
1

Lazy and Speculative Execution

Butler Lampson
Microsoft Research

OPODIS, Bordeaux, France
12 December 2006

12 December 2006 Lampson: Lazy and Speculative Execution 2

Why This Talk?

A way to think about system design
Could I do this lazily/speculatively?
When would it pay?

Steps toward a sound theory of laziness or
speculation

I am not presenting such a theory

12 December 2006 Lampson: Lazy and Speculative Execution 3

Lazy Evaluation

Well studied in programming languages
Though not much used
Lazy vs. eager/strict
Examples:
▬ Algol 60 call by name
▬ Lazy is the default in Haskell
▬ By hand: wrap the lazy part in a lambda

Affects semantics
▬ Side effects—usually not allowed
▬ Free variables, e.g. in call by name
▬ Termination even in purely functional languages

12 December 2006 Lampson: Lazy and Speculative Execution 4

Lazy Execution in Systems

Widely used in systems
Though not much studied

The main idea: defer work that may not be needed
Pays in saved work (and perhaps in latency)
Pays in more concurrency
▬ Only if you have extra resources

Deferred work: a closure, or a program you write
A few examples

Carry-save adder: use two numbers to represent one
Write buffer: defer writes from processor to memory
Redo logging: use log only after a crash

12 December 2006 Lampson: Lazy and Speculative Execution 5

Speculative Execution in Systems

Widely used in processors, and less widely in
other systems
The main idea: Do work that may not be needed

Pays in more concurrency
▬ Only if you have extra resources

A few examples
Prefetching in memory and file systems
Branch prediction
Optimistic concurrency control in databases

12 December 2006 Lampson: Lazy and Speculative Execution 6

How? Reordering

A special case of concurrency
Usual constraint: Don’t change the semantics

There are some exceptions
Issues

Correctness : Do reordered parts commute
Performance : Scheduling
Representation of reordered work

12 December 2006 Lampson: Lazy and Speculative Execution 7

Reordering and Conditionals

Lazy
t:=L; !A; !B(t) ⇒ !A; !B(L) latency only
t:=L; !A; x → !B(t) ⇒ !A;x → !B(L) less work if ~x
t:=L; !A; x → !B(t) ⇒ t:=L1;!A;x → !B(L2(t)) more general

Speculative
!A; x → !B(S)⇒ t:=S; !A;x → !B(t)
!A; x → !B(S)⇒ t:=S1; !A;x → !B(S2(t)) more general

You bet on the outcome of the conditional
! marks actions that have output/side effects

12 December 2006 Lampson: Lazy and Speculative Execution 8

Winning the Bet

Lazy: You might need it but you don’t,
because a later if decides not to use it: x is false

t:=L; !A; x → !B(t) ⇒ !A; x → !B(L) x false

Speculative: You might not need it but you do,
because a later if decides to use it : x is true

!A; x → !B(S) ⇒ t:=S; !A; x → !B(t) x true

12 December 2006 Lampson: Lazy and Speculative Execution 9

Correctness: Actions Must Commute

L; A = A; L or A; S = S; A
A special case of A; B = A || B

Ensured if
L/S is purely functional
L/S has no side effects and reads nothing A writes
Transactions
▬ Detect conflict, abort, and retry in the proper order
▬ Often used for speculation, just aborting S

12 December 2006 Lampson: Lazy and Speculative Execution 10

Performance and Scheduling

Two factors
Bet on the outcome of the conditional
More concurrency (pays if you have extra resources)

Bandwidth (total cost of doing work)
Less work to do if you win the lazy bet
More concurrency when lazy, or if you win the
speculative bet
▬ Good if you have idle resources, which is increasingly likely

Latency
Faster results from A when lazy: L; !A ⇒ !A; L
Faster results from S with concurrency: A; S ⇒ S || A

12 December 2006 Lampson: Lazy and Speculative Execution 11

Lazy: Redo Logging

For fault-tolerant persistent state
Persistent state plus log represents current state
Only use the log after a failure

ps = persistent state, l = log, s = state
s = ps; l
To apply an update u: l := l; u writing a redo program
To install an update u: ps := ps; u
Need s' = s, so ps; u; l = ps; l
u; l = l is sufficient

The bet: No crash. An easy win
Rep: state = persistent state + log

12 December 2006 Lampson: Lazy and Speculative Execution 12

Lazy: Write Buffers

In memory and file systems
Be lazy about updating the main store
▬ Writeback caching is a variation

The bet: Data is overwritten before it’s flushed
Also win from reduced latency of store
Also win from load balancing of store bandwidth
Rep: State = main store + write buffer

Same idea as redo logging, but simpler

12 December 2006 Lampson: Lazy and Speculative Execution 13

Lazy: Copy-on-Write (CoW)

Keep multiple versions of a slowly changing state
Be lazy about allocating space for a new version
▬ Do it only when there’s new data in either version
▬ Otherwise, share the old data

Usually in a database or file system
The bet: Data won’t be overwritten.

