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Abstract—Graph processing is an increasingly important ap-
plication domain and is typically communication-bound. In this
work, we analyze the performance characteristics of three high-
performance graph algorithm codebases using hardware per-
formance counters on a conventional dual-socket server. Unlike
many other communication-bound workloads, graph algorithms
struggle to fully utilize the platform’s memory bandwidth and
so increasing memory bandwidth utilization could be just as
effective as decreasing communication. Based on our observations
of simultaneous low compute and bandwidth utilization, we find
there is substantial room for a different processor architecture to
improve performance without requiring a new memory system.

I. INTRODUCTION

Graph processing is experiencing a surge of interest, as
applications in social networks and their analysis have grown
in importance [25], [31], [45]. Additionally, graph algorithms
have found new applications in recognition [28], [46] and the
sciences [39].

Graph algorithms are notoriously difficult to execute ef-
ficiently, and so there has been considerable recent effort in
improving the performance of processing large graphs for these
important applications. Their inefficiency is due to the large
volume and irregular pattern of communication between com-
putations at each vertex or edge. When executed on a shared-
memory multiprocessor, this large volume of communication
is translated into loads and stores in the memory hierarchy.
When executed in parallel on a large-scale distributed cluster,
this communication is translated into messages across the
inter-processor network. Because message-passing is far less
efficient than accessing memory in contemporary systems,
distributed clusters are a poor match to graph processing. For
example, on Graph500, a world ranking of the fastest super-
computers for graph algorithms, the efficiency of each core in
a cluster is on average one to two orders-of-magnitude lower
than cores in shared-memory nodes [21]. This communication-
bound behavior has led to surprising results, where a single
Mac Mini operating on a large graph stored in an SSD is able
to outperform a medium-sized cluster [26].

Due to the inefficiency of message-passing communication,
the only reason to use a cluster for graph processing is if the
data is too large to fit on a single node [30]. However, many
interesting graph problems are not large enough to justify a
cluster. For example, the entire Facebook friend graph requires
only 1.5TB uncompressed [3], which can reside in a single
high-end server node’s memory today.

In this paper, we focus on the performance of a shared-
memory multiprocessor node executing optimized graph algo-
rithms. We analyze the performance of three high-performance
graph processing codebases each using a different parallel
runtime, and we measure results for these graph libraries using
five different graph kernels and a variety of input graphs. We
use microbenchmarks and hardware performance counters to
analyze the bottlenecks these optimized codes experience when
executed on a modern Intel Ivy Bridge server. We derive the
following insights from our analysis:

o Memory bandwidth is not fully utilized - Surprisingly,
the other bottlenecks described below prevent the off-
chip memory system from achieving full utilization on
well-tuned parallel graph codes. In other words, there
is the potential for significant performance improve-
ment on graph codes with current off-chip memory
systems.

e  Graph codes exhibit substantial locality - Optimized
graph codes experience a moderately high last-level
cache (LLC) hit rate.

e Reorder buffer size limits achievable memory through-
put - The relatively high LLC hit rate implies many
instructions are executed for each LLC miss. These
instructions fill the reorder buffer in the core, prevent-
ing future loads that will miss in the LLC from issuing
early, resulting in unused memory bandwidth.

e  Multithreading has limited potential for graph pro-
cessing - In the context of a large superscalar out-
of-order multicore, we see only modest room for
performance improvement on graph codes from mul-
tithreading and that is likely achievable with only a
modest number (2) of threads per core.

We also confirm conventional wisdom that the most effi-
cient algorithms are often the hardest to parallelize, and that
these algorithms have their scaling hampered by load imbal-
ance, synchronization overheads, and non-uniform memory
access (NUMA) penalties. Additionally, we find that different
input graph sizes and topologies can lead to very different
conclusions for algorithms and architectures, so it is important
to consider a range of input graphs in any analysis.

Based on our empirical results, we make recommendations
for future work in both hardware and software to improve
graph algorithm performance.



II. GRAPH BACKGROUND

Graph applications are characterized not only by the algo-
rithms used, but also by the structure of the graphs that make
up their workload. A graph’s diameter is the largest number
of vertices that must be traversed in order to travel from one
vertex to another when paths that backtrack, detour, or loop
are excluded from consideration. The degree of a node in a
graph is the number of connections it has to other nodes, and
the degree distribution is the probability distribution of these
degrees over the whole graph.

