
LATEX for Computer Scientists

Les Kitchen
The University of Melbourne

Department of Computer Science and Software Engineering
http://www.cs.mu.oz.au/~ljk/

15 May 2006

c© 2003, 2006, Leslie John Kitchen. You may
make and distribute unmodified copies of this
document in its entirety for non-commercial
purposes. In particular, any copies must include
this copyright notice and the CVS Id string on the
last page. (These conditions are inspired by those
used by the ACM.)
Please be aware that this document, in its present
state, is work in progress. It is provided, as is, in
the hope that it will be a useful aid in learning
LATEX. It may still contain errors, and is certainly
incomplete and in need of some re-organization.
See corresponding LATEX source file for details on
distribution conditions for source files. The source
files will normally be available via the author’s
webpage, at the URL given above. Note that the
distribution conditions may change: Do not
assume that distribution conditions for future
versions will be identical to those for the current
version.

This document is based on a document

called Intermediate LATEX prepared for a

School of Graduate Studies course at the

beginning of 2003. The main changes are

addition of some additional material, and

a change of emphasis towards a

Computer Science readership. Having

said that, I point out that this document

is now approximately twice the size of the

document it was based on.

Non-trivial changes since last version are marked
in the margins: small changes by an arrow
pointing to the affected text; extended changes by
a down-pointing arrow at the beginning of the
change, and an up-pointing arrow at the end.

Contents

1 What is LATEX? 3
1.1 A simple example 3
1.2 Well, what is it? 3
1.3 History 3
1.4 TEX and LATEX 4
1.5 What’s good about LATEX? 4
1.6 What’s “bad” about LATEX? 4
1.7 Summing up 5

2 Philosophy 5
2.1 What I can achieve here 5
2.2 Levels at which you can use LATEX . 5
2.3 Learning to use LATEX 5

3 Basic LATEX 6
3.1 Processing 6
3.2 Associated files and re-running . . . 6
3.3 Characters to pages 7
3.4 Input conventions 8
3.5 Combinations 8
3.6 Commands 9
3.7 Environments 10
3.8 After-sentence space 10
3.9 Accents and symbols 11
3.10 Declarations, grouping, and scope . . 11
3.11 Appearance of type 11
3.12 Text justification 13
3.13 Line and page breaks 14
3.14 Displays 15
3.15 Lists 15
3.16 Overall source document structure . 16
3.17 Document class 16
3.18 Packages 17
3.19 Front stuff 17

1

http://www.cs.mu.oz.au/~ljk/

3.20 Document sectioning 17
3.21 Layout of a LATEX source file 18

4 Breaking Up Your Document 1 18
4.1 \input 18

5 Roll-Your-Own 19
5.1 Commands 19
5.2 Environments 21
5.3 “Theorems” 21

6 Customization 22
6.1 Customization 22

7 Cross References 22
7.1 Labels and references 22
7.2 Mechanics of cross references 23

8 Footnotes 23
8.1 Footnotes 23

9 Floats: Tables and Figures 24
9.1 Floats 24

10 Tabulars and Tables 24
10.1 Tabulars and tables 24

11 Mathematics 26
11.1 Math mode 26
11.2 Subscripts and superscripts 27
11.3 A menagerie of symbols and operators 27
11.4 “Large” delimiters 28
11.5 Arrays 28
11.6 Equations 28

12 Boxes, Lengths, Space, Counters 29
12.1 Caveat 29
12.2 Lengths 29
12.3 Boxes 30
12.4 Space and rules 30
12.5 Counters 31

13 Graphics: Images and Diagrams 31
13.1 The picture environment 31
13.2 Graphics operators 31
13.3 Including graphics 32

14 Breaking Up Your Document 2: 32
14.1 \include 32

15 Bibliography 33
15.1 DIY: thebibliography 33
15.2 Using BibTEX 33
15.3 Running bibtex 34

16 Collaborative Document Development 34
16.1 Version control—CVS 34
16.2 Build tools—make 35
16.3 Automatic generation of LATEX . . . 36

17 Miscellaneous Topics 37
17.1 Index and glossary 37
17.2 Verbatim text 37
17.3 Multilingual LATEX 38
17.4 LATEX and the Web 38
17.5 PostScript fonts 38
17.6 Page style and headings 39
17.7 Color 39
17.8 Hyphenation 39
17.9 Fragile versus robust commands . . . 40
17.10Some additional useful free programs 41
17.11LATEX debugging 41
17.12More advanced programming features 41
17.13Tips’n’tricks 41
17.14What’s missing? 45
17.15Learning and getting more 45
17.16TEX’s limitations 46
17.17TEXmacs and Lilypond 46

A Behind The Scenes: How It’s Done 47
A.1 Listing of ljk-latex.bib 47

2

1 What is LATEX?

1.1 A simple example

\documentclass[12pt,a4paper]{article}

% This is a comment

\title{A Simple Example}

\author{I. M. Weird\thanks

{Nobody you know.}}

\begin{document}

\maketitle

\begin{abstract}

You shouldn’t read this paper anyway.

\end{abstract}

\tableofcontents

\section{Something Important}

{\LARGE Hello world!}

\section{Filler}

The quick brown fox

jumps over the lazy dog.

The quick brown fox

jumps

over the lazy dog.

\end{document}

produces after processing the printed or displayed
output shown in Figure 1.

1.2 Well, what is it?

LATEX is in effect a programming language for
creating quality typeset documents, designed so
that most of the time you use it like a high-level
(declarative) markup language.
It thus has some commonality with other markup
languages like HTML, but is intrinsically more
powerful and more oriented towards quality
typesetting.

1.3 History

• Before (electronic) computers, (human)
editors would mark up a manuscript with
instructions to the (human) printers on how
to typeset the document.

• Donald Knuth initially developed TEX (along
with MetaFont) in the late 1970s.

• TEX is basically a high-quality programmable
typesetting engine, combining the text of the

A Simple Example

I. M. Weird∗

April 24, 2006

Abstract

You shouldn’t read this paper anyway.

Contents

1 Something Important 1

2 Filler 1

1 Something Important

Hello world!

2 Filler

The quick brown fox jumps over the lazy dog.

The quick brown fox jumps over the lazy dog.

∗Nobody you know.

1

Figure 1: Sample LATEX output.

3

document with embedded markup to specify
the formatting automatically.

• MetaFont is a system for designing new
fonts.

• Knuth provided a “format” called plain TEX
as a layer on top of raw TEX.

• Plain TEX provided many convenient
features, but was still somewhat difficult and
unforgiving.

• Leslie Lamport built LATEX on top of TEX in
the early 1980s to provide better, cleaner
support for document production.

• That first released version was LATEX 2.09.

• Current version is LATEX2ε.

• LATEX version 3 is in the offing.

1.4 TEX and LATEX

• LATEX is built on top of TEX.

• These days, pretty much all usage of TEX is
via LATEX.1

• Almost all features of plain TEX are
accessible in LATEX, but are generally used
only by wizards, and are mostly hidden from
ordinary users.

• From here I’ll speak mainly about LATEX, but
remember TEX is always in the background.

1.5 What’s good about LATEX?

All are somewhat inter-related.

• High quality typesetting, especially for
mathematics.

• Simple text representation:

– Create and modify with any text editor.

– Suitable for version control (CVS,
subversion).

1One notable exception is texinfo, which the GNU
project uses to produce “info” documentation from TEX
sources.

– Scripts can generate LATEX
automatically.

• Cross-platform.

• Stability and compatibility is a major
strength.

• Largely “declarative”.

• Configurable, extensible and programmable.

• Suitable for collaborative document
development.

• Can be used with build tools like make.

• Large, active community of users and
contributors.

• Many plug-in packages available.

• Multilingual.

• Editor support (e.g. latex-mode in emacs).

• GUI interfaces (TeXshop, WinShell) and
WYSIWYG front ends (Lyx).

• Non-proprietary.

• Free!

• Distributed under a GNU-like2 Free Software
licence.

1.6 What’s “bad” about LATEX?

• Less immediate feedback compared with
WYSIWYG.3

• Lots of braces to match. . .

– . . . though syntax-aware editors can help
a lot.

• Power of programming can also bring the
headache of debugging.

2One feature of the LATEX licence is that if you modify a
standard file, you must call it by a different name. This is
to avoid compatibility problems where people might think
they’re using say a standard package, but are in fact getting
a mutant.

3WYSIWYG stands for “What You See Is What You
Get”, which however also means “What You See Is All

You’ve Got”.

4

• A lot to learn to fully master LATEX, though
you can do most simple document structures
fairly intuitively.

• Sometimes default settings are over
fussy—though this is configurable (as is
almost everything in LATEX).

• Arguably extra typing initially, though this
cost is in the long term greatly outweighed by
savings in maintenance and modification.

• Probably not worth the overhead for simple
one-off things like letters (unless you set great
store by beautiful typesetting even for your
correspondence), but then true LATEX
devotees use it even for their shopping lists.

1.7 Summing up

• LATEX separates logical structuring from
visual formatting.

• LATEX is particularly good for large-scale
documents which will have a long lifetime of
revisions, and will have to be distributed in
various formats and versions.

• While LATEX can provide groovey typesetting,
that’s no substitute for good organization
and clear expression.

• LATEX, however, can assist greatly by taking
care of a lot of the bookkeeping involved in
producing an effectively presented document.

2 Philosophy

2.1 What I can achieve here

LATEX is way too big to cover in just a couple of
hours!

• Show you how some things work.

• Show you how to do some things.

• Give you an idea of what’s possible.

• Point you to some references.

• Prepare you to learn and experiment on your
own.

I’ll concentrate more on what you have to do
rather than how LATEX does it—though knowing
how it works can help your understanding.

2.2 Levels at which you can use
LATEX

1. Straight, ordinary LATEX.

2. Minor customization of ordinary classes and
packages, via options and parameter settings.

3. Defining your own commands, environments,
etc.

4. Use of various contributed packages, etc.,
some in the standard distribution, some you
have to download yourself4.

5. “Getting under the bonnet”: redefining
LATEX’s standard commands to do what you
want; creating your own packages and classes,
etc.

I won’t touch on 5.

2.3 Learning to use LATEX

• Learning to use LATEX is like learning a
language: it is learning a language:

– Grammar, vocabulary, idioms,. . . and
practice, practice, practice.

• What it costs you:

– Some effort in learning and looking
things up, especially to start with.

– A less immediate way of doing things,
like making a bowl out of ceramic
instead of plasticine: You don’t really
know how the ceramic bowl will turn out
until you’ve fired it in the kiln.

• What you gain:

– Much greater expressiveness and control
than with WYSIWYG.

– A record of how you did things.

4Almost everything available in the TEX world is on the
TEXLive CD [10].

5

– By looking at other people’s LATEX
sources, you can find out how they did
things, and learn how to do it yourself.

– All the technical and aesthetic benefits
of LATEX in typography, especially
mathematics.

– Membership in the global community of
LATEX users.

• LATEX shines most for large documents that
have to undergo revisions and reformatting
for different purposes: e.g., chapters of a
thesis redone for journal publication.

• A good frame of mind to have is that when
you create a LATEX document, you’re not
creating just that one-off document, but
you’re creating (or at least preparing for) all
the future versions of that document.

This can require a little forethought and
planning.

• LATEX is very linguistic: you name things
rather than point at them.

3 Basic LATEX

3.1 Processing

• Starts out with LATEX source file typically
with extension .tex (though .ltx is
sometimes used).

• E.g., latex foo.tex (or latex foo — latex

provides a default extension of .tex if not
given).

• Main product is the corresponding DVI
(“device independent”) file, in this case
foo.dvi.

• The DVI file describes where each character
glyph and graphic goes on each page.

• The DVI file can be viewed directly using a
DVI viewer like xdvi.

• More often, the DVI file is converted to
PostScript using dvips.

• The resulting .ps file can be:

– viewed using a PostScript viewer, like gv

or GSView (which provide GUIs on top
of Ghostscript),

– printed on most laser printers,

– “distilled” to PDF using Adobe Acrobat
Distiller, or the free ps2pdf (which
comes with Ghostscript).

• There is also a variant program pdflatex,
which produces PDF directly from LATEX
source.

3.2 Associated files and re-running

There are a number of files associated with the
processing of a .tex file. Some of the most
important are:

.aux The auxiliary file, which latex uses to keep
track of cross-referencing and similar
information.

.log The log file, which contains an even more
detailed account of processing than is written
to standard output.

.toc, .lof, .lot Used for information
respectively for the Table of Contents, List of

Figures, and List of Tables.

.bbl The bibliography created by bibtex, and
used by latex.

There are a number of other files associated with
processing of bibliography, index and glossary.
A few things to note:

• latex is strictly one-pass: To cope with
forward references, like cross-references to
later sections, and page numbers in the table
of contents, latex makes use of information
gathered on the previous run in the .aux,
.toc files, etc.

• This means that after a significant change to
the document, it can take two runs5 of latex
to get cross-references, etc., perfectly correct.

5Those theoretically inclined will see that this is a kind
of fixed-point iteration. It’s actually possible to construct
pathological LATEX documents that never converge. I’ve
never known this to happen in practice, but constructing
such a document is an interesting brain-teaser.

6

(On the first run, latex was still using
cross-reference information generated before

the change.)

• Symptoms of this are messages from latex

like “There were undefined references” or
“Cross-references may have changed, rerun
latex to get cross-references right”.

• Some people superstitiously always run latex

twice, or make use of scripts (usually called
something like makeltx or latexmake), which
iterate running latex until the
cross-references stabilize. See also notes
about using latex under make.

• In practice, this is rarely a problem. You
really only need perfectly correct
cross-references in the final version. When
you’re actively developing a document, it
usually doesn’t matter if the cross-references
are a little out of synch.

• Which associated files are actually produced
depends on what features you ask for. For
example, if you don’t have
\tableofcontents, then no .toc file is
produced.

3.3 Characters to pages

As the engine underneath LATEX, TEX works at a
number of levels to produce the typeset output.
To simplify the real story a bit:

• At the lowest level, TEX deals with boxes.

• Boxes are mostly the glyphs for printed
characters and symbols, but they may be
other things like graphics.

• Most of TEX’s work is in creating a
hierarchical assemblage of boxes from the
input to produce an aesthetically typeset
result.

• Character boxes get assembled into word
boxes.

