
10Gbit/s Bi-Directional Routing
on standard hardware

running Linux

by
Jesper Dangaard Brouer <hawk@comx.dk>

Master of Computer Science
Linux Kernel Developer

ComX Networks A/S

LinuxCon 2009
d.23/9-2009

ComX Networks A/S

 2/36Linux: 10Gbit/s Bi-directional Routing

Who am I

● Name: Jesper Dangaard Brouer
– Edu: Computer Science for Uni. Copenhagen

● Focus on Network, Dist. sys and OS

– Linux user since 1996, professional since 1998
● Sysadm, Developer, Embedded

– OpenSource projects
● Author of

– ADSL-optimizer
– CPAN IPTables::libiptc

● Patches accepted into
– Kernel, iproute2, iptables and wireshark

 3/36Linux: 10Gbit/s Bi-directional Routing

Presentation overview

● When you leave this presentation, you will know:
– The Linux Network stack scales with the number of CPUs

– About PCI-express overhead and bandwidth

– Know what hardware to choose

– If its possible to do 10Gbit/s bidirectional routing on Linux?

How many think is possible to do:
 10Gbit/s bidirectional routing on Linux?

 4/36Linux: 10Gbit/s Bi-directional Routing

ComX Networks A/S

● I work for ComX Networks A/S
– Danish Fiber Broadband Provider (TV, IPTV, VoIP, Internet)

● This talk is about
– our experiments with 10GbE routing on Linux.

● Our motivation:
– Primary budget/money (in these finance crisis times)

● Linux solution: factor 10 cheaper!
– (60K USD -> 6K USD)

– Need to upgrade capacity in backbone edges

– Personal: Annoyed with bug on Foundry and tech support

 5/36Linux: 10Gbit/s Bi-directional Routing

Performance Target

● Usage "normal" Internet router
– 2 port 10 Gbit/s router

● Bidirectional traffic
● Implying:

– 40Gbit/s through the interfaces (5000 MB/s)

– Internet packet size distribution
● No jumbo frame "cheats"
● Not only max MTU (1500 bytes)

– Stability and robustness
● Must survive DoS attack with small packet

 6/36Linux: 10Gbit/s Bi-directional Routing

Compete: 10Gbit/s routing level

● Enabling hardware factors
– PCI-express: Is a key enabling factor!

● Giving us enormous “backplane” capacity
● PCIe x16 gen.2 marketing numbers 160 Gbit/s

– one-way 80Gbit/s → encoding 64Gbit/s → overhead ~54 Gbit/s

– Scaling: NICs with multiple RX/TX queues in hardware

● Makes us scale beyond one CPU
● Large effort in software network stack (thanks DaveM!)

– Memory bandwidth
● Target 40Gbit/s → 5000 MBytes/s

 7/36Linux: 10Gbit/s Bi-directional Routing

PCI-express: Overhead

● Encoding overhead: 20% (8b/10b encoding)
– PCIe gen 1. 2.5Gbit/s per lane → 2 Gbit/s

● Generation 1 vs. gen.2:
– Double bandwidth, 2 Gbit/s → 4 Gbit/s

● Protocol overhead: Packet based
– Overhead per packet: 20 Bytes (32-bit), 24 bytes (64-bit)

– MaxPayload 128 bytes => 16 % additional overhead
● PCIe x8 = 32 Gbit/s
● MaxPayload 128 bytes => 26.88 Gbit/s

● Details see: http://download.intel.com/design/intarch/papers/321071.pdf

Title: “Hardware Level IO Benchmarking of PCI express*”

http://download.intel.com/design/intarch/papers/321071.pdf

 8/36Linux: 10Gbit/s Bi-directional Routing

Hardware: Device Under Test (DUT)

● Starting with cheap gaming style hardware
– No budget, skeptics in the company

– CPUs: Core i7 (920) vs. Phenom II X4 (940)

– RAM: DDR3 vs DDR2

● Several PCI-express slots Generation 2.0
– Motherboards

● Core i7 – Chipset X58: Asus P6T6 WS Revolution
● AMD – Chipset 790GX: Gigabyte MA790GP-DS4H

 What can we expect from this hardware...

 9/36Linux: 10Gbit/s Bi-directional Routing

DUT: Memory Bandwidth

● Raw memory bandwidth enough?

