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Abstract Context: In C, low-level errors, such as buffer overflow and use-after-free, are a major problem, as
they cause security vulnerabilities and hard-to-find bugs. C lacks automatic checks, and programmers cannot
apply defensive programming techniques because objects (e.g., arrays or structs) lack run-time information
about bounds, lifetime, and types.

Inquiry: Current approaches to tackling low-level errors include dynamic tools, such as bounds or type
checkers, that check for certain actions during program execution. If they detect an error, they typically
abort execution. Although they track run-time information as part of their runtimes, they do not expose this
information to programmers.

Approach: We devised an introspection interface that allows C programmers to access run-time informa-
tion and to query object bounds, object lifetimes, object types, and information about variadic arguments.
This enables library writers to check for invalid input or program states and thus, for example, to implement
custom error handling that maintains system availability and does not terminate on benign errors. As we
assume that introspection is used together with a dynamic tool that implements automatic checks, errors that
are not handled in the application logic continue to cause the dynamic tool to abort execution.

Knowledge: Using the introspection interface, we implemented a more robust, source-compatible version
of the C standard library that validates parameters to its functions. The library functions react to otherwise
undefined behavior; for example, they can detect lurking flaws, handle unterminated strings, check format
string arguments, and set errno when they detect benign usage errors.

Grounding: Existing dynamic tools maintain run-time information that can be used to implement the
introspection interface, and we demonstrate its implementation in Safe Sulong, an interpreter and dynamic
bug-finding tool for C that runs on a Java Virtual Machine and can thus easily expose relevant run-time
information.

Importance: Using introspection in user code is a novel approach to tackling the long-standing problem
of low-level errors in C. As new approaches are lowering the performance overhead of run-time information
maintenance, the usage of dynamic runtimes for C could become more common, which could ultimately
facilitate a more widespread implementation of such an introspection interface.
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Introspection for C and its Applications to Library Robustness

EJ Introduction

Since the birth of C almost 50 years ago, programmers have written many applications
in it. Even the advent of higher-level programming languages has not stopped C’s
popularity, and it remains widely used as the second-most popular programming
language [47]]. However, C provides few safety guarantees and suffers from unique
security issues that have disappeared in modern programming languages. Buffer
overflow errors, where a pointer that exceeds the bounds of an object is dereferenced,
are the most serious issue in C [9]]. Other security issues include use-after-free errors,
invalid free errors, reading of uninitialized memory, and memory leaks. Numerous
approaches exist that prevent such errors in C programs by detecting these illegal
patterns statically or during run time, or by making it more difficult to exploit them [46,
48, |55]]. When an error happens, run-time approaches abort the program, which is more
desirable than risking incorrect execution, potentially leaking user data, executing
injected code, or corrupting program state.

However, we believe that in many cases programmers could better respond to illegal
actions in the application logic if they could use the metadata of run-time approaches
(e.g., bounds information) to check invalid actions at run time and prevent them from
happening. Library implementers in particular could use it to protect themselves from
user input and to compensate for the lack of exception handling in C. For example, if
they could check that an access would go out-of-bounds in a server library, they could
log the error and ignore the invalid access to maintain availability of the system (as
in failure-oblivious computing [35]). If the error happened in the C standard library
instead, they could set the global integer variable errno to an error code, for example,
to EINVAL for invalid arguments. Furthermore, a special value (such as -1 or NULL)
could be returned to indicate that something went wrong. Finally, explicit checks
could prevent lurking flaws that would otherwise stay undetected. For example, in the
case that a function does not actually access an invalid position in the buffer, bounds
checkers cannot detect when an incorrect array size is passed to the function. Using
bounds metadata, programmers could validate the passed against the actual array
size.

In this paper, we present a novel approach that allows C programmers to query
properties of an object (primitive value, struct, array, union, or pointer) so that they
can perform explicit sanity checks and react accordingly to invalid arguments or states.
These properties comprise the bounds of an object, the memory location, the number
of arguments of a function with varargs, and whether an object can be used in a certain
way (e.g., called as a function that expects and returns an int). The presented approach
is complementary to dynamic tools, and does not aim to replace them. Programmers
can insert custom input validations and error-handling logic where needed, but the
dynamic tool that tracks the exposed metadata still aborts execution for errors that
are not handled at the application level. Ultimately, this provides programmers with
greater flexibility and increases the robustness of libraries and applications, defined as
“[t]he degree to which a system or component can function correctly in the presence
of invalid inputs or stressful environmental conditions” [_21].
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As a proof of concept, we implemented the introspection interface for Safe Su-
long [32]], a bug-finding tool and interpreter with a dynamic compiler for C. Safe
Sulong prevents buffer overflows, use-after-free, variadic argument errors, and type
errors by checking accesses and aborting execution upon an invalid action. It already
maintains relevant run-time information that it can expose to the programmer.

In a case study, we demonstrate how the introspection functions facilitate re-
implementing the C standard library (libc) to validate input arguments. We use this
libc in Safe Sulong as a source-compatible, more robust drop-in replacement for the
GNU C Library. In contrast to the GNU C Library and other implementations, it can
detect lurking flaws, handle unterminated strings, check format string arguments,
and - instead of terminating execution — set errno when errors occur.

A plethora of other dynamic-bug finding tools and runtimes for C exist, and they
could expose their run-time data via the introspection functions introduced in this
paper. For example, bounds checkers [2, 11, |30} [38] could expose bounds information.
Temporal memory safety tools [4, |19, 29, 31, |39, 44] could expose information about
memory locations. Variadic argument checkers [3]] and type checkers [18, |22]] could
expose information about variadic arguments and types. There are also combined
tools that, for example, provide protection against both out-of-bounds accesses and
use-after-free errors [17, 29, [30].

As the overhead of dynamic tools is decreasing [22, 29, 30, 138, 441, they could
become standard in production, similar to stack canaries and address space layout
randomization [46]. At this point in time, a wider adoption of the introspection
functions (or a subset thereof) seems feasible. Additionally, we envisage that dynamic
tools available now could distribute specialized libraries that benefit from introspection,
as we will demonstrate using Safe Sulong’s libc as an example.

In summary, this paper contributes in the following ways:
= We present introspection functions designed to allow programmers to prevent illegal

actions that are specific to C (Section .
= We demonstrate how we implemented the introspection functions in Safe Sulong, a

bug-finding tool and interpreter with a dynamic compiler for C (Section [4)).
= In a case study, we show how using introspection increases the robustness of the C

standard library (Section|s).

