as x→ 0. The main result is that if one fixes k = o(n)
vertices then w.h.p. the minimum length W of a sub-tree of Kn that includes
these k points satisfies W ≈ k−1

n log n
k .

Angel, Flaxman and Wilson [36] considered the minimum length of a spanning
tree of Kn that has a fixed root and bounded depth k. The edges weights Xe are
independent exponential mean one. They prove that if k ≥ log2 logn+ω(1)
then w.h.p. the minimum length tends to ζ (3) as in the unbounded case. On the
other hand, if k≤ log2 logn−ω(1) then w.h.p. the weight is doubly exponential
in log2 logn− k. They also considered bounded depth Steiner trees.
Using Talagrand’s inequality, McDiarmid [563] proved that for any real t > 0
we have P(|Ln− ζ (3)| ≥ t) ≤ e−δ1n where δ1 = δ2(t). Flaxman [302] proved
that P(|Ln−ζ (3)| ≤ ε)≥ e−δ2n where δ1 = δ2(ε).

Assignment problem

Walkup [720] proved that ECn≤ 3 (see (18.3)) and later Karp [473] proved that
ECn ≤ 2. Dyer, Frieze and McDiarmid [268] adapted Karp’s proof to some-
thing more general: Let Z be the optimum value to the linear program:

Minimise
n

∑
j=1

c jx j,subject to x ∈ P = {x ∈ Rn : Ax = b,x≥ 0} ,

where A is an m×n matrix. As a special case of [268], we have that if c1,c2, . . . ,

cn are independent uniform [0,1] random variables and x∗ is any member of P,
then E(Z)≤ m(max j x∗j). Karp’s result can easily be deduced from this.
The assignment problem can be generalized to multi-dimensional versions: We
replace the complete bipartite graph Kn,n by the complete k-partite hypergraph
K(k)

n with vertex partition V =V1tV2t ·· ·tVk where each Vi is of size n. We
give each edge of K(k)

n an independent exponential mean one value. Assume for
example that k = 3. In one version of the 3-dimensional assignment problem
we ask for a minimum weight collection of hyper-edges such that each vertex
v∈V appears in exactly one edge. The optimal total weight Z of this collection
satisfies

Ω

(
1
n

)
≤ Z ≤ O

(
logn

n

)
w.h.p. (18.11)

(The upper bound uses the result of [451], see Section 13.2).
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Frieze and Sorkin [349] give an O(n3) algorithm that w.h.p. finds a solution of
value 1

n1−o(1) .
In another version of the 3-dimensional assignment problem we ask for a min-
imum weight collection of hyper-edges such that each pair of vertices v,w ∈V
from different sets in the partition appear in exactly one edge. The optimal total
weight Z of this collection satisfies

Ω(n)≤ Z ≤ O(n logn) w.h.p. (18.12)

(The upper bound uses the result of [268] to greedily solve a sequence of re-
stricted assignment problems).



19
Brief notes on uncovered topics

There are several topics that we have not been able to cover and that might be
of interest to the reader. For these topics, we provide some short synopses and
some references that the reader may find useful.

Contiguity

Suppose that we have two sequences of probability models on graphs G1,n,G2,n

on the set of graphs with vertex set [n]. We say that the two sequences are
contiguous if for any sequence of events An we have

lim
n→∞

P(G1,n ∈An) = 0⇔ lim
n→∞

P(G2,n ∈An) = 0.

This for example, is useful for us, if we want to see what happens w.h.p. in
the model G1,n, but find it easier to work with G2,n. In this context, Gn,p and
Gn,m=n2 p/2 are almost contiguous.
Interest in this notion in random graphs was stimulated by the results of Robin-
son and Wormald [650], [652] that random r-regular graphs, r ≥ 3,r = O(1)
are Hamiltonian. As a result, we find that other non-uniform models of ran-
dom regular graphs are contiguous to Gn,r e.g. the union rMn of r random
perfect matchings when n is even. (There is an implicit conditioning on rMn

being simple here). The most general result in this line is given by Wormald
[729], improving on earlier results of Janson [422] and Molloy, Robalewska,
Robinson and Wormald [584] and Kim and Wormald [484]. Suppose that
r = 2 j+∑

r−1
i=1 iki, with all terms non-negative. Then Gn,r is contiguous to the

sum jHn +∑
r−1
i=1 kiGn,i, where n is restricted to even integers if ki 6= 0 for any

odd i. Here jHn is the union of j edge disjoint Hamilton cycles etc.
Chapter 8 of [432] is devoted to this subject.

Edge Colored Random Graphs

Suppose that we color the edges of a graph G. A set of edges S is said to
be rainbow colored if each edge of S has a different color. Consider first the

377
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existence of a rainbow spanning tree. We consider the graph process where
the edges are randomly colored using q ≥ n− 1 colors. Let τa be the hitting
time for n−1 colors to appear in the process and let τc be the hitting time for
connectivity and let τ∗ = max{τa,τc}. Frieze and McKay [342] showed that
w.h.p. Gτ∗ contains a rainbow spanning tree. This is clearly best possible. Bal,
Bennett, Frieze and Pralat [46] consider the case where each edge has a choice
of k random colors. This reduces τa, but the result still holds.
The existence of rainbow Hamilton cycles is different. The existence of a
rainbow spanning tree can be checked in polynomial time and this leads to
a simple criterion for non-existence. This is clearly not likely for Hamilton
cycles. Cooper and Frieze [207] proved that if m ≥ Kn logn and q ≥ Kn then
w.h.p. Gn,m contains a rainbow Hamilton cycle. This was improved to m ≥
1+o(1)

2 n logn and q≥ (1+o(1))n by Frieze and Loh [337]. Bal and Frieze [48]
show that if m ≥ Kn logn and q = n and n is even there is a rainbow Hamil-
ton cycle w.h.p. Ferber [292] removed the requirement that n be even. Bal and
Frieze also considered rainbow perfect matchings in k-uniform hypergraphs.
Janson and Wormald [435] considered random coloring’s of r-regular graphs.
They proved that if r ≥ 4,r = O(1) and the edges of Gn,2r are randomly col-
ored so that each color is used r times, then w.h.p. there is a rainbow Hamil-
ton cycle. Ferber, Kronenberg, Mousset and Shikhelman [295] give results on
packing rainbow structures such as Hamilton cycles. Ferber, Nenadov and Pe-
ter prove that if p� n−1/d(logn)1/d and H is a fixed graph of density at most
d then w.h.p. Gn,p contains a rainbow copy of H if it is randomly colored with
(1+ ε)|E(H)| colors, for any fixed ε > 0.
Cooper and Frieze [204] found the threshold for the following property: If
k = O(1) and Gn,m is arbitrarily edge colored so that no color is used more
than k times, then Gn,m contains a rainbow Hamilton cycle.

Games

Positional games can be considered to be a generalisation of the game of
“Noughts and Crosses” or “Tic-Tac-Toe”. There are two players A (Maker)
and B (Breaker) and in the context for this section, the board will be a graph
G. Each player in turn chooses an edge and at the end of the game, the winner
is determined by the partition of the edges claimed by the players. As a typical
example, in the connectivity game, player A is trying to ensure that the edges
she collects contain a spanning tree of G and player B is trying to prevent this.
See Chvátal and Erdős [188] for one of the earliest papers on the subject and
books by Beck [64] and Hefetz, Krivelevich, Stojaković and Szabó [403]. Most
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of the analyses have considered G = Kn and to make the problem interesting
[188] introduced the notion of bias. Thus in the connectivity game, player B is
allowed to collect b edges for each edge of A. Now the question becomes what
is the largest value of b for which A has a winning strategy. There is a strik-
ing though somewhat mysterious connection between the optimal values of b
for various games and thresholds for associated properties in random graphs.
For example in the connectivity game, the threshold bias b≈ n

logn i.e. player A
collects about 1

2 n logn edges, see Gebauer and Szabó [361]. Another example
is the biased H-game where Maker wins if she can create a copy of some fixed
graph H with at least two adjacent edges. The optimal threshold bias b for this
game is of order Θ

(
n1/m2(H)

)
, Bednarska and Łuczak [65]. For sufficiently

small constant c > 0, if b ≤ cn1/m2(H), then Maker can create Θ(EXH) copies
of H in Kn, where XH is the number of copies of H in Gn,1/b. Furthermore, if
Maker plays randomly, she achieves this goal w.h.p.

Recently Stojaković and Szabó [696] began research on random boards i.e.
where G is a random graph. Ben-Shimon, Ferber, Hefetz and Krivelevich [77]
prove a hitting time result for the b = 1 Hamilton cycle game on the graph
process. Assuming that player A wants to build a Hamilton cycle and player
B starts first, player A will have a winning strategy in Gm iff m ≥ m∗4. This is
best possible. Biased Hamiltonicity games on Gn,p were considered in Ferber,
Glebov, Krivelevich and Naor [293] where it was shown that for p� logn

n , the
threshold bias bHAM satisfies bHAM ≈ np

logn w.h.p. The H-game where A wins if
she can create a copy of some fixed graph H was first studied by Stojakovic and
Szabo [696] in the case of H is a clique on k vertices. This was strengthened
by Müller and Stojaković [595]. They show that if p≤ cn−2/(k+1), then w.h.p.
B can win this game. For p ≥ Cn−2/(k+1) one can use the results of [653] to
argue that A wins w.h.p. This result was generalised to arbitrary graphs H
(satisfying certain mild conditions) by Nenadov, Steger and Stojaković [605]
where they showed that the threshold is where one would expect it to be - at
the 2-density of H. As we have seen there are other models of random graphs
and Beveridge, Dudek, Frieze, Müller and Stojaković [84] studied these games
on random geometric graphs.

The game chromatic number χg(G) of a graph G can be defined as follows.
Once again there are two players A,B and they take it in turns to properly
color vertices of G with one of q colors. Thus if {u,v} is an edge and u is
colored with color c and v is uncolored at the start of any turn, then v may not
be colored with c by either player. The goal of A is to ensure that the game
ends with every vertex colored and the goal of B is to prevent this by using all
q colors in the neighborhood of some uncolored vertex. The game chromatic
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number is the minimum q for which A can win. For a survey on results on
this parameter see Bartnicki, Grytczuk, Kierstead and and Zhu [62]. Bohman,
Frieze and Sudakov [118] studied χg for dense random graphs and proved that
for such graphs, χg is within a constant factor of the chromatic number. Keusch
and Steger [481] proved that this factor is asymptotically equal to two. Frieze,
Haber and Lavrov [330] extended the results of [118] to sparse random graphs.

Graph Searching

Cops and Robbers

A collection of cops are placed on the vertices of a graph by player C and then
a robber is placed on a vertex by player R. The players take turns. C can move
all cops to a neighboring vertex and R can move the robber. The cop number
of a graph is them minimum number of cops needed so that C can win. The
basic rule being that if there is a cop occupying the same vertex as the robber,
then C wins. Łuczak and Pralat [546] proved a remarkable “zigzag” theorem
giving the cop number of a random graph. This number being nα where α =

α(p) follows a saw-toothed curve. Pralat and Wormald [632] proved that the
cop number of the random regular graph Gn,r is O(n1/2). It is worth noting
that Meyniel has conjectured O(n1/2) as a bound on the cop number of any
connected n-vertex graph. There are many variations on this game and the
reader is referred to the monograph by Bonato and Pralat [151].

Graph Cleaning

Initially, every edge and vertex of a graph G is dirty, and a fixed number of
brushes start on a set of vertices. At each time-step, a vertex v and all its
incident edges that are dirty may be cleaned if there are at least as many
brushes on v as there are incident dirty edges. When a vertex is cleaned, ev-
ery incident dirty edge is traversed (that is, cleaned) by one and only one
brush, and brushes cannot traverse a clean edge. The brush number b(G) is
the minimum number of brushes needed to clean G. Pralat [633], [634] proved
that w.h.p. b(Gn,p) ≈ 1−e−2d

4 n for p = d
n where d < 1 and w.h.p. b(Gn,p) ≤

(1+o(1))
(

d +1− 1−e−2d

2d

)
n
4 for d > 1. For the random d-regular graph Gn,d ,

Alon, Pralat and Wormald [24] proved that w.h.p. b(Gn,d)≥ dn
4

(
1− 23/2

d1/2

)
.
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Acquaintance Time

Let G = (V,E) be a finite connected graph. We start the process by placing
one agent on each vertex of G. Every pair of agents sharing an edge are de-
clared to be acquainted, and remain so throughout the process. In each round
of the process, we choose some matching M in G. The matching M need not be
maximal; perhaps it is a single edge. For each edge of M, we swap the agents
occupying its endpoints, which may cause more agents to become acquainted.
We may view the process as a graph searching game with one player, where
the player’s strategy consists of a sequence of matchings which allow all agents
to become acquainted. Some strategies may be better than others, which leads
to a graph optimisation parameter. The acquaintance time of G, denoted by
A (G), is the minimum number of rounds required for all agents to become
acquainted with one another. The parameter A (G) was introduced by Ben-
jamini, Shinkar and Tsur [69], who showed that A (G) = O

(
n2 log logn

logn

)
for an

n vertex graph. The loglogn factor was removed by Kinnersley, Mitsche and
Pralat [486]. The paper [486] also showed that w.h.p. A (Gn,p) = O

(
logn

p

)
for

(1+ε) logn
n ≤ p≤ 1−ε . The lower bound here was relaxed to np− logn→∞ in

Dudek and Pralat [260]. A lower bound, Ω

(
logn

p

)
for Gn,p and p ≥ n−1/2+ε

was proved in [486].

H-free process

In an early attempt to estimate the Ramsey number R(3, t), Erdős, Suen and
Winkler [283] considered the following process for generating a triangle free
graph. Let e1,e2, . . . ,eN ,N =

(n
2

)
be a random ordering of the complete graph

Kn. Let P be a graph property e.g. being triangle free. We generate a sequence
of random graphs Γ0,Γ1, . . . ,ΓN where Γi+1 = Γi+ei+1 if adding ei+1 does not
destroy P , otherwise Γi+1 = Γi. In this way we can generate a random graph
that is guaranteed to have property P .
For P is “bipartite” they show in [283] that ΓN has expected size greater than
(n2− n)/4. When P is “triangle free” they show that w.h.p. that ΓN has size
Ω(n3/2) w.h.p. Bollobás and Riordan [147] studied the general H-free process.
More recently, Bohman [110] showed in the case of the triangle free process,
that w.h.p. ΓN has size Θ(n3/2(logn)1/2). This provides an alternative proof
to that of Kim [482] that R(3, t) = Ω

(
t2

log t

)
. He made use of a careful use

of the differential equations method, see Chapter 22. Bohman and Keevash
[119] and Fiz Pontiveros, Griffiths and Morris [301] have improved this result
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and shown that w.h.p. ΓN has size asymptotically equal to 1
2
√

2
n3/2(logn)1/2.

