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Abstract

The prevalence of dynamic-content web services, exemplified by search and online social networking,
has motivated an increasingly wide web-facing front end. Horizontal scaling in the Cloud is favored for its
elasticity, and distributed design of load balancers is highly desirable. Existing algorithms with a central-
ized design, such as Join-the-Shortest-Queue (JSQ), incur high communication overhead for distributed
dispatchers.

We propose a novel class of algorithms called Join-Idle-Queue (JIQ) for distributed load balancing
in large systems. Unlike algorithms such as Power-of-Two, the JIQ algorithm incurs no communication
overhead between the dispatchers and processors at job arrivals. We analyze the JIQ algorithm in the
large system limit and find that it effectively results in a reduced system load, which produces 30-fold
reduction in queueing overhead compared to Power-of-Two at medium to high load. An extension of the
basic JIQ algorithm deals with very high loads using only local information of server load.
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1 Introduction

With affordable infrastructure provided by the Cloud, an increasing variety of dynamic-content web services,
including search, social networking and e-commerce, are offered via the cyber space. For all service-oriented
applications, short response time is crucial for a quality user experience. For instance, the average response
time for web search is approximately 1.5 seconds. It was reported by Amazon and Google [14] that an extra
delay of 500 ms resulted in a 1.2% loss of users and revenue, and the effect persisted after the delay was
removed. Load balancing mechanisms have been widely used in traditional web server farms to minimize
response times. However, the existing algorithms fall short with the large scale and distinct structure of
service-oriented data centers. We focus on load balancing on the web-facing front end of Cloud service data
centers in this paper.

In traditional small web server farms, a centralized hardware load balancer, such as F5 Application
Delivery Controller [13], is used to dispatch jobs evenly to the front end servers. It uses the Join-the-
Shortest-Queue (JSQ) algorithm that dispatches jobs to the processor with the least number of jobs. The
JSQ algorithm is a greedy algorithm from the view of an incoming job, as the algorithm grants the job
the highest instantaneous processing speed, assuming a processor sharing (PS) service discipline. The JSQ
algorithm is not optimal, but is shown to have great performance in comparison to algorithms with much
higher complexity [8]. Another benefit of the JSQ algorithm is its low communication overhead in traditional
web server farms, as the load balancer can easily track the number of jobs at each processor: All incoming
requests connect through the centralized load balancer and all responses are also sent through the load
balancer. The load balancer is hence aware of all arrivals of jobs to a particular processor, and all departures
as well, which makes tracking a simple task. No extra communication is required for the JSQ algorithm.

The growth of dynamic-content web services has resulted in an increasingly wide web-facing front end in
Cloud data centers, and load balancing poses new challenges:

1. Distributed design of load balancers. A traditional web server farm contains only a few servers,
while Cloud data centers have hundreds or thousands of processors for the front end alone. The ability



to scale horizontally in and out to adapt to the elasticity of demand is highly valued in data centers. A
single hardware load balancer that accommodates hundreds of processors are both expensive and at times
wasteful as it increases the granularity of scaling. It is difficult to turn off a fraction of servers when the
utilization of the cluster is low as it will require the reconfiguration of the load balancer. In addition,
hardware load balancers lack the robustness of distributed load balancers, and programmability of software
load balancers. The drawbacks have prompted the development of distributed software load balancers in the
Cloud environment [1].

Fig. 1 illustrates load balancing with distributed dispatchers. Requests are routed to a random dispatcher
via, for instance, the Equal-Cost-Multi-Path (ECMP) algorithm in a router. Load balancing of flows across
dispatchers is less of a problem as the number of packets in web requests are similar. The service time of
each request, however, varies much more widely, as some requests require the processing of a larger amount
of data. Each dispatcher independently attempts to balance its jobs. Since only a fraction of jobs go through
a particular dispatcher, the dispatcher has no knowledge of the current number of jobs in each server, which
makes the implementation of the JSQ algorithm difficult.
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Figure 1: Distributed dispatchers for a cluster of parallel servers.

2. Large scale of the front end. The large scale of the front end processors exacerbates the complexity
of the JSQ algorithm, as each of the distributed dispatchers will need to obtain the number of jobs at every
processor before every job assignment. The amount of communication over the network between dispatchers
and thousands of servers is overwhelming.

A naive solution is for each dispatcher to assign a request to a randomly sampled processor. We call it the
Random algorithm. It requires no communication between dispatchers and processors. However, the response
time is known to be large. For instance, even with a light-tailed distribution such as exponential, the mean
response time at 0.9 load is 10 times the mean service time of a single job (For a given load p and service
rate u, the mean response time is (1 — p) =1 ~! while the mean service time is p~!.) The queuing overhead
tremendously outweighs the service time due to uneven distribution of work in the cluster.

1.1 Previous Work

There have been two lines of work on load balancing with only partial information of the processor loads,
hence potentially adaptable for distributed implementation. Both are based on randomized algorithms, but
are developed for different circumstances.

The Power-of-d (SQ(d)) algorithm. The randomized load balancing algorithm, SQ(d), has been studied
theoretically in [16, 10, 3, 7, 9]. It was conceived with the large web server farms in mind and all results have
been asymptotic in the system size, hence it is a good candidate for load balancing in Cloud service data
centers. At each job arrival, the dispatcher samples d processors and obtains the number of jobs at each of
them. The job is directed to the processor with the least number of jobs among the d sampled. The SQ(d)
algorithm produces exponentially improved response time over the Random algorithm, and the communication
overhead is greatly reduced over the JSQ algorithm. However, the gap between its performance and JSQ
remains significant. More importantly, the SQ(d) algorithm requires communication between dispatchers and
processors at the time of job assignment. The communication time is on the critical path, hence contributes
to the increase in response time.



