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Abstract

Hardware transactional memory is a new method of optimistic concurrency control
that can be used to solve the synchronization problem in multicore software. It is
a promising solution due to its simple semantics and good performance relative to
traditional approaches. Before we can incorporate this nascent technology into high-
performing concurrent programs, it is necessary to investigate the physical capacity
constraints and performance characteristics of hardware transactions in order to bet-
ter inform programmers of their abilities and limitations.

Our investigation involves the first empirical study of the “capacity envelope” of
HTM in Intel’s Haswell and IBM’s Power8 architectures. We additionally survey how
contention parameters, such as transaction size or write ratio, affect HTM perfor-
mance and we capture these trends in a regression model for predicting the through-
put of HTM-enabled concurrent programs. Through our investigation, we aim to
provide what we believe is a much needed understanding of the extent to which one
can use HTM to replace locks.
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Chapter 1

Opening

1.1 Introduction

As Moore’s law has plateaued [20] over the last several years, the number of researchers
investigating technologies for fast concurrent programs has doubled approximately
every two years. ' High performance concurrent programs require the effective uti-
lization of ever-increasing core counts and perhaps no technology has been more antic-
ipated toward this end than Hardware Transactional Memory (HTM). Transactional
memory [9] was originally proposed as a programming abstraction with simple seman-
tics that could also achieve good performance, and Intel [13, 17] and IBM |3, 11, 15]
have both recently introduced mainstream multicore processors supporting restricted
HTM.

Hardware transactions offer a performance advantage over software implementa-
tions [4, 19] by harnessing the power of existing cache coherence mechanisms which are
already fast, automatic, and parallel. HTM has been shown to achieve the high per-
formance of well-engineered software using fine-grained locks and atomic instructions
(e.g. compare-and-swap [8]) [25] while maintaining the simplicity of coarse-grained
locks [25]. The source of their superior performance, however, is also the root of their

weakness: the Intel and IBM systems are both best effort hardware transactional

! This estimation was determined by searching the ACM Digital Library within years to find out
how many unique researchers were publishing papers with 'transactional memory’ in the title.



memory implementations [3, 7, 12, 13| because transactions can fail when the work-
ing set exceeds the capacity of the underlying hardware. The capacity constraints
that dictate the conditions under which these failures inevitably occur dramatically
influence whether the complexity of designing a software system using restricted HTM
is justified by the expected performance.

The feasibility tradeoff imposed by the capacity constraints is just one considera-
tion in the design of software systems using restricted HTM. If the ultimate goal is
to build fast concurrent programs, then we must also focus our attention on finding
the optimal use cases for HTM. This motivation leads us to explore the design space
of multicore programs to understand how hardware transactions perform in different
cases of contention.

Our goal in this paper is to characterize the capacity constraints of HTM and to
discover their performance characteristics with respect to contention parameters like
transaction size or write ratio. These are the steps we have taken to move closer to

this end:

e Empirically study the capacity constraints of hardware transactions to expose

the hardware implementations that dictate these limits

e Articulate a set of contention parameters, like transaction size or write ratio,
that sufficiently span the multicore design space and can be used to synthetically

generate different cases of contention for benchmarking

e Discover performance trends of hardware transactions with respect to different

contention parameters

e Capture these trends in a multivariate linear regression model that can be used

to predict HTM performance in real multicore programs

We anticipate these contributions will provide a much needed understanding of
hardware transactional memory to better enable its effective utilization in future

multicore programs.
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1.2 Related Work

Recently, several researchers have considered variations of hybrid transactional mem-
ory (HyTM) systems [5, 6, 14] which exploit the performance potential of recent HTM
implementations, while preserving the semantics and progress guarantees of software
transactional memory (STM) systems [19]. Underlying all of this work is the assump-
tion that hardware constraints on the size of transactions are sufficiently unforgiving
that elaborate workarounds are justified. For instance, Xiang et al. [23, 24| propose
the decomposition of a transaction into a nontransactional read-only planning phase
and a transactional write-mostly completion phase in order to reduce the size of the
actual transaction. Similarly, Wang et al. [22]| use a nontransactional execution phase
and a transactional commit phase in the context of an in-memory database in order
to limit the actual transaction to the database meta-data and excluding the pay-
load data. These related works validate the need for an understanding of the HTM
capacity constraints.

