arXiv:2402.02750v2 [cs.CL] 25 Jul 2024

KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache

Zirui Liu”! Jiayi Yoan ™!

Hongye Jin?> Shaochen (Henry) Zhong !

Zhaozhuo Xu? Vladimir Braverman! Beidi Chen* Xia Hu'

Abstract

Efficiently serving large language models (LLMs)
requires batching of many requests to reduce the
cost per request. Yet, with larger batch sizes and
longer context lengths, the key-value (KV) cache,
which stores attention keys and values to avoid re-
computations, significantly increases memory de-
mands and becomes the new bottleneck in speed
and memory usage. Additionally, the loading of
the KV cache causes the computational core to be
idle, which limits the inference speed. A straight-
forward and effective solution to reduce KV cache
size is quantization, which decreases the total
bytes taken by KV cache. However, there is a lack
of in-depth studies that explore the element dis-
tribution of KV cache to understand the hardness
and limitation of KV cache quantization. To fill
the gap, we conducted a comprehensive study on
the element distribution in KV cache of popular
LLMs. Our findings indicate that the key cache
should be quantized per-channel, i.e., group ele-
ments along the channel dimension and quantize
them together. In contrast, the value cache should
be quantized per-token. From this analysis, we de-
veloped a tuning-free 2bit KV cache quantization
algorithm named KIVI. With hardware-friendly
implementation, KIVI can enable Llama, Falcon,
and Mistral models to maintain almost the same
quality while using 2.6 x less peak memory (in-
cluding model weight). This reduction in memory
usage enables up to 4 x larger batch size, bringing
2.35x ~ 3.47x throughput on real LLM infer-
ence workload. The source code is available at
https://github.com/jy-yuan/KIVI.

“Equal contribution. The order of authors is determined
by flipping a coin. 'Rice University >Texas A&M University

3Stevens Institute of Technology *Carnegie Mellon University.

Correspondence to: Zirui Liu <z1105@rice.edu>, Jiayi Yuan
<jy101 @rice.edu>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction

Large Language Models (LLMs) have demonstrated strong
performance across a wide range of tasks (Brown et al.,
2020; Taylor et al., 2022; Yuan et al., 2023; Chuang et al.,
2024). However, their deployment is very costly, requiring a
large number of hardware accelerators such as GPUs. Given
these substantial costs, one natural way to reduce the cost
per request is to combine a sufficient number of requests
together for batch processing. However, in this batch infer-
ence scenario, the key-value cache (KV cache), which holds
the attention keys and values during generation to prevent
re-computations, is becoming the new memory and speed
bottleneck. This bottleneck becomes more pronounced with
larger batch sizes and longer context lengths. For instance,
in 540B PalLM, with a batch size of 512 and a context length
of 2048, KV cache alone can take 3TB. This is 3 times the
size of the model’s parameters (Pope et al., 2023). Also, the
GPU SRAM has to load the whole KV cache from the GPU
device memory for every token generated, during which the
computational cores are idle. Thus, reducing KV cache size
in LLMs while maintaining accuracy is important.

Existing works towards this problem can be roughly divided
into three categories. First, some work suggests reducing
the number of heads in KV cache, such as multi-query
attention (Shazeer, 2019) and multi-group attention (Ainslie
et al., 2023). However, these methods require either training
the model from scratch or fine-tuning the existing model.
Second, another research line reduces KV cache size by
evicting unimportant tokens (Zhang et al., 2023). Third,
some other works try to solve this problem from the system
perspective, e.g., offloading KV cache (Sheng et al., 2023)
or extending virtual memory and paging techniques into the
attention mechanism (Kwon et al., 2023).

To reduce the size of KV cache, the most simple and ef-
fective way is to reduce the total bytes taken by KV cache,
namely, quantization. Unlike the well-studied weight quan-
tization (Lin et al., 2023; Xiao et al., 2023a; Zhao et al.,
2024), to the best of our knowledge, only a few studies
applied the vanilla 4bit round-to-nearest quantization to KV
cache (Sheng et al., 2023; Zhang et al., 2023; Zhao et al.,
2024) due to the streaming nature of KV cache or other
complications. There is a lack of in-depth studies that ex-

https://github.com/jy-yuan/KIVI

KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache

Sx,2x € Rd

=1

sx,zx € Rlem [71]

1

'
X X!
- S 1 1
! 1 'y
P !
I -

per-token per-channel

quantization quantization

Figure 1: Definition of per-token and per-channel quantiza-
tion. X € Rbmomnxd jg key/value cache where lpromp: is the
number of tokens and d is the number of channels. zx is
the zero-point, sx is the scaling factor.

plore the element distribution of KV cache to understand
the hardness and limitation of KV cache quantization. To
fill the gap, we study the element distribution of KV cache.
Our analysis suggests:

* For key cache, there are a few fixed channels whose
magnitudes are very large, which is consistent with
previous finding (Lin et al., 2023; Xiao et al., 2023a).
Thus, as shown in Figure 1 right, key cache should be
quantized per-channel, i.e., group elements along the
channel dimension and quantize them together. In this
way, it can confine the error to each individual channel,
without impacting the other normal channels.

* For value cache, there is no obvious outlier pattern. Al-
though value cache has no obvious outlier pattern, we
experimentally show that it can only be quantized per-
token because it is used to calculate the attention output,
which is essentially a value cache mixer. As shown in
Figure | left, the per-token quantization can confine the
error inside each individual token and ensure that the
quantization of one token does not adversely impact
the others.

Based on the above insights, we propose KIVI, a plug-and-
play extreme low-bit KV cache quantization method. KIVI
quantizes key cache per-channel and quantizes value cache
per-token. The per-token value cache quantization aligns
well with the streaming nature of auto-regressive inference,
allowing newly quantized tensors to be directly appended
to the existing quantized value cache by token dimension.
However, for per-channel key cache quantization, the quan-
tization process spans different tokens, which cannot be
directly implemented in this streaming setting. Since the
number of tokens in key cache can be arbitrary, our key idea
is to split key cache into two parts. The first part is the
grouped key cache, which contains several groups of tokens
and each group has a certain number of tokens. The second
part is the residual key cache, which does not have a suffi-
cient number of tokens to form a complete group. Similarly,

we split value cache into the grouped and residual parts to
maintain the accuracy. We only apply group-wise quanti-
zation to the grouped key cache and value cache, while the
residual key cache and value cache are kept in full precision.
The grouped and residual parts can be combined using tiled
matrix multiplication when computing attention scores. Our
contributions are summarized as follows:

* Extensive analysis regarding the outlier patterns
and quantization error of KV cache in commonly-
used LLMs. Our observations suggest that key cache
should be quantized per-channel and value cache
should be quantized per-token. We also explain in
depth why these caches require different quantization
approaches.