Commonly used graphs can be divided into two broad
categories named for their most emblematic members: meshes
and social networks [7]. Meshes tend to be derived from
physically spatial sources, such as road maps or the finite-
element mesh of a simulated car body, so they can be relatively
readily partitioned along the few original spatial dimensions.
Due to their physical origin, they usually have a high diameter
and a degree distribution that is both bounded and low.

Conversely, social networks come from non-spatial sources,
and consequently are difficult to partition using any reasonable
number of dimensions. Additionally, social networks have a
low diameter (“small-world”) and a power-law degree distri-
bution (“scale-free”). In a small-world graph, most nodes are
not neighbors of one another, but most nodes can be reached
from every other by a small number of hops [42]. A scale-
free graph has a degree distribution that follows a power law,
at least asymptotically [5]. The fraction of nodes in a scale-
free graph having k connections to other nodes is P(k) ~ k77,
where 7y is a parameter typically in the range 2 <y < 3.

Meshes are perhaps the most common mental model for
graphs, since they are typically used in textbook figures.
Unfortunately, they do not capture the challenges posed by
the small-world and scale-free properties of social network
topologies. The small-world property makes them difficult to
partition (few cut edges relative to enclosed edges), while the
scale-free property makes it difficult to load balance a parallel
execution since there can be many orders of magnitude dif-
ference between the work for different vertices. Although the
highest degree vertices are rare, their incident edges constitute
a large fraction of the graph.

III. METHODOLOGY

To provide a representative graph workload, we chose five
popular graph kernels and exercised them with five different
input graphs using three high-performance graph codebases
running on a modern high-end server. Unless otherwise stated,
we measure the full workload of all combinations of code-
bases, kernels, and graphs (75 data points) for each system
configuration.

A. Graph Kernels and Input Graphs

We selected five graph kernels based on their popularity in
applications as well as in other research papers:

1)  Breadth-First Search (BFS) is actually only a traver-
sal order, but it is so fundamental to graph algorithms
that we include it in our suite. We convert BFS into a
kernel by tracking the parent vertex in the traversal.

2)  Single-Source Shortest Paths (SSSP) computes the
distance to all reachable vertices from a start vertex.

3) PageRank (PR) is way of determining influence
within a graph, and was initially used to sort search
results [38].

4) Connected Components (CC) attaches the same
label to all vertices in the same connected component.

5) Betweenness Centrality (BC) is commonly used
in social network analysis to measure the influence
a vertex has on a graph. A vertex’s betweenness-
centrality score is related to the fraction of shortest
paths between all vertices that pass through the ver-
tex. To keep runtimes tractable, our BC benchmark
starts from only a few root vertices instead of every
vertex.

We selected the input graphs used in our evaluation to be
topologically diverse and Table I lists them. Twitter, road, and
web are all from real-world data, while kron and uniform are
synthetic. Twitter, web, and kron all have the “social network”
topology, as they have low effective diameters and a power-law
degree distribution. Road is an example of a “mesh” topology,
with its high diameter, low average degree, and low maximum
degree. Even though our graph suite includes some of the
largest publicly available real-world graphs, they do not fully
use the memory capacity of our system. As is done in the
Graph500 benchmark, we generate arbitrarily large synthetic
graphs to fill our memory capacity. Our parameters for kron
are chosen to match those of Graph500 [21]. Uniform is low
diameter, like a social network, but its degree distribution is
normal rather than a power law. Hence, in our uniform graph
each vertex tends to be accessed roughly the same number
of times, unlike social networks where a few vertices are
accessed disproportionately often. Uniform represents the most
adversarial graph, as by design it has no locality, however, it
is also the most unrealistic and serves to act as lower bound
on performance.

B. Graph Processing Frameworks

For this study, we use three of the fastest available graph
codebases, which each use a different parallel runtime.

Galois [36] uses its own custom parallel runtime specifi-
cally designed to handle irregular fine-grained task parallelism.
Algorithms implemented in Galois are free to use autonomous
scheduling (no synchronization barriers), which should re-
duce the synchronization otherwise needed for high-diameter
graphs. Additionally, Galois’ scheduler takes into consideration
the plaform’s core and socket topology.