EJ Background

In C, the lack of type and memory safety causes many problems, such as hard-to-
find bugs and security issues. Moreover, manual memory management puts the
burden of deallocating objects on the programmer. Consequently, C programs are
plagued by vulnerabilities that are unique to the language. Faults can invoke undefined
behavior, so compiled code can crash, compute unexpected results, and corrupt or
read neighboring objects [50, |51]. It is often impossible to design C functions such
that they are secure against usage errors, since they cannot validate passed arguments
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or global data. Below we provide a list of errors and vulnerabilities in C programs
that we target in this work.

Out-of-bounds errors. Out-of-bounds accesses in C are among the most dangerous
software errors [|9, 37|, since — unlike higher-level languages — C does not specify
automatic bounds checks. Further, objects have no run-time information attached to
them, so functions that operate on arrays require array-size arguments. Alternatively,
they need conventions such as terminating an array by a special value.

Listing [1f shows a typical buffer overflow. The read_number() function reads digits
entered by the user into the passed buffer arr and validates that it does not write beyond
its bounds. However, its callee passes -1 as the length parameter, which is (through
the size_t type) treated as the unsigned number SIZE_MAX. Thus, the bounds check
is rendered useless, and if the user enters more than nine digits, the read_number()
function overflows the passed buffer.

A recent similar real-world vulnerability is CVE-2016-3186, where a function in libtiff
cast a negative value to size_t. As another example, in CVE-2016-6823 a function in
ImageMagick caused an arithmetic overflow that resulted in an incorrect image size.
Both faults resulted in buffer overflows.

Memory management errors. Objects that are allocated in different ways (e.g., on the
stack or by malloc()) have different lifetimes, which influences how they can be used.
For example, it is forbidden to access memory after it has been freed (otherwise known
as an access to a dangling pointer). Other such errors include freeing memory twice,
freeing stack memory or static memory, and calling free() on a pointer that points
somewhere into the middle of an object [29]]. Listing |2l shows examples of a use-after-
free and a double-free error. Firstly, when err is non-zero, the allocated pointer ptr is
freed and later accessed again as a dangling pointer in logError(). Secondly, the code
fragment attempts to free the pointer again after logging the error, which results in a
double-free vulnerability. C does not provide mechanisms to retrieve the lifetime of
an object, which would allow checking and preventing such conditions. Consequently,
use-after-free errors frequently occur in real-world code. For example, in CVE-2016-
4473 the PHP Zend Engine attempted to free an object that was not allocated by one

Ml Listing1 Passing -1 to the size_t parameter renders the range check useless and could
cause an out-of-bounds error while writing read characters to arr

void read_number(char* arr, size_t length) {
int i = o;
if (length == 0)
int ¢ = getchar(
while (isdigit(c
arr[i++] = c;
1
arr[i] = "\o';
}
/...
char buf[10];
read_number(buf, -1);
printf("%s\n", buf);

return;

);
) & (i + 1) < length) {
c = getchar();
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M Listing2 Use-after-free error which is based on an example from the CWE wiki

char* ptr = (char*) malloc(SIZE * sizeof(char));
if (err) {
abrt = 1; free(ptr);
}
/...
if (abrt) {
logError("operation aborted", ptr); free(ptr);
}
/...
void logError(const char* message, void* ptr) {
logf("error while processing %p", ptr);
}

of libc’s allocation functions. Other recent examples include a dangling pointer access
and a double free error in OpenSSL (CVE-2016-6309 and CVE-2016-0705).

Variadic function errors. Variadic functions in C rely on the programmer to pass a
count of variadic arguments or a format string. Furthermore, a programmer must pass
the matching number of objects of the expected type. Listing [3[shows an example that
uses variadic arguments to print formatted output, similar to C’s sprintf() function. It
is based on a function taken from the PHP Zend Engine. As arguments, the function
expects a format string fmt, the variadic arguments ap, and a buffer xbuf to which
the formatted output should be written. To use the function, a C programmer has to
invoke a macro to set up and tear down the variadic arguments (respectively va_start()
and va_end()). Using the va_arg() macro, xbuf_format_converter() can then directly
access the variadic arguments. The example shows how a string can be accessed
(format specifier "%s") that is then inserted into the buffer xbuf.

The function uses the format string to determine how many variadic arguments should
be accessed. For example, for a format string "%s %s" the function attempts to access
two variadic arguments that are assumed to have a string type. Accessing a variadic
argument via va_arg() usually manipulates a pointer to the stack and pops the number
of bytes that correspond to the specified data type (char * in our example). In a
so-called format string attack, in which the function reads or writes beyond the stack
due to nonexistent arguments, an attacker can exploit the inability of the function to
verify the number and the types of the variadic arguments passed [8, 40].

In CVE-2015-8617, this function was the sink of a vulnerability that existed in PHP-7.0.0.
The zend_throw_error() function called xbuf_format_converter() with a message string
that was under user control. Consequently, an attacker could use format specifiers
without matching arguments to read from and write to memory, and thus execute
arbitrary code. As another example, in CVE-2016-4448 a vulnerability in libxml2
existed because format specifiers from untrusted input were not escaped.

Lack of type safety. Due to the lack of type safety, a programmer cannot verify whether
an object referenced by a pointer corresponds to its expected type [?22]]. Listing
demonstrates this for function pointers. The apply() function expects a function pointer
that accepts and returns an int. It uses the function to transform all elements of an
array. However, its callee might pass a function that returns a double; a call on it
would result in undefined behavior. Such “type confusion” cannot be avoided when
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M Listing3 Example usage of variadic functions, taken from the PHP Zend Engine

static void xbuf_format_converter(void *xbuf, const char *fmt, va_list ap) {
char *s = NULL;
size_t s_len;
while (*fmt) {
if (*fmt 1= '%') {
INS_CHAR(xbuf, *fmt);
} else {
fmt++;
switch (*fmt) {
[l ...
case 's':
s = va_arg(ap, char *);
s_len = strlen(s);
break;
[l ...
}
INS_STRING(xbuf, s, s_len);
}
}
}

M Listing4 Example of type confusion

int apply(int* arr, size_t n, int f(int arg1)) {
if (f == NULL) return -1;
for (size_t i = 0; i < n; i++)
arr[i] = f(arr[il]);
return o;

}
double square(int a) { return a * a; }

apply(arr, 5, square);

calling a function pointer, since objects have no types attached that could be used for
validation.

