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Abstract. Many concurrent data-structure implementations — both
blocking and non-blocking — use the well-known compare-and-swap
(CAS) operation, supported in hardware by most modern multiprocessor
architectures for inter-thread synchronization.

A key weakness of the CAS operation is its performance in the pres-
ence of memory contention. When multiple threads concurrently attempt
to apply CAS operations to the same shared variable, at most a single
thread will succeed in changing the shared variable’s value and the CAS
operations of all other threads will fail. Moreover, significant degrada-
tion in performance occurs when variables manipulated by CAS become
contention “hot spots”, since failed CAS operations congest the inter-
connect and memory devices and slow down successful CAS operations.

In this work we study the following question: can software-based
contention management improve the efficiency of hardware-provided CAS
operations? In other words, can a software contention management layer,
encapsulating invocations of hardware CAS instructions, improve the
performance of CAS-based concurrent data-structures?

To address this question, we conduct what is, to the best of our
knowledge, the first study on the impact of contention management algo-
rithms on the efficiency of the CAS operation.

We implemented several Java classes, which extend Java’s Atomic-
Reference class, that encapsulate calls to native CAS with simple conten-
tion management mechanisms tuned for different hardwares. A key prop-
erty of our algorithms is the support for an almost-transparent inter-
change with Java’s AtomicReference objects, used in implementations of
concurrent data structures. We then evaluate the impact of these algo-
rithms on both a synthetic micro-benchmark and on CAS-based concur-
rent implementations of widely-used data-structures such as stacks and
queues.

Our performance evaluation establishes that lightweight contention
management support can greatly improve performance under medium
and high contention levels while typically incurring only small over-
head when contention is low. In some cases, applying efficient conten-
tion management for CAS operations used by a simpler data-structure
implementation yields better performance than highly optimized imple-
mentations of that data-structure that use native CAS operations di-
rectly.

Keywords: Compare-and-swap, contention management, concurrent
algorithms.



1 Introduction

Many key problems in shared-memory multiprocessors revolve around the coor-
dination of access to shared resources and can be captured as concurrent data
structures [3,17]: abstract data structures that are concurrently accessed by asyn-
chronous threads. Efficient concurrent data structure algorithms are key to the
scalability of applications on multiprocessor machines. Devising efficient and
scalable concurrent algorithms for widely-used data structures such as counters
(e.g., [15,19]), queues (e.g.,[1,7,8,11,12,22,23 25 28], stacks (e.g.,[7,11,13]), pools
(e.g.,[2,4,9]) and hash tables (e.g., [10,18,31,32]), to name a few, is the focus of
intense research.

Modern multiprocessors provide hardware support of atomic read-modify-
write operations in order to facilitate inter-thread coordination and synchroni-
zation. The compare-and-swap (CAS) operation has become the synchronization
primitive of choice for implementing concurrent data structures - both lock-based
and nonblocking [20] - and is supported by hardware in most contemporary mul-
tiprocessor architectures [6,27,29]. The CAS operation takes three arguments: a
memory address®, an old value, and a new value. If the address stores the old
value, it is replaced with the new value; otherwise it is unchanged. The success
or failure of the operation is then reported back to the calling thread. CAS is
widely available and used since its atomic semantics allow threads to read a
shared variable, compute a new value which is a function of the value read, and
write the new value back only if the shared variable was not changed in the
interim by other, concurrent, threads. As proven in Herlihy’s seminal paper [20],
CAS can implement, together with reads and writes, any object in a wait-free
manner.

A key weakness of the CAS operation, known to both researchers and practi-
tioners of concurrent programming, is its performance in the presence of memory
contention. When multiple threads concurrently attempt to apply CAS opera-
tions to the same shared variable, typically at most a single thread will succeed in
changing the shared variable’s value and the CAS operations of all other threads
will fail. Moreover, significant degradation in performance occurs when variables
manipulated by CAS become contention “hot spots”, since failed CAS opera-
tions congest the interconnect and memory devices and slow down successful
CAS operations.

To illustrate this weakness of the CAS op-
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3 In managed programming languages such as Java, the memory address is encap-
sulated by the object on which the CAS operation is invoked and is therefore not
explicitly passed to the CAS operation.



applying CAS operations attempting to change its value.* The number of suc-
cessful CAS operations scales from 1 to 4 threads but then quickly deteriorates,
eventually falling to about 16% of the single thread performance, less than 9%
of the performance of 4 threads. As we show in Section 3, similar performance
degradation occurs on Intel’s Xeon and i7 platforms.

In this work we study the following question: can software-based contention
management improve the efficiency of hardware-provided CAS operations? In
other words, can a software contention management layer, encapsulating invoc-
ations of hardware CAS instructions, significantly improve the performance of
CAS-based concurrent data-structures?

To address this question, we conduct what is, to the best of our knowledge,
the first study on the impact of contention management algorithms on the effi-
ciency of the CAS operation. We implemented several Java classes that extend
Java’s AtomicReference class, and encapsulate calls to direct CAS by contention
management layer. This design allows for an almost transparent plugging of our
classes into existing data structures which make use of Java’s AtomicReference.
We then evaluated the impact of these algorithms on the Xeon, SPARC and i7
platforms by using both a synthetic micro-benchmark and CAS-based concurrent
data-structure implementations of stacks and queues.

We note that the lock-freedom and wait-freedom progress properties aren’t
affected by our contention management algorithms since in all of them a thread
only waits for a bounded period of time.

The idea of employing contention management and backoff techniques to im-
prove performance was widely studied in the context of software transactional
memory (see, e.g., [16,30]) and lock implementations (see, e.g., [5,24]). Backoff
techniques are also used at the higher abstraction level of specific data struc-
ture implementations [13,14,26]. However, this approach adds complexity to the
design of the data-structure and requires careful per-data structure tuning. Our
approach, of adding contention management (and, specifically, backoff) mecha-
nisms at the CAS instruction level, provides a simple and generic solution, in
which tuning can be done per architecture rather than per implementation.

Our performance evaluation establishes that lightweight contention manage-
ment support can significantly improve the performance of concurrent data-
structure implementations as compared with direct use of Java’s Atomic-
Reference class. Our CAS contention management algorithms improve the
throughput of the concurrent data-structure implementations we experimented
with by a factor of up to 12 for medium and high contention levels, typically
incurring only small overhead in low contention levels.