• Word boxes get assembled into line boxes.

• Line boxes get assembled into paragraph
boxes.

• Paragraph boxes get output onto pages.

• In between the boxes goes adjustable space,
which TEX can stretch or shrink (within
limits) to achieve the best looking output.

• In TEX-speak, for historical reasons, these
adjustable spaces are called glue, but they’re
probably better conceptualized as being like
invisible springs.

• The main unit of TEX’s typesetting is the
paragraph. TEX makes its decisions about
where to break the text of a paragraph into
lines using a quite sophisticated algorithm,
which tries to optimize the appearance of the
entire paragraph, taking into account a
number of typographic factors.

• These typographic factors are assigned
various numeric weights. TEX has well-chosen
default values. Most of LATEX’s layout effects,
like centering and flush right, are achieved
not by using a different algorithm, but merely
by altering the parameters of TEX’s
paragraph algorithm.

• Because of this, a change at the end of a
paragraph can actually affect the line
breaking at the beginning, because of the way
it shifts the balance of the optimization.

• This whole-paragraph approach is one of the
reasons why TEX’s typesetting looks so good,
but also why it’s difficult to do a proper
WYSIWYG version of TEX or LATEX.

• One consequence is that the typesetting of a
paragraph is controlled by the settings in
effect at the end of the paragraph (when
TEX’s algorithm kicks in). This affects the
use of declarations like \sloppy: the scope of
the declaration must include the blank line
(or \par) that ends the paragraph. See [7,
p. 94f] for more details.

• TEX’s multi-factor approach can be subtle.
Sometimes you may see TEX produce
something that looks like a no-no, like having
a word protrude slightly into the right margin
when you wanted fully justified text.
Invariably, this is because the alternative line

7

breaks would have been worse in the overall
assessment.

• Another consequence of TEX’s approach is
that very little in TEX’s typesetting is
absolute. For example, the “unbreakable
space” ~ does not actually forbid a line break.
It merely assigns a very high penalty to
breaking at that point. In normal situations,
TEX’s algorithm will avoid breaking there to
avoid incurring the penalty in the
optimization.

• In doing its job TEX also has to break apart
boxes it has already made. For example, it
may need to break a word box to hyphenate a
word to get a better line break. Or it may
need to break a paragraph between two lines
to get a good page break.

3.4 Input conventions

• LATEX input is an ordinary text file, which
mixes the content of the document with
markup to process it.

• The input conventions are reminiscent of the
Unix shell (though not the same), in that
some characters are “ordinary”, while some
are “special” and trigger special treatment.

• Most characters (letters, numbers,
punctuation) are “ordinary”, and represent
themselves.

• The following characters are “special”:

$ Switches TEX into math mode.

\ Indicates a command.

{ } Indicate grouping and enclose the actual
arguments of a command.

~ Unbreakable interword space.

^ Indicate respectively subscripts and
superscripts in math mode.

Used for formal arguments of a command.

& Separates cells in rows of a table.

% Indicates a comment. The comment runs
from the % to the end of line (a bit like
C++ // comments).

• The characters @ [] can be used in ordinary
text, but behave specially in certain
circumstances.

• The characters + - = < > are mainly used in
math mode, and there behave as you’d
expect. They can be used in ordinary text,
but may not always give what you expect in
that in some fonts that character code is
assigned to a printed character different from
what’s on the keyboard. < > gives ¡ ¿.

• As with most programming languages,
whitespace and newlines are used to delimit
tokens. Additional whitespace and newlines
beyond this have no effect, though they can
be used for source layout.

• One exception is that a one or more
consecutive blank lines indicate a paragraph
break.6

• A consequence of all this is that you can’t
normally get extra horizontal whitespace on
the page by typing extra spaces into your
LATEX source. Nor can you get extra vertical
whitespace by putting in extra blank lines.
These effects have to be achieved by invoking
explicit commands.

3.5 Combinations

Some combinations of otherwise ordinary
characters are treated specially:

• ‘‘ and ’’ give proper opening and closing
(double) quotation marks, aka “inverted
commas”. (Don’t use ", the typewriter
double quote!)7

• Similarly, ‘ and ’ give single quotes. (The
latter also gives an apostrophe in ordinary
text and a prime in math mode).

6A blank line is thus equivalent to the command \par,
and in some circumstances it’s clearer to use the explicit
\par command.

7In emacs’s latex-mode you can type in ", because that
key is bound to a command that automatically inserts the
appropriate LATEX opening or closing quotation marks de-
pending on the context. By way of clarification, ‘ is the
ASCII grave accent, aka “backtick”, top-left on most key-
boards; ’ is the “single-quote” or apostrophe, just right of
semicolon on most keyboards. Actually, if you use type-
writer double quote, ", you get a proper closing double quo-
tation mark.

8

• In ordinary text, - gives an intra-word
hyphen, -- gives an en dash used for ranges
like “17–42”, and --- gives an em

dash—used for sentence punctuation.

In math mode - gives a minus sign, as in
−x− y (produced by $-x-y$), which is
different again.8

• Less obviously, certain combinations, like fi

and fl give proper typographic ligatures:
“fi”, “fl”—not “fi”, “fl”.

• Note that you get the ellipsis “. . . ” by the
command \ldots (for “low dots”). Typing
three dots ... in your source gives dots too
close together for English typographic
conventions, “...”. This is a case where
something you’d expect to be done by a
combination isn’t. (There are a number of
other dots commands available only in math
mode.)

3.6 Commands

• Commands come in two varieties:

1. \ followed by a single non-letter
character

2. \ followed by a sequence of letters

• Examples of the first kind: \$ \& \% \# \ \{
\} produce respectively $ & % # { }; while
\, produces a “thin” space.9

• Examples of the second kind: \S, \P and
\copyright, which produce respectively the
section, paragraph and copyright symbols, §,
¶ and c©; \maketitle, which produces the
document title, and \large which switches to
large font size, and \Large, which switches to
an even larger font size.

• Note that such command names can consist
only of letters (not even digits), and are
case-sensitive.

8If you look closely, you can see that LATEX puts different
space around the minus sign depending on whether it’s a
unary or binary operator.

9The thin space is useful for quotes within quotes, to
give a little separation between an outer double quote and
an inner single quote, like:

“ ‘Work’ is a four-letter word”, said John.

• Command-name delimiting:

– The name of the command runs until
the first non-letter.

– Often this will be some punctuation, but
may be whitespace.

– If the command name is terminated by
whitespace, then all this whitespace is
gobbled up.

– This creates a problem if we want some
white space in the output after the
result of the command.

– Various solutions are presented later.

• Arguments:

– Most commands take one or more
arguments.

– Arguments follow the command name
and are enclosed in braces.

– The outer braces just enclose the
argument and are stripped away before
the argument is actually passed to the
command.

– Any given command has a fixed arity
(number of arguments that it accepts).
But see later point.

– LATEX checks and generally complains if
a command is given insufficient
arguments. Additional arguments will
not be passed to the command, and in
general will end up being treated as
following text that just happens to have
been put in grouping braces.

• Optional arguments:

– Quite a few commands also accept
optional arguments.

– The optional arguments if supplied are
enclosed in square brackets, and usually
but not always come before the
obligatory arguments.

– If an optional argument is not supplied,
then some default is used.

– There’s the potential problem that some
ordinary text with square brackets
following the command may be mistaken

9

for an optional argument. The solution
is to enclose that text inside grouping
braces, which protects it from being
interpreted as an optional argument.

• With rare exceptions, paragraph breaks are
not permitted in command arguments. This
is a deliberate safety feature, to catch missing
closing braces on arguments. It triggers
LATEX’s “Runaway argument?” error
messsage. The idea is that command
arguments should generally be fairly small
chunks of material, and if you encounter a
paragraph break it’s more likely because the
argument isn’t properly closed.

3.7 Environments

• To provide handling of chunks of material
bigger than can reasonably be passed as
command arguments, LATEX also provides
enviroments.

• Environments are invoked by two matching
commands, \begin and \end.

• They each take as argument the name of the
environment (no backslash).

• The text between the \begin and the
corrresponding \end is affected by the
formatting of that environment.

• The \begin and \end must nest properly.

• For some environments, the \begin command
takes additional arguments to control the
formatting of the environment.

• Environments provide local scope for
declarations. (That is, the effect of non-global
declarations made inside an environment are
undone at the end of that environment.)

3.8 After-sentence space

• In typography (at least in English-speaking
countries) it’s conventional to put a little
extra space after punctuation that ends a
sentence. (Usually a full stop.)

• But figuring out what is a sentence is way
beyond a mere program.

• So LATEX follows a rule which works correctly
almost all the time, and has the advantage of
being simple and predictable, so you can
easily tell when you need to over-ride LATEX.

• If the full stop comes after an upper-case
letter, then LATEX assumes it’s marking
initials (like N.S.W.) and treats the following
space as ordinary interword space.

• If the full stop comes after a lower-case letter,
then it’s treated as marking the end of a
sentence, and extra following space is
inserted.

• This extra space isn’t fixed. Like many spaces
in LATEX it’s stretchable (or squashable) as
needed to optimize the typesetting, but in
general it’s larger than an ordinary
inter-word space.

• What about when LATEX gets it wrong?

– Putting a \ (yes, that’s a backslash
followed by a space) immediately after
the full stop puts an ordinary interword
space there, even if the preceding letter
was lower case.

This is useful for abbreviations inside a
sentence.

– Putting a \@ immediately before the full
stop forces it to be treated as
end-of-sentence punctuation, making the
following space bigger.

• This adjustment may be necessary even when
other punctuation, like parens and quotes,
intervenes between the full stop and the
following space.

• Similarly for other sentence punctuation:
question mark, exclamation mark and colon.

• Don’t lose too much sleep over this. If you
get it wrong, at worst you’ll have a little bit
too much or too little space after some
punctuation, which probably only a dedicated
typographer will notice, not your average
punter.

10

3.9 Accents and symbols

• There are a relatively small number of
symbols, such as the ¶ and § already
mentioned, available in ordinary text. In our
Department, \o, which produces ø, comes in
handy for names like Søndergaard.

• A huge number of symbols (numbering in the
thousands) are available, but mostly only in
math mode.

This is not a serious impediment, since you
can always switch temporarily into math
mode to get any symbol as you need it. See
later.

• There are a number of commands for putting
various accents on letters, etc., in ordinary
text (and many more in math mode).

• For example: \‘{e}, \’{e}, \^{a}, \"{o},
\c{c} produce è, é, â, ö, ç respectively.

• To put accents on the letters “i” and “j” you
need to use the dotless versions, produced by
the commands \i and \j, respectively like ı̄
from \={\i}.

• Such commands are adequate for small
chunks of non-English text needing accents,
but not for producing whole non-English
documents. For that see later.

3.10 Declarations, grouping, and
scope

• Some commands produce some sort of
output, such as the commands to produce
special symbols or even tables of contents.

• But many commands just change LATEX’s
state: They are declarations.

• It’d be a pain if every time you had a
declaration you had to later put in another
declaration to restore LATEX to its previous
state (which you might not even know).

• Therefore, almost all declarations in LATEX
are local to some scope: They have their
effect when processed, but only temporarily
— their effects are undone and the original
state restored on leaving that scope.

• Scope is provided by environments and by
grouping braces.10

• There are, however, a small number of
declarations which are global and do not obey
these local scoping rules. One of these is
\pagestyle, for instance.

3.11 Appearance of type

• LATEX provides a number of ways of changing
the appearance of the type.

• Used with judgement (and not overdone)
such control of appearance can aid
understanding, by providing consistent, visual
typographic markers.

• Type size:

{\tiny tiny}

{\scriptsize scriptsize}

{\footnotesize footnotesize}

{\small small}

{\normalsize normalsize}

{\large large}

{\Large Large}

{\LARGE LARGE}

{\huge huge}

{\Huge Huge}

produces

tiny scriptsize footnotesize small normalsize large

Large LARGE huge Huge
Note, sizes are relative to the base size of the
document, which normally can be 10pt
(default), or 11pt or 12pt, as specified as
option to \documentclass.

10Except, of course for the outer braces that enclose a
command argument, which are stripped away before the ar-
gument is passed to the command. The outermost braces
around the body of a command definition are likewise outer-
most braces around the arguments of the \newcommand com-
mand and so are stripped away when the command is de-
fined, and don’t provide scoping. This is necessary so that
a command can expand, say, to a declaration and still have
effect. Analogous remarks apply to the two bodies of an
environment definition.

11

• Type style can be done via declarations:

{\rm Roman}

{\it Italic}

{\bf Boldface}

{\sf Sans Serif}

{\sl Slanted}

{\sc Small Caps}

{\tt Teletype or typewriter}

produces

Roman Italic Boldface Sans Serif Slanted

Small Caps Teletype or typewriter

• Or, usually more conveniently, via commands
with an argument.

\textrm{Roman}

\textit{Italic}

\textbf{Boldface}

\textsf{Sans Serif}

\textsl{Slanted}

\textsc{Small Caps}

\texttt{Teletype or typewriter}

produces

Roman Italic Boldface Sans Serif Slanted

Small Caps Teletype or typewriter

• Almost always, the command versions are
preferable, since they take care automatically
of the so-called italic correction:

Normal {\it italic text} back.

\\

Normal \textit{italic text} back.

\\

Normal {\it italic text\/} back.

produces

Normal italic text back.
Normal italic text back.
Normal italic text back.

It’s subtle, but, in the first line, because of
the oblique italic font the “t” of “text” leans
a bit too close to the “b” of “back”. In the
second and third lines a tiny bit of extra
space is added, either automatically by the
\textit command, or explicitly by the italic

correction \/ command.

• However, the declaration forms are more
convenient if you’re applying the type-style
change to a whole chunk of text, like an
entire environment.

• Subject to availability of fonts, these type
styles can be combined:

Ordinary \textit{italic}

or \texttt{typewriter}

\\

\textbf{Bold \textit{italic}

or \texttt{typewriter}}

produces

Ordinary italic or typewriter
Bold italic or typewriter

For some font families, not all combinations
may be available.

• You really should never use such
type-changing commands in the body of your
document.

• Rather, if some identifiable part of your
document needs special typographic
treatment, you should define a command (or
environment) for it. (See later.) You do the
type changing in the definition of the
command, then tag the text in your
document that needs the special treatment
with this command.

