
Learned Monotone Minimal Perfect Hashing
Paolo Ferragina #

University of Pisa, Italy

Hans-Peter Lehmann #

Karlsruhe Institute of Technology, Germany

Peter Sanders #

Karlsruhe Institute of Technology, Germany

Giorgio Vinciguerra #

University of Pisa, Italy

Abstract
A Monotone Minimal Perfect Hash Function (MMPHF) constructed on a set S of keys is a function
that maps each key in S to its rank. On keys not in S, the function returns an arbitrary value.
Applications range from databases, search engines, data encryption, to pattern-matching algorithms.

In this paper, we describe LeMonHash, a new technique for constructing MMPHFs for integers.
The core idea of LeMonHash is surprisingly simple and effective: we learn a monotone mapping
from keys to their rank via an error-bounded piecewise linear model (the PGM-index), and then we
solve the collisions that might arise among keys mapping to the same rank estimate by associating
small integers with them in a retrieval data structure (BuRR). On synthetic random datasets,
LeMonHash needs 34% less space than the next larger competitor, while achieving about 16 times
faster queries. On real-world datasets, the space usage is very close to or much better than the
best competitors, while achieving up to 19 times faster queries than the next larger competitor. As
far as the construction of LeMonHash is concerned, we get an improvement by a factor of up to 2,
compared to the competitor with the next best space usage.

We also investigate the case of keys being variable-length strings, introducing the so-called
LeMonHash-VL: it needs space within 13% of the best competitors while achieving up to 3 times
faster queries than the next larger competitor.

2012 ACM Subject Classification Theory of computation → Data compression; Information systems
→ Point lookups

Keywords and phrases compressed data structure, monotone minimal perfect hashing, retrieval

Related Version An extended abstract of this paper appears in the Proceedings of the 31st Annual
European Symposium on Algorithms (ESA 2023): https://doi.org/10.4230/LIPIcs.ESA.2023.46

Supplementary Material Software (Source Code): https://github.com/ByteHamster/LeMonHash

Funding This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No. 882500).
PF and GV have been supported by the European Union – Horizon 2020 Program under the scheme
“INFRAIA-01-2018-2019 – Integrating Activities for Advanced Communities”, Grant Agreement n.
871042, “SoBigData++: European Integrated Infrastructure for Social Mining and Big Data Analyt-
ics” (http://www.sobigdata.eu), by the NextGenerationEU – National Recovery and Resilience Plan
(Piano Nazionale di Ripresa e Resilienza, PNRR) – Project: “SoBigData.it – Strengthening the Italian
RI for Social Mining and Big Data Analytics” – Prot. IR0000013 – Avviso n. 3264 del 28/12/2021, by
the spoke “FutureHPC & BigData” of the ICSC – Centro Nazionale di Ricerca in High-Performance
Computing, Big Data and Quantum Computing funded by European Union – NextGenerationEU –
PNRR, by the Italian Ministry of University and Research “Progetti di Rilevante Interesse Nazionale”
project: “Multicriteria data structures and algorithms” (grant n. 2017WR7SHH).

Acknowledgements We thank Stefan Walzer for early discussions leading to this paper.

ar
X

iv
:2

30
4.

11
01

2v
3

 [
cs

.D
S]

 3
0

A
ug

 2
02

3

mailto:paolo.ferragina@unipi.it
https://orcid.org/0000-0003-1353-360X
mailto:hans-peter.lehmann@kit.edu
https://orcid.org/0000-0002-0474-1805
mailto:sanders@kit.edu
https://orcid.org/0000-0003-3330-9349
mailto:giorgio.vinciguerra@unipi.it
https://orcid.org/0000-0003-0328-7791
https://doi.org/10.4230/LIPIcs.ESA.2023.46
https://github.com/ByteHamster/LeMonHash

2 Learned Monotone Minimal Perfect Hashing

1 Introduction

Given a set S of n keys drawn from a universe [u] = {0, . . . , u − 1}, a Monotone Minimal
Perfect Hash Function (MMPHF) is a hash function that maps keys from S to their rank,
and returns an arbitrary value for keys not in S. As the name suggests, such a function
is both perfect because it has no collisions on S, and minimal because its output range is
[n]. Differently from a Minimal Perfect Hash Function (MPHF) [4,13,18,27,41,43,45,51],
which maps keys from S bijectively to [n] in any order, and from an Order-Preserving MPHF
(OPMPHF) [26], which retains a given (arbitrary) order on the keys, an MMPHF takes
advantage of the natural order of the universe to rank the keys in S in small space, i.e. without
encoding them. Indeed, encoding S needs log

(
u
n

)
/n = Ω(log u

n) bits per key, and encoding
the ranks via an OPMPHF needs log(n!)/n = Ω(log n) bits per key, whilst an MMPHF may
use as few as O(log log log u) bits per key [2], which was recently proven to be optimal [1].
Throughout this paper, log x stands for log2 x, and we use the w-bit word RAM model.

MMPHFs have numerous applications [1]. They enable efficient queries both in encrypted
data [12] and databases [40, 42]. Further applications can be found in information retrieval,
where MMPHFs can be used to index the lexicon [55] or to compute term frequencies [7, 47],
and in pattern matching [5, 28,33], where MMPHFs are applied mostly to integer sequences
representing the occurrences of certain characters in a text.

Despite the widespread use of MMPHFs and recent advancements on their asymptotic
bounds [1], the practical implementations have not made significant progress in terms of
new designs and improved space-time performance since their introduction more than a
decade ago [3], with only some exceptions targeting query time [34]. As a matter of fact, the
solutions in [3] are very sophisticated and well-optimised, and they offer a vast number of
efficient space-time trade-offs that were hard to beat.

In this paper, we offer a fresh new perspective on MMPHFs that departs from existing
approaches, which are mostly based on a trie-like data structure on the keys. We build upon
recent advances in (learning-based) indexing data structures, namely the PGM-index [21,25],
and in retrieval data structures (or static functions), namely BuRR [15]. The former learns a
piecewise linear approximation mapping keys in S to their rank estimate. The latter allows
associating a small fixed-width integer to each key in S, without storing S. We combine these
two seemingly unrelated data structures in a surprisingly simple and effective way. First, we
use the PGM to monotonically map keys to buckets according to their rank estimate, and we
store the global rank of each bucket’s first key in a compressed data structure. Second, since
the rank estimate of some keys might coincide, we solve such bucket collisions by storing the
local ranks of these keys using BuRR. We call our proposal LeMonHash, because it learns and
leverages the smoothness of the input data to build a space-time efficient monotone MPHF.
On the theoretical side, this achieves O(1) bits per key for inputs which are sufficiently
random within buckets — breaking the superlinear lower bound. Practically, on various
integer datasets tried, it needs about one-third less space than previous approaches and is an
order of magnitude faster. We also extend LeMonHash to support variable-length string keys.
This approach needs space within 13% of the best competitors while being up to 3× faster.

Outline. We first describe the basic building blocks of LeMonHash in Section 2 and discuss
related work in Section 3. In Section 4, we describe LeMonHash for integers and then extend
it to variable-length strings in Section 5. In Section 6, we discuss variants and refinements,
before proving the space-time guarantees of LeMonHash in Section 7. In Section 8, we present
our experiments. In Section 9, we summarise the paper and give an outlook for future work.

P. Ferragina, H.-P. Lehmann, P. Sanders, G. Vinciguerra 3

2 Preliminaries

In this section, we describe the basic building blocks of LeMonHash.

Bit Vectors. Given a bit vector of size n and b ∈ {0, 1}, the rankb(x) operation returns the
number of b-bits before position x, and the selectb(i) operation returns the position of the ith
b-bit. These operations can be executed in constant time using as little as o(n) bits on top
of the bit vector [14, 35], and they have very space-time efficient implementations [31, 39, 53].

Elias-Fano. Elias-Fano Coding [17,19] is a way to efficiently store a non-decreasing sequence
of n integers over a universe of size u. An integer at position i is split into two parts. The
log n upper bits x are stored in a bit vector H as a 1-bit in H[i + x]. The remaining lower
bits are directly stored in an array L. Integers can be accessed in constant time by finding
the ith 1-bit in H using a select1 data structure and by looking up the lower bits in L.
Predecessor queries are possible by determining the range of integers that share the same
upper bits of the query key using two select0 queries, and then performing a binary search
on that range. If there are no duplicates, this binary search takes O

(
min{log n, log u

n }
)

time.
The space usage of an Elias-Fano coded sequence is n⌈log u

n ⌉ + 2n + o(n) bits (see [48, §4.4]).
Partitioned Elias-Fano [50] is an extension that uses dynamic programming to partition the
input into multiple independent Elias-Fano sequences to minimise the overall space usage.

