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Abstract

Gradient Boosting Decision Tree (GBDT) is a popular machine learning algo-
rithm, and has quite a few effective implementations such as XGBoost and pGBRT.
Although many engineering optimizations have been adopted in these implemen-
tations, the efficiency and scalability are still unsatisfactory when the feature
dimension is high and data size is large. A major reason is that for each feature,
they need to scan all the data instances to estimate the information gain of all
possible split points, which is very time consuming. To tackle this problem, we
propose two novel techniques: Gradient-based One-Side Sampling (GOSS) and
Exclusive Feature Bundling (EFB). With GOSS, we exclude a significant propor-
tion of data instances with small gradients, and only use the rest to estimate the
information gain. We prove that, since the data instances with larger gradients play
a more important role in the computation of information gain, GOSS can obtain
quite accurate estimation of the information gain with a much smaller data size.
With EFB, we bundle mutually exclusive features (i.e., they rarely take nonzero
values simultaneously), to reduce the number of features. We prove that finding
the optimal bundling of exclusive features is NP-hard, but a greedy algorithm
can achieve quite good approximation ratio (and thus can effectively reduce the
number of features without hurting the accuracy of split point determination by
much). We call our new GBDT implementation with GOSS and EFB LightGBM.
Our experiments on multiple public datasets show that, LightGBM speeds up the
training process of conventional GBDT by up to over 20 times while achieving
almost the same accuracy.

1 Introduction

Gradient boosting decision tree (GBDT) [1] is a widely-used machine learning algorithm, due to
its efficiency, accuracy, and interpretability. GBDT achieves state-of-the-art performances in many
machine learning tasks, such as multi-class classification [2], click prediction [3]], and learning to
rank [4]. In recent years, with the emergence of big data (in terms of both the number of features
and the number of instances), GBDT is facing new challenges, especially in the tradeoff between
accuracy and efficiency. Conventional implementations of GBDT need to, for every feature, scan all
the data instances to estimate the information gain of all the possible split points. Therefore, their
computational complexities will be proportional to both the number of features and the number of
instances. This makes these implementations very time consuming when handling big data.

To tackle this challenge, a straightforward idea is to reduce the number of data instances and the
number of features. However, this turns out to be highly non-trivial. For example, it is unclear how to
perform data sampling for GBDT. While there are some works that sample data according to their
weights to speed up the training process of boosting [5, 16, [7]], they cannot be directly applied to GBDT
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since there is no sample weight in GBDT at all. In this paper, we propose two novel techniques
towards this goal, as elaborated below.

Gradient-based One-Side Sampling (GOSS). While there is no native weight for data instance in
GBDT, we notice that data instances with different gradients play different roles in the computation
of information gain. In particular, according to the definition of information gain, those instances
with larger gradient (i.e., under-trained instances) will contribute more to the information gain.
Therefore, when down sampling the data instances, in order to retain the accuracy of information gain
estimation, we should better keep those instances with large gradients (e.g., larger than a pre-defined
threshold, or among the top percentiles), and only randomly drop those instances with small gradients.
We prove that such a treatment can lead to a more accurate gain estimation than uniformly random
sampling, with the same target sampling rate, especially when the value of information gain has a
large range.

Exclusive Feature Bundling (EFB). Usually in real applications, although there are a large number
of features, the feature space is quite sparse, which provides us a possibility of designing a nearly
lossless approach to reduce the number of effective features. Specifically, in a sparse feature space,
many features are (almost) exclusive, i.e., they rarely take nonzero values simultaneously. Examples
include the one-hot features (e.g., one-hot word representation in text mining). We can safely bundle
such exclusive features. To this end, we design an efficient algorithm by reducing the optimal
bundling problem to a graph coloring problem (by taking features as vertices and adding edges for
every two features if they are not mutually exclusive), and solving it by a greedy algorithm with a
constant approximation ratio.

We call the new GBDT algorithm with GOSS and EFB LightGBMﬂ Our experiments on multiple
public datasets show that LightGBM can accelerate the training process by up to over 20 times while
achieving almost the same accuracy.