They also show that the independence number of ΓN is bounded by (1 +

o(1))(2n logn)1/2. This shows that R(3, t)>
( 1

4 −o(1)
)

t2/ log t.
Bohman, Mubayi and Picolleli [121] considered an r-uniform hypergraph ver-
sion. In particular they studied the T (r)-free process, where T (r) generalises a
triangle in a graph. It consists of S∪{ai} , i = 1,2, . . . ,r where |S|= r−1 and
a further edge {a1,a2, . . . ,ar}. Here hyperedges are randomly added one by
one until one is forced to create a copy of T r. They show that w.h.p. the final
hypergraph produced has independence number O((n logn)1/r). This proves a
lower bound of Ω

(
sr

logs

)
for the Ramsey number R(T (r),K(r)

s ). The analysis is
based on a paper on the random greedy hypergraph independent set process by
Bennett and Bohman [74].
There has also been work on the related triangle removal process. Here we start
with Kn and repeatedly remove a random triangle until the graph is triangle
free. The main question is as to how many edges are there in the final triangle
free graph. A proof of a bound of O(n7/4+o(1)) was outlined by Grable [381].
A simple proof of O(n7/4+o(1)) was proved in Bohman, Frieze and Lubetzky
[115]. Furthermore, Bohman, Frieze and Lubetzky [116] have proved a tight
result of n3/2+o(1) for the number of edges left. This is close to the Θ(n3/2)

bound conjectured by Bollobás and Erdős in 1990.
An earlier paper by Ruciński and Wormald [660] consider the d-process. Edges
were now rejected if they raised the degree of some vertex above d. Answering
a question of Erdős, they proved that the resulting graph was w.h.p. d-regular.

Logic and Random Graphs

The first order theory of graphs is a language in which one can describe some,
but certainly not all, properties of graphs. It can describe G has a triangle, but
not G is connected. Fagin [286] and Glebskii, Kogan, Liagonkii and Talanov
[371] proved that for any property A that can be described by a first order
sentence, limn→∞P(Gn,1/2 ∈ A ) ∈ {0,1}. We say that p = 1/2 obeys a 0-1
law. One does not need to restrict oneself to Gn,1/2. Shelah and Spencer [682]
proved that if α is irrational then p = n−α also obeys a 0-1 law. See the book
by Spencer [689] for much more on this subject.
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Planarity

We have said very little about random planar graphs. This is partially because
there is no simple way of generating a random planar graph. The study begins
with the seminal work of Tutte [711], [712] on counting planar maps. The num-
ber of rooted maps on surfaces was found by Bender and Canfield [72]. The
size of the largest components were studied by Banderier, Flajolet, Schaeffer
and Soria [55].
When it comes to random labeled planar graphs, McDiarmid, Steger and Welsh
[568] showed that if pl(n) denotes the number of labeled planar graphs with
n vertices, then (pl(n)/n!)1/n tends to a limit γ as n→ ∞. Osthus, Prömel and
Taraz [609] found an upper bound for γ , Bender, Gao and Wormald [73] found
a lower bound for γ . Finally, Giménez and Noy [368] proved that pl(n) ≈
cn−7/2γnn! for explicit values of c,γ .
Next let pl(n,m) denote the number of labelled planar graphs with n vertices
and m edges. Gerke, Schlatter, Steger and Taraz [364] proved that if 0≤ a≤ 3
then (pl(n,an)/n!)1/n tends to a limit γa as n→ ∞. Giménez and Noy [368]
showed that if 1 < a < 3 then pl(n,an) ≈ can−4γn

a n!. Kang and Łuczak [462]
proved the existence of two critical ranges for the sizes of complex compo-
nents.

Planted Cliques, Cuts and Hamilton cycles

The question here is the following: Suppose that we plant an unusual object
into a random graph. Can someone else find it? One motivation being that if
finding the planted object is hard for someone who does not know where it
is planted, then this modified graph can be used as a signature. To make this
more precise, consider starting with Gn,1/2, choosing an s-subset S of [n] and
then making S into a clique. Let the modified graph be denoted by Γ. Here
we assume that s� logn so that S should stand out. Can we find S, if we are
given Γ, but we are not told S. Kucera [517] proved that if s ≥ C(n logn)1/2

for a sufficiently large C then w.h.p. one can find S by looking at vertex de-
grees. Alon, Krivelevich and Sudakov [28] improved this to s = Ω(n1/2). They
show that the second eigenvector of the adjacency matrix of Γ contains enough
information so that w.h.p. S can be found. Frieze and Kannan [333] related
this to a problem involving optimisation of a tensor product. Recently, Feld-
man, Grigorescu, Reyzin, Vempala and Xiao [289] showed that a large class of
algorithms will fail w.h.p. if s≤ n1/2−δ for some positive constant δ .
There has also been a considerable amount of research on planted cuts. Begin-
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ning with the paper of Bui, Chaudhuri, Leighton and Sipser [164] there have
been many papers that deal with the problem of finding a cut in a random
graph of unusual size. By this we mean that starting with Gn,p, someone se-
lects a partition of the vertex set into k ≥ 2 sets of large size and then alters
the edges between the subsets of the partition so that it is larger or smaller than
can be usually found in Gn,p. See Coja–Oghlan [189] for a recent paper with
many pertinent references.
As a final note on this subject of planted objects. Suppose that we start with
a Hamilton cycle C and then add a copy of Gn,p where p = c

n to create Γ.
Broder, Frieze and Shamir [161] showed that if c is sufficiently large then
w.h.p. one can in polynomial time find a Hamilton cycle H in Γ. While H
may not necessarily be C, this rules out a simple use of Hamilton cycles for a
signature scheme.

Random Lifts

For a graph K, an n-lift G of K has vertex set V (K)× [n] where for each vertex
v ∈V (K), {v}× [n] is called the fiber above v and will be denoted by Πv. The
edge set of a an n-lift G consists of a perfect matching between fibers Πu and
Πw for each edge {u,w} ∈ E(K). The set of n-lifts will be denoted Λn(K). In
a random n-lift, the matchings between fibers are chosen independently and
uniformly at random.
Lifts of graphs were introduced by Amit and Linial in [33] where they proved
that if K is a connected, simple graph with minimum degree δ ≥ 3, and G is a
random n-lift of K then G is δ (G)-connected w.h.p., where the asymptotics are
for n→∞. They continued the study of random lifts in [34] where they proved
expansion properties of lifts. Together with Matoušek, they gave bounds on the
independence number and chromatic number of random lifts in [35]. Linial and
Rozenman [530] give a tight analysis for when a random n-lift has a perfect
matching. Greenhill, Janson and Ruciński [383] consider the number of perfect
matchings in a random lift.
Łuczak, Witkowski and Witkowski [549] proved that a random lift of H is
Hamiltonian w.h.p. if H has minimum degree at least 5 and contains two dis-
joint Hamiltonian cycles whose union is not a bipartite graph. Chebolu and
Frieze [175] considered a directed version of lifts and showed that a random
lift of the complete digraph ~Kh is Hamiltonian w.h.p. provided h is sufficiently
large.
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Random Simplicial Complexes

Linial and Meshulam [529] pioneered the extension of the analysis of Gn,p to
higher dimensional complexes. We are at the beginning of research in this area
and can look forward to exciting connections with Algebraic Topology. For
more details see the survey of Kahle [458].

Random Subgraphs of the n-cube

While most work on random graphs has been on random subgraphs of Kn, it
is true to say that has also been a good deal of work on random subgraphs of
the n-cube, Qn. This has vertex set Vn = {0,1}n and an edge between x,y ∈Vn

iff they differ in exactly one coordinate. To obtain a subgraph, we can either
randomly delete vertices with probability 1− pv or edges with probability 1−
pe or both. If only edges are deleted then the connectivity threshold is around
pe = 1/2, see Burtin [167] or Saposhenko [670], Erdős and Spencer [282]. If
only vertices are deleted then the connectivity threshold is around pv = 1/2,
see Saposhenko [671] or Weber [722]. If both edges and vertices and vertices
are deleted then the connectivity threshold is around pe pv = 1/2, see Dyer,
Frieze and Foulds [265].
Ajtai, Komlós and Szemerédi [8] showed that if pe = (1+ ε)/n then w.h.p.
there will be a unique giant component of order 2n. Their results were tight-
ened in Bollobás, Kohayakawa and Łuczak [144] where the case ε = o(1)
was considered. In further analysis, Bollobás, Kohayakawa and Łuczak [145]
proved the existence of giant components in the case pv = (1+ ε)/n.
The threshold for the existence of a prefect matching at around pe = 1/2 was
established by Bollobás [133]. The threshold for the existence of a Hamilton
cycle remains an open question.

Random Walks on Random Graphs

For a random walk, two of the most interesting parameters, are the mixing time
and the cover time.

Mixing Time

Generally speaking, the probability that a random walk is at a particular ver-
tex tends to a steady state probability deg(v)

2m . The mixing time is the time taken
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for the distribution k-step distribution to get to within variation distance 1/4,
say, of the steady state. Above the threshold for connectivity, the mixing time
of Gn,p is certainly O(logn) w.h.p. For sparser graphs, the accent has been
on finding the mixing time for a random walk on the giant component. Foun-
toulakis and Reed [313] and Benjamini, Kozma and Wormald [68] show that
w.h.p. the mixing time of a random walk on the giant component of Gn,p, p =

c/n,c > 1 is O((logn)2). Nachmias and Peres [598] showed that the mixing
time of the largest component of Gn,p, p = 1/n is in [εn,(1− ε)n] with proba-
bility 1− p(ε) where p(ε)→ 0 as ε→ 0. Ding, Lubetzky and Peres [246] show
that mixing time for the emerging giant at p= (1+ε)/n where λ = ε3n→∞ is
of order (n/λ )(logλ )2. For random regular graphs, the mixing time is O(logn)
and Lubetzky and Sly [533] proved that the mixing time exhibits a cut-off
phenomenon i.e. the variation distance goes from near one to near zero very
rapidly.

Cover Time

The covertime CG of a graph G is the maximum over starting vertex of the ex-
pected time for a random walk to visit every vertex of G. For G=Gn,p with p=
c logn

n where c > 1, Jonasson [450] showed that w.h.p. CG = Θ(n logn). Cooper
and Frieze [211] proved that CG ≈ A(c)n logn where A(c) = c log

( c
c−1

)
. Then

in [210] they showed that the cover time of a random r-regular graph is w.h.p.
asymptotic to r−1

r−2 n logn, for r ≥ 3. Then in a series of papers they established
the asymptotic cover time for preferential attachment graphs [211]; the giant
component of Gn,p, p = c/n, where c > 1 is constant [212]; random geomet-
ric graphs of dimension d ≥ 3, [213]; random directed graphs [214]; random
graphs with a fixed degree sequence [1], [219]; random hypergraphs [223]. The
asymptotic covertime of random geometric graphs for d = 2 is still unknown.
Avin and Ercal [41] prove that w.h.p. it is Θ(n logn). The paper [215] deals
with the structure of the subgraph Ht induced by the un-visited vertices in a
random walk on a random graph after t steps. It gives tight results on a phase
transition i.e. a point where H breaks up into small components. Cerny and
Teixeira [172] refined the result of [215] near the phase transition.

Stable Matching

In the stable matching problem we have a complete bipartite graph on vertex
sets A,B where A = {a1,a2, . . . ,an} ,B = {b1,b2, . . . ,bn}. If we think of A as
a set of women and B as a set of men, then we refer to this as the stable
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marriage problem. Each a ∈ A has a total ordering pa of B and each b ∈ B has
a total ordering pb of B. The problem is to find a perfect matching (ai,bi), i =
1,2, . . . ,n such that there does not exist a pair i, j such that b j > bi in the order
pai and ai > b j in the order pb j . The existence of i, j leads to an unstable
matching. Gale and Shapley [356] proved that there is always a stable matching
and gave an algorithm for finding one. We focus on the case where pa, pb are
uniformly random for all a ∈ A,b ∈ B. Wilson [725] showed that the expected
number of proposals in a sequential version of the Gale-Shapley algorithm is
asymptotically equal to n logn. Knuth, Motwani and Pittel [489] studied the
likely number of stable husbands for an element of A∪B. I.e. they show that
w.h.p. there are constants c < C such that for a fixed a ∈ A there are between
c logn and C logn choices b ∈ B such that a and b are matched together in
some stable matching. The question of how many distinct stable matchings
there are likely to be was raised in Pittel [624] who showed that w.h.p. there
are at least n1/2−o(1). More recently, Lennon and Pittel [523] show that there
are at least n logn with probability at least 0.45. Thus the precise growth rate
of the number of stable matchings is not clear at the moment. Pittel, Shepp
and Veklerov [628] considered the number Zn,m of a ∈ A that have exactly m
choices of stable husband. They show that limn→∞

E(Zn,m)

(logn)m+1 = 1
(m−1)! .

Universal graphs

A graph G is universal for a class of graphs H if G contains a copy of every
H ∈H . In particular, let H (n,d) denote the set of graphs with vertex set [n]
and maximum degree at most d. One question that has concerned researchers,
is to find the threshold for Gn,p being universal for H (n,d). A counting ar-
gument shows that any H (n,d) universal graph has Ω(n2−2/d) edges. For
random graphs this can be improved to Ω(n2−2/(d+1)(logn)O(1)). This is be-
cause to contain the union of

⌊ n
d+1

⌋
disjoint copies of Kd+1, all but at most

d vertices must lie in a copy of Kd+1. This problem was first considered in
Alon, Capalbo, Kohayakawa, Rödl, Ruciński and Szemerédi [23]. Currently
the best upper bound on the value of p needed to make Gn,m H (n,d) univer-
sal is O(n2−1/d(logn)1/d) in Dellamonica, Kohayakawa, Rödl, and Ruciński
[231]. Ferber, Nenadov and Peter [296] prove that if p� ∆8n−1/2 logn then
Gn,p is universal for the set of trees with maximum degree ∆.
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20
Moments

20.1 First and Second Moment Method

Lemma 20.1 (Markov’s Inequality) Let X be a non-negative random vari-
able. Then, for all t > 0,

P(X ≥ t)≤ EX
t
.

Proof Let

IA =

{
1 if event A occurs,

0 otherwise.

