Tim Kaldewey, Rene Mueller

Let your GPU do the heavy lifting in your
data Warehouse




= A closer look at data warehousing queries
— From queries down to operators
— Where does time go?
— Hash Join operators
— Data Access Patterns

* Drill-down: Hash Tables on GPUs
— Hash computation
— Hash Tables = Hash computation + Memory access
— Optimizations

« From Hash Tables to Relational Joins
— Hash Join Implementation
— Query Performance
— Processing 100s of GBs in seconds

© 2012 IBM Corporation



A closer look at DWH queries

« English: Show me the annual development of revenue from US sales of
US products for the last 5 years by city

3 © 2012 IBM Corporation



A closer look at DWH queries

« English: Show me the annual development of revenue from US sales
of US products for the last 5 years by city

« SQL: SELECT c.city, s.city, d.year, SUM(lo.revenue)
FROM lineorder lo, customer c, supplier s, date d
WHERE [o.custkey = c.custkey
AND lo.suppkey = s.suppkey
AND Io.orderdate = d.datekey
AND c.nation = 'UNITED STATES’
AND s.nation = 'UNITED STATES'
AND d.year >= 1998 AND d.year <= 2012
GROUP BY c.city, s.city, d.year
ORDER BY d.year asc, revenue desc;

© 2012 IBM Corporation



A closer look at DWH queries

« English: Show me the annual development of revenue from US sales of
US products for the last 5 years by city

« SQL: SELECT c.city, s.city, d.year, SUM(lo.revenue)
FROM 1lineorder lo, customer c, supplier s, date d
WHERE lo.custkey = c.custkey
AND lo.suppkey = s.suppkey ’?
AND lo.orderdate = d.datekey -
AND c.nation = ’"UNITED STATES’
AND s.nation = ’'UNITED STATES'
AND d.year >= 1998 AND d.year <= 2012
GROUP BY c.city, s.city, d.year
ORDER BY d.year asc, revenue desc;

5 © 2012 IBM Corporation



flani)
ﬂ“]l”l
(L]
!]M
U]

IIn
(B

A closer look at DWH queries

Star Schema — typical for DWH Part
Customer . PARTKEY
CUSTKEY Lineorder NAME
NAME ORDERKEY MFGR
ADDRESS LINENUMBER CATEGORY
CITY CUSTKEY BRAND

PARTKEY

SUPPKEY
Supplier ORDERDATE Date
SUPPKEY ORDPRIORITY DATEKEY
NAME 3 DATE
ADDRESS 3 DAYOFWEEK
CITY COMMITDATE MONTH

SHIPMODE YEAR

Query:

SELECT c.city, s.city, d.year, SUM(lo.revenue) FROM lineorder lo, customer c, supplier s, date d

WHERE lo.custkey = c.custkey AND lo.suppkey = s.suppkey AND lo.orderdate = d.datekey AND
c.nation =’UNITED STATES’ AND s.nation = 'UNITED STATES’ AND d.year >= 1998 AND d.year <= 2012
GROUP BY c.city, s.city, d.year ORDER BY d.year asc, revenue desc;

6 © 2012 IBM Corporation



A closer look at DWH queries

« English: Show me the annual development of revenue from US sales of
US products for the last 5 years by city

« SQL: SELECT c.city, s.city, d.year, SUM(lo.revenue)
FROM 1lineorder lo, customer c, supplier s, date d
WHERE lo.custkey = c.custkey
AND lo.suppkey = s.suppkey
AND lo.orderdate = d.datekey
AND c.nation = 'UNITED STATES’
AND s.nation = ’'UNITED STATES'
AND d.year >= 1998 AND d.year <= 2012
GROUP BY c.city, s.city, d.year
ORDER BY d.year asc, revenue desc;

Database primitives (operators):

—Predicate(s): customer, supplier, and date direct filter (yes/no)
—Join(s): lineorder with part, supplier, and date correlate tables & filter
— Group By (aggregate): city and date correlate tables & sum
—Order By: year and revenue sort

What are the most time-consuming operations?