The remaining of this paper is organized as follows. At first, we review GBDT algorithms and related
work in Sec. [2} Then, we introduce the details of GOSS in Sec. [3|and EFB in Sec. |4} Our experiments
for LightGBM on public datasets are presented in Sec.[5] Finally, we conclude the paper in Sec. 6]

2 Preliminaries

2.1 GBDT and Its Complexity Analysis
GBDT is an ensemble model of decision trees, which are trained in sequence [1]]. In each iteration,
GBDT learns the decision trees by fitting the negative gradients (also known as residual errors).

The main cost in GBDT lies in learning the decision trees, and the most time-consuming part in
learning a decision tree is to find the best split points. One of the most popular algorithms to find split
points is the pre-sorted algorithm [8} (9], which enumerates all possible split points on the pre-sorted
feature values. This algorithm is simple and can find the optimal split points, however, it is inefficient
in both training speed and memory consumption. Another popular algorithm is the histogram-based
algorithm [[10} [I1},[12], as shown in Alg.|IP| Instead of finding the split points on the sorted feature
values, histogram-based algorithm buckets continuous feature values into discrete bins and uses these
bins to construct feature histograms during training. Since the histogram-based algorithm is more
efficient in both memory consumption and training speed, we will develop our work on its basis.

As shown in Alg. 1} the histogram-based algorithm finds the best split points based on the feature
histograms. It costs O(#data x # feature) for histogram building and O(#bin x # feature) for
split point finding. Since #bin is usually much smaller than #data, histogram building will dominate
the computational complexity. If we can reduce #data or #feature, we will be able to substantially
speed up the training of GBDT.

2.2 Related Work

There have been quite a few implementations of GBDT in the literature, including XGBoost [[13]],
pGBRT [14], scikit-learn [[15], and gbm in R [16]] [ﬂ Scikit-learn and gbm in R implements the pre-
sorted algorithm, and pGBRT implements the histogram-based algorithm. XGBoost supports both

"When we say larger or smaller gradients in this paper, we refer to their absolute values.

’The code is available at GitHub: https://github.com/Microsoft/LightGBM

3Due to space restriction, high level pseudo code is used. The details could be found in our open-source code.

“There are some other works speed up GBDT training via GPU [17, [18]], or parallel training [19]. However,
they are out of the scope of this paper.
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the pre-sorted algorithm and histogram-based algorithm. As shown in [13]], XGBoost outperforms
the other tools. So, we use XGBoost as our baseline in the experiment section.

To reduce the size of the training data, a common approach is to down sample the data instances. For
example, in [3]], data instances are filtered if their weights are smaller than a fixed threshold. SGB
[20] uses a random subset to train the weak learners in every iteration. In [6], the sampling ratio are
dynamically adjusted in the training progress. However, all these works except SGB [20] are based
on AdaBoost [21]], and cannot be directly applied to GBDT since there are no native weights for data
instances in GBDT. Though SGB can be applied to GBDT, it usually hurts accuracy and thus it is not
a desirable choice.

Similarly, to reduce the number of features, it is natural to filter weak features [22} 23| [7] 24]. This
is usually done by principle component analysis or projection pursuit. However, these approaches
highly rely on the assumption that features contain significant redundancy, which might not always
be true in practice (features are usually designed with their unique contributions and removing any of
them may affect the training accuracy to some degree).

The large-scale datasets used in real applications are usually quite sparse. GBDT with the pre-sorted
algorithm can reduce the training cost by ignoring the features with zero values [13]]. However,
GBDT with the histogram-based algorithm does not have efficient sparse optimization solutions. The
reason is that the histogram-based algorithm needs to retrieve feature bin values (refer to Alg.[I)) for
each data instance no matter the feature value is zero or not. It is highly preferred that GBDT with
the histogram-based algorithm can effectively leverage such sparse property.

To address the limitations of previous works, we propose two new novel techniques called Gradient-
based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB). More details will be
introduced in the next sections.