Wang et al. [21] studied the performance sensitivity of HT'M to a variety of ap-
plication patterns. Our investigation takes this idea further by exploring HTM per-
formance in a broader expanse of the multicore design space. For example, we also
experiment with padding memory locations, varying the level of contention between

threads, and varying the amount of work done between transaction attempts.

1.3 Background

Transactions require the logical maintenance of read sets, the set of memory locations
that are read within a transaction, and write sets, the set of memory locations
that are written within a transaction [9]. Upon completion of a transaction, the
memory state is validated for consistency before the transaction commits, making
modifications to memory visible to other threads. Transactions may conflict abort
when one thread’s write set intersects at least one memory location in the read or

write set of another thread, as illustrated in Table 1.1. In addition to conflict aborts,
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hardware transactions suffer from capacity aborts when the underlying hardware
lacks sufficient resources to maintain the read or write set of an attempted transaction.
| reada(X) | writea(X)

readg(X) | commit abort
writeg(X) abort abort

Table 1.1: Read and Write Conflicts to Memory Location X Between Threads A and B

Read and write sets are often maintained in hardware using an extension to an
existing cache hierarchy. Caches in modern processors are organized in sets and
ways, where a surjection from memory address to set number is used in hardware
to restrict the number of locations that must be checked on a cache access. The
number of ways per set is the assoctativity of the cache and an address mapping to
a particular set is eligible to be stored in any one of the associated ways. To maintain
the read and write sets of a transaction, one can “lock” each accessed memory address
into the cache until the transaction commits. The logic of the cache coherence protocol
can also be extended to ensure atomicity of transactions by noting whether or not a
cache-to-cache transfer of data involves an element of a transaction’s read or write
set. These extensions to the caches and the cache coherence protocol are very natural
and lead to high performance, however the nature of the design reveals an inherent
weakness: caches are finite in size and associativity, thus such an architecture could

never guarantee forward progress for arbitrarily large transactions.

1.4 Experimental Setup

The performance characteristics of hardware transactions are naturally dependent
on the underlying hardware. The results from our experiments should only be fully
accepted with respect to the microprocessors we specify in this section, although the
conclusions will still generally apply to different generations of the hardware. The

Intel machine we experimented on contains a Haswell i7-4770 processor with

e 4 cores running at 3.4GHz

12



e 8 hardware threads
e (4B cache lines
e 8MB 16-way shared L3 cache
e 32KB per-core 8-way L1 caches
We also tested an IBM Power8 processor with
e 10 cores running at 3.425GHz

80 hardware threads

128B cache lines

80MB 8-way shared L3 cache

64KB per-core 8-way L1 caches

All experiments are written in C and compiled with GCC, optimization level -00.2

Our experiments use the GCC hardware transactional memory intrinsics interface.

2We compiled with -00 because we found that higher optimization levels sometimes caused
spurious transaction aborts, thus confounding our results.
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Chapter 2

Capacity Constraints

Physical limitations to the size of hardware transactions are governed by how they are
implemented in hardware. Such capacity constraints determine when a transaction
will inevitably abort, even in the case of zero contention. We devised a parame-
terizable array access experiment to measure the maximum cache line capacity of
sequential read-only and write-only hardware transactions. We also experimented
with strided memory access patterns to detect whether the read and write sets are
maintained on a per-cache line basis or a per-read / per-write basis. With knowledge
of the maximum sequential access capacity and also the maximum strided access ca-
pacity, we can draw conclusions about where in the caching architecture the read and

write sets are maintained.

2.1 Intel

We experimentally support the hypothesis that the Intel HT'M implementation uses
the L3 cache to store read sets and the L1 cache to store write sets.

