
Lookaside Lists

7.1 Lookaside Lists
7.2 LookasideList driver source code
7.3 Working with Lookaside List
7.4 AddEntry routine
7.5 RemoveEntry routine

 Source code: KmdKit\examples\basic\MemoryWorks\LookasideList

7.1 Lookaside Lists

Heap manager manages system and user heaps splitting heap space into blocks of equal size. When a heap allocation query arrives heap
manager is trying to choose a free block with appropriate size. This can take some time, of course. If you need a memory blocks with
fixed size but you don't know its amount and usage frequency beforehand you should use, for performance reasons, so called lookaside
lists, which exists in the kernel mode only. The main difference of lookaside lists from the system pools is that you can allocate memory
blocks with fixed and predefined size only. Allocation from the lookaside lists is faster because no need to search free region with suitable
size.

When you first come to the lookaside lists the first problem you have to solve apart from the creation lookaside list itself will be
management of the memory blocks you wish to allocate from it. Specifically where and how to store the block addresses you will refer
and free to. This could be a serious problem since you don't know the quantity of these blocks. There are three structures for resolving
such a problems:

● Singly linked list;

● S-list, sequenced singly-linked list (a singly linked list modification);

● Doubly linked list.

We'll examine doubly linked list only as the most universal solution.

The following code may look complicated if you deal with lookaside and doubly linked lists concept for the first time, but anyway it is
rather simple.

Both are called lists, but they are completely different things though. The lookaside list is a group of preallocated memory blocks of equal
size. Some of the blocks may be in use and some of them are not. System will walk through the list searching for the nearest free block
when allocation request arrives. If free block found, the allocation can be satisfied very quickly. Otherwise the system must allocate from
paged or nonpaged pool. The system automatically tune the number of freed blocks that lookaside lists store according to how often the
allocations from the list occur - the more frequent the allocations, the more blocks are stored on a list. Lookaside lists are automatically
reduced in size if they aren't being allocated from.

Double linked list is just a form of data organization. It is convenient to link homogeneous structures in a list and traverse through it.
Double linked lists are used by the system intensively for internal structure handling.

7.2 LookasideList driver source code

I was thinking really hard but I was failed to depict sensible and simple example for this article. That's why this driver will act probably
senselessly. However this should not prevent you from understanding the concepts or associative and double linked lists.

There will be no driver control program, use KmdManager (included in KmdKit package) or something similar. Use DebugView (http://
www.sysinternals.com) or SoftICE console to watch driver's debug messages.

;@echo off
;goto make

;:::
;
; LookasideList - Merely allocates and releases some fixed-size blocks of memory.
;
;:::

.486

.model flat, stdcall
option casemap:none

http://www.sysinternals.com/
http://www.sysinternals.com/

;:::
; I N C L U D E F I L E S
;:::

include \masm32\include\w2k\ntstatus.inc
include \masm32\include\w2k\ntddk.inc
include \masm32\include\w2k\ntoskrnl.inc

includelib \masm32\lib\w2k\ntoskrnl.lib

include \masm32\Macros\Strings.mac

;:::
; S T R U C T U R E S
;:::

SOME_STRUCTURE STRUCT
 SomeField1 DWORD ?
 SomeField2 DWORD ?
 ; . . . ; Any other fields come here

 ListEntry LIST_ENTRY <> ; For tracking memory blocks.
 ; It can be the first member but
 ; to place it into is more common solution.

 ; . . . ; Any other fields come here
 SomeFieldX DWORD ?
SOME_STRUCTURE ENDS

;:::
; U N I N I T I A L I Z E D D A T
;:::

.data?

g_pPagedLookasideList PPAGED_LOOKASIDE_LIST ?
g_ListHead LIST_ENTRY <>
g_dwIndex DWORD ?