We also compared relatively simple data-structure implementations that use
our CAS contention management classes with more complex implementations
that employ data-structure specific optimizations. We have found that, in some
cases, applying efficient contention management at the level of CAS operations,
used by simpler and non-optimized data-structure implementations, yields better

4 We provide more details on this test in Section 3.



performance than that of highly optimized implementations of the same data-
structure that uses Java’s AtomicReference objects directly.

Our results imply that encapsulating invocations of CAS by lightweight
contention management algorithms is a simple and generic way of significantly
improving the performance of concurrent objects.

The rest of this paper is organized as follows. We describe the contention
management algorithms we implemented in Section 2. We report on our experi-
mental evaluation in Section 3. We conclude the paper in Section 4 with a short
discussion of our results.

2 Contention Management Algorithms

In this section, we describe the Java CAS contention management algorithms
that we implemented and evaluated. These algorithms are implemented as classes
that extend the AtomicReference class of the java.util.concurrent.atomic pack-
age. Each instance of these classes operates on a specific location in memory and
implements the read and CAS methods.?

In some of our algorithms, threads need to access per-thread state associated
with the object. For example, a thread may keep record of the number of CAS
failures it incurred on the object in the past in order to determine how to proceed
if it fails again. Such information is stored as an array of per-thread structures.
To access this information, threads call a registerThread method on the object
to obtain an index of an array entry. This thread index is referred to as TInd in
the pseudo-code. After registering, a thread may call a deregister Thread method
on the object to indicate that it is no longer interested in accessing this object
and that its entry in this object array may be allocated to another thread.f

Technically, a thread’s TInd index is stored as a thread local variable, using
the services of Java’s ThreadLocal class. The TInd index may be retrieved within
the CAS contention management method implementation. However, in some
cases it might be more efficient to retrieve this index at a higher level (for
instance, when CAS is called in a loop until it is successful) and to pass it as an
argument to the methods of the CAS contention management object.

2.1 The ConstantBackoffCAS Algorithm

Algorithm 1 presents the ConstantBackoffCAS class, which employs the sim-
plest contention management algorithm that we implemented. No per-thread
state is required for this algorithm. The read operation simply delegates to the
get method of the AtomicReference object to return the current value of the
reference (line 2). The CAS operation invokes the compareAndSet method on the
AtomicReference superclass, passing to it the old and new operands (line 4). The

® None of the methods of AtomicReference are overridden.

5 An alternative design is to have a global registration/deregistration mechanism so
that the TInd index may be used by a thread for accessing several CAS contention-
management objects.



Algorithm 1: ConstBackoffCAS

1 public class ConstBackoff CAS<V > extends AtomicReference<V>
2 public V read() { return get() }

3 public boolean CAS(V old, V new)

4 if ~compareAndSet(old,new) then
5 wait(WAITING_TIME)

6 return false

7 else return true

CAS operation returns true in line 7 if the native CAS succeeded. If the native
CAS failed, then the thread busy-waits for a platform-dependent period of time,
after which the CAS operation returns (lines 5-6).

2.2 The TimeSliceCAS Algorithm

Algorithm 2 presents the TimeS1liceCAS class, which implements a time-division
contention-management algorithm that, under high contention, assigns different
time-slices to different threads. Each instance of the class has access to a field
regIN which stores the number of threads that are currently registered at the
object.

The read operation simply delegates to the get method of the Atomic-
Reference class (line 9). The CAS operation invokes the compareAndSet method
on the AtomicReference superclass (line 11). If the CAS is successful, the method
returns true (line 12).

If the CAS fails and the number of registered threads exceeds a platform-
dependent level CONC (line 13), then the algorithm attempts to limit the level
of concurrency (that is, the number of threads concurrently attempting CAS on
the object) at any given time to at most CONC. This is done as follows. The
thread picks a random integer slice number in {1, ..., [regN/CONCT} (line 14).
The length of each time-slice is set to 29X/“F nanoseconds, where SLICE is a
platform-dependent integer. The thread waits until its next time-slice starts and
then returns false (lines 15-18).

2.3 The ExpBackoffCAS Algorithm

Algorithm 3 presents the ExpBackoffCAS class, which implements an exponen-
tial backoff contention management algorithm. Each instance of this class has a
failures array, each entry of which — initialized to 0 — stores simple per-registered
thread statistics about the history of successes and failures of past CAS oper-
ations to this object (line 20). The read operation simply delegates to the get
method of the AtomicReference class (line 21).

The CAS operation invokes the compareAndSet method on the Atomic-
Reference superclass (line 23). If the CAS is successful, then the CAS operation
returns ¢rue (line 26).

If the CAS fails, then the thread’s entry in the failures array is incremented
and if its value f is larger than a platform-dependent threshold, the thread waits



Algorithm 2: TimeSliceCAS Algorithm 3: ExpBackoffCAS

8 public class TimeSliceCAS<V > 19 public class ExpBackoffCAS<V>
extends AtomicReference<V> extends AtomicReference<V>

9 public V read() { return get() } 20 Fl\;g;ﬁ%g}g}i}f}glgfes = new int

10 public boolean CAS(V old, V new) i

11 if compareAndSet(old,new) then 21 public V read() { return get() }

12 return true 22 public boolean CAS(V old, V new)

13 if regN > CONC then 23 if compareAndSet(old,new) then

14 int sliceNum = 24 if failures[TInd] > 0 then
Random.nextInt([regN/CONC]) 25 failures[TInd]——

15 & 26 return true
repea

16 currentSlice = 2: elseint f = failures[TInd]++

éi%;?;f?f;ﬁ%é;& 20 if £ > EXP_THRESHOLD then
- omin(c f,m)
17 until sliceNum = currentSlice 30 wait(2 )
18 return false 31 return false

for a period of time proportional to 2™(¢ /™) where ¢ and m are platform-
dependent integer algorithm parameters (lines 28—29).