Usually an easy win.
Big win in latency when making a new version
Big win in bandwidth if versions differ little
Rep: Data shared among versions (need GC)

12 December 2006 Lampson: Lazy and Speculative Execution 14

Lazy: Futures / Out of Order

Launch a computation, consume the result lazily
Futures in programming languages—program controls
Out of order execution in CPUs—hardware infers
▬ IN VLIW program controls

Dataflow is another form—either way
The bet: Result isn’t needed right away

Win in latency of other work
Win in more concurrency

12 December 2006 Lampson: Lazy and Speculative Execution 15

Lazy: Stream Processing

In database queries, Unix pipes, etc.,
Apply functions to unbounded sequences of data
▬ f must be pointwise: f (seq) = g(seq.head) ⊕ f (seq.tail)
Rearrange the computation to apply several functions
to each data item in turn
▬ If f and g are pointwise, so is f ◦ g
Sometimes fails, as in piping to sort

The bet: don’t need the whole stream
Always a big win in latency

In fact, it can handle infinite structures

12 December 2006 Lampson: Lazy and Speculative Execution 16

Lazy: Eventual Consistency

Weaken the spec for updates to a store
Give up sequential consistency / serializability
Instead, can see any subset of the updates
▬ Requires updates to commute
sync operation to make all updates visible

Motivation
Multi-master replication, as in DNS
Better performance for multiple caches
▬ “Relaxed memory models”

The bet: Don’t need sync
A big win in latency

Rep: State = set of updates, not sequence

12 December 2006 Lampson: Lazy and Speculative Execution 17

Lazy: Expose events

Only compute what you need to display
Figure out what parts of each window are visible
Set clipping regions accordingly

The bet: Regions will never be exposed
A win in latency: things you can see now appear faster
Saves work: things not visible are never rendered

12 December 2006 Lampson: Lazy and Speculative Execution 18

Lazy: “Formatting operators”

In text editors, how to make text “italic”
Attach a function that computes formatting. Examples:
▬ Set “italic”
▬ Next larger font size
▬ Indent 12 points

Only evaluate it when the text needs to be displayed.
The bet: text will never be displayed

A win in latency: things you can see now appear faster
Saves work: things not visible are never rendered

Used in Microsoft Word

12 December 2006 Lampson: Lazy and Speculative Execution 19

Lazy: Carry-save adders

Don’t propagate carries until need a clean result
Represent x as x1 + x2
For add or subtract, x + y = x1 + x2 + y = r1 + r2
▬ r1i := x1i ⊕ x2i ⊕ yi ; r2i+1 := maj(x1i, x2i, yi)

The bet: Another add before a test or multiply

12 December 2006 Lampson: Lazy and Speculative Execution 20

Lazy:“Infinity” and “Not a Number”

Results of floating point operations
Instead of raising a precise exception

Changes the spec
No bet, but a big gain in latency

12 December 2006 Lampson: Lazy and Speculative Execution 21

Speculative: Optimistic Concurrency Control

In databases and transactional memory
The bet: Cconcurrent transactions don’t conflict
The idea:

Run concurrent transactions without locks
Atomically with commit, check for conflicts with
committed transactions
▬ In some versions, conflict with any transaction because

writes go to a shared store
If conflict, abort and retry

Problem: running out of resources

12 December 2006 Lampson: Lazy and Speculative Execution 22

Speculative: Prefetching

In memory, file systems, databases
The bet: Prefetched data is used often enough

to pay for the cost in bandwidth
Obviously the cost depends on what other uses there
are for the bandwidth

Scheduling
Figure out what to prefetch
▬ Take instructions from the program
▬ Predict from history (like branch prediction)

Assign priority

12 December 2006 Lampson: Lazy and Speculative Execution 23

Speculative: Branch Prediction

The bet: Branch will go as predicted
A big win in latency of later operations
Little cost, since otherwise you have to wait

Needs undo if speculation fails
x → !S ⇒ !S; ~x → undo !S

Scheduling: Predict from history
Sometimes get hints from programmer

12 December 2006 Lampson: Lazy and Speculative Execution 24

Speculative: Data Speculation

Generalize from branch prediction: predict data
Seems implausible in general—predict 0?
Works well to predict that cached data is still valid
▬ Even though it might be updated by a concurrent process

The bet: Data will turn out as predicted
An easy win for coherent caches

Works for distributed file systems too
Variation: speculate that sync will succeed
▬ Block output that depends on success

12 December 2006 Lampson: Lazy and Speculative Execution 25

Speculative: Exponential backoff

Schedule a resource without central control
Ethernet
WiFi (descended from Aloha packet radio, 1969)
Spin locks

The idea
Try to access resource
Detect collision, wait randomly and retry
Back off exponentially, adapting to load

The bet: No collision
Good performance needs collision < hold time

12 December 2006 Lampson: Lazy and Speculative Execution 26

Speculative: Caching

Keep some data
in the hope that you will use it again,
or you will use other data near it

The bet: Data is reused
Typically cost is fairly small

But people depend on winning
because cost of miss is 100x – 1000x

Bet yields a big win in latency and bandwith
>100x in latency today
Save expensive memory/disk bandwidth

12 December 2006 Lampson: Lazy and Speculative Execution 27

Conclusion

A way to think about system design
Could I do this lazily/speculatively?
When would it pay?

Steps toward a sound theory of laziness or
speculation

I am not presenting such a theory
Lazy: defer work that may not be needed

Pays in saved work (and perhaps in latency)
Pays in more concurrency (if you have extra resources)

Speculative: Do work that may not be needed
Pays in more concurrency (if you have extra resources)

