
Where Innovation Is Tradition

Introduction to the Pin
Instrumentation Tool

Quan Jia
Mar 27, 2013

ISA 673
Operating Systems’ Security

1

Where Innovation Is Tradition

What is Pin?

2

Pin is Intel’s dynamic binary instrumentation
engine.

Where Innovation Is Tradition

What is Instrumentation?

•  A technique that inserts extra code into a program to
collect runtime information.

•  Program analysis : performance profiling, error detection,
capture & replay

•  Architectural study : processor and cache simulation, trace
collection

•  Binary translation : Modify program behavior, emulate
unsupported instructions

3

Where Innovation Is Tradition

Instrumentation Approaches

•  Source Code Instrumentation (SCI)
 – instrument source programs

•  Binary Instrumentation (BI)
 – instrument binary executable directly

4

Where Innovation Is Tradition

SCI Example (Code Coverage)
Original Program
void foo() {
 bool found=false;
 for (int i=0; i<100; ++i) {

 if (i==50) break;
 if (i==20) found=true;
 }
 printf("foo\n");
}

Instrumented Program
char inst[5];
void foo() {
 bool found=false; inst[0]=1;
 for (int i=0; i<100; ++i) {

 if (i==50) { inst[1]=1;break;}
if (i==20) { inst[2]=1;found=true;}
 inst[3]=1;

 }
printf("foo\n");
inst[4]=1;
}

5

Where Innovation Is Tradition

Binary Instrumentation (BI)

•  Static binary instrumentation – inserts additional code
and data before execution and generates a persistent
modified executable

•  Dynamic binary instrumentation – inserts additional
code and data during execution without making any
permanent modifications to the executable.

6

Where Innovation Is Tradition

BI Example – Instruction Count

7

sub $0xff, %edx

cmp %esi, %edx

jle <L1>

mov $0x1, %edi

add $0x10, %eax

counter++;

counter++;

counter++;

counter++;

counter++;

Where Innovation Is Tradition

BI Example – Instruction Trace

8

 sub $0xff, %edx

 cmp %esi, %edx

 jle <L1>

 mov $0x1, %edi

 add $0x10, %eax

Print(ip);

Print(ip);

Print(ip);

Print(ip);

Print(ip);

Where Innovation Is Tradition

Advantages

•  Binary instrumentation
•  Language independent
•  Machine-level view
•  Instrument legacy/proprietary software

•  Dynamic instrumentation
•  No need to recompile or relink
•  Discover code at runtime
•  Handle dynamically-generated code
•  Attach to running processes

9

Where Innovation Is Tradition

What is Pin?

10

Pin is Intel’s dynamic binary instrumentation
engine.

Where Innovation Is Tradition

Advantages of Pin Instrumentation
•  Easy-to-use Instrumentation:

•  Uses dynamic instrumentation - Do not need source code, recompilation, post-linking

•  Programmable Instrumentation:
•  Provides rich APIs to write in C/C++ your own instrumentation tools (called

Pintools)

•  Multiplatform:
•  Supports x86, x86-64, Itanium, Xscale
•  OS’s: Windows, Linux, OSX, Android

•  Robust:
•  Instruments real-life applications: Database, web browsers, …
•  Instruments multithreaded applications
•  Supports signals

•  Efficient:
•  Applies compiler optimizations on instrumentation code

11

Where Innovation Is Tradition 12

Widely Used and Supported

•  Large user base in academia and industry
– 30,000+ downloads
– 700+ citations
– Active mailing list (Pinheads)

•  Actively developed at Intel
–  Intel products and internal tools depend on it
– Nightly testing of 25000 binaries on 15 platforms

Where Innovation Is Tradition 13

Using Pin
Launch and instrument an application

 $ pin –t pintool.so –- application

Instrumentation engine

(provided in the kit)

Instrumentation tool

(write your own, or use one
provided in the kit)

Attach to and instrument an application
 $ pin –t pintool.so –pid 1234

Where Innovation Is Tradition

Pin and Pintools

•  Pin – the instrumentation engine
•  Pintool – the instrumentation program

•  Pin provides the framework and API, Pintools run on
Pin to perform meaningful tasks.

•  Pintools
 – Written in C/C++ using Pin APIs
 – Many open source examples provided with the Pin kit
 – Certain Do’s and Don’ts apply

14

Where Innovation Is Tradition

•  Replace application functions with your own.
•  Fully examine any application instruction – insert a call to your

instrumenting function whenever that instruction executes.
•  Pass a large set of supported parameters to your instrumenting function.

–  Register values (including IP), Register values by reference (for
modification)

–  Memory addresses read/written by the instruction
–  Full register context

•  Track function calls including syscalls and examine/change arguments.
•  Track application threads.
•  Intercept signals.
•  Instrument a process tree.

 ………

Pin Instrumentation Capabilities

15

Where Innovation Is Tradition

Hands-on Task

•  Download the latest Pin from http://www.pintool.org
•  For Windows: make sure you download the correct version

that matches your Visual Studio IDE.