* A new plug-and-play 2bit KV cache quantization
algorithm without any fine-tuning, KIVI, with
hardware-friendly implementation. We conduct an
extensive evaluation for KIVI with Llama, Mistral,
and Falcon on popular generation tasks. KIVI can
efficiently compress KV cache to 2bit and bring 2.6 x
peak memory usage reduction for Llama-2-7B, with
little to no accuracy drop. With our efficient system im-
plementation, this memory reduction, in return, enables
up to 4 x larger batch size and brings 2.35x ~ 3.47x
throughput.

2. Background: Attention Inference-Time
Workflow

The LLM attention inference-time workflow involves two
phases: 1) the prefill phase, where the input prompt is used to
generate KV cache for each transformer layer of LLMs; and
ii) the decoding phase, where the model uses and updates
KV cache to generate the next token, one at a time.

Prefill Phase. Let X € R"*hom*d be the input tensor,
where b is the batch size, [pomp is the length of the input
prompt, and d is the model hidden size. For convenience,
we ignore the layer index here. The key, value tensors can

be computed by
Xk =XWgk, Xy = XWy,

where Wy, Wy € R9*? are the key and value layer weight,
respectively. After obtaining X x and Xy, they are cached
in the memory for the ease of decoding.

Decoding Phase. Lett € R"*1*4 be the current input
token embedding. Let tix = tWi and ty = tWy, be the
key and value layer output, respectively. We first update KV
cache:

X « Concat(X g, tx),

Xy « Concat(Xy, ty),

KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache

then calculate the attention output as:

to = tWo,
A = Softmax(to X),
to =AXy, ey

where W, is the weight matrix of the query layer. For ease
of illustration, we ignore the attention output layer and the
other parts of the inference workflow.

Memory and Speed Analysis. The above process is re-
peated until a special token indicating the sentence’s con-
clusion is reached. Let lgen be the number of generated
tokens. From the above analysis, the shape of KV cache is
b X (lprompt + lgen) X d. To get a sense of the scale, consider
the OPT-175B model with a batch size b 512, a prompt
length lyrompt 512, and an output length lgen 32. The KV
cache requires 1.2TB, which is 3.8 times the model weights
(Sheng et al., 2023). Besides the memory, the inference
speed is also decided by the KV cache size. The GPU needs
to load KV cache from GPU main memory to GPU SRAM
once for every token generated during which the computa-
tional core of the chip is essentially idle (Pope et al., 2023;
Kwon et al., 2023).

3. Methodology

In scenarios with long contexts or batched inferences, the
memory and speed bottlenecks are storing and loading KV
cache. The most simple and effective way to alleviate this
problem is to reduce the total bytes occupied by KV cache,
specifically, quantization. Following this motivation, we
first evaluate the performance of the existing quantization
method in Section 3.1. Our observations suggest that key
and value cache should be quantized along different dimen-
sions. We analyze the rationale behind this observation
in Section 3.2. Then based on the analysis, we propose
KIVI, anew KV cache quantization method along with its
streaming data structure, detailed in Section 3.3.

3.1. Preliminary Study of KV Cache Quantization

As we analyzed in Section 2, KV cache functions as a
streaming data structure, where the new tensor arrives se-
quentially. Thus, optimization-based methods like GPTQ
(Frantar et al., 2022) are unsuitable for quantizing KV cache
due to the overhead. To the best of our knowledge, the
most flexible way for quantizing KV cache is the round-
to-nearest quantization. The B—bit integer quantization-
dequantization process can be expressed as:

X —
Ve X/:Q(X).SX+ZX7

X
where zx = min X is the zero-point, sx = (max X —
min X) /(28 — 1) is the scaling factor, and | -] is the round-
ing operation. Here we ignore the batch size for ease of

Table 1: The results of simulated KV cache group-wise
quantization with various configurations. The group size
is set as 32. C stands for per-channel quantization and T
stands for per-token quantization. Please check the whole
evaluation in Table 3.

Llama-2-13B CoQA TruthfulQA
16bit 66.37 29.53
4bit (K-T,V-T) 6648 29.51
2bit (K-T,V-T) 5293 24.98
2bit (K-C,V-C) 2.88 0.74
2bit (K-T,V-C) 2.80 0.26
2bit (K-C,V-T) 63.53 28.60

understanding. As shown in Figure 1, X is quantized along
either the token or channel dimension group-wisely.

Considering the streaming nature of KV cache, previous
studies often apply per-token quantization to both key and
value cache since the newly quantized KV cache can be
naively added to the existing quantized one along the token
dimension (Sheng et al., 2023). While per-channel quanti-
zation is non-trivial, we have designed a padding method to
implement per-channel quantization to explore its effect on
both key and value cache.

Setting. In Table 1, we show the results of fake KV cache
group-wise quantization with different configurations on the
Llama-2-13B model for the CoQA and Truthful QA tasks.
We use a group size of 32 for all configurations. Here fake
quantization means we simulate the quantization process
by first quantizing KV cache into lower precision and then
dequantizing it in the attention layer. For per-channel quan-
tization, if the number of tokens is not divided evenly into
groups, we add zero-padding to ensure it can be grouped
perfectly. In this way, we ensure that all tokens in KV cache
are quantized for a fair comparison. The detailed experi-
mental setting can be found in Section 4.1. Specifically, we
observe that:

OB 1. When using the commonly used per-token quanti-
zation to both key and value caches, INT4 precision can
maintain accuracy. However, reducing it to INT2 results in
a notable accuracy drop.

OB 2. When value cache is quantized per-channel, the
accuracy significantly worsens regardless of how key cache
is quantized.

OB 3. When using a lower numerical precision such as
INT2, the most accurate approach is to quantize key cache
per-channel and value cache per-token.

KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache

Llama-2-13B Layer 16
Head 0 Value Cache

Llama-2-13B Layer 16
Head 0 Key Cache

Llama-2-13B Layer 31

Llama-2-13B Layer 31
Head 0 Value Cache

Head 0 Key Cache

Falcon-7B Layer 16
Head 0 Key Cache

Falcon-7B Layer 16
Head 0 Value Cache

ADSOlUte value

0
To, ken

Falcon-7B Layer 20

Falcon-7B Layer 20
Head 0 Value Cache

Head 0 Key Cache

Figure 2: Magnitude of key and value cache for Llama-2-13B and Falcon-7B. We observe (1) for key cache, there are a few
channels whose magnitudes are very large. (2) for value cache, there is no obvious outlier pattern.

3.2. Why Key and Value Cache Should Quantize Along
Different Dimensions?

In Table 1, we observe that quantizing key cache per-channel
and value cache per-token to 2bit results in a very small accu-
racy drop. Here we analyze why this configuration delivers
better accuracy. In Figure 2 we visualize the original KV
cache distribution at different layers. We observe that in
key cache, some fixed channels exhibit very large mag-
nitudes, whereas in value cache, there is no significant
pattern for outliers.