Notice that

X = XI{X≥t}+XI{X<t} ≥ XI{X≥t} ≥ tI{X≥t}.

Hence,

EX ≥ tEI{X≥t} = tP(X ≥ t).

As an immediate corollary, we obtain

Lemma 20.2 (First Moment Method) Let X be a non-negative integer valued
random variable. Then

P(X > 0)≤ EX .

Proof Put t = 1 in Markov’s inequality.
The following inequality is a simple consequence of Lemma 20.1.

Lemma 20.3 (Chebyshev Inequality) If X is a random variable with a finite
mean and variance, then, for t > 0,

P(|X−EX | ≥ t)≤ VarX
t2 .

Proof

P(|X−EX | ≥ t) = P((X−EX)2 ≥ t2)≤ E(X−EX)2

t2 =
VarX

t2 .

391
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Throughout the book the following consequence of the Chebyshev inequality
plays a particularly important role.

Lemma 20.4 (Second Moment Method) If X is a non-negative integer valued
random variable then

P(X = 0)≤ VarX
(EX)2 =

EX2

(EX)2 −1

Proof Set t = EX in the Chebyshev inequality. Then

P(X = 0)≤ P(|X−EX | ≥ EX)≤ VarX
(EX)2

Lemma 20.5 ((Strong) Second Moment Method) If X is a non-negative in-
teger valued random variable then

P(X = 0)≤ VarX
EX2 = 1− (EX)2

EX2 .

Proof Notice that

X = X · I{X≥1}.

Then, by the Cauchy-Schwarz inequality,

(EX)2 =
(
E(X · I{X≥1})

)2≤E I2
{X≥1}EX2 = P(X ≥ 1)EX2.

The bound in Lemma 20.5 is stronger than the bound in Lemma 20.4, since
EX2 ≥ (EX)2. However, for many applications, these bounds are equally use-
ful since the Second Moment Method can be applied if

VarX
(EX)2 → 0, (20.1)

or, equivalently,

EX2

(EX)2 → 1, (20.2)

as n→ ∞. In fact if (20.1) holds, then much more than P(X > 0)→ 1 is true.
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Note that

VarX
(EX)2 = Var

(
X
EX

)
= E

(
X
EX

)2

−
(
E
(

X
EX

))2

= E
(

X
EX
−1
)2

Hence

E
(

X
EX
−1
)2

→ 0 if
VarX
(EX)2 → 0.

It simply means that
X
EX

L2
−→ 1. (20.3)

In particular, it implies (as does the Chebyshev inequality) that

X
EX

P−→ 1, (20.4)

i.e., for every ε > 0,

P((1− ε)EX < X < (1+ ε)EX)→ 1. (20.5)

So, we can only apply the Second Moment Method, if the random variable
X has its distribution asymptotically concentrated at a single value (X can be
approximated by the non-random value EX , as stated at (20.3), (20.4) and
(20.5)).
We complete this section with another lower bound on the probability P(Xn ≥
1), when Xn is a sum of (asymptotically) negatively correlated indicators. No-
tice that in this case we do not need to compute the second moment of Xn.

Lemma 20.6 Let Xn = I1+ I2+ · · ·+ In, where {Ii}n
i=1 be a collection of 0−1

random variables, such that

P(Ii = I j = 1)≤ (1+ εn)P(Ii = 1)P(I j = 1)

for i 6= j = 1,2, . . . ,n. Here εn→ 0 as n→ ∞. Then

P(Xn ≥ 1)≥ 1
1+ εn +1/EXn

.

Proof By the (strong) second moment method (see Lemma 20.5)

P(Xn ≥ 1)≥ (EXn)
2

EX2
n

.
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Now

EX2
n =

n

∑
i=1

n

∑
j=1

E(IiI j)

≤ EXn +(1+ εn)∑
i6= j

E IiE I j

= EXn +(1+ εn)

(( n

∑
i=1

E Ii

)2
−

n

∑
i=1

(E Ii)
2

)
≤ EXn +(1+ εn)(EXn)

2.

20.2 Convergence of Moments

Let X be a random variable such that E |X |k < ∞, k ≥ 1, i.e., all k-th moments
EXk exist and are finite. Let the distribution of X be completely determined
by its moments. It means that all random variables with the same moments as
X have the same distribution as X . In particular, this is true when X has the
Normal or the Poisson distribution.
The method of moments provides a tool to prove the convergence in distribu-
tion of a sequence of random variables with finite moments (see Durrett [263]
for details).

Lemma 20.7 (Method of Moments) Let X be a random variable with prob-
ability distribution completely determined by its moments. If X1,X2, . . .Xn, . . .

are random variables with finite moments such that EXk
n →EXk as n→∞, for

every integer k ≥ 1, then the sequence of random variables {Xn} converges in

distribution to random variable X, denoted as Xn
D→ X.

The next result, which can be deduced from Theorem 20.7, provides a tool to
prove asymptotic Normality.

Corollary 20.8 Let X1,X2, . . . ,Xn, . . . be a sequence of random variables with
finite moments and let a1,a2, . . . ,an, . . . be a sequence of positive numbers, such
that

E(Xn−EXn)
k =

{
(2m)!
2mm! ak

n +o(ak
n), when k = 2m, m≥ 1,

o(ak
n), when k = 2m−1, m≥ 2,
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as n→ ∞. Then
Xn−EXn

an

D→ Z, and X̃n =
Xn−EXn√

VarXn

D→ Z,

where Z is a random variable with the standard Normal distribution N(0,1).

A similar result for convergence to the Poisson distribution can also be deduced
from Theorem 20.7. Instead, we will show how to derive it directly from the
Inclusion-Exclusion Principle.

The following lemma sometimes simplifies the proof of some probabilistic
inequalities:

Lemma 20.9 (Rényi’s Lemma) Suppose that A1,A2, . . . ,Ar are events in
some probability space Ω, f1, f2, . . . , fs are boolean functions of A1,A2, . . . ,Ar,
and α1,α2, . . . ,αs are reals. Then, if

s

∑
i=1

αiP( fi(A1,A2, . . . ,Ar))≥ 0, (20.6)

whenever P(Ai) = 0 or 1, then (20.6) holds in general.

Proof Write

fi =
⋃

S∈Si

((⋂
i∈S

Ai

)
∩

(⋂
i 6∈S

Ac
i

))
,

for some collection of Si of subset of [r] = {1,2, . . . ,r}.
Then,

P( fi) = ∑
S∈Si

P

((⋂
i∈S

Ai

)
∩

(⋂
i6∈S

Ac
i

))
,

and then the left hand side of (20.6) becomes

∑
S⊆[r]

βSP

((⋂
i∈S

Ai

)
∩

(⋂
i 6∈S

Ac
i

))
,

for some real βS. If (20.6) holds, then βS ≥ 0 for every S, since we can choose
Ai = Ω if i ∈ S, and Ai = /0 for i 6∈ S.

For J ⊆ [r] let AJ =
⋂

i∈J Ai, and let S = |
{

j : A j occurs
}
| denote the number

of events that occur. Then let

Bk = ∑
J:|J|=k

P(AJ) = E
(

S
k

)
.

Let E j be the event that exactly j among the events A1,A2, . . . ,Ar occur. Then,



396 Moments

Lemma 20.10

P(E j)



≤
s

∑
k= j

(−1)k− j
(k

j

)
Bk s− j even.

≥
s

∑
k= j

(−1)k− j
(k

j

)
Bk s− j odd

=
s

∑
k= j

(−1)k− j
(k

j

)
Bk s = r.

Proof It follows from Lemma 20.9 that we only need to check the truth of
the statement for

P(Ai) = 1 1≤ i≤ `,

P(Ai) = 0 ` < i≤ r.

where 0≤ `≤ r is arbitrary.
Now

P(S = j) =

{
1 if j = `,

0 if j 6= `,

and

Bk =

(
`

k

)
.

So,
s

∑
k= j

(−1)k− j
(

k
j

)
Bk =

s

∑
k= j

(−1)k− j
(

k
j

)(
`

k

)
=

(
`

j

) s

∑
k= j

(−1)k− j
(
`− j
k− j

)
. (20.7)

If ` < j then P(E j) = 0 and the sum in (20.7) reduces to zero. If ` = j then
P(E j) = 1 and the sum in (20.7) reduces to one. Thus in this case, the sum is
exact for all s. Assume then that r ≥ ` > j. Then P(E j) = 0 and

s

∑
k= j

(−1)k− j
(
`− j
k− j

)
=

s− j

∑
t=0

(−1)t
(
`− j

t

)
= (−1)s− j

(
`− j−1

s− j

)
.

This explains the alternating signs of the theorem. Finally, observe that
(`− j−1

r− j

)
= 0, as required.

Now we are ready to state the main tool for proving convergence to the Poisson
distribution.
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Theorem 20.11 Let Sn = ∑i≥1 Ii be a sequence of random variables, n ≥ 1
and let B(n)

k = E
(Sn

k

)
. Suppose that there exists λ ≥ 0, such that for every fixed

k ≥ 1,

lim
n→∞

B(n)
k =

λ k

k!
.

Then, for every j ≥ 0,

lim
n→∞

P(Sn = j) = e−λ λ j

j!
,

i.e., Sn converges in distribution to the Poisson distributed random variable
with expectation λ (Sn

D→ Po(λ )).

Proof By Lemma 20.10, for l ≥ 0,

j+2l+1

∑
k= j

(−1)k− j
(

k
j

)
B(n)

k ≤ P(Sn = j)≤
j+2l

∑
k= j

(−1)k− j
(

k
j

)
B(n)

k .

So, as n grows to ∞,

j+2l+1

∑
k= j

(−1)k− j
(

k
j

)
B(n)

k ≤ liminf
n→∞

P(Sn = j)

≤ limsup
n→∞

P(Sn = j)≤
j+2l

∑
k= j

(−1)k− j
(

k
j

)
B(n)

k .

But,
j+m

∑
k= j

(−1)k− j
(

k
j

)
λ k

k!
=

λ j

j!

m

∑
t=0

(−1)t λ t

t!
→ λ j

j!
e−λ ,

as m→ ∞.

Notice that the falling factorial

(Sn)k = Sn(Sn−1) · · ·(Sn− k+1)

counts number of ordered k-tuples of events with Ii = 1. Hence the binomial
moments of Sn can be replaced in Theorem 20.11 by the factorial moments,
defined as

E(Sn)k = E[Sn(Sn−1) · · ·(Sn− k+1)],

and one has to check whether,for every k ≥ 1,

lim
n→∞

E(Sn)k = λ
k.
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20.3 Stein–Chen Method

Stein in [693] introduced a powerful technique for obtaining estimates of the
rate of convergence to the standard normal distribution. His approach was sub-
sequently extended to cover convergence to the Poisson distribution by Chen
[177], while Barbour [57] ingeniously adapted both methods to random graphs.
The Stein–Chen approach has some advantages over the method of moments.
The principal advantage is that a rate of convergence is automatically obtained.
Also the computations are often easier and fewer moment assumptions are
required. Moreover, it frequently leads to conditions for convergence weaker
than those obtainable by the method of moments.
Consider a sequence of random variables (Xn)

∞

n=1 and let (λn)
∞

n=1 be a se-
quence of positive integers, and let Po(λ ) denote, as before, the Poisson dis-
tribution with expectation λ . We say that Xn is Poisson convergent if the total
variation distance between the distribution L (Xn) of Xn and Po(λn), λn =

EXn, distribution, tends to zero as n tends to infinity. So, we ask for

dTV (L (Xn),Po(λn)) = sup
A⊆Z+

∣∣∣P(Xn ∈ A)−∑
k∈A

λ k
n

k!
e−λn

∣∣∣→ 0, (20.8)

as n→ ∞, where Z+ = {0,1, . . .}.
Notice, that if Xn is Poisson convergent and λn → λ , then Xn converges in
distribution to the Po(λ ) distributed random variable. Furthermore, if λn →
0, then Xn converges to a random variable with distribution degenerated at
0. More importantly, if λn → ∞, then the central limit theorem for Poisson
distributed random variables implies, that X̃n = (Xn− λn)/

√
λn converges in

distribution to a random variable with the standard normal random distribution
N(0,1).
The basic feature and advantage of the Stein–Chen approach is that it gives
computationally tractable bounds for the distance dTV , when the random vari-
ables in question are sums of indicators with a fairly general dependence struc-
ture.
Let {Ia}a∈Γ, be a family of indicator random variables, where Γ is some index
set. To describe the relationship between these random variables we define a
dependency graph L = (V (L),E(L)), where V (L) = Γ. Graph L has the prop-
erty that whenever there are no edges between A and B, A,B⊆ Γ, then {Ia}a∈A

and {Ib}b∈B are mutually independent families of random variables. The fol-
lowing general bound on the total variation distance was proved by Barbour,
Holst and Janson [58] via the Stein–Chen method.

Theorem 20.12 Let X = ∑a∈Γ Ia where the Ia are indicator random variables
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with a dependency graph L. Then, with πa = E Ia and
λ = EX = ∑a∈Γ πa,

dTV (L (X),Po(λ ))≤

min(λ−1,1)

(
∑

a∈V (L)
π

2
a + ∑

ab∈E(L)
{E(IaIb)+πaπb}

)
,

where ∑ab∈E(L) means summing over all ordered pairs (a,b), such that {a,b}∈
E(L).

Finally, let us briefly mention, that the original Stein method investigates the
convergence to the normal distribution in the following metric

dS(L (Xn),N(0,1)) = sup
h
||h||−1

∣∣∣∫ h(x)dFn(x)−
∫

h(x)dΦ(x)
∣∣∣, (20.9)

where the supremum is taken over all bounded test functions h with bounded
derivative, ||h||= sup |h(x)|+ sup |h′(x)|.
Here Fn is the distribution function of Xn, while Φ denotes the distribution
function of the standard normal distribution. So, if dS(L (Xn),N(0,1))→ 0 as
n→ ∞, then X̃n converges in distribution to N(0,1) distributed random vari-
able.
Barbour, Karoński and Ruciński [60] obtained an effective upper bound on
dS(L (Xn),N(0,1)) if S belongs to a general class of decomposable random
variables. This bound involves the first three moments of S only.
For a detailed and comprehensive account of the Stein–Chen method the reader
is referred to the book by Barbour, Holst and Janson [58], or to Chapter 6
of the book by Janson, Łuczak and Ruciński [432], where other interesting
approaches to study asymptotic distributions of random graph characteristics
are also discussed. For some applications of the Stein–Chen method in random
graphs, one can look at a survey by Karoński [466].