Ligra [40] uses the Cilk [8] parallel runtime and is built on
the abstractions of edge maps and vertex maps. When applying
these map functions, Ligra uses heuristics to determine in
which direction to apply them (push or pull) and what data
structures to use (sparse or dense). These optimizations make
Ligra especially well suited for low-diameter graphs.

GAP Benchmark Suite (GAPBS) [6], [19] is a collec-
tion of high-performance implementations written directly in
OpenMP with C++11. GAPBS is not a framework, so it does
not force common abstractions onto all implementations, but
instead frees each to do whatever is appropriate for a given
algorithm.



Short Name | Description # Vertices (M) | # Edges (M) | Degree | Degree Distribution | Approximate Diameter | References

road Roads of USA 239 583 2.4 | bounded 6,304 [15]

twitter Twitter Follow Links 61.6 1,468.4 23.8 power 14 [25]

web Web Crawl of .sk Domain 50.6 1,949.4 38.5 power 135 [14]

kron Kronecker Synthetic Graph 128.0 2,048.0 16.0 power 6 [21], [27]

uniform Uniform Random Graph 128.0 2,048.0 16.0 normal 7 [18]
TABLE L. GRAPHS USED FOR EVALUATION

All three codebases are competitive, and depending on the
input graph or kernel, a different codebase is the fastest. For
descriptions of the implementations and their parallelization
strategies, we refer the reader to the original publications.

C. Hardware Platform

To perform our measurements, we use a current dual-
socket Intel Ivy Bridge server (IVB) with E5-2667 v2 pro-
cessors, similar to what one would find in a datacenter. Each
socket contains eight 3.3 GHz two-way multithreaded cores
and 25 MB of last-level cache (LLC). The server has 128 GB
of DDR3-1600 DRAM provided by 16 DIMMS. To access
hardware performance counters, we use Intel PCM [24] and
PAPI [32]. We compile all code with gcc-4.8, except Ligra that
uses Cilk Plus gcc-4.8. To ensure consistency across runs, we
disable Turbo Boost (dynamic voltage and frequency scaling).

When reporting memory traffic from the performance coun-
ters, we focus on memory requests caused by LLC misses as
these are the most problematic for performance. We do not
include prefetch traffic measurements because they obscure
the results, but benefits of successful prefetching appear in-
directly as fewer cache misses. During our study, we observed
IVB intelligently prefetching aggressively when the memory
bandwidth utilization would otherwise be low, but ceasing
prefetching when the application is using a large fraction of the
memory bandwidth (the hardware prefetcher does not prevent
full memory bandwidth utilization).

IV. MEMORY BANDWIDTH POTENTIAL

Any LLC miss will cause even a large out-of-order proces-
sor to stall for a significant number of cycles. Ideally, while
waiting for the first cache miss to resolve, at least some useful
work could be done, including initiating loads early that will
cause future cache misses. Unfortunately, a load must satisfy
the following four requirements before it can be issued:

1)  Processor fetches load instruction - Control flow
reaches the load instruction (possibly speculatively).

2)  Space in instruction window - The Reorder Buffer
(ROB) is not full and has room for the load.

3)  Register operands are available - The load address
can be generated.

4)  Memory bandwidth is available - At the core level
there is a miss-status holding register (MSHR) avail-
able and there is not excessive contention within the
on-chip interconnect or at the memory controller.

If any of the above requirements is not met, the load will be
unable to issue. In particular, memory bandwidth cannot be a
bottleneck unless the first three requirements are satisfied, thus
the other factors can prevent memory bandwidth from being
fully utilized.

We use a parallel pointer-chase as a synthetic microbench-
mark to measure the achievable memory bandwidth on IVB
under various conditions. A parallel pointer-chase exposes the
needed parameters but is otherwise quite simple [1], [35]. With
a single pointer-chase, there is no memory-level parallelism
(MLP) and the memory latency is exposed since requests must
be completed serially. To generate more MLP, we simply add
more parallel pointer chases to the same thread.

To force loads to access the memory system, we set
pointers to point randomly within an array sized large enough
such that LLC hit rates are less than 1.5% (typically > 2
GB). We report bandwidths in terms of memory references
per second as measured by performance counters. We also
report achieved bandwidths in terms of effective MLP, which
is the average number of memory requests in flight according
to Little’s Law (memory bandwidth x memory latency). It
is worth distinguishing this from application MLP, which
is how much memory-request parallelism is allowed by the
application’s data dependencies, which will be always greater
than or equal to the achieved effective MLP.