7 © 2012 IBM Corporation



A closer look at DWH queries

Where does time go?
0.23%

28.44% 027 |
Predicate customer
M Join customer
Predicate supplier
M Join supplier

M Predicate date

M Join date
0.03 B Group-by
Order-by
o 20.98%
28.43%
0.00%
SELECT c.city, s.city, d.year, SUM(lo.revenue)
FROM lineorder lo, customer ¢, supplier s, date d
WHERE AND lo.custkey = c.custkey
AND s.nation = 'UNITED STATES’ AND lo.suppkey = s.suppkey

AND d.year >= 1998 AND d.year <= 2012 AND lo.orderdate = d.datekey
GROUP BY c.city, s.city, d.year
ORDER BY asc desc;

8 © 2012 IBM Corporation



A closer look at DWH queries

Customers (living in US)
$10.99 94303

$103.00 95014

Sales (Fact Table)

N M 950t _
$10.99 23 S50 lo4305 — $84.50 95134
$49.00 14 P $60.10 95040
$11.00 56 P $7.60 94303
$103.00 11 I I — J
$84.50 39 Primary Key Payload on
$60.10 27
$7.60 23+ Foreign Key

|

Measure

9 © 2012 IBM Corporation



A closer look at DWH queries

Hash Table (HT)
A

Customers (living in US)
$10.99 94303

$103.00 95014

Sales (Fact Table)

! |
: I
| !
I
' 11 95014 |
I —
$49.00 14 ' 27 95040 : $60.10 95040
$11.00 56 39 95134 | $7.60 94303
/
$103.00 11 ‘—I —————— -I ------- . \ v J
: Join
$84.50 39 Primary Key Payload Results
$60.10 27
$7.60 23+ Foreign Key
\ J
Y

Probe Inputs

10 © 2012 IBM Corporation



A closer look at DWH queries

Join two tables (|S| < |R]) in 2 steps
1. Build a hash table

— Scan S and compute a location (hash)
based on a unique (primary) key

— Insert primary key k with payload p into
the hash table

— If the location is occupied pick the next
free one (open addressing)

1

S Hash table
c K1,P Kq,P
8 K, P2
(0p)]
Ky,P,
v

© 2012 IBM Corporation



A closer look at DWH queries

Join two tables (|S| < |R]) in 2 steps
1. Build a hash table

— Scan S and compute a location (hash)
based on a unique (primary) key

— Insert primary key k with payload p into
the hash table

— If the location is occupied pick the next
free one (open addressing)

R Hash table
2. Probe the hash table = | Tiom. kop:
— Scan R and compute a location (hash) g fko,m,
based on the reference to S (foreign 2P
key) Ks,P3
— Compare foreign key fk and key k in ;
hash table sl
— If there is a match store the result (m,p) Ks,Ps
Ke,Ps
K7,P7

12 © 2012 IBM Corporation



A closer look at DWH queries

S Hash table
. . c | [KiPs K,
Join two tables (|S| < |R]) in 2 steps S| kops /\
1. Build a hash table @
— Scan S and compute a location (hash)
based on a unique (primary) key
— Insert primary key k with payload p into J b2
the hash table
— If the location is occupied pick the next
free one (open addressing) - Hash table
2. Probe the hash table o | Tiom, <P
— Scan R and compute a location (hash) g fka.m,
based on the reference to S (foreign 2P
key) Ks,P3
— Compare foreign key fk and key k in ;
hash table 2L
— If there is a match store the result (m,p) Ks.Ps
Ke,Ps
Build and Probe produce a random data U 7.0y

access pattern! v

13

© 2012 IBM Corporation



A closer look at DWH queries

= Primary data access patterns:
— Scan the input table(s) for HT creation and probe
— Compare and swap when inserting data into HT
— Random read when probing the HT

14 © 2012 IBM Corporation



A closer look at DWH queries

« Primary data access patterns:
— Scan the input table(s) for HT creation and probe
— Compare and swap when inserting data into HT
— Random read when probing the HT

« Data (memory) access on

Peak memory bandwidth [spec] ") 179 GB/s 21 GB/s Upper bound for:
Peak memory bandwidth [measured] 2 @3 GB/s 18 GBD Scan R, S

(1) Nvidia: 192.4 x 108 B/s = 179.2 GB/s
(2) 64-bit accesses over 1 GB of device memory

15 © 2012 IBM Corporation



A closer look at DWH queries

« Primary data access patterns:
— Scan the input table(s) for HT creation and probe
— Compare and swap when inserting data into HT
— Random read when probing the HT

« Data (memory) access on

Peak memory bandwidth [spec] 179 GB/s 21 GB/s Upper bound for:
Peak memory bandwidth [measured] 2 153 GB/s 18 GB/s
Random access [measured] 2 6.6 GB/s 0.8 GB/s Probe

Compare and swap [measured] 3 @B/s 0.4 GB/s Build HT

(1) Nvidia: 192.4 x 108 B/s = 179.2 GB/s
(2) 64-bit accesses over 1 GB of device memory

(3) 64-bit compare-and-swap to random locations over 1 GB device memory
16 © 2012 IBM Corporation




17

* Drill-down: Hash Tables on GPUs
— Hash computation
— Hash Tables = Hash computation + Memory access
— Optimizations

« From Hash Tables to Relational Joins
— Hash Join Implementation
— Query Performance
— Processing 100s of GBs in seconds