Analysis of Key Cache. The above observation for key
cache aligns with previous findings that certain fixed
columns in activations exhibit larger outliers (Dettmers et al.,
2022; Lin et al., 2023). The persistence of outliers within
each channel means that per-channel quantization can con-
fine the quantization error to each individual channel with-
out impacting the other normal channels. Thus, Figure 2
explains why key cache should be quantized per-channel.
In Table 2 we show key cache relative reconstruction error

x
I KX7K || =, along with the relative attention score error

I AAA || > where A’ = Softmax(to Xy). We observe that
the per-token quantization can lead to almost 5x larger at-
tention score error than per-channel quantization, which is
consistent with Figure 2.

Table 2: The relative error statistics averaged over all layers
and all heads

Llama-2-13B K Per-Token K Per-Channel
Avg. || MHF 13.67 455
Avg. || AAA/ I 47.00 9.60
Attention sparsity 84.3%

V Per-Token V Per-Channel
Avg. || 2% XV I 4.57 3.73
Avg. A 3.55 49.89

Analysis of Value Cache. Unlike key cache, value cache
does not show the channel-wise outlier pattern. Furthermore,
Figure 2 alone cannot explain OB2, which indicates value
cache should only be quantized per-token. This is because
Figure 2 implies that errors should be comparable for both
per-token and per-channel quantization, given the absence
of a clear pattern. As shown in Equation (1), value cache
is used to calculate the attention output 5. Instead of
analyzing the quantization error of value cache Xy, in
Table 2 we analyze the relative error A = || AXX;X’:X(/ |7
with different quantization configurations. Surprisingly, we
observe that the per-token quantization error is almost 15 x

KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache

Prefill Phase R
.. Quantization by Channel-.. """ """
XK
A
— - v KVCache
Xo Q(Xx,) | Xk,
Xo
QXy,) | Xv.

A

Xv

Full Precision Tensor

1
1 .
| Low Precision Tensor 1

Decoding Phase*

’ Xk,

. Matmul_ "

S A, Concat .
I

I

1 . 4
= 4y

5 Q_MatMul

- QXk,) —

-» Q'(Xx,), *we omit the value cache and

attention output calculation

Figure 3: The overview of KIVI algorithm. For ease of illustration, we omit the value cache and attention output parts. The
detailed pseudo-code is provided in Algorithm 1. Here “Q_Matmul” is the mix-precision matrix multiplication which fuses
the dequantization with matrix multiplication at the tiling level.

smaller than per-channel quantization, which explains why
OB2 happens. The intuition behind this observation stems
from the attention sparsity. Equation (1) can be written as:

Lprompt
[AXv]ie = Y Ay[Xv]j, @)
j=1
where [Xy];. is the j-th row of Xy . From Equation (2),
the attention output is the weighted summation of value
cache across various tokens, with the weights being the
attention scores. Since the attention score is highly sparse
(Tian et al., 2023), the output is just the combination of
value caches of a few important tokens. The per-token
quantization can confine the error to each individual token.
Thus, quantizing other tokens does not affect the accuracy
of important tokens. Consequently, per-token quantization
leads to a much smaller relative error A.

3.3. KIVI: Algorithm and System Support

Algorithm. As we previously analyzed, key cache should
be quantized per-channel and value cache should be quan-
tized per-token. Recall that key and value cache of newly
generated tokens arrive sequentially. From the implemen-
tation perspective, per-token quantization aligns well with
streaming settings, allowing newly quantized tensors to be
directly appended to the existing quantized value cache
by token dimension. However, for per-channel quantiza-
tion, the quantization process spans across different tokens,
which cannot be directly implemented in the streaming set-
ting. As shown in Figure 3, our key idea to solve this prob-
lem is to group key cache every G tokens and quantize them
separately. Because the number of tokens in X i can be ar-
bitrary, we split X i into two parts, namely, the grouped part
Xk, = Xk[: | —r] and residual part X, = X[l — 7],
where [is the number of tokens inside the current key cache
Xk, r is the number of residual tokens, where [— r can be
divisible by G.

Since X, can be evenly divided into (I — r)/G groups,

we only store (X ¢,) with group-wise quantization, while
X, is kept in full precision. During the decoding process,
each newly arrived key cache £ is added to X . and once
Xk, reaches R tokens, which is a hyperparameter - residual
length, we quantize and concatenate it with the previously
quantized Q(X g,). Then we reset X , to an empty tensor.
We note that R should be divisible by G. With tiled matrix
multiplication, the raw attention logits is then calculated as:

Ay = tQQ(XI—;q)v
Xk, = Concat([Xk, ,tk]),
A, =toXp,,
A = Concat([A4, A,]). (3)

For value cache, similar to key cache, we also split it into
two parts and keep the most recent value cache in full pre-
cision, namely, Xy, and Xy, . Specifically, we maintain a
queue and each newly arrived value cache is pushed into
the queue. Once the queue reaches the predefined residual
length R, the most outdated value cache is poped. Then the
poped value cache is quantized per-token and concatenated
with the previously quantized value cache along the token
dimension.

As shown in Figure 3, we also emphasize that during the
prefill phase, the exact key and value tensors are passed to
the next layers, although only the quantized KV cache is
retained in memory. The whole algorithm can be found in
Appendix A Algorithm 1.

Analysis. InKIVTI,the grouped key cache X ¢, and value
cache Xy, is quantized, while the residual key cache X,
and value cache X v.. 1s kept in full precision. By design,
there are at most R tokens inside X i, or Xy,.. In practice,
we set R < 128 and the sequence length [pompe + lgen is
often much longer than R. Thus the memory overhead from
Xk, and Xy, is negligible when considering the benefit
from extreme low-bit quantization, especially for the long
context scenarios. Also, since the newly arrived key and

KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache

value tensors are added to X i, and Xy, in full precision,
KIVI maintains a full precision KV cache sliding window
for the local relevant tokens. This window size is expected
to be % for key cache, and R for value cache. Later in
the experiment section, we show that this full precision
sliding window is crucial for obtaining desirable perfor-
mance on hard tasks, such as GSMSK.

System Support. We provide a hardware-friendly imple-
mentation for running KIVI on GPUs. To minimize the
overhead, we have fused the dequantization process with
matrix multiplication, e.g., Q_MatMul in Figure 3, using
CUDA. We also implement the group-wise quantization ker-
nel in Triton. Our method is fully compatible with weight-
only quantization.

4. Experiments
4.1. Settings

Models. We evaluate KIVI using three popular model
families: Llama/Llama-2 (Touvron et al., 2023a;b), Fal-
con (Penedo et al., 2023) and Mistral (Jiang et al., 2023).
Llama and Mistral model is based on multi-head attention,
while Falcon is based on multi-query attention (Shazeer,
2019). We use the Hugging Face Transformers codebase
and implement the KIVI algorithm upon it. Following
previous work (Sheng et al., 2023), the group size G in
Algorithm 1 for quantization is set as 32 across all experi-
ments, the residual length R for key and value cache is set
to 128.

