Linux Productivity Tools

Ketan M. (km@@ornl.gov)
Oak Ridge National Laboratory

LISA19
October 2019
Portland, OR, USA

Table of Contents

Part 1: Overview and Logistics

Part 2: Basics

Part 3: Streams, pipe and redirection

Part 4: Classic Tools: find, grep, awk, sed

Part 5: Session Management: tmux

Part 6: ssh: config and tunneling

Part 7: Bash Tools

Part 8: Miscellaneous Utilities

Summary

Practice and Exercises (if time permits else Offline)

Part 1: Overview and Logistics

orientation and practical stuff

back to toc

Overview: What shall we learn

* Build powerful command-lines
* We will use Bash shell with default key-bindings
* We will assume GNU/Linux and call it Linux

* Tools that are available (or easily installable) on most installations
* Goal is to be efficient and effective rather than to be an "expert"

* Benefits: save time, efficient for system, long-term payback

* We do not cover: Sysadmin, security, networking

Slides and practice data for download

* Slides and two text files available for practice

https://code.ornl.gov/km®@/lisal9

* states.txt
e Tabular data with five columns

* prose.txt
* Prose with sentences and paragraphs

https://code.ornl.gov/km0/lisa19

About You and Me

* Basic exposure to Linux is assumed but feel free to interrupt and ask
guestions
* common commands, basic understanding of files and directories, editing etc.

 About Me

* Linux Engineer at Oak Ridge National Laboratory
e Command line enthusiast

part 2: Basics

welcome to the school of command line wizardry!

back to toc

Anatomy of a Typical Command

optons ~ comman d argument

l |

ls -1h /etc | grep 'conf'

! 1

mmmmmm d pipe

Know the System

id: know yourself

w: who is logged in (- £ to find where they are logging in from)

1sblk: list block storage devices

1scpu: display info about the CPUs

1lstopo: display hardware topology (need hwloc, hwloc-gui packages)

free: free and used memory (try free -g)

1sb release: distribution info (try -a)

PSO: Use ctrl-c to kill stuck commands or long running ones
PS1: Some commands may not be available: which <cmdname> to verify

Know the Processes

* List the processes by name, pid etc: ps (commonly used flags: aux)

* ps implementations: POSIX, GNU and BSD!
* implementations differ in behavior

» determined by style of options: POSIX (-), GNU (--), BSD (no dash) before
options

* Display processes: top, htop, atop
* Be nice and fly under the radar, eg.:
*nice -n 19 tar cvzf archive.tgz large dir

* Kill a process: kill <pid>
* to kill zombie processes
* hung sessions

Many ways to get help

°man nano

* Manual pages

* Organized section-wise -- one page for each section (if exists)
*wget --help

* Handy for quick syntax reference

e info curl
* Modern

* Browse /usr/share/doc
e Usually a README file has info and examples
* Browse with a web-browser

Working with Files

cat for relatively short files
cat states. txt

* less is more thanmore for long files
less /etc/ntp.conf

tail -£f to watch afile growing live

What can you do about binary files? (not much)
* strings will print the printable strings of file
* od will print file in octal format
* cmp will compare them byte by byte

* Compare text files with
e comm sortedfilesline by line
« diff differences line by line -- used most frequently, rich options set, see man

Internet on command line

e curl is commonly used as command to download from the web:
curl -O http://www.gutenberg.org/files/4300/4300-0. txt
curl ifconfig.me #quickly find my IP

* wget is similar:
wget http://www.gutenberg.org/files/4300/4300-0.txt
wget https://kubernetespodcast.com/episodes/KPfGep{001..062} .mp3

* lynx can be a useful text-based browser:
 avoid pesky ads
* when internet is slow / only care about text eg. lLynx text.npr.org
* read local html pages, eg. those found in /usr/share/doc
« w3mand 1links are other text-based browsers

Be a command line ninja: Navigation

MAC users: terminal pref > profile > keyboard settings > Use option as meta key

kubectl set subject rolebindingA admin --user=1df --group=nsed
A A A

alt-b alt-f

cursor
ctrl-a / ctrl-xx ctrl-e

ctrl-] <char> moves cursor to 1%t occurrence of <char> to right

ctrl-alt-] <char> moves cursor to 1%t occurrence of <char> to left

Be a command line ninja: Deletion

kubectl get -o template pod/web-pod-13je7 --template={{.status.phase}}

use ctrl-y to paste back the deleted

wildcards: characters that expand at runtime

* * any number of characters:
ls -1h /etc/*.conf

* ? expands to one character:
1s -1d ? 27 °??°?

