
KMDF
How to develop framework drivers

Kumar Rajeev
SDET
Microsoft Corporation

KMDF And HID
MinidriverKMDF does not support HID minidrivers natively due to conflicting

KMDF and HID architecture requirements
HID architecture requires that HIDclass driver own the driver

dispatch table, while KMDF requires that it own the dispatch
table of the minidriver

Solution is to use a driver stack that consists of a minimum WDM
pass-through driver and a complete KMDF driver

Pass-through driver registers with HIDclass as HID minidriver and
forwards all requests to KMDF driver

KMDF driver processes all the requests
The sample HIDUSBFX2 demonstrates this solution

HIDclass Driver

Driver Stack
WDM

USB bus driver
(PDO)

System
Control
Device

Consumer
Control
Device

Vendor-
defined
Device

WDM function
driver

(HID minidriver)

� OSR USB - FX2 device Plugged in

� USB bus driver creates PDO

� WDM function driver loads and registers with HIDclass as minidriver . HIDclass ��ea�e� �O �n� ��a��e� t� l���� ��O

� HIDclass driver creates PDOs for top -level collections found in HID descriptor

Driver Stack
KMDF

� OSR USB - FX2 device Plugged in

� USB bus driver creates PDO

� HIDClass driver creates PDOs for top - level collections found in HID descriptor

USB bus driver
(PDO)

System
Control
Device

Consumer
Control
Device

Vendor-
defined
Device

KMDF driver (FDO)

HIDClass
WDM pass-

through driver
(HID minidriver)

� KMDF function driver loads and creates FDO

� WDM pass -��r�u�� ������ load� a� ����� �l��� �n� �e�is��r� �i�� HIDClass as minidriver . HIDClass ��ea�e� �O �n� ��a��e� t� l���� ��O

Purpose Of The Sample
Encourage use of KMDF for writing custom HID minidrivers
Demonstrate KMDF features suitable for HID minidrivers
Some of the reasons one may end up writing HID minidriver are

Easier to provide complex HID logic in s/w than in firmware
Making a change in s/w may be cheaper than in firmware when device is

already in market
Need to make an existing non-HID USB device appear as HID device w/o

updating firmware
When there is no inbox support for the device
When sideband communication with minidriver is needed, since HIDclass

driver doesn’t allow user IOCTLs/WMI. With KMDF you can easily
enumerate PDOs and use them for sideband communication

Sample
HIDUSBFX2

For OSR USB-FX2 device
(non-HID device)

Maps USB-FX2 device’s
switch pack to HID
controls for keyboard
hot-keys: Browser, Mail,
Sleep etc

Maps 7-segment display
and bar graph display as
HID features

Switch Pack Mapping
Mapped as HID “Input Report”
Lower 7 bits represent usages from Consumer

Control Collection for keyboard hot-keys
One highest bit is mapped to “Sleep” usage in

System Control Collection

Browser

B ac k

ForwardFavorites

Mail

Calculator

S le e p Refresh

7-Segment Display
Mapped as HID “Feature”
HID clients can send SetFeature

request to display numbers 1 thru
8 on the segment display

Vendor Defined Usage Page (0xff00)
Vendor Defined Usages

Usage 0x1 thru 0x8
Each usage corresponds to numbers 1 through 8

displayed on segment display. For example,
sending usage 0x7 causes the display to show
number 7

Bar Graph Display
Mapped as HID “Feature”
HID clients can send SetFeature

request to light up LEDs on
the bar display

Vendor Defined Usage Page
(0xff00)

Vendor Defined Usages
Usage 9 through 18
E.g. Sending usage 9 causes the display to turn

on LED 1

Sample Details
Sample has a default parallel queue and a

manual queue
HID data is generally provided by USB interrupt

endpoints. KMDF provides “Continuous
Reader” mechanism to read such data

Minidriver relinquishes power policy ownership
since HIDclass driver owns power policy

Request Cancellation
In A Framework
Driver
Eliyas Yakub
Development Lead
Microsoft Corporation

Request Cancelation
Long term request should be held in a

cancelable state for better user experience
Difficult to get it right in WDM
Framework provides following options to deal

with the complexity
Manual queues to hold request
Polling for canceled state of request
Using cancel-routine

Using Queues
Request waiting for hardware event should be

placed in a manual queue
When the request is canceled, framework will

complete the request on driver’s behalf
If you want to be notified before the request is

completed, you can register for
 EvtIoCanceledOnQueue callback on Queue

Can defer completion if the request is consumed by the hardware
Callback is subject to synchronization scope and execution level of

the queue
EvtContextCleanup callback on Request object

Sample Code
Smartcard

NTSTATUS CBCardTracking(PSMARTCARD_EXTENSION SmartcardExtension)
{

request = GET_WDFREQUEST_FROM_IRP(

SmartcardExtension->OsData->NotificationIrp);

 status = WdfRequestForwardToIoQueue(request,

 DeviceExtension->NotificationQueue);

 if (!NT_SUCCESS(status)) {

InterlockedExchangePointer(

&(SmartcardExtension->OsData->NotificationIrp), NULL);

