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Who am I

● Name: Jesper Dangaard Brouer
– Edu: Computer Science for Uni. Copenhagen

● Focus on Network, Dist. sys and OS

– Linux user since 1996, professional since 1998
● Sysadm, Developer, Embedded

– OpenSource projects
● Author of

– ADSL-optimizer
– CPAN IPTables::libiptc

● Patches accepted into
– Kernel, iproute2, iptables and wireshark
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Presentation overview

● When you leave this presentation, you will know:
– The Linux Network stack scales with the number of CPUs

– About PCI-express overhead and bandwidth

– Know what hardware to choose

– If its possible to do 10Gbit/s bidirectional routing on Linux?

How many think is possible to do:
 10Gbit/s bidirectional routing on Linux? 
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ComX Networks A/S

● I work for ComX Networks A/S
– Danish Fiber Broadband Provider (TV, IPTV, VoIP, Internet)

● This talk is about
–  our experiments with 10GbE routing on Linux.

● Our motivation:
– Primary budget/money (in these finance crisis times)

● Linux solution: factor 10 cheaper! 
– (60K USD -> 6K USD)

– Need to upgrade capacity in backbone edges

– Personal: Annoyed with bug on Foundry and tech support 
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Performance Target

● Usage "normal" Internet router
– 2 port 10 Gbit/s router

● Bidirectional traffic
● Implying: 

– 40Gbit/s through the interfaces (5000 MB/s)

– Internet packet size distribution
● No jumbo frame "cheats"
● Not only max MTU (1500 bytes)

– Stability and robustness
● Must survive DoS attack with small packet
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Compete: 10Gbit/s routing level

● Enabling hardware factors
– PCI-express: Is a key enabling factor!

● Giving us enormous “backplane” capacity
● PCIe x16 gen.2 marketing numbers 160 Gbit/s

– one-way 80Gbit/s → encoding 64Gbit/s → overhead ~54 Gbit/s

– Scaling: NICs with multiple RX/TX queues in hardware

● Makes us scale beyond one CPU
● Large effort in software network stack (thanks DaveM!)

– Memory bandwidth
● Target 40Gbit/s → 5000 MBytes/s
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PCI-express: Overhead

● Encoding overhead: 20% (8b/10b encoding)
– PCIe gen 1.  2.5Gbit/s per lane → 2 Gbit/s

● Generation 1 vs. gen.2: 
– Double bandwidth, 2 Gbit/s → 4 Gbit/s

●  Protocol overhead: Packet based
– Overhead per packet: 20 Bytes (32-bit), 24 bytes (64-bit)

– MaxPayload 128 bytes => 16 % additional overhead
● PCIe x8 = 32 Gbit/s
● MaxPayload 128 bytes => 26.88 Gbit/s

● Details see: http://download.intel.com/design/intarch/papers/321071.pdf

Title: “Hardware Level IO Benchmarking of PCI express*”

http://download.intel.com/design/intarch/papers/321071.pdf
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Hardware: Device Under Test (DUT)

● Starting with cheap gaming style hardware
– No budget, skeptics in the company

– CPUs: Core i7 (920) vs. Phenom II X4 (940)

– RAM: DDR3 vs DDR2

● Several PCI-express slots Generation 2.0
– Motherboards

● Core i7 – Chipset X58: Asus P6T6 WS Revolution
● AMD – Chipset 790GX: Gigabyte MA790GP-DS4H

 What can we expect from this hardware...
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DUT: Memory Bandwidth

● Raw memory bandwidth enough?

– Memory types: DDR2: Phenom II  / DDR3: Core i7

● Target 5000 MBytes/s (40Gbit/s) (2500 MB/s write and 2500MB/s reads)

– HW should be capable of doing several 10GbE

DDR2 1066MHz DDR3 1066MHz DDR3 1333MHz DDR3 1600MHz
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10Gbit/s Network Interface Cards

● Network Interface Cards (NICs) under test:
– Sun Neptune (niu): 10GbE Dual port NIC PCIe x8 gen.1 (XFP)

● PCIe x8 = 16Gbit/s  (overhead 16% = 13.44 Gbit/s)

– SMC Networks (sfc): 10GbE NIC, Solarflare chip (XFP)

● hardware queue issues, not default enabled
● only one TX queue, thus cannot parallelize  

– Intel (ixgbe): newest Intel 82599 chip NIC
● Fastest 10GbE NIC I have ever seen!!!
● Engineering samples from:

– Intel: Dual port SFP+ based NIC (PCIe x8 Gen.2)
– Hotlava Systems Inc.: 6 port SFP+ based NIC (PCIe x16 Gen.2)
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Preliminary: Bulk throughput

● Establish: enough PCIe and Memory bandwidth?
– Target: 2 port 10GbE bidir routing

● collective 40Gbit/s

– with packet size 1500 bytes (MTU)