* Negation(')eg.1ls -1d [!'0-9]*

* Escaping and quoting
* \ for escaping a wildcard

) _ }prevent expansion
' for quoting a wildcard

Quick and Useful Tricks

11 repeats the last command

'S change command keep last argument:
* cat states.txt # file too long to fit screen
* less '$ #reopen it with less

! * change command keep all arguments:
* head states.txt | grep '"Al' #should be tail
* tail '* #no need to type the rest of the command

alt-. #fipaste last argument of previous command

alt-<n>-alt-. #paste nth argument of previous command

More Tricks

* >X.txXt #create an empty file / "zero" a large file

cmd #tag to tag a hard to remember command

ctrl-1l #clear terminal

cd - fchange to previous dir

cd fchange to homedir

ctrl-r #recall from history

ctrl-d #logout from terminal

Part 3: Streams, pipe and redirection

| am sure a gardener designed them!

back to toc

Terminal I/O Streams and Redirection

Three I/O streams on terminal:
standard input (stdin), standard output (stdout) and standard error
(stderr)

Represented by "file descriptors” (think of them as ids):
0 for stdin, 1 for stdout, 2 for stderr

Angle brackets are used for redirection to/from commands:
* > tosend to astream
* < toreceive from a stream

>> to append to a stream

<< to in-place append (used in "heredoc")

<<< is used in "herestring" (not covering today)

& is used to "write into" a stream, eg. &1 to write into stdout

Anatomy of a redirection using streams

mmmmmm d send

l l

npm install -g tldr > out.txt 2 > err.txt

1

send stderr

More Redirection Examples

* Send stdout and stderr to same file:
pip install rtv > stdouterr.txt 2>&l
ac -pd &> stdouterr.txt #short form (bash v4+)

* Disregard both stdout and stderr:

wget imgs.xkcd.com/comics/command line fu.png &> /dev/null

* Read from stdin as output of a command
diff <(ls dirA) <(ls dirB)

* Append stdout to a log file:
sudo yum -y update >> yum update.log

The pipe: run second command using output of first!

* A pipe is a Linux concept that automates redirecting the output of one
command as input to a next command.

* Use of pipe leads to powerful combinations of independent commands. eg.:
find .| less #read long list of files page wise
head prose.txt | grep -1 'little'

echo $PATH | tr ':' '\n'#translate : to newline
history | tail #last 10 commands

free -m|grep Mem: |awk '{print $4}' #available memory

du -s *|sort -n|tail #10 biggest files/dirs in pwd

Demystifying and debugging piped commands

free -m|grep Mem: |awk '{print $4}'
is equivalent to running the following 4 commandes:

free -m > tmpl. txt

grep Mem: tmpl.txt > tmp2.txt

awk '{print $4}' tmp2.txt

rm tmpl.txt tmp2.txt

Reducing the piped stages is often efficient and easier to debug. For instance, the above
pipeline may be reduced like so:

free -m|awk '/Mem:/{print $4}' #more on awk later

More pipe examples

#get pdf of a man page
man -t diff | ps2pdf - diffhelp.pdf

#fget today's files
ls -al --time-style=+%D | grep date +%D

#top 10 most frequently used commands
history | awk '{a[$2]++}END{for(i in a) {print
a[i] " " 1}}'" | sort -rn | head

Commands that only accept literal args

* Most commands receive input from stdin (so, pipe) and file, eg.
wc < states.txt #0k
wc states.txt #o0k

* There are some exceptions though

* Some receive input only from stdin and not from file, eg.
*tr 'N' 'n’ states.txt #(strangely) NOT OK
e tr 'N' 'n’ < states.txt #o0k

* Some receive input neither from stdin nor from file, eg.
* echo < states.txt #NOT OK (assuming want to print file contents)
* echo states.txt #NOT OK (assuming want to print file contents)
* echo "Hello miss, howdy?" #ok, takes literal args
* cp, touch, rm, chmod are other examples

xargs: When pipe is not enough!