Figure 2-1 summarizes the result of a sequential read-only access experiment where
data points represent the success probability of the transaction with respect to the
number of cache lines read. We see that a single transaction can reliably read around
75,000 contiguous cache lines. The L3 cache of the Intel machine has a maximum

capacity of 217 (= 131,072) cache lines and it is unlikely for much more than half
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of the total capacity to fit perfectly into the L3 due to the hash function mapping
physical address to L3 cache bank.

Figure 2-3 shows the result of a strided read-only access experiment. The stride
amount indicates the number of cache lines per iteration (e.g. reading cache lines 1,
5,9, 13, 17 etc. indicates a stride of 4) and each data point represents the maximum
number of cache lines that can be reliably read with respect to the stride amount.
For example, the third data point in the graph indicates that when the stride amount
is 22 (= 4) (i.e. accessing every fourth cache line), the transaction can reliably read
214 (= 16, 384) cache lines and commit. We can see that the number of cache lines
that can be read in a single transaction is generally halved as we double the stride
amount, presumably because the access pattern accesses progressively fewer cache
sets while completely skipping over the other sets. It is important to note that the
plot plateaus at 2* (= 16) cache lines. When the stride amounts are large enough to
consecutively hit the same cache set we see support for the hypothesis that the read
set is maintained in the L3 cache because the minimum number of readable values

never drops below 16, the L3 associativity.
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We also conducted similar experiments for write-only accesses patterns. Figure 2-2
illustrates the result of an identical array access experiment, except that the transac-
tions are write-only instead of read-only. A single write-only transaction can reliably
commit about 400 contiguous cache lines. The size of the L1 cache is 512 cache lines
and a transaction must also have sufficient space to store other program metadata
(e.g. the head of the program stack), thus we would not expect to fill all 512 lines
perfectly.

Figure 2-4 illustrates that the number of cache lines that can be written in a single
transaction is also generally halved as we double the stride amount. However, even
as we increase the stride amount significantly, the number of cache lines that a trans-
action can reliably write to does not fall below 8, corresponding to the associativity
of the L1 cache. This suggests that, at worst, one is limited to storing all writes in a

single, but entire, set of the L1 cache.

2.2 1IBM

We experimentally support the hypothesis that the IBM HTM implementation uses
a dedicated structure to maintain read and write sets, choosing not to extend the
functionality of the existing cache structures as with the Intel implementation. In
addition, we observe that the dedicated structures used for read and write set main-
tenance is not shared among the 8 threads per core, but rather each thread is allocated

its own copy.
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Figure 2-5: Lines Read / Written vs Success — Figure 2-6: Stride vs Lines Readable /
Rate Writeable

The results of our sequential and strided access experiments for both read-only
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and write-only transactions appear to be identical in Figure 2-5 and Figure 2-6, where
the maximum number of reads or writes in a transaction is 64 and that the maximum
transaction size halves as we double the stride amount with a minimum of 16. The
maximum observed hardware transaction size is far too small to be attributable to
even the L1 cache, which holds 512 cache lines. Thus, we conclude that there are
dedicated caches for transactions in the IBM implementation independent of the
standard core caches, and that these caches likely each have 4 sets and an associativity
of 16.

A natural next question is whether this IBM machine has 10 dedicated caches that
are spread across each core, or if there are 80 dedicated caches that are spread across
each hardware thread. To determine the difference, we experimented and measured
the number of successful write-only transactions that concurrently running threads
were able to complete. Each thread makes 10,000 transaction attempts to write 40
thread-local cache lines and then commit. The transaction size of 40 cache lines is
designed to sufficiently fill up the dedicated caches per transaction to induce capacity

aborts in the case of shared caches.
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Figure 2-7: Number of Threads vs Committed Transactions (Thousands)

We see in Figure 2-7 evidence that there are dedicated caches for each hardware
thread and that they are not shared among threads within a core. Each spawned
software thread is pinned to a unique hardware thread in round robin fashion such
that the distribution is even across the 10 cores. If all 8 of the hardware threads on a
single core share a single dedicated cache, we would expect to see sublinear (or even
no) speedup as we spawn more running threads and assign them to the same core.