Our simple microbenchmark is designed to trivially satisfy
the first two requirements above, allowing us to focus on
and measure the last two. Branch mispredictions should be
rare since the loop repeats many times, so fetching the load
instructions should not be hindered. The microbenchmark is
a tight loop, so there should be a relatively high density of
loads thus reducing the impact of instruction window size (168
for Ivy Bridge). By changing the number of parallel pointer-
chases, we can artificially control the maximum application
MLP possible, which allows us to moderate the operand
availability requirement. We can then observe what bandwidths
are possible and even what the bandwidth limits are.

Figure 1 shows the microbenchmark results. The local
memory latency is 86ns (MLP=1). Local bandwidth for a
single thread appears to saturate when MLP>10, implying the
core supports 10 outstanding misses, and this is confirmed by
published sources on the Ivy Bridge microarchitecture. Using a
second thread on the same core does not change the maximum
bandwidth regardless of how the outstanding memory requests
are spread across the two threads.

To see the impacts of Non-Uniform Memory Access
(NUMA) on our dual-socket system, instead of allocating the
memory being used by our microbenchmark on the same
socket (local), we allocate on the other socket (remote) or
interleaved across both sockets (interleaved). NUMA may
introduce bandwidth restrictions, but for a single core in isola-
tion, the primary consequence is twice the latency (/=184 ns).
When accessing remote memory, the maximum bandwidth is
halved due to the same number of outstanding data requests
experiencing twice the latency.

After exploring how application MLP changes bandwidth
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Fig. 2. Memory bandwidth achieved by parallel pointer chase microbench-

mark with varying number of nops inserted (varies IPM). Using a single thread
with differing numbers of parallel chases (application MLP).

(requirement 3) and how many outstanding misses the hard-
ware supports (requirement 4), we now return to the impact
of the instruction window size (requirement 2). Using inline
assembly, we add nops to our pointer-chase loop, thus moving
the loads farther apart in the instruction stream. To examine
the net result, we use the metric instructions per miss (IPM),
which is the inverse of the common misses per kilo-instruction
metric (MPKI = 1000/IPM).

As shown in Figure 2, window size is an important con-
straint on our platform, as bandwidth is inversely related to
IPM, which confirms our intuition that memory requests must
fit in the window in order to be issued. Assuming the loads are
evenly spaced, we obtain a simple model for an upper-bound
(with w as the window size):

MLP,0401 = min(MLPy,40, w/IPM + 1)

For our IVB core, MLP,,,, = 10 and w = 168. The

10

e
S 100
S |
& 18
E 80} 5
= le =
2 )
g oo 2
2 12 8
& aof i
Py
2 12
g 20} ®&—® Small-2MB ¢—90 Large-2MB
= ®: - ® Small-1GB ¢ 90 Large-1GB

0 I I I I I I O

2 4 6 8 10 12
Application MLP / Thread

Fig. 3. Impact of 2MB and 1 GB page sizes on memory bandwidth achieved

by single-thread parallel pointer chase for array sizes of small (1 GB) and
large (16 GB).

curved region adds one because if the window can hold n
IPM-sized intervals, it can hold n + 1 endpoints. Our model
is pessimistic as it assumes cache misses are evenly spaced.
If there is substantial variation in the miss interval (jitter),
it is possible to exceed the model bound, but we find this
simple model instructive for the rest of the study as we observe
bandwidth is inversely related to IPM.

Memory bandwidth can also be constrained by frequent
TLB misses. The four requirements above are necessary for
a load to issue, but once issued, missing in the TLB incurs
a latency penalty for its refill, which in turn will decrease
bandwidth for the same number of outstanding memory re-
quests. IVB’s Linux distribution supports Transparent Huge
Pages (THP), which eagerly combines consecutive 4 KB pages
into 2 MB pages when possible. IVB also supports 1 GB pages,
but these must be set aside by Linux in advance and require
substantial application code modifications. Larger pages not
only reduce the chance of a TLB miss, but they also reduce
the time per refill by needing fewer hops to walk the page
table and by reducing the size of the page-table working set
(better cache locality).