2.4 The MCS-CAS Algorithm

With the MCS-CAS algorithm, threads may apply their operations in either
low-contention mode or high-contention mode. Initially, a thread starts oper-
ating in low-contention mode, in which it essentially delegates read and CAS
operations to the respective methods of the AtomicReference class. When a
thread incurs CONTENTION_THRESHOLD (a platform-dependent constant)
consecutive CAS failures on a specific memory location, it reverts to operating
in high-contention mode when accessing this location.

In high-contention mode, threads that apply CAS operations to the same
memory location attempt to serialize their operations by forming a queue deter-
mining the order in which their read and CAS operations-pairs will be performed.
Threads wait for a bounded period of time within their read operation and pro-
ceed to perform the read (and later on the CAS) once the thread that precedes
them in the queue (if any) completes its CAS operation.

MCS-CAS implements a variation of the Mellor-Crummey and Scott (MCS)
lock algorithm [24]. Since we would like to maintain the nonblocking semantics of
the CAS operation, a thread ¢ awaits its queue predecessor (if any) for at most
a platform-dependent period of time. If this waiting time expires, ¢ proceeds
with the read operation without further waiting. If all threads operate in high-
contention mode w.r.t. memory location m (and assuming the waiting-time is
sufficiently long), then all CAS operations to m will succeed, since each thread
may read m and later apply its CAS to m without interruption. In practice,
however, threads may apply operations to m concurrently in both low- and
high-contention modes and failures may result. After successfully performing
a platform-dependent number of CAS operations in high-contention mode, a
thread reverts to operating in low-contention mode.



If a thread needs to apply a read that is not followed by a CAS, then it
may directly apply the get method of the AtomicReference super-class as this
method is not overridden by the MCS-CAS class. There may be situations,
however, in which it is not known in advance whether a read will be followed
by a CAS and this depends on the value returned by the read. Such scenarios
will not compromise the correctness and non-blocking progress of MCS-CAS,
but may have adverse effect on performance. This comment applies also to the
ArrayBased algorithm described in Section 2.5. The full pseudo-code of the MCS
algorithm and its description is provided in appendix A.

2.5 The ArrayBasedCAS Algorithm

The ArrayBased algorithm uses an array-based signalling mechanism, in which a
lock owner searches for the next entry in the array on which a thread is waiting
for permission to proceed with its load-CAS operations in order to signal it. Also
in this algorithm, waiting-times are bounded.

There are two key differences between how MCS-CAS and ArrayBasedCAS
attempt to serialize read and CAS operations-pairs to a memory location under
high contention. First, whereas in MCS-CAS a thread signals its successor after
completing a single read/CAS operations-pair, with array based a thread per-
forms a multiple, platform-dependent, number of such operations-pairs before
signaling other waiting threads.

A second difference is that whereas MCS-CAS forms a dynamic queue in
which a thread signals its successor, with array based a thread ¢ that completes
its CAS scans the threads records array starting from t’s entry for finding a wait-
ing thread to be signaled. This implies that every waiting thread will eventually
receive the opportunity to attempt its read/CAS operations-pair.

Since array based does not use a dynamic waiting queue, threads may enter
waiting mode and be signaled without having to perform a successful CAS on
any of the ArrayBasedCAS data-structures. This is in contrast to MCS-CAS,
where a thread must apply a successful CAS to the tail variable for joining the
waiting queue.

Similarly to MCS-CAS, a thread ¢ waits to be signaled for at most a platform-
dependent period of time. If this waiting time expires, ¢ proceeds with its read
operation without further waiting. This ensures that array based is nonblocking.

The full pseudo-code of the array-based algorithm and its description appears
in Appendix B.

3 Evaluation

We conducted our performance evaluation on the SPARC and on Intel’s Xeon
and i7 multi-core CPUs. The SPARC machine comprises an UltraSPARC T2+
(Niagara II) chip containing 8 cores, each core multiplexing 8 hardware threads,
for a total of 64 hardware threads. It runs the 64-bit Solaris 10 operating system
with Java SE 1.6.0 update 23. The Xeon machine comprises a Xeon E7-4870 chip,



containing 10 cores and hyper-threaded to 20 hardware threads. The i7 machine
has an i7-920 CPU comprising 4 cores each supporting 2 hardware threads, for
a total of 8 hardware threads. Both Intel machines run the 64-bit Linux 3.2.1
kernel with Java SE 1.6.0 update 25. All tests were conducted with HotSpot in
64-bit server mode.

Initially we evaluated our CAS contention management algorithms using
a synthetic micro-benchmark and used the results to optimize the platform-
dependent parameters used by the algorithms. We then evaluated the impact
of our algorithms on implementations of widely-used data structures such as
queues and stacks. No explicit threads placement was used.

3.1 The CAS micro-benchmark

To tune and compare our CAS contention management algorithms, we used the
following synthetic CAS benchmark. For every concurrency level k, varying from
1 to the maximum number of supported hardware threads, k threads repeatedly
read the same atomic reference and attempt to CAS its value, for a period of 5
seconds. Before the test begins, each thread generates an array of 128 objects and
during the test it attempts to CAS the value of the shared object to a reference
to one of these objects, in a round-robin manner. In the course of the test, each
thread counts the number of successful CAS operations and these local counters
are summed up at the end of the test.

Using the CAS benchmark, we’ve tuned the parameters used by the algo-
rithms described in Section 2. The values that were chosen as optimal were
those that produced the highest average throughput of all concurrency levels.
These values appear in Table 1.7 Figures 2a-3b show the results of the CAS syn-
thetic benchmarks on the three platforms on which we conducted our tests using
these optimal parameter values. Each data point is the average of 10 independent
executions.

Xeon results :

Figure 2a shows the throughput (the number of successful CAS operations)
on the Xeon machine as a function of the concurrency level. It can be seen
that the throughput of Java CAS falls steeply for concurrency levels of 2 or
more. Whereas a single thread performs approximately 413M successful CAS
operations in the course of the test, the number of successful CAS operations
is only approximately 89M for 2 threads and 62M for 4 threads. For higher
concurrency levels, the number of successes remains in the range of 50M-59M
operations.

In sharp contrast, both the constant wait and exponential backoff CAS algo-
rithms are able to maintain high throughput across the concurrency range. Ex-
ponential backoff is slightly better up until 16 threads, but then its throughput

" The values of the WAITING_TIME and MAX_WAIT parameters are expressed in
milliseconds. Waiting is done by performing a corresponding number of loop itera-
tions.