21
Inequalities

21.1 Binomial Coefficient Approximation

We state some important inequalities. The proofs of all but (g) are left as exer-
cises:

Lemma 21.1 (a)

1+ x≤ ex, ∀x.

(b)

1− x≥ e−x/(1−x), 0≤ x < 1.

(c) (
n
k

)
≤
(ne

k

)k
, ∀n,k.

(d) (
n
k

)
≤ nk

k!

(
1− k

2n

)k−1

, ∀n,k.

(e)

nk

k!

(
1− k(k−1)

2n

)
≤
(

n
k

)
≤ nk

k!
e−k(k−1)/(2n), ∀n,k.

(f) (
n
k

)
≈ nk

k!
, i f k2 = o(n).

(g) If a≥ b then (n−a
t−b

)(n
t

) ≤ ( t
n

)b
(

n− t
n−b

)a−b

.

400
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Proof (g)(n−a
t−b

)(n
t

) =
(n−a)!t!(n− t)!

n!(t−b)!(n− t−a+b)!

=
t(t−1) · · ·(t−b+1)
n(n−1) · · ·(n−b+1)

× (n− t)(n− t−1) · · ·(n− t−a+b+1)
(n−b)(n−b−1) · · ·(n−a+1)

≤
( t

n

)b
×
(

n− t
n−b

)a−b

.

We will need also the following estimate for binomial coefficients. It is a little
more precise than those given in Lemma 21.1.

Lemma 21.2 Let k = o(n3/4). Then(
n
k

)
≈ nk

k!
exp
{
− k2

2n
− k3

6n2

}
.

Proof (
n
k

)
=

nk

k!

k−1

∏
i=0

(
1− i

n

)

=
nk

k!
exp

{
k−1

∑
i=0

log
(

1− i
n

)}

=
nk

k!
exp

{
−

k−1

∑
i=0

(
i
n
+

i2

2n2

)
+O

(
k4

n3

)}

= (1+o(1))
nk

k!
exp
{
− k2

2n
− k3

6n2

}
.

21.2 Balls in Boxes

Suppose that we have M boxes and we independently place N distinguishable
balls into them. Let us assume that a ball goes into box i with probability pi

where p1 + · · ·+ pM = 1. Let Wi denote the number of balls that are placed in
box i and for S ⊆ [M], let WS = ∑i∈S Wi. The following looks obvious and is
extremely useful.
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Theorem 21.3 Let S,T be disjoint subsets of [M] and let s, t be non-negative
integers. Then

P(WS ≤ s |WT ≤ t)≤ P(WS ≤ s). (21.1)

P(WS ≥ s |WT ≤ t)≥ P(WS ≥ s). (21.2)

P(WS ≥ s |WT ≥ t)≤ P(WS ≥ s). (21.3)

P(WS ≤ s |WT ≥ t)≥ P(WS ≤ s). (21.4)

Proof Equation (21.2) follows immediately from (21.1). Also, equation (21.4)
follows immediately from (21.3). The proof of (21.3) is very similar to that of
(21.1) and so we will only prove (21.1).
Let

πi = P(WS ≤ s |WT = i).

Given WT = i, we are looking at throwing N− i balls into M− 1 boxes. It is
clear therefore that πi is monotone increasing in i. Now, let qi = P(WT = i).
Then,

P(WS ≤ s) =
N

∑
i=0

πiqi.

P(WS ≤ s |WT ≤ t) =
t

∑
i=0

πi
qi

q0 + · · ·+qt
.

So, (21.1) reduces to

(q0 + · · ·+qN)
t

∑
i=0

πiqi ≤ (q0 + · · ·+qt)
N

∑
i=0

πiqi,

or

(qt+1 + · · ·+qN)
t

∑
i=0

πiqi ≤ (q0 + · · ·+qt)
N

∑
i=t+1

πiqi,

or
N

∑
j=t+1

t

∑
i=0

qiq jπi ≤
t

∑
j=0

N

∑
i=t+1

qiq jπi.

The result now follows from the monotonicity of πi.
The following is an immediate corollary:

Corollary 21.4 Let S1,S2, . . . ,Sk be disjoint subsets of [M] and let s1,s2, . . . ,sk
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be non-negative integers. Then

P

(
k⋂

i=1

{WSi ≤ si}
)
≤

k

∏
i=1

P({WSi ≤ si}).

P

(
k⋂

i=1

{WSi ≥ si}
)
≤

k

∏
i=1

P({WSi ≥ si}).

21.3 FKG Inequality

A function f : CN = {0,1}[N]→ R is said to be monotone increasing if when-
ever x = (x1,x2, . . . ,xN),y = (y1,y2, . . . ,yN) ∈ CN and x ≤ y ∈ CN (i.e. x j ≤
y j, j = 1,2, . . . ,N) then f (x) ≤ f (y). Similarly, f is said to be monotone de-
creasing if − f is monotone increasing.
An important example for us is the case where f is the indicator function of
some subset A of 2[N]. Then

f (x) =

{
1 x ∈A

0 x /∈A
.

A typical example for us would be N =
(n

2

)
and then each G∈ 2[N] corresponds

to a graph with vertex set [n]. Then A will be a set of graphs i.e. a graph prop-
erty. Suppose that f is the indicator function for A . Then f is monotone in-
creasing, if whenever G ∈A and e /∈ E(G) we have G+ e ∈A i.e. adding an
edge does not destroy the property. We will say that the set/property is mono-
tone increasing. For example if H is the set of Hamiltonian graphs then H

is monotone increasing. If P is the set of planar graphs then P is monotone
decreasing. In other words a property is monotone increasing iff its indicator
function is monotone increasing.
Suppose next that we turn CN into a probability space by choosing some p1, p2,

. . . , pN ∈ [0,1] and then for x = (x1,x2, . . . ,xN) ∈CN letting

P(x) = ∏
j:x j=1

p j ∏
j:x j=0

(1− p j). (21.5)

If N =
(n

2

)
and p j = p, j = 1,2, . . . ,N then this model corresponds to Gn,p.

The following is a special case of the FKG inequality, Harris [396] and Fortuin,
Kasteleyn and Ginibre [308]:

Theorem 21.5 If f ,g are monotone increasing functions on CN then E( f g)≥
E( f )E(g).
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Proof We will prove this by induction on N. If N = 0 then E( f ) = a,E(g) = b
and E( f g) = ab for some constants a,b.
So assume the truth for N−1. Suppose that E( f | xN = 0) = a and E(g | xN =

0) = b then

E(( f −a)(g−b))−E( f −a)E(g−b) = E( f g)−E( f )E(g).

By replacing f by f − a and g by g− b we may therefore assume that E( f |
xN = 0) =E(g | xN = 0) = 0. By monotonicity, we see that E( f | xN = 1),E(g |
xN = 1)≥ 0.
We observe that by the induction hypothesis that

E( f g | xN = 0)≥ E( f | xN = 0)E(g | xN = 0) = 0

E( f g | xN = 1)≥ E( f | xN = 1)E(g | xN = 1)≥ 0

Now, by the above inequalities,

E( f g) = E( f g | xN = 0)(1− pN)+E( f g | xN = 1)pN

≥ E( f | xN = 1)E(g | xN = 1)pN . (21.6)

Furthermore,

E( f )E(g) =
(E( f | xN = 0)(1− pN)+E( f | xN = 1)pN)×
(E(g | xN = 0)(1− pN)+E(g | xN = 1)pN)

= E( f | xN = 1)E(g | xN = 1)p2
N . (21.7)

The result follows by comparing (21.6) and (21.7) and using the fact that E( f |
xN = 1),E(g | xN = 1)≥ 0 and 0≤ pN ≤ 1.
In terms of monotone increasing sets A ,B and the same probability (21.5) we
can express the FKG inequality as

P(A |B)≥ P(A ). (21.8)

21.4 Sums of Independent Bounded Random Variables

Suppose that S is a random variable and t > 0 is a real number. We will be
concerned here with bounds on the upper and lower tail of the distribution of
S, i.e., on P(S≥ µ + t) and P(S≤ µ− t), respectively, where µ = ES.
The basic observation which leads to the construction of such bounds is due to
Bernstein [82]. Let λ ≥ 0, then

P(S≥ µ + t) = P(eλS ≥ eλ (µ+t))≤ e−λ (µ+t)E(eλS), (21.9)
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by Markov’s inequality (see Lemma 20.1). Similarly for λ ≤ 0,

P(S≤ µ− t)≤ e−λ (µ−t)E(eλS). (21.10)

Combining (21.9) and (21.10) one can obtain a bound for P(|S−µ| ≥ t).
Now let Sn = X1 +X2 + · · ·+Xn where Xi, i = 1, . . . ,n are independent random
variables. Assume that 0 ≤ Xi ≤ 1 and EXi = µi for i = 1,2, . . . ,n. Let µ =

µ1 +µ2 + · · ·+µn. Then for λ ≥ 0

P(Sn ≥ µ + t)≤ e−λ (µ+t)
n

∏
i=1

E(eλXi) (21.11)

and for λ ≤ 0

P(Sn ≤ µ− t)≤ e−λ (µ−t)
n

∏
i=1

E(eλXi). (21.12)

Note that E(eλXi) in (21.11) and (21.12), likewise E(eλS) in (21.9) and (21.10)
are the moment generating functions of the Xi’s and S, respectively. So finding
bounds boils down to the estimation of these functions.
Now the convexity of ex and 0≤ Xi ≤ 1 implies that

eλXi ≤ 1−Xi +Xieλ .

Taking expectations we get

E(eλXi)≤ 1−µi +µieλ .

Equation (21.11) becomes, for λ ≥ 0,

P(Sn ≥ µ + t)≤ e−λ (µ+t)
n

∏
i=1

(1−µi +µieλ )

≤ e−λ (µ+t)

(
n−µ +µeλ

n

)n

. (21.13)

The second inequality follows from the fact that the geometric mean is at
most the arithmetic mean i.e. (x1x2 · · ·xn)

1/n ≤ (x1 + x2 + · · ·+ xn)/n for non-
negative x1,x2, . . . ,xn. This in turn follows from Jensen’s inequlaity and the
concavity of logx.
The right hand side of (21.13) attains its minimum, as a function of λ , at

eλ =
(µ + t)(n−µ)

(n−µ− t)µ
. (21.14)

Hence, by (21.13) and(21.14), assuming that µ + t < n,

P(Sn ≥ µ + t)≤
(

µ

µ + t

)µ+t( n−µ

n−µ− t

)n−µ−t
, (21.15)
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while for t > n−µ this probability is zero.
Now let

ϕ(x) = (1+ x) log(1+ x)− x, x≥−1,

and let ϕ(x) = ∞ for x <−1. Now, for 0≤ t < n−µ , we can rewrite the bound
(21.15) as

P(Sn ≥ µ + t)≤ exp
{
−µϕ

(
t
µ

)
− (n−µ)ϕ

( −t
n−µ

)}
. (21.16)

Since ϕ(x)≥ 0 for every x, we get

P(Sn ≥ µ + t)≤ e−µϕ(t/µ). (21.17)

Similarly, putting n− Sn for Sn, or by an analogous argument, using (21.12),
we get for 0≤ t ≤ µ ,

P(Sn ≤ µ− t)≤ exp
{
−µϕ

(−t
µ

)
− (n−µ)ϕ

( t
n−µ

)}
. (21.18)

Hence,

P(Sn ≤ µ− t)≤ e−µϕ(−t/µ). (21.19)

We can simplify the expressions (21.17) and (21.19) by observing that

ϕ(x)≥ x2

2(1+ x/3)
. (21.20)

To see this observe that for |x| ≤ 1 we have

ϕ(x)− x2

2(1+ x/3)
=

∞

∑
k=2

(−1)k
(

1
k(k−1)

− 1
2 ·3k−2

)
xk.

Equation (21.20) for |x| ≤ 1 follows from 1
k(k−1) −

1
2·3k−2 ≥ 0 for k ≥ 2. We

leave it as an exercise to check that (21.20) remains true for x > 1.
Taking this into account we arrive at the following theorem, see Hoeffding
[406].

Theorem 21.6 (Chernoff/Hoeffding inequality) Suppose that
Sn = X1 +X2 + · · ·+Xn where (i) 0 ≤ Xi ≤ 1 and EXi = µi for i = 1,2, . . . ,n,
(ii) X1,X2, . . . ,Xn are independent. Let µ = µ1 +µ2 + · · ·+µn. Then for t ≥ 0,

P(Sn ≥ µ + t)≤ exp
{
− t2

2(µ + t/3)

}
(21.21)

and for t ≤ µ ,

P(Sn ≤ µ− t)≤ exp
{
− t2

2(µ− t/3)

}
. (21.22)
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Putting t = εµ , for 0 < ε < 1, one can immediately obtain the following
bounds.

Corollary 21.7 Let 0 < ε < 1, then

P(Sn ≥ (1+ ε)µ)≤
( eε

(1+ ε)1+ε

)µ

≤ exp
{
−µε2

3

}
, (21.23)

while

P(Sn ≤ (1− ε)µ)≤ exp
{
−µε2

2

}
(21.24)

Proof The formula (21.24) follows directly from (21.22) and (21.23) follows
from (21.16).
One can “tailor” Chernoff bounds with respect to specific needs. For exam-
ple, for small ratios t/µ , the exponent in (21.21) is close to t2/2µ , and the
following bound holds.

Corollary 21.8

P(Sn ≥ µ + t)≤ exp
{
− t2

2µ
+

t3

6µ2

}
(21.25)

≤ exp
{
− t2

3µ

}
for t ≤ µ. (21.26)

Proof Use (21.21) and note that

(µ + t/3)−1 ≥ (µ− t/3)/µ
2.

For large deviations we have the following result.

Corollary 21.9 If c > 1 then

P(Sn ≥ cµ)≤
{ e

ce1/c

}cµ

. (21.27)

Proof Put t = (c−1)µ into (21.17).

Our next bound incorporates the variance of the Xi’s.
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Theorem 21.10 (Bernstein’s Theorem) Suppose that Sn = X1 +X2 + · · ·+
Xn where (i) |Xi| ≤ 1 and EXi = 0 and VarXi = σ2

i for i = 1,2, . . . ,n, (ii)
X1,X2, . . . ,Xn are independent. Let σ2 = σ2

1 +σ2
2 + · · ·+σ2

n . Then for t ≥ 0,

P(Sn ≥ t)≤ exp
{
− t2

2(σ2 + t/3)

}
(21.28)

and

P(Sn ≤−t)≤ exp
{
− t2

2(σ2 + t/3)

}
. (21.29)

Proof The strategy is once again to bound the moment generating function.
Let

Fi =
∞

∑
r=2

λ r−2EX r
i

r!σ2
i
≤

∞

∑
r=2

λ r−2σ2
i

r!σ2
i

=
eλ −1−λ

λ 2 .