* Some commands do not read from standard input, pipe or file; they
need arguments

* Additionally, some systems limit on number of arguments on
command line
* for example: rm tmpdir/*.log will fail if there are too many . 1og files

* xargs fixes both problems
e Converts standard input to commands into literal args

 Partitions the args to a permitted number and runs the command over them
repeatedly

* For instance, create files with names on the somelist. txt file:
xargs touch < somelist. txt

GNU Parallel

* Run tasks in parallel from command-line
* Similar to xargs in syntax

* Treats parameters as independent arguments to command and runs
command on them in parallel

* Synchronized output -- as if commands were run sequentially
* Configurable number of parallel jobs

* Well suited to run simple commands or scripts on compute nodes to
leverage multicore architectures

* May need to install as not available by default :
www.gnu.org/software/parallel

https://www.gnu.org/software/parallel/

GNU Parallel Examples*

- Find all html files and move them to a directory
find . -name '* html' | parallel mv {} web/

- Delete pict0000.jpg to pict9999.jpg files (16 parallel jobs)
seq -w 0 9999 | parallel -j 16 rm pict{}.jpg

- Create thumbnails for all picture files (imagemagick software needed)
ls *.jpg | parallel convert -geometry 120 {} thumb {}

- Download from a list of urls and report failed downloads
cat urlfile | parallel "wget {} 2>errors. txt"

*From the gnu parallel 2018 book at https://doi.org/10.5281/zenodo.1146014

Part 4: Classic Tools: find, grep, awk, sed

the evergreens

back to toc

find: search files based on criteria

criteria (optional)

!

space
e /
find /opt -name "README*" -exec wc -1 {} +

| |

action (optional)

Features of find

e path: may have multiple paths, eg. find /usr /opt -iname "*.so"

e criteria

-name, -iname, -type (f,d,l), -inum <n>

-user <uname>, -group <gname>, -perm (ugo)

-size +x[c], -empty, -newer <fname>

-atime +x, -amin +x, -mmin -x, -mtime -x

criteria may be combined with logical and (-a) and or (-0)

e action

-print : default action, display

-1s :runls -1lids command on each resulting file

-exec cmd : execute command

-ok cmd like exec except that command executed after user confirmation

find Examples

efind . -type £ -name "*_ txt" #all text files
in current dir

*find . -maxdepth 1 #equivalent to ls

* find ./somedir -type f -size +512M -print #all
files larger than 512M in ./somedir

efind . \(-name “*.c¢” -o -name “*.h” \) #all
files that have either .c or .h extension

grep: Search for patterns in text

* grep originally was a command "global regular expression print" or
'g/re/p'in the ed text editor

* |t was so useful that a separate utility called grep was developed
* grep Wwill fetch lines from a text that has a match for a specific pattern

» Useful to find lines with a specific pattern in a large body of text, eg.:
* look for a process in a list of processes
* spot check a large number of files for occurrence of a pattern
* exclude some text from a large body of text

Anatomy of grep

options

1 input file

L

grep -i -n 'col’' states.txt

1

regular expression

Useful grep Options

—-1i:ignore case

-n: display line numbers along with lines

-v: print inverse ie. lines that do not match the regular expression
—-c: print a count of lines of matches

-A<n>: include n lines after the match

-B<n>: include n lines before the match

-o: print only the matched expression (not the whole line)

-E: allows "extended" regular expressions that includes (more later)

Regular Expressions

* A regular expression (regex) is an expression that matches a pattern.

* Example pattern Linux is fun.
So is music.
Traffic not so much.

* regex:»|=|=| =% no match

* regex:[¢[u[~| =2 one match =» "Linux is fun."