Table 1: Summary of tuned algorithm parameters.

Xeon

[i7

[sparc

CB-CAS |WAITING-TIME=0.13ms

WAITING-TIME=0.8ms

WAITING-TIME=0.2ms

EXP.THRESHOLD=2
c=28
m = 24

EXP-CAS

EXP.THRESHOLD=2
c=9
m = 27

EXP.-THRESHOLD=1
c=1

m = 15

MCS-CAS|NUM-OPS = 10,000

MAX_WAIT = 0.9ms

CONTENTION_.THRESHOLD=8

NUM-OPS = 10,000
MAX_WAIT = 7.5ms

CONTENTION_.THRESHOLD=8

CONTENTION_.THRESHOLD=14
NUM-OPS = 10
MAX_WAIT = 1lms

AB-CAS [NUM-OPS = 10,000

MAX_WAIT = 0.9ms

CONTENTION_THRESHOLD=2

NUM_OPS = 100,000
MAX_WAIT = 7.5ms

CONTENTION_THRESHOLD=2

CONTENTION_THRESHOLD=14
NUM.OPS = 100
MAX_WAIT = 1lms
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Fig. 2: Xeon & i7 CAS: Number of successful and failed CAS operations as a function

of concurrency level.

declines to below 350M and falls below constant backoff. The throughput of
both these algorithms exceeds that of Java CAS by a factor of more than 4 for 2
threads and their performance boost grows to a factor of between 6-7 for higher

concurrency levels.

The time slice algorithm is the 3’rd performer in this test, outperforming
Java CAS by a factor of between 3-5.6 but providing only between 65%-87% the
throughput of constant and exponential backoff.



The array based algorithm incurs some overhead and performs only approxi-
mately 390M successful operations in the single thread tests. In higher conc-
urrency levels, its throughput exceeds that of Java CAS by a factor of between
2.5-3 but it is consistently outperformed by the simpler backoff algorithms by
a wide margin. MCS-CAS is the worst performer on the Xeon CAS benchmark
and is outperformed by all other algorithms across the concurrency range.

More insights into these results are provided by Figure 2b, which shows the
numbers of CAS failures incurred by the algorithms. All algorithms except for
MCS-CAS incur orders-of-magnitude less failures than Java CAS. Specifically,
for concurrency level 20, Java CAS incurs almost 80M CAS failures, three orders
of magnitude more than constant backoff which incurs approximately 569K fail-
ures. Exponential backoff incurs approximately 184K failures. Array based incurs
approximately 104K failures. MCS-CAS incurs a high number of failures since
the tuning of its parameters sets the contention threshold to 8, implying that it
is much less likely to enter high contention mode than array based. This high
threshold indicates that MCS-CAS is not a good CAS contention management
algorithm for Xeon.

i7 results :

Figure 2c shows the CAS throughput on the i7 machine as a function of the
concurrency level. It can be seen that both the absolute and relative performance
of the evaluated algorithms are very similar to the behavior on the Xeon machine.
The numbers of CAS failures are also very similar to Xeon (for corresponding
concurrency levels) and therefore a figure showing these numbers is not provided.

SPARC results :

Figure 3a shows the throughput of the evaluated algorithms in the CAS
benchmark on the SPARC machine. Unlike Xeon where Java CAS does not scale
at all, on SPARC the performance of Java CAS scales from 1 to 4 threads but
then quickly deteriorates, eventually falling to about 16% of the single thread
performance, less than 9% of the performance of 4 threads. More specifically,
in the single thread test, Java CAS performs slightly more than 48M successful
CAS operations and its performance reaches a peak of almost 90M operations at
4 threads. Java CAS is the worst performer for concurrency levels 12 or higher
and its throughput drops to about 8M for 64 threads.

The exponential backoff CAS is the clear winner on the SPARC CAS bench-
mark. Its throughput is slightly lower than that of Java CAS for concurrency
levels 1 and 2, but for higher concurrency levels it outperforms Java CAS by a
wide margin that grows with concurrency. For concurrency levels 28 or more,
exponential backoff completes more than 7 times successful CAS operations and
the gap peaks for 54 thread where Java CAS is outperformed by a factor of
almost 12.

The constant wait CAS is second best. Since it has smaller overhead than
exponential backoff CAS, it slightly outperforms it in the single thread test,
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Fig. 8: SPARC CAS: Number of successful and failed CAS operations as a function of
concurrency level.

but for higher concurrency levels it is outperformed by exponential backoff by a
margin of up to 56%.

The high overhead of MCS-CAS and array based manifests itself in the single
thread test, where both provide significantly less throughput than all other algo-
rithms. For higher concurrency levels, both MCS-CAS and array based perform
between 20M-60M successful CAS operations, significantly more than Java CAS
but much less than the constant and exponential backoff algorithms.

Figure 3b shows the numbers of CAS failures incurred by the algorithms.
Constant backoff and exponential bakcoff incur the smallest number of failures,
an order of magnitude less failures than Java CAS. Array based, time slice and
MCS-CAS incur more failures than the two backoffs, but significantly less than
Java CAS in almost all concurrency levels.

Zooming into the numbers of successes and failures incurred by MCS-CAS
in low- and high-contention modes, we find that for high concurrency levels,
MCS-CAS obtains approximately 10% of its successes in high-contention mode
but also incurs about 10 times more failures in low-contention mode than in
high-contention mode.

Analysis :

As shown by Figures 2a, 2c and 3a, whereas on the SPARC the number
of successes in the CAS benchmark scales up to 4 or 8 threads (depending on
the contention management algorithm being used), no such scalability occurs on
the Xeon or the i7 platforms. We now explain the architectural reasons for this
difference. This requires some background which we now provide.