PGM-index. The PGM-index [25] is a space-efficient data structure for predecessor and
rank queries on a sorted set of n keys from an integer universe [u]. Given a query q ∈ [u],
it computes a rank estimate that is guaranteed to be close to the correct rank by a given
integer parameter ε. If one stores the input keys, then the correct rank can be recovered
via an O(log ε)-time binary search on 2ε + 1 keys around the rank estimate. The PGM
is constructed in O(n) time by first mapping the sorted integers x1, . . . , xn in S to points
(x1, 1), . . . , (xn, n) in a key-position Cartesian plane, and then learning a piecewise linear
ε-approximation of these points, i.e. a sequence of m linear models each approximating the
rank of the keys in a certain sub-range of [u] with a maximum absolute error ε. The value m,
which impacts on the space of the PGM, can range between 1 and m ≤ n/(2ε) [25, Lemma 2]
depending on the “approximate linearity” of the points. In practice, it is very low and can
be proven to be m = O

(
n/ε2)

when the gaps between keys are random variables from a
proper distribution [21]. The time complexity to compute the rank estimate with a PGM
is given by the time to search for the linear model that contains the searched key q, which
boils down to a predecessor search on m integers from a universe of size u. For this, there
exist many trade-offs in various models of computations [25,49].

Retrieval Data Structures. A retrieval data structure or static function on a set S of n keys
denotes a function f : S → {0, 1}r that returns a specific r-bit value for each key. Applying
the function on a key not in S returns an arbitrary value. Retrieval data structures take
(1 + η)rn bits, where η ≥ 0 is the space overhead over the space lower bound of rn bits.

MWHC [44] is a retrieval data structure based on hypergraph peeling, has an overhead
η = 0.23 and can be evaluated in constant time. 2-step MWHC [3] can have a smaller
overhead than MWHC by using two MWHC functions of different widths.

The more recently proposed Bumped Ribbon Retrieval (BuRR) data structure [15] basically
consists of a matrix. The output value for a key can be obtained by multiplying the hash
of the key with that matrix. The matrix can be calculated by solving a linear equation

4 Learned Monotone Minimal Perfect Hashing

system. Because BuRR uses hash functions with spacial coupling [54], the equation system
is almost a diagonal matrix, which makes it very efficient to solve. When some rows of
the equation system would prevent successful solving, BuRR bumps these rows (and the
corresponding keys) to the next layer of the same data structure. BuRR has an overhead
η = O

(
log W/(rW 2)

)
and can be evaluated in O(1 + rW/ log n) time, where W = O(log n)

is a parameter called ribbon width. In practice, BuRR achieves space overheads well below
η = 1% while being faster than widely used data structures with much larger overhead [15].

3 Related Work

Non-monotone perfect hash functions are a related and very active area of research [4, 8, 13,
18,27, 41,43,45, 51]. Due to space constraints, we do not review them in detail. For a more
detailed list, refer to Ref. [41]. We also do not describe order-preserving minimal perfect
hash functions [26] because their theoretical lower bound can trivially be reached by using a
retrieval data structure taking log n bits per key (plus a small overhead). Another loosely
related result is using learned models as a replacement for hash functions in traditional hash
tables [38,52], but it generally has a negative impact on the probe/insert throughput (and
most likely on the space too, due to the storage of the models’ parameters, which these
studies do not evaluate). We now look at monotone minimal perfect hash functions, first
describing the idea of bucketing before then continuing with specific MMPHF constructions.

Bucketing. Bucketing [3] is a general technique to break down MMPHF construction into
smaller sub-problems. The idea is to store a simple monotone, but not necessarily minimal or
perfect distributor function that maps input keys to buckets. Each bucket receives a smaller
number of keys that can then be handled using some (smaller) MMPHF data structure.
To determine the global rank of a key, we need the prefix sum of the bucket sizes. For
equally-sized buckets, this is trivial. Otherwise, this sequence can be stored with Elias-Fano
coding. In the paper by Belazzougui et al. [3], where many of the following techniques are
described, the authors use MWHC [44] to explicitly store the ranks within each bucket.
LeMonHash uses a learned distributor and buckets of expected size 1 (see Section 4).

Longest Common Prefix. Bucketing with Longest Common Prefixes (LCP) [2] maps keys
to equally sized buckets. A first retrieval data structure maps all keys to the length of the
LCP among all keys in its bucket. A second one then maps the value of the LCP to the
bucket index. Overall, it uses O(log log u) bits per key and query time O((log u)/w), and in
practice it has been shown to be the fastest but the most space-inefficient MMPHF [3].

Partial Compacted Trie. First map the keys to equally sized buckets and consider the last
key of each bucket as a router indexed by a compacted trie, e.g., a binary tree where every
node contains a bit string denoting the common prefix of its descending keys. During queries,
the trie is traversed by comparing the bit string of the traversed nodes with the key to decide
whether to stop the search operation at some node (if the prefix does not match), or descend
into the left or right subtree based on the next bit of the key. A Partial Compacted Trie
(PaCo Trie) [3] compresses the compacted trie above by 30–50% by exploiting the fact that,
in an MMPHF, the trie needs to correctly rank only the keys from the input set. Therefore,
each node can store a shorter bit string just long enough to correctly route all input keys.

P. Ferragina, H.-P. Lehmann, P. Sanders, G. Vinciguerra 5

Hollow Trie. A Hollow Trie [3] only stores the position of the next bit to look at. Hollow
tries can be represented succinctly using balanced parentheses [46]. To use hollow tries for
bucketing, and thus allow the routing of not-indexed keys, we need a modification to the
data structure. The Hollow Trie Distributor [3] uses a retrieval data structure that maps the
compacted substrings of each key in each tree node to the behaviour of that key in the node
(stopping at the left or right of the node, or following the trie using the next bit of the key).
Overall, it uses O(log log log u) bits per key and query time O(log u).

ZFast Trie. To construct a ZFast Trie [2], we first generate a path-compacted trie. Then,
for prefixes of a specific length (2-fattest number) of all input keys, a dictionary stores the trie
node that represents that prefix. A query can then perform a binary search over the length
of the queried key. If there is no node in the dictionary for a given prefix, the search can
continue with the pivot as its upper bound. If there is a node, the lower bound of the search
can be set to the length of the longest common prefix of all keys represented by that node.
The ZFast trie uses O(log log log u) bits per key and query time O((log u)/w + log log u).

Path Decomposed Trie. In the previous paragraphs, we described binary tries with a rather
high height. However, those tries are inefficient to query because of the pointer chasing to
non-local memory areas. The main idea behind Path Decomposed Tries [20], which can be
used as an MMPHF [34], is to reduce the height of the tries. We first select one path all
the way from the root node to a leaf. This path is now contracted to a single node, which
becomes the root node in our new path decomposed trie. The remaining nodes in the original
trie form subtries branching from every node in that path. We take all of these subtries,
make them children of the root node, and annotate them by their branching character with
respect to the selected path. The subtries are then converted to path decomposed tries
recursively. In centroid path decomposition, the path to be contracted is always the one that
descends to the node with the most leaves in its subtree.

4 LeMonHash

We now introduce the main contribution of this paper — the MMPHF LeMonHash. The
core idea of LeMonHash is surprisingly simple. We take all the n input integers and map
them to n buckets using some monotone mapping function, that we will describe later. We
store an Elias-Fano coded sequence with the global ranks of the first key in each bucket using
2n + o(n) bits. Given a bucket of size b, we use a ⌈log b⌉-bit retrieval data structure (see
Section 2) to store the local ranks of all its keys. Note that we do not need to store local
ranks if the bucket has only 0 or 1 keys. For squeezing space, instead of storing one retrieval
data structure per bucket, we store a collection of retrieval data structures so that the ith
one stores the local ranks of all keys mapped to buckets whose size b is such that i = ⌈log b⌉.
An illustration of the overall data structure is given in Figure 1a.

Bucket Mapping Function. The space efficiency of LeMonHash is directly related to the
quality of the monotone mapping function. For uniform random integers, a linear mapping
from input keys to n buckets, i.e. a mapping from a key x to the bucket number ⌊xn/u⌋,
leads to an MMPHF with a space usage of just 2.915 bits per key (see Theorem 1). Intuitively,
such a linear mapping returns a rank estimate in [n] for a given key. However, for skewed
distributions, the rank estimate can be far away which can create large buckets whose local
ranks are expensive to store. For example, if the majority of the keys are such that x < u/n,

6 Learned Monotone Minimal Perfect Hashing

0 1 1 3 4 4 5 6 6 9 10 11

0 1 00 01 10

n input keys

n buckets

Retrieval

u

Mapper

Global ranks ∈ [n]

(a) LeMonHash. Keys are mapped to buckets.
Ranks within buckets are stored in (a collection
of) retrieval data structures.

0 3 7 20 23 23 25 35 35

First chunks of all n input keys

Few keys
with these
chunks,

store local
ranks

Next chunks Next chunks

3 11 11 20 23 29 29 35

2w

c buckets

Global ranks ∈ [n]

Mapper

(b) LeMonHash-VL. Global ranks in each level are
stored together. Buckets that are not handled re-
cursively use retrieval data structures like before.