Unterminated strings. Unterminated strings are a problem, since the string functions
of libc (and sometimes also application code) rely on strings ending with a ‘\0’ (null
terminator) character. However, C standard library functions that operate on strings
lack a common convention on whether to add a null terminator [28]. Additionally, it
is not possible to verify whether a string is properly terminated without potentially
causing buffer overreads. Listing [s| shows an example of an unterminated string
vulnerability. The read function reads a file’s contents into a string inputbuf. After the
call, inputbuf is unterminated if the file was unterminated or if MAXLEN was exceeded.
This is likely to cause an out-of-bounds write in strcpy(), since it copies characters to
buf until a null terminator occurs. Recent similar real-world vulnerabilities include
CVE-2016-7449, where strlcpy() was used to copy untrusted (potentially unterminated)
input in GraphicsMagick. Further examples are CVE-2016-5093 and CVE-2016-0055,
where strings were not properly terminated in the PHP Zend Engine as well as in
Internet Explorer and Microsoft Office Excel [27]].

Unsafe functions. Some functions in common libraries such as libc have been designed
such that they “can never be guaranteed to work safely” [2, [12]. The most prominent
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M Listings Example fragment that may produce and copy an unterminated string

read(cfgfile , inputbuf, MAXLEN);
char buf[MAXLEN];

strcpy (buf, inputbuf);
puts(buf);

example is the gets() function, which reads user input from stdin into a buffer passed
as an argument. Since gets() lacks a parameter for the size of the supplied buffer, it
cannot perform any bounds checking and overflows the buffer if the user input is
too large. Although Cir1 replaced gets() with the more robust gets_s() function, legacy
code might still require the unsafe gets() function. In general, functions that lack size
arguments — which prevents safe access to arrays — cannot be made safe without
breaking source and binary compatibility.

[E] Introspection Functions

To enable C programmers to validate arguments and global data, we devised intro-
spection functions to query properties of C objects and the current function (see
Appendix B). These functions allow programmers only to inspect objects and not to
manipulate them; therefore, the presented functions are not a full reflection interface.

We designed these functions specifically to provide users with the ability to prevent
buffer overflow, use-after-free, and other common errors specific to C. Through in-
trospection, programmers can validate certain properties (memory location, bounds,
and types) before performing an operation on an object. Additionally, introspection
allows the number of variadic arguments passed to be queried and their types to be
validated.

We built introspection based on several introspection primitives. These primitives
are a minimal set of C functions that require run-time support. We also designed
introspection composites, which are implemented as normal C functions and are based
on the introspection primitives or on other composites. The introspection functions
that we expose to the programmer contain both selected primitives and composites.
We hereafter denote internal functions that are private to an implementation with an
underscore prefix.

3.1 Object Bounds

Most importantly, we provide functions that enable the programmer to perform bounds
checks before accessing an object. Simply providing a function that returns the size of
an object is insufficient, since a pointer can point to the middle of an object. Instead,
we require the runtime to provide two functions to return the space (in bytes) to the
left and to the right of a pointer target: _size_left() and _size_right(). Their result is
only defined for legal pointers, which we define as pointers that point to valid objects
(not INVALID, see Section [3.2)).
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M Listing6 Example of how to query the space to the left and to the right of a pointee

int *arr = malloc(sizeof(int) * 10);

int *ptr = &(arr[s]);

printf("%ld\n", size_left(ptr)); // prints 16
printf("%ld\n", size_right(ptr)); // prints 24

sizeof(int) * 10
|

I I
_size_left T_T _size_right

B Figure1 Memory Layout of the Example in Listing |§I

Ml Listing7 Implementation of size_left() using the functions location(), _size_left(), and

_size_right()
long size_left(const void *ptr) {
if (location(ptr) == INVALID) return -1;
bool inBounds = _size_right(ptr) >= o & _size_left(ptr) >= o;

if (!inBounds) return -1;
return _size_left(ptr);

}

Listing [6] illustrates the function return values when passing a pointer to the middle
of an integer array to these functions. For the pointer to the fourth element of the
ten-element integer array, _size_left() returns sizeof(int) * 4, and _size_right() returns
sizeof(int) * 6. Figure |1 shows the corresponding memory layout. On an architecture
where an int is four bytes in size the functions return 16 and 24, respectively.

We do not expose these two functions to the programmer, but base the composite
functions size_left() and size_right() on them, which return -1 if the passed argument is
not a legal pointer or out of bounds. Listing [7| shows the implementation of size_left().
Using location(), the function first checks that the pointer is legal (see Section [3.2). It
then checks that the spaces to the left and to the right of the pointer are not negative,
that is, the pointer is in bounds. If both checks are passed, the function returns the
space to the left of the pointer using _size_left(); otherwise, it returns -1.

Listing (8| shows how using size_right() improves read_number()’s robustness (see
Listing[t): If arr is a valid pointer but points to memory that cannot hold length chars,
we can prevent the out-of-bounds access by aborting the program. Note that the check
also detects lurking bugs, since it aborts even if fewer than length characters are read.
If arr is not a valid pointer, the return value of size_right() is -1.

3.2 Memory Location
Querying the memory location of an object (e.g., stack, heap, global data) allows
a programmer to obtain information about the lifetime of an object. For example,

it enables programmers to prevent use-after-free errors by detecting whether an
object has already been freed. Another use case is validating that no stack memory is
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Ml Listing8 By using the size_right() function we can avoid out-of-bounds accesses in
read_number()

void read_number(char* arr, size_t length) {
int i = o;
if (length == 0) return;
if (size_right(arr) < length) abort();
/...

}

B Listing9 Example of how the location() enum constants relate to objects in a program

int a; /| location(&a) returns STATIC for global objects

void func() {
static int b; /| location(&b) returns STATIC for static local objects
int c; /] location(&c) returns AUTOMATIC for stack objects

int* d = malloc(sizeof(int) * 10);
/| location(&d) returns DYNAMIC for heap objects
free(d); /| location(&d) returns INVALID for freed objects
}

M Listing10 By using location() and _size_left() we can check whether an object can be freed

bool freeable(const void *ptr) {
return location(ptr) == DYNAMIC && _size_left(ptr) == o;
}

returned by a function. A programmer can also check whether a location refers to
dynamically allocated memory to ensure that free() can be safely called on it. For this
purpose, we provide the function location(), which determines where an object lies in
memory.

The function returns one of the following enum constants:
= INVALID locations denote NULL pointers or deallocated memory (freed heap memory

or dead stack variables). Programs must not access such objects.
= AUTOMATIC locations denote non-static stack allocations. Functions must not return

allocated stack variables that were declared in their scope, since they become

INVALID when the function returns. Further, stack variables must not be freed.
= DYNAMIC locations denote dynamically allocated heap memory created by malloc(),

realloc(), or calloc(). Only memory allocated by these functions can be freed.
= STATIC locations denote statically allocated memory such as global variables, string

constants, and static local variables. Static compilers usually place such memory in
the text or data section of an executable. Programs must not free statically allocated
memory.
Listing [o] shows how differently allocated memory relates to the enum constants used
by location().