Work stealing and work sharing. Another line of work [15, 2, 11] was developed for shared-memory
multi-processor systems and is considered for high-performance compute clusters [5, 17, 6]. Work stealing is
defined as idle processors pulling jobs from other randomly sampled processors, and work sharing is defined
as overloaded processors pushing jobs to other randomly sampled processors. The main distinction between
shared-memory systems and web server clusters lies in the way work arrives to the system: In a shared-
memory system or compute cluster, new threads are generated on each processor independently, while for
web services, new jobs arrive from external networks at the dispatcher. Hence for web services, assigning
jobs to processors and then allowing the processors to redistribute jobs via either pull or push mechanism
introduces additional overhead. Moreover, moving a job in process is easy in a shared-memory system [15], but
difficult for web services, as the latter involves migration of TCP connections and subsequent synchronization
with subtasks at the back end of the cluster. As a result, work stealing and work sharing algorithms are not
directly applicable to Cloud service data centers.

1.2 Our Approach

We propose a class of algorithms called Join-Idle-Queue (JIQ) for large-scale load balancing with distributed
dispatchers. The central idea is to decouple discovery of lightly loaded servers from job assignment. The
basic version involves idle processors informing dispatchers at the time of their idleness, without interfering
with job arrivals. This removes the load balancing work from the critical path of request processing.

The challenge lies in the distributed nature of the dispatchers as the idle processors need to decide which
dispatcher(s) to inform. Informing a large number of dispatchers will increase the rate at which jobs arrive
at idle processors, but runs the risk of inviting too many jobs to the same processor all at once and results
in large queuing overhead. The processor can conceivably remove itself from the dispatchers once it receives
the first job, but this will require twice as much communication between processors and dispatchers. On the
other hand, informing only one dispatcher will result in wasted cycles at idle processors and assignment of
jobs to occupied processors instead, which adversely affects response times.

To solve the problem, the proposed JIQ algorithm load balances idle processors across dispatchers, which
we call the secondary load balancing problem. In order to solve the primary load balancing problem of
assigning jobs to processors, we first need to solve the secondary problem of assigning idle processors to
dispatchers, which curiously takes place in the reverse direction. While the primary problem concerns the
reduction of average queue length at each processor, the secondary problem concerns the availability of idle
processors at each dispatcher. It is not a priori obvious that load balancing idle processors across dispatchers
will outperform the SQ(d) algorithm because of the challenges outlined above.

We consider the PS service discipline, which approximates the service discipline of web servers. The
analysis also applies to the FIFO service discipline, which can be interesting in its own right: certain dynamic
web services incur busty processing at the front end where each burst is shorter than processor sharing
granularity, hence the queues behave as a FIFO re-entrant queue. Analyzing the performance of FIFO re-
entrant queues is outside the scope of this paper, but the analysis of FIFO queues is a necessary first step.
The main contributions of the paper are as follows:

1. We analyze both the primary and secondary load balancing systems and find that the JIQ algorithm
reduces the effective load on the system. That is, a system with 0.9 load behaves as if it has, say 0.5
load. The mean queue length in the system is shown to be insensitive to service time distributions for
the PS discipline in the large system limit.

2. The proposed JIQ algorithm incurs no communication overhead at job arrivals, hence does not increase
actual response times. With equal or less complexity, and not taking into account the communication
overhead of SQ(2), JIQ produces smaller queueing overhead than SQ(2) by an order of magnitude,
with the actual value depending on the load and processor-to-dispatcher ratio. For instance, the JIQ
algorithm with SQ(2) in the reverse direction yields 30-fold reduction in mean queueing overhead over
SQ(2) for both PS and FIFO disciplines, at 0.9 load and with the processors-to-dispatchers ratio fixed
at 40.

Remark. This paper considers homogeneous processors and the analysis assumes Poisson arrivals of requests.
The JIQ algorithm can be readily extended in both directions to include heterogeneous processors and general



arrivals. In particular, reporting decisions are made locally by each processor, which can take into account
its heterogeneity. Note that data locality is not a problem in the front end where the servers are responsible
for gathering data from the back end and organizing them into pages. The general distribution of arrival
intervals does not change the analysis in the large system limit as the arrivals at an individual dispatcher
become Poisson. The evaluation of the performance of JIQ algorithm is based on simulation with a variety of
service time distributions, corresponding to different application workloads. Since the JIQ algorithm exploits
the large scale of the system, a testbed capturing its behavior will need to contain at least hundreds, if not
thousands of servers, which is not available at the moment. We defer the implementation details of the JIQ
algorithm to future publications.

Section 2 describes the JIQ algorithm with distributed dispatchers. We analyze the algorithm in the
large system limit with general service time distributions in Section 3 and discuss design extensions and
implementation issues in Section 4. Section 5 compares the performance of the JIQ algorithm with the SQ(2)
algorithm via simulation.

2 The Join-Idle-Queue Algorithm

Consider a system of n parallel homogeneous processors interconnected with commodity network components.
There are an array of m dispatchers, with m << n. Requests arrive at the system as a rate-n\ Poisson process.
Each request is directed to a randomly chosen dispatcher, which assigns it to a processor. The service time
of a request is assumed to be i.i.d. with a general service time distribution B(-) of mean 1. We consider both
PS and FIFO service disciplines.

The objective of the load balancing algorithm is to provide fast response time at each processor without
incurring excessive communication overhead. In particular, communication overhead on the critical path,
i.e., at the arrival of a request, is to be avoided as it adds to the overall response time. Communication
off the critical path is much less costly as it can ride on heartbeats sent from processors to job dispatchers
signalling the health of the nodes.

2.1 Preliminary

There are two ways to think about load balancing in a system of parallel processors. As an entire system,
the processors collaborate to adapt quickly to the randomness in the arrival process and service times. On
the other hand, when focusing on a single processor, efficient load balancing changes the arrival rate to
the processor based on the number of jobs in its queue. In particular, it increases the arrival rate to idle
processors and decreases that to processors with a large queue size. This results in shorter busy cycles for
each processor and faster response time.