The SPARC T2+ processor chip contains 8 cores where each core has a
private 8KB L1 data cache and 2 pipelines with 4 hardware thread contexts per
pipeline, for a total of 64 hardware thread contexts per chip. The L1 data caches,
which are physically indexed and physically tagged, use a write-through policy
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where stores do not allocate. The 8 cores are connected via an intra-chip cross-
bar to 8 L.2 banks. Based on a hash of the physical address, the cross-bar directs
requests to one of the 8 L2 cache banks. The L2 banks are 16-way set associative
and have a total capacity of 4MB. Pairs of banks share DRAM channels. All
store instructions, including CAS, pass over the cross-bar to the L2 cache. For
coherence, the L2, which is inclusive of all L1s, maintains a reverse directory of
which L1 instances hold a given line. L1 lines are either valid or invalid; there
are no cache-to-cache transfers between L1 caches. T2+ processors enjoy very
short cache-coherent communication latencies relative to other processors. On
an otherwise unloaded system, a coherence miss can be satisfied from the L2 in
under 20 cycles.

CAS instructions are implemented at the interface between the cores and the
cross-bar. For ease of implementation, CAS instructions, whether successful or
not, invalidate the line from the issuer’s L1. A subsequent load from that same
address will miss in the L1 and revert to the L2. The cross-bar and L2 have
sufficient bandwidth and latency, relative to the speed of the cores, to allow
load-CAS benchmarks to scale beyond just one thread, as we see in Figure 3a.

We now describe why such scalability is not observed on the XEON and i7
platforms, as seen by Figures 2a and 2c. Modern x86 processors tend to have
deeper cache hierarchies, often adding core-local MESI L2 caches connected via
an on-chip coherent interconnect fabric and backed by a chip-level L3. Intra-chip
inter-core communication is accomplished by L2 cache-to-cache transfers. With
respect to coherence, a store instruction is no different than a CAS — both need
to issue request-to-own bus operations, if necessary, to make sure the underlying
line can be modified. That is, CAS is performed ”locally” in the L1 or L2.

In addition to the cost of obtaining ownership, load-CAS benchmarks may
also be subject to a number of confounding factors on x86. As contention in-
creases and the CAS starts to fail more frequently, branch predictors can be
trained to expect the failure path, so when the CAS is ultimately successful the
thread will incur a branch misprediction penalty. In contrast, T2+ does not have
a branch predictor.

Furthermore, some x86 processors have an optimization that allows specul-
ative coherence probes. If a load is followed in close succession, in program order,
by a store or CAS to the same address, the processor may need to send coherence
request messages to upgrade the line to writable state in its local cache at the
time of the load. This avoids the situation where the load induces a read-to-share
bus transaction followed in short order by a transaction to upgrade the line to
writable state. While useful, under intense communication traffic this facility
can cause excessive invalidation. Finally, we note that coherence arbitration for
lines is not necessarily fair over the short term, and in turn this can impact
performance.
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Fairness :

Table 2: Fairness measures.

Normal stdev|Jain’s Index
Xeon‘SPARC Xeon‘SPARC
Java, 0.291| 0.164 [0.900| 0.961
CB-CAS |0.077] 0.196 [0.992| 0.957
EXP-CAS|0.536| 0.936 |0.761| 0.588
MCS-CAS|0.975| 0.596 |0.563| 0.727
AB-CAS [0.001| 0.822 |1.000| 0.638
TS-CAS [0.829| 0.211 |0.605| 0.946

Table 2 summarizes the fairness measures of the synthetic CAS benchmarks.
We used normalized standard deviation and Jain’s fairness index to quantify the
fairness of individual threads’ throughput for each concurrency level, and then
took the average over all concurrency levels. The widely used Jain’s index for
a set of n samples is the quotient of the square of the sum and the product
of the sum of squares by n. Its value ranges between 1/n (lowest fairness) and
1 (highest fairness). It equals k/n when k threads have the same throughput,
and the other n — k threads are starved. We see that CB-CAS and TS-CAS
provide comparable and even superior fairness to Java CAS while the rest of the
algorithms provide less fairness.

3.2 FIFO queue

To further investigate the impact of our CAS contention management algorithms,
we experimented with the FIFO queue algorithm of Michael and Scott [25] (MS-
queue). We used the Java code provided in Herlihy and Shavit’s book [17] without
any optimizations. The queue is represented by a list of nodes and by head and
tail atomic references to the first and last entries in the list, which become hot
spots under high contention.

We evaluated four versions of the MS-queue: one using Java’s Atomic-
Reference objects (called J-MSQ), and the other three replacing them by
ConstantBackoffCAS, ExpBackoffCAS and TimeSliceCAS objects (respectively
called CB-MSQ, Exp-MSQ and TS-MSQ). MCS and array based were consisten-
tly outperformed and are therefore omitted from the following comparison. We
compared these algorithms with the Java 6 ConcurrentLinkedQueue class from
the java.util.concurrent package,® and the flat-combining queue algorithm [11].”

8 We used a slightly modified version in which direct usage of Java’s Unsafe class was
replaced by an AtomicReference mediator.

9 We used the Java implementation provided by Tel-Aviv University’s Multicore Com-
puting Group.
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Fig. 4: Queue: Number of completed ops as a function concurrency level.

The ConcurrentLinkedQueue class, written by Doug Lea, implements an algo-
rithm (henceforth simply called Java 6 queue) that is also based on Michael and
Scott’s algorithm. However, the Java 6 queue algorithm incorporates several sig-
nificant optimizations such as performing lagged updates of the head and tail
references and using lazySets instead of normal writes.

We conducted the following test. For varying number of threads, each thread
repeatedly performed either an enqueue or a dequeue operation on the data
structure for a period of 5 seconds. The queue is pre-populated by 1000 items.
A pseudo-random sequence of 128 integers is generated by each thread indepen-
dently before the test starts where the i’th operation of thread ¢ is an enqueue
operation if integer (¢ mod 128) is even and is a dequeue operation otherwise.
Each thread counts the number of operations it completes on the queue. These
local counters are summed up at the end of the test. Each data point is the aver-
age of 10 independent runs. In order to make the results comparable between the
different platforms, the same set of 10 pre-generated seeds was used to initialize
the random generator.

Figures 4a-4c show the results of the queue tests on the platforms on which
we ran our experiments, using the optimal parameter values of Table 1.
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Xeon results :

As shown by Figure 4a, CB-MSQ is the best queue implementation, outper-
forming the Java-CAS based queue in all concurrency levels by a factor of up to
6 (for 16 threads).