Here EX r
i ≤ σ2

i , since |Xi| ≤ 1.
We then observe that

E(eλXi) = 1+
∞

∑
r=2

λ r EX r
i

r!

= 1+λ
2
σ

2
i Fi

≤ eλ 2σ2
i Fi

≤ exp
{
(eλ −λ −1)σ2

i

}
.

So,

P(Sn ≥ t)≤ e−λ t
n

∏
i=1

exp
{
(eλ −λ −1)σ2

i

}
= eσ2(eλ−λ−1)−λ t

= exp
{
−σ

2
ϕ

( t
σ2

)}
.

after assigning

λ = log
(

1+
t

σ2

)
.

To obtain (21.28) we use (21.20). To obtain (21.29) we apply (21.28) to Yi =

−Xi, i = 1,2, . . . ,n.
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21.5 Sampling Without Replacement

Let a multi-set A = {a1,a2, . . . ,aN} ⊆ R be given. We consider two random
variables. For the first let X = ai where i is chosen uniformly at random from
[N]. Let

µ = EX =
1
N

N

∑
i=1

ai and σ
2 = VarX =

1
N

N

∑
i=1

(ai−µ)2.

Now let Sn = X1 + X2 + · · ·+ Xn be the sum of n independent copies of X .
Next let Wn = ∑i∈X ai where X is a uniformly random n-subset of [N]. We
have ESn = EWn = nµ but as shown in Hoeffding [406], Wn is more tightly
concentrated around its mean than Sn. This will follow from the following:

Lemma 21.11 Let f : R→ R be continuous and convex. Then

E f (Wn)≤ E f (Sn).

Proof We write, where (A)n denotes the set of sequences of n distinct mem-
bers of A and (N)n = N(N−1) · · ·(N−n+1) = |(A)n|,

E f (Sn) =
1

Nn ∑
y∈An

f (y1 + · · ·+ yn) =

1
(N)n

∑
x∈(A)n

g(x1,x2, . . . ,xn) = Eg(X), (21.30)

where g is a symmetric function of x and

g(x1,x2, . . . ,xn) = ∑
k,i,r

ψ(k, i,r) f (ri1xi1 + · · ·+ rik xik).

Here i ranges over sequences of k distinct values i1, i2, . . . , ik ∈ [n] and ri1 +

· · ·+ rik = n. The factors ψ(k, i,r) are independent of the function f .
Putting f = 1 we see that ∑k,i,r ψ(k, i,r) = 1. Putting f (x) = x we see that g is
a linear symmetric function and so

∑
k,i,r

ψ(k, i,r)(ri1xi1 + · · ·+ rik xik) = K(x1 + · · ·+ xn),

for some K. Equation (21.30) implies that K = 1.
Applying Jensen’s inequality we see that

g(x)≥ f (x1 + · · ·+ xn).

It follows that

Eg(X)≥ E f (Wn)
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and the Lemma follows from (21.30).
As a consequence we have that (i) VarWn ≤VarSn and (ii) EeλWn ≤ EeλSn for
any λ ∈ R.
Thus all the inequalities developed in Section 21.4 can a fortiori be applied to
Wn in place of Sn. Of particular importance in this context, is the hypergeomet-
ric distribution: Here we are given a set of S ⊆ [N], |S| = m and we choose a
random set X of size k from [N]. Let Z = |X ∩S|. Then

P(Z = t) =

(m
t

)(N−m
k−t

)(N
k

) , for 0≤ t ≤ k.

21.6 Janson’s Inequality

In Section 21.4 we found bounds for the upper and lower tails of the distri-
bution of a random variable Sn composed of n independent summands. In the
previous section we allowed some dependence between the summands. We
consider another case where the random variables in question are not necessar-
ily independent. In this section we prove an inequality of Janson [418]. This
generalised an earlier inequality of Janson, Łuczak and Ruciński [431], see
Corollary 21.13.
Fix a family of n subsets Di, i ∈ [n]. Let R be a random subset of [N] such
that for s ∈ [N] we have 0 < P(s ∈ R) = qs < 1. The elements of R are chosen
independently of each other and the sets Di, i = 1,2, . . . ,n. Let Ai be the event
that Di is a subset of R. Moreover, let Ii be the indicator of the event Ai. Note
that, Ii and I j are independent iff Di ∩D j = /0. One can easily see that the Ii’s
are increasing.
We let

Sn = I1 + I2 + · · ·+ In,

and

µ = ESn =
n

∑
i=1

E(Ii).

We write i∼ j if Di∩D j 6= /0. Then, let

∆ = ∑
{i, j}:i∼ j

E(IiI j) = µ +∆ (21.31)

where

∆ = ∑
{i, j}:i∼ j

i6= j

E(IiI j). (21.32)
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As before, let ϕ(x) = (1+x) log(1+x)−x. Now, with Sn,∆,ϕ given above one
can establish the following upper bound on the lower tail of the distribution of
Sn.

Theorem 21.12 (Janson’s Inequality) For any real t, 0≤ t ≤ µ ,

P(Sn ≤ µ− t)≤ exp
{
−ϕ(−t/µ)µ2

∆

}
≤ exp

{
− t2

2∆

}
. (21.33)

Proof We begin as we did in Section 21.4. Put ψ(λ ) = E(e−λSn),λ ≥ 0. By
Markov’s inequality we have

P(Sn ≤ µ− t)≤ eλ (µ−t)Ee−λSn .

Therefore,

logP(Sn ≤ µ− t)≤ logψ(λ )+λ (µ− t). (21.34)

Now let us estimate logψ(λ ) and minimise the right-hand-side of (21.34) with
respect to λ .
Note that

−ψ
′(λ ) = E(Sne−λSn) =

n

∑
i=1

E(Iie−λSn). (21.35)

Now for every i ∈ [n], split Sn into Yi and Zi, where

Yi = ∑
j: j∼i

I j, Zi = ∑
j: j 6∼i

I j, Sn = Yi +Zi.

Then by the FKG inequality (applied to the random set R and conditioned on
Ii = 1) we get, setting pi = E(Ii) = ∏s∈Di qs,

E(Iie−λSn) = piE(e−λYie−λZi
∣∣ Ii = 1)≥

piE(e−λYi
∣∣ Ii = 1)E(e−λZi

∣∣ Ii = 1).

Since Zi and Ii are independent we get

E(Iie−λSn)≥ piE(e−λYi
∣∣ Ii = 1)E(e−λZi)

≥ piE(e−λYi
∣∣ Ii = 1)ψ(λ ). (21.36)
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From (21.35) and (21.36), applying Jensen’s inequality to get (21.37) and re-
membering that µ = ESn = ∑

n
i=1 pi, we get

−(logψ(λ ))′ =−ψ ′(λ )

ψ(λ )

≥
n

∑
i=1

piE(e−λYi
∣∣ Ii = 1)

≥ µ

n

∑
i=1

pi

µ
exp
{
−E(λYi

∣∣ Ii = 1)
}

≥ µ exp

{
− 1

µ

n

∑
i=1

piE(λYi
∣∣ Ii = 1)

}
(21.37)

= µ exp

{
−λ

µ

n

∑
i=1

E(YiIi)

}
= µe−λ∆/µ .

So

−(logψ(λ ))′ ≥ µe−λ∆/µ (21.38)

which implies that

− logψ(λ )≥
∫

λ

0
µe−z∆/µ dz =

µ2

∆
(1− e−λ∆/µ). (21.39)

Hence by (21.39) and (21.34)

logP(Sn ≤ µ− t)≤−µ2

∆
(1− e−λ∆/µ)+λ (µ− t), (21.40)

which is minimized by choosing λ = − log(1− t/µ)µ/∆. It yields the first
bound in (21.33), while the final bound in (21.33) follows from the fact that
ϕ(x)≥ x2/2 for x≤ 0.
The following Corollary is very useful:

Corollary 21.13 (Janson, Łuczak, Ruciński Inequality)

P(Sn = 0)≤ e−µ+∆.

Proof We put t = µ into (21.33) giving P(Sn = 0)≤ exp
{
−ϕ(−1)µ2

∆

}
. Now

note that ϕ(−1) = 1 and µ2

∆
≥ µ2

µ+∆
≥ µ−∆.
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21.7 Martingales. Azuma-Hoeffding Bounds

Before we present the basic results of this chapter we have to briefly introduce
martingales and concentration inequalities for martingales. Historically, mar-
tingales were applied to random graphs for the first time in the context of the
chromatic number of Gn,p.
Let (Ω,F ,P) be a probability space. If the sample space Ω is finite, then F is
the algebra of all subsets of Ω. For simplicity, let us assume that we deal with
this case.
Recall that if D = {D1,D2, . . . ,Dm} is a partition of Ω, i.e.,

⋃m
i=1 Di = Ω and

Di ∩D j = /0 if i 6= j, then it generates an algebra of subsets A (D) of Ω. The
algebra generated by the partition D and denoted by A (D) is the family of all
unions of the events (sets) from D , with /0 obtained by taking an empty union.
Let D = {D1,D2, . . . ,Dm} be a partition of Ω and A be any event, A ⊂ Ω and
let P(A|D) be the random variable defined by

P(A|D)(ω) =
m

∑
i=1

P(A|Di)IDi(ω)

= P(A|Di(ω)) where ω ∈ Di(ω).

Note that if D a trivial partition, i.e., D = D0 = {Ω} then P(A|D0) = P(A),
while, in general,

P(A) = EP(A|D). (21.41)

Suppose that X is a discrete random variable taking values
{x1,x2, . . . ,xl} and write X as

X =
l

∑
j=1

x jIA j , (21.42)

where A j = {ω : X(ω) = x j}. Notice that the random variable X generates a
partition DX = {A1,A2, . . . ,Al}.
Now the conditional expectation of X with respect to a partition D of Ω is
given as

E(X |D) =
l

∑
j=1

x j P(A j|D). (21.43)

Hence, E(X |D)(ω1) is the expected value of X conditional on the event{
ω ∈ Di(ω1)

}
.

Suppose that D and D ′ are two partitions of Ω. We say that D ′ is finer than D

if A (D)⊆A (D ′) and denote this as D ≺D ′.
If D is a partition of Ω and Y is a discrete random variable defined on Ω, then
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Y is D-measurable if DY ≺D , i.e., if the partition D is finer than the partition
induced by Y . It simply means that Y takes constant values yi on the atoms Di

of D , so Y can be written as Y = ∑
m
i=1 yiIDi , where some yi may be equal. Note

that a random variable Y is D0-measurable if Y has a degenerate distribution,
i.e., it takes a constant value on all ω ∈Ω. Also, trivially, the random variable
Y is DY -measurable.
Note that if D ′ is finer than D then

E(E(X |D ′) |D) = E(X |D). (21.44)

Indeed, if ω ∈Ω then

E(E(X |D ′) |D)(ω) =

= ∑
ω ′∈Di(ω)

 ∑
ω ′′∈D′

i(ω ′)

X(ω ′′)
P(ω ′′)

P(D′i(ω ′))

 P(ω ′)
P(Di(ω))

= ∑
ω ′′∈Di(w)

X(ω ′′)P(ω ′′) ∑
ω ′∈D′

i(ω ′′)

P(ω ′)
P(D′i(ω ′))P(Di(ω))

= ∑
ω ′′∈Di(w)

X(ω ′′)P(ω ′′) ∑
ω ′∈D′

i(ω ′′)

P(ω ′)
P(D′i(ω ′′))P(Di(ω))

= ∑
ω ′′∈Di(w)

X(ω ′′)
P(ω ′′)
P(Di(ω))

= E(X |D)(ω).

Note that despite all the algebra, (21.44) just boils down to saying that the
properly weighted average of averages is just the average.
Finally, suppose a partition D of Ω is induced by a sequence of random vari-
ables {Y1,Y2, . . . ,Yn}. We denote such partition as DY1,Y2,...,Yn . Then the atoms
of this partition are defined as

Dy1,y2,...,yn = {ω : Y1(ω) = y1,Y2(ω) = y2, . . . ,Yn(ω) = yn},

where the yi range over all possible values of the Yi’s. DY1,Y2,...,Yn is then the
coarsest partition such that Y1,Y2, . . . ,Yn are all constant over the atoms of the
partition. For convenience, we simply write
E(X |Y1,Y2, . . . ,Yn), instead of E(X |DY1,Y2,...,Yn).

Now we are ready to introduce an important class of dependent random vari-
ables called martingales.
Let (Ω,F ,P) be a finite probability space and D0≺D1≺D2≺ . . .≺Dn =D∗
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be a nested sequence of partitions of Ω (a filtration of Ω), where D0 is a trivial
partition, while D∗ stands for the discrete partition (i.e., A (D0) = { /0,Ω},
while A (D∗) = 2Ω = F ).

A sequence of random variables X0,X1, . . . ,Xn is called (a) a martingale, (b)
a super-martingale, (c) a sub-martingale, with respect to the partition D0 ≺
D1 ≺D2 ≺ . . .≺Dn = D∗ if

Xk is Dk-measurable

and

(a) E(Xk+1 |Dk) = Xk k = 0,1, . . . ,n−1.
(b) E(Xk+1 |Dk)≤ Xk k = 0,1, . . . ,n−1.
(c) E(Xk+1 |Dk)≥ Xk k = 0,1, . . . ,n−1.

If the partition D of Ω is generated by a sequence of random variables Y1, . . . ,Yn

then the sequence X1, . . . ,Xn is called a martingale with respect to the sequence
Y1, . . . ,Yn. In particular, when Y1 = X1, . . . ,Yn = Xn, i.e., when Dk = DX1,...,Xk ,
then we simply say that X is a martingale with respect to itself. Observe also
that EXk = EX1 = X0, for every k. Analogous statements hold for super- and
sub-martingales.
Martingales are ubiquitous, we can obtain a martingale from essentially any
random variable. Let Z = Z(Y1,Y2, . . . ,Yn) be a random variable defined on the
random variables Y1,Y2, . . . ,Yn. The sequence of random variables

Xk = E(Z | Y1,Y2, . . . ,Yk), k = 0,1, . . . ,n

is called the Doob Martingale of Z.