• An important exception to this is the \emph

command. It is really more like semantic
markup, indicating that the text is to be
emphasized, by the normal convention of
putting it in italics. It has the corresponding
\em declaration, which is useful for
emphasizing larger blocks of text (like an
entire environment).

12

\emph{The convention is that

\emph{emphasized} text within

emphasized text is set in

\emph{roman} style.}

produces

The convention is that emphasized text

within emphasized text is set in roman style.

• Never use underlining! Underlining was used
to indicate emphasis on limited archaic
devices like typewriters. It really has no place
in proper typesetting, and (depending on how
it’s done) can cause numerous problems. If
the underline is just below the baseline, it can
interfere with descenders11 and severely affect
legibility. If the underline is positioned so as
to avoid interfering either with descenders (or
with ascenders12 on the next line), it requires
introducing some additional space between
the affected lines, which breaks up the visual
unity of the paragraph. It’s even worse when
an underlined word gets hyphenated across
two lines, because then more lines are
affected.

In normal text, you can use \emph; in
mathematics you can use conventions like
\boldmath, to indicate things like vectors,
which are conventionally underlined in typed
or handwritten manuscripts.

Well, I exaggerate by saying never. There are
some rare situations in which it might make
sense to use underlining. For example, it can
provide an additional means of indicating
consistent distinctions in mathematics, once
you’ve used up all you can with changes of
typeface and accents. And perhaps even in
ordinary text you might want underlining for
some special indicative purpose, with all its
problems. To this end, LATEX does have some
facilities and packages for underlining, both
in ordinary text and in mathematics.

11A descender is that part of letters, like “g” and “q”,
that goes below the baseline.

12An ascender is that part of lower-case letters, like “b”
and “k”, that goes above the height of a lower-case “x”.

• There are additional type size and style
features available in math mode.

3.12 Text justification

• Normally, LATEX fully justifies the output
text, on left and right.

• Other forms of justification can be achieved
by the center, flushleft, and flushright

environments.

\par

How to Dominate Men,

Subjugate Women, and

Stupefy Children

by

Salvador Dali

\par

produces

How to Dominate Men, Subjugate Women,
and Stupefy Children by Salvador Dali

\begin{flushleft}

How to Dominate Men,

Subjugate Women, and

Stupefy Children

by

Salvador Dali

\end{flushleft}

produces

How to Dominate Men, Subjugate Women,
and Stupefy Children by Salvador Dali

\begin{flushright}

How to Dominate Men,

Subjugate Women, and

Stupefy Children

by

Salvador Dali

\end{flushright}

produces

13

How to Dominate Men, Subjugate Women,
and Stupefy Children by Salvador Dali

\begin{center}

How to Dominate Men,

Subjugate Women, and

Stupefy Children

by

Salvador Dali

\end{center}

produces

How to Dominate Men, Subjugate Women,
and Stupefy Children by Salvador Dali

The text is a chapter heading from [2].

• There are corresponding declarations,
\centering, \raggedright, and
\raggedleft. They aren’t often used, but
come in handy sometimes.

In fact, I’ve come to appreciate their
handiness more recently. The environment
forms, as well as altering TEX’s formatting
parameters to achieve their effects, also
introduce some vertical space above and
below the formatted text. In most cases, like
a hand-formatted centered heading, this is
what you want. The declaration forms just
alter the formatting parameters, without
introducing the extra vertical space. This can
be useful, particularly when you’re defining
your own formatting environments, when you
want the layout effects without the space.

• As usual, you should normally avoid using
such explicit justification changes in the body
of your document. If some identifiable part of
your document needs such special treatment,
do it via a user-defined command or
environment.

3.13 Line and page breaks

• The \\ command normally gives a line break
(without starting a new paragraph). It’s
particularly handy in centered text, where
usually we want to control the division into
lines.

\begin{center}

How to Dominate Men, \\

Subjugate Women, and \\

Stupefy Children

\\ by \\

Salvador Dali

\end{center}

produces

How to Dominate Men,
Subjugate Women, and

Stupefy Children
by

Salvador Dali

• The \\ command can take an optional length
argument, which specifies how much
additional vertical whitespace to insert after
the line break.

• There’s also a “starred” form *, which
inhibits a page break at the line break. With
care, it can be used to keep separate lines
together on the same page, although there
are perhaps better ways of achieving this.

• Normally, LATEX does a good job of deciding
on page breaks, but you can force them if
necessary:

\newpage Goes to a new page (new column
in two-column mode).

\clearpage Goes to a new page.

\cleardoublepage Like \clearpage, but in
two-sided printing takes us to an
odd-numbered (right-hand) page,
inserting a blank left-hand page if
necessary.

Both the “clear” forms also force out any
accumulated floats.

• There are also various commands to
encourage or discourage line or page breaks
at a given point: \linebreak, \nolinebreak,
\pagebreak, \nopagebeak. They each take
an optional argument, a number 0 to 4, to
specify the degree of encouragement or
discouragement.

14

3.14 Displays

• Often text needs to be set apart visually, or
“displayed”

• LATEX provides several environments for these
purposes:

quote For short quotations.

quotation For longer (multi-paragraph)
quotations.

verse For verse and poetry.

• There are also environments for displaying
mathematics, which will be described
separately.

3.15 Lists

• LATEX provides a number of environments for
lists of items:

itemize For itemized (bulleted) lists.

enumerate For numbered lists.

description For tagged “description” lists.

• Within the list, each item is begun with an
\item command.

• In a description environment, the optional
argument to \item provides the term to be
described.

•
\begin{enumerate}

\item First item, which has a

nested itemized list

\begin{itemize}

\item First nested item

\item Second nested item

\end{itemize}

\item Second item

\end{enumerate}

produces

1. First item, which has a nested itemized
list

– First nested item

– Second nested item

2. Second item

•
Three animals you should

know about are:

\begin{description}

\item[gnat]

A small animal, found

in the North Woods,

that causes no end of

trouble.

\item[gnu]

A large animal, found in

crossword puzzles,

that causes no end of trouble.

\item[armadillo]

A medium-sized animal,

named after a

medium-sized Texas city.

\end{description}

produces

Three animals you should know about are:

gnat A small animal, found in the North
Woods, that causes no end of trouble.

gnu A large animal, found in crossword puz-
zles, that causes no end of trouble.

armadillo A medium-sized animal, named
after a medium-sized Texas city.

(This example is take from [7].)

• These environments nest gracefully (up to
four deep, at least).

• The “bullets” and number style depend on
the level.

• As with most things in LATEX, the formatting
of these environments is highly configurable,
though the default serves for almost all
purposes.

• There are also some lower-level list primitives
for defining your own list structures.

• Many standard LATEX environments are
actually defined in this way as trivial,
one-item lists.

15

3.16 Overall source document
structure

• LATEX documents follow a consistent
structure:

\documentclass[a4paper]{article}

preamble

\begin{document}

body

\end{document}

• In the preamble go various declarations to
load packages, set various document
parameters, and define new commands and
environments, etc.

• Nothing in the preamble should generate any
text.

• In the body goes the actual text of the
document, which may be lengthy and spread
over several files.

3.17 Document class

• Aside from whitespace and comments, and
some uncommon constructs we won’t describe
here, every LATEX document has to start with
a \documentclass declaration.13

• The \documentclass declaration tells LATEX
what kind of document it is. The standard
document classes are:

article An article, such as a conference
paper or journal article. Use this when
nothing else fits.

report For something longer, like a technical
report.

book For a full-scale book.

slides Originally for overhead
transparencies. Nowadays probably
more useful for producing say PDF
“slides” to be displayed on screen.

13It is actually possible to \input the \documentclass dec-
laration. This can sometimes be useful for automatically
generated documents.

Automatically chooses appropriate big
fonts.14

letter For letters (like you put in an
envelope with a postage stamp).

• Additional classes have been developed by
various organizations, like publishers and
professional societies, for specific purposes,
like to ensure that all papers submitted to a
particular conference are formatted in a
consistent way.

• The class determines the overall formatting of
the document, and may make class-specific
commands and environments available.

• Options can be used to modify the standard
settings for that document class. Commonly
used are:

11pt 12pt To set the document with a base
type size of 11 or 12 points, instead of
the default 10 points.

a4paper To format for A4 paper, instead of
the default U.S. Letter size.

oneside twoside To format respectively for
one-sided or two-sided printing.

In two-sided printing, LATEX uses
different margins for odd-numbered
(right-hand) and even-numbered
(left-hand) pages. In one-sided printing,
all pages are treated as right-hand pages.

The default for book is twoside; the
default for article and report is
oneside.

twocolumn Format for two-column pages.

landscape Format for landscape printing.

• Not all options apply to all classes: for
example, you can’t have two-column slides.
(Well, not via the standard class options.)

• Options like a4paper, twoside and
landscape usually affect only LATEX’s
formatting of pages. It will sometimes take
further downstream intervention to get the

14There are a number of packages, like texpower, prosper,
and foiltex, designed to support presentations, with some
support for animations and transitions in the generated
PDF.

16

actual printer or on-screen display program
to respect them.

• For would-be wizards: Classes are defined by
.cls files, which are just files of LATEX
definitions following special conventions.
They are looked up and loaded following the
same TEXINPUTS path as \input. If you’re
curious, you can look at the standard
document classes to see how they’re done.
Beware, they’ll usually contain quite a lot of
low-level TEX commands. Try something like
locate article.cls to find out where
they’re stored on your system.

3.18 Packages

• LATEX comes with a huge number of standard
and contributed “packages”, which provide
extra facilities.

• As as rule, if you encounter some typographic
problem, almost always there’s an existing
package to do the job.

• Packages are loaded with the \usepackage

command.

• Its arguments are a list of package names,
separated by commas (no spaces), though
usually it’s cleaner to load just a single
package with each call.

\usepackage{color,graphicx}

Loads both the color and graphicx

packages.

• \usepackage can take an optional argument,
which gives a comma-separated list of options
which are passed to the packages.

\usepackage[french]{babel}

Loads the babel package (which provides
multilingual support), passing it the french

option, to set French as the default language.

• For would-be wizards: As with classes,
packages are defined by files of LATEX

definitions. For historical reasons, since they
were formerly called “styles”, they have
extension .sty. If you’re curious, try
something like locate color.sty to find
where the standard packages live on your
system, so you can take a look at how they’re
done. Again, beware, they’ll usually contain a
lot of low-level TEX.

3.19 Front stuff

• \maketitle produces the document’s title in
the appropriate format for the document
class.

• It draws on information from the \title,
\author, and optionally \date declarations
in the preamble.

• The information for separate authors is
separated by \and.

• Multiple lines for an author (say to give
address) can be obtained by \\.

• Inside the arguments of \title and \author

things like acknowledgements and affiliations
can be given by the \thanks command
(whose argument will normally end up as a
footnote).

• The abstract is produced by the abstract

environment.

• The table of contents, list of figures, and list
of tables are produced, respectively, by the
\tableofcontents, \listoffigures and
\listoftables commands.

3.20 Document sectioning

• LATEX provides a hierarchical organization of
sectioning commands—from highest to
lowest:

Command Level
\chapter 0
\section 1
\subsection 2
\subsubsection 3
\paragraph 4
\subparagraph 5

17

• To maintain the hierarchy, any sectional unit
must be contained in the next higher unit.

• However, there is no \chapter command
defined in the article class, so for articles
\section is the highest-level sectioning
command. (This is intended to make it easier
to include an article as a chapter of a book.)

• Sectional units are normally numbered
automatically: A sectioning command
increments the number for that sectioning
level, and resets the numbers for lower-level
sectional units. “Lower-level” means bigger
(deeper) level numbers.

• Sectioning commands take an argument
which provides the heading for the sectional
unit, the corresponding entry for the table of
contents, and a running head for the page
(for some page styles).

• They can also take an optional argument
which is used for the table of contents and
running head for the situations when you
want it to be different from the heading.

A common reason is that for a long section
heading, too long to fit in the column width,
you might want to introduce a \\ to put the
line break where you want it, but not have
the line break in the table of contents or
running head.

• There are also “starred” forms, like
\section*, which are unnumbered, and
produce no entry in the table of contents.

• Few documents use the full range: many will
use only say \section and \subsection.

• The table of contents is produced by the
\tableofcontents command.

• The names of the \paragraph and
\subparagraph commands are perhaps
unfortunate. They are different from LATEX’s
notion of a typeset paragraph (as indicated
by blank line or \par command). A
\paragraph sectional unit may actually
consist of several typeset paragraphs.

• The \appendix command normally doesn’t
produce any output, but it changes the

numbering of sectional units to be suitable
for an appendix. For example, in the article

class, the \appendix command changes the
\section command to number sections by
letters, “A”, “B”, “C”. . .

• There is a rarely used, higher-level sectioning
command \part at level −1. It’s anomalous
in that a new \part doesn’t reset lower-level
counters (\chapter or \section, depending
on the document class).

• There are two user-settable counters
secnumdepth and tocdepth, which control
the level at which sectional units are
numbered and entered in the table of
contents.

3.21 Layout of a LATEX source file

• Layout (whitespace, indentation, line
breaking) in the LATEX source file is largely
ignored.

• However, you should pay attention to layout
to enhance readability of the LATEX source, as
you would say for a C program. For example,
the layout of the items in an itemized list
should approximate the indentation of the
final typeset output.

• The comment % also magically eats all
leading whitespace from the beginning of the
next line. This can be very useful to layout
and indent the LATEX by lines without
introducing extra spaces into the output.15

• Needless to say, a LATEX source file should
include reasonable comments, as they will
help the reader.

4 Breaking Up Your
Document 1

4.1 \input

• Keeping the whole of a large document in a
single file can be unwieldy.

15A comment % can’t occur inside a command name.

18

• \input{file } acts as if the contents of file
file appeared at this point.

• Analogous to #include in C.

• If file lacks an extension, .tex is provided

\input{defns.ltx} inputs the file
defns.ltx

\input{defns} and \input{defns.tex}
both input the file defns.tex

• The file is searched for first in the current
directory (folder), and then in standard
LATEX system directories.

(This can be modified using the TEXINPUTS

environment variable.)

export TEXINPUTS=.:$(HOME)/tex:

Two nifty features: The trailing colon means
that LATEX searches the standard LATEX
system directories after those you’ve
specified. If a directory ends with a double
slash //, then it’s searched recursively (that
is, into subdirectories as well).