Instead, we observe a linear increase in the aggregate number of successfully com-
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mitted transactions, while the average per-thread number of successful transactions
is constant. Although the general 45% success rate suggests some level of contention
between the running threads, it is most likely not due to per-core sharing of a ded-
icated cache because the addition of other threads does not decrease the aggregate

throughput.

2.3 Implications

Developers using HTM on Intel’s Haswell microprocessors have a lot of flexibility with
hardware transaction size, but they should be wary of how the behavior of nontransac-
tional code sharing a cache with transactional code might affect HT'M performance,
as well as how the access pattern of transactional code can limit transaction size.
IBM’s Power8 developers should be cautious of the tight restriction on transaction
size, but fortunately they only need to reason about HTM performance within the

scope of a single hardware thread.
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Chapter 3

Performance Characteristics

A program can be described by some combination of contention parameters, and it is
distinguishable from another program if even a single parameter setting is different.
For instance, a program with threads that only ever access 10 different memory
locations is inherently different from one with 100 different memory locations, and
that program is even further distinguishable from one with 1000 different memory
locations. These programs illustrate a few of the many different cases of contention

that exist in the multicore programming space.

To explore the behavior of HTM under these different cases of contention, we
model the use of hardware transactions by a parameterizable array access experiment.
A single run of the experiment involves measuring the aggregate throughput, given
a specific setting of the contention parameters, of concurrent threads transactionally

reading and / or incrementing counters of a shared array.

Even for a simple experiment like this, the space of all such multicore programs
is infinite because of the unbounded variability of contention parameters. Thus,
we constrained our parameter set and measured the performance characteristics of

hardware transactions in this controlled space.
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3.1

Multicore Basis Set

The parameter space of multicore programs consists of many variables such as the

transaction size, the memory access pattern, or the number of concurrent threads.

For both the Intel and IBM machines, we experimented using the following contention

parameter set with corresponding values that sufficiently span the multicore program

space; we term this the multicore basis set:

random € (0 1)

denotes sequential array access or random array access.

padded € (0 1)
denotes accesses to a simple array of 32 bit counters or to one where individual

counters are padded to cache lines.

counters € (1 2 4 8 16 32 64 128 256 512 1024 2048 4096)
is the number of counters in the shared array; this simulates the level of con-
tention in a program-fewer counters result in higher contention for those fewer

memory locations, and vice versa.

workBetween € (0 5 10 15 20)
represents the amount of nontransactional work done between each transaction.
More specifically, threads execute a naive recursive fibonacci, fib(workBetween),

between transactions.

workWithin € (1 5 10 15 20)
is the number of memory locations accessed within each transaction; it is the

size of the critical section in a program.

writeRatio € (0 1 10 25 50 75 100)
is the percentage of write accesses in each transaction. To elaborate, writeRatio
= 25 means that 25% of the array accesses are writes (increments) and 75%

are reads.

22



rand | pad | counters | between | within | write % | threads || success | throughput
1 0 1024 5 5 25% 3 0.52 | 12.1M tx/s
1 0 1024 5 D 25% 4 0.36 | 10.6M tx/s
1 0 1024 5 5t 50% 1 0.99 8.8M tx/s

Table 3.1: Intel 286 Example Fxperimental Results

e threads € (1 2 3 4 8 16 32 64)
is the number of threads that are concurrently trying to atomically read and/or
increment the counters in the shared array. Note that our Intel machine ex-
periments omit the (8§ 16 32 64) values because the machine only has 4 non-

hyperthreaded cores.

For each cross product of our basis set, we run our experiment on that synthetically

generated case of contention and we record throughput and transaction success rate:

tx successes
e throughput := ———
runtime

tx successes
tr successes+tx restarts

® success rate :=

The result is 36400 performance measurements for the Intel machine, and 63700
measurements for the IBM machine. Table 3.1 illustrates exemplary measurements

from the Intel results; the IBM results are identical in form.

3.2 Trends

With the 36400 Intel measurements and 63700 IBM measurements, we can plot
throughput and success rate while modulating individual contention parameters in
order to observe how those modulated parameters affect HT'M performance. In all
subsequent plots, the unmodulated parameters are marginalized by averaging the
performance values.