Tasks. As we analyzed in Section 2, the KV cache size
grows larger with a longer context. Thus, we evaluate KIVI
under the normal context length and long context setting,
respectively. Specifically, we adopt generation tasks from
LM-Eval (Gao et al., 2021) for normal context length eval-
uation and LongBench (Bai et al., 2023) for long context
evaluation, respectively'. For LM-eval, we adopt CoQA
(Exact match accuracy), Truthful QA (BLEU score), and
GSMSK (Exact match accuracy). For LongBench, we chose
tasks from four subgroups. Specifically, Qasper (F1 score)
is a Single-Document QA task; QMSum (ROUGE score)
and MultiNews (ROUGE score) are Summarization tasks;
TREC (classification score), TriviaQA (F1 score), and SAM-
Sum (ROUGE score) are Few-shot Learning tasks; and LCC
(similarity score) and RepoBench-P (similarity score) is
Code Completion task. The maximum sequence length in
LongBench was set to 8192 for the Mistral model and 4096
for other models. We also consider the needle-in-a-haystack

'The closed-end tasks such as MMLU are not ideal to evaluate
KIVTI since they only involve one decoding step and directly fetch
the output logits, which is not suitable for studying the impact of
compressed KV cache.

task (NIAH) to evaluate the model’s long context retrieval
ability after quantizing KV cache. Detailed NIAH setting
can be found in Appendix B.

4.2. Accuracy and Efficiency Analysis

4.2.1. COMPARISON BETWEEN DIFFERENT
QUANTIZATION CONFIGURATIONS

We first utilize the fake quantization to demonstrate the effec-
tiveness of our asymmetric quantization, namely, quantizing
key cache per-channel and value cache per-token. Here fake
quantization is exactly the same as in Table 1. The results
are shown in Table 3. We observe that “2bit (K per-channel,
V per-token)” consistently achieves the best results com-
pared to all other configurations. This is consistent with
our previous analysis. We also note that for hard generation
tasks such as GSMSK, the fake “2bit (K per-channel, V
per-token)” quantization results are significantly worse than
the full precision counterparts. However, for KIVI in Table
3, we observe that the accuracy drop is only around 2% for
GSMSK across different models. As we analyzed in Section
3.3, the difference between fake “2bit (K per-channel, V
per-token)” quantization and KIVTI is that KIVI maintains
a full precision key and value cache sliding window for
the local relevant tokens. This sliding window is crucial
to maintaining accuracy for hard generation tasks such as
mathematical reasoning.

4.2.2. ACCURACY COMPARISON ON GENERATION
TASKS

LM-Eval Results. We benchmark KIVI in CoQA, Truth-
fulQA and GSMSK tasks using the LM-Eval framework.
All dataset parameters were set to default. We compare the
standard 16bit configuration with our KIVI compression
techniques in Llama-2-7B, Llama-2-13B, Falcon-7B and
Mistral-7B. As shown in Table 3, we observe that for the
Llama and Mistral model, KIVI only has up to 2% accu-
racy drop despite the KV cache being stored in 2bit. For
instance, in the Llama-2-7B model, the transition from 16bit
to 2bit only slightly decreases accuracy. Similar trends are
observed in other Llama-family models. Since Falcon-7B
adopts multi-query attention and only has one head for KV
cache, it is already highly compressed compared to Llama-
based models. Thus, in Table 3, 4bit KIVI is needed to
maintain the accuracy, while 2bit KIVI may have a large
accuracy drop in this case.

LongBench Results. The performance of KIVI over vari-
ous models in the LongBench dataset is summarised in Table
4. We apply KIVI to Llama2-7B, Llama2-13B, Llama2-7B-
Chat, Llama2-13B-Chat, Falcon-7B and Mistral-7B. Table
4 suggests that KIVT is an effective method for KV cache
compression with minimal impact on accuracy across var-

KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache

20K words = 27K tokens

NS P N
Q?Sl% DEAT T NN
Word Count

(a) Llama-3-8B-Instruct Baseline

20K words = 30K tokens

A N P R o e
OTITRAT NG
Word Count

20K words = 27K tokens

Word Count
(b) Llama-3-8B-Instruct + KIVI-2

20K words = 30K tokens

NN N N E S
0‘()’1' MAY O .\/\.\’/‘),\/Q),\'Q;,LQ

Word Count

20K words = 27K tokens

8 0.56 1.0

0.8
N N N N A A
ST AT SRS
Word Count 0.6
(c) Llama-3-8B-Instruct + KIVI-4
20K words = 30K tokens
0.4
0.2
ey
< 0.
o
30.56
0.0

SRR P SR
OO ORI
Word Count

(d) Mistral-7B-Instruct-v0.2 Baseline (e) Mistral-7B-Instruct-v0.2 + KIVI-2 (f) Mistral-7B-Instruct-v0.2 + KIVI-4

Figure 4: Needle-in-a-Haystack results on Llama-3-8B-Instruct and Mistral-7B-Instruct-v0.2. Here we count the number
of words instead of tokens to better account for the tokenizer difference. The final token length is noted in the upper right
corners of each figure. Detailed setting can be found in Appendix B.

ious hard long context generation tasks. We present ad-
ditional results using Llama3-8b, Mistral-7B-v(0.2, and
LongChat-7B-v1.5, which can be found in Appendix D.

NIAH Results. From Figure 4, we observe that KIVI
can still maintain the retrieval ability of LLMs even with
2bit KV Cache. Detailed NIAH setting can be found in
Appendix B.

4.2.3. ABLATION

In this section, we benchmark KIVI on GSMS8K, one of
the hardest generation tasks, to show the effect of hyperpa-
rameters group size G and residual length R on the model
performance. For full results of KIVI with a residual length
of 32, please refer to Appendix C.

The effect of group size. We fix the residual length at 128
and vary the group sizes to 32, 64, and 128. From Table 5,
we observe that group sizes 32 and 64 yield similar results,
whereas the performance significantly decreases when the
group size reaches 128. Note the zero-point and the scaling
factor mentioned in Section 3.1 are calculated according to

this group size; where the choice of group size will greatly
impact the KV cache compression effect under a long input.

The effect of residual length. We fix the group size at 32
and vary the residual length across 32, 64, 96, and 128. As
shown in Table 5, there is no consistent pattern between
residual lengths and model accuracy. Namely, while a resid-
ual length of 128 achieves good results, 32 and 96 yield
similar outcomes, but a residual length of 64 results in the
worst performance. We emphasize that while we observe no
significance among residual lengths of {32, 96, 128}, hav-
ing a reasonably large residual length is important; as
it brings much performance boosts on hard tasks like
GSMSK, again as shown in Table 5.

4.2.4. EFFICIENCY COMPARISON

To evaluate the wall-clock time efficiency of KIVI, follow-
ing vLLM (Kwon et al., 2023), we synthesize workloads
based on ShareGPT (sha, 2023), which contain input and
output texts of real LLM services. On average, the data
set has an input prompt length l,romp; of 161 and an output
length Iy, of 338 (Kwon et al., 2023). We increase the batch

KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache

Table 3: Performance comparison between 16bit, 4-bit per-
token quantization, four fake 2bit KV cache quantization
similar to those in Table 1, KIVI-2 (2bit) / KIVI-4 (4bit)
across various models. We emphasize that unlike KIVT,
which preserves a small portion of full precision key cache
Xk, and value cache Xy, , all tokens in fake KV cache
quantization are quantized for a fair comparison. C stands
for per-channel quantization and T stands for per-token
quantization.