To illustrate the effect of length of busy cycles on response times, compare the two busy cycle patterns
on a single processor illustrated in Fig. 2. The letter b’ denotes "busy’ and the letter i’ denotes ’idle’. The
two patterns can result from different load balancing schemes in the system. The load is the same for both
patterns, as they share the same mean idle time. However, pattern 2 indicates a much larger arrival rate
than pattern 1 when the processor is idle. This results in shorter busy cycles and a much shorter response
time.
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Figure 2: Busy (b) / idle (i) patterns of a processor.

Motivated by the above, we compare the rate of arrival to an idle processor, g, for the following three
algorithms. With rate-n\ arrivals and n processors of service rate 1, the load on the system is A. The Random



algorithm produces the worst response times and the JSQ algorithm produces the best.
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Under the Random algorithm, the stochastic queueing process at each processor is independent of each
other. There is no collaboration and the arrival rate is constant for all queue sizes. The SQ(d) algorithm
changes the arrival rate probabilistically. Each increase in d, the number of processors it compares, adds
one term to the arrival rate. However, the marginal effect of each additional comparison on the arrival rate
decreases exponentially. The JSQ algorithm compares all processors in the system and we have an interesting
observation,

Corollary 1
lim lim A = lim A .
Jm Jim Do = i do.ss
Observe that in the large system limit as n goes to infinity, the queue sizes under JSQ never exceed 1
and every job is directed to an idle processor. This motivates the focus on idle processors: As the cluster
increases in size, arrival rates for the larger queue sizes become less important. Random distribution suffices
at the very small chance of all processors being occupied.

2.2  Algorithm Description

The algorithm consists of the primary and secondary load balancing systems, which communicate through a
data structure called I-queue. Together, they serve to decouple the discovery of idle servers from the process
of job assignment. Fig. 3 illustrates the overall system with an I-queue at each dispatcher. An I-queue is
a list of a subset of processors that have reported to be idle. All processors are accessible from each of the
dispatchers.

dispatchers
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Figure 3: The JIQ algorithm with distributed dispatchers, each of which is equipped with an I-queue.

Primary load balancing. The primary load balancing system exploits the information of idle servers
present in the I-queues, and avoids communication overhead from probing server loads. At a job arrival, the
dispatcher consults its I-queue. If the I-queue is non-empty, the dispatcher removes the first idle processor
from the I-queue and directs the job to this idle processor. If the I-queue is empty, the dispatcher directs the
job to a randomly chosen processor.

When a processor becomes idle, it informs an I-queue of its idleness, or joins the I-queue. For all
algorithms in this class, each idle processor joins only one I-queue to avoid extra communication to withdraw
from I-queues. The challenge with distributed dispatchers is the uneven distribution of incoming jobs and
idle processors at the dispatchers: It is possible that a job arrives at an empty I-queue while there are idle



processors in other I-queues. This poses a new load balancing problem in the reverse direction from processors
to dispatchers:

How can we assign idle processors to I-queues so that when a job arrives at a dispatcher, there is high
probability that it will find an idle processor in its I-queue?

Secondary load balancing. When a processor becomes idle, it chooses one I-queue based on a load
balancing algorithm and informs the I-queue of its idleness, or joins it. We consider two load balancing
algorithms in the reverse direction: Random and SQ(d). We call the algorithm with Random load balancing
in the reverse direction JIQ-Random and that with SQ(d) load balancing JIQ-SQ(d). With JIQ-Random,
an idle processor chooses an I-queue uniformly at random, and with JIQ-SQ(d), an idle processor chooses
d random I-queues and joins the one with the smallest queue length. While all communication between
processors and I-queues are off the critical path, JIQ-Random has the additional advantage of having a one-
way communication, without requiring messages from the I-queues. We study the performance of both
algorithms with analysis and simulation in the rest of the paper.

3 Analysis in the Large System Limit

We analyze the performance of the JIQ algorithms in the large system limit as we are interested in the regime
of hundreds or thousands servers. In particular, fix the ratio of the number of servers to the number of
I-queues

r

3=

3

and let n,m — oco. We make two simplifying assumptions: 1. Assume there is exactly one copy of each idle
processor in the I-queues. 2. Assume there are only idle processors in the I-queues. We discuss the validity
and consequence of the assumptions below.

We can modify the algorithm without adding too much complexity so that the first assumption always
holds. There can be more than one copy of an idle processor in the I-queues when an idle processor receives
a random arrival, becomes idle again, and joins another I-queue. This can be prevented if we let an idle
processor keep track of the I-queue it currently registers with, and does not join a new I-queue after finishing
service of a randomly directed job. This modification is not included in the actual algorithm as no visible
difference in performance is observed in simulations.

The second assumption is violated when an idle server receives a random arrival. In the current algorithm,
the server does not withdraw from the I-queue as this will incur too much communication. As a result, this
server is no longer idle, but still present in the I-queue it registered with. We show in Corollary 2 that the
mean arrival rate from occupied I-queues is 7 times more than that from empty I-queues for JIQ-Random. The
difference is even larger for JIQ-SQ(d). As a result, there is only a small chance to have random arrivals at
idle servers, and no visible difference is observed from computed values and simulation results. The difference
in the arrival rates also explains why events violating assumption 1 are rare as they are a subset of events
violating assumption 2. Moreover, the number of copies of an idle processor will not increase without bound
as the arrival rate from occupied I-queues is proportional to the number of copies.

For the rest of the section, consider a system of n single-processor servers. Jobs arrive at the system in a
Poisson process of rate nA, A < 1, hence the load on the system is A. Let there be m dispatchers and a job
is randomly directed to a dispatcher. The arrival process at each dispatcher is Poisson with rate nA/m. The
service times of jobs are drawn i.i.d. from a distribution B(-) with mean 1. It is easy to establish stability for
the system with the JIQ algorithm, as the queue size distribution at the servers is dominated by that with
the Random algorithm, which is known to be stable.