Figure 3-1 illustrates the HT'M performance difference between sequential and

random memory accesses while varying the number of counters on the Intel machine.
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With fewer than 8 counters, it hardly matters whether the access pattern is sequential
or random because the contention for those few counters is so high that conflict
aborts are rampant. However, as we increase the number of counters in the array and
reduce the contention for those shared counters, we see much higher throughput when
accessing memory sequentially compared to accessing memory randomly. This makes
sense because when there are fewer conflict aborts, as is the case when there are more
counters that the concurrently executing threads can operate on, then optimizations
like data prefetching during sequential access begin to make observable differences
in performance. The results for the IBM machine in Figure 3-2 are very similar
to those of the Intel machine. When the number of counters is small, we see that
there is little difference between random access and sequential access. With more
counters, we again observe that sequential memory access results in higher transaction
throughput than random memory access. The implication of these results is that
when programming with hardware transactions, accessing memory sequentially will

generally result in higher performance than accessing memory randomly.

A common optimization in concurrent programming is to pad memory accesses
to reduce false sharing.! We now do a comparison between unpadded versus padded
memory accesses that is similar to the previous analysis of sequential versus random
memory accesses. In Figure 3-3 we observe slightly mixed results for the Intel machine,
with some evidence of higher transaction throughput when padding memory accesses.
The reason for the slightly mixed results is because there are two conflicting effects of
padding. First, padding memory accesses reduces false sharing and reduces conflict
aborts, thus improving performance. Second, padding a single 4 byte counter to
the full 64 byte Intel machine cache line results in less batch accessing, which can
actually reduce performance because many more (up to 16x) cache lines may need to
be fetched in the padded case than in the unpadded case when accessing the same

number of counters.

! False sharing occurs when two logically independent memory locations reside on the same cache
line and one or both of those memory locations are accessed by different threads, resulting in an
invalidation of the whole cache line. Padding memory locations to reside entirely on different cache
lines eliminates this false sharing problem.
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Intel: Num Counters / Random Access vs Avg Throughput
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Figure 3-1: Sequential memory access results in higher transaction throughput than random
memory access on the Intel machine

In Figure 3-4 we actually see distinct regions in the IBM results when one phe-
nomenon dominates the other. When the probability of conflicting memory accesses
between threads is sufficiently high due to contention (< 1024 counters), padding
memory accesses results in higher throughput because false sharing is reduced and
the rate of conflict aborts is reduced. However, when the probability of conflicting
accesses is lower (> 2048 counters), we see the performance penalty of unbatched
memory accesses overcome the performance benefit of reduced false sharing. The
IBM machine cache line is 128 bytes wide, which means that up to 32x more cache
lines may need to be fetched in the padded case than in the unpadded case when ac-
cessing the same number of counters; this makes the unbatched access penalty much

more significant on the IBM machine than the Intel machine.
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IBM: Num Counters / Random Access vs Avg Throughput
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Figure 3-2: Sequential memory access also results in higher transaction throughput than
random memory access on the IBM machine

From these observations, we conclude that padding memory accesses generally
improves transaction performance on the Intel machine, but the effect on the IBM

machine depends on the level of contention.

Next we examine the effect of modulating the write ratio while also varying the
number of threads. Each individual block in Figure 3-5 is labeled with the specified
number of threads and write ratio, along with the measured throughput and success
rate on the Intel machine. Throughput is visually depicted by the size of the block-the
larger the block, the higher the throughput. We see that as we increase the number
of threads, which is visualized by the color of the blocks, throughput increases and
success rate decreases. The increased performance makes sense because more work

can be done with more concurrent threads; this increase is sublinear, however, as
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Intel: Num Counters / Padded vs Avg Throughput
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Figure 3-3: Padding memory accesses on the Intel machine generally improves transaction
performance
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IBM: Num Counters / Padded vs Avg Throughput
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Figure 3-4: Padding memory accesses on the IBM machine improves transaction perfor-
mance when contention is high, but it reduces performance when contention is low
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increasing the contention by adding more threads also has the effect of increasing

conflict aborts which lowers throughput.