* regex:|i|s =» two matches =» "Linux is fun." and "So is music."
*regex:[" [s|°| = one match = "So is music."

* regex:|i|c<|-|s|=® one match = "So is music."

Regular Expressions-contd.

* . is a Special character; will match any character (except newline)

* Character class: one of the items in the [] will match, sequences
allowed
e '[Cc]lat' will match Cat and cat
e '[£-h]ate' will match fate, gate, hate
e 'b[*eo]at' will match brat but not boat or beat

» Extended regular expressions (use with egrep or grep -E)

* "*"'matches zero or more, '+' matches one or more, '?' matches zero or one
occurrence of the previous character

* '|"is a delimiter for multiple patterns, '(' and ')’ let you group patterns
* {} may be used to specify a repetition range

grep Examples

* Lines that end with two vowels:
grep '[aeiou] [aeiou]$' prose.txt

* Check 5 lines before and after the line where term 'little' occurs:
grep -A5 -B5 'little' prose.txt

* Comment commands and search later from history
some -hard 'to' \remember --complex=command #success
history | grep '#success'

* find+grep is one very useful combination
find . -iname "*.py" -exec grep 'add[_ -]item' {} +

awk: Extract and Manipulate Data

* A programmable filter that reads and processes input line by line

e Rich built-in features:

* explicit fields (S1 ... SNF) & records management
 functions (math, string manipulation, etc.)
* regular expressions parsing and filtering

 Features like variables, loops, conditionals, associative arrays, user-
defined functions

Highly recommended book: The awk programming language by Aho, Kernighan

and Weinberger, ia802309.us.archive.org/25/items/pdfy-MgNOH1joloDVolC7/The_AWK_Programming_Language.pdf

Anatomy of an awk program

Often used as one-line idiom of the form:
awk 'awk prog' file.txt
OR
command | awk 'awk_prog'

where awk progis:

BEGIN{actions} #run one time before input data is read

/pattern or condition/ {actions} #run for each line of input

END{actions} #run one time after input processing

At least one of the BEGIN, /pattern or condition/, {}, END section needed

awk patterns and actions

* A pattern is a regex that matches (or not) to an input line, eg.
/New/ # any line that contains ‘New’
/~2[0-9]1+ / # beginning with numbers
/ (POST | PUT |DELETE)/ # has specific words

* An action is a sequence of ops, eg.
{print $1, SNF} #print first and last field/col
{print log($2)} #get log of second field/col
{for (i=1;i<x;i++) {sum += $3}} #get cumulative sum

* User defined functions may be defined in any action block

awk Examples

awk '{print $1}' states.txt

awk '/New/{print $1}' states.txt

awk NF>0 prose.txt #skip blank lines

awk '{print NF, $0}' states.txt #num fields
awk '{print length($0)}' states.txt #num chars
awk 'BEGIN{print substr("New York",5)}' #York

sed: parse and transform text

* sed is a stream editor

* Looks for a pattern in text and applies changes (edits) to them
* A batch or non-interactive editor

* Reads from file or stdin (so, pipes are good) one line at a time

e The original input file is unchanged (sed is also a filter), results are
sent to standard output

* Most frequently used idiom is for text substitution

Anatomy of sed

replace

l

sed 's/New/01d/g' states.txt

N7

mmmmmm d delim modifier input file

Options

» address: may be a line number or a range, defaults to whole file
 command: s:substitute, p:print, d:delete, a:append, i:insert, q:quit
* regex: A regular expression

 delimiter: Does not have to be /, can be | or : or any other
character

* modifier: may be a number n which means apply the command to nt
occurrence, g means apply globally in the line

« Common sed flags: =n (no print), —e (multiple ops), - £ (read sed
from file), =i (in place edit [careful])

Useful sed Examples

sed -n '5,9p' states.txt #print lines 5 through 9
sed -n '$p' states.txt #print last line

sed 'l,3d' states.txt #delete first 3 lines
sed '/*$/d' states.txt #delete all blank lines

sed '/York/'s/New/01ld/' states.txt #substitute except York

kubectl -n kube-system get configmap/kube-dns -o yaml | sed
's/8.8.8.8/1.1.1.1/' | kubectl replace -f -

Part 5:
Session Management: tmux

for when the network goes down on my world-saving project

back to toc

Workspace Management with tmux

* tmux (vl.8) is a terminal multiplexer that lets you create
multiple, persistent terminals within one login

* In other words tmux is a program which allows you to have
persistent multiple "tabs" in a single terminal window.