The system consists of a primary and secondary load balancing subsystems. The primary system consists
of server queues with mean arrival rate A and service rate 1. The secondary system consists of I-queues, where
idle servers arrive with some unknown rate that depends on the distribution of the server queue length, and
are “served” at rate nA/m. There are two types of arrivals to a server: the arrivals assigned to an idle server
from the I-queues and the arrivals randomly directed from a dispatcher with an empty I-queue. The latter
arrivals form a Poisson process, but the former arrivals are not Poisson as it depends on the queueing process
of I-queues, which has memory. This makes analysis challenging.



3.1 Analysis of Secondary Load Balancing System

For the secondary load balancing system, we are interested in the proportion of occupied I-queues when the
system is in equilibrium, as it determines the rates of both arrivals through occupied I-queues and arrivals
that are randomly directed. The two rates will determine the response time of the primary system. For all
service time distributions, we have the following theorem.

Theorem 1 Proportion of occupied I-queues. Let p, be the proportion of occupied I-queues in a system
with n servers in equilibrium. We show that p, — p in expectation as n — oo, where

for the JIQ-Random algorithm,
p

T, r(1 =), (1)
for the JIQ-SQ(d) algorithm,
ST p T =r(1-A). (2)
i=1

We defer the full proof to the appendix and provide an outline below. The secondary load balancing
system consists of m I-queues that serve virtual jobs corresponding to each idle server entering and leaving
the I-queues. Since an idle server is removed at a job arrival, and the distribution of inter-arrival times
is exponential, we observe that the system of I-queues have exponential “service” times. The expected
proportion of occupied I-queues is equal to the (virtual) load on I-queues.

The load on I-queues depends on the arrival rate of idle servers, which in turn depends on the load on
I-queues: A large load implies a larger proportion of occupied I-queues, hence a larger arrival rate to idle
servers. This leads to improved load balancing on the primary system, and an increased arrival rate of idle
servers to I-queues, or an increased load. To break this circular dependence, we observe that the expected
proportion of idle servers goes to 1 — A, regardless of the load on I-queues. As a result, the mean queue length
of an I-queue goes to (1 — A). This is shown in Appendix A.1. Note that a better load balancing scheme
in the secondary system does not change the queue lengths, but rather changes the rate of arrival, hence the
expected proportion of occupied I-queues. In particular, a better load balancing algorithm induces a larger
rate of arrival of idle processors to I-queues, which corresponds to shorter busy cycles in the primary system
and shorter response times.

In order to relate the mean queue length of I-queues to the load, we need a better understanding of the
queueing process at I-queues. The arrival process to I-queues is not Poisson in any finite system. However,
we show in Appendix A.2 that the arrival process goes to Poisson as n — oo, with the Random or SQ(d) load
balancing scheme in the secondary system. The expected proportion of occupied I-queues, p, is then obtained
from the expression of mean queue length for the Random and SQ(d) algorithms. Note that the exponential
distribution of the virtual service times at I-queues allows an explicit expression of the mean queue length
in both cases. In particular, since SQ(2) produces most of the performance improvement with exponential
service time distributions [11], probing two I-queues is sufficient.

Corollary 2 In the large system limit, the arrival rate to idle servers with the JIQ-Random algorithm is
(r+ 1) times more than that to an occupied server.

Proof. The arrival rate to idle servers equals

LML= ) = AL )+ D),
and the arrival rate to occupied servers equals A(1 — p). ]

The difference in arrival rates is even larger with the SQ(2) algorithm.

Fig. 4 shows the proportion of empty I-queues with r = 10 for different load balancing algorithms, both
from the formulae given in Theorem 1 and simulations of a finite system with n = 500 and m = 50. We can
see that the values obtained from Theorem 1 in the large system limit predict that of a finite system very
well, as the coincidence of the markers with the corresponding curves is almost exact. The simulation results
also verify that the proportion of empty I-queues is invariant with different service time distributions of the
actual jobs, as predicted by Theorem 1.
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Figure 4: Proportion of empty I-queues with » = 10. Line curves are obtained from Theorem 1. Markers
are from simulations with n = 500 and m = 50. The values for different service time distributions are
indistinguishable.

We observe a significant reduction in the proportion of empty I-queues with a better load balancing
algorithm such as SQ(2). At moderate load, there are a large number of idle processors and the SQ(d)
algorithms result in the proportion of empty I-queues being close to 0. For instance, at A = 0.6, the
proportion of empty I-queues is 0.2 under the Random algorithm, but only 0.027 under the SQ(2) algorithm.
The further reduction of the proportion of empty I-queues by SQ(3) over SQ(2) is not as significant.

At high load, the number of idle processors becomes small. In particular, at A > 0.9, there are fewer idle
processors than the number of I-queues, and the effect of better load balancing diminishes. The proportion
of empty I-queues under the SQ(d) algorithms converges to that under the Random algorithm as the load goes
to 1. The I-queues will be better utilized at high load if servers report when they have a light load, instead
of being absolutely idle. We explore this extension with simulation in Section 5.

3.2 Analysis of Primary Load Balancing System

Using the results from the secondary load balancing system, we can solve for the response time of the primary
system. Let

where p is the proportion of occupied I-queues computed in Theorem 1.

Theorem 2 Queue Size Distribution. Let the random variable Q,, denote the queue size of the servers
of an n-system in equilibrium. Let Qs denote the queue size of a M/G/1 server at the reduced load s with
the same service time distribution and service discipline, then

P(Qn:k)%kaZIasn%o& (3)

1-p

Corollary 3 Mean Response Time. Let the mean queue size at the servers in the large system limit be
q. It is given by

- ds

= —, 4

=1, (4)
with qs being the mean queue size of the M/G/1 server with the same service time distribution and service
discipline.

The mean response time
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assuming a mean service time of 1.

Corollary 4 Insensitivity. The queue size distribution of the JIQ algorithm with PS service discipline in
the large system limit depends on the service time distributions only through its mean.