We can further break down Figure 3-5 by examining the effect that the write ratio,
which is visually represented by the color gradient of the blocks, has on transaction
performance across different numbers of threads. For a single thread, the percentage
of writes to reads generally has no effect on the throughput or success rate. For any
number of threads greater than 1, however, we see that the higher the write ratio
is and the darker the block is, the lower the throughput and success rate is and the
smaller the block is. There is a clear trend indicating that transaction performance
of a concurrent program is negatively correlated with the write ratio, and the mag-
nitude of this negative relationship increases as the number of threads increases: the
performance for 0% writes is 2.27x the performance for 100% writes in the case of 2

threads, 2.84x in the case of 3 threads, and 3.43x in the case of 4 threads.

In Figure 3-6 we have an analagous picture for the IBM machine. Each block is
again labeled with thread count / write ratio / throughput (M tx/s) / sucess rate.
We omit the data corresponding to the cases of fewer than 4 running threads for
lack of space in the figure. We similarly observe that as we increase the number of
threads, throughput increases and success rate decreases, and the negative correlation
between performance and write ratio increases in magnitude as the number of threads
increases. The IBM results contain data for very large thread counts, and the effects
of modulating write ratio is much more evident than when analyzing results on the
Intel machine. On the IBM machine, the marginal difference between 0% writes and
1% writes results in a huge performance difference, 1.39x throughput, for the case of
32 threads, and the difference is even more significant, 1.9x, for the case of 64 threads.
With so many concurrently running threads, even the slightest increase in contention
causes conflict aborts to surge, thus reducing performance greatly. For multicore
programs with sufficiently high write ratios, the throughput gain from increasing the
number of threads might hardly be worth the cost. For instance, the performance for
64 threads is 2.2x the performance for 4 threads in the case of 25% writes, despite

the 16x increase in resources used.
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Intel: Num Threads / Write Ratio vs Avg Throughput
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Figure 3-5: Performance is negatively correlated with write ratio, and the magnitude of this relationship increases with thread count
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A peculiar observation about the IBM results is that performance is slightly better
in the case of 100% writes than 50% writes or 75% writes. It could be that the
mechanisms in place for implementing transactions in the IBM Power8 hardware favor

homogenous (i.e. read-only or write-only) transactions, but this is pure speculation.

Note that even when there are no writes and no conflict aborts, the success rate
is not 1.00 because the IBM machine is sensitive to capacity aborts, as we previously
discovered. Even for fairly small transaction sizes of 20 counters, it is possible for
these 20 counters to reside on at least 16 different cache lines that map to the same
cache set, which will cause a capacity abort because the dedicated 4-set, 16-way cache
will not be able to fit that transaction. This point serves to illustrate the significance

of understanding the capacity constraints of hardware transactions.

When we increase transaction sizes, we naturally expect lower throughput, which
is measured as transactions completed per second, because there is simply more work
being done within each transaction. The top two plots in Figure 3-7 exactly illus-
trate this intuition for both the Intel and IBM machines. However, when analyzing
weighted throughput—which is calculated as throughputxworkWithin—we actually see
an increase in the number of operations completed per second in the middle two plots.
There is inherent overhead to implementing a hardware transaction, regardless of the
amount of work done within it, so when we increase the transaction size, the fixed
cost is amortized. The large jump in weighted throughput from workWithin = 1
to workWithin = 5 suggests that there is increased efficiency in batching opera-
tions within a transaction. Beyond workWithin = 5, however, there are diminishing
gains to weighted throughput because larger transactions also raise the probability
of conflict aborts, thus lowering transaction success rate, as depicted in the lower
plots of Figure 3-7. From these observations we anticipate that an optimal value for
hardware transaction size is around 5, because this value seems to balance the per-
formance benefit of batching operations with the performance penalty of increased

conflict aborts.