;:::
; C O D E
;:::

.code

;:::
; AddEntry
;:::

AddEntry proc uses esi

 invoke ExAllocateFromPagedLookasideList, g_pPagedLookasideList
 .if eax != NULL
 mov esi, eax

 invoke DbgPrint, \
 $CTA0("LookasideList: + Memory block allocated from lookaside list at address %08X\n"), esi

 invoke memset, esi, 0, sizeof SOME_STRUCTURE

 assume esi:ptr SOME_STRUCTURE

 lea eax, g_ListHead
 lea ecx, [esi].ListEntry
 InsertHeadList eax, ecx

 inc g_dwIndex
 mov eax, g_dwIndex
 mov [esi].SomeField1, eax

 invoke DbgPrint, $CTA0("LookasideList: + Entry #%d added\n"), [esi].SomeField1

 assume esi:nothing

 .else
 invoke DbgPrint, $CTA0("LookasideList: Very bad. Couldn't allocate from lookaside list\n")
 .endif

 ret

AddEntry endp

;:::
; RemoveEntry
;:::

RemoveEntry proc uses esi

 IsListEmpty addr g_ListHead

 .if eax != TRUE

 lea eax, g_ListHead
 RemoveHeadList eax
 sub eax, SOME_STRUCTURE.ListEntry
 mov esi, eax

 invoke DbgPrint, $CTA0("LookasideList: - Entry #%d removed\n"), \
 (SOME_STRUCTURE PTR [esi]).SomeField1

 invoke ExFreeToPagedLookasideList, g_pPagedLookasideList, esi

 invoke DbgPrint, \
 $CTA0("LookasideList: - Memory block at address %08X returned to lookaside list\n"), esi
 .else
 invoke DbgPrint, \
 $CTA0("LookasideList: An attempt was made to remove entry from empty lookaside list\n")
 .endif

 ret

RemoveEntry endp

;:::
; DriverEntry
;:::

DriverEntry proc uses ebx pDriverObject:PDRIVER_OBJECT, pusRegistryPath:PUNICODE_STRING

 invoke DbgPrint, $CTA0("\nLookasideList: Entering DriverEntry\n")

 invoke ExAllocatePool, NonPagedPool, sizeof PAGED_LOOKASIDE_LIST
 .if eax != NULL

 mov g_pPagedLookasideList, eax

 invoke DbgPrint, \
 $CTA0("LookasideList: Nonpaged memory for lookaside list allocated at address %08X\n"), \
 g_pPagedLookasideList

 invoke ExInitializePagedLookasideList, g_pPagedLookasideList, NULL, NULL, \
 0, sizeof SOME_STRUCTURE, 'msaW', 0

 invoke DbgPrint, $CTA0("LookasideList: Lookaside list initialized\n")

 lea eax, g_ListHead
 InitializeListHead eax

 invoke DbgPrint, $CTA0("LookasideList: Doubly linked list head initialized\n")

 invoke DbgPrint, $CTA0("\nLookasideList: Start to allocate/free from/to lookaside list\n")

 and g_dwIndex, 0

 xor ebx, ebx
 .while ebx < 5

 invoke AddEntry
 invoke AddEntry

 invoke RemoveEntry

 inc ebx
 .endw

 invoke DbgPrint, $CTA0("\nLookasideList: Free the rest to lookaside list\n")

 .while TRUE

 invoke RemoveEntry

 lea eax, g_ListHead
 IsListEmpty eax
 .if eax == TRUE
 invoke DbgPrint, $CTA0("LookasideList: Doubly linked list is empty\n\n")
 .break
 .endif

 .endw

 invoke ExDeletePagedLookasideList, g_pPagedLookasideList

 invoke DbgPrint, $CTA0("LookasideList: Lookaside list deleted\n")

 invoke ExFreePool, g_pPagedLookasideList

 invoke DbgPrint, \
 $CTA0("LookasideList: Nonpaged memory for lookaside list at address %08X released\n"), \
 g_pPagedLookasideList

 .else

 invoke DbgPrint, \
 $CTA0("LookasideList: Couldn't allocate nonpaged memory for lookaside list control structure")
 .endif

 invoke DbgPrint, $CTA0("LookasideList: Leaving DriverEntry\n")

 mov eax, STATUS_DEVICE_CONFIGURATION_ERROR
 ret

DriverEntry endp

;:::
;
;:::

end DriverEntry

:make

set drv=LookasideList

\masm32\bin\ml /nologo /c /coff %drv%.bat
\masm32\bin\link /nologo /driver /base:0x10000 /align:32 /out:%drv%.sys /subsystem:native %drv%.obj

del %drv%.obj

echo.
pause

7.3 Working with Lookaside List

 invoke ExAllocatePool, NonPagedPool, sizeof PAGED_LOOKASIDE_LIST
 .if eax != NULL

 mov g_pPagedLookasideList, eax

We allocate nonpaged memory for PAGED_LOOKASIDE_LIST structure, which is used to manage lookaside list and save the pointer into
the g_pPagedLookasideList variable. Note that lookaside list itself we use here is pageable, i.e. the memory we get from it can be paged
out. The documentation is pretty clear about it.

