
Linux Kernel architecture for device drivers

Linux Kernel
architecture for
device drivers

Thomas Petazzoni
Free Electrons
thomas.petazzoni@free-
electrons.com

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 1

Thomas Petazzoni, Free-Electrons

I Free Electrons is a company specialized in Embedded Linux.
It offers

I development services and consulting: board support
package development, kernel and driver development,
embedded Linux system integration

I training: device driver development in the Linux kernel,
embedded Linux system development

I Thomas Petazzoni
I Embedded Linux engineer and trainer at Free Electrons since

January 2008
I Currently works on OMAP Power Management for TI
I Major contributor to Buildroot, a simple and fast embedded

Linux build system
I Also developer of MapOSMatic (talk on Friday!)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 2

Agenda

I Userspace vision: different types of devices

I Implementation of basic character drivers
I Kernel “frameworks” for device drivers

I General concept
I Example of the framebuffer and serial ports frameworks

I The device model
I General concept
I Focus on an USB network driver
I Platform drivers

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 3

Different types of devices

Userspace sees three main types of devices:

1. Character devices is the most common type of devices.
Initially for devices implementing streams of bytes, it is now
used for a wide range of devices: serial ports, framebuffers,
video capture devices, sound devices, input devices, I2C and
SPI gateways, etc.

2. Block devices for storage devices like hard disks, CD-ROM
drives, USB keys, SD/MMC cards, etc.

3. Network devices for wired or wireless interfaces, PPP
connections and others

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 4

Accessing the devices

I Network devices are accessed through network-specific APIs
and tools (socket API of the standard C library, tools such as
ifconfig, route, etc.)

I Block and character devices are represented for userspace
applications as files than can be manipulated using the
traditional file API (open(), read(), write(), close(),
etc.)

I Special file types for block and character devices, associating a
name with a couple (major, minor)

I The kernel only cares about the (type, major, minor), which is
the unique identifier of the device

I Special files traditionaly located in /dev, created by mknod,
either manually or automatically by udev

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 5

Inside the kernel

Device drivers must register themselves to the core kernel and
implement a set of operations specific to their type:

I Character drivers must instantiate and register a cdev

structure and implement file operations

I Block drivers must instantiate and register a gendisk

structure and implement block device operations and a
special make request function

I Network drivers must instantiate and register a net device

structure and implement net device ops

In this presentation, we will first focus on character devices as an
example of device drivers.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 6

General architecture

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 7

File operations

The file operations are generic to all types of files: regular files,
directories, character devices, block devices, etc.

struct file_operations {

struct module *owner;

loff_t (*llseek) (struct file *, loff_t, int);

ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);

ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);

ssize_t (*aio_read) (struct kiocb *, const struct iovec *, unsigned long, loff_t);

ssize_t (*aio_write) (struct kiocb *, const struct iovec *, unsigned long, loff_t);

int (*readdir) (struct file *, void *, filldir_t);

unsigned int (*poll) (struct file *, struct poll_table_struct *);

int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);

int (*mmap) (struct file *, struct vm_area_struct *);

int (*open) (struct inode *, struct file *);

int (*flush) (struct file *, fl_owner_t id);

int (*release) (struct inode *, struct file *);

int (*fsync) (struct file *, struct dentry *, int datasync);

int (*fasync) (int, struct file *, int);

int (*flock) (struct file *, int, struct file_lock *);

[...]

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 8

Character driver skeleton

Implement the read() and write() operations, and instantiate
the file operations structure.

static ssize_t demo_write(struct file *f, const char __user *buf,

size_t len, loff_t *off)

{

[...]

}

static ssize_t demo_read(struct file *f, char __user *buf,

size_t len, loff_t *off)

{

[...]

}

static struct file_operations demo_fops =

{

.owner = THIS_MODULE,

.read = acme_read,

.write = acme_write

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 9

Character driver skeleton

Register and unregister the driver to the kernel using
register chrdev region/unregister chrdev region and
cdev add/cdev del.

static dev_t demo_dev = MKDEV(202,128);

static struct cdev demo_cdev;

static int __init demo_init(void)

{

register_chrdev_region(demo_dev, 1, \demo");

cdev_init(&demo_cdev, &demo_fops);

cdev_add(&demo_cdev, demo_dev, demo_count);

}

static void __exit demo_exit(void)

{

cdev_del(&demo_cdev);

unregister_chrdev_region(demo_dev, 1);

iounmap(demo_buf);