Theorem 21.14 We have (i) X0 = EZ, (ii) Xn = Z and (iii) the sequence
X0,X1, . . . ,Xn is a martingale with respect to (the partition defined by) Y1,Y2, . . . ,Yn.

Proof Only (iii) needs to be explicitly checked.

E(Xk | Y1, . . . ,Yk−1) = E(E(Z | Y1, . . . ,Yk) | Y1, . . . ,Yk−1)

= E(Z | Y1, . . . ,Yk−1)

= Xk−1.

Here the second equality comes from (21.44).

We next show how one can define the so called, vertex and edge exposure
martingales, on the space of random graphs. Consider the binomial random
graph Gn,p. Let us view Gn,p as a vector of random variables (I1, I2, . . . , I(n

2)
),

where Ii is the indicator of the event that the ith edge is present, with P(Ii =
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1) = p and P(Ii = 0) = 1− p for i = 1,2, . . . ,
(n

2

)
. These random variables

are independent of each other. Hence, in this case, Ω consists of all (0,1)-
sequences of length

(n
2

)
.

Now given any graph invariant (a random variable) X : Ω→ R, (for example,
the chromatic number, the number of vertices of given degree, the size of the
largest clique, etc.), we will define a martingale generated by X and certain
sequences of partitions of Ω.
Let the random variables I1, I2, . . . , I(n

2)
be listed in a lexicographic order. De-

fine D0 ≺D1 ≺D2 ≺ . . .≺Dn = D∗ in the following way: Dk is the partition
of Ω induced by the sequence of random variables I1, . . . , I(k

2)
, and D0 is the

trivial partition. Finally, for k = 1, . . . ,n,

Xk = E(X |Dk) = E(X |DI1,I2,...,I(k
2)
).

Hence, Xk is the conditional expectation of X , given that we “uncovered” the
set of edges induced by the first k vertices of our random graph Gn,p. A martin-
gale determined through such a sequence of nested partitions is called a vertex
exposure martingale.
An edge exposure martingale is defined in a similar way. The martingale se-
quence is defined as follows

Xk = E(X |Dk) = E(X |DI1,I2,...,Ik),

where k = 1,2, . . . ,
(n

2

)
, i.e., we uncover the edges of Gn,p one by one.

We next give upper bounds for both the lower and upper tails of the probability
distributions of certain classes of martingales.

Theorem 21.15 (Azuma-Hoeffding bound) Let {Xk}n
0 be a sequence of ran-

dom variables such that |Xk−Xk−1| ≤ ck, k = 1, . . . ,n and X0 is constant.

(a) If {Xk}n
0 is a super-martingale then for all t > 0 we have

P(Xn ≥ X0 + t)≤ exp
{
− t2

2∑
n
i=1 c2

i

}
.

(b) If {Xk}n
0 is a sub-martingale then for all t > 0 we have

P(Xn ≤ X0− t)≤ exp
{
− t2

2∑
n
i=1 c2

i

}
.

(c) If {Xk}n
0 is a martingale then for all t > 0 we have

P(|Xn−X0| ≥ t)≤ 2exp
{
− t2

2∑
n
i=1 c2

i

}
.
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Proof We only need to prove (a), since (b), (c) will then follow easily, since
{Xk}n

0 is a sub-martingale iff −{Xk}n
0 is a super-martingale and {Xk}n

0 is a
martingale iff it is a super-martingale and a sub-martingale.
Define the martingale difference sequence by Y1 = 0 and

Yk = Xk−Xk−1 , k = 1, . . . ,n.

Then
n

∑
k=1

Yk = Xn−X0,

and

E(Yk+1 | Y0,Y1, . . . ,Yk)≤ 0. (21.45)

Let λ > 0. Then

P(Xn−X0 ≥ t) = P

(
exp

{
λ

n

∑
i=1

Yi

}
≥ eλ t

)

≤ e−λ t E

(
exp

{
λ

n

∑
i=1

Yi

})
,

by Markov’s inequality.
Note that eλx is a convex function of x, and since −ci ≤ Yi ≤ ci, we have

eλYi ≤ 1−Yi/ci

2
e−λci +

1+Yi/ci

2
eλci

= cosh(λci)+
Yi

ci
sinh(λci).

It follows from (21.45) that

E(eλYn | Y0,Y1, . . . ,Yn−1)≤ cosh(λcn). (21.46)

We then see that

E

(
exp

{
λ

n

∑
i=1

Yi

})

= E

(
E(eλYn | Y0,Y1, . . . ,Yn−1)×E

(
exp

{
λ

n−1

∑
i=1

Yi

}))

≤ cosh(λcn)E

(
exp

{
λ

n−1

∑
i=1

Yi

})
≤

n

∏
i=1

cosh(λci).

The expectation in the middle term is over Y0,Y1, . . . ,Yn−1 and the last inequal-
ity follows by induction on n.
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By the above equality and the Taylor expansion, we get

eλ t P(Xn−X0 ≥ t)≤
n

∏
i=1

cosh(λci) =
n

∏
i=1

∞

∑
m=0

(λci)
2m

(2m)!

≤
n

∏
i=1

∞

∑
m=0

(λci)
2m

2mm!
= exp

{
1
2

λ
2

n

∑
i=1

c2
i

}
.

Putting λ = t/∑
n
i=1 c2

i we arrive at the theorem.
We end by describing a simple situation where we can apply these inequalities.

Lemma 21.16 (McDiarmid’s Inequality) Let Z = Z(W1,W2, . . . ,Wn) be a ran-
dom variable that depends on n independent random variables W1,W2, . . . ,Wn.
Suppose that

|Z(W1, . . . ,Wi, . . . ,Wn)−Z(W1, . . . ,W ′i , . . . ,Wn)| ≤ ci

for all i = 1,2, . . . ,n and W1,W2, . . . ,Wn,W ′i . Then for all t > 0 we have

P(Z ≥ EZ + t)≤ exp
{
− t2

2∑
n
i=1 c2

i

}
,

and

P(Z ≤ EZ− t)≤ exp
{
− t2

2∑
n
i=1 c2

i

}
.

Proof We consider the martingale

Xk = Xk(W1,W2, . . . ,Wk) = E(Z |W1,W2, . . . ,Wk).

Then

X0 = EZ and Xn = Z.

We only have to show that the martingale differences Yk = Xk − Xk−1 are
bounded. But,

|Xk(W1, . . . ,Wk)−Xk−1(W1, . . . ,Wk−1)|
≤ ∑

W ′k ,Wk+1,...,Wn

|Z(W1, . . . ,Wk, . . . ,Wn)−Z(W1, . . . ,W ′k , . . . ,Wn))|

×P(W ′k)
n

∏
i=k+1

P(Wi)

≤ ∑
W ′k ,Wk+1,...,Wn

ck P(W ′k)
n

∏
i=k+1

P(Wi)

= ck.
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21.8 Talagrand’s Inequality

In this section we describe a concentration inequality that is due to Talagrand
[703] that has proved to be very useful. It can often overcome the following
problem with using Theorems 21.15, 21.16: If EXn = O(n1/2) then the bounds
they give are weak. Our treatment is a re-arrangement of the treatment in Alon
and Spencer [30].
Let Ω = ∏

n
i=1 Ωi, where each Ωi is a probability space and Ω has the product

measure. Let A⊆Ω and let x = (x1,x2, . . . ,xn) ∈Ω.
For α = (α1,α2, . . . ,αn) we let

dα(A,x) = inf
y∈A

∑
i:yi 6=xi

αi.

Then we define

ρ(A,x) = sup
|α|=1

dα(A,x),

where |α| denotes the Euclidean norm, (α2
1 + · · ·+α2

n )
1/2.

We then define, for t ≥ 0,

At = {x ∈Ω : ρ(A,x)≤ t} .

The following theorem is due to Talagrand [703]:

Theorem 21.17

P(A)(1−P(At))≤ e−t2/4.

Theorem 21.17 follows from

Lemma 21.18 ∫
Ω

exp
{

1
4

ρ
2(A,x)

}
dx≤ 1

P(A)
.

Proof Indeed, fix A and consider X = ρ(A,x). Then,

1−P(At) = P(X > t) = P(eX2/4 > et2/4)≤ E(eX2/4)e−t2/4.

The lemma states that E(eX2/4)≤ 1
P(A) .

The following alternative description of ρ is important. Let

U(A,x) = {s ∈ {0,1}n : ∃y ∈ A s.t. si = 0 implies xi = yi}

and let V (A,x) be the convex hull of U(A,x). Then
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Lemma 21.19
ρ(A,x) = min

v∈V (A,x)
|v|.

Here |v| denotes the Euclidean norm of v. We leave the proof of this lemma as
a simple exercise in convex analysis.
We now give the proof of Lemma 21.18.

Proof We use induction on the dimension n. For n = 1,ρ(A,x) = 1x/∈A so that∫
Ω

exp
{

1
4

ρ
2(A,x)

}
= P(A)+(1−P(A))e1/4 ≤ 1

P(A)

which follows from u+(1−u)e1/4 ≤ u−1 for 0 < u≤ 1.
Assume the result for n. Write Ψ = ∏

n
i=1 Ωi so that Ω = Ψ×Ωn+1. Any z ∈Ω

can be written uniquely as z = (x,ω) where x ∈Ψ and ω ∈Ωn+1. Set

B = {x ∈Ψ : (x,ω) ∈ A for some ω ∈Ωn+1}

and for ω ∈Ωn+1 set

Aω = {x ∈Ψ : (x,ω) ∈ A} .

Then

s ∈U(B,x) =⇒ (s,1) ∈U(A,(x,ω)).

t ∈U(Aω ,x) =⇒ (t,0) ∈U(A,(x,ω)).

If s ∈ V (B,x) and t ∈ V (Aω ,x) then (s,1) and (t,0) are both in V (A,(x,ω))

and hence for any λ ∈ [0,1],

((1−λ )s+λ t,1−λ ) ∈V (A,(x,ω)).

Then,

ρ
2(A,(x,ω))≤ (1−λ )2 + |(1−λ )s+λ t|2 ≤ (1−λ )2 +(1−λ )|s|2 +λ |t|2,

where the second inequality uses the convexity of | · |2.
Selecting, s, t with minimal norms yields the critical inequality,

ρ
2(A,(x,ω))≤ (1−λ )2 +λρ

2(Aω ,x)+(1−λ )ρ2(B,x).

Now fix ω and bound,∫
x∈Ψ

exp
{

1
4

ρ
2(A,(x,ω))

}
≤

e(1−λ )2/4
∫

x∈Ψ

exp
{

1
4

ρ
2(Aω ,x))

}λ

exp
{

1
4

ρ
2(B,x))

}1−λ

.
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By Hölder’s inequality this is at most

e(1−λ )2/4
(∫

x∈Ψ

exp
{

1
4

ρ
2(Aω ,x))

})λ (∫
x∈Ψ

exp
{

1
4

ρ
2(B,x))

})1−λ

,

which by induction is at most

e(1−λ )2/4 1
P(Aω)λ

· 1
P(B)1−λ

=
1

P(B)
e(1−λ )2/4r−λ

where r = P(Aω)/P(B)≤ 1.
Using calculus, we minimise e(1−λ )2/4r−λ by choosing λ = 1 + 2logr for
e−1/2 ≤ r≤ 1, λ = 0 otherwise. Further calculation shows that e(1−λ )2/4r−λ ≤
2− r for this value of λ . Thus,∫

x∈Ψ

exp
{

1
4

ρ
2(A,(x,ω))

}
≤ 1

P(B)

(
2− P(Aω)

P(B)

)
.

We integrate over ω to give∫
ω∈Ωn+1

∫
x∈Ψ

exp
{

1
4

ρ
2(A,(x,ω))

}
≤

1
P(B)

(
2− P(A)

P(B)

)
=

1
P(A)

x(2− x),

where x = P(A)/P(B) ≤ 1. But x(2− x) ≤ 1, completing the induction and
hence the theorem.
We call h : Ω→R Lipschitz if |h(x)−h(y)| ≤ 1 whenever x,y differ in at most
one coordinate.

Definition 21.20 Let f : N→ N. h is f -certifiable if whenever h(x)≥ s then
there exists I ⊆ [n] with |I| ≤ f (s) so that if y∈Ω agrees with x on coordinates
I then h(y)≥ s.

Theorem 21.21 Suppose that h is Lipschitz and f -certifiable. Then if X =

h(x) for x ∈Ω, then for all b and for all t ≥ 0,

P(X ≤ b− t
√

f (b))P(X ≥ b)≤ e−t2/4.

Proof Set A =
{

x : h(x)< b− t
√

f (b)
}

. Now suppose that h(y) ≥ b. We
claim that y /∈ At . Let I be a set of indices of size at most f (b) that certifies
h(y) ≥ b as given above. Define αi = 0 when i /∈ I and αi = |I|−1/2 when
i ∈ I. Using Lemma 21.19 we see that if y ∈ At then there exists a z ∈ A that
differs from y in at most t|I|1/2 ≤ t

√
f (b) coordinates of I, though at arbitrary
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coordinates outside I. Let y′ agree with y on I and agree with z outside I. By
the certification h(y′)≥ b. Now y′,z differ in at most t

√
f (b) coordinates and

so, by Lipschitz,

h(z)≥ h(y′)− t
√

f (b)≥ b− t
√

f (b),

but then z /∈ A, a contradiction. So, P(X ≥ b) ≤ 1−P(At) and from Theorem
21.17,

P(X < b− t
√

f (b))P(X ≥ b)≤ e−t2/4.

As the RHS is continuous in t, we may replace “<” by “≤” giving Theorem
21.21.

21.9 Dominance

We say that a random variable X stochastically dominates a random variable Y
if

P(X ≥ t)≥ P(Y ≥ t) for all real t.

There are many cases when we want to use our inequalities to bound the upper
tail of some random variable Y and (i) Y does not satisfy the necessary condi-
tions to apply the relevant inequality, but (ii) Y is dominated by some random
variable X that does. Clearly, we can use X as a surrogate for Y .
The following case arises quite often. Suppose that Y =Y1+Y2+ · · ·+Yn where
0 ≤ Yi ≤ 1 for i = 1,2, . . . ,n. Suppose that Y1,Y2, . . . ,Yn are not independent,
but instead we have

P(Yi ≥ t | Y1,Y2, . . . ,Yi−1)≤ P(Xi ≥ t)

where t ≥ 0 and Xi is a random variable taking values in [0,1]. Let X = X1 +

· · ·+Xn where X1,X2, . . . ,Xn are independent of each other and Y1,Y2, . . . ,Yn.
Then we have

Lemma 21.22 X stochastically dominates Y .