• Inputted files can also contain \input, and in
turn input further files.

• Main uses

– Breaking a large document into
manageable pieces

– Re-use of chunks of LATEX across
multiple documents

∗ An important table or complicated
diagram used across several papers

∗ Especially a file containing your own
command definitions and other
personal customizations

– Division of labor amongst collaborators:
each can work on own part

• See also \include in §14

5 Roll-Your-Own

5.1 Commands

• LATEX provides many commands built-in, but
also provides a facility for users to define
their own commands, which work almost
exactly like those built-in.

• New commands are defined using
\newcommand, which takes two arguments:
The first is the name of the new command
(with backslash); the second is the body of
the new command’s definition — what each
instance of the new command is replaced
with.16

• Something like cross between a #define and
a function definition in C, because (LATEX
being in effect an interpreted language)
there’s no distinction between the
compilation and run-time phases.

• E.g.

\newcommand{\PhoneNo}%

{+61-3-9234-5678}

My phone number is \PhoneNo.

Note difference between

aa\PhoneNo aa

or

aa{\PhoneNo}aa

and

aa\PhoneNo\ aa

or

aa{\PhoneNo} aa

or

aa\PhoneNo{} aa

produces

My phone number is +61-3-9234-5678. Note
difference between aa+61-3-9234-5678aa
or aa+61-3-9234-5678aa and aa+61-3-
9234-5678 aa or aa+61-3-9234-5678 aa or
aa+61-3-9234-5678 aa

16Underneath, TEX uses a lower-level command-definition
facility, the most important part of which is the command
\def. It’s sometimes used in package definitions, since it’s
more efficient than \newcommand, because it’s at a lower level
and does less checking. It’s interesting to note, though, that
\def uses a more general pattern-matching mechanism for
passing arguments.

19

As mentioned for built-in commands, and it
applies as well to user-defined commands,
when the command name is terminated by a
space, LATEX eats up all the following
whitespace, so the following “aa” in the
second instance above comes out right up
against the expansion of the command. If you
really want the space to be there, you need to
use one of the contrivances listed here
(although the xspace package can in most
cases make this unnecessary). Note that you
couldn’t have written \PhoneNoaa because
LATEX would have treated that as the name of
a different, presumably undefined, command.

• Your own commands can also take (up to
nine) arguments:

\newcommand{\Shout}[1]{\textbf{#1!}}

I shouted ‘‘\Shout{Keep quiet}’’

to the class.

They yelled back

‘‘\Shout{Go away}’’.

produces

I shouted “Keep quiet!” to the class. They
yelled back “Go away!”.

\newcommand{\TwoByTwo}[4]%

% Two-by-two matrix in row order

% Works only in math mode!

{\left(\begin{array}{cc}

#1 & #2 \\

#3 & #4

\end{array}\right)%

}

\newcommand{\ct}{\cos\theta}

\newcommand{\st}{\sin\theta}

\[

R_\theta =

\TwoByTwo{\ct}{\st}{-\st}{\ct}

\]

produces

Rθ =

(

cos θ sin θ

− sin θ cos θ

)

• The expected number of arguments is given
as an optional argument after the new
command name. This is what LATEX uses to
check that sufficient arguments are provided
at each call.

• Command definitions can be put almost
anywhere in the document, but it’s good
practice to collect them all together in the
preamble (makes changing easier), and even
better to put them in separate files of
definitions, which are inputted in the
preamble.

• You can define your own commands for
convenient abbreviations, e.g., after

\newcommand{\bi}{\begin{itemize}}

\newcommand{\ei}{\end{itemize}}

\bi

\item blah

\item blah blah

\ei

produces

– blah

– blah blah

• More importantly, user-defined commands
provide flexibility and abstraction:

If your phone number changes, you only need
to change it in one place, in your shared file
of definitions.

This is the software engineering principle of
single point of control.

Similarly if you needed to change the format
for shouting (say to Huge size) or the format
of matrices (say to use square brackets).

Especially important if you’re dealing with
large documents that may run to hundreds of
pages, with LATEX source spread over many
files.

• Another use of user-defined commands is
analogous to a “stub” function in C. Suppose

20

parts of your document need to be typeset in
a particular way, but you don’t yet know how
to do it. You can invent a command to do
that, provide a temporary, stub definition of
that command, then push on with developing
your document content using that command.
The stub definition can be very simple,
maybe something like

\newcommand{\complicated}[4]%

{*** #1 * #2 * #3 * #4 ***}

Later on, you can replace the stub definition
with the real one, and you shouldn’t need to
make any changes to the body of your
document.

• User-defined commands can also have one
optional argument (not covered here).

• \newcommand will give an error if the
command already exists.

• To redefine an existing command, use the
analogous \renewcommand. This is used
particularly for document customization.

• Less often used, but still handy to know
about is \providecommand, which is kind-of
like the opposite of \renewcommand. If the
command doesn’t exist, it gets defined, but if
the command already exists, then nothing
happens. It can be used to make sure a piece
of LATEX will work, even in an environment
where you don’t know whether certain
commands it uses have been defined or not.
The \providecommand provides a “default”
definition, but one which will be over-ridden
by an already existing definition.

• Such commands (however defined) are often
referred to as “macros”, because they’re
analogous to macros in other languages and
applications like spreadsheets.

5.2 Environments

• Analogously, LATEX lets you define your own
environments, for example:

\newenvironment{Warning}[1]%

{\color{#1}

\hrule\smallskip

\begin{center}

\large Warning

\end{center}\em}%

{\smallskip\hrule}

\begin{Warning}{red}

If you go down to the woods

today, you’d better not go

alone.

\end{Warning}

produces

Warning

If you go down to the woods today, you’d bet-

ter not go alone.

• The environment definition has two

brace-enclosed parts: The first part goes in
front of the environment’s contents; the
second part goes after it.

• Note that environment arguments can be
used only in the front part.

• Pretty much everything said above about
user-defined commands applies to
user-defined environments.

• Environments are more appropriate if you’re
doing things with large chunks of text, or
with the few things that aren’t allowed inside
command arguments (paragraph breaks and
verbatim text).

• There’s an analogous \renewenvironment for
redefining existing environments.

5.3 “Theorems”

• Especially in mathematics, there are
identifiable, numbered chunks of material,
like theorems, lemmas, corollaries, proofs. . .

• In other fields, there may be chunks like
commentaries or recommendations, exercises,
or such.

21

• LATEX provides the \newtheorem command as
a convenient way of defining such
“theorem-like” environments.

• For example,

\newtheorem{rec}{Recommendation}

\begin{rec}

\label{rec:preamble}

Put all your command, environment,

and theorem definitions in the

preamble.

\end{rec}

\begin{rec}[For mariners]

\label{rec:chrono}

Never go to sea with

two chronometers.

\end{rec}

Recommendations~\ref{rec:preamble}

and~\ref{rec:chrono} are

completely unrelated.

produces

Recommendation 1 Put all your com-

mand, environment, and theorem definitions

in the preamble.

Recommendation 2 (For mariners)
Never go to sea with two chronometers.

Recommendations 1 and 2 are completely un-
related.

• Notice that a \label inside a “theorem” picks
up its number for cross reference by \ref.

• Optional arguments to \newtheorem can
control numbering: either within some
sectional unit, or in the same sequence as
another “theorem”.

• Reference [4, p. 252ff] describes ways to
customize the presentation of “theorems”.

6 Customization

6.1 Customization

You can customize your documents in various
ways:

• By using various classes and packages, and
setting options to them, e.g., the twocolumn

option supported by almost all document
classes.

• By redefining various lengths and commands
that LATEX “advertises” can be modified.

• Do this with respect, though, in that the
standard settings were generally designed by
typographic experts: Your modifications are
likely to be less good.

For example, LATEX’s standard page layout
has rather wide margins. People are often
tempted to go for narrower margins, in order
to fit more on a page, and save paper.
Unfortunately, the resulting long lines, with
many words, can be difficult to read. (This,
of course, is with one-column layout in mind.)

• Wizards can delve into LATEX internals and
redefine the effect of standard LATEX
constructs. Doing this requires considerable
knowledge: Something like the \section

command does quite a lot of work behind the
scenes in terms of layout and formatting, as
well as house-keeping like setting
table-of-contents entries and page headers,
plus being adaptable to different language
environments.

7 Cross References

7.1 Labels and references

• You mark a place in your document with
\label.17

• You refer to that place from elsewhere with
\ref to get the section, subsection, figure,
table, item number, etc.

• With \pageref to get the page number

17While the labels can be pretty arbitrary strings, it’s con-
ventional to prefix a label with some indication of what sort
of thing it is. So sec:foo would be a reference to a section.
Similarly for eqn:foo, fig:foo, tab:foo, itm:foo, which
would, respectively be references to an equation, a figure,
a table, and a list item. Beware, though, that in certain
packages for German, the colon is an active character, and
using it in label names can cause problems.

22

• E.g. with

\section{Natural History of Gnus}

\label{sec:gnus}

Here we describe gnus.

then elsewhere

Information about gnus can be

found in Section~\ref{sec:gnus}

on page~\pageref{sec:gnus}.

produces

Information about gnus can be found in Sec-
tion 3 on page 42.

• \vref of the varioref package provides more
powerful cross-references: includes page
reference only if it’s to a different page.

E.g.

\usepackage{varioref}
...

See Table∼\vref{tab:data}.

can produce (among other variants)

See Table 4.2.

See Table 4.2 on the previous page.

See Table 4.2 on the facing page.

See Table 4.2 on page 66.

depending on relative position of the
referenced table.

• The hyperref package can turn cross
references into clickable hyperlinks in PDF
(and HTML) output.

7.2 Mechanics of cross references

• \ref picks up cross-reference information
written to the .aux file by \label on the
previous run.

• So, after a big change, it may take two runs
of LATEX to get cross references exactly right.

• But normally, you don’t need to bother, since
you only need exactly correct cross references
in the final version.

• It may seem that \label magically knows
what kind of thing it’s in (figure, section,
subsection, etc.). In fact each of these
constructs sets some counter to be the current
“ref” (using \refstepcounter or equivalent),
and \label just simple-mindedly picks up
the printed representation of this “ref”
counter. The cleverness is in the enclosing
construct, not in the \label command itself.

One conseqence of this is that if you want to
put a cross reference say to a section, then
the corresponding \label command has to be
inside that section (i.e., after the \section

command), but not inside any lower-level
construct, like a subsection or figure.

8 Footnotes

8.1 Footnotes

We saw gnus\footnote{A gnu is

an an animal often found in

crossword puzzles.} and gnats.

produces

We saw gnus1 and gnats.

1A gnu is an an animal often found in crossword puz-
zles.

There are number of customizations and packages
for changing the placement, numbering, and
formatting of footnotes.

23

9 Floats: Tables and Figures

9.1 Floats

• With normal text, LATEX inserts page breaks
as needed to produce properly filled pages.

• But some things can’t reasonably be split
across page breaks, like images, diagrams,
tables, program listings.

• Keeping such a thing in sequence with the
normal text could leave a big ugly white
patch if it didn’t fit on the current page.

• So typographically we use floats, which can
“float” through the text to a suitable place
where they fit.

• Standard LATEX provides two kinds of floats,
the figure and table environments.

• The two float environments work in exactly
the same way. The only differences are:

– Convention: figures are used for
diagrams and images; tables are used for
presentation of tabular data.

– Figures and tables are numbered and
captioned differently, and have their
respective \listoffigures and
\listoftables.

• E.g.

\begin{figure}

\begin{center}

\resizebox{0.5\linewidth}{!}

{\includegraphics{daylesford.eps}}

\end{center}

\caption{View of Daylesford Lake.}

\label{fig:daylesford}

\end{figure}

will float the figure, Figure 2, (in this case an
EPS image) to a suitable position.

• table is completely analogous, except that
its content is conventionally a tabular

environment.

Figure 2: View of Daylesford Lake.

• Both figure and table accept an optional
argument by which you can express your own
preference for positioning:
\begin{figure}[htbp!].

But until you know what you’re doing, you’re
far better off accepting LATEX’s standard
positioning rules.

• There are variant figure* and table* forms,
which give full-width floats even in
two-column layout.

Normal forms give just single-column width
floats.

• You can define new categories of floats, for
things like program listings that don’t really
fit in either of the tables or figures categories.

10 Tabulars and Tables

10.1 Tabulars and tables

• Data laid out in a table can be very
important for visual presentation.

• Since the name “table” is already used for the
floating table environment, the name
“tabular” is used for the environment that
creates tabular data.

• A tabular environment creates a TEX box
(just like a big letter) so it might need
additional formatting to be wrapped around
it.

24

• For example,

A tabular

\begin{tabular}[b]{l r}

Initials & Age \\

LJK & 52 \\

ACK & 16 \\

\end{tabular}

might be set in-line.

produces

A tabular

Initials Age
LJK 52
ACK 16 might be set in-

line.

• The common column specifiers are:
l r c p{}, respectively for left-aligned,
right-aligned, centered, and paragraph
(“wrapped”) items. The p specifier takes a
length argument, which gives the desired
width. The @{} specifier can be used to
override the default outside and inter-column
space. See the various examples to get an
idea of how these work. A vertical bar |
makes a vertical line (either between columns,
or as part of a frame around the table). The
command \hline puts a horizontal line
between rows of a table (across all columns),
while \cline{c1-c2} puts the horizontal line
across only some columns.

• More usually, a tabular is big enough to need
to be set inside a floating table environment.
So the LATEX in Figure 3 produces Table 1,
floated to a suitable place.

• There is also tabular* environment, which
takes an additional width argument and
stretches the table to fill that width. (But
only if the table contains stretchable
inter-column space.)

• There are also additional packages, such as
longtable, supertabular, colortbl, and
tabularx, which provide tables with
additional features, like tables which span
multiple pages, have colored backgrounds,
and proportionally assigned column widths.

\begin{table*}

\begin{center}

\begin{tabular}

{| l c p{0.25\linewidth} |}

\hline

Name & Formula & Comment \\

\hline

Sodium Chloride &

NaCl &

Common salt.

Chief solid consistuent of seawater.

\\

Magnesium Sulphate &

Mg${}_2$SO${}_4$ &

Hydrated form is Epsom Salts.

\\

Calcium Fluoride &

CaF${}_2$ &

Occurs as fluorospar.