Model CoQA TruthfulQA GSMSK
16bit 63.88 30.76 13.50
4bit (K-T,V-T) 64.82 29.85 12.28
2bit (K-C,V-T) 59.08 33.10 5.76
Llama-2-7B 2bit (K-T,V-T) 39.88 18.29 0.83
2bit (K-C,V-C) 3.60 0.27 0.00
2bit (K- T, V-C) 1.30 0.49 0.08
KIVI-4 63.78 30.80 13.80
KIVI-2 63.05 33.95 12.74
16bit 66.37 29.53 22.67
4bit (K-T,V-T) 66.73 29.14 20.92
2bit (K-C,V-T) 63.53 28.60 12.21
Llama-2-13B 2bit(K-T,V-T) 5293 24.98 4.55
2bit (K-C,V-C) 2.88 0.74 0.00
2bit (K- T,V -C) 2.80 0.26 0.08
KIVI-4 66.38 29.49 23.65
KIVI-2 66.23 29.84 20.77
16bit 59.83 23.20 4.55
4bit (K-T,V-T) 58.53 22.94 3.26
2bit (K-C,V-T) 4393 20.82 1.29
Falcon-7B 2bit (K-T,V-T) 25.72 0.91 0.53
2bit(K-C,V-C) 4195 17.11 1.52
2bit(K-T,V-C) 19.53 0.94 0.15
KIVI-4 59.67 22.58 4.47
KIVI-2 57.48 24.98 341
16bit 67.40 30.45 38.36
4bit (K-T,V-T) 67.80 29.83 36.85
2bit (K-C,V-T) 61.65 29.64 26.46
Mistral-7B 2bit (K-T,V-T) 5455 25.86 5.00
2bit (K-C,V-C) 2440 24.86 2.27
2bit (K-T,V-C) 10.73 19.12 0.99
KIVI-4 66.95 30.49 37.30
KIVI-2 66.35 32.17 36.01

size until out of memory and report the peak memory usage
and throughput between KIVI (with residual length 32 and
128) and FP16 baseline for the Llama-2-7B model. The
hardware here is a single NVIDIA A100 GPU (80GB).

As shown in Figure 5, with similar maximum memory us-
age, KIVI enables up to 4x larger batch size and gives
2.35x ~ 3.47x larger throughput. This throughput num-
ber can grow larger with longer context length and output
length. We also note that this speed-up can be greatly
increased if we further fuse the KV cache quantization
process with previous operations. We leave it as one of
future work.

70
__ 60+
om
9 504
[0}
40
%)
=
> 301
1
o
GE_, 207 Baseline
= 104 —e— KIVI - Residual length 128
—e— KIVI - Residual length 32
0 v T T i T i T
0 50 100 150 200 250 300 350 400
Batch size (# requests)
3000
¥ 2500 4
%)
c
9 2000
o
p=2
+ 1500 1
%
<
D 1000
=3 .
o Baseline
|E 500 —e— KIVI - Residual length 128
—e— KIVI - Residual length 32
0

0 50 100 150 200 250 300 350 400
Batch size (# requests)

Figure 5: Memory usage and throughput comparison be-
tween 2bit KIVI and 16bit baseline. KIVI can achieve
higher throughput by enabling a larger batch size.

5. Related Work

Many machine learning systems and benchmark works con-
sider scaling up LLM inference process (Pope et al., 2023;
Yuan et al., 2024). Among them, quantization techniques
have been widely applied (Frantar et al., 2022; Lin et al.,
2023; Kim et al., 2023; Xu et al., 2023). A main branch
of LLM quantization is weight-only quantization, which in-
volves the quantization of model weights to lower precision.
For instance, AWQ (Lin et al., 2023) cleverly quantizes
model weights to INT4 and INT3 using an activation-aware
manner. GPTQ (Frantar et al., 2022) utilizes approximate
second-order information to quantize model weights both
accurately and efficiently. SqueezeLLM (Kim et al., 2023)
adopts the concept of non-uniform quantization based on
sensitivity along with dense-and-sparse decomposition. This
line of work is orthogonal to ours, as they can be combined.

SmoothQuant (Xiao et al., 2023a) is a post-training quan-
tization method that is more closely related to our work.
This method uses equivalent transformations to balance
the quantization complexity for both activation and weight,
making the activation easier to quantize. SmoothQuant can
compress KV cache to 8bit with minor performance loss.
However, it faces a significant accuracy drop when scaled
down to 4bit or less (Zhao et al., 2024). FlexGen (Sheng
et al., 2023) adopts 4-bit group-wise quantization for both
key and value cache.

KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache

Table 4: Performance evaluation of KIVI on various models across a range of benchmarks in LongBench. We highlight the
average performance of our method. More similar results on Mistral-7B-v(.2 and LongChat-7b-v1.5 can be found in

Table 10 and Table 9

Model Qasper QMSum MultiNews TREC TriviaQA SAMSum LCC RepoBench-P Average
16bit 9.52 21.28 3.51 66.00 87.72 41.69 66.66 59.82 44.52
Llama2-7B KIVI-4 9.28 21.42 3.88 66.00 87.72 41.82 66.80 59.83 44.59
KIVI-2 9.31 20.50 1.14 66.00 87.42 42.71 66.88 60.23 44.27
16bit 9.32 21.38 3.71 70.00 87.87 43.55 66.61 56.42 44.85
Llama2-13B KIVI-4 9.16 20.86 321 69.00 86.97 44.26 65.30 57.08 44.48
KIVI-2 8.58 20.69 6.19 69.50 87.78 44.30 65.08 55.46 44.69
16bit 19.65 20.54 26.36 63.00 84.28 41.12 59.75 52.93 45.95
Llama2-7B-Chat KIVI-4 19.62 20.70 25.49 63.00 84.13 40.87 59.27 53.56 45.83
KIVI-2 19.32 20.46 25.48 63.00 84.84 40.60 58.71 52.97 45.67
16bit 24.18 20.37 25.69 67.50 86.90 42.18 50.23 50.64 45.96
Llama2-13B-Chat KIVI-4 23.00 20.36 26.06 67.50 87.20 42.04 52.55 52.77 46.44
KIVI-2 23.59 20.76 25.25 67.5 87.17 41.56 49.93 48.45 45.52
16bit 1.48 2.35 11.09 13.00 5.84 2.44 23.86 9.69 8.71
Falcon-7B KIVI-4 1.04 241 11.98 13.00 5.84 2.36 23.72 9.92 8.78
KIVI-2 1.98 3.61 6.78 10.00 6.24 2.73 22.18 10.12 7.95
16bit 8.12 19.98 19.99 67.50 89.80 41.69 66.59 58.99 46.58
Mistral-7B KIVI-4 7.89 20.06 20.58 67.50 89.80 41.56 66.45 58.62 46.56
KIVI-2 6.92 19.71 17.92 66.50 89.63 41.66 65.52 58.99 45.85

Table 5: Ablation study of KIVI by changing group size G
and residual length R.