Figure 1 Illustration of the LeMonHash and LeMonHash-VL data structures.

then the first bucket will be large enough to require Θ(log n) bits per key, i.e. our MMPHF
degenerates to a trivial OPMPHF. To tackle this problem, we implement the mapping
function with a PGM-index [25]. As we observed in Section 2, the PGM was originally
designed as a predecessor-search data structure. Here, we use the PGM as a rank estimator
that, for a given key, returns an ε-bounded estimate of its rank. To achieve this result
in LeMonHash, we do not store the list of indexed keys and simply use the PGM’s rank
estimate as the bucket index. The PGM internally adapts to the input data by learning the
smoothness in the distribution via a piecewise linear ε-approximation model, thus it can be
thought of as a “local” approximation of the linear mapping above. Real-world data sets can
often be approximated using piecewise linear models, as discussed in the literature [21] and
also demonstrated by the good space efficiency of our experiments (see Section 8). There
is a trade-off between the amount of space needed to represent the PGM and the quality
of the mapping, which depends on both the input data distribution and the given integer
parameter ε. In Section 8, we test both a version with a constant ε value and a version
that auto-tunes its value by constructing multiple PGMs and then selecting the optimal ε.
Finally, we observe that with the PGM mapper, unlike for the linear mapping and other non
error-bounded learning-based approaches [24, 37], the number of retrieval data structures we
need to keep is bounded by O(log ε) regardless of the input key distribution (see Theorem 2).

Queries. Given a key q, we obtain its bucket i using the mapping function. The global rank
of the (first key in the) bucket is the ith integer in the Elias-Fano coded sequence of global
ranks, which can be accessed in constant time, and the bucket size is computed by subtraction
from the next integer in that sequence. The bucket size b directly tells us which retrieval data
structure to query, i.e. the ⌈log b⌉th one. Evaluating the retrieval data structure with q gives
us its local rank in the bucket. Adding this to the global rank of the bucket gives us the rank
of q. As we show in Section 7, for uniform data, the linear bucket mapper gives constant time
queries, while for other inputs we use the PGM mapper and the query time is O(log log u).

Comparison to Known Solutions. Known MMPHFs in the literature typically divide
the keys into equal-size buckets and build a compact trie-based distributor. Unlike them,
LeMonHash learns the data linearities and leverages them to distribute keys to buckets close
to their rank. Whenever some keys collide into a bucket, LeMonHash handles these keys via
a (small) collection of succinct retrieval structures. In contrast to known solutions, whenever

P. Ferragina, H.-P. Lehmann, P. Sanders, G. Vinciguerra 7

a key is the only one mapped to its bucket, no information needs to be stored in (and no
query is issued on) a retrieval data structure. These features allow LeMonHash to possibly
achieve reduced space occupancy compared to classic MMPHFs, which are oblivious to data
linearities. Also, LeMonHash can reduce the query time by replacing the cache-inefficient
traversal of a trie with the PGM mapper, which in practice is fast to evaluate.

5 LeMonHash-VL

Of course, the idea of LeMonHash can be immediately applied to keys whose maximum
longest common prefix (LCP) is less than w bits. In this case, each string prefix and the
following bit (which are sufficient to distinguish every string from each other) fit into one
machine word and thus can be handled efficiently in time and in space by the PGM mapper.
For strings with longer LCPs, we introduce a tree data structure that we call LeMonHash-VL
(since it handles Variable-Length strings). The main idea is to simply compute the bucket
mapping on a length-w substring of each string, which we call a chunk. Buckets that receive
many keys using this procedure are then handled recursively. Details follow.

Overview. We start with a root node representing all the string keys in S and consider the
set of chunks extracted from each key starting from position |p| (which we store), where p is
the LCP among the keys in S. Given these c distinct chunks, we construct a PGM mapper
to distribute the keys to buckets in [c], and we store an Elias-Fano coded sequence with the
global ranks of the first key in each bucket. Clearly, different keys can be mapped to the
same bucket because the PGM mapper is not perfect (as in the integer case) and because
they share the same chunk value (unlike in the integer case). For example, for the strings
S = {cherry, cocoa, coconut} with p = c and chunks composed of 3 characters, the keys
cocoa and coconut share the chunk value oco and will be mapped to the same bucket.

If a bucket of size b contains fewer input strings than a specific threshold t, we store the
local ranks of the strings in the bucket in a ⌈log b⌉-bit retrieval data structure. Once again,
we do not need to store local ranks if the bucket has only 0 or 1 keys. If instead the bucket is
large (i.e. b ≥ t), we create a child node in the tree data structure by applying the same idea
recursively on the strings S′ of that bucket. This means that we compute a PGM mapper on
the chunks extracted from each string in S′ starting from position |p′|, where p′ is the LCP
among the bucket strings S′. Notice that |p′| ≥ |p| but we always guarantee that S′ ⊊ S, so
the recursion is bounded. In practice, we set the threshold t = 128 (see Section 8.1).

At query time, we can use the sequence of global ranks to calculate the bucket size b,
which allows determining whether we need to continue recursively on a child (because b ≥ t)
or directly return the global rank of the bucket plus the local rank stored in the ⌈log b⌉-bit
retrieval data structure. Figure 1b gives an overview of the data structure.

We observe that the global ranks of each node increase monotonically from left to right
in each level of the overall tree. Therefore, we merge all these global ranks in a level into one
Elias-Fano sequence, thereby avoiding the space overhead of storing many small sequences.

Of course, each inner node of the tree needs some extra metadata, like the encoding of its
bucket mapper, the value of |p|, and an offset to its first global rank in the per-level Elias-Fano
sequence. We associate a node to its metadata via a minimal perfect hash function, where
the identifier of a node is given by the path of the buckets’ indices leading to it.

Given the overall idea, there is a wide range of optimisations that we use. In the
following, we outline the main algorithmic ones and refer the interested reader to our
implementation [29] and Appendix C for the many other small-and-tricky optimisations,

8 Learned Monotone Minimal Perfect Hashing

such as the use of specialised instructions like popcount and bextr, or lookup tables.

Alphabet Reduction. The number of nodes and the depth of LeMonHash-VL depend on
both the length and distribution of the input strings, and on how well the PGM mapper
at each node can map strings to distinct buckets given their w-bit chunks. Therefore, we
should aim to fit as much information as possible in the w-bit chunks. We do so by exploiting
the fact that, in real-world data sets, often only a very small alphabet Σ of branching
characters distinguish the strings in each bucket, and that we do not care about the other
characters. We extract chunks from the suffix of each string starting from the position
following the LCP p, as before, but interpret the suffix as a number in radix σ = |Σ| where
each character is replaced by its 0-based index in Σ if present, or by 0 if not present. For
example, for a node on the strings {shoppers, shopping, shops} whose LCP is p = shop,
we would store the alphabet Σ = {e, i, p, s} and map the suffix “pers” of “shoppers” to
index(p)σ3 + index(e)σ2 + index(r)σ1 + index(s)σ0 = 2σ3 + 0σ2 + 0σ1 + 3σ0. Observe that
the chunks computed in this way still preserve the lexicographic order of the strings. The
number of characters we extract is computed to fit as many characters as possible in a w-bit
word, i.e. ⌊w/ log σ⌋ characters. In our implementation over bytes, we store Σ via a bitmap
of size 128 or 256, depending on whether its characters are a subset of ASCII or not. Finally,
we mention that a mapping from strings to numbers in radix σ has also been used to build
compressed string dictionaries [9], but the twist here is that we are considering only the
alphabet of the branching characters since we do not need to store the keys.

Elias-Fano Sequences. The large per-level Elias-Fano sequences of global ranks have a very
irregular structure. For example, if many of the strings in a node share the same chunks,
there is a large gap between two of the stored ranks. We can deal with these irregularities and
reduce the overall space usage by using partitioned Elias-Fano [50]. Furthermore, the PGM
mappers do not always provide a very uniform mapping, which thus results in empty buckets.
An empty bucket corresponds to a duplicate offset value being stored in the Elias-Fano
sequences (see e.g. the duplicate offset 23 in Figure 1b). To optimise the space usage of
such duplicates, we filter them out before constructing the partitioned Elias-Fano sequence.
We do this by grouping the stored numbers in groups of 3 numbers. If all 3 numbers are
duplicates of the number before that group, we do not need to store the group. A bit vector
with rank support indicates which groups were removed.

Perfect Chunk Mapping. In many datasets, there might be only a small number of different
chunks, even if the number of strings they represent is large. For instance, chunks computed
on the first bytes of a set of URLs might be a few due to the scarcity of hostnames, but
each host may contain many distinct pages. In these cases, instead of a PGM, it might be
more space-efficient to build a (perfect) map from chunks to buckets in [c] via a retrieval
data structure taking c⌈log c⌉ bits overall (plus a small overhead), where c is the number of
distinct chunks. In practice, we apply this optimisation whenever c < 128 (see Section 8.1).

Comparison to Known Solutions. In essence, LeMonHash-VL applies the idea of LeM-
onHash recursively to handle variable-length strings. Therefore, unlike known solutions, it
can leverage data linearities to distribute w-bit chunks from the input strings to buckets
using small space, and use additional child nodes only whenever a bucket contains many
strings that thus require inspecting the following chunks to be distinguished. Additionally, it
performs an adaptive alphabet reduction within the buckets to fit more information in the

P. Ferragina, H.-P. Lehmann, P. Sanders, G. Vinciguerra 9

w-bit chunks, thus leveraging the presence of more regularities in the input data. Overall,
these features result in a data structure that has a small height and is efficient to be traversed.

6 Variants and Refinements

LeMonHash can be refined in numerous ways, which we only mention briefly due to space
constraints. Looking at a possible external memory implementation, LeMonHash can be
constructed trivially by a linear sweep and queries are possible using a suitable representation
of the predecessor and bucket-size data structures. LeMonHash can also be constructed in
parallel without affecting the queries, in contrast to the trivial parallelisation by partitioning
the input. In LeMonHash-VL, extracting chunks from non-contiguous bytes reduces the
height of the trees but has worse trade-offs in practice. Finally, we present an alternative
to storing the local ranks explicitly. The idea is to recursively split the universe size of that
bucket and record the number of keys smaller than that midpoint. Despite its query overhead,
this technique might be of general interest for MMPHFs. Refer to Appendix A for details.