Figure 3 varies the page size (2MB or 1GB) and the
array size (1GB or 16 GB) for our pointer-chase synthetic
microbenchmark. With 2 MB pages from THP, most loads for
both array sizes will result in a cache miss and a TLB miss
(IVB has only 32 2MB TLB entries), but the maximum band-
width obtained with the larger array is substantially reduced
due to increases in TLB refill time (confirmed by performance
counters). Using 1 GB pages restores the bandwidth even
though there will still be frequent TLB misses (only 4 1 GB
TLB entries) because the refill time is reduced enough to not
be problematic. With 1 GB pages, the page table will only need
16 entries and will likely remain in the L1 cache. Our random
microbenchmark exemplifies the worst case for the TLB, so
any form of locality will reduce the performance penalties from
TLB misses.

We further parallelize our microbenchmark and run it
across all of the cores, and the maximum bandwidths we
achieve are visible in Figure 10. The data in this section shows
the maximum achievable memory bandwidth for a core, socket,
or entire system given the amount of application MLP, IPM,
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Fig. 4. Single-thread performance in terms of instructions per cycle (IPC) of full workload colored by: codebase (left), kernel (middle), and input graph (right).

memory location (NUMA), and page size. In the following
section, we measure the memory bandwidths achieved by the
high-performance graph codebases.

V. SINGLE-CORE ANALYSIS

In this section, we begin to characterize our workload using
only a single thread on a single core in order to remove any
parallel execution effects (multithreading, poor parallel scaling,
load imbalance, NUMA penalties). Despite being amongst
the highest-performance implementations, all three codebases
often execute instructions at a surprisingly low IPC (Figure 4),
and this disappointing performance observed is not specific to
any graph algorithm or codebase. The input graph does have
a large impact as we will discuss later in this section.

Figure 4 shows that there is an unsurprising tradeoff
between computation and communication, as no executions
sustain a high IPC and a high memory bandwidth. A processor
can only execute instructions at a high rate if it rarely waits
on memory, and hence consumes little memory bandwidth.
Conversely, for a processor to use a great deal of memory
bandwidth, it must have many memory requests outstanding,
causing it to be commonly waiting on memory and will thus
execute instructions slowly. Although some executions do use
an appreciable amount of compute (upper left of Figure 4) or
use an appreciable fraction of the memory bandwidth (lower
right), most do not. Many executions are actually in the worst
lower-left quadrant, where they use little memory bandwidth,
but their compute throughput is also low, presumably due to
memory latency.

In general across our codebases, kernels, and inputs graphs,
a single core struggles to use all of the raw bandwidth
available (10 outstanding misses). With the same communi-
cation volume, utilizing more bandwidth should lead to higher
performance. Using the four requirements from Section IV, we
investigate what is limiting the core’s bandwidth utilization for
what should be a memory-bound graph processing workload.

To have many loads outstanding, the processor must first
fetch those load instructions, and this typically requires cor-
rectly predicting the control flow. Although frequent branch
mispredictions will be harmful to performance in theory, if the
processor is already waiting on memory (achieving moderate
memory bandwidth utilization), performance is insensitive to
the branch misprediction rate (Figure 5), implying many of
these branches are miss independent. When the processor is
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not memory-bound, frequent branch mispredictions will hurt
performance, but a low misprediction rate is no guarantee for
good performance, implying there are remaining unaccounted
bottlenecks.

Once the processor fetches the future outstanding loads,
those loads need to be able to fit into the instruction window,



25 B B «on
@ road
2 T web |
[ twitter
+J .
g 15 T  uniform |
o
S -
10 g
5 ]
(o= nm ! (|
0 20 40 60 80 100 120
Misses per Kilo Instruction (MPKI)
Fig. 7. Single-thread MPKI (in terms of LLC misses) of full workload.

and the model from Section IV serves as an upper bound for
our workload (Figure 6). Although the model is technically
a pessimistic upper bound since it assumes outstanding loads
are evenly spaced apart, in practice this seems to be a suitable
approximation. In spite of the core being capable of handling
10 outstanding misses, an IPM of greater than 18.7 will not
allow all these loads to fit in the window according to our
model. Most of the executions have an IPM greater than this
cutoff, and thus have their effective bandwidth limited by the
instruction window size. The caches achieve a modest hit rate
(Figure 7), which raises the IPM by absorbing much of the
memory traffic.

