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Abstract

The operating systems community has ignored network

latency for too long. In the past, speed-of-light delays

in wide area networks and unoptimized network hard-

ware have made sub-100µs round-trip times impossible.

However, in the next few years datacenters will be de-

ployed with low-latency Ethernet. Without the burden

of propagation delays in the datacenter campus and net-

work delays in the Ethernet devices, it will be up to us

to finish the job and see this benefit through to applica-

tions. We argue that OS researchers must lead the charge

in rearchitecting systems to push the boundaries of low-

latency datacenter communication. 5-10µs remote pro-

cedure calls are possible in the short term – two orders

of magnitude better than today. In the long term, moving

the network interface on to the CPU core will make 1µs

times feasible.

1 Introduction

Network latency has been an increasing source of frustra-

tion and disappointment over the last thirty years. While

nearly every other metric of computer performance has

improved drastically, the latency of network communica-

tion has not. System designers have consistently chosen

to sacrifice latency in favor of other goals such as band-

width, and software developers have focused their efforts

more on tolerating latency than improving it.

Recent developments are finally bringing low latency

within reach. Fast communication is available today for

those willing to use specialized hardware and software

developed by the high-performance computing (HPC)

community, and pieces of the low latency puzzle are be-

coming available for general purpose computing.

In this position paper we argue that it should be pos-

sible to achieve end-to-end remote procedure call (RPC)

latencies of 5-10µs in large datacenters using commod-

ity hardware and software within a few years. How-

ever, achieving this goal will require the creation of a

new software architecture for networking with a differ-

ent division of responsibility between operating system,

hardware, and application. In addition, we will probably

need new network protocols optimized for low latency in

large datacenters. Although several hardware improve-

1983 2011 Improved

CPU Speed 1x10Mhz 4x3GHz > 1,000x

Memory Size ≤ 2MB 8GB ≥ 4,000x

Disk Capacity ≤ 30MB 2TB > 60,000x

Net Bwidth 3Mbps 10Gbps > 3,000x

RTT 2.54ms 80µs 32x

Table 1: Network latency has improved far more slowly over

the last three decades than other performance metrics for com-

modity computers. The V Distributed System [5] achieved

round-trip RPC times of 2.54ms. Today, a pair of modern Linux

servers require 80µs for 16-byte RPCs over TCP with 10Gb

Ethernet.

ments will also be required to reach this goal, the oper-

ating system community is in the best position to coordi-

nate all of these changes and create the right end-to-end

architecture. Over the longer-term, and with more radi-

cal hardware changes (such as moving the NIC onto the

CPU chip), we think 1µs datacenter round-trips can be

achieved.

There will be many benefits for datacenter computing

if we succeed. Lower latency will simplify application

development, increase web application scalability, and

enable new kinds of data-intensive applications that are

not possible today.

2 A History of High Latency
Network latency has failed to keep up with other im-

provements in computer performance. Consider technol-

ogy evolution over the last 30 years (Table 1). In 1983,

the V Distributed System [5] had 2.54ms RPC round-

trip times on a SUN Workstation [2]. The last three

decades have seen only a 30x reduction in latency, while

network bandwidth has improved more than 3,000x over

the same period, and processor throughput, disk capac-

ity, and memory capacity have also had large gains. Sev-

eral research projects in the mid- and late-1990s attacked

the latency problem [15, 6, 7, 12], but unfortunately their

techniques were not adopted by mainstream manufactur-

ers.

Latency is even worse in large datacenters with tens

of thousands of servers. Round-trip times are typically

200-500µs [13, 9] and congestion can cause spikes up
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Component Delay Round-Trip

Network Switch 10-30µs 100-300µs

Network Interface Card 2.5-32µs 10-128µs

OS Network Stack 15µs 60µs

Speed of Light (in Fiber) 5ns/m 0.6-1.2µs

Table 2: Factors that contribute to latency in TCP datacenter

communication. “Delay” indicates the cost of a single traver-

sal of the component, and “Round-Trip” indicates the total im-

pact on round-trip time. Messages typically traverse 5 switches

in each direction in a large datacenter network and must pass

through the OS stack 4 times.

to tens of milliseconds. Table 2 breaks down the ma-

jor components of latency in datacenters today. Store-

and-forward network switches are the largest single con-

tributor, adding tens of microseconds for each hop, but

network interface cards and operating system proto-

col stacks also present major obstacles to low latency.

Speed-of-light delays are not a major factor.

High latency is not fundamental or inevitable: design-

ers have chosen to sacrifice latency in order to achieve

other goals or work around problems elsewhere in the

system. For example, network switches typically em-

ploy large packet buffers, which are needed because

(a) networks are oversubscribed, resulting in congestion,

and (b) the TCP protocol behaves poorly if packets are

dropped because of congestion. Unfortunately, the more

that buffers are used, the worse latency becomes. Both

operating systems and NICs are optimized for bandwidth

at the expense of latency; for example, many NICs inten-

tionally delay the delivery of interrupts as much as 30µs

in order to allow several packets to be processed with a

single interrupt.