– Memory types: DDR2: Phenom II / DDR3: Core i7

● Target 5000 MBytes/s (40Gbit/s) (2500 MB/s write and 2500MB/s reads)

– HW should be capable of doing several 10GbE

DDR2 1066MHz DDR3 1066MHz DDR3 1333MHz DDR3 1600MHz
0

2000

4000

6000

8000

10000

12000

14000

16000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Memory bandwidth (lmbench: bw_mem)

Read
Write
Needed

M
B

yt
es

/s
ec

 10/36Linux: 10Gbit/s Bi-directional Routing

10Gbit/s Network Interface Cards

● Network Interface Cards (NICs) under test:
– Sun Neptune (niu): 10GbE Dual port NIC PCIe x8 gen.1 (XFP)

● PCIe x8 = 16Gbit/s (overhead 16% = 13.44 Gbit/s)

– SMC Networks (sfc): 10GbE NIC, Solarflare chip (XFP)

● hardware queue issues, not default enabled
● only one TX queue, thus cannot parallelize

– Intel (ixgbe): newest Intel 82599 chip NIC
● Fastest 10GbE NIC I have ever seen!!!
● Engineering samples from:

– Intel: Dual port SFP+ based NIC (PCIe x8 Gen.2)
– Hotlava Systems Inc.: 6 port SFP+ based NIC (PCIe x16 Gen.2)

 11/36Linux: 10Gbit/s Bi-directional Routing

Preliminary: Bulk throughput

● Establish: enough PCIe and Memory bandwidth?
– Target: 2 port 10GbE bidir routing

● collective 40Gbit/s

– with packet size 1500 bytes (MTU)

Answer: Yes, but only with special hardware:
CPU Core i7
Intel 82599 based NIC
DDR3 Memory minimum at 1333 MHz
QuickPath Interconnect (QPI) tuned to 6.4GT/s (default 4.8GT/s)

 12/36Linux: 10Gbit/s Bi-directional Routing

Observations: AMD: Phenom II

● AMD Phenom(tm) II X4 940 (AM2+)
– Can do 10Gbit/s one-way routing

– Cannot do bidirectional 10Gbit/s

● Memory bandwidth should be enough
– Write 20Gbit/s and Read 20Gbit/s (2500MB/s)

● 1800 Mhz HyperTransport seems too slow
– HT 1800Mhz ~ bandwidth 57.6 Gbit/s

– "Under-clocking" HT: performance followed

– Theory: Latency issue
● PCIe to memory latency too high, outstanding packets

 13/36Linux: 10Gbit/s Bi-directional Routing

Scaling with the number of CPUs

● To achieve these results
– distribute the load across CPUs

– A single CPU cannot handle 10GbE

● Enabling factor: “multiqueue”
– NICs with multiple hardware RX/TX queues

– Seperate IRQ per queue (both RX and TX)
● Lots of IRQs used

– look in /proc/interrupts eg. ethX-rx-2

 14/36Linux: 10Gbit/s Bi-directional Routing

 Linux Multiqueue Networking

● RX path: NIC computes hash
– Also known as RSS (Receive-Side Scaling)

– Bind flows to queue, avoid out-of-order packets

● Large effort in software network stack
– TX qdisc API "hack", backward compatible

● http://vger.kernel.org/~davem/davem_nyc09.pdf

– Beware: Bandwidth shapers break CPU scaling!

Linux Network stack scales with the number of CPUs

http://vger.kernel.org/~davem/davem_nyc09.pdf

 15/36Linux: 10Gbit/s Bi-directional Routing

Practical: Assign HW queue to CPUs

● Each HW (RX or TX) queue has individual IRQ
– Look in /proc/interrupts

– A naming scheme: ethXX-rx-0

● Assign via "smp_affinity" mask
– In /proc/irq/nn/smp_affinity

– Trick: /proc/irq/*/eth31­rx­0/../smp_affinity

– Trick: "grep . /proc/irq/*/eth31­*x­*/../smp_affinity"

● Use tool: 'mpstat ­A ­P ALL'
– see if the interrupts are equally shared across CPUs

 16/36Linux: 10Gbit/s Bi-directional Routing

 Binding RX to TX: Stay on same CPU

● RX to TX queue mapping: tied to the same CPU
– Avoid/minimize cache misses, consider NUMA

● 3 use-cases for staying on the same CPU:
– Forwarding (main focus) (RX to TX other NIC)

● How: Record queue number at RX and use it at TX
● Kernel 2.6.30 for proper RX to TX mapping

– Server (RX to TX)
● Caching of socket info (Credit to: Eric Dumazet)

– Client (TX to RX)
● Hard, Flow "director" in 10GbE Intel 82599 NIC

 17/36Linux: 10Gbit/s Bi-directional Routing

Start on results

● Lets start to look at the results...
– Have revealed

● Large frames: 10GbE bidirectional was possible!
● What about smaller frames? (you should ask...)