7 Analysis

We now prove some properties of our LeMonHash data structure for integers. In our analysis,
we use succinct retrieval data structures taking rn + o(n) bits per stored value and answering
queries in constant time (see Section 2 and [15]). Furthermore, since our bucket mappers
need multiplications and divisions, we make the simplifying assumption u = 2w to avoid
dealing with the increased complexity of these arithmetic operations over large integers.

▶ Theorem 1. A LeMonHash data structure with a bucket mapper that simply performs a
linear interpolation of the universe on a list of n uniform random keys needs ≈ n(2.91536 +
o(1)) bits on average1 and answers queries in constant time.

Proof. We approximate the number of keys per bucket using a Poisson distribution which
results in 0.91536n + o(n) bits of space for the retrieval data structures. On top of that, an
Elias-Fano coding of the global bucket ranks gives 2n + o(n) bits. Refer to Appendix B for
the full proof. ◀

While this result is formally only valid for a global uniform distribution, for use in
LeMonHash it suffices if each segment computed by the PGM-index is sufficiently smooth. It
need not even be uniformly random as long as each local bucket has a constant average size.
As long as the space for encoding the segments is in O(n) bits, we retain the linear space
bound of Theorem 1. Moreover, the following worst-case analysis gives us a fallback position
that holds regardless of any assumptions.

▶ Theorem 2. A LeMonHash data structure with the PGM mapper takes n(⌈log(2ε+1)⌉+2+
o(1))+O

(
m log u

m

)
bits of space in the worst case and answers queries in O

(
log logw

u
m

)
time,

where m is the number of linear models in a PGM with an integer parameter ε ≥ 0 constructed
on the n input keys.

1 Numerically, we find that a better space usage of ≈ 2.902n bits can be achieved by mapping the n keys to
only ≈ 0.909n buckets, but this difference is irrelevant in practice. It is also interesting to note that this is
close to the space requirements of most of the practical non-monotone MPHFs [4,8,13,18,27,41,43,45,51].
Using an MMPHF can be useful when indexing an array through an MPHF, because sorting the hash
values can be more cache efficient than a large number of random accesses to the array.

10 Learned Monotone Minimal Perfect Hashing

Proof. The basic idea is that the rank estimate returned by the PGM is guaranteed to be
far from the correct rank by ε, which limits the space of the retrieval data structures. The
O

(
m log u

m

)
-term in the space bound is given by a compressed encoding of the linear models

in the PGM, and the query time is given by a predecessor search structure on the linear
models’ keys. Refer to Appendix B for the full proof. ◀

The worst-case bounds obtained in Theorem 2 are hard to compare with the ones of classic
MMPHF (see Section 3) due to the presence of m (and ε), which depends on (and must be
tuned according to) the approximate linearity of the input data, which classic MMPHFs are
oblivious to.2 Refer to Section 2 for bounds on m. Our experiments show that we obtain
better space or space close to the best classic MMPHFs, while being much faster (we use
a weaker but practical predecessor search structure than the one in Theorem 2). Refer to
Section 8 for details.

8 Experiments

In the following section, we first compare different configurations of LeMonHash and
LeMonHash-VL before comparing them with competitors from the literature.

Experimental Setup. We perform our experiments on an Intel Xeon E5-2670 v3 with a
base clock speed of 2.3 GHz running Ubuntu 20.04 with Linux 5.10.0. We use the GNU C++
compiler version 11.1.0 with optimisation flags -O3 -march=native. As a retrieval data
structure, we use BuRR [15] with 64-bit ribbon width and 2-bit bumping info. To store the
bucket sizes, we use the select data structure by Kurpicz [39] in LeMonHash and Partitioned
Elias-Fano [50] in LeMonHash-VL. To map tree paths to the node metadata, we use the
MPHF PTHash [51]. For the PGM implementation in LeMonHash, we use the encoding
from Theorem 2 and use a predecessor search on the Elias-Fano sequence (Section 2). In
LeMonHash-VL, since the number of linear models in a node is typically small, we encode
them explicitly as fixed-width triples (key, slope, intercept) and find the predecessor via a
binary search on the keys. All our experiments are executed on a single thread. Because the
variation is very small, we run each experiment only twice and report the average. We run
the Java competitors on OpenJDK 17.0.4 and perform one warm-up run for the just-in-time
compiler that is not measured. With this, the Java performance is expected to be close to
C++ [3]. Because Java does not have an unsigned 64-bit integer type, we subtract 263 from
each input key to keep their relative order.

The code and scripts needed to reproduce our experiments are available on GitHub under
the General Public License [29,30].

Datasets. Our datasets, as in previous evaluations [3, 34], are a text dataset that contains
terms appearing in the text of web pages [3] and urls crawled from .uk domains in 2007 [11].
Additionally, we also test with dna sequences consisting of 32-mers [23]. Regarding real-world
integer datasets, 5gram contains positions of the most frequent letter in the BWT of a text
file containing 5-grams found in books indexed by Google [10,32]. The fb dataset contains
Facebook user IDs [36] and osm contains OpenStreetMap locations [36]. As synthetic integer
datasets, we use 64-bit uniform, normal, and exponential distributions. Refer to Table 1 for
details.

2 This happens also in other problems in which data is encoded with linear models [10, 22].

P. Ferragina, H.-P. Lehmann, P. Sanders, G. Vinciguerra 11

Table 1 Datasets used for the experiments, together with their length or average (ø) length. Top:
real-world string datasets. Middle: real-world integer datasets. Bottom: synthetic integer datasets.

Dataset n Length Description

text 35M ø 11 bytes Terms appearing in the text of web pages, GOV2 corpus [3]
dna 367M 32 bytes 32-mer from a DNA sequence, Pizza&Chili corpus [23]
urls 106M ø 105 bytes Web URLs crawled from .uk domains in 2007 [11]

5gram 145M 32 bits Positions of the most frequent letter in the BWT of a text file
containing 5-grams found in books indexed by Google [10, 32]

fb 200M 64 bits Facebook user IDs [36]
osm 800M 64 bits OpenStreetMap locations [36]

uniform 100M 64 bits Uniform random
normal 100M 64 bits Normal distribution (µ = 1015, σ2 = 1010)
exponential 100M 64 bits Exponential distribution (λ = 1, scaled with 1015)

8.1 Tuning Parameters
In the following section, we compare several configuration parameters of LeMonHash and
show how they provide a trade-off between space usage and performance.

LeMonHash. Different ways of mapping the keys to buckets have their own advantages and
disadvantages. Table 2 gives measurements of the construction and query throughput, as well
as the space consumption of different bucket mappers. Our implementation of LeMonHash
with a linear bucket mapper achieves a space usage of 2.94n bits, which is remarkably close
to the theoretical space usage of 2.91n bits (see Theorem 1). Of course, a global, linear
mapping does not work for all datasets. A bucket mapper that creates equal-width segments
by interpolating between sampled keys (denoted as “Segmented” in the table) is fast to
construct and query, and it achieves good space usage. But, as for the global linear mapping,
this approach is not robust enough to manage arbitrary input distributions. In particular,
for this heuristic mapper, it is easy to come up with a worst-case input that degenerates the
space usage. Conversely, with the PGM mapper, LeMonHash still achieves 2.96n and 2.98n

bits on uniform random integers but it is more performant and robust on other datasets
(except on osm, where the heuristic mapper obtains a good enough mapping with only its
equal-width segments, which are inexpensive to store). In fact, we explicitly avoided heuristic
design choices in our PGM mapper (such as sampling input keys, removing outliers, or using
linear regression) to not inflate our performance on the tested datasets at the expense of
robustness on unknown ones (see Ref. [37]). Finally, on most input distributions, auto-tuning
the value of ε ∈ {15, 31, 63} does not have a large effect on the space usage.

LeMonHash-VL. Table 3 lists the effect of alphabet reduction on the query and construction
performance. In general, alphabet reduction enables noticeable space improvements with
only a small impact on the construction time. For the dna dataset, which uses only 15
different characters, the alphabet reduction has the largest effect, saving 1.3 bits per key and
simultaneously making the queries 40% faster. The faster queries can be explained by the
reduced tree height. Note that alphabet reduction makes the queries slightly slower for the
other datasets. The reason is that instead of one single bswap instruction for chunk extraction,
it needs multiple arithmetic operations (including popcount) for each input character. The

12 Learned Monotone Minimal Perfect Hashing

Table 2 Comparison of different bucket mappers. The space usage is given in bits per key, the
query throughput in kQueries/second, and the construction throughput (c.t.) in MKeys/second.

Dataset Linear mapper PGM ε = auto PGM ε = 31 Segmented

bpk kq/s c.t. bpk kq/s c.t. bpk kq/s c.t. bpk kq/s c.t.