3 Impact on Applications

Although it has been convenient for system designers to

sacrifice latency, this has not been so convenient for ap-

plication developers. For example, high latency limits

Facebook’s applications to 100-150 sequential data ac-

cesses within the datacenter for each Web page returned

to a browser (any more would result in unacceptable re-

sponse time for users). As a result, Facebook has re-

sorted to parallel accesses and de-normalized data, both

of which add to application complexity [13]. Some fea-

tures are simply not possible within this constraint.

Because of the complexity of dealing with latency,

considerable effort has been expended in recent years to

develop application frameworks that are insensitive to la-

tency. For example, MapReduce [10] organizes large-

scale applications as a series of parallel stages where

data is accessed sequentially in large blocks; as a re-

sult, application speed is limited by bandwidth, not la-

tency. However, its dependence on sequential data ac-

cess makes MapReduce difficult to use for applications

that require random accesses. Furthermore, MapReduce

is useful only for long-running batch jobs, not for inter-

active tasks.

High latency rules out entire classes of applications.

For example, if an application needs to harness thousands

of machines in a datacenter and intensively access ran-

dom bits of data distributed across the main memories of

those machines (e.g., for large-scale graph algorithms),

the application is not practical today: it will bottleneck

on the network. Network latency was less of an issue

in the past when most network requests resulted in disk

I/Os, but as the primary locus of data moves from disk to

flash or even DRAM, the network is becoming the pri-

mary source of latency in remote data accesses.

If latency can be improved by 1-2 orders of mag-

nitude, we believe it will have a revolutionary impact

on applications. The most immediate benefit will be

for existing applications that suffer from high latency,

such as Facebook or Google’s statistical machine transla-

tion [3]. These applications will become much simpler to

develop, since it will no longer be necessary to employ

complex workarounds for high latency. They will also

become faster and more scalable. More in-depth data ex-

ploration will be possible in real-time.

More importantly, we speculate that low latency will

enable a new breed of data-intensive applications. The

Web has made it possible to assemble enormous datasets,

but high latency severely restricts the kinds of operations

that can be performed on those datasets, particularly in

real time. Low-latency networking will allow more in-

tensive and interactive manipulation of large datasets

than has ever been possible in the past. It is hard to pre-

dict the nature of these applications, since they could not

exist today, but one possible example is collaboration at

the level of large crowds (e.g., in massive virtual worlds);

another is very large-scale machine learning applications

and other large graph algorithms.

The popularity of memcached [1] and “NoSQL” stor-

age systems provides another indication of the benefits of

low latency. Their rapid adoption demonstrates just how

desirable and powerful fast storage access is. Developers

are clamoring for even faster data access, but the network

is now the bottleneck: more than 80% of the memcached

latency for Facebook is due to the network.

Low latency has the potential to reduce or eliminate

other problems that have plagued system designers. For

example, many NoSQL systems have sacrificed consis-

tency guarantees by limiting atomic updates to a sin-

gle row or offering only eventual consistency [11, 4, 8].

Strong consistency is expensive to implement when there

are many transactions executing concurrently, since this

increases the likelihood of expensive conflicts. In a
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system with very low latency, transactions finish more

quickly, reducing the overlap between transactions and

minimizing conflicts. We speculate that low-latency sys-

tems may be able to provide stronger consistency guar-

antees at much larger system scale.

Low latency may also reduce the incast problems ex-

perienced by many applications. With high latency, ap-

plications are forced to issue concurrent data requests in

order to meet user response deadlines. However, such

requests can lead to simultaneous responses, which can

cause congestion near the client, overflow small switch

buffers, and result in packet loss. This scenario could be

avoided if sequential accesses were sufficiently fast that

concurrent requests are no longer needed.

4 Low Latency is Within Reach

Several recent developments are putting low latency net-

working within reach. These include the rise of the dat-

acenter, the next generation of Ethernet switching chips,

and faster NICs. The HPC community has shown us that

low latency is possible using special-purpose intercon-

nects, but now we are on the brink of achieving the same

with commodity hardware.

One of the interesting properties of datacenters is that

they pack large amounts of computation and storage

close together. While the speed of light limits latency

in wide area networks, electrons can traverse 100m of

copper cables and back in about 1µs. This means that

microsecond-level RPCs are physically possible at very

large scale, and the datacenter is the perfect environment

to take advantage of low latency networking.