– First need to look at:
● Equipment
● Tuning
● NICs and wiring

 18/36Linux: 10Gbit/s Bi-directional Routing

Test setup: Equipment

● Router: Core i7 920 (default 2.66 GHz)
– RAM: DDR3 (PC3-12800) 1600MHz X.M.P settings

● Patriot: DDR3 Viper Series Tri-Channel
– Low Latency CAS 8-8-8-24

– QPI at 6.4 GT/s (due to X.M.P)

● Generator#1: AMD Phenom 9950 quad
● Generator#2: AMD Phenom II X4 940

 19/36Linux: 10Gbit/s Bi-directional Routing

Test setup: Tuning

● Binding RX to TX queues
● Intel NIC tuning

– Adjust interrupt mitigation parameters rx­usecs to 512
● Avoiding interrupt storms (at small packet sizes)

– 'ethtool -C eth31 rx-usecs 512'

– Ethernet flow control (pause frames)
● Turn-off during tests:

– To see effects of overloading the system
– 'ethtool -A eth31 rx off tx off'

● Recommend turning on for production usage

 20/36Linux: 10Gbit/s Bi-directional Routing

NIC test setup #1

● Router
– Equipped with: Intel 82599 Dual port NICs

– Kernel: 2.6.31-rc1 (net-next-2.6 tree 8e321c4)

● Generators
– Equipped with NICs connected to router

● Sun Neptune (niu)
● SMC (10GPCIe-XFP) solarflare (sfc)

– Using: pktgen
● UDP packets
● Randomize dst port number – utilize multiple RX queue

 21/36Linux: 10Gbit/s Bi-directional Routing

Setup #1: 10GbE uni-directional

● Be skeptic

– Packet generator

● Too slow!
● Sun NICs

 22/36Linux: 10Gbit/s Bi-directional Routing

Setup #1: Packet Per Sec

● Be skeptic

– Packet generator

● Too slow!
● Sun NICs
● PPS limit

 23/36Linux: 10Gbit/s Bi-directional Routing

NIC test setup #2

● Router and Generators
– All equipped with:

● Intel 82599 based NICs

● Pktgen limits
– Sun NICs max at 2.5 Mpps

– Intel 82599 NIC (at packet size 64 byte)

● 8.4 Mpps with AMD CPU
● 11 Mpps with Core i7 CPU as generator

 24/36Linux: 10Gbit/s Bi-directional Routing

Setup #2: 10GbE uni-dir throughput

● Wirespeed 10GbE

– uni-dir routing

– pktsize 420

 25/36Linux: 10Gbit/s Bi-directional Routing

Setup #2: 10GbE uni-dir PPS

● Limits

– Packet Per Sec

– 3.5 Mpps

● at 64bytes

 26/36Linux: 10Gbit/s Bi-directional Routing

10GbE Bi-directional routing

● Wirespeed at

– 1514 and 1408

– 1280 almost

● Fast generators

– can survive load!

 27/36Linux: 10Gbit/s Bi-directional Routing

10GbE Bi-dir: Packets Per Sec

● Limited

– by PPS rate

– Max at

● 3.8 Mpps

 28/36Linux: 10Gbit/s Bi-directional Routing

● Target: Internet router
– Simulate Internet traffic with pktgen

● Based on Robert Olssons Article:
– "Open-source routing at 10Gb/s"

– Packet size distribution

– Large number of flows
● 8192 flows, duration 30 pkts, destinations /8 prefix (16M)
● watch out for:

– slow-path route lookups/sec
– size of route cache

Simulate: Internet traffic pattern

pktsize distribution approximate
64 45.00% 50.00%

576 25.00% 25.00%
1514 30.00% 25.00%

avg. size 627 bytes 554 bytes

 29/36Linux: 10Gbit/s Bi-directional Routing

Uni-dir: Internet traffic pattern

● Simulate Internet Traffic
– 10GbE uni-directional

● Route Cache is scaling
– 900k entries in route cache
– very little performance impact
– almost same as const size packet forwarding

Gbit/s Mpps
Generator 9.5 2.17
RX-router 9.4 2.14
TX-router 9.4 2.14
New route lookups/s: 68k/sec