Proof Let X (i) = X1 + · · ·+Xi and Y (i) = Y1 + · · ·+Yi for i = 1,2, . . . ,n. We
will show by induction that X (i) dominates Y (i) for i = 1,2, . . . ,n. This is triv-
ially true for i = 1 and for i > 1 we have

P(Y (i) ≥ t | Y1 . . . ,Yi−1) = P(Yi ≥ t− (Y1 + · · ·+Yi−1) | Y1 . . . ,Yi−1)

≤ P(Xi ≥ t− (Y1 + · · ·+Yi−1) | Y1 . . . ,Yi−1).

Removing the conditioning we have
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P(Y (i) ≥ t)≤ P(Y (i−1) ≥ t−Xi)≤ P(X (i−1) ≥ t−Xi) = P(X (i) ≥ t),

where the seond inequality follows by induction.
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Differential Equations Method

Let D ⊆ R2 be open and bounded and connected. Consider a general random
process

X(0),X(1), . . . ,X(t), . . . ,X(n) ∈ Z.

where X(0) is fixed and
(

0, X(0)
n

)
∈ D.

Let Ht denote the history X(0),X(1), . . . ,X(t) of the process to time t. Let TD

be the stopping time which is the minimum t such that (t/n,X(t)/n) /∈ D. We
further assume

(P1) |X(t)| ≤C0n, ∀t < TD, where C0 is a constant.
(P2) |X(t +1)−X(t)| ≤ β = β (n)≥ 1, ∀t < TD.
(P3) |E(X(t + 1)−X(t)|Ht ,E )− f (t/n,X(t)/n)| ≤ λ0,∀t < TD. Here

E is some likely event that holds with probability at least
1− γ .

(P4) f (t,x) is continuous and satisfies a Lipschitz condition
| f (t,x)− f (t ′,x′)| ≤ L‖(t,x)− (t ′,x)′‖∞

for (t,x),(t ′,x′) ∈ D∩{(t,x) : t ≥ 0}

Theorem 22.1 Suppose that

λ0 ≤ λ = o(1) and α =
nλ 3

β 3 � 1.

σ = inf{τ : (τ,z(τ)) 6∈ D0 = {(t,z) ∈ D : l∞ distance of (t,z) from

the boundary of D≥ 2λ}}

Let z(τ), 0≤ τ ≤ σ be the unique solution to the differential equation

z′(τ) = f (τ,z(τ)) (22.1)

z(0) =
X(0)

n
(22.2)

Then,

X(t) = nz(t/n)+O(λn),

424
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uniformly in 0≤ t ≤ σn, with probability 1−O(γ +βe−α/λ ).

Proof The γ in the probability of success will be handled by conditioning on
E . Now let

ω =

⌈
nλ

β

⌉
.

We study the difference X(t +ω)−X(t). Assume that (t/n,X(t)/n) ∈D0. For
0≤ k ≤ ω we have from (P2) that∣∣∣∣X(t + k)

n
− X(t)

n

∣∣∣∣≤ kβ

n
≤ 2λ ,

so ∥∥∥∥( t + k
n

,
X(t + k)

n

)
−
(

t
n
,

X(t)
n

)∥∥∥∥
∞

≤ 2λ ,

and so
(

t+k
n , X(t+k)

n

)
is in D.

Therefore, using (P3),

E(X(t + k+1)−X(t + k)|Ht+k,E ) =

f
(

t + k
n

,
X(t + k)

n

)
+θk =

f
(

t
n
,

X(t)
n

)
+θk +ψk =

f
(

t
n
,

X(t)
n

)
+ρ,

where |ρ| ≤ 2Lλ , since |θk| ≤ λ (by (P3)) and |ψk| ≤ Lβk
n (by (P4)).

Now, given Ht , let

Zk =

X(t + k)−X(t)− k f
(

t
n ,

X(t)
n

)
−2kLλ E

0 ¬E
.

Then

E(Zk+1−Zk|Z0,Z1, . . . ,Zk)≤ 0,

i.e., Z0,Z1, . . . ,Zω is a super-martingale.
Also

|Zk+1−Zk| ≤ β +

∣∣∣∣ f ( t
n
,

X(t)
n

)∣∣∣∣+2Lλ ≤ K0β ,
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where K0 = O(1), since f
(

t
n ,

X(t)
n

)
= O(1) by continuity and boundedness of

D. So, using Theorem 21.15 we see that conditional on Ht ,E ,

P
(

X(t +ω)−X(t)−ω f (t/n,X(t)/n)≥ 2Lωλ +K0β
√

2αω

)
≤ exp

{
−

2K2
0 β 2αω

2ωK2
0 β 2

}
= e−α . (22.3)

Similarly,

P
(

X(t +ω)−X(t)−ω f (t/n,X(t)/n)≤−2Lωλ −K0β
√

2αω

)
≤ e−α . (22.4)

Thus

P
(
|X(t +ω)−X(t)−ω f (t/n,X(t)/n)| ≥ 2Lωλ +K0β

√
2αω

)
≤ 2e−α .

We have that ωλ and β
√

2αω are both Θ(nλ 2/β ) giving

2Lωλ +K0β
√

2αω ≤ K1
nλ 2

β
.

Now let ki = iω for i = 0,1, . . . , i0 = bσn/ωc. We will show by induction that

P(∃ j ≤ i : |X(k j)− z(k j/n)n| ≥ B j)≤ 2ie−α , (22.5)

where

B j = B

((
1+

Lω

n

) j+1

−1

)
nλ

L
(22.6)

and where B is another constant.
The induction begins with z(0) = X(0)

n and B0 = 0. Note that

Bi0 ≤
BeσLλ

L
n = O(λn).

Now write

|X(ki+1)− z(ki+1/n)n|= |A1 +A2 +A3 +A4|,
A1 = X(ki)− z(ki/n)n,

A2 = X(ki+1)−X(ki)−ω f (ki/n,X(ki)/n),

A3 = ωz′(ki/n)+ z(ki/n)n− z(ki+1/n)n,

A4 = ω f (ki/n,X(ki)/n)−ωz′(ki/n).
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We now bound each of these terms individually.
Our induction gives that with probability at most 2ie−α ,

|A1| ≤ Bi.

Equations (22.3) and (22.4) give

|A2| ≤ K1
nλ 2

β
,

with probability 1−2e−α .

A3 = ωz′(ki/n)+ z(ki/n)n− z(ki+1/n)n

Now

z(ki+1/n)− z(ki/n) =
ω

n
z′(ki/n+ ω̂/n)

for some 0≤ ω̂ ≤ ω and so (P4) implies that

|A3|= ω|z′(ki/n+ω/n)− z′(ki/n+ ω̂/n)| ≤ L
ω2

n
≤ 2L

nλ 2

β 2 .

Finally, (P4) gives

|A4| ≤
ωL|A1|

n
≤ ωL

n
Bi.

Thus for some B > 0,

Bi+1 ≤ |A1|+ |A2|+ |A3|+ |A4|

≤
(

1+
ωL
n

)
Bi +Bn

λ 2

β
.

A little bit of algebra verifies (22.5) and (22.6).
Finally consider ki ≤ t < ki+1. From “time” ki to t the change in X and nz is at
most ωβ = O(nλ ).

Remark 22.2 The above proof generalises easily to the case where
X(t) is replaced by X1(t),X2(t), . . . ,Xa(t) where a = O(1).

The earliest mention of differential equations with respect to random graphs
was in the paper by Karp and Sipser [476]. The paper by Ruciński and Wormald
[660] was also influential. See Wormald [730] for an extensive survey on the
differential equations method.
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Branching Processes

In the Galton-Watson branching process, we start with a single particle com-
prising generation 0. In general, the nth generation consists of Zn particles and
each member x of this generation independently gives rise to a random num-
ber X of descendants in generation n+ 1. In the book we need the following
theorem about the probability that the process continues indefinitely: Let

pk = P(X = k), k = 0,1,2, . . . .

Let

G(z) =
∞

∑
k=0

pkzk

be the probability generating function (p.g..f.) of X . Let µ = EX . Let

η = P

(⋃
n≥0

{Zn = 0}
)

(23.1)

be the probability of ultimate extinction of the process.

Theorem 23.1 η is the smallest non-negative root to the equation G(s) = s.
Here η = 1 if µ < 1.

Proof If Gn(z) is the p.g.f. of Zn, then Gn(z)=G(Gn−1(z)). This follows from
the fact that Zn is the sum of Zn−1 independent copies of G. Let ηn =P(Zn = 0).
Then

ηn = Gn(0) = G(Gn−1(0)) = G(ηn−1).

It follows from (23.1) that ηn↗ η . Let ψ be any other non-negative solution
to G(s) = s. We have

η1 = G(0)≤ G(ψ) = ψ.

Now assume inductively that ηn ≤ ψ for some n≥ 1. Then

ηn+1 = G(ηn)≤ G(ψ) = ψ.
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Entropy

24.1 Basic Notions

Entropy is a useful tool in many areas. The entropy we talk about here was
introduced by Shannon in [681]. We need some results on entropy in Chapter
13. We collect them here for convenience. For more on the subject we refer
the reader to Cover and Thomas [227], or Gray [382] or Martin and England
[572].
Let X be a random variable taking values in a finite set RX . Let p(x)=P(X = x)
for x ∈ RX . Then the entropy of X is given by

h(X) =− ∑
x∈RX

p(x) log p(x).

We have a choice for the base of the logarithm here. We use the natural loga-
rithm, for use in Chapter 13.
Note that if X is chosen uniformly from RX , i.e. P(X = x) = 1/|RX | for all
x ∈ RX then then

h(X) = ∑
x∈RX

log |RX |
|RX |

= log |RX |.

We will see later that the uniform distribution maximises entropy.
If Y is another random variable with a finite range then we define the condi-
tional entropy

h(X | Y ) = ∑
y∈RY

p(y)h(Xy) =−∑
x,y

p(x,y) log
p(x,y)
p(y)

, (24.1)

where Xy is the random variable with P(Xy = x) = P(X = x | Y = y). Here
p(y) = P(Y = y). The summation is over y such that p(y) > 0. We will use
notation like this from now on, without comment.
Chain Rule:

Lemma 24.1

h(X1,X2, . . . ,Xm) =
m

∑
i=1

h(Xi | X1,X2, . . . ,Xi−1). (24.2)
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Proof This follows by induction on m, once we have verified it for m = 2.
For then

h(X1,X2, . . . ,Xm) = h(X1,X2, . . . ,Xm−1)+h(Xm | X1,X2, . . . ,Xm−1).

Now,

h(X2 | X1) =− ∑
x1,x2

p(x1,x2) log
p(x1,x2)

p(x1)

=− ∑
x1,x2

p(x1,x2) log p(x1,x2)+ ∑
x1,x2

p(x1,x2) log p(x1)

= h(X1,X2)+∑
x1

p(x1) log p(x1)

= h(X1,X2)−h(X1).

Inequalities:
Entropy is a measure of uncertainty and so we should not be surprised to learn
that h(X | Y ) ≤ h(X) for all random variables X ,Y – here conditioning on Y
represents providing information. Our goal is to prove this and a little more.
Let p,q be probability measures on the finite set X . We define the
Kullback-Liebler distance

D(p||q) = ∑
x∈A

p(x) log
p(x)
q(x)

where A = {x : p(x)> 0}.

Lemma 24.2

D(p||q)≥ 0

with equality iff p = q.

Proof Let

−D(p||q) = ∑
x∈A

p(x) log
q(x)
p(x)

≤ log ∑
x∈A

p(x)
q(x)
p(x)

(24.3)

= log1

= 0.

Inequality (24.3) follows from Jensen’s inequality and the fact that log is a
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concave function. Because log is strictly concave, will have equality in (24.3)
iff p = q.
It follows from this that

h(X)≤ log |RX |. (24.4)

Indeed, let u denote the uniform distribution over RX i.e. u(x) = 1/|RX |. Then

0≤ D(p||u) = ∑
x

p(x)(log p(x)+ log |RX |) =−h(X)+ log |RX |.

We can now show that conditioning does not increase entropy.

Lemma 24.3 For random variables X ,Y,Z,

h(X | Y,Z)≤ h(X | Y ).

Taking Z to be a constant e.g. Z = 1 with probability one, we see

h(X | Y )≤ h(X).

Proof

h(X | Y )−h(X | Y,Z)

=−∑
x,y

p(x,y) log
p(x,y)
p(y)

+ ∑
x,y,z

p(x,y,z) log
p(x,y,z)
p(y,z)

=−∑
x,y,z

p(x,y,z) log
p(x,y)
p(y)

+ ∑
x,y,z

p(x,y,z) log
p(x,y,z)
p(y,z)

= ∑
x,y,z

p(x,y,z) log
p(x,y,z)p(y)
p(x,y)p(y,z)

= D(px,y,z||p(x,y)p(y,z)/p(y))

≥ 0.

Note that ∑x,y,z p(x,y)p(y,z)/p(y) = 1.

Working through the above proof we see that h(X) = h(X | Z) iff p(x,z) =
p(x)p(z) for all x,z, i.e. iff X ,Z are independent.

24.2 Shearer’s Lemma

The original proof is from Chung, Frankl, Graham and Shearer [180]. The
following proof is from Radakrishnan [639].
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Lemma 24.4 Let X = (X1,X2, . . . ,XN) be a (vector) random variable and
A = {Ai : i ∈ I} be a collection of subsets of a set B, where |B| = N, such
that each element of B appears in at least k members of A . For A ⊆ B, let
XA = (X j : j ∈ A). Then,

h(X)≤ 1
k ∑

i∈I
h(XAi).

Proof We have, from Lemma 24.1 that

h(X) = ∑
j∈B

h(X j | X1,X2, . . . ,X j−1) (24.5)

and

h(XAi) = ∑
j∈Ai

h(X j | X`, ` ∈ Ai, ` < j). (24.6)

We sum (24.6) for all i ∈ I. Then

∑
i∈I

h(XAi) = ∑
i∈I

∑
j∈Ai

h(X j | X`, ` ∈ Ai, ` < j)

= ∑
j∈B

∑
Ai3 j

h(X j | X`, ` ∈ Ai, ` < j) (24.7)

≥ ∑
j∈B

∑
Ai3 j

h(X j | X1,X2, . . . ,X j−1) (24.8)

≥ k ∑
j∈B

h(X j | X1,X2, . . . ,X j−1) (24.9)

= kh(X). (24.10)

Here we obtain (24.8) from (24.7) by applying Lemma 24.3. We obtain (24.9)
from (24.8) and the fact that each j ∈ B appears in at least k Ai’s. We then
obtain (24.10) by using (24.5).
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[100] M. Bloznelis, F. Göetze and J. Jaworski, Birth of a strongly connected giant in
an inhomogeneous random digraph, Journal of Applied Probability 49 (2012),
601-611.