 invoke ExInitializePagedLookasideList, g_pPagedLookasideList, NULL, NULL, \
 0, sizeof SOME_STRUCTURE, 'msaW', 0

ExInitializePagedLookasideList fills the PAGED_LOOKASIDE_LIST structure we allocated on the previous step. Now lookaside list is ready
to use.

Note that during initialization we did not specify how many blocks we are require. But how the system knows exactly how much memory
it should allocate? Indeed, if memory allocation hasn't been done beforehand the lookaside list will not work faster than common system
pool allocation. The point is that initially the system allocates just a few (the quantity is defined by the system itself) blocks. So if we
start to allocate from the lookaside list we'll get the pointers to those preallocated memory blocks. Once per second the system adjusts
all system lookaside lists calling ExAdjustLookasideDepth. The system will allocate new blocks if it founds free block spare diminished
during the adjustment. The number of the extra blocks depends on lookaside list's load, i.e. its allocation frequency. The system tries to
adjust lookaside lists more effective way. If we had exhausted all preallocated blocks within adjustment time, the system just uses
system pool allocation until the next adjustment. The important thing to understand is that if the allocation speed is too high we have no
performance gain comparing the allocation form the system pool. You can estimate the efficiency of the lookaside list using MS Kernel
Debugger's command "!lookaside".

kd> !lookaside ed374840

Lookaside "" @ ed374840 "Regm"
 Type = 0001 PagedPool
 Current Depth = 2 Max Depth = 4
 Size = 1024 Max Alloc = 4096
 AllocateMisses = 4 FreeMisses = 0
 TotalAllocates = 1319722 TotalFrees = 1319720
 Hit Rate = 99% Hit Rate = 100%

Let's see the lookaside list use efficiency of the RegMon (http://www.sysinternals.com) utility. As you can see the efficiency approaches
to 100% considering huge amount (above one million) of alloc/free operations. The reason is that RegMon does not keep allocated block
for a long time.

 lea eax, g_ListHead
 InitializeListHead eax

Calling InitializeListHead macro we initialize doubly linked list head. Now both LIST_ENTRY's fields contain the pointers to this structure

http://www.sysinternals.com/

itself. This means doubly linked list is empty (figure 7.1, imgage 1)

Figure. 7-1. This picture allows you visually realize how doubly linked list functions.

 and g_dwIndex, 0

This global variable is only used to place something into SOME_STRUCTURE allocated from lookaside list and to output its value through
debug messages.

 xor ebx, ebx
 .while ebx < 5

 invoke AddEntry
 invoke AddEntry

 invoke RemoveEntry

 inc ebx
 .endw

Loop five times. Each pass adds two entries and removes one entry. Each entry represents SOME_STRUCTURE. All allocated structures

linked to each other using doubly linked list.

This loop simulates the random allocation from the lookaside list. We assume here we work somehow with allocated entries. For
example, we could write a driver intercepting calls of some system service, say ZwOpenKey, and saving information into the allocated
memory.

 .while TRUE

 invoke RemoveEntry

 lea eax, g_ListHead
 IsListEmpty eax
 .if eax == TRUE
 .break
 .endif

 .endw

At this point we have some amount of allocated from lookaside list entries linked together in doubly linked lists. We assume these entries
are not needed for us anymore.