 Useful
* when eg. a compilation or other operation will take a long time
* for interactive multitasking
* for exotic stuff such as pair programming

A Short tmux Tutorial

* Typical tmux workflow

tmux new -s mysession #start a new session

run any commands as normal

ctrl-b :detach #detach the session, logout, go home
#later, log in again

tmux a -t mysession #get the same session back

e Other useful tmux commands

ctrl-b (#switch to previous session

ctrl-b) #switch to next session

tmux l1ls #list all sessions

tmux kill-session -t mysession #kill a session

Live collaboration with tmux

#userl#
tmux -S /tmp/collab
chmod 777 /tmp/collab

#user2#
tmux -S /tmp/collab attach

Create Panes and Synchronize with tmux

tmux #start a tmux session

ctrl-b " #split horizontally
ctrl-b % #split vertically

ctrl-b :setw synchronize-panes on
#synchronized#

ctrl-b :setw synchronize-panes off
ctrl-b o #move through the panes
ctrl-b x #kill the active pane

Part 6: ssh: config and tunneling

build secure tunnels

back to toc

ssh config (~/.ssh/config)

Host summit
Port 22
hostname summit.olcf.ornl.gov
User ketan2
ServerAliveCountMax=3 #max num of alive messages sent without ack
ServerAliveInterval=15 #send a null message every 15 sec

Host cades

Port 22

hostname or-condo-login.ornl.gov
User kmO

ServerAliveCountMax=3
ServerAliveInterval=15

now to ssh/scp to cades, just need "ssh/scp cades"

Benefits of ssh config

Makes ssh commands easier to remember in case of multiple hosts
Customizes connection to individual hosts
For more, seeman 5 ssh config

For example: ssh summit is sufficient to connect to
summit.olcf.ornl.gov with all the properties mentioned in the
section:

Host summit
Port 22
hostname summit.olcf.ornl.gov
User ketan?
ServerAliveCountMax=3
ServerAlivelInterval=15

Port forward over SSH Tunnel*

remote
local "hostname" on remote host host

l l l

lclhost$S ssh -L lport:host:hport remotehost -N

1 1 1 1

no command
ssh command localport port on remote host

* simplest form

SSH Tunneling Example

* Run an HTTP server on remote node and browse through local web
browser:

step 1. remote$ python2 -m SimpleHTTPServer 25000
OR

stepl. remote$ python3 -m http.server 25000
step2. local$ ssh -L 8000:localhost:25000 id@remote -N

step3. Open browser on 1local and navigate to http://localhost:8000

part 7: Bash Tools

For when that 'hello world’ becomes a project

back to toc

Bash Shell Basics

 Commands and utilities such as grep, sed, awk may be invoked

* Variables, constants, conditionals, loops and functions may be defined
* Arithmetic operations available

* Logical operations && (AND) and || (OR) available:

*wget ...|| curl ... :runcurliff wgetfails
* make install && make test : testiff install succeeds

 Shell "Startup" files set environment as you start your shell
* .bashrc: afile that runs in each new shell that is spawned

* .bash profile: afile that runs only in a "login shell" (and not all shells eg. it
won't run if you invoke a shell script that creates a subshell)

Aliases and Functions

* Aliases are short and convenient names for long commands
* They are usually defined in .bashrc or a separate .aliases file

 To temporarily bypass an alias (say we aliased 1s to 1s -a), use \:
\1s

* Bash functions are usually defined in .bashrc/.bash profile

 Functions are more expressive and preferred over aliases

Examples of useful aliases

alias s=ssh

alias c=clear

alias cx='chmod +x'

alias 1ls='ls -thor'

alias more=less

alias ps='ps auxf'

alias psg='ps aux | grep -v grep | grep -i -e USER -e'
alias ..='ed ..'