We defer the proof of Theorem 2 to the appendix and provide an outline below. Recall that there are
two types of arrivals to the processors: one arrival process occurs through the I-queues and only when the
processor is idle. The other arrival process occurs regardless of the processor queue length, when a job is
randomly dispatched. The rate of each type of arrivals depends on the proportion of occupied I-queues, p.
With probability p, an incoming job finds a occupied I-queue, and with probability 1 — p, it finds an empty
I-queue. Hence the arrival process due to random distribution is Poisson with rate s = A(1 — p).

Let the arrivals at empty I-queues be colored green, and the arrivals at occupied I-queues colored red. For
an idle processor, the first arrival can be red or green, but the subsequent arrivals can only be green. The
arrival process of the green jobs is Poisson with rate s, but the arrival process of the red jobs is not Poisson.
However, observe that a busy period of a server in the JIQ system is indistinguishable from a busy period of
an M/G/1 server with load s. Hence, the queue size distribution differs from that of an M/G/1 server with
load s only by a constant factor A\/s.
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Figure 5: Mean response time for the JIQ-Random and JIQ-SQ(2) algorithms with » = 10. Fig. (a) has an exponential
service time distribution with mean 1 (this makes the minimum possible mean response time 1), and Fig. (b) has a
Weibull service time distribution with mean 2 and variance 20 (minimum possible mean response time is 2) and FIFO
service discipline. Line curves are obtained from Theorem 2. Markers are from simulations with n = 500 and m = 50.

Fig. 5(a) shows the mean queue size for general service disciplines with exponential service time dis-
tributions and Fig. 5(b) shows the mean queue size for FIFO service discipline with Weibull service time
distribution with mean 2 and variance 20. In both cases, the computed curve fits well with the simulation
results in a system of 500 servers. The error bars are not plotted as the largest standard deviation is smaller
than 0.001.

Contrary to the improvement in p observed in Fig. 4, the performance gain of JIQ-SQ(2) over JIQ-Random
is not significant at moderate load, and the magnitude of reduction in response time remains small even at
higher load with » = 10. For instance, the reduction in response time is only 17% at A = 0.9 in Fig. 5(a).
This is because improvement of JIQ-SQ(2) over JIQ-Random is most conspicuous when the random arrivals
incur large queue sizes and there is significant improvement in p. This is expected to happen at high load
with a big processor to I-queue ratio, . With r = 10, the queue sizes incurred by random arrivals is small at
low loads, and the number of idle processors per I-queue is too small at high loads, resulting in similar mean
response times for JIQ-Random and JIQ-SQ(2).



4 Design and Extension

In this section, we seek to provide understanding of the relationship between the analytical results and system
parameters, and to discuss extensions with local estimation of load at the servers.

4.1 Reduction of Queueing Overhead

We can compute the reduction of queueing overhead by JIQ-Random as Eqn. (1) gives an explicit expression
for p. We compute g5 for exponential service time distributions and general service discipline,

s
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(5)

qs =

Eqn. (5) also holds for PS service discipline and general service time distributions in the large system
limit due to insensitivity. The mean response time for JIQ-Random is hence
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since the mean service time of a job is 1, the queueing overhead is ﬁ
JIQ-Random. This is a (1 + r)-fold reduction.

For the FIFO service discipline, by the Pollaczek-Khinchin formula,
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where C? = ¢2/(Z)?, the ratio of the variance of the particular service time distribution to its mean squared.
The mean response time for JIQ-Random with FIFO is
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Compare this to the mean response time of a M/G/1 queue with rate-\ arrival

1+C? 1+C% )
14— =14 — =
+’\2(1—)\) T 1o

Again, we observe a (1 + r)-fold reduction in queueing overhead. With a larger C for general service time
distributions, the absolute saving in queueing overhead from SQ(2) will be much more significant. We are
not showing the comparison in explicit forms as we do not have an explicit expression of the mean queue size
of SQ(2) for general service time distributions. The performance of JIQ-SQ(2) is plotted with p obtained
numerically in Fig. 6.

Fig. 6(a) compares the computed mean response time for Random, SQ(2) and JIQ-Random with r = 10,
20 and 40. Fig. 6(b) compares that with JIQ-SQ(2), with p obtained numerically. The JIQ algorithms have
similar performance as SQ(2) at low load, but outperform it significantly at medium to high load. At very
high load such as 0.99, however, the JIQ algorithms do not perform as well as SQ(2) due to the lack of idle
servers in the system. We propose the following extension to alleviate the problem.

Extension to JIQ. At very high load, a server reports to the I-queues when it is lightly loaded. For instance,
a server can report to one I-queue when it has one job in the queue and report again when it becomes idle.
This will insert one copy of all servers with one job and two copies of all idle servers in the I-queues, and
further increase the arrival rate to idle servers with zero or one job.
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Figure 6: Fig. (a) compares the computed mean response time for Random, SQ(2) and JIQ-Random with r = 10, 20
and 40. Fig. (b) compares the mean response time for Random, SQ(2) and JIQ-SQ(2) with » = 10, 20 and 40. Both
figures are for PS service discipline and general service time distributions.

The advantage of delegating the decisions on arrival rates to servers is that the load information is readily
available at each server. It is much harder for a dispatcher to estimate the load on the system as the service
times are not available. It is also easy for heterogeneous servers to respond differently based on local load.

To determine the reporting threshold, the rule of thumb is half of the resulting mean queue size. Decreasing
the reporting threshold will increase the rate of random arrivals, which results in a larger queue size. On the
other hand, increasing the reporting threshold will attract too many arrivals at once to an idle server and
result in unbalanced load. The mean queue size with a threshold other than one remains difficult to analyze.
We evaluate this extension using simulation in Section 5.

Comparison of complexity. The complexity of JIQ-Random is strictly smaller than that of SQ(2), where
the only communication is by the idle processors joining a random I-queue. There is no back and forth com-
munication between dispatchers and processors. The JIQ-SQ(2) algorithm has exactly the same complexity
as SQ(2). Both JIQ-Random and JIQ-SQ(2) have all communication off the critical path.