Surprisingly, CB-MSQ also outperforms the Java 6 queue by a wide margin in
all concurrency levels except 1, in spite of the optimizations incorporated to the
latter. More specifically, in the single thread test, the performance of the Java
6 queue exceeds that of CB-MSQ by approximately 15%. In higher concurrency
levels, however, CB-MSQ outperforms Java 6 queue by a factor of up to 3.5. Java
6 queue is outperformed in all concurrency levels higher than 1 also by EXP-
MSQ and TS-MSQ. The FC queue hardly scales on this test and is outperformed
by almost all algorithms in most concurrency levels.

However, whereas in the Xeon CAS benchmark the constant backoff and
exponential backoff provided nearly the same throughput, in the queue test CB-
MSQ outperforms EXP-MSQ by a wide margin in most concurrency levels.

J-MSQ has the worst performance in all concurrency levels higher than 1. It
is outperformed by CB-MSQ by a factor of between 2-6 in all concurrency levels
higher than 1.

i7 results :

Figure 4b shows the results of the queue test on the i7 machine. The differ-
ences between the algorithms in this test are less significant than on the Xeon.
CB-MSQ and TS-MSQ provide the highest throughput for all concurrency lev-
els except for 1. CB-MSQ peaks at 2 threads providing 124.5M operations, after
which it starts to decline until reaching 81M for 8 threads. T'S-MSQ maintains a
consistent throughput of 90M-100M for concurrency levels higher than 1 and is
the best performer for concurrency levels 6 or more. EXP-MSQ, which was sig-
nificantly better than the Java 6 queue on Xeon, outperforms it only by roughly
5% in this test for concurrency levels of 2-6, and by 9% for 8 threads.

J-MSQ falls from 96.7M for 1 thread to about 40M-44M for higher conc-
urrency levels, exhibiting similar behavior to the Xeon test. FC queue hardly
scales in this test as well, providing the lowest throughput in all concurrency
levels. TS-MSQ outperforms J-MSQ by factor of between 2.1-2.4 for all conc-
urrency levels except for 1.

SPARC results :

Figure 4c shows the results of the queue test on the SPARC machine. Here,
unlike on Xeon and i7, the Java 6 queue has the best throughput in all conc-
urrency levels, outperforming TS-MSQ - which is second best in most conc-
urrency levels - by a factor of up to 2. It seems that the optimizations of the
Java 6 algorithm are more effective on the SPARC architecture. CB-MSQ starts
low but its performance scales up to 30 threads where it slightly exceeds that of
EXP-MSQ.

J-MSQ scales up to 14 threads where it performs approximately 36M queue
operations, but quickly deteriorates in higher concurrency levels and its through-
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put falls to less than 10M operations with 64 threads. This is similar to the
decline exhibited by Java CAS in the CAS benchmark, except that the graph
is “stretched” and the decline is slightly milder. The reason for this change is
that the effective levels of CAS contention on the data-structure’s variables are
reduced in the queue implementations, since the code of the MS-queue algorithm
contains operations other than CAS. For concurrency levels 40 or higher, J-MSQ
is outperformed by EXP-MSQ by a factor of up to 2.4 (for 54 threads). Unlike
on Xeon, the FC queue scales on SPARC up to 20 threads, when its performance
almost equals that of the simple backoff schemes.

3.3 Stack

We also experimented with the lock-free stack algorithm of Treiber.!? The stack
is represented by a list of nodes and a reference to the top-most node is stored
by an AtomicReference object.

We evaluated five versions of the Treiber algorithm: one using Java’s Atomic-
Reference objects (called J-Treiber), and the other three replacing them by the
ConstantBackoffCAS, ExpBackoffCAS and TimeSliceCAS (respectively called
CB-Treiber, Exp-Treiber and TS-Treiber). We also compared with a Java imple-
mentation of the elimination-backoff stack (EB stack) of Hendler et al. [13].11
The elimination-backoff stack copes with high-contention by attempting to pair-
up concurrent push and pop operations that “collide” on entries of a so-called
elimination array. In addition, it employs an exponential-backoff scheme after a
CAS failure.

The structure of the Stack test is identical to that of the Queue test: each
thread repeatedly performs either a push or a pop operation on the stack for a
period of 5 seconds. The stack is pre-populated by 1000 items. A pseudo-random
sequence of 128 bits is generated by each thread independently before the test
starts where the i’th operation of thread ¢ is an push operation if bit (i mod 128)
is true and is a pop operation otherwise. Each data point is the average of 10
independent runs.

Figures 5a-5¢ show the results of the stack tests on the three platforms, using
the optimal parameter values of Table 1.

Xeon results :

Figure 5a shows the results of the stack test on Xeon. As with all Xeon test
results, also in the stack test, the implementation using Java’s AtomicReference
suffers from a steep performance decrease as concurrency levels increase, falling

10 The first non-blocking implementation of a concurrent list-based stack appeared
in the IBM System 370 principles of operation manual in 1983 [21] and used the
double-width compare-and-swap (CAS) primitive. Treiber’s algorithm is a variant
of IBM’s algorithm, in which push operations use a single-word-width CAS instead
of double-width compare-and-swap.

1 We used IBM’s implementation available from the Amino Concurrent Building
Blocks project at http://amino-cbbs.wiki.sourceforge.net/
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Fig. 5: Stack: Number of completed ops as a function concurrency level.

from throughput of approximately 126M stack operations in the single thread
test to about 17M operations for 20 threads, approximately 13% of the single
thread performance.

The EB stack is the winner of the Xeon stack test and CB-Treiber is second-
best lagging behind only slightly. CB-Treiber maintains and even exceeds its high
single-thread throughput across the concurrency range, scaling up from 144M
operations for a single thread to 195M operations for 18 threads, outperforming
J-Treiber by a factor of 11.5 for 18 threads. EXP-Treiber and TS-Treiber are
second best, with performance lagging behind CB-Treiber in all concurrency
levels by between 20%-40%.

i7 results :

Figure 5b shows the results of our evaluation on the i7. The EB stack and
CB-Treiber algorithms are the best performers. CB-Treiber has the upper hand
in low concurrency levels, providing between 5%-10% more throughput than EB
stack for 1-4 threads. It scales up to 4 threads, then starts to deteriorate and
levels up with EB stack at 6 threads, where the throughput of both algorithms
is approximately 186M. EB Stack maintains a consistent throughput of about
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185M through all concurrency levels, outperforming CB-Treiber at 8 threads by
15%.