alias myp='ps -fjH -u SUSER'

alias cleanup='rm -f *.tmp *.aux *.log'

Examples of useful Functions

*mcd() { mkdir -p $1; cd $1 }

ecdl() { cd $1; 1s}

* backup() { cp "$1"{, .bak};} #test first
*gfind() { find / -iname $Q@ 2>/dev/null }
*1find() { find . -iname $@ 2>/dev/null }

ertfm() { help $Q@ || man $Q@ || S$SBROWSER
"http://www.google.com/search?g=$@"; }

* See /usr/share/doc/bash-*/examples/functions for more
function examples

Variables and Command Substitution

* Variables are implicitly typed
* May be a literal value or command substitute
* vname=value #assign value to variable vname

e Svname #read value of variable vname

#!/bin/sh
msg="Hello World"
echo $msg

« Command substitution:
 curdir=$ (PWD)
« curdate=$ (date +%F)
* echo "There are $(1ls -1 | we -1) items in the current dir"

Conditionals

* if-then-else construct to branch similar to programming languages

* Two forms of conditional evaluation mechanisms:
e testand [..]

$ if test SUSER = 'km0'; then echo 'I know you';

else echo 'Who are you'; f1i

$ if [-f /etc/yum.conf]; then echo 'yum.conf
exists'; else echo 'file do not exist'; fi

Conditionals summary

* string

* —z string: length of string 0

* —-n string: length of string not 0

* stringl = string2:strings are identical (note a single =)
* numeric

* intl -eq int2:firstint equal to second

* -ne, -gt, -ge, -1t, -1le:not-equal, greater-than, -greater-or-equal...
* file

e -r filename: file exists and is readable

e -w filename: file exists and is writable
- -f, -d, -s:regularfile, directory, exists and not empty

* logic
« !, —-a, -o:negate, logical and, logical or

Loops

 Basic structure (three forms):
for i in {0..9}; do echo $i; done

for ((i=0;i<10;i++)){ echo $i;} #C-like
for var in list; do command; done #'python-like'
e often used with command substitution:

for i in $(\1ls -1 *.txt); do echo "$i"; done
for i in $(get files.sh); do upload.sh "$i"; done

The heredoc

cat << EOF | kubectl create -f -
" n g apiVersion: vl
* Create "inplace" files e tea
. metadata:
* example' name: nginx
spec:
*sh << END containers:
echo "Hello World" - name: nginx
image: nginx
END <press enter> EOF

* Uses of heredoc #1/bin/bash

for i in local remote cluster all

e Multiline message using cat do

e Use variables to plug into cat <<END>install.yml
crea’_ced fll_es, eg test multiple - hosts: $i
configurations for a program <other stuff>

END

ansible-playbook install.yml --check > out"$i".txt
done

part 8: Miscellaneous Utilities

handy like midnight snack

back to toc

Get things done at specific times with at

* at will execute the desired command on a specific day and time

*at 17:00 #press enter
at> log days activities.sh f#smtimes no at> prompt
[ctrl-d]

* at offers keywords such as now, noon, today, tomorrow
 offers terms such as hours, days to be used with the + symbol

at noon

at now + 1 year

at 3:08pm + 1 day

at 15:01 December 19, 2018

Get things done periodically with cxron

* cron will execute the desired command periodically
* A crontab file controls and specifies what to execute when

* An entry may be created in any file and added to system with the crontab

command like so:
echo '15 18 30 6 * find /home -mtime +30 -print' > £00
crontab £00 #add above to system crontab

* crontab -1 #list crontab entries
crontab -r #remove crontab entries

* Output of the cron'd command will be inmail (alternatively it may be
redirected to a file with '>')

* What does the entries in a crontab mean though? (see next slide)

Anatomy of a crontab entry

command to be executed

:‘;_:r:) month(Jan=1) 1
Vo ——
15 18 30 6 * find /home -mtime +30 -print

R

mins day of day of week
(0-59) month (Sun=0)
(0-max)

Run the find command on June 30 of every year at 6:15 PM no matter what day of week it is.