We provide the function freeable(), which is based on location(), to conveniently
check whether an allocation can be freed. As Listing [t0| demonstrates, a freeable
object’s location must be DYNAMIC, and its pointer must point to the beginning of
an object. Listing [11 shows how we can use the freeable() function to improve the
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Ml Listing 11 By using the freeable() function we can avoid double-free errors

char* ptr = (char*) malloc(SIZE * sizeof(char));
if (err) {
abrt = 1;
if (freeable(ptr)) free(ptr);
}
/...
if (abrt) {
logError("operation aborted", ptr);
if (freeable(ptr)) free(ptr);
}

B Listing12 By using the location() function we can avoid use-after-free errors

void logError(const char* message, void* ptr) {

if (location(ptr) == INVALID)
log("dangling pointer passed to logError!");
else

logf("error while processing %p", ptr);

robustness of the code fragment shown in Listing [2| It ensures that freeing the pointee
is valid, and thus prevents invalid free errors, such as double freeing of memory.
Nonetheless, the logError() function may receive a dangling pointer as an argument.
To resolve this, we can check in logError() whether the pointer is valid (see Listing.

Note that some libraries, such as OpenSSL, use custom allocators to manage their
memory. Custom allocators are outside the scope of this paper, but could be supported
by providing source-code annotations for allocation and free functions; this informa-
tion could then be used by the runtime to track the memory. The annotations for the
allocation functions would need to specify how to compute the size of the allocated
object, and the location of the allocated memory. Additionally, it might be desirable
to add further enum constants, for example, for shared, file-backed, or protected
memory. We omitted additional constants for simplicity.

3.3 Type

We provide a function that allows the programmer to validate whether an object is
compatible with (can be treated as being of) a certain type. Such a function enables
programmers to check whether a function pointer actually points to a function object
(and not to a long, for example) and whether it has the expected function signature.
As another example, programmers can use the function as an alternative to size_right()
and size_left() to verify that a pointer of a certain type can be dereferenced.

C has only a weak notion of types, which makes it difficult to design expressive type
introspection functions. For example, it is ambiguous whether a pointer of type int*
that points to the middle of an integer array should be considered as a pointer to an
integer or as a pointer to an integer array. Another example is heap memory, which
lacks a dynamic type; although programmers usually coerce them to the desired type,
objects of different types can be stored. Even worse, when writing to memory, objects
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Ml Listing 13 By using try_cast() we can ensure that we can perform an indirect call on the
function pointer in apply()

int apply(int* arr, size_t n, int f(int arg1)) {

if (size_right(arr) < sizeof(int) * n || try_cast(&f, type(f)) == NULL)
return -1;

for (size_t i = 0; i < n; i++)
arr[i]l = f(arr[il);

return o;

}

can be partially overwritten; for instance, half of a function pointer can be overwritten
with an integer value, which makes it difficult to decide whether the pointer is still a
valid function pointer.

Instead of assuming that a memory region has a specific type, we designed a function
that allows the programmer to check whether the memory region is compatible with
a certain type (similar to [22]). The try_cast() function expects a pointer to an object
as the first argument and tries to cast it to the Type specified by the second argument.
If the runtime determines that the cast is possible, it returns the passed pointer, and
NULL otherwise. The cast is only possible if the object can be read, written to, or called
as the specified type.

The Type object is a recursive struct which makes it possible to describe nested
types (known as type expressions [1]). For example, a function pointer with an int
parameter and double as the return type can be represented by a tree of three Type
structs. The root struct specifies a function type and references a struct with an int
type as the argument type as well as a struct with a double type as the return type.
Since manually constructing Type structs is tedious, we specified the optional operator
type(). As an argument, it requires the expression example value, whose declared type
is returned as a Type run-time data structure. Since the declared type is a compile-time
property, we want to resolve the type() operator during compile time; consequently,
the programmer cannot take type()’s address and call it indirectly. The operator is
similar to the GNU C extension typeof, which yields a type that can be used directly
in variable declarations or casts.

Listing [13| shows how the type introspection functions make the function apply()
(see Listing |4) more robust: apply() uses try_cast() to check whether the runtime can
treat its first argument as the specified function pointer. Its second argument is the
Type object that the type operator constructs from the declared function pointer type.
The try_cast() function returns the first argument if it is compatible with the specified
function pointer type; otherwise, it returns NULL. In addition to preventing the calling
of invalid function pointers, apply() prevents out-of-bounds accesses by validating the
array size.

The try_cast() function is similar to C+ +’s dynamic_cast(). However, we want to point
out that C++’s dynamic_cast() works only for class checks (which are well-defined),
while our approach works for all C objects. We believe that the exact semantics of
try_cast() should be implementation-defined, since run-time information could differ
between implementations. For example, depending on the runtime’s knowledge of
data execution prevention, it might either allow or reject the cast of a non-executable
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Bl Listing 14 By using count_varargs() and get_varargs() we can use variadics in a robust way

double avg(int count, ...) {

if (count == o || count != count_varargs())
return o;

int sum = o;

for (int i = 0; i < count; i++) {
int *arg = get_vararg(i, type(&sum));
if (arg == NULL) return o;
else sum += *arg;

}

return (double) sum / count;

}

char array filled with machine instructions to a function pointer. Further, different
use cases exist, and a security-focused runtime might have more sources of run-time
information and be more restrictive than a performance-focused runtime. For example,
a traditional runtime would (for compatibility) allow dereferencing a hand-crafted
pointer as long as it corresponds to the address of an object, while a security-focused
runtime could disallow it. Thus, depending on the underlying runtime, compiler, and
ABI, try_cast() can return different results.

3.4 Variadic Arguments

Our introspection interface provides macros to query the number of variadic arguments
and enables programmers to access them in a type-safe way. They are implemented as
macros and not as functions, since they need to access the current function’s variadic
arguments. The introspection macros make using variadic functions more robust and
are, for example, effective in preventing format string attacks [8].

Querying the number of variadic arguments can be achieved by calling count_varargs().
The standard va_arg() macro reads values from the stack while assuming that they
correspond to the user-specified type. As a robust alternative, introspection com-
posites can use _get_vararg() to access the passed variadic arguments directly by an
argument index. To access the variadic arguments in a type-safe way, we introduced
the get_vararg() macro, which is exposed to the programmer and expects a type that
it uses to call try_cast(). Listing [14| shows an example of a function that computes the
average of int arguments. It uses count_varargs() to verify the number of variadic ar-
guments and ensures that the i'" argument is in fact an int by calling get_vararg() with
type(&sum). If an unexpected number of parameters or an object with an unexpected
type is passed, the function returns o.