Algorithm 1: Histogram-based Algorithm Algorithm 2: Gradient-based One-Side Sampling
Input: I: training data, d: max depth Input: I: training data, d: iterations
Input: m: feature dimension Input: a: sampling ratio of large gradient data
nodeSet + {0} > tree nodes in current level Input: b: sampling ratio of small gradient data
rowSet < {{0,1,2,...}} > data indices in tree nodes Input: loss: loss function, L: weak learner
fori=1to ddo models « {}, fact +— 132
for node in nodeSet do topN < a x len(/) , randN < b X len(J)
usedRows < rowSet[node] fori = 1to ddo
for £k = 1to m do preds <— models.predict([)
H < new Histogram() g < loss(I, preds), w + {1,1,...}
> Build histogram sorted <— GetSortedIndices(abs(g))
for j in usedRows do topSet <— sorted[1:topN]
bin < I.f[k][j].bin randSet < RandomPick(sorted[topN:len(I)],
Hibin].n <— H[bin].n +1 usedSet <— topSet + randSet
Find the best split on histogram H. w[randSet] x = fact > Assign weight fact to the
L .. small gradient data.
Update rowSet and nodeSet according to the best newModel < L(I[usedSet], — g[usedSet],
split points. wlusedSet])
| models.append(newModel)

3 Gradient-based One-Side Sampling

In this section, we propose a novel sampling method for GBDT that can achieve a good balance
between reducing the number of data instances and keeping the accuracy for learned decision trees.

3.1 Algorithm Description

In AdaBoost, the sample weight serves as a good indicator for the importance of data instances.
However, in GBDT, there are no native sample weights, and thus the sampling methods proposed for
AdaBoost cannot be directly applied. Fortunately, we notice that the gradient for each data instance
in GBDT provides us with useful information for data sampling. That is, if an instance is associated
with a small gradient, the training error for this instance is small and it is already well-trained.
A straightforward idea is to discard those data instances with small gradients. However, the data
distribution will be changed by doing so, which will hurt the accuracy of the learned model. To avoid
this problem, we propose a new method called Gradient-based One-Side Sampling (GOSS).



GOSS keeps all the instances with large gradients and performs random sampling on the instances
with small gradients. In order to compensate the influence to the data distribution, when computing the
information gain, GOSS introduces a constant multiplier for the data instances with small gradients
(see Alg.[2). Specifically, GOSS firstly sorts the data instances according to the absolute value of their
gradients and selects the top a x 100% instances. Then it randomly samples b x 100% instances from
the rest of the data. After that, GOSS amplifies the sampled data with small gradients by a constant
177" when calculating the information gain. By doing so, we put more focus on the under-trained
instances without changing the original data distribution by much.

3.2 Theoretical Analysis

GBDT uses decision trees to learn a function from the input space X'® to the gradient space G [1]].
Suppose that we have a training set with n i.i.d. instances {1, - - ,z,}, where each x; is a vector
with dimension s in space X'°. In each iteration of gradient boosting, the negative gradients of the
loss function with respect to the output of the model are denoted as {g1, - - - , gn }. The decision tree
model splits each node at the most informative feature (with the largest information gain). For GBDT,
the information gain is usually measured by the variance after splitting, which is defined as below.

Definition 3.1 Let O be the training dataset on a fixed node of the decision tree. The variance gain
of splitting feature j at point d for this node is defined as
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For feature 7, the decision tree algorithm selects d; = argmaz4V;(d) and calculates the largest gain
V;(d5). E] Then, the data are split according feature j* at point d;- into the left and right child nodes.
In our proposed GOSS method, first, we rank the training instances according to their absolute values
of their gradients in the descending order; second, we keep the top-a x 100% instances with the larger

gradients and get an instance subset A; then, for the remaining set A consisting (1 — a) x 100%
instances with smaller gradients, we further randomly sample a subset B with size b x | A€|; finally,

we split the instances according to the estimated variance gain f/] (d) over the subset AU B, i.e.,
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x;; > d}, and the coefficient 1;“ is used to normalize the sum of the gradients over B back to the

size of A°.

Thus, in GOSS, we use the estimated V;(d) over a smaller instance subset, instead of the accurate
V;(d) over all the instances to determine the split point, and the computation cost can be largely
reduced. More importantly, the following theorem indicates that GOSS will not lose much training
accuracy and will outperform random sampling. Due to space restrictions, we leave the proof of the
theorem to the supplementary materials.