As mentioned above, the properties of the graph can have
a substantial impact on the cache performance, which in turn
will affect not only the amount of memory traffic, but also
how fast it can be transferred. For example, in Figure 6 the
graph road has a high IPM because it is much smaller than
the other graphs. The topology can also have an impact, as the
graphs kron and uniform are about the same size and diameter,
and yet uniform typically uses more bandwidth because it
has a lower IPM caused by more cache misses. The graph
kron experiences fewer cache misses because it is scale-free,
as a few high degree vertices will be accessed frequently
(great temporal locality). Finally, the graph web has a higher
degree, which allows for longer contiguous reads (better spatial
locality) causing more cache hits and thus a higher IPM.

Although there is not typically substantial benefit from
using 1 GB pages, using 4 KB pages does have quite a perfor-
mance penalty. Fortunately, THP is on by default and requires
no application modifications. We vary the operating system
page size for the GAPBS codebase in Figure 8. Relative
to the baseline using THP (2MB pages), using 1 GB pages
improves performance by more than 10% in only 4/25 cases
but disabling THP, which forces all pages to be 4 KB, decreases
performance by at least 10% in 19/25 cases. To use 1GB
pages, we modify GAPBS to allocate 1 GB pages for the graph,
the output array, or both (typically the best) and pick whichever
one is fastest. The general insensitivity to the 1 GB page size
for our graph workload is another indication of locality.

We compare data dependencies versus branch mispredic-
tions to explain performance slowdown, and while difficult to
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disentangle, the evidence points much more strongly to the
former than to the latter. With a combination of knowledge
of IVB’s architecture and confirmation from performance
counters, we eliminate other possible performance limiters.
Due to sophisticated hashing of memory addresses, there is not
significant bank contention in the LLC or at the memory con-
trollers. The load buffer can hold 64 entries, so it rarely limits
outstanding loads before the ROB (168 entries) or the MSHRs
(10 per core). Mis-speculated loads are already counted by
the performance counters we utilize. The graph workloads
we measure have clearly dominant application phases (no
substantial temporal variation).

None of executions of actual graph processing workloads
are able to achieve a memory bandwidth corresponding to the
10 outstanding misses our synthetic microbenchmarks demon-
strate the cores are capable of sustaining, and most are not
even close. For a single thread, the biggest bandwidth limiter
is fitting loads into the instruction window, which prevents
off-chip memory bandwidth from becoming a bottleneck.

VI. PARALLEL PERFORMANCE

With an understanding of the limits and capabilities of a
single thread, we move on to the whole system. Running the
codebases at full capacity delivers speedups for all executions,
and with 32 threads on 16 cores we achieve a speedup greater
than 8x (relative to single-thread) in 49 of 75 cases and a
median speedup of 9.3 x (Figure 9). Unfortunately, some of the
executions (typically road and web) increase their bandwidth
consumption by more than they improve runtime, implying
their parallel executions have more memory traffic than their
single-threaded counterparts.

The compute and throughput utilization for the parallel
executions (Figure 10) is strikingly similar to utilizations
for a single core (Figure 4). Although web and sometimes
road appear to break the trend by simultaneously using more
compute throughput and memory bandwidth, they do move
extra data. The similarities between parallel utilization and
serial utilization suggest that the bottlenecks of the core persist
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along unit slope transfer the same amount of data, so points below the unit
slope (often road and web) transfer extra data.
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Fig. 11. Single-thread achieved memory bandwidth of full workload

executing out of remote memory. Calculating effective MLP with remote
memory latency (instead of local memory latency) returns a result similar
to local memory results (Figure 6).
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Fig. 10. Full system (32 threads on 16 cores) performance of full workload.
Vertical lines correspond to maximum achieved bandwidths from Section IV
for a single socket (socket), both sockets with memory interleaved (interleave),
and both sockets with locally allocated memory (system).

and hurt utilization at the system scale. Due to the generally
linear relation between performance and memory bandwidth,
fully utilizing the off-chip memory system could improve
performance by 1.3—47x (median 2.4x).