•  Build all included Pintools under
 source/tools/SimpleExamples
 source/tools/ManualExmaples

•  Refer to the user’s manual for detailed instructions
•  Attention: Nmake does not work for Windows, use Cygwin

to install GNU make instead.

16

Where Innovation Is Tradition

Pintool 1: Instruction Count

17

sub $0xff, %edx

cmp %esi, %edx

jle <L1>

mov $0x1, %edi

add $0x10, %eax

counter++;

counter++;

counter++;

counter++;

counter++;

Where Innovation Is Tradition

Pintool 1: Invocation

•  Windows examples:
> pin.exe -t inscount0.dll -- dir.exe
> pin.exe -t inscount0.dll -o incount.out -- gzip.exe FILE

•  Linux examples:
$ pin -t inscount0.so -- /bin/ls
$ pin -t inscount0.so -o incount.out -- gzip FILE

18

Where Innovation Is Tradition 19

ManualExamples/inscount0.cpp

instrumentation routine
analysis routine

#include <iostream>
#include "pin.h"

UINT64 icount = 0;

void docount() { icount++; }

void Instruction(INS ins, void *v)
{
 INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)docount, IARG_END);
}

void Fini(INT32 code, void *v)
{ std::cerr << "Count " << icount << endl; }

 int main(int argc, char * argv[])
 {

 PIN_Init(argc, argv);
 INS_AddInstrumentFunction(Instruction, 0);
 PIN_AddFiniFunction(Fini, 0);
 PIN_StartProgram();
 return 0;

 }

switch to pin stack
save registers
call docount
restore registers
switch to app stack

Pintool 1:

Where Innovation Is Tradition

Pin Instrumentation APIs
•  Basic APIs are architecture independent:

•  Provide common functionalities like determining:
–  Control-flow changes
–  Memory accesses

•  Architecture-specific APIs
•  E.g., Info about segmentation registers on IA32

•  Call-based APIs:
•  Instrumentation routines
•  Analysis routines

Where Innovation Is Tradition

Pintool 2: Instruction Trace

21

 sub $0xff, %edx

 cmp %esi, %edx

 jle <L1>

 mov $0x1, %edi

 add $0x10, %eax

Print(ip);

Print(ip);

Print(ip);

Print(ip);

Print(ip);

Where Innovation Is Tradition

ManualExamples/itrace.cpp

argument to analysis routine

analysis routine

instrumentation routine

#include <stdio.h>
#include "pin.H"
FILE * trace;

void printip(void *ip) { fprintf(trace, "%p\n", ip); }

void Instruction(INS ins, void *v) {
 INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)printip,

 IARG_INST_PTR, IARG_END);
}
void Fini(INT32 code, void *v) { fclose(trace); }
int main(int argc, char * argv[]) {
 trace = fopen("itrace.out", "w");
 PIN_Init(argc, argv);
 INS_AddInstrumentFunction(Instruction, 0);

 PIN_AddFiniFunction(Fini, 0);
 PIN_StartProgram();
 return 0;
}

Pintool 2:

Where Innovation Is Tradition 23

Examples of Arguments to Analysis Routine
IARG_INST_PTR

•  Instruction pointer (program counter) value

IARG_UINT32 <value>
•  An integer value

IARG_REG_VALUE <register name>
•  Value of the register specified

IARG_BRANCH_TARGET_ADDR
•  Target address of the branch instrumented

IARG_MEMORY_READ_EA
•  Effective address of a memory read

And many more … (refer to the Pin manual for details)

Where Innovation Is Tradition

Instrumentation Points
Instrument points relative to an instruction:

•  Before (IPOINT_BEFORE)
•  After:

– Fall-through edge (IPOINT_AFTER)
– Taken edge (IPOINT_TAKEN)

cmp %esi, %edx

jle <L1>

mov $0x1, %edi

<L1>:
 mov $0x8,%edi

count()

count()

count()

Where Innovation Is Tradition 25

•  Instruction
•  Basic block

– A sequence of instructions terminated
at a control-flow changing instruction

– Single entry, single exit
•  Trace

– A sequence of basic blocks terminated
at an unconditional control-flow
changing instruction

– Single entry, multiple exits

Instrumentation Granularity

sub $0xff, %edx
cmp %esi, %edx
jle <L1>

mov $0x1, %edi
add $0x10, %eax
jmp <L2>

1 Trace, 2 BBs, 6 insts

Instrumentation can be done at three different granularities:

Where Innovation Is Tradition

Hands-on Task: Stack Monitor
•  Goal: Monitor runtime stack usage and alert if it

exceeds a pre-defined limit.

•  Process address space:

26

stack base
stack pointer
guard pages

limit

Where Innovation Is Tradition

Hands-on Task: Stack Monitor
•  Steps:
1.  Obtain stack base address when process starts.
2.  Perform instruction-level instrumentation.
3.  Get runtime stack size (stack_base – stack_pointer).
4.  Compare stack size with supplied size limit.

•  Hint: refer to ManualExamples/stack-debugger.cpp

27