EXP-Treiber is significantly outperformed by both EB stack and CB-Treiber.
Its throughput declines from about 168M in the single-thread test to approxi-
mately 110M for 8 threads. TS-Treiber starts high at 206M for 1 thread, but
deteriorates to 107M, in high correlation with Exp-Treiber. J-Treiber exhibits
a curve similar to the corresponding Java CAS in the CAS benchmark; it falls
from more than 212M for a single thread to only 37M for 8 threads, and is out-
performed by CB-Treiber in all concurrency levels except for 1 by a wide margin
of up to 6.2.

SPARC results :

Figure bc shows the results of the stack tests on SPARC. J-Treiber scales
up to 6 threads where it reaches its peak performance of 39.5M stack oper-
ations. Then its performance deteriorates with concurrency and reaches less
than 10M operations for 64 threads. From concurrency level 18 and higher, J-
Treiber has the lowest throughput. TS-Treiber has the highest throughput in
most medium and high concurrency levels, with EXP-Treiber mostly second
best. Unlike on XEON, EB stack is almost consistently and significantly outper-
formed on SPARC by all simple backoff algorithms.

TS-Treiber has the highest throughput for 30 threads or more (with the
exception of concurrency levels 62-64) and outperforms J-Treiber in high conc-
urrency levels by a factor of up to 3. CB-Treiber starts low but scales up to
18 where it levels up at about 27M until it starts to deteriorate at 34 threads
and higher, matching and even slightly exceeding T'S-Treiber and EXP-Treiber
above 62 threads.

4 Discussion

We conduct what is, to the best of our knowledge, the first study on the impact
of contention management algorithms on the efficiency of the CAS operation.
We implemented several Java classes that encapsulate calls to Java’s Atomic-
Reference class by CAS contention management algorithms. We then evaluated
the benefits gained by these algorithms on the Xeon, SPARC and i7 platforms
by using both a synthetic benchmark and CAS-based concurrent data-structure
implementations of stacks and queues.

Out of the contention management approaches we have experimented with,
the three simplest algorithms - constant backoff, exponential backoff and time-
slice - yielded the best results, primarily because they have very small overheads.
The more complicated approaches - the MCS-CAS and array-based algorithms
- provided better results than direct calls to AtomicReference in most tests, but
were significantly outperformed by the simpler algorithms.

Our evaluation demonstrates that encapsulating Java’s AtomicReference by
classes that implement lightweight contention management support can improve
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the performance of CAS-based algorithms considerably. We also compared rel-
atively simple data-structure implementations that use our CAS contention
management classes with more complex implementations that employ data-
structure specific optimizations and use AtomicReference objects.

We have found that, in some cases, simpler and non-optimized data-structure
implementations that apply efficient contention management for CAS operations
yield better performance than that of highly optimized implementations of the
same data-structure that use Java’s AtomicReference directly.

Our results imply that encapsulating invocations of CAS by lightweight
contention management classes is a simple and generic way of improving the
performance of concurrent objects.

This work may be extended in several directions. First, we may have over-
looked CAS contention management algorithms that yield better results. Sec-
ond, our methodology tuned the platform-dependent parameters of contention
management algorithms by using the CAS benchmark. Although the generality
of this approach is appealing, tuning these parameters per data-structure may
yield better results. Moreover, a dynamic tuning may provide a general, cross
data-structure, cross CPU, solution.

It would also be interesting to investigate if and how similar approaches
can be used for other atomic-operation related classes in both Java and other
programming languages such as C++.

Finally, combining contention management algorithms at the atomic opera-
tion level with optimizations at the data-structure algorithmic level may yield
more performance gains than applying only one of these approaches separately.
We leave these research directions for future work.
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5 Appendix A: the MSC-CAS algorithm

Algorithm 4: The MCS-CAS class.

32 public class MCS-CAS<V > extends AtomicReference<V>

33 private class ThreadRecord

34 long modeCount

35 boolean contentionMode
36 int next = NONE

37 volatile boolean notify

38 private ThreadRecord[| tRecords = new ThreadRecord[ MAX_THREADS]
39 private Atmiclnteger tail = new AtomicInteger(NONE)

40 public V read()

a1 ThreadRecord r = tRecords[TInd]

a2 if r.contentionMode then

43 r.next = NONE

44 int pred = tail.getAndSet(TInd)

45 if pred != NONE then

a6 tRecords[pred].nezt.set(TInd)

a7 r.notify.set(false)

48 long wait = MAX_WAIT

a9 while —r.notify[TInd] A (wait > 0) do wait=wait-1
50 return get()

51 public boolean CAS(V old, V new)

52 boolean ret = compareAndSet(old,new)

53 ThreadRecord r = tRecords|[TInd]

54 if r.contentionMode then

55 if r.next == NONE then

56 if —tail.compareAndSet(TInd, NONE) then

57 long wait = MAX_WAIT

58 while r.next == NONE A (wait > 0) do wait=wait-1
59 int successor = r.next

60 if successor # NONE then tRecords[successor].notify =true
61 else

62 int successor = r.nezt[TInd]

63 tRecords[successor].notify =true

64 r.modeCount = r.modeCount + 1

65 if r.modeCount=NUM_OPS then

66 r.modeCount = 0, r.contentionMode = false

67 else if ret then

68 r.modeCount = 0

69 else

70 r.modeCount = r.modeCount + 1

71 if r.modeCount == CONTENTION_THRESHOLD then
72 r.contentionMode = true

73 r.modeCount = 0

74 return ret
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Algorithm 4 presents the MCS-CAS class, which implements this algorithm.
Each class instance contains the following two fields. The tail field is an atomic
integer storing the TInd of the thread that is at the tail of the queue of threads
that are currently in high-contention mode. The tRecords field is an array of
per-thread data records, storing the following fields.'? The contentionMode field
is a boolean, indicating whether the respective thread is in high-contention mode
(if true) or in low-contention mode (if false). The next field of the record cor-
responding to t is an atomic integer, used by t’s successor in the queue for
communicating its TInd to ¢. The notify field of the record corresponding to ¢
is an atomic integer array used by t’s predecessor to signal ¢ when it is allowed
to proceed with its read operation. The modeCount field is used by a thread
to determine when it should shift from high-contention mode to low-contention
mode or vice versa as we soon explain.