Model Group Size GSMSK
32 20.77
Llama2-13B 64 21.00
128 17.29
Model Residual Length GSMSK
32 20.62
64 19.86
Llama2-13B 9% 20.55
128 20.77

One essential recipe of KIVI is the per-channel quantiza-
tion scheme designed based on the observation made in
Section 3.2 and Figure 2. ATOM (Zhao et al., 2024) also
indicates that key cache exhibits more outliers compared to
the value cache. KIVI provides further extensive analysis
and leverages this observation to implement per-channel
quantization. A similar observation and approach has been
independently discovered and developed in the concurrent
work KVQuant (Hooper et al., 2024).

vLLM (Kwon et al., 2023) and S3 (Jin et al., 2023) are
system-level works, which include memory management
through the use of PagedAttention or memory usage pre-
diction. They can lower the memory requirements of KV
cache and simultaneously increase model throughput. This
research direction is orthogonal to our work, since system-
level optimizations can also be applied upon our algorithm.

Several other works also consider compressing KV cache
by evicting tokens. H20 (Zhang et al., 2023) retains only
a small portion of tokens that contribute significantly to
the attention scores. Similarly, Scissorhands (Liu et al.,
2024) exploit the persistence of the importance hypothesis
in KV cache sparsification. Streamingl.LM (Xiao et al.,
2023Db) is based on the observation of “attention sink™ and
maintains only a few initial tokens to preserve performance.
Unlike these works, our KIVT retains all input tokens and
compresses them into lower precision. This line of work is
orthogonal to ours, as they can also be combined together.

6. Conclusion and Future Work

In this paper, we systematically analyze KV cache element
distribution in popular LLMs. We conclude that key cache
should be quantized per-channel and value cache should
be quantized per token. Based on these observations, we
propose KIVI, a plug-and-play 2bit KV cache quantization
algorithm without the need for any tuning. In real LLM
workload, KIVI allows up to 4x larger batch sizes and
3.47 x throughput. In the future, we will further optimize
the implementation to reduce the overhead of quantization
process during the prefill and decoding phase.

Acknowledgments

The authors thank the anonymous reviewers for their help-
ful comments. Dr. Beidi Chen is supported by a research
gift from Moffett.Al. Dr. Vladimir Braverman is partially

KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache

supported by the Ministry of Trade, Industry and Energy
(MOTIE) and Korea Institute for Advancement of Technol-
ogy (KIAT) through the International Cooperative R&D pro-
gram, the Naval Research (ONR) grant N00014-23-1-2737,
and NSF CNS 2333887 award. Dr. Xia Hu is supported by
NSF grants NSF IIS-2224843. The views and conclusions
contained in this paper are those of the authors and should
not be interpreted as representing any funding agencies.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References

ShareGPT Team. https://sharegpt.com/, 2023.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury
Zemlyanskiy, Federico Lebrén, and Sumit Sanghai.
Gqa: Training generalized multi-query transformer
models from multi-head checkpoints. arXiv preprint
arXiv:2305.13245, 2023.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai
Tang, Zhidian Huang, Zhengxiao Du, Xiao Liu, Aohan
Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li.
Longbench: A bilingual, multitask benchmark for long
context understanding. arXiv preprint arXiv:2308.14508,
2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in neural
information processing systems, 33:1877-1901, 2020.

Yu-Neng Chuang, Songchen Li, Jiayi Yuan, Guanchu Wang,
Kwei-Herng Lai, Leisheng Yu, Sirui Ding, Chia-Yuan
Chang, Qiaoyu Tan, Daochen Zha, et al. Understand-
ing different design choices in training large time series
models. arXiv preprint arXiv:2406.14045, 2024.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. Llm. int8 (): 8-bit matrix multiplication for
transformers at scale. arXiv preprint arXiv:2208.07339,
2022.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan
Alistarh. Gptq: Accurate post-training quantization
for generative pre-trained transformers. arXiv preprint
arXiv:2210.17323,2022.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, An-
thony DiPofi, Charles Foster, Laurence Golding, Jeffrey

10

Hsu, Kyle McDonell, Niklas Muennighoff, et al. A frame-
work for few-shot language model evaluation. Version vO0.
0.1. Sept, page 8, 2021.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh,
Michael W Mahoney, Yakun Sophia Shao, Kurt Keutzer,
and Amir Gholami. Kvquant: Towards 10 million context
length 1lm inference with kv cache quantization. arXiv
preprint arXiv:2401.18079, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch,
Chris Bamford, Devendra Singh Chaplot, Diego de las
Casas, Florian Bressand, Gianna Lengyel, Guillaume
Lample, Lucile Saulnier, et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Yunho Jin, Chun-Feng Wu, David Brooks, and Gu-Yeon
Wei. S3: Increasing gpu utilization during genera-
tive inference for higher throughput. arXiv preprint
arXiv:2306.06000, 2023.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong,
Xiuyu Li, Sheng Shen, Michael W Mahoney, and Kurt
Keutzer. Squeezellm: Dense-and-sparse quantization.
arXiv preprint arXiv:2306.07629, 2023.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng,
Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez, Hao
Zhang, and Ion Stoica. Efficient memory management
for large language model serving with pagedattention. In
Proceedings of the 29th Symposium on Operating Systems
Principles, pages 611-626, 2023.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu
Dang, and Song Han. Awq: Activation-aware weight
quantization for llm compression and acceleration. arXiv
preprint arXiv:2306.00978, 2023.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang,
Victor Xie, Zhaozhuo Xu, Anastasios Kyrillidis, and An-
shumali Shrivastava. Scissorhands: Exploiting the per-
sistence of importance hypothesis for 1lm kv cache com-
pression at test time. Advances in Neural Information
Processing Systems, 36, 2024.

Amirkeivan Mohtashami and Martin Jaggi. Landmark at-
tention: Random-access infinite context length for trans-
formers. arXiv preprint arXiv:2305.16300, 2023.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow,
Ruxandra Cojocaru, Alessandro Cappelli, Hamza Alobei-
dli, Baptiste Pannier, Ebtesam Almazrouei, and Julien
Launay. The refinedweb dataset for falcon llm: outper-
forming curated corpora with web data, and web data
only. arXiv preprint arXiv:2306.01116, 2023.

https://sharegpt.com/

KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Ja-
cob Devlin, James Bradbury, Jonathan Heek, Kefan Xiao,
Shivani Agrawal, and Jeff Dean. Efficiently scaling trans-
former inference. Proceedings of Machine Learning and
Systems, 5, 2023.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry
Lepikhin, Timothy Lillicrap, Jean-baptiste Alayrac, Radu
Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrit-
twieser, et al. Gemini 1.5: Unlocking multimodal un-
derstanding across millions of tokens of context. arXiv
preprint arXiv:2403.05530, 2024.