Theorem 3.2 We denote the approximation error in GOSS as £(d) = |V;(d) — V;(d)| and g} (d) =
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where Cqp = *72 maxq,cac |gi|, and D = max(g} (d), g2(d)).

According to the theorem, we have the following discussions: (1) The asymptotic approximation ratio
of GOSS is © ( Lo+ A ﬁ) If the split is not too unbalanced (i.e., n}(d) > O(y/n) and

ni(d)  ni(d)

nd(d) > O(y/n)), the approximation error will be dominated by the second term of Ineq. which

3Our following analysis holds for arbitrary node. For simplicity and without confusion, we omit the sub-index
O in all the notations.



decreases to 0 in O(y/n) with n — oo. That means when number of data is large, the approximation
is quite accurate. (2) Random sampling is a special case of GOSS with ¢ = 0. In many cases,
GOSS could outperform random sampling, under the condition Cy 3 > C4 5-a, Which is equivalent
to a—\/% > \}% with o = maxa,;cavae |¢i|/ maxa; cac |gil.

Next, we analyze the generalization performance in GOSS. We consider the generalization error in
GOSS €5999(d) = |V;(d) — Vi(d)|, which is the gap between the variance gain calculated by the
sampled training instances in GOSS and the true variance gain for the underlying distribution. We
have £955(d) < |V;(d) — Vi (d)] + [Vi(d) — Va(d)] £ Ecoss(d) + Eyen(d). Thus, the generalization
error with GOSS will be close to that calculated by using the full data instances if the GOSS
approximation is accurate. On the other hand, sampling will increase the diversity of the base learners,
which potentially help to improve the generalization performance [24].

4 Exclusive Feature Bundling

In this section, we propose a novel method to effectively reduce the number of features.

Algorithm 3: Greedy Bundling Algorithm 4: Merge Exclusive Features
Input: F: features, K: max conflict count Input: numData: number of data
Construct graph G Input: F': One bundle of exclusive features
searchOrder < G.sortByDegree() binRanges <+ {0}, totalBin <— 0
bundles < {}, bundlesConflict < {} for f in F' do
for i in searchOrder do totalBin += f.numBin
needNew <— True | binRanges.append(totalBin)
for j = 1to0 len(bundles)do newBin < new Bin(numData)
cnt <— ConflictCnt(bundles[j], F[i]) for i = 1 to numData do
if cnt + bundlesConflict[i] < K then newBin[i] « 0
bundles[j].add(F'[i]), needNew < False for j = 1to len(F) do
break if F'[j].bin[i] # 0 then
if needNew then | newBinl[i] < F[j].bin[i] + binRanges]j]
| Add F'[i] as a new bundle to bundles — L
Output: new Bin, binRanges

O:ltpllt: bundles

High-dimensional data are usually very sparse. The sparsity of the feature space provides us a
possibility of designing a nearly lossless approach to reduce the number of features. Specifically, in
a sparse feature space, many features are mutually exclusive, i.e., they never take nonzero values
simultaneously. We can safely bundle exclusive features into a single feature (which we call an
exclusive feature bundle). By a carefully designed feature scanning algorithm, we can build the
same feature histograms from the feature bundles as those from individual features. In this way, the
complexity of histogram building changes from O(#data x # feature) to O(#data x #bundle),
while #bundle << # feature. Then we can significantly speed up the training of GBDT without
hurting the accuracy. In the following, we will show how to achieve this in detail.

There are two issues to be addressed. The first one is to determine which features should be bundled
together. The second is how to construct the bundle.

Theorem 4.1 The problem of partitioning features into a smallest number of exclusive bundles is
NP-hard.

Proof: We will reduce the graph coloring problem [25] to our problem. Since graph coloring problem
is NP-hard, we can then deduce our conclusion.