\\

\hline

\end{tabular}

\end{center}

\caption{Selected salts.}

\label{tab:salts}

\end{table*}

Figure 3: LATEX to produce Table 1.

25

Name Formula Comment
Sodium Chloride NaCl Common salt. Chief solid

consistuent of seawater.
Magnesium Sulphate Mg2SO4 Hydrated form is Epsom

Salts.
Calcium Fluoride CaF2 Occurs as fluorospar.

Table 1: Selected salts.

• There is also a tabbing environment, which
has some limited use.

11 Mathematics

11.1 Math mode

• Mathematics in TEX/LATEX is processed in a
special mode, math mode.

• Some features, like superscripts, subscripts,
and most special symbols are available only
in math mode.

• Math comes in two flavors: inline and display

• Inline math is delimited by:
$. . . $
\(. . . \)
or, more verbosely, by
\begin{math}. . . \end{math}

The $. . . $ notation is inherited from TEX.
It’s convenient, but treacherous, since missing
a dollar sign can cause a large-scale mess. It
is commonly used, and is probably OK for
simple formulas.

• Display math is delimited by:
\[. . . \]
\begin{displaymath}. . . \end{displaymath}
And also by a number of other environments
which give equation formatting and
numbering.

• For example:

The inline formula

$\sum_{i=1}^n x_i^2$

can be displayed as

\[

\sum_{i=1}^n x_i^2

\]

Note the difference in

size and formatting.

produces

The inline formula
∑n

i=1 x2
i can be displayed

as
n

∑

i=1

x2
i

Note the difference in size and formatting.

• A lot of things work differently in math
mode. Most noticeable is that, aside from
their use to separate tokens, spaces are
ignored in math mode. (In ordinary text, a
space normally gives an inter-word space — it
doesn’t in math mode.) LATEX uses its own
spacing rules in math mode, which
incorporate a lot of knowledge about
mathematical typesetting (like different
spacing around the same symbol depending
on whether it’s being used as a unary or
binary operator). So $- x - y z$ and
$-x-yz$ both produce −x− yz.

Best advice is to just write the content of the
formula, and leave it to LATEX to determine
the spacing. There are special spacing
commands to use in math mode, but
generally you should use them only on rare
occasions to fine-tune the spacing in the
formula, when LATEX’s rules haven’t got the
aesthetics quite right.

26

In almost all cases, LATEX knows more about→
mathematical typesetting than you do.

11.2 Subscripts and superscripts

• In math mode, subscripts are indicated by _

and superscripts by ^

• Grouping is important:

Note the difference between

a^n+k_j-1 and a^{n+k}_{j-1}.

produces

Note the difference between an + kj − 1 and
an+k

j−1 .

• Note:

4_2He

produces

4
2He

where we’ve put the subscript and superscript
on “nothing”, indicated by the empty pair of
grouping braces.

11.3 A menagerie of symbols and
operators

• LATEX supports a huge number of
mathematical symbols and operators, far
more than can be mentioned here.

α ξ Ξ θ ϕ

\[

n! = \prod_{k=1}^{n} k

\]

\[

\sin^2\theta + \cos^2\theta = 1

\]

\[

\log \sqrt[n]{x} = \frac{\log x}{n}

\]

Compare log with \log

and with \mbox{log}. \\

Compare $difference$

with \emph{difference}. \\

Compare k with k.

produces

α ξ Ξ θ φ

n! =

n
∏

k=1

k

sin2 θ + cos2 θ = 1

log n

√
x =

log x

n

Compare log with log and with log.
Compare difference with difference.
Compare k with k.

Notice that in math mode, a sequence of
letters is treated as the mathematical product
of single-letter variables. So log in math
mode doesn’t get you the name of the log
function, (which is conventionally typeset in
roman type). The best way of doing this is to
use the command \log. Similarly for \cos,
\sin, etc. The \mbox command sets its
argument in roman type, even inside a
mathematical formula, so can be used for
“log-like” functions which aren’t pre-defined,
and also for introducing a few words of text
inside a formula, like “if” and “otherwise”.
(The various AMS LATEX packages provide
slightly better ways of doing this, though.)

• This also means that putting a word inside
dollar signs is not a shortcut for emphasizing
it via italics. The font used and letter spacing

27

will be different. Conversely, if you refer to a
variable from your formula in running text,
you need to put it inside dollar signs, so that
it will be typeset consistently as a
mathematical variable, not as an ordinary
letter.

11.4 “Large” delimiters

\begin{displaymath}

{\left(\frac{x+1}{x+2} \right)}

^ 2

\end{displaymath}

produces

(

x + 1

x + 2

)2

Also works with other “bracketing” delimiters,
like (. . .), [. . .], \lbrace. . . \rbrace, |. . . |,
\|. . . \|, etc., plus “.” (see how equation 1 in
§11.6 below is done).

11.5 Arrays

The array environment is analogous to the
tabular environment, but in math mode.
For example,

\[

I =

\left(

\begin{array}{cccc}

1 & 0 & \ldots & 0 \\

0 & 1 & & 0 \\

\vdots & & \ddots & \vdots \\

0 & 0 & \ldots & 1

\end{array}

\right)

= \left(\delta_{ij}\right)

\]

produces

I =











1 0 . . . 0
0 1 0
...

. . .
...

0 0 . . . 1











= (δij)

11.6 Equations

• The equation environment displays a
formula and gives it an equation number,
which can be labelled and referred to.

For example:

\begin{equation}

|x| = \left\lbrace

\begin{array}{r l}

x & \mbox{if }x \ge 0 \\

-x & \mbox{otherwise}

\end{array}

\right.

\label{eqn:abs}

\end{equation}

produces

|x| =
{

x if x ≥ 0
−x otherwise

(1)

And elsewhere

Equation~\ref{eqn:abs} defines

the absolute value.

produces

Equation 1 defines the absolute value.

• The eqnarray environment displays
numbered equations aligned in something like
a three-column array:

\begin{eqnarray}

x & = & at^2 + bt + c \\

y & = & dt^2 \nonumber \\

& & \mbox{} + et + f

\end{eqnarray}

28

produces

x = at2 + bt + c (2)

y = dt2

+ et + f (3)

• A subtle point is that the empty \mbox is to
force LATEX to treat the leading plus sign on
the the line as a binary operator, and space it
appropriately.

• There is even more support for math layout
and symbols in the AMS LATEX packages
(that’s the American Mathematical Society,
like the ACM of mathematics).

12 Boxes, Lengths, Space,
Counters

12.1 Caveat

• The concepts and commands described here
can be very powerful tools for low-level
formatting.

• However, you should almost never use them
in the body of your document.

• If you have some meaningful piece of your
document that needs formatting in a
particular way, you should almost always
define an appropriate command or
environment for that piece.

• Use the low-level formatting commands only
in the definition of that command or
environment.

• Use the command or environment in the
body of your document.

• This, in keeping with the general principle,
insulates the body of your document from
formatting changes: separating formatting
from content.

12.2 Lengths

• Lengths in TEX, which LATEX rides upon, are
rather rich; however, to simplify a little:

• Lengths can be rigid, a definite size, for which
a unit must be specified (even if the length is
zero).

• Some of the units used in TEX are pt for
printers’ points18, mm for millimeters, cm for
centimeters, and in for inches.

• Particularly useful are the printers’ measures
em and ex, being respectively the nominal
width of an ‘M’ and the nominal height of an
‘x’ in the current font.

These provide lengths that scale up and down
naturally with the choice of font size.

• Lengths can be negative.

• LATEX provides numerous predefined lengths.

– Some are “read-only”—just for
information

For example, \linewidth, the width of
the current environment (width of text
on a normal page, width of current
column in multicolumn layout or
minipage).

– Most can be modified, for customization.

For example

\setlength{\parindent}{0pt}

sets the paragraph indent to zero.

For example

\setlength{\parindent}{2em}

would let the paragraph indent vary
with the font.

• You can create your own new lengths, e.g.:

\newlength{\figwidth}

18There is also pp for PostScript points, which are slightly
larger.

29

• Lengths can be a multiple of an existing
length, e.g.:

\setlength{\figwidth}{0.5\linewidth}

would set the length \figwidth to half the
current \linewidth.

• Length can be rubber, or stretchable.

There’s a stretchable length called \fill,
and \stretch{r}, which has r times the
stretchability of \fill.

Stretchable lengths are really more like gas
under pressure: They expand to fill available
space, sometimes in competition with other
stretchable lengths.

12.3 Boxes

• In TEX a box is a rectangle of something.

• It might be as simple as a single character, or
as complicated as table or a diagram.

• The main work of TEX is to “glue” boxes
together into bigger boxes (e.g. letters into
words, words into lines, lines into
paragraphs), and arrange them properly on
the page.

• As we’ve seen, the tabular environment
makes a box.

• More simply, \mbox makes a box out of its
text argument.

• \fbox is like \mbox, but it puts a frame
around its box.

• \makebox and \framebox are fancier versions,
which permit specification of width and
alignment.

• The \raisebox command can be used to
raise (or lower) a box and also lie to TEX
about how big it is, that is make TEX treat it
as if its size were different from what it really
is. This can be useful for fine-tuning layout.

• The \parbox command and minipage

environment set material in a certain width
and make a box out of it

• You can also save already typeset material
into a named box, and re-use it. Relevant are
the \newsavebox, \sbox, \savebox, and
\usebox commands, and the lrbox

environment. This has a number of uses, for
example:

– If you have say a complicated logo
generated by internal LATEX commands
repeated on every page, say as part of
the page head, then it will save a lot of
processing time if you save the logo into
a named box and re-use it, rather than
regenerate it every time (as would
happen if you did it via a command).

– Similarly, say if you want to put CVS
keyword expansions into the foot of
every page. Because of the dollar signs
(and other unpredictable active
characters that might appear in file
names, like underscores), you have to
capture the CVS keyword inside say a
\verb, but you can’t pass these around.
The solution is to make a saved box of
the CVS keyword using the lrbox

environment, and then use this box
wherever needed.19

12.4 Space and rules

• \hspace{w} produces a horizontal space of
width w.

This space, though, is removed if it’s at the
beginning or end of a line.

The \hspace* form gives space that is never
removed.

• \vspace{h} produces a vertical space of
height h.

This space, though, is removed if it’s at the
beginning or end of a page.

The \vspace* form gives space that is never
removed.

• In either case, the length can be negative
(brings things closer together, even
overlapping), or stretchable (useful for
relative placement).

19There are packages to facilitate tyepsetting of CVS or
subversion keywords.

30

• There are various predefined useful spaces of
convenient sizes, horizontal: \, (thin space),
\quad (1em wide), \qquad (2em wide),
\hfill (stretchable); vertical: \smallskip,
\medskip, \bigskip, \vfill (stretchable).

• Not quite spaces, but similarly “stretchable”
and handy are \dotfill and \hrulefill.

• A rule is a rectangular blob of ink.

Among other uses, it can make horizontal
and vertical lines.

\rule{5em}{1pt}

\rule[1ex]{5em}{1pt}

\rule[-1ex]{5em}{1pt}

\rule{2pt}{1.0cm}

produces

A very useful special case is a rule with zero
width, called a strut. It is invisible, but takes
up room vertically, and can be used for
positioning, especially in places where explicit
vertical spaces can’t be used, such as in
mathematical formulas.

\fbox{plain box}

\fbox{\rule[-2ex]{0pt}{4ex}%

box with strut}

produces

plain box box with strut

Similarly for zero-height rules, though they’re
probably less useful.

12.5 Counters

• Counters are like integer variables: they’re
what LATEX uses behind the scenes to number
sections, pages, etc.

• You can create your own counters,
manipulate them, and use them to number
your own entities (like say an exam question
environment).

• Relevant commands are: \newcounter,
\setcounter, \addtocounter, \value,
\stepcounter, \refstepcounter

• Also \thectr and \arabic, \roman, \Roman,
\alph, \Alph, \fnsymbol

• For example, to have all your chapter
numbers (and references) be in upper-case
Roman numerals, you can say

\renewcommand{\thechapter}%

{\Roman{chapter}}

in the preamble. Don’t get carried away with
this, though.

13 Graphics: Images and
Diagrams

13.1 The picture environment

• Standard LATEX provides the picture

environment.

• It’s adequate for simple “box and arrow”
diagrams and has the advantage that it uses
only the facilities of LATEX and doesn’t rely
on any external drivers.

• Some visual GUI diagram editors, like xfig,
can export in the form of LATEX picture
environments.

• But for most uses, it’s too limited and
cumbersome.

• Various packages, like eepic, provide a ←
picture environment with extended
capabilities.

13.2 Graphics operators

• Originally there was the graphics package,
but now the graphicx package is almost
always used, since it provides additional
features.

31

• \scalebox

• \resizebox

• \rotatebox

• For example,

sleep \\

\scalebox{2}{sleep} \\

\scalebox{1}[2]{sleep} \\

\resizebox{5em}{2em}{sleep} \\

\resizebox{5em}{!}{sleep} \\

\rotatebox{30}{sleep}

\rotatebox{-30}{sleep}

produces

sleep

sleep
sleep
sleep
sleep
sle

ep
sleep

• These rely on capabilities beyond DVI, by
passing “specials”

• They work with dvips and pdflatex, but
may not work with other drivers.

• The pstricks package provides very powerful
facilities for creating graphics, but works only
with PostScript output.

13.3 Including graphics

• Use \includegraphics.

• Many graphics and image formats are
supported: for example, PDF, EPS
(Encapsulated Postscript), PNG, JPEG, GIF.

• EPS requires using a PostScript driver, like
dvips.

• PDF requires the use of pdflatex.

• See Figure 2 and the LATEX for it on page 24.

• The graphic can be resized and rotated via
the graphics commands mentioned above, or
via special keyword arguments to the
\includegraphics command provided by
graphicx.

• If you don’t specify a file extension in
\includegraphics, then LATEX searches
through a (configurable) list of possible
extensions.

This means that under some conditions, you
don’t need to commit to the particular
graphics format in your document: For
Figure 2, I could have said just
\includegraphics{daylesford}, and LATEX
would have picked up what was available (in
this case EPS).

• Generally, in order process the graphic
properly LATEX needs access to its “bounding
box” (which describes how big it is). Formats
like EPS and (encapsulated) PDF store this
information in the file in a form that LATEX
can access. But for other formats you may
have to take additional steps to tell LATEX
about the bounding box.