We start by describing the read operation. If thread ¢ is in low-contention
mode, then it simply delegates to the get method of the AtomicReference object
to return the current reference value in line 50.

If ¢ is in high-contention mode, then it initializes its next entry (line 43) and
swaps the value of tail to its TInd (line 44). After the swap t checks if it has a
predecessor (line 45). If it does, ¢ writes its TInd to the next field of the pred
entry of its predecessor in the tRecords array, and initializes its notify field
(lines 46-47).

Thread ¢ then waits until it is either notified by its predecessor that it can
go ahead or until a platform-dependent waiting time elapses (lines 48—49) and
then returns the current reference value.

Regardless of whether ¢ is in high- or low-contention mode it always leaves the
function by returning the CAS success/failure indication in line 74. We now
describe the CAS operation.

First, the compareAndSet method on the AtomicReference superclass is
called, passing to it the old and new operands (line 52). If ¢ is in high-contention
mode then it checks whether a successor has written its TInd to t’s next field
(line 55) and if so signals that successor that it may stop waiting for ¢ (lines 62—
63).

If no successor wrote its TInd, then ¢ attempts to swap the field tail back
from its TInd to NONE in line s6. If it fails, then it has a successor, in which
case t waits for it to write its TInd for at most a platform-dependent period of
time (lines 57-58) and then re-checks its next field; if it’s non-empty, ¢ signals
the successor (lines 59-60).

Before exiting the CAS method, ¢ increments its modeCount field and shifts
to low-contention mode if the number of CAS operations it applied in high-
contention mode reached a platform-dependent threshold value (lines 64-66).

When ¢ is in low-contention mode its modeCount field is used for counting the
number of consecutive CAS failures. If the current CAS operation was successful,
then ¢ resets modeCount field (line 68). If the CAS failed then the field is incre-

12 To cope with false sharing the records are padded with dummy fields (which we
ensure that are not optimized-out).

23



mented. If the number of consecutive failures now reaches a platform-dependent
threshold value, ¢ shifts to high-contention mode (lines 69-73).

6 Appendix B: the Array-Based CAS algorithm

Algorithm 5: The ArrayBasedCAS class.

75 public class AB-CAS<V > extends AtomicReference<V>

76 private class ThreadRecord

long modeCount
boolean contentionMode
volatile boolean request

private ThreadRecord[] tRecords = new ThreadRecord[ MAX_THREADS]
private AtomicInteger owner = new AtomicInteger(NONE)

public V read()

ThreadRecord r = tRecords|[TInd]
if r.contentionMode A (owner.get() # TInd) then

r.request = true

for 1=0; (i< MAX_WAIT) A r.request; i++ do

if owner.get() == NONE A owner.compareAndSet(NONE, TInd) then
r.request = false , break

if r.request then r.request = false

return get()

boolean CAS(V old, V new)

boolean ret = compareAndSet(old,new)
ThreadRecord r = tRecords|[TInd]
if r.contentionMode then
if ++r.modeCount > NUM_OPS then
r.modeCount
r.contentionMode = false
for i = (TInd+1) ZMAX_THREADS; ¢ # TInd; ¢ = (i+1) A MAX_THREADS
do
if tRecords[i].request then
owner.set (%)
r.request = false
return ret
owner.set(NONE)
else if ret then
r.modeCount = 0
else if ++r.modeCount > CONTENTION_.THRESHOLD then
r.modeCount = 0 , r.contentionMode = true

return ret
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Algorithm 5 presents the ArrayBasedCAS class, which implements a CAS
contention management algorithm that we call array-based CAS. Similarly to
the MCS-CAS algorithm, with the array based CAS threads may apply their
operations in either low-contention or high-contention mode.

Each class instance contains the following fields. The tRecords array stores
for each thread the following fields; contentionMode, request and modeCount,
which are used by the array based algorithm similarly to the way they are used
by MSC-CAS. The owner atomic integer stores the TInd of the current “owner”
of the memory location or NONE if there is no such owner. At any point in time,
the owner thread is the single high-contention mode thread that is permitted to
perform read or CAS operations on the memory location encapsulated by the
ArrayBasedCAS object without waiting.

‘We now describe the read operation. If thread t is in low-contention mode or
is the current owner (line 84), then it simply delegates to the get method of the
AtomicReference object to return the current reference value (line 90). If ¢ is in
high-contention mode and is not the owner, then it initializes its request entry
to true (line 101) and executes the loop of lines 86—88, until it is either signaled,
manages to become the owner, or performs a platform-dependent number of loop
iterations. If ¢ is signaled or becomes the owner in the course of the loop then it
immediately exits it, ensuring that its request entry is reset in line 88 or line 89.
After exiting the loop, ¢ returns the current reference value in line 90.

We now describe the CAS operation. First, the compareAndSet method on
the AtomicReference superclass is called, passing to it the old and new operands
(line 92). If ¢ is in high-contention mode (line 94), then it is the current owner.
An owner performs NUM_OP (a platform-dependent value) number of CAS
operations before releasing ownership. Thread ¢ increments its modeCount field
(line 95). If it has to release ownership, then it resets its mode Count field and exits
high-contention mode (lines 96-97). It then scans the tRcords array and notifies
the next waiting thread (if any) that it now becomes the owner (lines 98-102). If
no waiting thread is found, ¢ sets the value of the owner field to NONE (line 103).

If ¢ is not in high-contention mode, then it proceeds to update its statistics.
If the current CAS was successful (line 104), then t resets its modeCount field
line 105. If the current CAS failed (line 106), thread ¢ increments its modeCount
field which counts the number of consecutive failures in low-contention mode.
If this number now reaches a platform-dependent threshold value (line 106), ¢
resets its modeCount entry and shifts to high-contention mode (lines 107-107).

Regardless of whether ¢ is in high- or low-contention mode it always leaves
the method by returning the CAS success/failure indication in line 108.
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