For backwards compatibility, we used the introspection intrinsics to make the stan-
dard vararg macros (va_start(), va_arg(), and va_end()) more robust. Firstly, va_start()
initializes the retrieval of variadic arguments. We modified it such that it allocates a
struct (using the alloca() stack allocation function) and populates it using _get_vararg()
and count_varargs(). The struct comprises the number of variadic arguments, an ar-
ray of addresses to the variadic arguments, and a counter to index them. Secondly,
va_arg() retrieves the next variadic argument. We modified it such that it checks that
the counter does not exceed the number of arguments, increments the counter, in-
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dexes the array, and casts the variadic argument to the specified type using try_cast().
If the cast succeeds, the argument is returned; otherwise a call to abort() exits the
program. Finally, va_end() performs a cleanup of the data initialized by va_start(). We
modified it such that it resets the variadic arguments counter.

Using the enhanced vararg macros improves the robustness of the
xbuf_format_converter() function (see Listing , since the number of format
specifiers must match the number of arguments, thus making it impossible to exploit
the function through format string attacks. Note that the modified standard macros
abort when they process invalid types or an invalid number of arguments, whereas
the intrinsic functions allow programmers to react to invalid arguments in other ways.

Implementation

We implemented the introspection primitives in Safe Sulong [32], which is an execution
system and bug-finding tool for low-level languages such as C. At its core is an
interpreter written in Java that runs on top of the JVM. Although this setup is not
typical for running C, it is a good experimentation platform because the JVM (and
thus also Safe Sulong) already maintains all the run-time metadata that we want to
expose. If exposing introspection primitives turns out to be useful for Safe Sulong,
similar mechanisms could also be implemented for other runtimes (e.g., those of
static compilation approaches). Unlike its counterpart Native Sulong [33]], Safe Sulong
uses Java objects to represent C objects. By relying on Java’s bounds and type checks,
Safe Sulong efficiently and reliably detects out-of-bounds accesses, use-after-free,
and invalid free. When detecting such an invalid action, it aborts execution of the
program. Section |4.1/ gives an overview of the system, and Section |4.3|describes how
we implemented the introspection primitives.

41 System Overview

Figure |2 shows the architecture of Safe Sulong, which comprises the following compo-
nents:
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M Figure3 Diagram of the ManagedObject Hierarchy

Clang. Safe Sulong executes LLVM Intermediate Representation (IR), which repre-
sents C functions in a simpler, but lower-level format. LLVM is a flexible compilation
infrastructure [25]], and we use LLVM’s front end Clang to compile the source code
(libraries and the user application) to the IR.

LLVM IR. LLVM IR retains all C characteristics that are important for the content of
this paper. It can, for instance, contain external function definitions and function calls.
By executing LLVM IR, Safe Sulong can execute all languages that can be compiled
to this IR, including C++ and Fortran. Using binary translators that convert binary
code to LLVM IR even allows programs to be executed without access to their source
code. For example, MC-Semantics [10] and QEMU [6] support x86, and LLBT [41]
supports the translation of ARM code. Binary libraries that are converted to LLVM IR
can then profit from the enhanced libraries that Safe Sulong can execute, such as our
enhanced libc.

Truffle. The LLVM IR interpreter is based on Truffle [53]]. Truffle is a language imple-
mentation framework written in Java. To implement a language, a programmer writes
an Abstract Syntax Tree (AST) interpreter in which each operation is implemented
as an executable node. Nodes can have children that parent nodes can execute to
compute their results.

Graal. Truffle uses Graal [54], a dynamic compiler, to compile frequently executed
Truffle ASTs to machine code. Graal applies aggressive optimistic optimizations based
on assumptions that are later checked in the machine code. If an assumption no longer
holds, the compiled code deoptimizes [20]], that is, control is transferred back to the
interpreter and the machine code of the AST is discarded.

LLVM IR Interpreter. The LLVM IR interpreter forms the core of Safe Sulong; it executes
both the user application and the enhanced libc. First, a front end parses the LLVM IR
and constructs a Truffle AST for each LLVM IR function. Then, the interpreter starts
executing the main function AST, which can invoke other ASTs. During execution,
Graal compiles frequently executed functions to machine code.

JVM. The system can run efficiently on any JVM that implements the Java-based JVM
compiler interface (JVMCI [36]). JVMCI supports Graal and other compilers written
in Java.
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4.2 Introspection Primitives and Other Functions

While the majority of Safe Sulong’s libc is implemented in C, the introspection primi-
tives (and a core API, similar to system calls) are implemented directly in Java. Both
are ultimately represented using executable ASTs, which are stored in a symbol table
created prior to program execution. For functions contained in the LLIVM IR file, the
parser constructs the AST nodes from the instructions denoted in the LLVM IR function.
For introspection primitives, we implemented special nodes that have no equivalent
bitcode instruction (see Section [4.3). During execution, Safe Sulong looks up the AST
in the symbol table using the function name. From the runtime’s perspective, the
implementation of that function is transparent.

4.3 Objects and Introspection

The LLVM IR interpreter uses Java objects instead of native memory to represent
LLVM IR objects (and thus C objects). Figure [3|illustrates its type hierarchy. Every
LIVM IR object is a ManagedObject which has subclasses for the different types. For
example, an int is represented by an 132 object, which stores the int’s value in the
value field. Similarly, there are subclasses for arrays, functions, pointers, structs, and
other types. Note that we have previously described a similar object hierarchy for the
implementation of a Lenient C dialect and how certain corner cases are supported
(e.g., deriving pointers from integers) [34]. In the introspection implementation, we
needed to expose properties of these Java objects to the programmer:

Bounds. The ManagedObject class provides the method getByteSize(), which returns
the size of an object. Safe Sulong represents pointers as objects of a ManagedAddress
class that holds a reference to the pointee and a pointer offset that is updated through
pointer arithmetics (pointee and pointerOffset). For example, for the pointer to the 4™
element of an integer array in Listing[6] the pointerOffset is 16, and pointee references
an 132Array that holds a Java int array (see Figure[4)). If a program were to dereference
the pointer, the interpreter would compute pointerOffset / sizeof(int) to index the array.
We implemented the size_right() function by ptr.pointee.getByteSize() - ptr.pointerOffset.

Memory location. Although ManagedObjects live on the Java heap, the location() func-
tion needs to return their logical memory location. This location is stored in a field
of the ManagedObject class. Depending on whether an object is allocated through
malloc(), as a global variable, as a static local variable, or as a constant, we assign a
different flag to its location field; calls to free() and deallocation of automatic variables
assign INVALID. For instance, for an integer array that lives on the stack, the interpreter
allocates an 132Array and assigns AUTOMATIC to its location. After leaving the function
scope, its location is updated to INVALID. When the location() function is called with a
pointer to the integer array, it returns the location field’s value.