14 Breaking Up Your
Document 2:

14.1 \include

• Running latex on a large document can be
very time-consuming, especially when you’re
developing a document and need to run
latex often to debug your document.

• In rare cases, a document can be so big that
it exceeds your computer’s memory capacity
to process it all in one go.

• You could break up your document into
pieces, and \input these pieces from a
top-level document, then comment-out
\inputs for all but the pieces you’re actively
working on. But this is cumbersome, and
messes up cross references.

32

• \include provides this capability, but in a
much more convenient way.

• \include acts like \input, but for each file it
reads in, it maintains its cross-referencing
information in its own corresponding
individual .aux file.

• In the preamble, you can put an
\includeonly command, giving it a
comma-separated list of included files.

Only those files are processed, but they use
(mostly correct) cross-reference and
page-number information from the .aux files
from previous runs.

• For example, on the simple top-level
document:

\documentclass{article}

\includeonly{experiments,results}

\begin{document}

\include{front}

\include{introduction}

\include{experiments}

\include{results}

\include{conclusions}

\end{document}

latex would process and produce output
from only the files experiments.tex and
results.tex.

• One restriction is that the output of an
\included file must always start a new page.

Since \included files almost always are
top-level pieces, like chapters, which start on
a new page anyway, this is hardly ever a
problem in practice.

If the pieces don’t naturally start on a new
page, like sections of an article, then you can
\include them during development, and turn
them into \input for the final runs.

15 Bibliography

15.1 DIY: thebibliography

• LATEX provides a thebibliography

environment for formatting bibliographies

• You can use it directly, but it’s only really
viable for the simplest cases

15.2 Using BibTEX

• Much better is to have your bibliography
automatically generated and formatted.

• Where you want your bibliography, you put
\bibliography{list of biblio

databases }.
The argument is a comma-separated list of
special databases (.bib files) to use for
bibliographic information.

Many bibliographic databases are already
available in BibTEX format. They may be a
shared resource of a research group. The
online database CiteSeer provides BibTEX
entries.

Usually, though, you’ll need to create at least
some BibTEX entries of your own.

• You also need to specify
\bibliographystyle{style } where style

specifies the style you want for your
bibliography.

LATEX’s standard bibliography styles are
plain, unsrt, alpha, and abbrv.

Plus there are numerous contributed styles,
including those required for various journals.

Writing new bibliography styles can be done,
but it’s a job for wizards. More feasible is to
make small modifications of existing styles.

The LATEX book [7] says that the
\bibliographystyle declaration can go
anywhere after \begin{document}, but I’ve
had it work as expected when put in the
preamble.

For example,

\bibliographystyle{plain}

\bibliography{ljk-latex}

appears towards the end of this document.

• In your document you cite a paper using the
\cite command giving a unique identifier for
each paper:

33

Stuff about bibliography can be

found in~%

\cite[\S4.3 \& Appendix~B]%

{latex-adps},

and in~\cite[Ch.\ 13]{latex-comp}.

The most important {\LaTeX} book

is~\cite{latex-adps}. Very useful

is~\cite{latex-comp}, while

more specialized books are~%

\cite{latex-gracomp,latex-webcomp}.

A huge amount of information is

available on~\cite{texliveCD},

including~%

\cite{lshort,UKtexfaq,texlive-guide}.

produces

Stuff about bibliography can be found in [7,
§4.3 & Appendix B], and in [4, Ch. 13].
The most important LATEX book is [7]. Very
useful is [4], while more specialized books
are [6, 5].
A huge amount of information is available
on [10], including [8, 3, 9].

where the references are to papers in the
bibliography.

• \nocite causes a reference to be listed in the
bibliography without putting a citation in the
text.

The form \nocite{*} pulls in all the papers
from the listed databases. It’s useful for
preparing stand-alone bibliographies, though
perhaps the biblist package is better for
this purpose.

• Extended bibliographic facilities are provided
by a number of packages, including natbib,
cite, citesort, overcite, chicago,
chapterbib, bibunits. See [4].

15.3 Running bibtex

• Getting your bibliography and citations
completely correct may take up to four steps:

1. Run latex once on your document.

latex will complain about undefined
citations and references, but this is
normal.

On this pass latex records the
identifiers of the cited papers in the
.aux file.

2. Run bibtex. It reads the .aux file,
searches the databases for the cited
papers, and writes the formatted
bibliography to the corresponding .bbl

file.

3. Run latex again. It will pick up the
bibliography automatically and put it at
the indicated place, but it may still
complain about undefined references.

4. Run latex a third time, to finally
resolve any references to the
bibliography.

• Note that it’s probably cleanest if the
command argument is the base of the .tex

file, like latex foo and bibtex foo for
foo.tex—latex looks at the corresponding
.tex file, and bibtex looks at the
corresponding .aux file.

• Of course, you only need to go through this
full process if you’re starting from scratch,
and you want a final version.

• During development you normally only need
to run bibtex when you’ve added new
citations (or removed old ones).

• If you just run latex once, at worst your
citation numbers may be temporarily out of
synch. This is usually acceptable during
development.

16 Collaborative Document
Development

16.1 Version control—CVS

• LATEX has two important characteristics:

1. Sources are ordinary text files

34

2. A large document can be broken across
a number of files, using \input,
\include, and \includegraphics.

• These make LATEX documents particularly
suited for being put under a version-control
system like CVS or subversion, with all the
benefits that brings, such as:

– Team development: Shared repository
with individual checked-out workspaces,
possibly on remote machines.

– Version control and branching.

– Tracking and documentation of rationale
for changes via log messages.

– Diffs for focussing on changes.

– . . .

• Just a few things to note:

– Because CVS diffs are line based, it’s
not a good idea to make unnecessary
changes to the line structure of your
source, since they make the real diffs
hard to locate.

For example, if you change a few words
in a paragraph in the source file, it’s not
a good idea to re-fill that paragraph in
your text editor (say by M-Q in emacs).

Some text editors, on Windoze in
particular, store text paragraphs as
single long lines, and just wrap them to
fit for the display. If you change a single
character of that paragraph, the whole
paragraph will show up as a diff line,
again making it hard to see the real
differences.

– Because $ is an active character in
LATEX, it takes some contrivance to get
CVS keyword substitutions, like Id to
work. Sure, you can easily put them
inside a comment, but getting the CVS
stuff to print in the document is trickier.
It can be done—see how it’s done in the
source of this document to get some
ideas, or use one of the packages→
providing this facility.

– Remember, if you’re checking-in other
document source files, like images, which

are binary, not text, then you’ll need to
specify -kb on the cvs add command.

16.2 Build tools—make

• Because all the LATEX-related processors, like
latex, bibtex, dvips, etc., are
shell-invokable programs, it’s very convenient
to use a build tool, like make to generate your
final documents.

• With GNU make, you can write makefile rules
like:20

%.dvi : %.tex ; latex $<

%.ps : %.dvi ; dvips -t a4 -o $@ $<

%.pdf : %.ps ; ps2pdf $< $@

Or, if you prefer to go direct to PDF:

%.pdf : %.tex ; pdflatex $<

• If your top-level LATEX document includes
other files (whether LATEX or graphics), then
you can specify them as additional
dependencies of the corresponding DVI file
(or PDF file if you go straight to PDF).

• It is possible to generate such dependencies
automatically. There are a few Perl scripts
around that purport to do this. I’ve even
written one myself. But they aren’t entirely
satisfactory. Problems:

– In C, all #includes are visible in the
source file, while in LATEX an \input

may result from the expansion of a
user-defined command, which may
involve some arbitrary computation. So
you can’t completely find out what’s
input except by almost fully simulating
latex.

– Having automatically generated .tex

files (such as is done by transfig) can
interact badly with latex’s search along
its search path given by the environment

20In most cases, it’s better also to provide the -Ppdf option
to dvips, so dvips chooses font representations that convert
better into PDF.

35

variable TEXINPUTS. Suppose you
\input a file that doesn’t exist yet but
is supposed to be created as needed in
the current directory. The path search
for dependencies might find another file
by the same name elsewhere on the
search path, and take that as satisfying
the dependency. And make will therefore
never trigger creation of that needed
.tex file.

One better solution to this is to grovel
through the .log file, and parse out the
messages that latex writes there when it
reads a file. An even better solution (though
still not perfect) would be to redefine LATEX’s
various input commands so that they write
the dependencies to a file in proper makefile
format. Anyone feel like writing such a
package?

A less strenuous solution would be to define
your own variant versions of the commands,
say \Input, \Include, and
\Includegraphics, which call the underlying
LATEX commands, but also record what file
has been read. Then always use your variant
versions in your document. Still not a perfect
solution. . .

• One aspect of LATEX which make doesn’t
handle well is that LATEX actually entails
some circular dependencies, which
fundamentally violates make’s mode of
operation, which assumes (reasonably enough
for most compilers) that the dependency
graph is acyclic. Most obviously, latex both
needs and produces the .aux files.
Furthermore, latex needs the .bbl file
produced by bibtex, but bibtex needs the
.aux file produced by latex.

The pragmatic solution is to express just the
“mainstream” dependencies in the makefile,
like of the DVI file on the top-level and
inputted LATEX and graphics files, and be
prepared occasionally to intervene by hand:
Use something like make -W foo.tex↓
foo.dvi to get make to act is if foo.tex had
been changed, thus forcing a re-run to resolve
cross-references. Or remove the DVI file. Or,↑
less elegant, but simpler, just type and delete

a character in your source file, then save it
and remake (you’ll probably be editing it
anyway). Likewise, have a target to force
running of bibtex as needed.

• Another issue is that, even if latex
encounters errors, it will still usually create a
DVI file (if only a partial one), “successfully”
from make’s point of view.

If the target you’re aiming to create is a say a
PostScript file using dvips, then even after
you’ve modified the LATEX sources to fix the
errors, make will still think that the
PostScript file is up to date with respect to
the current DVI file. Again, the pragmatic
solution is to force rebuilding.

• As well as using make to control running
latex, you can also use it to control other
transformations of files that contribute to
your document, for example:

– Automated conversion of diagrams
produced by xfig into EPS using
transfig. Much more convenient than
always needing to invoke the “export”
function in the GUI.

– Automated processing of images, say for
contrast enhancement for better
presentation using programs from the
pbmplus/netpbm or ImageMagick
packages. You may need to do different
kinds of enhancement for different
purposes for all your images.

16.3 Automatic generation of LATEX

• It’s reasonably straightforward to write
scripts (especially Perl scripts) or programs
to generate LATEX, either complete
stand-alone documents, or fragments that can
be inputted into other LATEX documents.

• This has numerous uses. For example,

– If you have a lot of numeric data, you
can write a script to wrap the
appropriate LATEX around the data to
format it nicely into a table (using the
tabular environment). Be warned, this
often involves a lot of backslashes, since

36

in both C and Perl you need to
backslash-escape a backslash in order to
get it printed in the output.

– Suppose you have certain constants
(numeric or string) that must appear
consistently in both program source
code and in documentation. (“The
maximum length of a address field is 128
characters.”) Rather than type them in
twice, with the risk of inconsistencies,
you can create a simple configuration file
which defines these constants, and then
write scripts to generate consistently
both C header files of #defines, and
LATEX input files of \newcommand
definitions. For example, from
something like:

ADDRMAX 128

you’d generate both

#define ADDRMAX 128

for C, and

\newcommand{\ADDRMAX}{128}

for LATEX.

• Generation of LATEX from XML is mentioned
elsewhere.

• There are a number of packages that support
conditional text in LATEX, conceptually
similar to #ifdef in C, without getting into
full programmability of LATEX (for which see
below). The optional package is probably
the best of these.

• If you need to produce LATEX documents in a
number of different formats, rather than
continually editing, you can put all your
content into files to be inputted, and
automatically generate various top-level
LATEX files, each of which say defines various
different settings in the preamble, and then
inputs the content in the body.

• Actually the opposite: For the Image

Understanding Environment, it was necessary,
from a common description to generate both

documentation and boilerplate C++ code to
support some extensions to C++. LATEX/TEX
was an obvious choice for the first task
(generating documentation). But then the
implementors realised they could also use
LATEX/TEX for the second task: code
generation. (This uses some lower-level
features by which TEX can open and read and
write files.) This is the only case I know of of
an (admittedly simple) compiler written in
TEX!

17 Miscellaneous Topics

17.1 Index and glossary

• For a large work, like a book, a good index is
essential.

• LATEX provides support for preparing an
index:

– Put \usepackage{makeidx} and
\makeindex in the preamble

– Attach \index with index entry for each
place you want indexed, e.g.

A gnat\index{gnat} with

gnarled wings gnashed ...

(From [7, p. 75].)

– Put \printindex where you want the
index

– You also need to run the makeindex

program to process the raw output from
the \index commands into a formatted
index (somewhat analogous to bibtex).

• There are analogous facilities for preparation
of a glossary

• For more information, see [7, §4.5] and [4,
Ch. 12].

17.2 Verbatim text

• Sometimes you want LATEX not to interpret
all its special characters.

• Especially if you want to give computer
program listings, or LATEX examples.

37

• You can “escape” these characters, but it gets
tedious.

• The verbatim environment typsets a chunk
of raw text in typewriter font, obeying lines,
and treating all characters literally.

• The \verb command does this for short
pieces of text.

• For example,

Ordinary {\LaTeX}

on a new line?

\begin{verbatim}

Ordinary {\LaTeX}

on a new line?

\end{verbatim}

\verb+#$_^\{}+

produces

Ordinary LATEX on a new line?

Ordinary {\LaTeX}

on a new line?

#$_^\{}

• Because these change the way LATEX reads in
text, they’re restricted: can’t be passed in
arguments to commands.

• There is also the alltt environment, which
allows some limited LATEX processing.

• Not to be used for visual formatting!

For that use say the tabular or tabbing
environments.

• The moreverb and fancyverb packages→
provide additional verbatim support,
including input from a file and line
numbering.

17.3 Multilingual LATEX

• LATEX can support other languages in a
number of ways:

– Allowing language specific
customization, e.g. \chapter produces
“Chapitre” in French

– Allow other characters and accents

∗ Via special markup, like \"{o} for ö
(only viable for small usage)

∗ Via special transliteration schemes
(as used for some Indian languages).
May need auxiliary programs.