}

module_init(demo_init);

module_exit(demo_exit);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 10

Driver usage in userspace

1. Making it accessible to userspace application by creating a
device node: mknod /dev/demo c 202 128

2. Using normal the normal file API :

fd = open("/dev/demo", O_RDWR);

ret = read(fd, buf, bufsize);

ret = write(fd, buf, bufsize);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 11

From the syscall to your driver

In fs/read write.c

SYSCALL_DEFINE3(read, unsigned int, fd, char __user *, buf, size_t, count)

{

struct file *file;

ssize_t ret = -EBADF;

int fput_needed;

file = fget_light(fd, &fput_needed);

if (file) {

loff_t pos = file_pos_read(file);

ret = vfs_read(file, buf, count, &pos);

file_pos_write(file, pos);

fput_light(file, fput_needed);

}

return ret;

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 12

From the syscall to your driver

In fs/read write.c

ssize_t vfs_read(struct file *file, char __user *buf, size_t count, loff_t *pos)

{

ssize_t ret;

if (!(file->f_mode & FMODE_READ))

return -EBADF;

if (!file->f_op || (!file->f_op->read && !file->f_op->aio_read))

return -EINVAL;

if (unlikely(!access_ok(VERIFY_WRITE, buf, count)))

return -EFAULT;

ret = rw_verify_area(READ, file, pos, count);

if (ret >= 0) {

count = ret;

if (file->f_op->read)

ret = file->f_op->read(file, buf, count, pos);

else

ret = do_sync_read(file, buf, count, pos);

if (ret > 0) {

fsnotify_access(file->f_path.dentry);

add_rchar(current, ret);

}

inc_syscr(current);

}

return ret;

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 13

ioctl mechanism

I The file operations set of operations, while being
sufficient for regular files, isn’t sufficient as an API to the wide
range of character and block devices

I Device-specific operations such as changing the speed of a
serial port, setting the volume on a soundcard, configuring
video-related parameters on a framebuffer are not handled by
the file operations

I One of the operations, ioctl() allows to extend the
capabilities of a driver with driver-specific operations

I In userspace: int ioctl(int d, int request, ...);
I d, the file descriptor
I request, a driver-specific integer identifying the operation
I ..., zero or one argument.

I In kernel space: int (*ioctl) (struct inode *, struct

file *, unsigned int, unsigned long);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 14

ioctl example, kernel side

Implement the demo ioctl() operation and reference it in the
file operations structure:

static int demo_ioctl(struct inode *inode,

struct file *file,

unsigned int cmd,

unsigned long arg)

{

char __user *argp = (char __user *)arg;

switch (cmd) {

case DEMO_CMD1:

/* Something */

return 0;

default:

return -ENOTTY;

}

}

static const struct file_operations demo_fops =

{

[...]

.ioctl = demo_ioctl,

[...]

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 15

ioctl example, userspace side

Use the ioctl() system call.

int fd, val;

fd = open("/dev/demo", O_RDWR);

ioctl(fd, DEMO_CMD1, & val);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 16

Kernel framework

I Most device drivers are not directly implemented as character
devices or block devices

I They are implemented under a framework, specific to a device
type (framebuffer, V4L, serial, etc.)

I The framework allows to factorize the common parts of drivers
for the same type of devices

I From userspace, they are still seen as normal character devices
I The framework allows to provide a coherent userspace

interface (ioctl numbering and semantic, etc.) for every type
of device, regardless of the driver

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 17

Example of frameworks

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 18

Example of the framebuffer framework

I Kernel option CONFIG FB

I Implemented in drivers/video/
I fb.c, fbmem.c, fbmon.c, fbcmap.c, fbsysfs.c, modedb.c, fbcvt.c

I Implements a single character driver (through
file operations), registers the major number and allocates
minors, defines and implements the user/kernel API

I First part of include/linux/fb.h

I Defines the set of operations a framebuffer driver must
implement and helper functions for the drivers

I struct fb ops
I Second part of include/linux/fb.h

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 19

The framebuffer driver

I Must implement some or all operations defined in struct
fb ops. Those operations are framebuffer-specific.

I xxx open(), xxx read(), xxx write(), xxx release(),
xxx checkvar(), xxx setpar(), xxx setcolreg(),
xxx blank(), xxx pan display(), xxx fillrect(),
xxx copyarea(), xxx imageblit(), xxx cursor(),
xxx rotate(), xxx sync(), xxx get caps(), etc.