© 2012 IBM Corporation



Drill Down: Hash Tables on GPUs

32-bit keys, 32-bit hashes

threads
A
sed. sed. sed. sed.
keys keys keys keys
LSB 338
Fowler-Noll-Vo 1a 129 l l l l
Jenkins Lookup3 79 h(x) h(x) h(x) h(x)
Murmur3 111 32
One-at-a-time 85
CRC32 78
__________________ N
|I|\/|D5 45 : sum sum sum sum
1 SHA1 0.81! ~ ) ) >
N e e e e e e o e e e e e e e e e =
Cryptographic message
digests
» Threads generate sequential keys sum

» Hashes are XOR-summed locally

18 © 2012 IBM Corporation



Drill Down: Hash Tables on GPUs

Hash Table Probe: Keys from Device Memory — No results
32-bit hashes, 32-bit values

HT Probe
Hash Function/ | Seq keys+ | keys: dev
Key Ingest GB/s | Hash values: sum
LSB 338 2.7
Fowler-Noll-Vo 1a 129 2.8
Jenkins Lookup3 79 2.7
Murmur3 111 2.7
One-at-a-time 85 2.7
CRC32 78 2.7
MDS 4.5 2.4
SHA1 0.81 0.7
= 1 GB hash table on device memory (load factor = 0.33)
= Keys are read from device memory
= 20% of the probed keys find match in hash table

Values are XOR-summed locally

19 © 2012 IBM Corporation



Drill Down: Hash Tables on GPUs

Hash Table Probe: Keys and Values from/to Device Memory
32-bit hashes, 32-bit values

HT Probe | HT Probe

Hash Function/ | Seq keys+ | keys: dev keys: dev

Key Ingest GB/s | Hash values: sum | values: dev
LSB 338 2.7 1.7
Fowler-Noll-Vo 1a 129 2.8 1.7
Jenkins Lookup3 79 2.7 1.7
Murmur3 111 2.7 1.7
One-at-a-time 85 2.7 1.7
CRC32 78 2.7 1.7
MDS 4.5 24 1.7
SHA1 0.81 0.7 0.7

= 1 GB hash table on device memory (load factor = 0.33)

= Keys are read from device memory

= 20% of the probed keys find match in hash table

Values are written back to device memory

20 © 2012 IBM Corporation



Drill Down: Hash Tables on GPUs

21

Host/Device
Memory

Coalesced
load

Load probe keys

© 2012 IBM Corporation



Drill Down: Hash Tables on GPUs

22

Host/Device
Memory

Coalesced
load

T1 T2 T3 T4 ) T32
Ki [ Ko | K| Kq K3z
hkq) [h(kz) | h(ks) | hiks) h(ksz)

Load probe keys

Compute hashes

© 2012 IBM Corporation



Drill Down: Hash Tables on GPUs

Host/Device
Memory

23

Coalesced
load

k32

\

\ i

h(k;)|h

h(ks) | h(k,

h(ks2)

_>(/>(

Hash Table

P2 | P3

P32

Load probe keys

Compute hashes

Probe hash table

Values of matching entries

© 2012 IBM Corporation



Drill Down: Hash Tables on GPUs

Host/Device
Memory

24

Coalesced
load

k32

\

\ i

h(k;)|h

h(ks) | h(k,

h(ks2)

_>(/>(

Hash Table

y A A

A

P2 | P3

P32

e

Load probe keys

Compute hashes

Probe hash table

Values of matching entries

© 2012 IBM Corporation



Drill Down: Hash Tables on GPUs

25

Host/Device
Memory

Host/Device
Memory

Coalesced
load

Coalesced
store

T, T, T3 T, .
Ki| ko | Ks| Kyl [Ksp Load probe keys
h(k;) | h(kz) [ hks) | h(k, h(ks,) Compute hashes

_>(/>(

Hash Table

Probe hash table

y A A

P2 | P3

Pa2 Values of matching entries

T

e

T, Ta Ty -

T32

>

© 2012 IBM Corporation



Drill Down: Hash Tables on GPUs

Probe with Result Cache: Keys and Values from/to Device Memory

32-bit hashes, 32-bit values

Hash Function/ | Seq keys+ | keys: dev

HT Probe

values: sum

HT Probe
keys: dev
values: dev

Res. Cache
keys: dev
values: dev

Key Ingest GB/s
LSB
Fowler-Noll-Vo 1a
Jenkins Lookup3
Murmur3
One-at-a-time
CRC32

MD5

SHA1

= 1 GB hash table on device memory (load factor = 0.33)