Noam Shazeer. Fast transformer decoding: One write-head
is all you need. arXiv preprint arXiv:1911.02150, 2019.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li,
Max Ryabinin, Beidi Chen, Percy Liang, Christopher Ré,
Ion Stoica, and Ce Zhang. Flexgen: High-throughput
generative inference of large language models with a
single gpu. In International Conference on Machine
Learning, pages 31094-31116. PMLR, 2023.

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas
Scialom, Anthony Hartshorn, Elvis Saravia, Andrew
Poulton, Viktor Kerkez, and Robert Stojnic. Galactica:
A large language model for science. arXiv preprint
arXiv:2211.09085, 2022.

Yuandong Tian, Yiping Wang, Beidi Chen, and Simon Du.
Scan and snap: Understanding training dynamics and
token composition in 1-layer transformer. arXiv preprint
arXiv:2305.16380, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Mar-
tinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste
Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al.
Llama: Open and efficient foundation language models.
arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almabhairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al.
Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288, 2023b.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien
Demouth, and Song Han. Smoothquant: Accurate and ef-
ficient post-training quantization for large language mod-
els. In International Conference on Machine Learning,
pages 38087-38099. PMLR, 2023a.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han,
and Mike Lewis. Efficient streaming language models
with attention sinks. arXiv preprint arXiv:2309.17453,
2023b.

11

Zhaozhuo Xu, Zirui Liu, Beidi Chen, Yuxin Tang, Jue Wang,
Kaixiong Zhou, Xia Hu, and Anshumali Shrivastava.
Compress, then prompt: Improving accuracy-efficiency
trade-off of llm inference with transferable prompt. arXiv
preprint arXiv:2305.11186, 2023.

Jiayi Yuan, Ruixiang Tang, Xiaoqgian Jiang, and Xia Hu.
Large language models for healthcare data augmentation:
An example on patient-trial matching. In AMIA Annual
Symposium Proceedings, volume 2023, page 1324. Amer-
ican Medical Informatics Association, 2023.

Jiayi Yuan, Hongyi Liu, Shaochen Zhong, Yu-Neng Chuang,
Songchen Li, Guanchu Wang, Duy Le, Hongye Jin, Vipin
Chaudhary, Zhaozhuo Xu, Zirui Liu, and Xia Hu. Kv
cache compression, but what must we give in return? a
comprehensive benchmark of long context capable ap-
proaches. arXiv preprint arXiv:2407.01527, 2024.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen,
Lianmin Zheng, Ruisi Cai, Zhao Song, Yuandong Tian,
Christopher Ré, Clark Barrett, et al. H _2 o: Heavy-hitter
oracle for efficient generative inference of large language
models. arXiv preprint arXiv:2306.14048, 2023.

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn
Chen, Size Zheng, Luis Ceze, Arvind Krishnamurthy,
Tiangi Chen, and Baris Kasikci. Atom: Low-bit quanti-
zation for efficient and accurate 1lm serving. Proceedings
of Machine Learning and Systems, 6:196-209, 2024.

KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache

A. Detailed Implementations

In this section, we present the algorithm for KIVT as discussed in Section 3.3. Specifically, we provide the pseudocode for
KIVI when calculating the attention output in the prefill and decoding phases.

Algorithm 1: The KIVI Prefill & Decoding Algorithm
parameter: group size G, residual length R

procedure Prefill:

Input: X € Rbpomxd

X = XWgk, Xy = XWy

XVg = XV[: lprompt - R]a XVT = XV[lprompt - R :]

Q(Xy,) + GroupQuant(Xy, ,dim=token, numGroup=d//G)
Q(XKg), Xk, < KeyQuant(Xk)

KV cache + Q(XKQ)7 XKM Q(ng), XV7

return XK, Xy

end

procedure Decoding:

Input: KV cache, t € R1*¢

to = tWo, tx = tWi, ty = tWy

Q(XKq), Xk, Q(qu), Xy, < KV cache

X + Concat([Xg,, tx], dim=token)

Xy, « Concat([Xy, , ty],dim=token)

if len(X) = R then

Q(Xk,),_<+KeyQuant(Xkg,)

Q(Xk,) + Concat([Q(Xk,), Q(Xk,)], dim=token)
X, < empty tensor.

end

if len(Xy,) > R then

Q(Xy) < GroupQuant(Xy, [: —R], dim=token, numGroup = d//G)
Q(Xy,) + Concat([Q(Xv,), Q(Xy:)],dim=token)
XVT < XVT[fR :]

end

A + Concat([tgQ(Xk,) ", to X], dim=token)
Ay = Softmax(A)[: —R], A, = Softmax(A)[—R]
to — A,Q(Xv,) + A, Xv,

KV cache < Q(XK9)7 Xk,, Q(ng), Xy,
return tp

end

function KeyQuant (X € R*9);

r =I%R,

XKg = XK[l _TLXK,,. = XK[Z -T Z]

Q(Xk,) + GroupQuant(X, dim=channel, numGroup=I//G)
return Q(Xg,), Xk,

end

12

KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache

B. NIAH Setting

We largely follows the passkey retrieval prompt template of Mohtashami and Jaggi (2023) but using 7-digit passkey and
Paul Graham Essays” as the background filler, as set forth in Arize-ai and Reid et al. (2024):

There is an important info hidden inside a lot of irrelevant text. Find it and memorize
them. I will quiz you about the important information there.

<prefix filled by Paul Graham Essays>
The pass key is <7-DIGIT PASS KEY>. Remember it. <7-DIGIT PASS KEY> is the pass key.
<suffix filler>

What is the pass key? The pass key is

C. More Ablation Results

In our efficiency evaluation, we observe that with a residual length of 32, KIVI achieves a significantly higher memory
compression rate, which in turn leads to increased throughput. Additionally, our ablation study reveals that changing the
residual length from 128 to 32 does not result in a substantial performance gap. We demonstrate KIVI with a residual
length of 32 across all benchmark datasets. As shown in Tables 6 and 7, KIVI with a residual length of 32 also delivers
performance comparable to that of the 16-bit full model.

Table 6: Performance comparison between 16bit, KIVI-2 (2bit) / KIVI—-4 (4bit) with residual length 128 and 32 across
various models. R32 stands for residual length 32.

Model CoQA TruthfulQA GSMSK
16bit 63.88 30.76 13.50
Llama-2-7B KIVI-2 R128 63.05 33.95 12.74
KIVI-2 R32 62.85 33.01 13.57
16bit 66.37 29.53 22.67
Llama-2-13B KIVI-2 R128 66.23 29.84 20.77
KIVI-2 R32 66.57 29.35 20.62
16bit 59.83 23.20 4.55
KIVI-4 R128 59.67 22.58 4.47
Falcon-7B KIVI-4 R32 59.73 22.96 3.94
KIVI-2 R128 57.48 24.98 341
KIVI-2 R32 57.50 25.70 2.20
16bit 67.40 30.45 38.36
Mistral-7B KIVI-2 R128 66.35 32.17 36.01
KIVI-2 R32 65.90 31.21 34.34

D. More Experimental Results

We present additional results using Llama3-8B, Mistral-7B-v0.2, and LongChat-7B-v1.5 in LongBench, which can be found
in Table 8, Table 9 and Table 10, respectively.