Math

e Generate random number using shuf (may need to install)
e shuf -i 1-100 -n 1
* Format numbers with numfmt

e numfmt --to=si 1000
1.0K

* numfmt --from=iec 1K
1024
* bcis a versatile calculator
* bc <K< 48436 #no space on either side of +
* echo 'obase=16; ibase=10; 56'|bc #decimal to hex
* echo 'scale=8; 60/7.02' |bc #arbitrary precision

Python utilities

» Stand up a simple web server in under a minute with Python
* python3 -m http.server 35000

* Run small programs
* python -c "import math; print(str(math.pi)[:7])"

* Do arithmetic
* python -c "print (6*6+20)"

* python -c "fctrl=lambda x:0**x or x*fctrl (x-1);
print (fctrl (6))" #compute factorial

Random stuff - 1

* Run a command for specified time using timeout:
timeout 2 ping google.com

e watch achanging variable
* watch -n 5 free -m

* Say yes and save time
*yes | pip install pkg --upgrade
*yes "this is a test" | head -50 > testfile.txt

* Create pdf from text using vim:
vim states.txt -c "hardcopy > states.ps | q"

&& ps2pdf states.ps #iconvert ps to pdf

Random stuff - 2

* Run a command as a different group
* sg grpgit -c 'git push'

* Display a csv in columnar/tabular format
* column -t -s , filename.csv

* Generate password
* head /dev/urandom | tr -dc A-Za-z0-9 | head -c 8
* openssl rand 8 -base64 | cut -cl-8
* pwgen # may not be available by default

Summary

* Linux command-line environment powerful if exploited well

* Pipes and redirection key Linux contributions

* Rewarding in the short-term as well as long-term

* Classical and modern tools well suited for modern-style usage

* Practice!

* Send comments, feedback, questions: km@@ornl . gov

back to toc

Credits, references and resources

* The man, info and doc pages
* bash: gnu.org/software/bash/manual/bashref.html

 grep: gnu.org/software/grep/manual/grep.html

* sed: catonmat.net/blog/worlds-best-introduction-to-sed

» awk: ferd.ca/awk-in-20-minutes.html
e tmux: gist.github.com/MohamedAlaa/2961058
» wikipedia articles: unix, linux, Bash_(Unix_shell)

e commandlinefu.com

77

http://www.gnu.org/software/bash/manual/bashref.html
http://www.gnu.org/software/grep/manual/grep.html
http://www.catonmat.net/blog/worlds-best-introduction-to-sed
http://ferd.ca/awk-in-20-minutes.html
https://gist.github.com/MohamedAlaa/2961058
https://www.commandlinefu.com/

Where to go from here

github.com/jlevy/the-art-of-command-line

jeroenjanssens.com/2013/08/16/quickly-navigate-your-filesystem-from-the-command-

[ine.html
linux.byexamples.com/archives/42/command-line-calculator-bc

catonmat.net/blog/bash-one-liners-explained-part-three

wiki.bash-hackers.org
https://gist.github.com/MohamedAlaa/2961058#file-tmux-cheatsheet-markdown
wizardzines.com

https://crontab.guru

leimao.github.io/blog/Tmux-Tutorial

unix.stackexchange.com

danyspin97.org/blog/makefiles-best-practices

78

http://www.github.com/jlevy/the-art-of-command-line
http://www.jeroenjanssens.com/2013/08/16/quickly-navigate-your-filesystem-from-the-command-line.html
http://www.linux.byexamples.com/archives/42/command-line-calculator-bc
http://www.catonmat.net/blog/bash-one-liners-explained-part-three
http://www.wizardzines.com/
http://www.wizardzines.com/
http://www.wizardzines.com/
https://crontab.guru/
leimao.github.io/blog/Tmux-Tutorial
https://unix.stackexchange.com/
https://danyspin97.org/blog/makefiles-best-practices

Thank you for your time and attention
Questions?