Answer: Yes, but only with special hardware:
CPU Core i7
Intel 82599 based NIC
DDR3 Memory minimum at 1333 MHz
QuickPath Interconnect (QPI) tuned to 6.4GT/s (default 4.8GT/s)
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Observations: AMD: Phenom II

● AMD Phenom(tm) II X4 940 (AM2+)
– Can do 10Gbit/s one-way routing

– Cannot do bidirectional 10Gbit/s

● Memory bandwidth should be enough
– Write 20Gbit/s and Read 20Gbit/s (2500MB/s)

● 1800 Mhz HyperTransport seems too slow
– HT 1800Mhz  ~ bandwidth 57.6 Gbit/s

– "Under-clocking" HT: performance followed

– Theory: Latency issue
● PCIe to memory latency too high, outstanding packets
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Scaling with the number of CPUs

● To achieve these results
– distribute the load across CPUs

– A single CPU cannot handle 10GbE

● Enabling factor: “multiqueue”
– NICs with multiple hardware RX/TX queues

– Seperate IRQ per queue (both RX and TX)
● Lots of IRQs used

– look in /proc/interrupts eg. ethX-rx-2
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 Linux Multiqueue Networking

● RX path: NIC computes hash
– Also known as RSS (Receive-Side Scaling)

– Bind flows to queue, avoid out-of-order packets

● Large effort in software network stack
– TX qdisc API "hack", backward compatible

● http://vger.kernel.org/~davem/davem_nyc09.pdf

– Beware: Bandwidth shapers break CPU scaling!

Linux Network stack scales with the number of CPUs

http://vger.kernel.org/~davem/davem_nyc09.pdf
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Practical: Assign HW queue to CPUs

● Each HW (RX or TX) queue has individual IRQ
– Look in /proc/interrupts

– A naming scheme: ethXX-rx-0

● Assign via "smp_affinity" mask
– In /proc/irq/nn/smp_affinity

– Trick: /proc/irq/*/eth31­rx­0/../smp_affinity

– Trick: "grep . /proc/irq/*/eth31­*x­*/../smp_affinity"

● Use tool: 'mpstat ­A ­P ALL'
– see if the interrupts are equally shared across CPUs
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 Binding RX to TX: Stay on same CPU

● RX to TX queue mapping: tied to the same CPU
– Avoid/minimize cache misses, consider NUMA

● 3 use-cases for staying on the same CPU:
– Forwarding (main focus) (RX to TX other NIC)

● How: Record queue number at RX and use it at TX
● Kernel 2.6.30 for proper RX to TX mapping

– Server (RX to TX)
● Caching of socket info (Credit to: Eric Dumazet)

– Client (TX to RX)
● Hard, Flow "director" in 10GbE Intel 82599 NIC
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Start on results

● Lets start to look at the results...
– Have revealed

● Large frames: 10GbE bidirectional was possible!
● What about smaller frames? (you should ask...)

– First need to look at:
● Equipment
● Tuning
● NICs and wiring
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Test setup: Equipment

● Router: Core i7 920 (default 2.66 GHz)
– RAM: DDR3 (PC3-12800) 1600MHz X.M.P settings

● Patriot: DDR3 Viper Series Tri-Channel
– Low Latency CAS 8-8-8-24

– QPI at 6.4 GT/s (due to X.M.P)

● Generator#1: AMD Phenom 9950 quad
● Generator#2: AMD Phenom II X4 940
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Test setup: Tuning

● Binding RX to TX queues
● Intel NIC tuning

– Adjust interrupt mitigation parameters rx­usecs to 512
● Avoiding interrupt storms (at small packet sizes)

– 'ethtool -C eth31 rx-usecs 512'

– Ethernet flow control (pause frames)
● Turn-off during tests:

– To see effects of overloading the system
– 'ethtool -A eth31 rx off tx off'

● Recommend turning on for production usage
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NIC test setup #1

● Router
– Equipped with: Intel 82599 Dual port NICs

– Kernel: 2.6.31-rc1 (net-next-2.6 tree 8e321c4)

● Generators
– Equipped with NICs connected to router

● Sun Neptune (niu)
● SMC (10GPCIe-XFP) solarflare (sfc)

– Using: pktgen
● UDP packets
● Randomize dst port number – utilize multiple RX queue
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Setup #1: 10GbE uni-directional

● Be skeptic

– Packet generator

● Too slow!
● Sun NICs
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Setup #1: Packet Per Sec

● Be skeptic

– Packet generator

● Too slow!
● Sun NICs
● PPS limit
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NIC test setup #2

● Router and Generators
– All equipped with:

● Intel 82599 based NICs

● Pktgen limits
– Sun NICs max at 2.5 Mpps

– Intel 82599 NIC (at packet size 64 byte)

● 8.4 Mpps with AMD CPU
● 11 Mpps with Core i7 CPU as generator
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Setup #2: 10GbE uni-dir throughput

● Wirespeed 10GbE

– uni-dir routing

– pktsize 420
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Setup #2: 10GbE uni-dir PPS