= Keys are read from device memory

= 20% of the probed keys find match in hash table

» |ndividual values are written back to buffer in shared memory

2.7
2.8
2.7
2.7
2.7
2.7
2.4
0.7

»  and then coalesced to device memory

1.7
1.7
1.7
1.7
1.7
1.7
1.7
0.7

2.4
2.5
2.4
2.4
2.4
2.4
1.8
0.6

© 2012 IBM Corporation



Drill Down: Hash Tables on GPUs

32-bit hashes, 32-bit values, 1 GB hash table on device memory (load factor = 0.33)

27

LSB 2.7
Fowler-Noll-Vo 1a 2.8
Jenkins Lookup3 2.7
Murmur3 2.7
One-at-a-time 2.7
CRC32 2.7

= Keys are read from host memory (zero-copy access)

= 20% of the probed keys find match in hash table

» |ndividual values are written back to buffer in shared memory
and then coalesced to host memory (zero-copy access)

1.7
1.7
1.7
1.7
1.7
1.7

2.4
2.5
2.4
2.4
2.4
2.4

2.3
2.4
2.3
2.3
2.3
2.3

© 2012 IBM Corporation



Drill Down: Hash Tables on GPUs

End-to-end comparison of Hash Table Probe: GPU vs. CPU
32-bit hashes, 32-bit values, 1 GB hash table (load factor = 0.33)

GTX580 i7-2600

Hash Function/ | keys: host |4 cores Speedup
Key Ingest GB/s values: host | 8 threads

LSB 2.3 0.48 4.8x
Fowler-Noll-Vo 1a 24 0.47 5.1x
Jenkins Lookup3 2.3 0.46 5.0x
Murmur3 2.3 0.46 5.0x
One-at-a-time 2.3 0.43 5.3%
CRC32 2.3 0.48" 4.8x
MD5 1.8 0.11 16%
SHA1 0.6 0.06 10%

= Result cache used in both implementations
» GPU: keys from host memory, values back to host memory
» CPU: software prefetching instructions for hash table loads

1) Use of CRC32 instruction in SSE 4.2

28

© 2012 IBM Corporation



29

« From Hash Tables to Relational Joins
— Hash Join Implementation
— Query Performance
— Processing 100s of GBs in seconds

© 2012 IBM Corporation



From Hash Tables to Relational Joins

Probe:
R Hash table
= Equijoin return all pairs (m;,p;) c ;‘:1’:1 1Pt
where fk=k; ] P2
» During probing (fk,m) pairs need ka3
to be transferred to the GPU not -
just fk. =
Ks,Ps
Ks,P6
Example: fk, m are 32 bit ky.P;
v
= HT lookup 2.3 GB/s for 32 bit keys .
» |Ingest Bandwidth to GPU needed: Join Results:

2x2.3 GB/s = 4.6 GBIs (M1,p1), (M,Pg), ..

30 © 2012 IBM Corporation



From Hash Tables to Relational Joins

Hash Join Implementation
1. Pin table S for Build in host memory

2. Simultaneously read table S from host memory

& create hash table on device

Build Table (S)

Hash Table

Create HT A

.--L |

31 © 2012 IBM Corporation



From Hash Tables to Relational Joins

Hash Join Implementation
1. Pin table S for Build in host memory

2. Simultaneously read table S from host memory
& create hash table on device

3. Simultaneously read table R for Probe from host memory
& probe hash table on device

& store results in host memory

Probe Table (R) Hash table
fk1 m1
fk, m,
f Ms Probe HT

fk , M4

\ D,

3 P=

: 6 O

J

)
N

32 © 2012 IBM Corporation




From Hash Tables to Relational Joins

Conservative Assumptions for Star Schema Benchmark:

previous micro-benchmarks: = First join in Query Q3.2:

* large hash table (1 GB) lineorder |><] customer
. » DB Size: 714 GB

Scale Factor 1,000 (6 billion rows)
Now: Query from a Benchmark .

» Measured ingest rate on GTX580:
5.77 GiB/s

» This corresponds to 92% of the
theoretical PCI-E 2.0 x16
bandwidth.

PCI-E 2.0 x16: 8 GB/s with 128 B TLP payload/152 B TLP total = 6.274 GiB/s

33 © 2012 IBM Corporation



From Hash Tables to Relational Joins

Processing hundreds of Gigabytes in seconds
= Machines with 72 TB of memory are not commodity yet (even at IBM ;-)

= How about reading the input tables on the fly from flash?

» Storage solution delivering data at GPU join speed (>5.7 GB/s):
—3x 900 GB IBM Texas Memory Systems RamSan-70 SSDs
—IBM Global Parallel File System (GPFS)

- Visit us at the IBM booth #607 in the exhibition hall for a live demo !

34 © 2012 IBM Corporation