∗ By accepting other character sets
and encodings (e.g. Chinese,
Unicode). May require a special
version of the latex program.

• See, in particular, the babel package.

• This is an area in flux.

17.4 LATEX and the Web

• There are several ways of putting LATEX
documents on the Web:

– As PDF, either produced directly using
the variant pdflatex, or via PostScript
using dvips21 and pdf2ps (free as part
of ghostscript) or Acrobat Distiller.

– By conversion to HTML using
LATEX2HTML or tex4ht (or to XML).

– Via special browser plugins that support
(a variant of) LATEX, like IBM’s
Techexplorer.

– All have their pros and cons. . .

– All have ways of adding clickable
hypertext links to your document, both
internal and external (to the Web).

• It’s possible to go the other way: from XML
to generate LATEX automatically for nice
typesetting of information extracted say from
a database.

17.5 PostScript fonts

• By default, LATEX uses the Computer Modern
family of fonts designed by Donald Knuth
originally for TEX.

• These give ordinary LATEX documents a
subtlely distinctive look.

21As mentioned earlier, best with the -Ppdf option.

38

• LATEX can make use of many other kinds of
fonts, but setting it up is technically
demanding.

• However, there are some packages which give
you pretty simple access to a number of
PostScript font families (provided they’re
available on your system).

This document could be set in the standard
PostScript Times, Helvetica, and Courier
fonts by

\usepackage{times}

• Before you do this too freely, keep in mind
that most of the many mathematical symbols
are usually available only in one of the
Computer Modern fonts. So, even if you
choose a different font family for the main
text of your document, any mathematics will
still use Computer Modern. This can cause
some subtle stylistic clashes.

• Because of the work involved in creating a
font, many fonts are proprietary and must be
licensed. Still, there are a large number of
freely available fonts.

17.6 Page style and headings

• Standard LATEX supports a number of page
styles: plain, empty, headings, and
myheadings (the last used in conjunction
with \markright and \markboth commands).

• They are set globally with the
\pagestyle{style } command.

• The \thispagestyle{style } sets the page
style temporarily for just the current page.

• The page numbering can be set via the
\pagenumbering{num style }, where
num style can be arabic, roman, Roman,
alph, or Alph. It also resets the page counter
to 1.

• There is also a titlepage environment,
which produces an “empty” style page. This
is for doing title pages more complicated than
can be done with \maketitle.

• Other packages, like pagestyle and
fancyheadings provide more facilities, like
three-part titles for the head and foot of each
page.

17.7 Color

• \usepackage{color}

• Some predefined color names, like red,
green, blue. . .

• You can define your own named colors, in
RBG, CMYK, or grayscale.

• Use them for text and boxes.

• For example, the LATEX input shown in
Figure 4 produces the following output:

Some red text and some blue text.
Text in SpringGreen
Some text in a pale blue box.

White on blue in a gray frame

Predefined colors: black white red
green blue yellow cyan magenta

• Can also set the background color of the page
using \pagecolor{color }.

17.8 Hyphenation

• If typesetting could only break lines between
words, then it would be very hard to get nice
fully justified paragraphs.

• So sometimes a word is broken and
hyphenated at a suitable point.

• LATEX’s automatic hyphenation algorithm
generally works very well, but sometimes it
needs help.

• Locally, you can insert the discretionary
hyphen command \- into a word that’s
giving trouble. This inhibits any other
hyphenation, so you’ll generally need to put

39

\definecolor{paleyellow}%

{rgb}{1.0,1.0,0.7}

\definecolor{paleblue}%

{cmyk}{0.1,0.1,0.0,0.0}

\definecolor{midgray}{gray}{0.5}

Some \textcolor{red}{red text}

and some {\color{blue} blue text}.

\noindent

\textcolor[named]{SpringGreen}%

{Text in SpringGreen}

\noindent

\colorbox{paleblue}%

{Some text in a pale blue box.}

{

\setlength{\fboxrule}{3pt}

\setlength{\fboxsep}{5pt}

\noindent

\fcolorbox{midgray}{blue}%

{\color{white}

White on blue in a gray frame}

}

{\large

\noindent

Predefined colors:

\textcolor{black}{black}

\colorbox{black}{%

\textcolor{white}{white}}

\textcolor{red}{red}

\textcolor{green}{green}

\textcolor{blue}{blue}

\textcolor{yellow}{yellow}

\textcolor{cyan}{cyan}

\textcolor{magenta}{magenta}

}

Figure 4: LATEX to produce sample color output.

multiple \-s into the word, at all reasonable
hyphenation points.22

• Globally, you can use the \hyphenation

command to declare the allowed hyphenation
points for a word whenever it’s used. The
argument is a space-separated list of words,
each with hyphens at the allowed
hyphenation points.

17.9 Fragile versus robust
commands

• Things in LATEX (including command
arguments) are subject to multiple steps of
processing.

• Some arguments are special—because of the
way they’re handled, they’re subject to a
double dose of processing.

An example is the heading argument to a
sectioning command. It’s processed once by
the sectioning command, but it’s also stored
and gets reprocessed over again when inserted
into the table of contents.

Such an argument is called a moving

argument.

• Most LATEX commands stand up fine to this
double processing—they are called robust.

• However, some commands, because of the
way they’re implemented, don’t work when
subject to this double processing—they are
called fragile.

• So, you can’t use a fragile command directly
in a moving argument.

• This means that when reading about a
command you may need to pay attention to
whether it’s robust or fragile.

• If you do need to use fragile commands in a
moving argument, you can “protect” them by
putting \protect immediately in front of
every fragile command (including those that
are in arguments to other commands).

22Remember that while the word may now need hyphen-
ation only at one point, future changes elsewhere, like chang-
ing the wording of the paragraph, or changing margins, may
require different hyphenation.

40

• Most robust commands are unaffected by
\protect, so if you’re unsure about whether
a command is fragile or robust, there’s usually
no harm in putting in the \protect anyway.

• But more usually, you don’t bother putting in
\protect until you need to in response to
error messages from LATEX. (Though, coming
from deep inside LATEX the resulting error
messages are often obscure.)

17.10 Some additional useful free

programs

xdvi X-based DVI viewer.

Ghostscript (gs) PostScript/PDF interpreter,
converter and viewer. The programs gv and
GSView are GUI wrappers around gs. The
Ghostscript package comes with many
Postscript-based conversion programs,
PostScript to various image formats, and to
and from PDF.

dvips Converts DVI to PostScript.23

pbmplus/netpbm A collection of image
conversion and processing utilities.
ImageMagick is similar, arguably better.

xfig and dia GUI programs for drawing 2D
diagrams. Can export to various formats
supported by LATEX.

transfig fig2dev Converts xfig’s .fig files
into various formats supported by LATEX.
Actually, fig2dev is the work-horse, callable
as a command-line utility (say in makefiles)
to do the conversions, while transfig is a

23Here is as good a place as any to point out that the
LATEX system does not keep complete information about all
its fonts. This would take up too much space. In practice,
the full font information is generated as needed (by Meta-

Font). It is cached, however, and re-used on subsequent
runs. So if you’re the first person in a while to use a particu-
lar font (and size) on your machine, then you’ll see (and have
to wait for) MetaFont in action generating the full font de-
scriptions. It turns out (obvious if you think about it) that
LATEX doesn’t need to know all the information about the
font, just sufficient to be able to decide where on the page
each character can fit. So, it’s only when you run later pro-
grams, like dvips and xdvi, which need this full information
(like the actual letter shape), that you might see MetaFont

running.

utility for creating makefiles to do the
conversions.

AbiWord and gnumeric These are respectively
a word-processor (like MS Word) and a
spreadsheet (like MS Excel). They can read
the corresponding MS formats, and also
export LATEX. Unfortunately, by then all the
semantic markup has been lost (one of the
advantages of LATEX). Still, they have some
use if you’ve been given a document in some
MS format and need to make some use of it
in the LATEX world.

There are many others. . .

17.11 LATEX debugging

Making sense of logs, warnings and error
messages, etc.
Sorry, this section still has to be written.
In the meantime, refer to [7, Chapter 8].

17.12 More advanced programming
features

• While it’s designed to look most of the time
like a declarative markup language, LATEX
(because it’s built on top of TEX) is in fact a
fully fledged programming language.

• The ifthen package provides control
structures like if-then-else and loops.

• The calc package provides facilities for
making calculations with counters and lengths
much easier—it lets you write expressions.

• The truly intrepid can delve into the arcane
underlying programming facilities of TEX.

17.13 Tips’n’tricks

This section is far from complete.

The main thing is not just to learn the

particular list of tricks given here, but to

develop a sense of what’s possible.

1. When creating a LATEX document for the first
time, it’s a good idea to run latex fairly
frequently, so that your search for the

41

inevitable errors can be focussed on the new
stuff you’ve added since the last error-free
run. For this, \includeonly comes in very
handy, since only that part of the document
you’re actively working on needs to be fully
processed.

How often you need to run latex depends on
how complicated is what you’re typing. If it’s
just simple textual material, you might go on
for pages without rerunning latex. For
complicated mathematics you might rerun
latex after adding only a few symbols, to
build up the formula bit by bit.

2. For something really complicated, you might
even create a “mini-document”, which
contains the preamble of your actual
document, and whose document body
contains only the difficult piece of LATEX
you’re working on. You can re-run latex on
this mini-document very quickly, and speed
up your development cycle. Then you can cut
and paste the working stuff into your real
document—or better, keep your experimental
LATEX in a separate file and use \input to
read it into both your mini and real
documents.

3. If you put a \label just before the
\end{document}, then the pageref for this
label will give the number of pages in the
document. It can then be used, say in
conjunction with the fancyheadings

package, to give page numbers like “Page m

of n”. To get this to work perfectly, you have
to attach the \label to the last non-space
thing, otherwise there’s a small chance that
LATEX might put a page break immediately
after the non-space thing, before it fully
processes the label, so the label might end up
on an extraneous apparently all-blank page of
its own, making the page count one higher
than it should be.

In fact, this is a special case of a more general
issue. If you want to give a pageref to some
construct, say a sectioning command, then
you need to put the \label immediately after
that construct (without any intervening
space), to ensure that no page break can
come between the construct and the

processing of the label. The only exception to
this is the captions of floating environments
like figures and tables: Since no page break
can come inside the float, the label can come
anywhere after the caption (even after
intervening whitespace).

In a similar vein, keep in mind that the
references for a figure or table are set by the
\caption. So, if you mistakenly put the
\label before the caption then it will
probably pick up the reference to the
surrounding section at time of processing.

4. Handy is \ensuremath, which sets its
argument in math mode regardless of whether
you’re already in math mode or not. Its main
purpose is in defining commands which can
be used in or out of math mode. For
example, if you want to use some math-mode
feature like a special symbol in ordinary text:

\newcommand{\love}%

{\heartsuit}

Used in ordinary text, the first dollar sign
puts you in math mode, making the
\heartsuit symbol ♥ available, and the
second dollar sign takes you to back to
ordinary text mode (so called “LR”, “left to
right”, mode). But if you happened
unsuspectingly to use this command in math
mode, weird things would happen: the first
dollar sign would take you out of math mode,
and you’d get an error, because the
\heartsuit symbol is available only in math
mode. Defining the command instead as

\newcommand{\love}%

{\ensuremath{\heartsuit}}

solves the problem: it would work as intended
in either context.

5. The tabular environment is far more useful
than you might think: don’t think of it as
being restricted to conventional tables.

For example, suppose you want a particular
row/column layout of some images. You

42

make a figure environment so the whole
thing can float. The contents of the figure

environment is a tabular environment, which
gives you the row/column layout inside the
top-level figure. The actual cells of the
tabular \includegraphics the images.
There’s nothing to stop a figure from having
multiple captions, so each sub-image can have
its own separate caption, though sometimes
you need to play tricks with minipage

environments to make sure LATEX is in the
correct mode when processing the captions.
For this sort of thing, the subfigure package
may be helpful. See [4].

6. The main obvious use of the \multicolumn

command in a tabular is to make a cell that
spans multiple columns. But it has many
other uses, for example, you can use a
one-column \multicolumn to make a centered
heading over an otherwise p{} column.

7. Usually the cleanest way to get a more
complicated tabular arrangement is to use
nested tabulars—that is, tabulars whose cells
are in turn tabulars.24 In cases like this it’s
generally better if the internal tabulars have
@{} at either end of their column
specification to suppress the space that’s
normally put around a free-standing tabular,
since the inner tabular will already be getting
the ordinary intercolumn space from the
outer tabular.

The output shown in Figure 5 is produced by
the LATEX shown in Figure 6 (which also
demonstrates next point). Note that the
layout is constructed from a three-column
one-row outer tabular. Each cell is in turn
constructed by a nested tabular: First a fairly
simple table of numbers with a trick for
aligning the decimal points, then a
one-column, three-row layout of images, last
a one-cell tabular containing some rotated
text. (You can see that for a one-row tabular,
like the outer tabular here, the choice of

24You can play dirty tricks in tabulars with things like
struts and negative vertical space to control positioning—
like to make something contained in one cell actually print
in the cell above it. But this is very messy and fragile, and
not recommended unless you have no other choice.

\begin{figure*}

\newcommand{\Img}[1]%

{\resizebox{#1}{!}%

{\includegraphics%

{daylesford.eps}}}

\begin{center}

\begin{tabular}{rlr}

\begin{tabular}{|l r@{\cdot}l|}

\hline

\multicolumn{3}{|c|}%

{\bf Approximations} \\

π & 3&14159254\ldots \\

e & 2&71828\ldots \\

e^π & 23&14069263\ldots \\

\hline

\end{tabular}

&

\begin{tabular}{@{}c@{}}

\Img{8em} \\ \Img{4em} \\ \Img{2em}

\end{tabular}

&

\begin{tabular}{@{}c@{}}

\rotatebox{90}{This extraneous

text is provided by a rotated box.}

\end{tabular}

\end{tabular}

\end{center}

\caption{Using nested

\texttt{tabular}s for layout.}

\label{fig:tabular}

\end{figure*}

Figure 6: LATEX to produce Figure 5.

43

Approximations
π 3·14159254. . .
e 2·71828. . .
eπ 23·14069263. . .

T
h
is

ex
tr

an
eo

u
s

te
x
t

is
p
ro

v
id

ed
b
y

a
ro

ta
te

d
b
ox

.