New cut-through switching chips designed for 10Gb

Ethernet are dramatically lowering the cost of both la-

tency and bandwidth. For example, switches from

Arista, which are based on chips from Fulcrum Mi-

crosystems, offer switching delays less than 1µs, which

is more than an order of magnitude improvement over

the times in Table 2. The cost/port of these switches is

still high compared to commodity 1Gb switches, but will

drop rapidly over the next few years. Furthermore, the

switching chips should get a double benefit from Moore’s

Law: not only will they improve in latency but the num-

ber of ports will increase, which will reduce the number

of switching levels required to traverse a datacenter.

The new switching chips also promise to make band-

width plentiful and cheap. Most existing datacenter net-

works cannot afford enough bandwidth in the switching

fabric for all nodes to communicate randomly at full line

rates. As a result, upper layers in the switching fabric

are oversubscribed (the total bandwidth of the top layer

is typically 100-500x less than the total bandwidth out of

individual servers). The resulting congestion can result

in delays of tens of milliseconds as packets work their

way through deep buffers. The new switching chips are

cheap enough to make full bisection bandwidth afford-

able in datacenter networks, eliminating congestion and

the associated delays.

New network interface controllers from companies

such as Mellanox are significantly reducing two other

major sources of latency. First, they have been opti-

mized to reduce latency within the NIC itself (less than

1µs in each direction). Second, they allow direct access

from user space, which eliminates the overhead of pass-

ing through the kernel. These interfaces can be used in a

polling mode, which also eliminates the latency associ-

ated with interrupt handling and context switching. Un-

fortunately most of these interfaces are designed for spe-

cialized interconnects such as Infiniband and Myrinet, so

they do not support the standard protocols and APIs ex-

pected by most applications.

The HPC community has already produced special-

ized systems that combine all the benefits above. Using

Infiniband switches and NICs from Mellanox, we have

measured round-trip times less than 5µs in small-scale

networks with reliable delivery protocols analogous to

TCP. HPC vendors have demonstrated that low latency

is possible, and it seems likely that some of the tech-

niques used in HPC hardware will migrate to mainstream

networking. Unfortunately, the interconnects, protocols,

and APIs of these systems are very different from the

commodity Ethernet/IP/TCP approaches used in most

datacenters, so low latency is still beyond the reach of

most applications today.

Futhermore, HPC approaches are unlikely to be

adopted wholesale. First of all, Ethernet’s ubiquity, mar-

ket dominance, and economies of scale will make it dif-

ficult to compete with. Second, the HPC strategy has

been to move functions to network interfaces to over-

come OS inefficiencies and allow more complex offload-

ing of functionality. This makes the NICs more expen-

sive, but more importantly, it makes the network less

flexible. In contrast, Ethernet’s simplicity promotes in-

novation and makes for an excellent research vehicle.

5 The OS Community’s Role

Until recently there was little reason for operating sys-

tems to worry about latency: external factors such as

speed-of-light propagation for long-haul networks and

slow switches in datacenters overshadowed any ineffi-

ciencies in the operating system. However, the improve-

ments discussed in Section 4 are dramatically reducing

the external factors; within a few years the operating sys-

tem could become the largest remaining obstacle to low

latency RPCs in datacenters. Thus, it is now time to re-

think the role of the operating system in networking.

As a community, we should set a goal of making
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5-10µs RPC times (end-to-end between applications)

easily accessible to mainstream datacenter applications

within a few years. This section describes some of the

issues to address in order to achieve this goal. Section 6

will then argue that we can do even better and should set

a longer-term goal of 1µs round-trip times.

The first and most important task is to create a new

system architecture for networking with a different di-

vision of responsibility between NIC hardware, operat-

ing system, and application. The operating system can-

not be in the loop for normal message exchanges: data

must pass directly between the application and the NIC.

We should think of network operations more like mem-

ory references and less like disk I/Os: in the same way

that the operating system sets up page tables and then

lets memory references operate at hardware speeds, the

OS should communicate with the NIC to establish map-

pings for packet demultiplexing (perhaps using mecha-

nisms like those defined for OpenFlow [14]), then get

out of the way during normal processing. In addition,

the implementation of network protocols may need to be

shared between the operating system and applications.

The new networking architecture must also be based

on a polling approach to communication, where threads

remain on their CPUs while waiting for packets to ar-

rive; it makes no sense to switch contexts during an

RPC when the RPC latency is comparable to the con-

text switch time. However, polling may not scale well

as more and more applications begin to use it. For ex-

ample, how should the system behave if there were more

threads polling than there were cores/hyperthreads? It

may make sense to introduce new synchronization and

scheduling mechanisms that combine polling with tradi-

tional context switching.

Although future NICs may need to take on some ad-

ditional functions to enable direct application-level ac-

cess, in general we argue for onloading from the NIC.