Type. For implementing the try_cast() function, we check if the type of the passed
object (given by its Java class) is compatible with the type specified by the Type struct.
For example, to check whether we can call a pointer as a function with a certain
signature, we first compare the passed pointer with a Type that describes this signature.
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ptr: ManagedAddress v
arr: 132Array

pointerOffset = 16
pointee values=[ [ [T TTTTTT]

M Figure 4 Representation of a pointer to the 4" element of an int array

If the pointer references a Safe Sulong object of type Function, the argument and
return types are compared. This is possible because Function objects retain run-time
information about their arguments and return types, which can be retrieved via the
method getSignature().

Variadic arguments. In Safe Sulong, a caller explicitly passes its arguments as an object
array (i.e., a Java array of known length) to its callee. Based on the function signature
and the object array, the callee can count the variadic arguments to implement
count_varargs() and extract them to implement _get_vararg().

B Case Study: Safe Sulong’s Standard Library

We implemented an enhanced libc for Safe Sulong. This libc uses introspection for
checks that make it more robust against usage errors and attacks. For instance,
its functions identify invalid parameters that would otherwise cause out-of-bounds
accesses or use-after-frees. In such a case, the functions return special values to
indicate that something went wrong, and then set errno to an error code. However,
for functions for which no special value can be returned (e.g., because the return type
is void), setting errno would be meaningless, since functions are allowed to change
errno arbitrarily even if no error occurred. In these cases, the functions still attempt
to compute a meaningful result. Such behavior is compliant with the C standards,
since we prevent illegal actions with undefined behavior that could crash the program
Or corrupt memory.

For applications and libraries that run on Safe Sulong, the distribution format is
LLVM IR and not executable code. Our standard library improvements are binary-
compatible at the IR level, which means that users do not have to recompile their
applications when using our enhanced libc. In addition, this standard library is source-
compatible, so a user is not required to change the program when using it. Below, we
give an overview of our enhanced library functions:

String functions. We made all functions that operate on strings (strlen(), atoi(), strcmp(),
printf(), etc.) more robust by computing meaningful results even when a string lacks
a null terminator. They do not read or write outside the boundaries of unterminated
strings, which makes them robust against common string vulnerabilities. The functions
increase availability of the system, since unterminated strings passed to libc do not
cause crashes. Note that when a function outside libc relies on a terminated string, it
will still trigger an out-of-bounds access and cause Safe Sulong to abort execution.
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Ml Listing15 Robust implementation of strlen() that also works for unterminated strings

size_t strlen(const char *str) {
size_t len = o;
while (size_right(str) > o & *str != '"\o') {
len++; str++;
1

return len;

}

Thus, increased availability does not harm confidentiality (e.g., by leaking data of
other objects) and integrity (e.g., by overwriting other objects).

For instance, Listing[15|shows how we improved strlen() by preventing buffer overflows
when iterating over a string, and by improving the handling of non-legal pointers
(where size_right() returns -1). For terminated strings, strlen() iterates until the first
‘\0’ character to return the length of the string. For unterminated strings, the function
cannot return -1 to indicate an error, since size_t is unsigned, so we also do not set
errno. Instead, it iterates until the end of the buffer and returns the size of the string
until the end of the buffer.

The enhanced string functions also allow execution of the code fragment in Listing|s|
Even though the source string may be unterminated, strcpy() will not produce an out-of-
bounds read, since it stops copying when reaching the end of the source or destination
buffer. The call to puts() also works as expected, and prints the unterminated string.

Functions that free memory. We made functions that free memory (realloc() and free())
more robust by checking whether their argument can safely be freed using freeable().
In Safe Sulong, malloc() is written in Java and allocates a Java object. By using the
introspection functions we were able to conveniently and robustly implement realloc()
in C without having to maintain a list of allocated and freed objects.

Format string functions. We made input and output functions that expect format
strings more robust. Examples are the printf() functions (printf(), fprintf(), sprintf(),
viprintf(), vprintf(), vsnprintf(), vsprintf()) and the scanf() functions (scanf(), fscanf(),
etc.). These functions expect format strings that contain format specifiers, and match-
ing arguments that are used to produce the formatted output. Since the functions
are variadic, we used count_varargs() to add checks that verify that the number of
format specifiers is equal to the actual number of arguments. Further, the functions use
get_vararg() to verify the argument types. This prevents format-string vulnerabilities
and out-of-bounds reads in the format string, as demonstrated in the implementation
of strlen().

Higher-order functions. We enhanced functions that receive function pointers such as
gsort() and bsearch(). Listing [16| shows how gsort() can use try_cast() to verify that f is
a function pointer that is compatible with the specified signature. Furthermore, the
functions verify that no memory errors, such as buffer overflows, can occur.

gets() and gets_s(). While Cir1 replaced the gets() function with gets_s(), Safe Sulong
can still provide a robust implementation for gets() (see Listing[17)). Since size_right()
can determine the size of the buffer to the right of the pointer, we can call it and use
the returned size as an argument to the more robust gets_s() function. If the pointer
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Ml Listing16 Robust gsort() implementation that checks whether it can call the supplied
function pointer

void gsort(void *base, size_t nitems, size_t size, int (*f)(const void *, const void*)) «

= {
int (*verifiedPointer)(const void *, const void*) = try_cast(&f, type(f));
if (size_right(base) < nitems * size || verifiedPointer == NULL) errno = EINVAL;
else {

/| qsort implementation
}
}

M Listing 17 Robust implementation of gets() that uses the more robust gets_s() in its imple-
mentation

char *gets(char *str) {
int size = size_right(str);
return gets_s(str, size == -1 ? 0 : size);

}

B Listing 18 Robust implementation of gets_s() that verifies the passed size argument

char *gets_s(char *str, rsize_t n) {
if (size_right(str) < (long) n) {
errno = EINVAL; return NULL;
} else {
/] original code
}
}

is not legal, we pass o, which gets_s() handles as an error. We also made gets_s() more
robust against erroneous parameters (see Listing [18). By using size_right() we can
validate that the size parameter n is at least as large as the remaining space right
of the pointer. The check prevents buffer overflows for gets() and gets_s(), and also
passing of dead stack memory or freed heap memory.

I3 Related Work

C Memory safety approaches. For decades, academia and industry have been coming
up with approaches to tackling memory errors in C. Thus, there is a vast number of
approaches that deal with these issues, both static and run-time approaches, both
hardware- and software-based. We consider our approach as a run-time approach,
since the checks (specified by programmers in their programs) are executed during
run time. The literature provides a historical overview of memory errors and defense
mechanisms [48]], an investigation of the weaknesses of current memory defense
mechanisms including a general model for memory attacks [46]], and a survey of
vulnerabilities and run-time countermeasures [55]]. Using introspection to prevent
memory errors is a novel approach that is complementary to existing approaches
because the programmer can check for and prevent an invalid action; if the check is
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omitted and an invalid access occurs, an existing memory safety solution could still
prevent the access.