4.2 Implementation Discussion

The JIQ algorithm is simple to implement with asynchronous message passing between idle processors and
I-queues. Persistent TCP connections between dispatchers and processors for job dispatching can also be
used for transmitting the messages. No synchronization is needed among the dispatchers and I-queues as an
idle processor is allowed to receive randomly dispatched jobs even when it has joined an I-queue.

The system is easy to scale by adding servers to the cluster. Dispatchers, I-queues and processors can scale
independently and the numbers of each can depend on the nature of applications, the style of requests and
the load on the system. Although the analysis is performed with one I-queue attached to each dispatcher, it is
possible to implement several dispatchers sharing the same I-queue. For instance, in a multi-processor system,
each dispatcher can be implemented on an independent processor co-located with the I-queue processor and
sharing memory between them. Analytically, this is the same as aggregating several dispatchers to form one
with larger bandwidth, and the ratio r only depends on the number of processors and number of I-queues.

5 Evaluation

We evaluate the class of JIQ algorithms against the SQ(d) algorithm for a variety of service time distribu-
tions via simulation. Note that the mean response time for the SQ(d) algorithm with general service time
distributions does not have an explicit expression, hence we can only simulate its performance.

We choose the following service time distributions that occur frequently in practice. This is the same as
the distributions simulated in [8]. To simplify the control of the variance of service time distributions, we let
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all distributions have mean 2, and they are listed in increasing order of C2.

Service time distributions.

1. Deterministic: point mass at 2 (variance = 0)

2. Erlang2: sum of two exponential random variables with mean 1 (variance = 2)
3. Exponential: exponential distribution with mean 2 (variance = 4)

4. Bimodal-1: (mean = 2,variance = 9)

1 wp. 09
X_{ 11 w.p. 0.1
5. Weibull-1: Weibull with shape parameter = 0.5 and scale parameter = 1 (heavy-tailed, mean = 2,
variance = 20)
6. Weibull-2: Weibull with shape parameter = % and scale parameter = % (heavy-tailed, mean = 2, variance
= 76)
7. Bimodal-2: (mean = 2,variance = 99)

1 w.p. 0.99
X_{ 101 w.p. 0.01

The deterministic distribution models applications with constant job sizes. The Erlang and exponential
distributions model waiting time between telephone calls. The bimodal distributions model applications
where jobs have two distinct sizes. The Weibull distribution is a heavy-tailed distribution with finite mean
and variance. It has a decreasing hazard rate, i.e., the longer it is served, the less likely it will finish service.
The heavy-tailed distribution models well many naturally occurring services, such as file sizes [4].

We evaluate the JIQ-Random and JIQ-SQ(2) algorithms against the SQ(2) algorithm, since the JIQ
algorithms evaluated have strictly lower communication overhead than SQ(2). Moreover, the overhead does
not interfere with job arrivals, as in the case of SQ(2).

For readability of the figures, the labels for the JIQ algorithms are shortened with ‘R’ standing for Random
and ‘S’ standing for SQ(2). The number after the letter is the value of r, the ratio of number of processors to
number of dispatchers. The experiments with » = 10 are run with 500 processors and 50 I-queues, » = 20 with
500 processors and 25 I-queues, and r = 40 with 600 processors and 15 I-queues. We simulate a moderate
load A = 0.5 and a high load A = 0.9.

Fig. 7 compares the performance of the algorithms with the seven service time distributions listed above.
We simulate two service disciplines, PS and FIFO, and the results are very different. Note that T' = 2 is the
minimum mean response time achievable as all the jobs have mean service time 2.

1. JIQ-Random outperforms SQ(2).

For both service disciplines and both loads, JIQ-Random consistently outperforms SQ(2). Consider the
reduction in queueing overhead. We tabulate the percentage of improvement of the JIQ-Random algorithms
over SQ(2) for the distribution Bimodal-2, which has the largest variance. Let ¢; be the response time of
JIQ-Random and ts be that of SQ(2), as obtained from Fig. 7, the percentage of improvement in queuing
overhead is computed as

(ts —2) — (t; = 2)
ts —2 ’

where 2 is the mean service time.

Table 1 shows that the JIQ-Random algorithm with r = 10 reduces queueing overhead by at least 33.2%
from the SQ(2) algorithm, as for FIFO service discipline at load 0.9. For the PS service discipline, the
improvement is almost 2-fold. The JIQ-Random algorithm achieves a 4-fold (1/(1 — 73.3%) ~ 4) reduction
with = 20 and a 7-fold (1/(1 —85.9%) ~ 7) reduction with r = 40, for PS discipline at load 0.9. It achieves
a 3-fold (1/(1 —65.2%) ~ 3) reduction with » = 20 and a 5-fold (1/(1 — 81.2%) ~ 5) reduction with r = 40,
for FIFO discipline at load 0.9.
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Figure 7: Mean response time comparison for SQ(2), JIQ-Random and JIQ-SQ(2), with 7 different service time
distributions. The smallest possible mean response time is 2 with a mean service time of 2.

PS FIFO
05 [ 09 05 [ 09
RI10 | 42.8% [ 49.9% | 58.0% | 33.2%
R20 | 68.7% | 73.3% | 76.9% | 65.2%
R40 | 83.1% [ 85.9% | 88.9% [ 81.2%

Table 1: Percentage of improvement in queuing overhead of JIQ-Random over SQ(2).

2. JIQ-SQ(2) achieves close to minimum response time.

At a load of 0.5, the JIQ-SQ(2) algorithm achieves a mean queueing overhead less than 5% of the mean
service time for the PS service discipline. For both disciplines, the mean response times with r = 10 never
exceed 2.2, and those with r» = 20 and r = 40 are essentially 2.

At aload of 0.9, for the PS service discipline, the mean response time of the JIQ-3Q(2) algorithm remains
close to 2. At r = 10, it is around 2.9, and at r = 40, it never exceeds 2.1. The mean response time varies more
under the FIFO service discipline. Even there, the JIQ-SQ(2) algorithm has mean response time below 3 for
all service time distributions. This represents a 30-fold reduction (3.3/0.01 ~ 30 for PS and 30/1 ~ 30
for FIFO ) for both disciplines at » = 40 and 0.9 load.