I Must allocate a fb info structure with
framebuffer alloc(), set the ->fbops field to the
operation structure, and register the framebuffer device with
register framebuffer()

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 20

Skeleton example

static int xxx_open(struct fb_info *info, int user) {}

static int xxx_release(struct fb_info *info, int user) {}

static int xxx_check_var(struct fb_var_screeninfo *var, struct fb_info *info) {}

static int xxx_set_par(struct fb_info *info) {}

static struct fb_ops xxx_ops = {

.owner = THIS_MODULE,

.fb_open = xxxfb_open,

.fb_release = xxxfb_release,

.fb_check_var = xxxfb_check_var,

.fb_set_par = xxxfb_set_par,

[...]

};

init()

{

struct fb_info *info;

info = framebuffer_alloc(sizeof(struct xxx_par), device);

info->fbops = &xxxfb_ops;

[...]

register_framebuffer(info);

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 21

Other example of framework: serial driver

1. The driver registers a single uart driver structure, that
contains a few informations such as major, starting minor,
number of supported serial ports, etc.

I Functions uart register driver() and
uart unregister driver()

2. For each serial port detected, the driver registers a uart port
structure, which points to a uart ops structure and contains
other informations about the serial port

I Functions uart add one port() and
uart remove one port()

3. The driver implements some or all of the methods in the
uart ops structure

I tx empty(), set mctrl(), get mctrl(), stop tx(),
start tx(), send xchar(), stop rx(), enable ms(),
break ctl(), startup(), shutdown(), flush buffer(),
set termios(), etc.

I All these methods receive as argument at least a uart port

structure, the device on which the method applies. It is similar
to the this pointer in object-oriented languages

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 22

Device and driver model

I One of the features that came with the 2.6 kernel is a unified
device and driver model

I Instead of different ad-hoc mechanisms in each subsystem, the
device model unifies the vision of the devices, drivers, their
organization and relationships

I Allows to minimize code duplication, provide common
facilities, more coherency in the code organization

I Defines base structure types: struct device, struct
driver, struct bus type

I Is visible in userspace through the sysfs filesystem,
traditionnaly mounted under /sys

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 23

Bus driver

I Core element of the device model

I A single bus driver for each type of bus: USB, PCI, SPI,
MMC, I2C, etc.

I This driver is responsibles for
I Registering the bus type (bus type structure)
I Allow the registration of adapter/interface drivers (USB

controllers, I2C controllers, SPI controllers). These are the
hardware devices capable of detecting and providing access to
the devices connected to the bus

I Allow the registration of device drivers (USB devices, I2C
devices, SPI devices). These are the hardware devices
connected to the different buses.

I Matching the device drivers against the detected devices

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 24

Adapter, bus and device drivers

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 25

Example of device driver

To illustrate how drivers are implemented to work with the device
model, we will use an USB network adapter driver. We will
therefore limit ourselves to device drivers and won’t cover adapter
drivers.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 26

Device identifiers

I Defines the set of devices that this driver can manage, so that
the USB core knows which devices this driver can handle.

I The MODULE DEVICE TABLE macro allows depmod to extract
at compile the relation between device identifiers and drivers,
so that drivers can be loaded automatically by udev. See
/lib/modules/$(uname -r)/modules.{alias,usbmap}.

static struct usb_device_id rtl8150_table[] = {

{USB_DEVICE(VENDOR_ID_REALTEK, PRODUCT_ID_RTL8150)},

{USB_DEVICE(VENDOR_ID_MELCO, PRODUCT_ID_LUAKTX)},

{USB_DEVICE(VENDOR_ID_MICRONET, PRODUCT_ID_SP128AR)},

{USB_DEVICE(VENDOR_ID_LONGSHINE, PRODUCT_ID_LCS8138TX)},

{USB_DEVICE(VENDOR_ID_OQO, PRODUCT_ID_RTL8150)},

{USB_DEVICE(VENDOR_ID_ZYXEL, PRODUCT_ID_PRESTIGE)},

{}

};

MODULE_DEVICE_TABLE(usb, rtl8150_table);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 27

Instantation of usb driver

I Instantiates the usb driver structure. This structure is a
specialization of struct driver defined by the driver model.
We have an example of inheritance here.

static struct usb_driver rtl8150_driver = {

.name = "rtl8150",

.probe = rtl8150_probe,

.disconnect = rtl8150_disconnect,

.id_table = rtl8150_table,

.suspend = rtl8150_suspend,

.resume = rtl8150_resume

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 28

Registration of the driver

When the driver is loaded and unloaded, it simply registers and
unregisters itself as an USB device driver.

static int __init usb_rtl8150_init(void)

{

return usb_register(&rtl8150_driver);

}

static void __exit usb_rtl8150_exit(void)