In recent years some NIC vendors have attempted to of-

fload as much functionality as possible from the CPU to

the NIC, including significant portions of network proto-

cols, but we argue that this is the wrong approach. For

optimal performance, operations should be carried out

on the fastest processor, which is the main CPU; cycles

there are now plentiful, thanks to increases in the number

of cores. Functionality implemented in the NIC is also

harder to change. The NIC should contain the minimum

feature set needed to move bits as efficiently as possible

between the CPU and the network; all other functions

should be implemented in the main processor.

Achieving low latency may also require the develop-

ment of new network protocols. Our measurements in-

dicate that current TCP implementations account for 25-

50µs of latency in round-trip RPC times. Furthermore,

TCP is currently optimized for large unidirectional flows

Source of Delay Quantity, Rate R-trip Latency

Propagation 50m, 5ns/m 250ns x 2

Transmission 100B, 32Gb/s 25ns x 2

Switching 5 hops, 100ns/hop 500ns x 2

Total: 1.55µs

Table 3: End-host processing aside, round-trip network laten-

cies as low as 1.55µs are currently possible for large datacen-

ters. While propagation delays will not improve, we can expect

transmission times to drop with higher bitrates, switching la-

tencies to fall, and hop counts to decrease with Moore’s Law.

rather than small RPC-like exchanges; it is not designed

to capitalize on new datacenter switching fabrics (e.g.,

it behaves poorly if randomized routing is used to mini-

mize congestion); and it does not behave gracefully in the

face of incast. We think a two-pronged approach makes

sense, where one group of researchers attempts to opti-

mize TCP to minimize its latency and fix its other prob-

lems, while a second group makes a clean-slate design of

a new network protocol for small low-latency RPC ex-

changes within large datacenters. One of the advantages

of datacenters is that they form their own closed ecosys-

tems: a new protocol can succeed within a datacenter

without having to be implemented on every machine in

the Internet.

6 Pushing the Envelope: Integrated NICs

5-10µs round-trip latencies seem achievable within a few

years, but we believe it is possible to do much better in

the longer term. It appears technologically feasible to re-

duce datacenter RPC latency to 1µs before speed-of-light

delays limit further progress. However, 1µs round-trips

will require the integration of NIC functionality onto the

main CPU die.

Table 3 breaks down network fabric latencies that are

achievable today within a 50m diameter using Infiniband

QDR switches with 100ns latency and 32Gbps effective

line rates. Although propagation delay is significant, it

accounts for less than half the total latency. We can ex-

pect significant improvements in the 68% of the time

spent in transmission and switching delays. For instance,

100Gb Ethernet is on the horizon, and Moore’s Law will

enable higher switch port densities, which will reduce

the total number of hops. In a future scenario with 30ns

switch latencies, 8 hops per round-trip, and 100Gbps line

rates, round-trip fabric latency could halve to 750ns.

The next major challenge in reducing latency is to

eliminate latency on the motherboard. Unfortunately,

using off-processor NIC chips introduces significant de-

lays. In order to move data from the CPU to the network,

the CPU must flush the data to memory and then the NIC

must read the data from memory. Each of these trans-

fers introduces around 100ns of delay, and for most NICs
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multiple memory operations are required (e.g., not only

must the packet be stored in memory, but separate ring

buffer pointers must also be manipulated). Each RPC re-

quires data to pass through NIC chips four times for a

total delay of at least 1-2µs. If any direct manipulation

of NIC device registers over PCIe is required, such as

polling a device register for incoming data, it adds hun-

dreds more nanoseconds of latency.

As a result, 1µs round-trip times cannot be achieved

with off-processor NICs. Moreover, there must not be

any memory accesses in the fast path: information must

move directly between on-chip caches and the network.

This will require the integration of NIC functionality

onto the main processor chip. Although we realize that

such a change will not happen overnight, we argue that

fast network communication is as important for large-

scale datacenter applications as fast floating-point arith-

metic is for scientific applications and that integrating

NIC functionality should be a top priority for the pro-

cessor design community. Using chip real estate for an

integrated NIC is likely to improve overall system perfor-

mance more than adding cores that software developers

do not know how to utilize.

We urge everyone in the OS community to apply pres-

sure on hardware architects for integrated NICs, and we

believe the OS community should drive the architecture

for on-chip networking in order to ensure the best distri-

bution of functionality between hardware, OS, and appli-

cation. Processor designers are already putting intercon-

nection networks on-die for core-to-core communication

– we need to help them think bigger. If we can make the

leap to on-chip NICs, 1µs round-trip times could become

widely available within ten years.

7 Conclusion

We are on the cusp of a two-order-of-magnitude im-

provement in the latency of RPC communication. It is

time for the operating systems community to implement

a new networking architecture and new protocols that

solve the latency problem end-to-end and make fast net-

working easily available to applications. If we can do

this, we will not only simplify the development of cur-

rent applications but also enable new kinds of applica-

tions that manipulate large-scale datasets in ways never

before imaginable.
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