We call RemoveEntry routine in the endless loop. RemoveEntry removes an entry from the head of a doubly linked list and releases it
back to the lookaside list. The loop runs until doubly linked list is empty. Calling IsListEmpty macro checks this condition. IsListEmpty
checks to see whether both fields of the doubly linked list head (LIST_ENTRY structure) point to the head itself. At this point we came to
the state we have right after InitializeListHead macro call (figure 7-1, imgage 1).

 invoke ExDeletePagedLookasideList, g_pPagedLookasideList

When doubly linked list is empty all entries allocated from lookaside list are returned back as well, since we used doubly linked list to
manage allocations from the lookaside list. Now we can delete lookaside list by calling ExDeletePagedLookasideList. It frees any
remaining entries in the lookaside list and then removes the list from the system-wide set of active lookaside lists.

 invoke ExFreePool, g_pPagedLookasideList

ExFreePool releases nonpaged memory allocated for PAGED_LOOKASIDE_LIST structure. In case you forget (I didn't) to call
ExDeletePagedLookasideList beforehand you will see BSOD since in about a second the system will try to adjust missing lookaside list.

 mov eax, STATUS_DEVICE_CONFIGURATION_ERROR
 ret

Since we have released all allocated resources we can unload the driver.

7.4 AddEntry routine

We call AddEntry when we need a new memory block. It allocates new entry from the lookaside list and adds it into doubly linked list.

 invoke ExAllocateFromPagedLookasideList, g_pPagedLookasideList
 .if eax != NULL
 mov esi, eax

Calling ExAllocateFromPagedLookasideList we get the new memory block pointer and save it in esi. Note we don't tell the system about
block size because the size was defined while calling ExInitializePagedLookasideList and is equal to the size of SOME_STRUCTURE.

 invoke memset, esi, 0, sizeof SOME_STRUCTURE

Zeroing allocated block. It doesn't need though.

 assume esi:ptr SOME_STRUCTURE

Now we have new instance of the SOME_STRUCTURE. We should link it to our doubly linked list, which is empty during the first AddEntry
run.

 lea eax, g_ListHead
 lea ecx, [esi].ListEntry

 InsertHeadList eax, ecx

Figure 7-1, image 2 depicts a state after the first InsertHeadList macro call. Pay your attention to the second argument of the
InsertHeadList macro, which is not an address of the SOME_STRUCTURE but an address of its ListEntry field. I.e. InsertHeadList macro
accepts the pointers to the two LIST_ENTRY structures, the first one is the head of doubly linked list and the second one is a structure
member we need to link to this doubly linked list. InsertHeadList links the new structure at the head of the doubly linked list (to the right
in Figure 7-1). You can use InsertTailList macro to link at the tail.

Both macros produce the same result if you add the first entry to the doubly linked list and after that it will looks like it reflected on the
Figure 7-1, image 2.

If doubly linked list is not empty InsertHeadList macro will split the doubly linked list between its head and the entry to the right and
place the new entry in between (see Figure 7-1, image 3). InsertTailList macro does the same but at the tail.

Hope everything is pretty clear now.

 inc g_dwIndex
 mov eax, g_dwIndex
 mov [esi].SomeField1, eax

We save newly created entry number in the SomeField1. You can watch the order in which those structures are added/removed in
DbgView.

7.5 RemoveEntry routine

RemoveEntry routine is the reciprocal of the AddEntry. It unlinks the entry from the head of the doubly linked list and returns it back to
the lookaside list.

 IsListEmpty addr g_ListHead
 .if eax != TRUE

Make sure the doubly linked list is empty.

 lea eax, g_ListHead
 RemoveHeadList eax

RemoveHeadList unlinks the entry from the doubly linked list's head (as you already guess RemoveTailList macro does the same but
from the tail. You can also remove any entry using RemoveEntryList macro). At this point extracted from the doubly linked list entry
exist on its own and doubly linked list is enclosed to link remaining entries together.

 sub eax, SOME_STRUCTURE.ListEntry
 mov esi, eax

Pay your attention to this point. RemoveTailList/RemoveHeadList/RemoveEntryList return a pointer to the entry (nested LIST_ENTRY
structure) that was at the tail/head/middle of the list but not the pointer to unlinked SOME_STRUCTURE structure itself. The macros
don't know exact place of the LIST_ENTRY in the structure. And there is no way for them to know about. This is entirely up to you to
calculate offset to the ListEntry field in the SOME_STRUCTUREto get the pointer to the structure itself (that's what DDK's
CONTAINING_RECORD macro does).

 invoke ExFreeToPagedLookasideList, g_pPagedLookasideList, esi

ExFreeToPagedLookasideList returns the entry to the lookaside list or to paged pool.

Copyright © 2002-2004 Four-F, four-f@mail.ru
Translated by masquer

mailto:four-f@mail.ru

	freewebs.com
	Lookaside Lists