{

usb_deregister(&rtl8150_driver);

}

module_init(usb_rtl8150_init);

module_exit(usb_rtl8150_exit);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 29

Probe call sequence (1/3)

At boot time, the USB device driver registers itself to the generic
BUS infrastructure

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 30

Probe call sequence (2/3)

When a bus adapter driver detects a device, it notifies the generic
USB bus infrastructure

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 31

Probe call sequence (3/3)

The generic USB bus infrastructure knows which driver is capable
of handling the detected device. It calls the probe() method of
that driver

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 32

Probe method

I The probe() method receives as argument a structure
describing the device, usually specialized by the bus
infrastructure (pci dev, usb interface, etc.)

I This function is responsible for
I Initializing the device, mapping I/O memory, registering the

interrupt handlers. The bus infrastructure provides methods to
get the addresses, interrupts numbers and other device-specific
information.

I Registering the device to the proper kernel framework, for
example the network infrastructure.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 33

rtl8150 probe

static int rtl8150_probe(struct usb_interface *intf,

const struct usb_device_id *id)

{

rtl8150_t *dev;

struct net_device *netdev;

netdev = alloc_etherdev(sizeof(rtl8150_t));

dev = netdev_priv(netdev);

tasklet_init(&dev->tl, rx_fixup, (unsigned long)dev);

spin_lock_init(&dev->rx_pool_lock);

netdev->netdev_ops = &rtl8150_netdev_ops;

alloc_all_urbs(dev);

usb_set_intfdata(intf, dev);

SET_NETDEV_DEV(netdev, &intf->dev);

register_netdev(netdev);

return 0;

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 34

The model is recursive

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 35

Platform drivers

I On embedded systems, devices are often not connected
through a bus allowing enumeration, hotplugging, and
providing unique identifiers for devices.

I However, we still want the devices to be part of the device
model.

I The solution to this is the platform driver / platform device
infrastructure.

I The platform devices are the devices that are directly
connected to the CPU, without any kind of bus.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 36

Initialization of a platform driver

Example of the iMX serial port driver, in drivers/serial/imx.c.
The driver instantiates a platform driver structure:

static struct platform_driver serial_imx_driver = {

.probe = serial_imx_probe,

.remove = serial_imx_remove,

.driver = {

.name = "imx-uart",

.owner = THIS_MODULE,

},

};

And registers/unregisters it at init/cleanup:

static int __init imx_serial_init(void)

{

platform_driver_register(&serial_imx_driver);

}

static void __ext imx_serial_cleanup(void)

{

platform_driver_unregister(&serial_imx_driver);

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 37

Instantiation of a platform device

As platform devices cannot be detected dynamically, they are
statically defined:

I by direct instantiation of platform device structures, as
done on ARM

I by using a device tree, as done on PowerPC

Example on ARM, where the instantiation is done in the board
specific code (arch/arm/mach-imx/mx1ads.c)

static struct platform_device imx_uart1_device = {

.name = "imx-uart",

.id = 0,

.num_resources = ARRAY_SIZE(imx_uart1_resources),

.resource = imx_uart1_resources,

.dev = {

.platform_data = &uart_pdata,

}

};

The matching between a device and the driver is simply done using
the name.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 38

Registration of platform devices

The device is part of a list:

static struct platform_device *devices[] __initdata = {

&cs89x0_device,

&imx_uart1_device,

&imx_uart2_device,

};

And the list of devices is added to the system during the board
initialization

static void __init mx1ads_init(void)

{

[...]

platform_add_devices(devices, ARRAY_SIZE(devices));

[...]

}

MACHINE_START(MX1ADS, "Freescale MX1ADS")

[...]

.init_machine = mx1ads_init,

MACHINE_END

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 39

The resource mechanism

I Each device managed by a particular driver typically uses
different hardware resources: different addresses for the I/O
registers, different DMA channel, different IRQ line, etc.