The work a program does between critical sections is inherent to the program

and significantly affects the transaction throughput of that program. We can draw
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Work Within vs Throughput, Weighted Throughput, Success Rate
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Figure 3-7: Increasing the work within transactions decreases throughput, measured as trans-
actions completed per second, but increases weighted throughput, measured as operations
completed per second
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meaningful insights by viewing how work Within interacts with workBetween to affect
performance because these two parameters together determine the ratio of critical
to noncritical sections in a program. We plot, for different values of workBetween,
the effect of modulating transaction size on the Intel machine in Figure 3-8. When
the amount of work that threads do between transactions is minimal and the pro-
gram is frequently in the critical section, as is the case when workBetween < 5,
increasing transaction size significantly decreases throughput as we observed before.
On the other hand when there is more time between critical sections, such as when
workBetween > 10, we see that the amount of work done within each transaction has
less of an influence on performance because less of the program runtime is spent exe-
cuting transactional code. The results on the IBM machine are very similar and have
thus been omitted. While these observations fall in line with our expectations and
may not appear novel, it is still meaningful to empirically validate our intuitions in
this effort to fully understand the performance characteristics of HT'M under different

cases of contention.
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Intel: Work Between / Work Within vs Avg Throughput, Success Rate
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Figure 3-8: The amount of work done within a transaction significantly affects performance
when concurrent threads do little work between transactions and are frequently in the crit-
ical section. The work within does not matter as much when the amount of work between
transactions is large and relatively little time is spent in the critical section
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Chapter 4

Throughput Prediction

In analyzing the experimental results from our synthetically generated contention
experiments, we found many compelling performance trends that suggest the potential
for predicting HTM performance in programs that are not precisely defined in our
multicore basis set. We wanted to leverage the large amount of performance data we
collected to somehow enable a prediction about other points in the infinite multicore
programming space; Figure 4-1 illustrates our goal to predict the throughput of any
arbitrary, real program.

To this end, we trained! a multivariate linear regression model on each of our
Intel and IBM experimental result sets. The goal of these two models is to be able to

predict the throughput of any multicore program that synchronizes using HTM.

4.1 Multivariate Linear Regression Models

To train the multivariate linear regression models, we first transformed the Intel
and IBM result sets using a radial basis function [16] with v = 0.0001 in order to
improve the fit, because some of the first degree relations were found to be nonlinear.
These transformed results were then used as input training data for the models.? To

mitigate the problem of overfitting to the training data, we methodically generalized

'We used a supervised learning algorithm.
2We used the python scikit-learn module.
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Figure 4-1: Projection of a linear probing hash table into a 3D subspace of our parameter
set. Knowing the throughput of adjacent points in our multicore basis set should somehow
inform us of the throughput of the unknown point
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the models with 5-folds cross validation [18]. The resulting goodness-of-fit [1]| values,
R? .., =0.96 and R? = 0.90, for both models were quite high, and this reinforces our

intuition about the potential for predicting the throughput of programs that utilize

hardware transactions.

4.2 Basis Parameters Decomposition

In order to use the multivariate linear regression models to predict the throughput of
an arbitrary multicore program, one must first decompose the program into a vector

of parameters that matches the dimensionality of our basis set:
<random, padded, counters, workBetween, workWithin, writeRatio, threads>

Most parameters are either binary (random, padded), or they are straightforward
approximations (counters, workWithin, writeRatio, threads); the one confounding
parameter is workBetween. To measure the work done between critical sections of
a program, a simple Intel pintool [2| can be used to instrument the program to
count the number of CPU instructions both inside and outside of a program critical
section. Recall that we modeled this parameter in our experiment as the execution
of a naive recursive fibonacci, fib(workBetween), between transactions. Considering
the algorithmic complexity of naive fibonacci is O(2V), the parameter workBetween

can thus be calculated by the formula:

work Between = ZOQQ(% -workWithin)

Figure 4-2 captures the process of decomposing an actual program and using the

resulting vector of parameters to produce a throughput prediction from the multi-

variate linear regression.