● Limits

– Packet Per Sec

– 3.5 Mpps

● at 64bytes
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10GbE Bi-directional routing

● Wirespeed at

– 1514 and 1408

– 1280 almost

● Fast generators

– can survive load!
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10GbE Bi-dir: Packets Per Sec

● Limited

– by PPS rate

– Max at

● 3.8 Mpps
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● Target: Internet router
– Simulate Internet traffic with pktgen

● Based on Robert Olssons Article:
–  "Open-source routing at 10Gb/s"

– Packet size distribution

– Large number of flows
● 8192 flows, duration 30 pkts, destinations /8 prefix (16M)
● watch out for: 

– slow-path route lookups/sec
– size of route cache

Simulate: Internet traffic pattern

pktsize distribution approximate
64 45.00% 50.00%

576 25.00% 25.00%
1514 30.00% 25.00%

avg. size 627 bytes 554 bytes
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Uni-dir: Internet traffic pattern

● Simulate Internet Traffic
– 10GbE uni-directional

● Route Cache is scaling
– 900k entries in route cache
– very little performance impact
– almost same as const size packet forwarding

Gbit/s Mpps
Generator 9.5 2.17
RX-router 9.4 2.14
TX-router 9.4 2.14
New route lookups/s: 68k/sec
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Bi-Dir: Internet traffic pattern

● 10GbE bi-directional

– Strange: Average packet size in test
● Generators: 554 bytes vs. Receive size: 423 bytes

– Route Cache seems to scale (1.2M entries)

● when comparing to const size packet tests

Gbit/s Mpps avg. pkt
Generator 19.0 Gbit/s 4.3 554
RX 11.6 Gbit/s 3.4 423
TX 11.6 Gbit/s 3.4 423
New route lookups/s: 140k/sec

Comparing with constant size packet tests
Size 423 11.4 Gbit/s 3.3 423
Size 554 15.6 Gbit/s 3.5 554
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Summary: Target goal reached?

● 2 port 10GbE “Internet” router
– Uni-Dir: Very impressive, Wirespeed with small pkts

– Bi-dir: Wirespeed for 3 largest packet sizes
● Good curve, no choking
● Bandwidth: Well within our expected traffic load

– Internet type traffic
● Uni-dir: Impressive
● Bi-dir: Follow pkt size graph, route cache scales

– Traffic Overloading / semi-DoS
● Nice graphs, doesn't choke with small pkts

Yes! - It is possible to do:
10Gbit/s bidirectional routing on Linux
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● Beyond 20GbE

– Pktsize: 1514

● Tx: 31.2 Gb/s
● Rx: 31.9 Gb/s

– Enough mem bandwidth

– > 2x 10GbE bidir

– Real limit: PPS

Bandwidth for 4 x 10GbE bidir ?
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4 x 10GbE bidir: Packets Per Sec

● Real limit
– PPS limits
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Summary: Lessons learned

● Linux Network stack scales
– “multiqueue” framework works!

● Hardware
– Choosing the right hardware essential

● PCI-express latency is important
– Choose the right chipset

– Watch out for interconnecting of PCIe switches

● Packets Per Second
– is the real limit, not bandwidth
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Future

● Buy server grade hardware
– CPU Core i7 → Xeon 55xx

● Need min Xeon 5550 (QPI 6.4GT/s, RAM 1333Mhz)
● Two physical CPUs, NUMA challenges

● Smarter usage of HW queues
– Assure QoS by assigning Real-time traffic to HW queue

● ComX example: IPTV multicast streaming

● Features affecting performance?
● Title: “How Fast Is Linux Networking”

– Stephen Hemminger, Vyatta
● Japan Linux Symposium, Tokyo (22/10-2009)
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The End

Thanks!
Engineering samples:

Intel Corporation

Hotlava Systems Inc.

SMC Networks Inc.

Famous Top Linux Kernel Comitter
David S. Miller
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10G optics too expensive!

● 10GbE SFP+ and XFP optics very expensive
– There is a cheaper alternative!

– Direct Attached Cables
● SFP+ LR optics price: 450 USD (need two)
● SFP+ Copper cable price: 40 USD

– Tested cable from:
● Methode dataMate

– http://www.methodedatamate.com
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Pitfalls: Bad motherboard PCIe design 

● Reason: Could not get beyond 2x 10GbE
● Motherboard: Asus P6T6 WS revolution

– Two PCIe switches
● X58 plus NVIDIA's NF200
● NF200 connected via PCIe gen.1 x16

– 32 Gbit/s -> overhead 26.88 Gbit/s

– Avoid using the NF200 slots
● scaling again...
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Chipset X58: Core i7

● Bloomfield, Nehalem

● Socket: LGA-1366



 40/36Linux: 10Gbit/s Bi-directional Routing

Chipset P55: Core i5 and i7-800 

● Lynnfield, Nehalem

● Socket: LGA-1156
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