We also show result of Needle-in-a-Haystack Test in Figure 4. The settings largely follow the format of the original passkey
retrieval task (Mohtashami and Jaggi, 2023) while including some modern modifications set forward by Arize-ai and the
technical report of Gemini 1.5 (Reid et al., 2024).

nttps://paulgraham.com/articles.html

13

https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://paulgraham.com/articles.html

KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache

Table 7: Performance evaluation of KIVI with residual length 128 and 32 on various models across a range of benchmarks
in LongBench. R32 stands for residual length 32.

Model Qasper QMSum MultiNews TREC TriviaQA SAMSum LCC RepoBench-P Average
16bit 9.52 21.28 3.51 66.00 87.72 41.69 66.66 59.82 44.52
Llama2-7B KIVI-2 R128 9.31 20.50 1.14 66.00 87.42 42.71 66.88 60.23 44.27
KIVI-2 R32 9.26 20.53 0.97 66.00 87.42 42.61 66.22 59.67 44.08
16bit 9.32 21.38 3.71 70.00 87.87 43.55 66.61 56.42 44.85
Llama2-13B KIVI-2 R128 8.58 20.69 6.19 69.50 87.78 44.30 65.08 55.46 44.69
KIVI-2 R32 8.38 20.74 7.01 69.50 87.78 44.43 64.89 55.31 4475
16bit 19.65 20.54 26.36 63.00 84.28 41.12 59.75 52.93 45.95
Llama2-7B-Chat KIVI-2 R128 19.32 20.46 25.48 63.00 84.84 40.60 58.71 52.97 45.67
KIVI-2 R32 19.10 20.08 25.33 63.00 85.04 39.80 57.91 52.38 45.33
16bit 24.18 20.37 25.69 67.50 86.90 42.18 50.23 50.64 45.96
Llama2-13B-Chat KIVI-2 R128 23.59 20.76 25.25 67.50 87.17 41.56 49.93 48.45 45.52
KIVI-2 R32 23.56 20.90 25.45 67.50 87.42 41.40 48.93 48.81 45.49
16bit 1.48 2.35 11.09 13.00 5.84 2.44 23.86 9.69 8.71
KIVI-4 R128 1.04 241 11.98 13.00 5.84 2.36 23.72 9.92 8.78
Falcon-7B KIVI-4 R32 1.03 245 11.99 13.50 5.84 2.46 23.88 9.95 8.88
KIVI-2 R128 1.98 3.61 6.78 10.00 6.24 2.73 22.18 10.12 7.95
KIVI-2 R32 2.28 3.23 6.73 10.00 6.31 2.88 22.71 10.45 8.07
16bit 8.12 19.98 19.99 67.50 89.80 41.69 66.59 58.99 46.58
Mistral-7B KIVI-2 R128 6.92 19.71 17.92 66.50 89.63 41.66 65.52 58.99 45.85
KIVI-2 R32 6.84 19.81 17.20 66.50 89.63 42.82 65.13 58.06 45.74

Table 8: The results of Llama-3-8B-Instruct with KIVI on LongBench. The model has 8K context length and applies group
query attention, which uses 8 heads for KV cache instead of the full 32 heads. We use a 32 group size and 128 residual
length for both KIVI-2 and KIVI-4. The baseline is of full precision.

NarrativeQA Qasper MultiFieldQA HotpotQA MuSiQue 2WikiMQA GovReport QMSum

Baseline 21.71 44.24 44.54 46.82 21.49 36.42 30.03 22.67
w./ KIVI-2 21.35 43.17 44.49 46.79 20.56 37.05 29.98 22.07
w./KIVI-4 21.01 44.83 44.60 46.96 21.43 36.48 30.22 22.44
MultiNews LCC RepoBench-P TriviaQA SAMSum TRec PR Avg
Baseline 27.79 57.00 51.22 90.23 42.53 74.50 67.00 45.21
w./KIVI-2 27.77 50.84 46.65 90.54 42.26 74.50 67.50 44.37
w./KIVI-4 27.97 57.36 52.03 90.33 42.97 74.50 66.50 45.31

Table 9: The results of Mistral-7B-Instruct-v0.2 with KIVI on LongBench. The model has 32K context length and applies
group query attention, which uses 8 heads for KV cache instead of the full 32 heads. We use a 32 group size and 128
residual length for both KIVI-2 and KIVI-4. The baseline is of full precision.

NarrativeQA Qasper MultiFieldQA HotpotQA MuSiQue 2WikiMQA GovReport QMSum

Baseline 21.02 29.41 47.13 36.53 19.13 21.76 32.59 23.99
w./ KIVI-2 20.61 28.73 44.88 35.47 17.95 20.68 32.55 23.65
w./KIVI-4 20.97 29.41 46.52 36.25 19.53 21.66 32.97 24.06

MultiNews LCC RepoBench-P TriviaQA SAMSum TRec PR Avg
Baseline 27.09 53.49 51.40 86.23 43.04 71.00 89.33 43.54
w./KIVI-2 26.54 53.03 51.16 86.00 43.34 71.00 80.83 42.43
w./KIVI-4 26.89 53.33 51.41 86.23 43.34 71.00 89.42 43.53

14

KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache

Table 10: The results of LongChat-7B-v1.5-32K with KIVI on LongBench. The model has 32K context length. We use a
32 group size and 128 residual length for both KIVI-2 and KIVI-4. The baseline is of full precision.

NarrativeQA Qasper MultiFieldQA HotpotQA MuSiQue 2WikiMQA GovReport QMSum

Baseline 20.65 29.42 43.15 33.05 14.66 24.14 30.85 22.84
w./ KIVI-2 20.79 28.69 41.02 3291 13.82 23.00 30.47 22.59
w./KIVI-4 20.49 28.90 43.24 33.07 14.66 24.836 31.40 22.84
MultiNews LCC RepoBench-P TriviaQA SAMSum TRec PR Avg
Baseline 26.55 54.83 58.94 83.99 40.75 66.50 30.50 38.72
w./KIVI-2 26.28 54.11 57.62 83.19 41.28 66.50 32.25 38.30
w./KIVI-4 26.52 54.06 58.77 83.88 40.62 67.00 31.50 38.79

15

	Introduction
	Background: Attention Inference-Time Workflow
	Methodology
	Preliminary Study of KV Cache Quantization
	Why Key and Value Cache Should Quantize Along Different Dimensions?
	KIVI: Algorithm and System Support

	Experiments
	Settings
	Accuracy and Efficiency Analysis
	Comparison Between Different Quantization Configurations
	Accuracy Comparison on Generation Tasks
	Ablation
	Efficiency Comparison

	Related Work
	Conclusion and Future Work
	Detailed Implementations
	NIAH Setting
	More Ablation Results
	More Experimental Results