5gram 5.60 1833.5 6.2 2.62 1747.0 3.8 2.63 1779.4 8.5 2.64 2145.9 14.5
fb 34.35 0.8 5.1 4.91 1156.1 2.8 4.91 1150.7 5.1 4.93 1441.3 7.2
osm 12.92 1525.3 5.5 4.42 999.6 2.8 4.42 998.6 5.0 4.33 1272.9 6.8

uniform 2.94 3244.6 8.7 2.96 1903.3 3.5 2.98 1850.5 6.5 3.03 2192.0 8.7
normal 34.27 105.3 4.8 2.95 1935.0 3.6 2.97 1858.0 6.6 3.00 1727.7 8.7
exponential 5.42 2715.9 6.0 2.95 1876.9 3.6 2.98 1791.5 6.6 3.01 2085.1 8.8

Table 3 Comparison of different variants of LeMonHash-VL. The space usage is given in bits
per key, the query throughput in kQueries/second, and the construction throughput (c.t.) in
MKeys/second. Variants with and without alphabet reduction (AR), a special indexed variant (Idx,
see Appendix A), and a variant with fixed instead of auto-tuned parameter ε for the bucket mapper.

Dataset ε = auto, no AR ε = auto, AR ε = 63, AR Idx, ε = auto, AR

bpk kq/s c.t. bpk kq/s c.t. bpk kq/s c.t. bpk kq/s c.t.

text 6.52 1062.9 1.7 6.03 1005.8 1.6 6.08 1001.8 2.5 6.10 933.2 2.3
dna 7.66 452.8 2.0 6.32 631.3 1.7 6.25 644.8 2.7 6.27 601.1 2.4
urls 7.14 282.7 2.3 6.37 298.8 1.8 6.46 295.1 2.3 6.63 298.1 1.6

indexed variant that builds chunks from the distinguishing bytes instead of a contiguous
byte range (see Appendix A) is slower to construct but does not show clear space savings,
which can be explained by larger per-node metadata. We also experimented with different
thresholds for when to stop recursion, as well as the perfect chunk mapping (see Section 5).
Given that the space overhead from each bucket mapper is the same for all data sets, it is not
surprising that the same threshold (128 keys) works well for all datasets (see Appendix D).
Finally, making the ε value of the PGM mapper constant instead of auto-tuned, we naturally
get faster construction. As in the integer case, one would expect a fixed ε value to always
produce results that are the same or worse than the auto-tuned version. This is not the case
because, in the recursive setting, it is hard to estimate the effect of a mapper on the overall
space usage. Therefore, an ε value that needs more space locally can lead to a mapping that
proves useful on a later level of the tree. This is why ε = 63 can achieve better space usage
than the auto-tuned version on the dna dataset.

8.2 Comparison with Competitors
In this section, we compare the performance of LeMonHash and LeMonHash-VL with
competitors from the literature. Competitors include the C++ implementation by Grossi and
Ottaviano [34] of the Centroid Hollow Trie, Hollow Trie, and Path Decomposed Trie. Because
that implementation only supports string inputs, we convert the integers to a list of fixed-
length strings. We point out that the Path Decomposed Trie crashes at an internal assertion
when being run on integer datasets. For the Hollow Trie, we encode the skips with either
Gamma or Elias-Fano coding, whatever is better on the dataset. We also include the Java
implementations by Belazzougui et al. [3] of a range of techniques (see Section 3). We use

P. Ferragina, H.-P. Lehmann, P. Sanders, G. Vinciguerra 13

0

0.5

1

Q
ue

ry
M

K
ey

s/
s text dna urls

0

1

2

Q
ue

ry
M

K
ey

s/
s 5gram fb osm

5 10
0

1

2

≥
Bits/key

Q
ue

ry
M

K
ey

s/
s uniform

5 10 ≥
Bits/key

normal

5 10 ≥
Bits/key

exponential

Figure 2 Query throughput for string, integer, and synthetic integer datasets vs space usage.
The top-left corner of every plot shows the top-performing solutions in terms of space-time efficiency.

0

1

2

3

C
on

st
r.

M
K

ey
s/

s text dna urls

0
2
4
6
8

C
on

st
r.

M
K

ey
s/

s 5gram fb osm

5 10
0
2
4
6
8

≥
Bits/key

C
on

st
r.

M
K

ey
s/

s uniform

5 10 ≥
Bits/key

normal

5 10 ≥
Bits/key

exponential

Centroid HT [34] HTDist [3] Hollow [34] Hollow [3] ZFast [3]
LCP 2-step [3] LCP [3] VLLCP [3] PaCo [3] VLPaCo [3]
Path Decomp. [34] LeMonHash-VL LeMonHash

Figure 3 Construction throughput for string, integer, and synthetic integer datasets. Competitors
with the symbol in the legend are implemented in Java.

14 Learned Monotone Minimal Perfect Hashing

either the FixedLong or PrefixFreeUtf16 transformation, depending on the data type of the
input. For LeMonHash, we use the PGM mapper with ε = 31. For LeMonHash-VL, we use
the PGM mapper with ε = 63, alphabet reduction and a recursion threshold t = 128.

Queries. Figure 2 plots the query throughput against the achieved storage space. In
Table A.1 in the Appendix, we additionally detail the numbers in tabular format. The
LCP-based methods (see Section 3) have very fast queries but also need the most space (in
fact, they appear to the top-right of the plots). At the same time, LeMonHash matches or
even outperforms the query throughput of LCP-based methods, while being significantly more
space efficient (in fact, it appears towards the top-left of the plots). Compared to competitors
with similar space usage, LeMonHash offers significantly higher query throughput.

Construction. Figure 3 plots the construction throughput against the space needed. On
most synthetic integer datasets, LeMonHash provides a significant improvement to the
state-of-the-art approaches, whereas it matches or outperforms the competitors on real-world
datasets. LeMonHash improves the construction throughput by up to a factor of 2, compared
to the competitor with the next best space usage (typically, variants of the Hollow Trie).
While LeMonHash-VL does not achieve the same space usage as the Hollow Trie Distributor,
its construction is significantly faster, and still it is the second best in space usage.

9 Conclusion and Future Work

In this paper, we have introduced the monotone minimal perfect hash function LeMonHash.
LeMonHash, unlike previous solutions, learns and leverages data smoothness to obtain a
small space usage and significantly faster queries. On most synthetic and real-world datasets,
LeMonHash dominates all competitors — simultaneously — on space usage, construction and
query throughput. Our extension to variable-length strings, LeMonHash-VL, consists of
trees that are significantly more flat and efficient to traverse than competitors. This enables
extremely fast queries with space consumption similar to competitors.

Future Work. Many MMPHF construction algorithms are based on the idea of explicitly
storing ranks of keys within a small bucket. The idea to split small buckets recursively that
we mention in Section 6 can help to reduce the space usage. It remains an open problem
whether the idea works in practice, especially when the distribution of keys inside the bucket
is skewed. It is also worth investigating a different construction of the piecewise linear
approximation in the PGM that minimises the overall space given by the segments and
the local ranks stored in retrieval data structures, rather than the current approach that
maximises the length of the segment (thus minimising just the segments space). Applying
non-linear transformations like low-degree polynomials within each segment would also be
interesting future work. Finally, it would be interesting to apply smoothed analysis to
formally show that many real-world distributions locally behave as if they were uniform
random, therefore leading to tighter space bounds.

References
1 Sepehr Assadi, Martin Farach-Colton, and William Kuszmaul. Tight bounds for monotone

minimal perfect hashing. In Proc. 34th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 456–476, 2023. doi:10.1137/1.9781611977554.CH20.

https://doi.org/10.1137/1.9781611977554.CH20

P. Ferragina, H.-P. Lehmann, P. Sanders, G. Vinciguerra 15

2 Djamal Belazzougui, Paolo Boldi, Rasmus Pagh, and Sebastiano Vigna. Monotone minimal
perfect hashing: searching a sorted table with O(1) accesses. In Proc. 20th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 785–794, 2009. doi:10.1137/1.
9781611973068.86.

3 Djamal Belazzougui, Paolo Boldi, Rasmus Pagh, and Sebastiano Vigna. Theory and practice
of monotone minimal perfect hashing. ACM J. Exp. Algorithmics, 16, 2011. doi:10.1145/
1963190.2025378.

4 Djamal Belazzougui, Fabiano C. Botelho, and Martin Dietzfelbinger. Hash, displace, and
compress. In Proc. 17th Annual European Symposium on Algorithms (ESA), pages 682–693,
2009. doi:10.1007/978-3-642-04128-0_61.

5 Djamal Belazzougui, Fabio Cunial, Juha Kärkkäinen, and Veli Mäkinen. Linear-time string
indexing and analysis in small space. ACM Trans. Algorithms, 16(2):17:1–17:54, 2020. doi:
10.1145/3381417.

6 Djamal Belazzougui and Gonzalo Navarro. Optimal lower and upper bounds for representing
sequences. ACM Trans. Algorithms, 11(4):31:1–31:21, 2015. doi:10.1145/2629339.

7 Djamal Belazzougui, Gonzalo Navarro, and Daniel Valenzuela. Improved compressed indexes
for full-text document retrieval. J. Discrete Algorithms, 18:3–13, 2013. doi:10.1016/j.jda.
2012.07.005.

8 Dominik Bez, Florian Kurpicz, Hans-Peter Lehmann, and Peter Sanders. High performance
construction of RecSplit based minimal perfect hash functions. In Proc. 31st Annual European
Symposium on Algorithms (ESA), pages 19:1–19:16, 2023. doi:10.4230/LIPIcs.ESA.2023.19.