4.3 Empirical Validation

To empirically validate the regression models, we compared the predicted throughput

values to actual measured values for three concurrent data structures: a stack, a
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Throughput Prediction Flow
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Figure 4-2: Decomposing a hash table implementation into a vector of parameters to pass
into the multivariate linear regression model for throughput prediction. The parameter trans-
formation step is an artifact of our model training process when we further transformed the
input data to maximize regression fit
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linear probing hash table, and a skiplist. Table 4.1 shows the results comparing the
predicted and measured values for the Intel machine, and Table 4.2 shows the results
for the IBM machine. In each case, we decomposed the concurrent data structure into
a vector of parameters using the described method before applying the multivariate

linear regression models to predict throughput.

While the predictions on the Intel machine are not 100% accurate, they are at
least a reasonable approximation from the actual stack, linear probing hash table, and
skiplist measurements. The same is true of the stack and hash table measurements
on the IBM machine. These measurements empirically validate the accuracy of our

regression models.

We were unable to record an actual measurement for the concurrent skiplist im-
plementation on the IBM machine. When the skiplist became sufficiently large, the
critical section accessed too many different memory locations, thus exceeding the max-
imum HTM capacity. Infinitely repeating capacity aborts left the program in a state
of livelock [10] and the execution never finished. While failure to predict this livelock
scenario is a failure of the IBM regression model, we still consider this example to be
constructive because it validates the need for an understanding of the limitations of
hardware transactions—without the knowledge we found from our capacity constraint

experiments, we may have never realized the problem in this execution.
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stack hash skiplist
random 0 1 1
padded 1 0 0
logs(counters) 0 9 12
workBetween 5.19 2.33 2.15
workWithin 2 10 18
writeRatio 50% 10% 20%
logs(threads) 0 0 0
predicted 15.2M ops/sec | 5.0M ops/sec | 3.3M ops/sec
actual 17.2M ops/sec | 4.1M ops/sec | 2.6M ops/sec
error 13.2% 22.0% 26.9%

Table 4.1: Intel: Comparing Predicted and Measured Throughput of Concurrent Data Struc-

tures
stack hash skiplist

random 0 1 1

padded 1 0 0

loga(counters) 0 9 12
workBetween 5.19 2.33 2.15

workWithin 2 10 18
writeRatio 50% 10% 20%

logs(threads) 0 0 0

predicted 4.7M ops/sec | 1.5bM ops/sec | 1.7M ops/sec

actual 5.3M ops/sec | 1.9M ops/sec N/A
error 12.8% 26.7% N/A

Table 4.2: IBM: Comparing Predicted and Measured Throughput of Concurrent Data Struc-

tures

4.4 Use Case

With these models, a programmer can now simplify the design of a multicore program

that synchronizes with hardware transactions. An illustrative use case is to leverage a

model to predict the throughput of different design iterations of a program (each with

different respective parameter decompositions), compare the predicted throughputs,

and select the design iteration that yields the best predicted performance. While

the regression models may not predict absolute performance metrics well, they will

be able to sufficiently capture the relative performance difference between iterations.
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This distinction is enough to inform a decision about the most high-performing design,

even before any programming investment is made.
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Chapter 5

Closing

5.1 Future Work

Due to limitations of the existing Intel hardware, the Intel machine experiments did
not involve more than 4 non-hyperthreaded hardware threads. It will be meaningful
to further explore the Intel performance characteristics with more hardware threads
once larger chips with HTM support are developed.

GCC optimization level -00 was used in our experiments because we were inter-
ested in investigating the pure performance characteristics of hardware transactional
memory without the confounding effects that would come with different compiler
optimization levels. That said, compiler optimizations are necessary to build the
fastest programs. A future study of high-performing multicore C programs using

HTM should include different optimization levels.

5.2 Conclusion

With the advent of hardware transactional memory in new Intel and IBM micro-
processors, a new solution to the synchronization problem in multicore programs
is available. We ran capacity constraint benchmarks to expose the hardware im-
plementations that dictate the limits of HTM. We gathered synthetically generated

performance data that informed us about how different cases of contention correlate
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with hardware transaction performance. We captured these performance trends in
multivariate linear regression models that we have shown to be useful in predicting
the throughput of arbitrary concurrent programs and facilitating their design. We an-
ticipate that the contributions from this investigation will provide a much needed un-
derstanding of HT'M, ultimately enabling its proliferation into future high-performing

multicore programs.
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