 WdfRequestComplete(request, status);

 }

 return status;

}

VOID PscrEvtIoCanceledOnQueue(WDFQUEUE Queue, WDFREQUEST Request)

{

 InterlockedExchangePointer(

 &(smartcardExtension->OsData->NotificationIrp), NULL);

 WdfRequestComplete(Request, STATUS_CANCELLED);
}

Polling For
CancellationFramework provides WdfRequestIsCanceled to

check the state of the IRP
Useful if you are staging single I/O into

multiple transactions or actively pooling the
hardware before initiating the I/O

Check the canceled stated before initiating the
next transfer

Using CancelRoutine
Use this approach when you cannot keep long-

term requests in queue
This is by far the most difficult approach

Complexity level of this approach is equivalent to
the WDM model

Call WdfRequestMarkCancelable to set
EvtRequestCancel on a request

Call WdfRequestUnMarkCancelable to clear
the cancel routine before completing
the request

Using CancelRoutine (2)
Request must be a valid uncompleted request

when you call WdfRequestUnmarkCancelable
That means you have to manage the race

between cancel routine and another
asynchronous routine that tries to complete
the request

Using CancelRoutine (3)
Framework enables you to manage

the complexity
By using framework provided

synchronization scope
By tracking state in the request context area using

your own lock

Using Synchronization
ScopeNTSTATUS EVtDeviceAdd() {

 attributes.SynchronizationScope = WdfSynchronizationScopeDevice;

 status = WdfDeviceCreate(&DeviceInit, &attributes, &device);

 ...

}

VOID EchoEvtIoRead(Queue, Request, Length) {
 WdfRequestMarkCancelable(Request, EchoEvtRequestCancel);

 queueContext->CurrentRequest = Request;

}
VOID EchoEvtRequestCancel(Request) {

 WdfRequestComplete(Request, STATUS_CANCELLED);

 queueContext->CurrentRequest = NULL;

}

VOID EchoEvtTimerFunc(WDFTIMER Timer) {

 Request = queueContext->CurrentRequest;

 if(Request != NULL) {

 status = WdfRequestUnmarkCancelable(Request);

 if(status != STATUS_CANCELLED) {

 queueContext->CurrentRequest = NULL;

 WdfRequestComplete(Request, status);

 }

 }

}

Using Driver Lock
Track the cancel state in the context area of

the request
typedef struct _REQUEST_CONTEXT {
 BOOLEAN IsCancelled;
 BOOLEAN IsTerminateFailed;
 KSPIN_LOCK Lock;
} REQUEST_CONTEXT, *PREQUEST_CONTEXT;

EvtDriverDeviceAdd(Driver, DeviceInit) {

 WDF_OBJECT_ATTRIBUTES attributes;

 WDF_OBJECT_ATTRIBUTES_INIT_CONTEXT_TYPE(&attributes,REQUEST_CONTEXT);

 WdfDeviceInitSetRequestAttributes(DeviceInit, &attributes);

}

EvtIoDispatch(Queue, Request) {

reqContext->IsCancelled = FALSE;

 reqContext->IsTerminateFailed = FALSE;

 KeInitializeSpinLock(&reqContext->Lock);

 WdfObjectReference(Request);

 WdfRequestMarkCancelable(Request, EvtRequestCancelRoutine);

}

Using Driver Lock (2)
EvtRequestCancelRoutine(Request)
{
 KeAcquireSpinlock(&reqContext->Lock,
&oldIrql);

 reqContext-> IsCancelled = TRUE;

 if (TerminateIO() == TRUE) {
 WdfObjectDereference(Request);
 completeRequest = TRUE;
 }
 else {
 reqContext->IsTerminateFailed = TRUE;
 completeRequest = FALSE;
 }
 KeReleaseSpinlock(&reqContext->Lock, oldIrql);

 if (completeRequest) {
 WdfRequestComplete(Request,
STATUS_CANCELLED);
 };
}

EvtDpcForIsr(Interrupt)
{
 completeRequest = TRUE;
 KeAcquireSpinlock(&reqContext->Lock,
&oldIrql);

 if (reqContext-> IsCancelled == FALSE) {
 status =
WdfRequestUnmarkCancelable(Request);
 if (status == STATUS_CANCELLED) {
 completeRequest = FALSE;
 }
 status = STATUS_SUCCESS;
 } else {
 if (reqContext->IsTerminateFailed {
 status = STATUS_CANCELLED;
 } else {
 completeRequest = FALSE
 }
 }
 KeReleaseSpinlock(&reqContext->Lock,
oldIrql);

 WdfObjectDereference(Request);
 if (completeRequest) {
 WdfRequestComplete(Request, status);
 };
}

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks
in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft
must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of

any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