9 Antonio Boffa, Paolo Ferragina, Francesco Tosoni, and Giorgio Vinciguerra. Compressed string
dictionaries via data-aware subtrie compaction. In Proc. 29th International Symposium on
String Processing and Information Retrieval (SPIRE), pages 233–249, 2022. doi:10.1007/
978-3-031-20643-6_17.

10 Antonio Boffa, Paolo Ferragina, and Giorgio Vinciguerra. A learned approach to design
compressed rank/select data structures. ACM Trans. Algorithms, 18(3):24:1–24:28, 2022.
doi:10.1145/3524060.

11 Paolo Boldi, Massimo Santini, and Sebastiano Vigna. A large time-aware web graph. SIGIR
Forum, 42(2):33–38, 2008. doi:10.1145/1480506.1480511.

12 Alexandra Boldyreva, Nathan Chenette, and Adam O’Neill. Order-preserving encryption revis-
ited: Improved security analysis and alternative solutions. In Proc. 31st Annual International
Cryptology Conference (CRYPTO), pages 578–595, 2011. doi:10.1007/978-3-642-22792-9_
33.

13 Jarrod A. Chapman, Isaac Ho, Sirisha Sunkara, Shujun Luo, Gary P. Schroth, and Daniel S.
Rokhsar. Meraculous: De novo genome assembly with short paired-end reads. PLOS ONE,
6(8):1–13, 08 2011. doi:10.1371/journal.pone.0023501.

14 David Richard Clark. Compact Pat Trees. PhD thesis, University of Waterloo, Canada, 1996.
15 Peter C. Dillinger, Lorenz Hübschle-Schneider, Peter Sanders, and Stefan Walzer. Fast succinct

retrieval and approximate membership using ribbon. In Proc. 20th International Symposium
on Experimental Algorithms (SEA), pages 4:1–4:20, 2022. doi:10.4230/LIPICS.SEA.2022.4.

16 Patrick Dinklage, Johannes Fischer, Alexander Herlez, Tomasz Kociumaka, and Florian
Kurpicz. Practical performance of space efficient data structures for longest common extensions.
In Proc. 28th Annual European Symposium on Algorithms (ESA), pages 39:1–39:20, 2020.
doi:10.4230/LIPIcs.ESA.2020.39.

17 Peter Elias. Efficient storage and retrieval by content and address of static files. J. ACM,
21(2):246–260, 1974. doi:10.1145/321812.321820.

18 Emmanuel Esposito, Thomas Mueller Graf, and Sebastiano Vigna. RecSplit: Minimal perfect
hashing via recursive splitting. In Proc. 22nd Symposium on Algorithm Engineering and
Experiments (ALENEX), pages 175–185, 2020. doi:10.1137/1.9781611976007.14.

19 Robert Mario Fano. On the number of bits required to implement an associative memory.
Technical report, MIT, Computer Structures Group, 1971. Project MAC, Memorandum 61".

https://doi.org/10.1137/1.9781611973068.86
https://doi.org/10.1137/1.9781611973068.86
https://doi.org/10.1145/1963190.2025378
https://doi.org/10.1145/1963190.2025378
https://doi.org/10.1007/978-3-642-04128-0_61
https://doi.org/10.1145/3381417
https://doi.org/10.1145/3381417
https://doi.org/10.1145/2629339
https://doi.org/10.1016/j.jda.2012.07.005
https://doi.org/10.1016/j.jda.2012.07.005
https://doi.org/10.4230/LIPIcs.ESA.2023.19
https://doi.org/10.1007/978-3-031-20643-6_17
https://doi.org/10.1007/978-3-031-20643-6_17
https://doi.org/10.1145/3524060
https://doi.org/10.1145/1480506.1480511
https://doi.org/10.1007/978-3-642-22792-9_33
https://doi.org/10.1007/978-3-642-22792-9_33
https://doi.org/10.1371/journal.pone.0023501
https://doi.org/10.4230/LIPICS.SEA.2022.4
https://doi.org/10.4230/LIPIcs.ESA.2020.39
https://doi.org/10.1145/321812.321820
https://doi.org/10.1137/1.9781611976007.14

16 Learned Monotone Minimal Perfect Hashing

20 Paolo Ferragina, Roberto Grossi, Ankur Gupta, Rahul Shah, and Jeffrey Scott Vitter. On
searching compressed string collections cache-obliviously. In Proc. 27th ACM Symposium on
Principles of Database Systems (PODS), pages 181–190, 2008. doi:10.1145/1376916.1376943.

21 Paolo Ferragina, Fabrizio Lillo, and Giorgio Vinciguerra. On the performance of learned data
structures. Theor. Comput. Sci., 871:107–120, 2021. doi:10.1016/J.TCS.2021.04.015.

22 Paolo Ferragina, Giovanni Manzini, and Giorgio Vinciguerra. Compressing and querying
integer dictionaries under linearities and repetitions. IEEE Access, 10:118831–118848, 2022.
doi:10.1109/ACCESS.2022.3221520.

23 Paolo Ferragina and Gonzalo Navarro. Pizza&Chili corpus. Accessed: February 2023. URL:
http://pizzachili.dcc.uchile.cl/texts.html.

24 Paolo Ferragina and Giorgio Vinciguerra. Learned data structures. In Luca Oneto, Nicolò
Navarin, Alessandro Sperduti, and Davide Anguita, editors, Recent Trends in Learning From
Data, pages 5–41. Springer International Publishing, 2020. doi:10.1007/978-3-030-43883-8_
2.

25 Paolo Ferragina and Giorgio Vinciguerra. The PGM-index: a fully-dynamic compressed
learned index with provable worst-case bounds. PVLDB, 13(8):1162–1175, 2020. doi:10.
14778/3389133.3389135.

26 Edward A. Fox, Qi Fan Chen, Amjad M. Daoud, and Lenwood S. Heath. Order-preserving
minimal perfect hash functions and information retrieval. ACM Trans. Inf. Syst., 9(3):281–308,
1991. doi:10.1145/125187.125200.

27 Edward A. Fox, Qi Fan Chen, and Lenwood S. Heath. A faster algorithm for constructing
minimal perfect hash functions. In Proc. 15th Annual International ACM Conference on
Research and Development in Information Retrieval (SIGIR), pages 266–273, 1992. doi:
10.1145/133160.133209.

28 Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Fully functional suffix trees and optimal text
searching in BWT-runs bounded space. J. ACM, 67(1):2:1–2:54, 2020. doi:10.1145/3375890.

29 LeMonHash - GitHub. https://github.com/ByteHamster/LeMonHash, 2023.
30 MMPHF-Experiments - GitHub. https://github.com/ByteHamster/MMPHF-Experiments,

2023.
31 Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to practice: Plug

and play with succinct data structures. In Proc. 13th International Symposium on Experimental
Algorithms (SEA), pages 326–337, 2014. doi:10.1007/978-3-319-07959-2_28.

32 Google. Google ngram exports. Accessed: March 2023. URL: https://storage.googleapis.
com/books/ngrams/books/datasetsv3.html.

33 Roberto Grossi, Alessio Orlandi, and Rajeev Raman. Optimal trade-offs for succinct string
indexes. In Proc. 37th International Colloquium on Automata, Languages and Programming
(ICALP), pages 678–689, 2010. doi:10.1007/978-3-642-14165-2_57.

34 Roberto Grossi and Giuseppe Ottaviano. Fast compressed tries through path decompositions.
ACM J. Exp. Algorithmics, 19(1), 2014. doi:10.1145/2656332.

35 Guy Jacobson. Space-efficient static trees and graphs. In Proc. 30th IEEE Symposium on
Foundations of Computer Science (FOCS), pages 549–554, 1989. doi:10.1109/SFCS.1989.
63533.

36 Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper, Tim Kraska,
and Thomas Neumann. SOSD: A benchmark for learned indexes. CoRR, abs/1911.13014,
2019.

37 Evgenios M. Kornaropoulos, Silei Ren, and Roberto Tamassia. The price of tailoring the
index to your data: Poisoning attacks on learned index structures. In Proc. 48th International
Conference on Management of Data (SIGMOD), pages 1331–1344, 2022. doi:10.1145/
3514221.3517867.

38 Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for learned
index structures. In Proc. 44th International Conference on Management of Data (SIGMOD),
pages 489–504, 2018. doi:10.1145/3183713.3196909.

https://doi.org/10.1145/1376916.1376943
https://doi.org/10.1016/J.TCS.2021.04.015
https://doi.org/10.1109/ACCESS.2022.3221520
http://pizzachili.dcc.uchile.cl/texts.html
https://doi.org/10.1007/978-3-030-43883-8_2
https://doi.org/10.1007/978-3-030-43883-8_2
https://doi.org/10.14778/3389133.3389135
https://doi.org/10.14778/3389133.3389135
https://doi.org/10.1145/125187.125200
https://doi.org/10.1145/133160.133209
https://doi.org/10.1145/133160.133209
https://doi.org/10.1145/3375890
https://github.com/ByteHamster/LeMonHash
https://github.com/ByteHamster/MMPHF-Experiments
https://doi.org/10.1007/978-3-319-07959-2_28
https://storage.googleapis.com/books/ngrams/books/datasetsv3.html
https://storage.googleapis.com/books/ngrams/books/datasetsv3.html
https://doi.org/10.1007/978-3-642-14165-2_57
https://doi.org/10.1145/2656332
https://doi.org/10.1109/SFCS.1989.63533
https://doi.org/10.1109/SFCS.1989.63533
https://doi.org/10.1145/3514221.3517867
https://doi.org/10.1145/3514221.3517867
https://doi.org/10.1145/3183713.3196909

P. Ferragina, H.-P. Lehmann, P. Sanders, G. Vinciguerra 17

39 Florian Kurpicz. Engineering compact data structures for rank and select queries on bit
vectors. In Proc. 29th International Symposium on String Processing and Information Retrieval
(SPIRE), pages 257–272, 2022. doi:10.1007/978-3-031-20643-6_19.