438 References

[101] M. Bloznelis, J. Jaworski and K. Rybarczyk, Component evolution in a secure
wireless sensor network, Networks 53 (2009) 19-26.
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ematics 33 (Karoński, Palka Eds.), North-Holland (1987) 17-40.

[266] M. Dyer, A. Flaxman, A. M. Frieze and E. Vigoda, Random colouring sparse
random graphs with fewer colours than the maximum degree, Random Structures
and Algorithms 29 (2006) 450-465.

[267] M.E.Dyer, A.M.Frieze and C. Greenhill, On the chromatic number of a random
hypergraph, see arxiv.org.

[268] M.E.Dyer, A.M.Frieze and C.J.H.McDiarmid, Linear programs with random
costs, Mathematical Programming 35 (1986) 3-16.

[269] M.E.Dyer, A.M.Frieze and B. Pittel, The average performance of the greedy
matching algorithm, The Annals of Applied Probability 3 (1993) 526-552.

[270] E. Ebrahimzadeh, L. Farczadi, P. Gao, A. Mehrabian, C. Sato, N. Wormald and J.
Zung, On the Longest Paths and the Diameter in Random Apollonian Networks.



446 References

[271] J. Edmonds, Paths, Trees and Flowers, Canadian Journal of Mathematics 17
(1965) 449-467.

[272] C. Efthymiou, MCMC sampling colourings and independent sets of G(n,d/n)
near uniqueness threshold, Proceedings of SODA 2014 305-316.

[273] G.P. Egorychev, A solution of the Van der Waerden’s permanent problem,
Preprint IFSO-L3 M Academy of Sciences SSSR, Krasnoyarks (1980).
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[283] P. Erdős, S. Suen and P. Winkler, On the size of a random maximal graph, Ran-
dom Structures and Algorithms 6 (1995) 309-318.

[284] L. Eschenauer and V.D. Gligor, A key managment scheme for distributed sensor
networks, In: Proceedings of the 9th ACM Conference on Computer and Com-
munication Security (2002) 41-47.

[285] H. van den Esker, A geometric preferential attachment model with fitness, see
arxiv.org.

[286] R. Fagin, Probabilities in Finite Models, Journal of Symbolic Logic 41 (1976)
50-58.

[287] D.I. Falikman, The proof of the Van der Waerden’s conjecture regarding to dou-
bly stochastic matrices, Mat. Zametki 29 (1981).

[288] M. Faloutsos, P. Faloutsos and C. Faloutsos, On Power-Law Relationships of the
Internet Topology, ACM SIGCOMM, Boston (1999).

[289] V. Feldman, E. Grigorescu, L. Reyzin, S. Vempala and Y. Xiao, Statistical Algo-
rithms and a lower bound for detecting planted cliques, STOC 2013.

[290] W. Feller, An Introduction to Probability Theory and its Applications, 3rd Ed.,
Wiley, New York (1968).

[291] Q. Feng, H.M. Mahmoud and A. Panholzer, Phase changes in subtree varieties
in random recursive and binary search trees, SIAM Journal Discrete Math. 22
(2008) 160-184.

[292] A. Ferber, Closing gaps in problems related to Hamilton cycles in random graphs
and hypergraphs, see arxiv.org.



References 447

[293] A. Ferber, R. Glebov, M. Krivelevich and A. Naor, Biased games on random
boards, to appear in Random Structures and Algorithms.

[294] A. Ferber, G. Kronenberg and E. Long, Packing, Covering and Counting Hamil-
ton Cycles in Random Directed Graphs, see arxiv.org.

[295] A. Ferber, G. Kronenberg, F. Mousset and C. Shikhelman, Packing a randomly
edge-colored random graph with rainbow k-outs, see arxiv.org.

[296] A. Ferber, R. Nenadov and U. Peter, Universality of random graphs and rainbow
embedding, see arxiv.org.

[297] A. Ferber, R. Nenadov, A. Noever, U. Peter and N. Škorić, Robust hamiltonicity
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[312] N. Fountoulakis, D. Kühn and D. Osthus, The order of the largest complete mi-
nor in a random graph, Random Structures and Algorithms 33 (2008) 127-141.

[313] N. Fountoulakis and B. A. Reed, The evolution of the mixing rate of a simple
random walk on the giant component of a random graph, Random Structures
Algorithms 33 (2008) 68-86.



448 References

[314] E. Friedgut, Hunting for Sharp Thresholds, Random Structures Algorithms 26
(2005) 37-51.

[315] E. Friedgut and G. Kalai, Every Monotone Graph Property Has a Sharp Thresh-
old, Proceedings of the American Mathematical Society 124 (1996) 2993-3002.

[316] E. Friedgut, Sharp Thresholds of Graph Proprties, and the k-sat Problem, Journal
of the American Mathematical Society 12 (1999) 1017-1054.

[317] J. Friedman, A proof of Alon’s second eigenvalue conjecture and related prob-
lems, Memoirs of the American Mathematical Society, 2008.

[318] T. Friedrich and A. Krohmer, Cliques in hyperbolic random graphs, IEEE IN-
FOCOM (2015).

[319] T. Friedrich, T. Sauerwald and A. Stauffer, Diameter and Broadcast Time of
Random Geometric Graphs in Arbitrary Dimensions, Algorithmica 67 (2013)
65-88.

[320] A.M. Frieze, On the value of a random minimum spanning tree problem, Dis-
crete Applied Mathematics 10 (1985) 47-56.

[321] A.M. Frieze, On large matchings and cycles in sparse random graphs, Discrete
Mathematics 59 (1986) 243-256.

[322] A.M. Frieze, Maximum matchings in a class of random graphs, Journal of Com-
binatorial Theory B 40 (1986) 196-212.

[323] A.M. Frieze, An algorithm for finding hamilton cycles in random digraphs, Jour-
nal of Algorithms 9 (1988) 181-204.

[324] A.M. Frieze, On the independence number of random graphs, Discrete Mathe-
matics 81 (1990) 171-176.

[325] A.M. Frieze, Perfect matchings in random bipartite graphs with minimal degree
at least 2, Random Structures and Algorithms 26 (2005) 319-358.

[326] A.M. Frieze, Loose Hamilton Cycles in Random 3-Uniform Hypergraphs, Elec-
tronic Journal of Combinatorics 17 (2010) N28.

[327] A.M. Frieze, On a Greedy 2-Matching Algorithm and Hamilton Cycles in Ran-
dom Graphs with Minimum Degree at Least Three, Random Structures and Al-
gorithms 45 (2014) 443-497.

[328] A.M. Frieze, N. Goyal, L. Rademacher and S. Vempala, Expanders via Random
Spanning Trees, SIAM Journal on Computing 43 (2014) 497-513.

[329] A.M. Frieze and S. Haber, An almost linear time algorithm for finding Hamilton
cycles in sparse random graphs with minimum degree at least three, to appear in
Random Structures and Algorithms.

[330] A.M. Frieze, S. Haber and M. M. Lavrov, On the game chromatic number of
sparse random graphs, SIAM Journal of Discrete Mathematics 27 (2013) 768-
790.

[331] A.M. Frieze, M.R.Jerrum, M.Molloy, R.Robinson and N.C.Wormald, Generat-
ing and counting Hamilton cycles in random regular graphs, Journal of Algo-
rithms 21 (1996) 176-198.

[332] A.M. Frieze and T. Johansson, On random k-out sub-graphs of large graphs, see
arxiv.org.

[333] A.M. Frieze and R. Kannan, A new approach to the planted clique problem,
Proceedings of Foundations of Software Technology and Theoretical Computer
Science, Bangalore, India (2008).



References 449

[334] A.M. Frieze and M. Krivelevich, On two Hamilton cycle problems in random
graphs, Israel Journal of Mathematics 166 (2008) 221-234.

[335] A.M. Frieze, M. Krivelevich and C. Smyth, On the chromatic number of random
graphs with a fixed degree sequence, Combinatorics, Probability and Computing
16 (2007) 733-746.

[336] A.M. Frieze, S. Haber and M. Lavrov, On the game chromatic number of sparse
random graphs, SIAM Journal of Discrete Mathematics 27 (2013) 768-790.

[337] A.M. Frieze and P. Loh, Rainbow Hamilton cycles in random graphs, Random
Structures and Algorithms 44 (2014) 328-354.

[338] A.M. Frieze and T. Łuczak, Hamiltonian cycles in a class of random graphs: one
step further, in em Proceedings of Random Graphs ’87, Edited by M.Karonski,
J.Jaworski and A.Rucinski, John Wiley and Sons (1990) 53-59.

[339] A.M. Frieze and T. Łuczak, Edge disjoint trees in random graphs, Periodica
Mathematica Hungarica 21 (1990) 28-30.

[340] A.M. Frieze and T. Łuczak, On the independence and chromatic numbers of
random regular graphs, Journal of Combinatorial Theory 54 (1992) 123-132.

[341] A.M. Frieze and C.J.H. McDiarmid, On random minimum length spanning trees,
Combinatorica 9 (1989) 363 - 374.

[342] A.M. Frieze and B.D. McKay, Multicoloured trees in random graphs, Random
Structures and Algorithms 5 (1994) 45-56.

[343] A.M. Frieze and P. Melsted, Maximum Matchings in Random Bipartite Graphs
and the Space Utilization of Cuckoo Hashtables, Random Structures and Algo-
rithms 41 (2012) 334-364.
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[361] H. Gebauer and T. Szabó, Asymptotic random graph intuition for the biased

connectivity game, Random Structures and Algorithms 35 (2009) 431-443.
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[383] C. Greenhill, S. Janson and A. Ruciński, On the number of perfect matchings in

random lifts, Combinatorics, Probability and Computing 19 (2010) 791-817.
[384] G.R. Grimmett, Random labelled trees and their branching networks, Journal of

the Australian Mathematical Society 30 (1980) 229-237.
[385] G. Grimmett and C. McDiarmid, On colouring random graphs, Mathematical

Proceedings of the Cambridge Philosophical Society 77 (1975) 313-324.
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Jaworski (ed.) A. Ruciski (ed.) , Random Graphs ’87 , Wiley (1990) 73-87.
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2, J. Bolyai Math. Soc., Budapest (1996) 399-422.



References 459

[543] T. Łuczak, Random trees and random graphs, Random Structures and Algorithms
13 (1998) 485-500.

[544] T. Łuczak, On triangle free random graphs, Random Structures and Algorithms
16 (2000) 260-276.

[545] T. Łuczak, B. Pittel and J. C. Wierman, The structure of a random graph at the
point of the phase transition, Transactions of the American Mathematical Society
341 (1994) 721-748

[546] T. Łuczak and P. Pralat, Chasing robbers on random graphs: zigzag theorem,
Random Structures and Algorithms 37 (2010) 516-524.

[547] T. Łuczak and A. Ruciński, Tree-matchings in graph processes SIAM Journal on
Discrete Mathematics 4 (1991) 107-120.

[548] T. Łuczak, A. Ruciński and B. Voigt, Ramsey properties of random graphs, Jour-
nal of Combinatorial Theory B 56 (1992) 55-68.

[549] T. Łuczak, Ł. Witkowski and M. Witkowski, Hamilton Cycles in Random Lifts
of Graphs, see arxiv.org.

[550] M. Mahdian and Y. Xu. Stochastic Kronecker graphs, Random Structures and
Algorithms 38 (2011) 453-466.

[551] H. Mahmoud, Evolution of Random Search Trees, John Wiley & Sons, Inc., New
York, 1992.

[552] H. Mahmoud, The power of choice in the construction of recursive trees,
Methodol. Comput. Appl. Probab. 12 (2010) 763-773.

[553] H.M. Mahmoud and R.T. Smythe, A survey of recursive trees, Theory Probabil-
ity Math. Statist. 51 (1995) 1-27.

[554] H.M. Mahmoud, R.T. Smythe and J. Szymański, On the structure of random
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[594] T. Müller, X. Pérez and N. Wormald, Disjoint Hamilton cycles in the random

geometric graph, Journal of Graph Theory 68 (2011) 299-322.
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Peköz, R., 354
Penrose, M., 215, 228
Peres, Y., 41, 47, 380
Perkins, W., 47
Person, Y., 147, 247
Peter, U., 229, 241, 372, 381
Petit, J., 228

Picolleli, M., 376
Pikhurko, O., 146
Pinar, A., 174
Pittel, B., 37, 40, 46, 97, 99, 109, 381
Poole, S., 174, 247
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Rödl, V., 141, 143, 147, 381
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Rényi’s Lemma, 389
Rainbow Connection, 70, 204
Rainbow Path, 69
Ramsey Properties, 141
Random Apollonian Networks, 354
Random Assignment Problem, 369

Multi-Dimensional version, 369
Random Dot Product Graph, 173

Random Euclidean TSP, 368
Random Geometric Graphs, 215

Chromatic Number, 220
Connectivity, 215
Hamiltonicity, 219

Random Knapsack Problem, 367
Random Lifts, 378
Random Minimum Spanning Trees, 368
Random Recursive Tree, 274
Random Regular Graphs, 188
Random Simplicial Complexes, 379
Random Steiner Tree Problem, 369
Random Subgraphs of the n-cube, 379
Random Tournament, 241
Random Walks on Random Graphs, 379

Cover Time, 380
Mixing Time, 379

Randomly Coloring Random Graphs, 137
Rank One Model, 173
Resilience, 107

Sampling Without Replacement, 403
Scaling Window, 39
Second Moment Method, 14
Sharp Threshold, 11
Shearer’s Lemma, 426
Small Subgraph Conditioning, 203
SPA Model, 354
Spanning Subgraphs, 103, 108
Spanning Trees, 108
Stable Matching, 380
Stirling’s Formula, 6
Strictly Balanced, 75
Strong Components

Sub-Critical Region, 230
Super-Critical Region, 231

Strong Connectivity, 237
Sub-Critical Phase, 20
Super-Critical Phase, 33
Susceptibility, 172
Switching, 179

Talagrand’s Inequality, 413
Threshold Function, 9
Triangle Free Subgraphs, 146
Turán Properties, 143

Unicyclic Components, 28, 45
Uniform Random Graph, 3
Universal graphs, 381

VC-Dimension, 264

With High Probability (w.h.p.), 10
Wright Coefficients, 41