8. The JIQ algorithms are near-insensitive with PS in a finite system.

Based on the simulation, the JIQ algorithms are near-insensitive to the service time distributions under
the PS service discipline. We showed in Section 3 that the response times are insensitive to the service time
distributions in the large system limit. The simulation verifies that in a system of 500 — 600 processors, the
mean response times do not vary with service time distributions.
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Figure 8: Mean response time comparison for SQ(2), JIQ-Random and JIQ-SQ(2) with reporting threshold equal to
two, with 7 different service time distributions. The smallest possible mean response time is 2 with a mean service
time of 2. Note that the mean queue lengths are not monotonically increasing with variance of service times.

JI1Q algorithms with extension.

We evaluate the extension of the JIQ algorithms with reporting threshold equal to two at a high load of
0.99. This is the region where the performance of the original JIQ algorithms is similar to that of SQ(2), as
shown in Fig. 6. However, with reporting threshold equal to two, the JIQ algorithms significantly outperforms
SQ(2). For instance, with exponential distribution, for which service disciplines do not affect response times,
SQ(2) outperforms JIQ-Random with threshold equal to one in Fig. 6, but is outperformed by JIQ-Random
with 7 = 10 and threshold equal to two, with 88% reduction in queueing overhead.

Observe the interesting phenomenon that the mean queue sizes are no longer monotonically increasing
with variance of service times. In particular, the two bimodal distributions have smaller mean queue sizes
than distributions with smaller variance. For the bimodal distributions with variance 99, JIQ-Random with
r = 10 reduces the mean queue size from that of SQ(2) by 89%, and JIQ-SQ(2) with r = 40 reduces the
mean queue size from that of SQ(2) by 97.1%. On the other hand, for the Weibull distribution with variance
76, JIQ-SQ(2) with r = 40 reduces the mean queue size from that of SQ(2) by only 83%. Apparently higher
moments of the distribution start to have an effect when the reporting threshold is more than 1. We defer
the analysis of the extended algorithm to future work.

6 Conclusion and Future Work

We proposed the JIQ algorithms for web server farms that are dynamically scalable. The JIQ algorithms
significantly outperform the state-of-the-art SQ(d) algorithm in terms of response time at the servers, while
incurring no communication overhead on the critical path. The overall complexity of JIQ is no greater than
that of SQ(d).

The extension of the JIQ algorithms proves to be useful at very high load. It will be interesting to acquire
a better understanding of the algorithm with a varying reporting threshold. We would also like to understand
better the relationship of the reporting frequency to response times, as well as an algorithm to further reduce
the complexity of the JIQ-SQ(2) algorithm while maintaining its superior performance.
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Appendix
A. Proof for Secondary Load Balancing System

We need the following lemmas for the proof of Theorem 1.

Lemma 1 Consider a M/G/n system with arrival rate nX\. Let the random variable u,, denote the number

of idle servers in equilibrium. Let q, = 5=, then

E(lgn — (1 =A)]) =0 as n— 0. (7)

Proof. Since the system load is A, we have E(u,) = (1 — A)n for all n. Let the number of occupied servers
be X,, =n — v, = Q, A n, where Q,, is the number of jobs in the equilibrium system. In order to show the
lemma, it is sufficient to show that for any e, there exists ng such that for all n > ng,

E(X, —n\)? = 2nA.
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Consider a M/G /oo process with arrival rate nA. Let the number of occupied servers be Y, whose distribution
is Poisson with mean nA. We can bound the probability

= (nA\)kemA = (n\)ke—mA > /nde\” n
- S S (o

k
f— : k=n (%) k=n
[2nXe] k > k

nie ZnA nie —nA
= k=[2nXe]
1
n _—ni —nA
S @re—Dn(e) e + oe

< Cyne "¢:

for large enough n and some constants Cy, Cy not depending on n. Since Y > (P(Y > n) < oo, by the
Borel-Cantelli lemma, we have that Y < n infinitely often. With a standard coupling, and since X, =Y if
Y < n, we can show that for each sample path, X,, = Y when n is large enough, hence E(X,, — Y)? — 0.
We can now bound the variance of X,,. For some €, — 0,
E(X, —n)\)? < 2E(Y —n)\)? +2E(X,, —Y)?
< 2nA+e€, = 2n\ as n — oo.

This proves Lemma 1. ]

Lemma 2 Consider a system of n parallel servers with arrival rate n\ and the following assignment algo-
rithm. Let p,(t) be a function of t on [0,1]. For a job arriving at the system at time t, with probability
1 — pn(t), it joins a random processor. With probability p,(t), it joins an idle processor if one exists and
joins a random processor otherwise. Let the random variable v, (t) denote the number of idle processors at

time t in the n-system. Let py(t) = vl then

n J

E(lpn(t) = (1 =X)|) =0 as n— o0 and t— oo, ()
independent of the function py(t).

Proof. Since the load on the system is A, we have E(p,(t)) = 1 — XA as ¢ — oo, which is independent of
pn(t). We examine the term Var(p,(t)). We color the jobs directed to random processors (with probability
1 — pn(t)) green and the jobs directed to idle processors (with probability p,(t)) red. Observe that variance
of the proportion of occupied processors depends on p,(t) as the arrivals of green jobs are independent, but
the arrivals of red jobs are dependent. In particular, with p,(t) = p, let the proportion of processers occupied
by green jobs as ¢ becomes large be uj, , and that by red jobs be uy, ,. Hence, Euf, , = (1—-p)X and

Vartug,) = "0 0= PNA A _ (- 0=V

As red jobs are directed to idle processors, the system with red jobs only is a M/G/k system with
k=mn(l—uj ,) being a random number. As k becomes large, by Lemma 1, the variance

2Ap
\%4 ry< —
ar(un’p) <

independent of k. Together we have

tlim Var(p,(t)) < sup{ Var(ud p) + Var(u, p) }
—00 0 ’ ’
2\
< — =0 as n— oo
n
This proves Lemma 2. ]
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Fix m/n = r, where m is the number of dispatchers.