Run-time types for C. libcrunch [22] is a system that detects type-cast errors at run
time. It is based on liballocs [23]], a run-time system that augments Unix processes
with allocation-based types. libcrunch provides an __is_a() introspection function
that exposes the type of an object. It uses this function to validate type casts and
issues a warning on unsound casts. In contrast to our approach, libcrunch checks for
invalid casts automatically, so the __is_a() function is not exposed to the programmer,
nor are there other introspection functions. However, we believe that the system
could be extended to provide additional run-time information that could be used to
implement the introspection primitives. Typical overheads of collecting and using the
type information are between 5-35%, which demonstrates that introspection functions

are feasible in static compilation approaches.

Failure-oblivious computing. Failure-oblivious computing [35] is a technique that en-
ables servers to continue their normal execution path in the presence of memory errors.
Instead of aborting the program, invalid writes are discarded, and for invalid reads
values are manufactured. Note that this approach is automatic, since the compiler
inserts checks and continuation code where memory errors can occur. Failure-oblivious
computing would, for example, work well for strlen by manufacturing the value zero
when the NULL terminator is missing and the read runs over the buffer end. However,
returning zero for out-of-bounds accesses does not work in general; for example, when
the loop’s exit condition checks if the array element is -1, failure-oblivious computing
approaches could run into an endless loop. In contrast, using our introspection tech-
nique, programmers can take into account the semantics of a function to prevent such
situations. Additionally, introspection can also be used for bug-finding (not only to
increase availability), for example, by checking if the actual buffer length corresponds
to the expected buffer length in functions like gets_s.

Static vulnerability scanners. Static vulnerability scanners identify calls to unsafe func-
tions such as gets() depending on a policy specified in a vulnerability database [l49].
Such approaches must decide conservatively whether a call is allowed, unlike our
approach, which validates parameters at run-time through introspection. Nowadays,
most compilers issue a warning when they identify a call to an unsafe function such
as gets(), but not necessarily for other, slightly safer functions, such as strcpy().

Fault injection to increase library robustness. Fault injection approaches generate a se-
ries of test cases that exercise library functions in an attempt to trigger a crash in
them. HEALERS [13, 14] is an approach that, after identifying a non-robust function,
automatically generates a wrapper that sits between the application and its shared
libraries to handle or prevent illegal parameters. To check the bounds of heap ob-
jects passed to the functions, the approach instruments malloc() and stores bounds
information. In contrast to our solution, the approaches above support pre-compiled
libraries. However, they can generate wrapper checks only where run-time information
is explicitly available in the program. Additionally, they prevent the programmer from
specifying the action in case of an error, and always set errno and return an error
code.
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Detecting APl misusages. APISan [56]] is a tool for finding API usage errors, such as
cryptographic protocol API misues, but also integer overflows, NULL dereferences,
memory leaks, incorrect return values, format string vulnerabilities, and wrong argu-
ments. It is based on the idea that the dominant usage pattern of an API across several
projects indicates its correct use. APISan is implemented by gathering execution
traces using symbolic execution, from which it infers correct API usages; deviating
patterns are potential API misuses. While this approach aims to identify incorrect use
of libraries, our approach aims to make library functions more robust.

Replacing (parts of) libc. SFIO [l24] is a libc replacement and addresses several of its
problems. It mainly improved completeness and efficiency, but it also introduced safer
routines for functions that operate on format strings. Additionally, the SFIO standard
library functions are more consistent in their arguments and argument order, and
thus less error-prone than some of the libc functions. In [28], the less error-prone
strlcpy() and strlcat() functions were presented as replacements for the strcpy() and
strncat() functions. Unlike our improved C standard library, these approaches lack
source compatibility.

Safer implementation of library functions. To prevent format string vulnerabilities in
the printf family of functions, FormatGuard [8]] uses the preprocessor to count the
arguments to variadic functions during compile time and checks that the number com-
plies with the actual number at run time. FormatGuard replaces the printf functions
in the C standard library with more secure versions while retaining compatibility
with most programs. From a user perspective, FormatGuard is similar to Safe Sulong’s
standard library, in that both provide more robust C standard library functions. While
our approach works only for runtimes that implement the introspection primitives,
StackGuard works for arbitrary compilers and runtimes. However, our approach can
also verify bounds, memory location, and types of objects.

Restricting buffer overflows in library functions. Libsafe [2]] replaces calls to unsafe li-
brary functions (such as strcpy() and gets()) with wrappers that ensure that potential
buffer overflows are contained within the current stack frame. It can prevent only
stack buffer overflows, since it checks that write accesses do not extend beyond the
end of the buffer’s stack frame. In contrast, approaches exist that protect only against
heap buffer overflows caused by C standard library functions [15]]. By intercepting
C standard library calls, the approach keeps track of heap memory allocations and
performs bounds checking before calling the C standard library functions that operate
on buffers. Both approaches work with any existing pre-compiled library, but do not
protect against all kinds of buffer overflows. With our approach, a programmer can im-
plement checks that prevent both heap and stack overflows, and use the introspection
interface to also prevent use-after-free and other errors.

Reflection for C. Higher-level languages such as Java or C# throw exceptions when
encountering out-of-bounds accesses and other errors. Exception handling is a more
expressive approach than explicitly checking for invalid accesses in advance, since it
separates the two concerns in the program. Some approaches introduced mechanisms
to raise and catch exceptions in C [16, 26]]. However, these approaches do not describe
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how invalid memory errors could be caught and exposed to the programmer as an
exception.

Discussion

Advantages over existing tools. We assume that introspection is exposed by a runtime
that automatically aborts when detecting an error (e.g., an out-of-bounds access). In
this scenario, using introspection allows programmers to override the default behavior
of aborting the program by checking for invalid states and by reacting to them before
the failure occurs. Even if checks are omitted, the runtime aborts execution in case
of an error. Additionally, introspection can be used to check for faults that might not
result in errors during run time. While adding these checks does not come for free (i.e.,
they require programming effort), we believe that they can be useful at boundaries of
shared libraries, and at the boundaries of subcomponents within a project.

Adoption of introspection. Two of the C/C+ + tenets are that “you don’t pay for what
you don’t use” [45]] and to “trust the programmer” [5]. Hence, programmers often
eschew checks even if they are possible without introspection functions [14]]. An open
question is thus whether C programmers would use introspection if they had access
to it. We believe that there is a need for the safe execution of legacy C code (at the
expense of performance) as an alternative to porting programs to safer languages.
It has yet to be determined which of the introspection functions are useful in practice
(e.g., by conducting a case study on real-world programs). We believe that functions
such as size_right() are easy to understand and use, and could prevent common errors
in practice. In contrast, grasping the semantics of try_cast() is more difficult because C
does not have a strong notion of typing, and use cases for it are also rare; consequently,
it would probably be used less often.