Practice and Exercises

* Create three tmux sessions: s1, s2 and s3; detach them

* List the active sessions with tmux 1s

* Kill the active sessions with tmux kill-session -t <name>
* Can you kill them all with one command? hint: use xargs in a pipe

* Create a tmux session and split the screen into 4 panes vertically and
horizontally

* Set it so that all panes are synchronized. Test with any command.

Practice and Exercises

* Use your favorite editor to edit .bashrc and .bash_profile --
* addaline:echo 'I am bashrc' to.bashrc
* addaline:echo 'I am bash profile' to .bash_profile

* Close and reopen terminal, what do you see? Within terminal type
/bin/bash, what do you see?

* Create a copy of prose.txt using cp prose.txt tmp.txt; make small change to
tmp.txt and compare prose.txt and tmp.txt with cmp, comm and diff

* Delete those lines from .bashrc and .bash_profile when done

* The characterclass [[:class:]] may be used as wild card:
class may be alpha, alnum, ascii, digit, upper, lower, punct, word; try 1s
/etc/[[:upper:]1]*

Practice and Exercises

* List all conf files in /etc you have access to, redirect stderr to
/dev/null

* Build a software and collect errors and output in separate files, fill in
the
make all std.out >std.err

* Run cmake command and gather all logs in a single file in background
cmake .. cmake.log #bash v4 and above

e Same as above in long format
mpirun -np 8 ./a.out outerr.txt 2> 1

Practice and Exercises

Simplify the following command line:

TOKEN=S$ (kubectl describe secret -n kube-system
S (kubectl get secrets -n kube-system | grep
default | cut -f1 -d ' ') | grep -E '“token' |
cut -f2 -d':' | tr -d '\t' | tr -d " ")

* Replace the cut commands with awk commands
* Accommodate the grep with the awk

* Accommodate the two tr commands within awk commands (hint: use
awk ' s gsub built-in function)

Practice and Exercises

* Create a file titled the words that start with letter 'C' (fill the __):
*grep -i '“c' states.txt |awk '{print $4}'| __ touch
* Remove temporary files:
* find . —-iname '*.tmp' | __ rm #ok
* Create a directory for all running processes
*ps | awk 'NR !'= 1 {print $4}’| mkdir #NOT OK
*ps | awk 'NR != 1 {print $4}’| __ mkdir #ok

Practice and Exercises

* Use sed to print lines 11-15 of states.txt

* Fillup the __in the following find commands

* . -type d -perm 777 -exec chmod 755 {} +

* find . -type = -name "*.tmp" -exec rm -f {} +

* find __ -atime +50 #files <50 days in /usr/local/lib
e find . -mtime -mtime -100 #<50 & <100 days

* Use awk to print only the state names and capitals columns from states.txt

* use grep to search for all lines of file states.txt containing a word of length
four or more starting with the same two characters it is ending with. You
may use extended regular expressions (-E)

Practice and Exercises

Muammar Gaddafi was a Libyan politician. He was in the news a few
years ago. News agencies spelled his name differently like so:

e Muammar al-Kaddafi (BBC)

e Moammar Gadhafi (Associated Press)

e Muammar al-Qadhafi (Al-Jazeera)

e Mu'ammar Al-Qadhafi (US Department of State)

Your task is to come up with a Regular expression that will match with
all the above occurrences. (Hint: use extended regular expression)

* Test with both grep and awk by putting the above lines in a file as
well as a heredoc

Practice and Exercises

* Compare the time it takes with and without the -C switch of scp to
send data remotely (hint: use the time command)

* Create a config file in your ~/.ssh directory, add the contents
presented in previous slides to it. How will you test if it works?

Practice and Exercises

* Run yes for 5 seconds using timeout
* Create an alias d to print current date
* Run style and diction (if available) on prose.txt

* Interpret the following crontab entry:
30 21 * * * find /tmp /usr/tmp -atime +30 -exec rm -f {} +

* Frame an at command to run the date command tomorrow at 8 p.m.

* write a shell script to find all the prime numbers between 1000 and
10000

* hints: use for, if, factor, wc

Alternative location for Slides and Data

https://github.com/ketancmaheshwari/lisal9

https://github.com/ketancmaheshwari/lisa19