Given any instance G = (V, E) of the graph coloring problem. We construct an instance of our
problem as follows. Take each row of the incidence matrix of G as a feature, and get an instance of
our problem with |V| features. It is easy to see that an exclusive bundle of features in our problem
corresponds to a set of vertices with the same color, and vice versa. [J

For the first issue, we prove in Theorem 4. 1| that it is NP-Hard to find the optimal bundling strategy,
which indicates that it is impossible to find an exact solution within polynomial time. In order to
find a good approximation algorithm, we first reduce the optimal bundling problem to the graph
coloring problem by taking features as vertices and adding edges for every two features if they are
not mutually exclusive, then we use a greedy algorithm which can produce reasonably good results



(with a constant approximation ratio) for graph coloring to produce the bundles. Furthermore, we
notice that there are usually quite a few features, although not 100% mutually exclusive, also rarely
take nonzero values simultaneously. If our algorithm can allow a small fraction of conflicts, we can
get an even smaller number of feature bundles and further improve the computational efficiency.
By simple calculation, random polluting a small fraction of feature values will affect the training
accuracy by at most O([(1 — v)n]~2/3)(See Proposition 2.1 in the supplementary materials), where
~ is the maximal conflict rate in each bundle. So, if we choose a relatively small ~, we will be able to
achieve a good balance between accuracy and efficiency.

Based on the above discussions, we design an algorithm for exclusive feature bundling as shown
in Alg.[3] First, we construct a graph with weighted edges, whose weights correspond to the total
conflicts between features. Second, we sort the features by their degrees in the graph in the descending
order. Finally, we check each feature in the ordered list, and either assign it to an existing bundle
with a small conflict (controlled by +), or create a new bundle. The time complexity of Alg.[3]is
O(# feature?) and it is processed only once before training. This complexity is acceptable when the
number of features is not very large, but may still suffer if there are millions of features. To further
improve the efficiency, we propose a more efficient ordering strategy without building the graph:
ordering by the count of nonzero values, which is similar to ordering by degrees since more nonzero
values usually leads to higher probability of conflicts. Since we only alter the ordering strategies in
Alg.|3| the details of the new algorithm are omitted to avoid duplication.

For the second issues, we need a good way of merging the features in the same bundle in order to
reduce the corresponding training complexity. The key is to ensure that the values of the original
features can be identified from the feature bundles. Since the histogram-based algorithm stores
discrete bins instead of continuous values of the features, we can construct a feature bundle by letting
exclusive features reside in different bins. This can be done by adding offsets to the original values of
the features. For example, suppose we have two features in a feature bundle. Originally, feature A
takes value from [0, 10) and feature B takes value [0, 20). We then add an offset of 10 to the values of
feature B so that the refined feature takes values from [10, 30). After that, it is safe to merge features
A and B, and use a feature bundle with range [0, 30] to replace the original features A and B. The
detailed algorithm is shown in Alg. ]

EFB algorithm can bundle many exclusive features to the much fewer dense features, which can
effectively avoid unnecessary computation for zero feature values. Actually, we can also optimize
the basic histogram-based algorithm towards ignoring the zero feature values by using a table for
each feature to record the data with nonzero values. By scanning the data in this table, the cost of
histogram building for a feature will change from O(#data) to O(#non_zero_data). However,
this method needs additional memory and computation cost to maintain these per-feature tables in the
whole tree growth process. We implement this optimization in LightGBM as a basic function. Note,
this optimization does not conflict with EFB since we can still use it when the bundles are sparse.

5 Experiments

In this section, we report the experimental results regarding our proposed LightGBM algorithm. We
use five different datasets which are all publicly available. The details of these datasets are listed
in Table[T] Among them, the Microsoft Learning to Rank (LETOR) [26] dataset contains 30K web
search queries. The features used in this dataset are mostly dense numerical features. The Allstate
Insurance Claim [27]] and the Flight Delay [28] datasets both contain a lot of one-hot coding features.
And the last two datasets are from KDD CUP 2010 and KDD CUP 2012. We directly use the features
used by the winning solution from NTU [29, |30} 31]], which contains both dense and sparse features,
and these two datasets are very large. These datasets are large, include both sparse and dense features,
and cover many real-world tasks. Thus, we can use them to test our algorithm thoroughly.