40 Florian Kurpicz, Hans-Peter Lehmann, and Peter Sanders. PaCHash: Packed and compressed
hash tables. In Proc. 25th Symposium on Algorithm Engineering and Experiments (ALENEX),
pages 162–175, 2023. doi:10.1137/1.9781611977561.ch14.

41 Hans-Peter Lehmann, Peter Sanders, and Stefan Walzer. SicHash - small irregular cuckoo
tables for perfect hashing. In Proc. 25th Symposium on Algorithm Engineering and Experiments
(ALENEX), pages 176–189, 2022. doi:10.1137/1.9781611977561.ch15.

42 Hyeontaek Lim, Bin Fan, David G. Andersen, and Michael Kaminsky. SILT: a memory-
efficient, high-performance key-value store. In Proc. 23rd ACM Symposium on Operating
Systems Principles (SOSP), pages 1–13, 2011. doi:10.1145/2043556.2043558.

43 Antoine Limasset, Guillaume Rizk, Rayan Chikhi, and Pierre Peterlongo. Fast and scalable
minimal perfect hashing for massive key sets. In Proc. 16th International Symposium on
Experimental Algorithms (SEA), pages 25:1–25:16, 2017. doi:10.4230/LIPICS.SEA.2017.25.

44 Bohdan S. Majewski, Nicholas C. Wormald, George Havas, and Zbigniew J. Czech. A family of
perfect hashing methods. Comput. J., 39(6):547–554, 1996. doi:10.1093/COMJNL/39.6.547.

45 Ingo Müller, Peter Sanders, Robert Schulze, and Wei Zhou. Retrieval and perfect hashing
using fingerprinting. In Proc. 13th International Symposium on Experimental Algorithms
(SEA), pages 138–149, 2014. doi:10.1007/978-3-319-07959-2_12.

46 J. Ian Munro and Venkatesh Raman. Succinct representation of balanced parentheses and
static trees. SIAM J. Comput., 31(3):762–776, 2001. doi:10.1137/S0097539799364092.

47 Gonzalo Navarro. Spaces, trees, and colors: The algorithmic landscape of document retrieval
on sequences. ACM Comput. Surv., 46(4):1–47, 2014. doi:10.1145/2535933.

48 Gonzalo Navarro. Compact data structures: a practical approach. Cambridge University Press,
2016.

49 Gonzalo Navarro and Javiel Rojas-Ledesma. Predecessor search. ACM Comput. Surv., 53(5),
2020. doi:10.1145/3409371.

50 Giuseppe Ottaviano and Rossano Venturini. Partitioned Elias-Fano indexes. In Proc. 37th
International ACM Conference on Research and Development in Information Retrieval (SIGIR),
pages 273–282, 2014. doi:10.1145/2600428.2609615.

51 Giulio E. Pibiri and Roberto Trani. PTHash: Revisiting FCH minimal perfect hashing. In Proc.
44th International ACM Conference on Research and Development in Information Retrieval
(SIGIR), pages 1339–1348, 2021. doi:10.1145/3404835.3462849.

52 Ibrahim Sabek, Kapil Vaidya, Dominik Horn, Andreas Kipf, Michael Mitzenmacher, and
Tim Kraska. Can learned models replace hash functions? PVLDB, 16(3):532–545, 2022.
doi:10.14778/3570690.3570702.

53 Sebastiano Vigna. Broadword implementation of rank/select queries. In Proc. 7th International
Workshop on Experimental Algorithms (WEA), pages 154–168. Springer, 2008. doi:10.1007/
978-3-540-68552-4_12.

54 Stefan Walzer. Peeling close to the orientability threshold - spatial coupling in hashing-based
data structures. In Proc. 32nd ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
2194–2211, 2021. doi:10.1137/1.9781611976465.131.

55 Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes: Compressing and
Indexing Documents and Images. Morgan Kaufmann, 2nd edition, 1999.

https://doi.org/10.1007/978-3-031-20643-6_19
https://doi.org/10.1137/1.9781611977561.ch14
https://doi.org/10.1137/1.9781611977561.ch15
https://doi.org/10.1145/2043556.2043558
https://doi.org/10.4230/LIPICS.SEA.2017.25
https://doi.org/10.1093/COMJNL/39.6.547
https://doi.org/10.1007/978-3-319-07959-2_12
https://doi.org/10.1137/S0097539799364092
https://doi.org/10.1145/2535933
https://doi.org/10.1145/3409371
https://doi.org/10.1145/2600428.2609615
https://doi.org/10.1145/3404835.3462849
https://doi.org/10.14778/3570690.3570702
https://doi.org/10.1007/978-3-540-68552-4_12
https://doi.org/10.1007/978-3-540-68552-4_12
https://doi.org/10.1137/1.9781611976465.131

18 Learned Monotone Minimal Perfect Hashing

A Variants and Refinements

The following section explains in detail our proposed variants and refinements inside the
LeMonHash framework.

External Memory Construction. To construct the PGM-index with a specific ε value, a
single scan over the input data is sufficient. As soon as one of the segments is constructed, the
corresponding keys can be mapped to buckets and the input for the retrieval data structures
can be generated. The retrieval data structures can be constructed in external memory as
well [15]. The construction of LeMonHash can therefore be performed entirely in external
memory. External memory queries are possible by selecting a suitable data structure for
predecessor queries inside the PGM-index (such as the recursive structure in [25]), as well
as an external-memory encoding of the bucket sizes. LeMonHash-VL can be constructed
and queried in external memory using similar considerations. While the recursion needs
additional passes over the input data, note that the construction is performed in depth-first
order, so it can profit from the locality between different levels.

Parallel Construction. As described in [3], it is easy to divide any MMPHF into multiple
buckets (see Section 3). The buckets can then be constructed independently in parallel,
but this naive construction introduces some query overhead due to adding another layer
on top of the data structure. Instead, the LeMonHash construction can be parallelised
transparently to the queries. We can divide the input data into ranges and construct
independent PGM-indexes on each range. When concatenating the linear models of all
ranges, we get a PGM-index for the whole input set. An advantage of this approach is that it
is transparent to the queries. With the naive division, this index stores a negligible number
of additional segments linear in the number of processors, but these cut-points can likely
be “repaired” locally, so that we do not get a space overhead for most inputs. Mapping
all keys to buckets by evaluating the PGM and therefore determining the input for the
retrieval data structures is possible in parallel as well. Finally, the retrieval data structures
can be constructed in parallel. This is again transparent to the queries and introduces only a
negligible space overhead linear in the number of processors [15]. For variable-length strings,
each node of the LeMonHash-VL construction can be parallelised just like described above.
On top of that, different child nodes can be constructed independently in parallel.

Recursive Bucket Splitting. Inside a bucket, our implementation explicitly stores the ranks
of all keys. Let us call this strategy Direct Rank Storing (DRS). An alternative method to
determine the ranks within a bucket is Recursive Bucket Splitting (RBS). Take a bucket of
size b that can contain keys from the range (L, R). We can now split this bucket in half by
storing how many of the keys are smaller than M = (L + R)/2. This takes ⌈log2(b + 1)⌉ bits
and splits the bucket into two sub-buckets of average size b/2. The two sub-buckets can be
handled recursively. For uniform random inputs with an average bucket size of b ≥ 3, RBS
needs less space than DRS. This reduction in space usage comes at the cost of more expensive
query operations. In particular, we need to query the retrieval data structures for every level
in that bucket-internal tree. An additional problem with this variant is that it depends on the
distribution of keys. In the worst case, when all key values are very close to L, the approach
repeatedly needs to store the fact that b keys are smaller than the midpoint. This can lead
to a space usage close to log(b) log(R − L), which can be arbitrarily large depending on the
universe size. We therefore did not implement this construction for LeMonHash.Whether the

P. Ferragina, H.-P. Lehmann, P. Sanders, G. Vinciguerra 19

RBS technique still works well with real-world data sets remains an open question. Given
that many MMPHF construction algorithms use the bucketing technique (see Section 3), the
RBS technique might still be of general interest for MMPHFs.

Indexed Chunk Extraction. As described in Section 5, the chunks in LeMonHash-VL
are generated from consecutive characters. Now consider an input where the positions of
branching characters of the keys are very far. Then the chunks encode a lot of data that is not
necessary to differentiate the keys. Instead, it is possible to determine the distinct minima of
the LCP values of strings in the corresponding node. Then chunks can be generated from
the positions at these minima, which reduces the height of the tree. In practice, however, we
find that the plain version is faster and more space efficient (see Section 8.1).