I These informations can be represented using the kernel
struct resource, and an array of resources is associated to
a platform device definition.

static struct resource imx_uart1_resources[] = {

[0] = {

.start = 0x00206000,

.end = 0x002060FF,

.flags = IORESOURCE_MEM,

},

[1] = {

.start = (UART1_MINT_RX),

.end = (UART1_MINT_RX),

.flags = IORESOURCE_IRQ,

},

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 40

The platform data mechanism

I In addition to the well-defined resources, some driver require
driver-specific configuration for each platform device

I These can be specified using the platform data field of the
struct device

I As it is a void * pointer, it can be used to pass any type of
data to the driver

I In the case of the iMX driver, the platform data is a struct

imxuart platform data structure, referenced from the
platform device structure

static struct imxuart_platform_data uart_pdata = {

.flags = IMXUART_HAVE_RTSCTS,

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 41

Driver-specific data structure

I Typically, device drivers subclass the type-specific data
structure that they must instantiate to register their device to
the upper layer framework

I For example, serial drivers subclass uart port, network
drivers subclass netdev, framebuffer drivers subclass fb info

I This inheritance is done by aggregation or by reference

struct imx_port {

struct uart_port port;

struct timer_list timer;

unsigned int old_status;

int txirq,rxirq,rtsirq;

unsigned int have_rtscts:1;

unsigned int use_irda:1;

unsigned int irda_inv_rx:1;

unsigned int irda_inv_tx:1;

unsigned short trcv_delay; /* transceiver delay */

struct clk *clk;

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 42

probe() method for platform devices

I Just like the usual probe() methods, it receives the
platform device pointer, uses different utility functions to
find the corresponding resources, and registers the device to
the corresponding upper layer.

static int serial_imx_probe(struct platform_device *pdev)

{

struct imx_port *sport;

struct imxuart_platform_data *pdata;

void __iomem *base;

struct resource *res;

sport = kzalloc(sizeof(*sport), GFP_KERNEL);

res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

base = ioremap(res->start, PAGE_SIZE);

sport->port.dev = &pdev->dev;

sport->port.mapbase = res->start;

sport->port.membase = base;

sport->port.type = PORT_IMX,

sport->port.iotype = UPIO_MEM;

sport->port.irq = platform_get_irq(pdev, 0);

sport->rxirq = platform_get_irq(pdev, 0);

sport->txirq = platform_get_irq(pdev, 1);

sport->rtsirq = platform_get_irq(pdev, 2);

[...]

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 43

probe() method for platform devices

sport->port.fifosize = 32;

sport->port.ops = &imx_pops;

sport->clk = clk_get(&pdev->dev, "uart");

clk_enable(sport->clk);

sport->port.uartclk = clk_get_rate(sport->clk);

imx_ports[pdev->id] = sport;

pdata = pdev->dev.platform_data;

if (pdata && (pdata->flags & IMXUART_HAVE_RTSCTS))

sport->have_rtscts = 1;

ret = uart_add_one_port(&imx_reg, &sport->port);

if (ret)

goto deinit;

platform_set_drvdata(pdev, &sport->port);

return 0;

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 44

Other non-dynamic busses

I In addition to the special platform bus, there are some other
busses that do not support dynamic enumeration and
identification of devices. For example: I2C and SPI.

I For these busses, a list of devices connected to the bus is
hardcoded into the board-specific informations and is
registered using i2c register board info() or
spi register board info(). The binding between the
device is also done using a string identifier.

static struct i2c_board_info pcm038_i2c_devices[] = {

{ I2C_BOARD_INFO("at24", 0x52),

.platform_data = &board_eeprom, },

{ I2C_BOARD_INFO("pcf8563", 0x51), },

{ I2C_BOARD_INFO("lm75", 0x4a), }

};

static void __init pcm038_init(void) {

[...]

i2c_register_board_info(0, pcm038_i2c_devices,

ARRAY_SIZE(pcm038_i2c_devices));

[...]

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 45

Typical organization of a driver

A driver typically

I Defines a driver-specific data structure to keep track of per-device
state, this structure often subclass the type-specific structure for this type
of device

I Implements a set of helper functions, interrupt handlers, etc.

I Implements some or all of the operations, as specified by the framework
in which the device will be subscribed

I Instantiate the operation table

I Defines a probe() method that allocates the “state” structure, initializes
the device and registers it to the upper layer framework. Similarly defines
a corresponding remove() method

I Instantiate a SOMEBUS driver structure that references the probe() and
remove() methods and give the bus infrastructure some way of binding a
device to this driver (by name, by identifier, etc.)

I In the driver initialization function, register as a device driver to the
bus-specific infrastructure. In the driver cleanup function, unregister
from the bus-specific infrastructure.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 46

Conclusion

I The Linux kernel now has a coherent and uniform model to
organize busses, drivers and devices. This model, and the
Linux kernel in general, uses some concept of object-oriented
programming to structure the code.

I The organization of device drivers has been greatly simplified
and unified by using this model. Functionalities such as udev
have been made possible using this unified model.

Questions ?
Slides available under Creative Commons CC-BY-SA on
http://www.free-electrons.com

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 47

http://www.free-electrons.com