Our experimental environment is a Linux server with two E5-2670 v3 CPUs (in total 24 cores) and
256GB memories. All experiments run with multi-threading and the number of threads is fixed to 16.

5.1 Overall Comparison

We present the overall comparisons in this subsection. XGBoost [13]] and LightGBM without GOSS
and EFB (called 1gb_baselline) are used as baselines. For XGBoost, we used two versions, xgb_exa
(pre-sorted algorithm) and xgb_his (histogram-based algorithm). For xgb_his, 1gb_baseline, and
LightGBM, we used the leaf-wise tree growth strategy [32]. For xgb_exa, since it only supports
layer-wise growth strategy, we tuned the parameters for xgb_exa to let it grow similar trees like other



Table 1: Datasets used in the experiments.

Name #data | #feature | Description | Task Metric
Allstate 12M 4228 Sparse Binary classification | AUC
Flight Delay 10M 700 Sparse Binary classification | AUC
LETOR 2M 136 Dense Ranking NDCG [4]]
KDD10 19M 29M Sparse Binary classification | AUC
KDD12 119M 54M Sparse Binary classification | AUC

Table 2: Overall training time cost comparison. LightGBM is Igb_baseline with GOSS and EFB.
EFB_only is 1gb_baseline with EFB. The values in the table are the average time cost (seconds) for
training one iteration.

xgb_exa | xgb_his | lgb_baseline | EFB_only | LightGBM
Allstate 10.85 2.63 6.07 0.71 0.28
Flight Delay 5.94 1.05 1.39 0.27 0.22
LETOR 5.55 0.63 0.49 0.46 0.31
KDDI10 108.27 OOM 39.85 6.33 2.85
KDD12 191.99 OOM 168.26 20.23 12.67

Table 3: Overall accuracy comparison on test datasets. Use AUC for classification task and
NDCG@10 for ranking task. SGB is lgb_baseline with Stochastic Gradient Boosting, and its
sampling ratio is the same as LightGBM.

xgb_exa | xgb_his | 1gb_baseline SGB LightGBM
Allstate 0.6070 0.6089 0.6093 0.6064 £ 7e-4 | 0.6093 £ 9e-5
Flight Delay | 0.7601 0.7840 0.7847 0.7780 £ 8e-4 | 0.7846 + 4e-5
LETOR 0.4977 0.4982 0.5277 0.5239 £ 6e-4 | 0.5275 £ Se-4
KDD10 0.7796 OOM 0.78735 0.7759 £ 3e-4 | 0.78732 + 1e-4
KDDI12 0.7029 OOM 0.7049 0.6989 £ 8e-4 | 0.7051 +£ 5e-5

methods. And we also tuned the parameters for all datasets towards a better balancing between speed
and accuracy. We set a = 0.05,b = 0.05 for Allstate, KDD10 and KDD12, and seta = 0.1,b = 0.1
for Flight Delay and LETOR. We set v = 0 in EFB. All algorithms are run for fixed iterations, and
we get the accuracy results from the iteration with the best scoreE]
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Figure 1: Time-AUC curve on Flight Delay. Figure 2: Time-NDCG curve on LETOR.

The training time and test accuracy are summarized in Table[2] and Table [3|respectively. From these
results, we can see that LightGBM is the fastest while maintaining almost the same accuracy as
baselines. The xgb_exa is based on the pre-sorted algorithm, which is quite slow comparing with
histogram-base algorithms. By comparing with Igb_baseline, LightGBM speed up 21x, 6x, 1.6x,
14x and 13x respectively on the Allstate, Flight Delay, LETOR, KDD10 and KDD12 datasets. Since
xgb_his is quite memory consuming, it cannot run successfully on KDD10 and KDD12 datasets
due to out-of-memory. On the remaining datasets, LightGBM are all faster, up to 9x speed-up is
achieved on the Allstate dataset. The speed-up is calculated based on training time per iteration since
all algorithms converge after similar number of iterations. To demonstrate the overall training process,
we also show the training curves based on wall clock time on Flight Delay and LETOR in the Fig. [I]

Due to space restrictions, we leave the details of parameter settings to the supplementary material.