Safer languages. Since using introspection requires changes to the source code, a
question is whether a library should not simply be rewritten in some other systems
programming language, such as Rust or Go, that approach the performance of C
while being safe. First, preventing out-of-bounds accesses or use-after-free errors can
already be prevented by using special runtimes without rewriting the project in a safer
language (e.g., using AddressSanitizer [|38]] or SoftBound+CETS [29, 30]). However,
our approach goes beyond these guarantees by allowing the programmer to handle
errors in customized ways. Second, the effort required to rewrite an application would
simply be too high for many real-world applications. In contrast, incrementally adding
checks to an existing code base is less work.

Legacy code. Our approach also brings benefits for legacy applications, namely when
a commonly used shared library is modified to employ introspection for additional
checks: For example, there are legacy applications that use the insecure gets() libc
function. Using our approach, a safe implementation of gets() can be provided if the
runtime implements the introspection interface and libc uses it to query the length
of the buffer. Thus, availability or security of legacy code can be improved simply by
employing a libc that inserts additional checks enabled by introspection. In contrast,
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when reimplementing libc in a safer language, the function gets() cannot be made
safe, as a buffer allocated by C code has no bounds information attached to it.

Static compilation. Introspection requires information about run-time properties of
objects in the program. While interpreters and virtual machines often maintain this
information, runtimes that execute native programs compiled by static compilers such
as Clang or GCC do not. We want to point out that debug metadata (obtained by
compiling with the -g flag) cannot provide per-object type information needed for
introspection. However, it has been shown that per-object information (such as types)
can be added add low cost to static compilation approaches [22]] and hence make
implementing the introspection functions in their runtimes feasible. As part of future
work, we intend to implement introspection primitives using tools based on a static
compilation model.

Partial metadata availability. While designing the interface, we assumed that a tool
that implements introspection maintains all relevant metadata. However, some run-
times maintain only a subset of it; for example, bounds checkers track bounds informa-
tion and can implement only _size_left() and _size_right(). Custom memory allocators
that track heap allocations can implement only a subset of the function location(). It
has yet to be investigated how code can benefit from runtimes that implement only
parts of the interface. A compile-time approach would involve checking introspection
features using preprocessor directives. Another approach would involve structuring
the checks such that they do not fail when an introspection function returns a default
value that indicates that the corresponding feature is unsupported.

Performance measurement. The focus of this work was on evaluating the usefulness
of exposing introspection functions to library writers. We did not invest much time in
optimizing the peak performance of our approach in Safe Sulong. Thus, we show its
performance only on a small set of microbenchmarks for which we used our enhanced
libc (see Appendix [A). As part of future work, we want to extend Safe Sulong’s
completeness to execute larger benchmarks, such as SPEC INT [7].

] conclusion

We have presented an introspection interface for C that programmers can use to make
libraries more robust. The introspection functions expose properties of objects (bounds,
memory location, and type) as well as properties of variadic functions (number of
variadic arguments and their types). We have described an implementation of the
introspection primitives in Safe Sulong, a system that provides memory-safe execution
of C code. However, our approach is not restricted to Safe Sulong; many dynamic bug-
finding tools and runtimes exist that could implement (a subset of) the introspection
interface. The approach is complementary to existing memory safety approaches, as
programmers can use it to react to and prevent errors in the application logic. Finally,
we have shown how we used the introspection interface to implement an enhanced,
source-compatible C standard library.
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N Preliminary Performance Evaluation

The focus of this work was on evaluating the usefulness of exposing introspection
functions to library writers. We have not yet invested much time in optimizing the peak
performance of our approach in Safe Sulong. To demonstrate that Safe Sulong can run
programs in a testing environment, we ran six benchmarks of the Computer Language
Benchmark Game [42] (binarytrees, fannkuchredux, fasta, mandelbrot, nbody, and
spectralnorm) and the whetstone benchmark [|52]], once with the enhanced libc and
once without introspection checks. We determined the average peak performance of
10 runs by measuring the execution time after 5o in-process warm-up iterations. On
these benchmarks, Safe Sulong’s peak performance was 2.3x slower than executables
compiled by Clang with all optimizations turned on (-03 flag). We were unable to
find any observable performance differences between the two libc versions, which is
in part due to some of the introspection checks redundantly duplicating automatic
checks performed by the JVM (e.g., bounds checks); such redundant checks can be
eliminated by using the Graal compiler (e.g., through conditional elimination [43]]). As
part of future work, we will evaluate Safe Sulong’s performance in combination with
the enhanced libc on larger benchmarks that stress the introspection functionality.

I} Introspection Functions

Table [1f shows the functions and macros of the introspection interface. Internal func-
tions that are private to the implementation are denoted with an underscore prefix.
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B Table1 Functions and macros of the introspection interface

Object bounds functions

long _size_right(void *) Primitive =~ Returns the space in bytes from the pointer
internal target to the end of the pointed object. This
function is undefined for illegal pointers.
long _size_left(void *) Primitive =~ Returns the space in bytes from the pointer
internal target to the beginning of the pointed ob-
ject. This function is undefined for illegal
pointers.
long size_right(void *) Composite Returns the remaining space in bytes to the

right of the pointer. Returns -1 if the pointer
is not legal or out of bounds.

long size_left(void *) Composite Returns the remaining space in bytes to the
left of the pointer. Returns -1 if the pointer
is not legal or out of bounds.

Memory location functions

Location location(void *) Primitive Returns the kind of the memory location
of the referenced object. Returns -1 if the
pointer is NULL.

bool freeable(void *) Composite Returns whether the pointer is freeable
(i.e., DYNAMIC non-null memory; pointer
referencing the beginning of an object).

] Type functions ‘
void* try_cast(void * struct Type  Primitive Returns the first argument if the pointer is
*) legal, within bounds, and the referenced

object can be treated as of being of the
specified type and NULL otherwise.

| Variadic function macros

int count_varargs() Primitive Returns the number of variadic arguments
that are passed to the currently executing

function.
void* _get_vararg(int i) Primitive  Returns the it variadic argument (starting
internal from o) and returns NULL if i is greater or

equal to count_varargs().
void* get_vararg(int i, Type* Composite Returns the it" variadic argument (starting
type) from o) as the specified type. Returns NULL
if the object cannot be treated as being of
the specified type or if i is greater or equal
to count_varargs().
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