B Full Proofs

Full proof of Theorem 1. For n uniform random integers mapped to n buckets, the number
of keys per bucket follows a binomial distribution with p = 1/n. For large n, we can
approximate this by the Poisson distribution with λ = n · 1/n = 1. Therefore, the probability
that a bucket has size k is λke−λ

k! = 1
k! e . Storing a bucket of size k requires k entries in the

corresponding retrieval data structure, and each needs ⌈log k⌉ bits. Note that buckets of size
0 and 1 do not need to store ranks. Using the linearity of expectation, the average total
number of bits to store in retrieval data structures is:

E(space) = n · E(space per bucket) = n ·
∞∑

k=2
k⌈log k⌉ · 1

k! e
≈ 0.91536n.

A succinct retrieval data structure can then store this using ≈ 0.91536n + o(n) bits of
space. The Elias-Fano coded sequence of global ranks takes 2n + o(n) bits. Overall, we get a
space usage of ≈ n(2.91536 + o(1)) bits.

For queries, the evaluation of the linear function and rounding can be executed in constant
time. Now that we have the bucket index, we retrieve its offset and size from that binary
sequence using two constant time select1 queries. From that, we know which retrieval data
structure to query, and the actual query works in constant time [15]. ◀

Full proof of Theorem 2. The rank estimate returned by the PGM is guaranteed to be far
from the correct rank by ε. In other words, given a bucket number i ∈ [n], any of the input
keys with rank between max{1, i − ε} and min{i + ε, n} can be mapped to it, thus yielding
a bucket of size at most b = 2ε + 1. In the worst case, there are n/(2ε + 1) of such size-b
buckets, which overall require storing n local ranks in a ⌈log b⌉-bit retrieval data structure.
Additional 2n + o(n) bits are needed for the Elias-Fano coded sequence of global ranks.

The remaining term of the space bound is given by the PGM, that we encode with an Elias-
Fano representation of linear models’ (x, y)-endpoints in m(log u

m + log n
m + 2 log(2ε + 1)) +

O(m) bits [22]. This can be bounded by O
(
m log u

m

)
bits, since from [25, Lemma 2] it holds

2ε ≤ n/m ≤ u/m. Finally, we build the predecessor structure of [6, Theorem A.1] on the linear
models’ keys, which takes O

(
m log u

m

)
bits and yields a query time of O

(
log logw

u
m

)
. ◀

C Low-Level Optimizations

In addition to the main algorithmic optimizations described in the main part, we here detail
some more low-level optimizations of our implementation.

20 Learned Monotone Minimal Perfect Hashing

64 128 256 512

6

6.5

7

Recursion threshold

B
its

/k
ey

text

64 128 256 512
Recursion threshold

dna

64 128 256 512
Recursion threshold

urls

Perfect Chunk Mapping threshold: 32 64 128 256

Figure A.1 Different thresholds for when to store ranks (of keys and chunks) explicitly.

We encode the alphabet reduction as a bitmap and use the popcount instruction to
determine a character’s index. For determining how many characters fit into a chunk with
a given alphabet, we use a lookup table of size 256 because that is more efficient than a
(floating point) logarithm and division. Depending on the dataset, multiple nodes of the
tree might use alphabet reduction with a similar alphabet. When constructing a node, we
therefore look if another node stores a superset of the alphabet that still leads to the same
number of characters fitting into a chunk, and possibly re-use the alphabet. If no alphabet
reduction is used, we use the bswap instruction to immediately convert the next 8 characters
to a chunk.

To speed up access in Elias-Fano coded sequences, we use the clz instruction, which
counts the number of leading zeroes in a word. When calculating the LCP of strings, we
do so for multiple bytes at once using 64-bit comparisons. This general idea was already
evaluated in Ref. [16]. To avoid accessing the strings during alphabet map creation (which
would lead to cache faults), we annotate the LCP array with the branching characters.

To decode the PGM metadata, which is stored as integers of small width, we use the
bextr instruction to extract specific bits from a word. To evaluate the PGM, we use a 64-bit
division with overflow detection instead of a 128-bit division because in practice, 64 bits are
often enough to store the operands. For the PGM that auto-tunes its ε value, we abort early
when we detect that the PGM itself is already larger than the optimal cost. This way, very
small ε values can often be ruled out earlier.

D Additional Experimental Data

Table A.1 repeats the measurements of Figures 2 and 3, so that exact values can be compared.

Thresholds. Figure A.1 compares different thresholds for when to stop recursion (see
Section 5), as well as when to store ranks of chunks explicitly (see Section 5) in LeMonHash-
VL. The behaviour of the different datasets is very similar, which is (as mentioned in
Section 8.1) not surprising since the space overhead of a single-segment PGM bucket mapper
is constant. While we have not plotted the query performance here, note that queries get
slightly faster when increasing the recursion threshold because that reduces the height of the
tree.

P. Ferragina, H.-P. Lehmann, P. Sanders, G. Vinciguerra 21

Ta
bl

e
A

.1
C

om
pa

ris
on

of
st

rin
g

da
ta

se
ts

.
Q

ue
ry

th
ro

ug
hp

ut
is

gi
ve

n
in

kQ
ue

rie
s/

s
an

d
sp

ac
e

us
ag

e
is

gi
ve

n
in

bi
t/

ke
y

(b
pk

).

M
et

ho
d

te
xt

dn
a

ur
ls

5g
ra

m
fb

os
m

un
ifo

rm
no

rm
al

ex
po

ne
nt

ia
l

kq
/s

bp
k

kq
/s

bp
k

kq
/s

bp
k

kq
/s

bp
k

kq
/s

bp
k

kq
/s

bp
k

kq
/s

bp
k

kq
/s

bp
k

kq
/s

bp
k

C
en

tr
oi

d
H

T
[3

4]
56

0
6.

78
29

4
9.

05
39

9
8.

36
39

8
5.

09
36

3
5.

47
29

5
5.

95
41

3
5.

55
40

0
5.

54
37

5
5.

55
H

T
D

is
t

[3
]

92
5.

40
80

5.
67

52
5.

70
11

5
4.

67
97

4.
84

73
4.

81
13

3
4.

69
12

2
4.

69
12

7
4.

69
H

ol
lo

w
[3

4]
34

5
5.

84
25

2
7.

87
15

3
7.

42
30

0
4.

15
27

6
4.

53
18

7
5.

01
35

1
4.

61
33

9
4.

60
35

6
4.

61
H

ol
lo

w
[3

]
14

8
6.

90
12

4
9.

26
73

8.
41

16
2

4.
07

15
0

4.
50

11
0

4.
96

17
9

4.
54

16
9

4.
53

18
8

4.
54

LC
P

2-
st

ep
[3

]
11

76
13

.1
2

83
4

11
.6

2
39

4
17

.8
1

92
6

9.
98

93
8

10
.7

9
90

3
11

.0
0

11
93

9.
46

10
96

9.
87

10
93

9.
97

LC
P

[3
]

12
91

21
.6

1
11

61
16

.2
3

43
0

22
.7

4
14

29
12

.9
0

12
69

12
.9

0
13

64
12

.9
7

15
35

11
.7

7
17

11
12

.8
7

16
60

12
.8

7
Pa

C
o

[3
]

33
9

7.
88

35
0

8.
77

18
1

11
.0

9
42

9
6.

13
39

7
6.

44
34

0
6.

69
52

2
6.

50
46

3
6.

30
47

1
6.

42
Pa

th
D

ec
om

p.
[3

4]
57

9
54

.4
4

18
5

14
8.

27
22

4
22

8.
88

cr
as

he
s

on
in

te
ge

rs
V

LL
C

P
[3

]
81

6
18

.4
3

61
1

20
.1

3
31

5
22

.5
9

72
3

16
.3

0
69

0
17

.5
6

69
2

16
.8

6
82

3
16

.2
6

78
0

16
.2

7
86

8
16

.2
7

V
LP

aC
o

[3
]

33
7

8.
19

36
0

9.
86

17
7

11
.0

6
42

3
7.

25
40

4
7.

56
32

0
7.

81
50

0
7.

61
44

9
7.

41
46

5
7.

53
ZF

as
t

[3
]

53
0

8.
88

26
9

8.
71

19
8

8.
77

48
7

7.
59

44
1

7.
73

34
5

7.
87

59
1

7.
63

58
1

7.
64

61
1

7.
78

L
eM

on
H

as
h-

V
L

12
78

6.
08

79
0

6.
25

33
8

6.
46

14
58

2.
98

11
11

4.
91

85
7

4.
39

15
72

3.
33

16
47

3.
32

16
35

3.
33

L
eM

on
H

as
h

on
ly

su
pp

or
ts

in
te

ge
rs

24
21

2.
63

14
63

4.
91

13
38

4.
42

27
18

2.
98

26
57

2.
97

24
93

2.
98

	1 Introduction
	2 Preliminaries
	3 Related Work
	4 LeMonHash
	5 LeMonHash-VL
	6 Variants and Refinements
	7 Analysis
	8 Experiments
	8.1 Tuning Parameters
	8.2 Comparison with Competitors

	9 Conclusion and Future Work
	A Variants and Refinements
	B Full Proofs
	C Low-Level Optimizations
	D Additional Experimental Data