Table 4: Accuracy comparison on LETOR dataset for GOSS and SGB under different sampling ratios.
We ensure all experiments reach the convergence points by using large iterations with early stopping.
The standard deviations on different settings are small. The settings of a and b for GOSS can be

found in the supplementary materials.
Sampling ratio 0.1 0.15 0.2 0.25 0.3 0.35 0.4

SGB 0.5182 | 0.5216 | 0.5239 | 0.5249 | 0.5252 | 0.5263 | 0.5267
GOSS 0.5224 | 0.5256 | 0.5275 | 0.5284 | 0.5289 | 0.5293 | 0.5296

and Fig. 2] respectively. To save space, we put the remaining training curves of the other datasets in
the supplementary material.

On all datasets, LightGBM can achieve almost the same test accuracy as the baselines. This indicates
that both GOSS and EFB will not hurt accuracy while bringing significant speed-up. It is consistent
with our theoretical analysis in Sec.[3.2]and Sec.

LightGBM achieves quite different speed-up ratios on these datasets. The overall speed-up comes
from the combination of GOSS and EFB, we will break down the contribution and discuss the
effectiveness of GOSS and EFB separately in the next sections.

5.2 Analysis on GOSS

First, we study the speed-up ability of GOSS. From the comparison of LightGBM and EFB_only
(LightGBM without GOSS) in Table[2] we can see that GOSS can bring nearly 2x speed-up by its
own with using 10% - 20% data. GOSS can learn trees by only using the sampled data. However, it
retains some computations on the full dataset, such as conducting the predictions and computing the
gradients. Thus, we can find that the overall speed-up is not linearly correlated with the percentage of
sampled data. However, the speed-up brought by GOSS is still very significant and the technique is
universally applicable to different datasets.

Second, we evaluate the accuracy of GOSS by comparing with Stochastic Gradient Boosting (SGB)
[20]. Without loss of generality, we use the LETOR dataset for the test. We tune the sampling ratio
by choosing different a and b in GOSS, and use the same overall sampling ratio for SGB. We run
these settings until convergence by using early stopping. The results are shown in Table[d] We can
see the accuracy of GOSS is always better than SGB when using the same sampling ratio. These
results are consistent with our discussions in Sec.[3.2] All the experiments demonstrate that GOSS is
a more effective sampling method than stochastic sampling.

5.3 Analysis on EFB

We check the contribution of EFB to the speed-up by comparing Igb_baseline with EFB_only. The
results are shown in Table[2] Here we do not allow the confliction in the bundle finding process (i.e.,
v = O)E] We find that EFB can help achieve significant speed-up on those large-scale datasets.

Please note 1gb_baseline has been optimized for the sparse features, and EFB can still speed up
the training by a large factor. It is because EFB merges many sparse features (both the one-hot
coding features and implicitly exclusive features) into much fewer features. The basic sparse feature
optimization is included in the bundling process. However, the EFB does not have the additional cost
on maintaining nonzero data table for each feature in the tree learning process. What is more, since
many previously isolated features are bundled together, it can increase spatial locality and improve
cache hit rate significantly. Therefore, the overall improvement on efficiency is dramatic. With
above analysis, EFB is a very effective algorithm to leverage sparse property in the histogram-based
algorithm, and it can bring a significant speed-up for GBDT training process.

6 Conclusion

In this paper, we have proposed a novel GBDT algorithm called LightGBM, which contains two
novel techniques: Gradient-based One-Side Sampling and Exclusive Feature Bundling to deal with
large number of data instances and large number of features respectively. We have performed both
theoretical analysis and experimental studies on these two techniques. The experimental results are
consistent with the theory and show that with the help of GOSS and EFB, LightGBM can significantly
outperform XGBoost and SGB in terms of computational speed and memory consumption. For the
future work, we will study the optimal selection of ¢ and b in Gradient-based One-Side Sampling
and continue improving the performance of Exclusive Feature Bundling to deal with large number of
features no matter they are sparse or not.

"We put our detailed study on ~ tuning in the supplementary materials.
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