 30/36Linux: 10Gbit/s Bi-directional Routing

Bi-Dir: Internet traffic pattern

● 10GbE bi-directional

– Strange: Average packet size in test
● Generators: 554 bytes vs. Receive size: 423 bytes

– Route Cache seems to scale (1.2M entries)

● when comparing to const size packet tests

Gbit/s Mpps avg. pkt
Generator 19.0 Gbit/s 4.3 554
RX 11.6 Gbit/s 3.4 423
TX 11.6 Gbit/s 3.4 423
New route lookups/s: 140k/sec

Comparing with constant size packet tests
Size 423 11.4 Gbit/s 3.3 423
Size 554 15.6 Gbit/s 3.5 554

 31/36Linux: 10Gbit/s Bi-directional Routing

Summary: Target goal reached?

● 2 port 10GbE “Internet” router
– Uni-Dir: Very impressive, Wirespeed with small pkts

– Bi-dir: Wirespeed for 3 largest packet sizes
● Good curve, no choking
● Bandwidth: Well within our expected traffic load

– Internet type traffic
● Uni-dir: Impressive
● Bi-dir: Follow pkt size graph, route cache scales

– Traffic Overloading / semi-DoS
● Nice graphs, doesn't choke with small pkts

Yes! - It is possible to do:
10Gbit/s bidirectional routing on Linux

 32/36Linux: 10Gbit/s Bi-directional Routing

● Beyond 20GbE

– Pktsize: 1514

● Tx: 31.2 Gb/s
● Rx: 31.9 Gb/s

– Enough mem bandwidth

– > 2x 10GbE bidir

– Real limit: PPS

Bandwidth for 4 x 10GbE bidir ?

 33/36Linux: 10Gbit/s Bi-directional Routing

4 x 10GbE bidir: Packets Per Sec

● Real limit
– PPS limits

 34/36Linux: 10Gbit/s Bi-directional Routing

Summary: Lessons learned

● Linux Network stack scales
– “multiqueue” framework works!

● Hardware
– Choosing the right hardware essential

● PCI-express latency is important
– Choose the right chipset

– Watch out for interconnecting of PCIe switches

● Packets Per Second
– is the real limit, not bandwidth

 35/36Linux: 10Gbit/s Bi-directional Routing

Future

● Buy server grade hardware
– CPU Core i7 → Xeon 55xx

● Need min Xeon 5550 (QPI 6.4GT/s, RAM 1333Mhz)
● Two physical CPUs, NUMA challenges

● Smarter usage of HW queues
– Assure QoS by assigning Real-time traffic to HW queue

● ComX example: IPTV multicast streaming

● Features affecting performance?
● Title: “How Fast Is Linux Networking”

– Stephen Hemminger, Vyatta
● Japan Linux Symposium, Tokyo (22/10-2009)

 36/36Linux: 10Gbit/s Bi-directional Routing

The End

Thanks!
Engineering samples:

Intel Corporation

Hotlava Systems Inc.

SMC Networks Inc.

Famous Top Linux Kernel Comitter
David S. Miller

 37/36Linux: 10Gbit/s Bi-directional Routing

10G optics too expensive!

● 10GbE SFP+ and XFP optics very expensive
– There is a cheaper alternative!

– Direct Attached Cables
● SFP+ LR optics price: 450 USD (need two)
● SFP+ Copper cable price: 40 USD

– Tested cable from:
● Methode dataMate

– http://www.methodedatamate.com

 38/36Linux: 10Gbit/s Bi-directional Routing

Pitfalls: Bad motherboard PCIe design

● Reason: Could not get beyond 2x 10GbE
● Motherboard: Asus P6T6 WS revolution

– Two PCIe switches
● X58 plus NVIDIA's NF200
● NF200 connected via PCIe gen.1 x16

– 32 Gbit/s -> overhead 26.88 Gbit/s

– Avoid using the NF200 slots
● scaling again...

 39/36Linux: 10Gbit/s Bi-directional Routing

Chipset X58: Core i7

● Bloomfield, Nehalem

● Socket: LGA-1366

 40/36Linux: 10Gbit/s Bi-directional Routing

Chipset P55: Core i5 and i7-800

● Lynnfield, Nehalem

● Socket: LGA-1156

	Frontpage
	Who Am I
	overview
	ComX-intro
	Target
	Compete
	PCIe overhead
	DUT
	bw_mem
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Goal reached
	Slide 32
	Slide 33
	Slide 34
	Future
	The End
	Slide 37
	Slide 38
	Slide 39
	Slide 40