Figure 5: Using nested tabulars for layout.

column alignments, like l, c, r, doesn’t really
matter, since each cell will completely fill its
column width.)

This strategy is summarized in Les’s LATEX
Proverb:

Usually, the solution to problems
with tabulars is: more tabulars.

8. One way of getting a column of numbers
aligned on their decimal points is to use a
column specifier like r@{\cdot}l: the
integer parts end up right justified in one
column, the decimal fractions left-justified in
the next, and the usual inter-column space is
replaced by the decimal point. See Figure 5.
There are, of course, other ways. . .

9. Knuth decreed that the origin for a TEX page
be 1 inch down and 1 inch in from the top
left corner of the page. (This was to fit with
the common American practice of 1 inch
margins all around.) This offset can cause
some confusion. Setting the length
\topmargin to 0pt gives you a 1 inch top
margin. To get a smaller top margin, you
have to make \topmargin a suitable negative
length. Similarly for \oddsidemargin and

\evensidemargin. There are some packages
to simplify the setting of margins and other
page-layout parameters.

10. TEX measures the page from the top left
(with the 1 inch offsets). PostScript’s
coordinate system is from the bottom left
corner. So to convert properly from DVI to
PostScript, a program like dvips needs to
know the actual height of the page. (Think
about it in terms of the coordinate
transformation.) In many (not all)
installations, the default setup for dvips is
for U.S. Letter size paper. If you print the
resulting PostScript output on A4 paper, it
will be wrongly offset on the page. The way
to fix this is to set the paper size explicitly
using the -t a4 option to dvips, or in your
own .dvipsrc configuration file. (Read the
dvips man pages.)

11. Postscript printing in landscape format will
require a -t landscape special option to
dvips.

12. The packages picinpar, floatfig, and
wrapfig provide different ways of getting

44

figures which the text “wraps” around.
Again, see [4].

13. The url package provides some commands to
facilitate typesetting of URLs, similar long
file pathnames, and email addresses. See [3].
More simply, the TEX command \slash

produces a slash after which TEX can put a
line break if it needs to. Useful for constructs
like “and/or”. The \linebreak[0] construct
can also come in handy in similar situations,
to give LATEX a hint as to where it might
break something that’s too long to fit on a
line.

14. Standard LATEX provides for only one-column
or two-column printing. The multicol

package permits more flexible and more
general multi-column printing (though this
should not be taken to extremes). See [4].

15. Occasionally, the associated files, like .aux

can get messed up, creating mysterious errors
on the next run. One way in which this can
happen is when you’re switching between
latex and pdflatex. Even though they’re
both LATEX, the two versions write slightly
different information to the .aux files, which
can confuse the other. The solution to this is
just to remove the .aux files and start afresh.

16. Anything after \end{document} in the source
file is ignored. It can provide a useful place
for parking stuff that you don’t want to be
processed, but want to keep around for
possible future use.

17. That environment arguments can be used
only in the first “front” part of an
environment is a consequence of how
environments are implemented. It ends up
being more a minor annoyance than a real
defect. If you need variable content in the
second “tail” part, you can always store it
somehow in the first part (perhaps in a
named box), then retrieve in the second part.

18. Plug for xdvi and gv: Both xdvi and gv are
set up to work well in development. When
their window is exposed/deiconified, they
check whether the file they’re viewing has
been updated, and if so, reload it, as far as

possible at the same position in the file. This
means that when you’re developing a
document, you surely don’t start up a new
xdvi or gv for each edit cycle (which would
typically load afresh at page one); instead,
you keep the same xdvi or gv process
running, and let it reload and redisplay after
each latex run the part of the document
you’re currently working on. This isn’t
WYSIWYG, but can give you reasonably
tight feedback.

Note that xdvi can display embedded
PostScript (EPS) figures in a DVI file. It
does this by calling gs as what in current
parlance would be called a “plug-in”.

17.14 What’s missing?

• Probably quite a lot. . .

• . . . but less than there used to be.

17.15 Learning and getting more

• The file sample2e.tex in the standard LATEX
distribution illustrates many features of
LATEX.

• If you don’t want to spend money on books,
the “Not So Short Introduction to
LATEX2ε” [8] and the “TEX FAQ” [3] on the
TEXLive CD [10] are very good starting
points. This document (or future versions)
should be available via
http://www.cs.mu.oz.au/~ljk/latex.html.

• There is also another LATEX introduction
accessible via the MU-CSA website. (I don’t
have the URL handy.)

• The LATEX “Bible” is Leslie Lamport’s LATEX:

A Document Preparation System[7].

It covers “standard” LATEX and is probably
an indispensable reference for regular LATEX
users.

• The TEXlive CD [10] and CTAN [1]
(Comprehensive TEX Archive Network) are
sources for a vast quantity of LATEX
distributions, packages, and associated
software and documentation.

45

http://www.cs.mu.oz.au/~ljk/latex.html

• The LATEX Companion [4] is a very helpful
reference for those who want to do more
sophisticated things with LATEX.

It describes many of the additional packages
that extend the powers of LATEX, and shows
how to modify LATEX internals, for example
how to change the formatting of section
headings.

• Reference [6] treats more advanced graphics,
including such things as typesetting musical
scores and chemical structural formulas.

• Reference [5] shows how to put LATEX
documents on the Web.

17.16 TEX’s limitations

• TEX was originally developed nearly 30 years
ago. That it’s held up so well is a tribute to
Donald Knuth’s conception.

• However, TEX and thus LATEX do have some
intrinsic limitations.

• For example, because of the way they’re
internally encoded, TEX can use at most 256
different counter variables, and at most 256
different dimension variables. Very few
documents, even the size of books, bump into
these limits. But very complicated documents
that use many packages, [4] is an example,
can run into trouble, and require special
techniques.

• Similarly, TEX was set up to use 8-bit
characters (leading edge at the time, when
many computers still used 6-bit characters).
Handling bigger character sets, like Unicode,
requires special versions of TEX.

17.17 TEXmacs and Lilypond

• TEXmacs provides similar functionality to
LATEX through a scriptable WYSIWYG
interface modelled on emacs.

• TEXmacs is different from LATEX: it has its
own representation that overcomes the
historical limitations inherited from TEX.

• However, it corresponds closely with LATEX in
that any TEXmacs document can be
exported as LATEX, and any reasonable LATEX
document can be imported into TEXmacs

with only little work (mainly to provide
TEXmacs definitions of non-standard
commands).

• TEXmacs also uses TEX’s font machinery to
produce high-quality typesetting, particularly
of mathematics.

• TEXmacs can also be run in batch mode, and
has an open external plain-text
representation,25 and so has much the same
advantages as LATEX in this regard.

• A nifty feature of TEXmacs is the ability to
run an interactive terminal session inside a
document. This is particularly useful for
interacting with a symbolic algebra system,
like maxima, with the results of the session
incorporated into the document.

• The GNU musical typesetting engine,
Lilypond, is a front-end for LATEX.

• It’s worth mentioning that both TEXmacs

and Lilypond use Scheme (Guile) as their
internal scripting language.

References

[1] Comprehensive TEX archive network. Central
website is http://www.ctan.org; Australian
mirror is
http://mirror.aarnet.edu.au/pub/CTAN/.

[2] Salvador Dali. The Unspeakable Confessions

of Salvador Dali, as told to André Parinaud.
W.H. Allen, London, 1976. Translated from
the French by Harold J. Salemson.

[3] The UK TEX FAQ: Your 244 Questions

Answered, 2002. In file
FAQ/english/newfaq.pdf on [10].

25TEXmacs actually has three different text representa-
tions: TEXmacs’s own representation, which is like XML
but much more compact; full XML; and as Scheme list data,
which is very convenient for processing TEXmacs documents
in Scheme.

46

http://www.ctan.org
http://mirror.aarnet.edu.au/pub/CTAN/

[4] Michel Goossens, Frank Mittelbach, and
Alexander Samarin. The LATEX Companion.
Addison-Wesley, Boston, 1993.

[5] Michel Goossens and Sebastian Rahtz. The

LATEX Web Companion: Integrating TEX,

HTML and XML. Addison-Wesley, Reading,
Massachusetts, 1999.

[6] Michel Goossens, Sebastian Rahtz, and Frank
Mittelbach. The LATEX Graphics Companion:

Illustrating Documents with TEX and

PostScript. Addison-Wesley, Boston, 1997.

[7] Leslie Lamport. LATEX: A Document

Preparation System. Addison-Wesley,
Reading, Massachusetts, 2nd edition, 1994.
The LATEX “Bible”.

[8] Tobias Oetiker, Hubert Partl, Irene Hyna,
and Elisabeth Schegl. The Not So Short

Introduction to LATEX2ε: Or LATEX2ε in 95

Minutes, 2001. Version 3.20, in file texmf/

doc/guides/lshort-english/lshort.pdf

on [10].

[9] Sebastian Rahtz. The TEX Live Guide, 7th
edition, 2002. In directory
texmf/doc/tldoc/english/File on [10] in
PDF and HTML.

[10] TEXLive CD. Available from various sources.

A Behind The Scenes: How
It’s Done

A.1 Listing of ljk-latex.bib

@string{aw = "Addison-Wesley"}

@book{latex-adps,

title = {\LaTeX: A Document Preparation

System},

author = {Leslie Lamport},

publisher = aw,

address = {Reading, Massachusetts},

year = 1994,

edition = {2nd},

note = {The {\LaTeX} ‘‘Bible’’},

isbn = {0-201-52983-1}

}

@book{latex-comp,

title = {The {\LaTeX} Companion},

author = {Michel Goossens

and Frank Mittelbach

and Alexander Samarin},

publisher = aw,

address = "Boston",

year = 1993,

isbn = {0-201-54199-8}

}

@book{latex-gracomp,

title = {The {\LaTeX} Graphics Companion:

Illustrating Documents with

{\TeX} and PostScript},

author = {Michel Goossens

and Sebastian Rahtz

and Frank Mittelbach},

publisher = aw,

address = "Boston",

year = 1997,

isbn = {0-201-85469-4}

}

@book{latex-webcomp,

title = {The {\LaTeX} Web Companion:

Integrating {\TeX}, HTML and XML},

author = {Michel Goossens

and Sebastian Rahtz},

publisher = aw,

address = {Reading, Massachusetts},

year = 1999,

isbn = {0-201-43311-7}

}

@manual{UKtexfaq,

title = {The UK {\TeX} FAQ:

Your 244~Questions Answered},

editor = {Robin Fairbairns},

key = {Fairbairns, Robin},

year = 2002, mon = may,

note = {In file

\path{FAQ/english/newfaq.pdf}

on~\cite{texliveCD}}

}

@manual{lshort,

title = {The Not So Short Introduction

to {\LaTeXe}:

Or {\LaTeXe} in 95 Minutes},

author = {Tobias Oetiker and Hubert Partl

and Irene Hyna and Elisabeth Schegl},

year = 2001, mon = aug,

note = {Version~3.20, in file

\path{texmf/doc/guides/lshort-english/lshort.pdf}

on~\cite{texliveCD}}

}

@manual{texlive-guide,

title = {The {\TeX} Live Guide},

edition = {7th},

author = {Sebastian Rahtz},

year = 2002, mon = may,

note = {In directory

\path{texmf/doc/tldoc/english/File}

47

on~\cite{texliveCD} in PDF and HTML}

}

@misc{texliveCD,

title = {{\TeX}{L}ive {CD}},

key = {TeX Live CD},

note = {Available from various sources.}

}

@book{dali,

title = {The Unspeakable Confessions of

{Salvador} {Dali}, as told to

{Andr\’{e}} {Parinaud}},

author = {Salvador Dali},

publisher = {W.H. Allen},

address = {London},

year = 1976,

note = {Translated from the French

by Harold J.~Salemson.},

isbn = {0-491-01955-6}

}

@misc{CTAN,

title = {Comprehensive {\TeX}

Archive Network},

key = {CTAN},

note = {Central website is

\url{http://www.ctan.org};

Australian mirror is

\url{http://mirror.aarnet.edu.au/pub/CTAN/}}

}

$Id: latex_cs.tex,v 1.22 2006/04/23 15:46:30 ljk Exp $

48

	What is LaTeX?
	A simple example
	Well, what is it?
	History
	TeX and LaTeX
	What's good about LaTeX?
	What's ``bad'' about LaTeX?
	Summing up

	Philosophy
	What I can achieve here
	Levels at which you can use LaTeX
	Learning to use LaTeX

	Basic LaTeX
	Processing
	Associated files and re-running
	Characters to pages
	Input conventions
	Combinations
	Commands
	Environments
	After-sentence space
	Accents and symbols
	Declarations, grouping, and scope
	Appearance of type
	Text justification
	Line and page breaks
	Displays
	Lists
	Overall source document structure
	Document class
	Packages
	Front stuff
	Document sectioning
	Layout of a LaTeX source file

	Breaking Up Your Document 1
	92input

	Roll-Your-Own
	Commands
	Environments
	``Theorems''

	Customization
	Customization

	Cross References
	Labels and references
	Mechanics of cross references

	Footnotes
	Footnotes

	Floats: Tables and Figures
	Floats

	Tabulars and Tables
	Tabulars and tables

	Mathematics
	Math mode
	Subscripts and superscripts
	A menagerie of symbols and operators
	``Large'' delimiters
	Arrays
	Equations

	Boxes, Lengths, Space, Counters
	Caveat
	Lengths
	Boxes
	Space and rules
	Counters

	Graphics: Images and Diagrams
	The picture environment
	Graphics operators
	Including graphics

	Breaking Up Your Document 2:
	92include

	Bibliography
	DIY: thebibliography
	Using BibTeX
	Running bibtex

	Collaborative Document Development
	Version control---CVS
	Build tools---make
	Automatic generation of LaTeX

	Miscellaneous Topics
	Index and glossary
	Verbatim text
	Multilingual LaTeX
	LaTeX and the Web
	PostScript fonts
	Page style and headings
	Color
	Hyphenation
	Fragile versus robust commands
	Some additional useful free programs
	LaTeX debugging
	More advanced programming features
	Tips'n'tricks
	What's missing?
	Learning and getting more
	TeX's limitations
	TeXmacs and Lilypond

	Behind The Scenes: How It's Done
	Listing of ljk-latex.bib