Corollary 5 Let the random variable o, denote the average queue length of the m I-queues as t — oo,
and let a, denote the total arrival rate of idle servers at the I-queues. Note that the arrival process is not
necessarily Poisson. We have

E(lop, —7m(1=A)]) = 0 as n— oo, (9)

and there exists a constant a such that
E(2 —a) 50 as n— oo. (10)
m

Proof. Eqn. (9) follows directly from Eqn. (8) as 0, = 2% = p,,r. Since the average I-queue length goes to
r(1—A) as n goes to infinity, and the service rate of each I-queue is constant at %‘ = r), the average arrival
rate for each I-queue becomes constant. [ ]

Lemma 3 Let the arrival process at I-queue 1 be A, (t). For JIQ-Random, A, (t) goes to a Poisson process
asn goes to infinity. For JIQ-SQ(2), A, (t) goes to a state-dependent Poisson process where the rate depends
on the I-queue lengths.

Proof. First we show that A, (t) goes to a Poisson process for JIQ-Random. The rate at which processors
become idle depends on the distribution of queue sizes and remaining service time of jobs in the queues, and
is difficult to compute. However, from Corollary 5, we have that the arrival rate of idle processors at an
I-queue goes to a constant value as n goes to infinity.

We show that for arbitrary times tg and ¢1, with tg < t1, Ap(t1) — Ay (to) goes to a Poisson distribution
with mean a(t; — to). This implies stationarity and independence of increments for the point process. For a
given e, there exists ng large enough such that for all n > ng,

P(|an(t1 — to) — ma(ty — to)| > o(m)) <,

and a(t; —tg) < n(t; — tp). Without loss of generality, assume that ma(t; — to) and n(t1 — to) are integers.
Denote the number of idle processors joining I-queue 1 by N,.

P(N, =k) < (1—e¢) (ma(tl —to) + o(m)> ( 1 )k (1 1 >ma<t1to>+o<m>k

k m m

n(tl _ to) 1 k 1 n(t1—to)—k e—a(tl—to)(a(tl _ to))k
+e — 1—— — ,
k m m k!

as we let € — 0 and n,m — oo. Similarly,

ma(t: — to) + o(m) 1\* X 1\ malti—to)+o(m)—k efa(tlfto)(a(tl — to))*
k “m - ] '

m

m

P =1 2 (-0

Hence, the distribution of N,, goes to Poisson with mean a(t; — tg).

For the JIQ-SQ(d) algorithm, consider the number of arrivals that choose I-queue 1 as one of the d choices,
which we call potential arrivals. A similar argument shows that the potential arrival process goes to Poisson
with mean da(t; — tg). The potential arrival process is further thinned by a coin toss whose probability
depends on the I-queue length, yielding a state-dependent Poisson process[3]. [ ]

Proof of Theorem 1.

From Lemma 3, we conclude that each I-queue has the same load and a Poisson arrival process. Let it
be u. Since the service time distribution of each I-queue is exponential, we can compute the mean I-queue
length for JIQ-Random and JIQ-SQ(2) respectively. Corollary 5 yields that the mean I-queue length goes to

(1 — A) hence we have -~ = r(1 — X) for JIQ-Random and }_.;°; W = r(1—A) [16] for JIQ-SQ(2).

Lemma 3 also implies the asymptotic independence of the arrival process for JIQ-Random and the potential
arrival process for JIQ-SQ(2). The asymptotic independence of the queue size distribution for JIQ-Random
follows directly and that for JIQ-SQ(2) follows from [3]. Hence the proportion of occupied I-queues p, —

p = u as n — oo. This shows Eqn. (1) and (2). |
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B. Proof for Primary Load Balancing System

We prove Theorem 2 in this section. We need the following lemmas.

Lemma 4 Let A, be the arrival process of randomly directed jobs at server 1. The point process A, is
Poisson with rate s,, — s = A(1 — p).

Proof. A job arrives at a empty I-queue with probability 1 — p,, where p,, is a random variable denoting
the proportion of occupied I-queues. The job is randomly directed with probability 1 — p,,, and arrives at
server 1 with probability 1/n. Hence the process of randomly directed jobs is a result of thinning the rate-n\
Poisson process with a coin toss with varying probability (1— p,,)/n. Since each coin toss is independent, and
the expected number of arrivals in a period of length ¢ is A(1 — Ep,, )¢, the random arrival process is Poisson
with rate s, = A(1 — Ep,,). Since p, — p in expectation, Ep,, — p and s,, — s. This proves the lemma. =&

Lemma 5 Consider a server with load \. The arrival rate when the server idle is unknown and not necessar-
tly Poisson. The arrival process when the server is occupied is Poisson with rate s. Let @ be the equilibrium
queue size of the server and Qs be the equilibrium queue size of a rate-s M/G/1 queue, then

P(Q=k)="es =) (11)

Proof. Consider a busy period for this server and a busy period of an M/G/1 queue. Observe that a busy
period starts when an arrival enters the idle server. Since the arrival process to the server is Poisson with rate
s once it is occupied, we can show that the queue size distribution within a busy period is the same as that
of an M/G/1 queue with rate s, using a standard coupling. Hence, P(Q = k|Q > 0) = P(Q,s = k|Qs > 0).
Since the server has load A, P(Q > 0) = A and P(Qs > 0) = s. Hence

P@=F) = P@Q=kQ>0)PQ>0)=PQ;s =klQs > 0)P(Q >0)
_ P(Qs = k) _ )‘P(Qs = k)
= mIP’(Q >0) = —

This proves Lemma 5. ]

Proof of Theorem 2.
Using Lemma 5 and s, = A(1 — Ep,,), we have

)‘P(an = k) _ P(QSn = k)
Sn - 1-Ep,

P(Qn = k) =

Using Lemma 3, s, — s = A(1 — p), we have

This proves Theorem 2. [ ]
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