There may be graph algorithm implementations with better
parallel scaling properties, but these advanced algorithms are
used because they deliver better absolute performance. Parallel
scaling can be hampered by software issues (poor scalability,
load imbalance, synchronization overheads, and redundant
communication), but in the remainder of this work we will
consider hardware imposed complications for parallelization:
NUMA and multithreading.

VII. NUMA PENALTY

With multi-socket systems, non-uniform memory access
(NUMA) penalties are a common challenge. From the results
of Section IV, it would appear that NUMA should halve
performance, but our results indicate the penalty for NUMA
may be substantially less severe in practice.
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Fig. 12.  Single-socket (8 cores) slowdown relative to local memory of full

workload executing out of remote memory or interleaved memory.

For a single thread using only remote memory, performance
is halved as it transfers the same amount of data with the
same number of outstanding memory requests but at twice
the latency for effectively half the bandwidth. Calculating the
effective MLP with the remote memory latency instead of
the local memory latency shows the workload still obeys the
simple bandwidth model (Figure 11).

With more cores, this NUMA penalty is reduced (Fig-
ure 12), and for executions that use less memory bandwidth
(higher IPM), the NUMA penalty is reduced further. A core
using only remote memory is clearly an adversarial worst case.
For a full system workload without locality, half of the traffic
should still go to local memory. Consequently, the interleaved
pattern in Figure 12 is more realistic and it has one third
the performance loss of remote (median 1.16x slowdown vs.
1.48 x slowdown).

We confirm that NUMA has a moderate performance
penalty. Unfortunately, many graphs of interest are low diam-
eter and hard to partition effectively [20] so it is challenging
to avoid inter-socket communication. Therefore, efforts to
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move computation (rather than data) have fared the best when
optimizing graph processing for NUMA [1], [11].

VIII. LIMITED ROOM FOR SMT

Multithreading, and in this work’s context of a su-
perscalar out-of-order processor, simultaneous multithread-
ing (SMT) [17], aims to increase utilization. The additional
software-exposed parallelism threads provide can be used to
mitigate unresolved data dependences by increasing applica-
tion MLP as well as reducing the demand placed on branch
prediction since each thread will have fewer instructions in
flight. Using IVB, we measure the performance gains of using
a second thread per core, which evaluates how well SMT re-
duces the performance loss from unresolved data dependencies
and branch predictions without incurring new overheads.

Across all scales (single core, single socket, or single
system), the second thread is usually beneficial, but only
to a modest degree (Figure 13) as most speedups are less
than 1.5x. Even so, these modest speedups from SMT are
not inconsequential, as SMT economically improves system
performance.

Multithreading also has the potential to introduce new per-
formance challenges. More threads increase parallelism, which
in turn can worsen the damage caused by load imbalances and
synchronization overheads. Worse yet, more threads can end
up competing for capacity in the cache resulting in increased
memory traffic. Analogous to the results for multicore (Sec-
tion VI), the road and web graphs in Figure 14 are examples
of this competition as the improvement in bandwidth is greater
than the improvement in runtime.

For a single thread, we find the biggest performance limiter
to be fitting loads into the instruction window, and SMT is
no different as the addition of a second thread to the same
core still mostly obeys our simple model (Figure 15). If the
workload of the two threads is heterogenous it is possible for
an SMT core to exceed our simple model. One thread could
generate most of the cache misses sustaining a high effective
MLP while the other thread (unencumbered by cache misses)
could execute instructions quickly to increase IPM. In practice,
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the variation between threads is modest and thus most points
are not far above our model.

Multithreading can improve performance, but in the context
of this study (graph processing workload on a superscalar out-
of-order multi-socket system), it has limited potential. The
modest improvements two-way multithreading provides in this
study cast doubts on how much more performance is to be
gained by additional threads.

IX. RELATED WORK

Our study touches on many aspects of computer archi-
tecture, so we focus this section specifically on prior work
relevant to graph algorithms. Compared to prior work on the
architectural requirements for graph algorithms, our study has
a much larger and more diverse graph workload. We study 5
kernels from 3 codebases with 5 input graphs (some which are
real and not synthetic).

A survey [29] of both hardware and software concerns
for parallel graph processing lists ‘poor locality’ as one of its
chief concerns. Although it is cognizant of the greater cost
of heavily multithreaded systems, it argues they are better for



graph algorithms due to their memory latency tolerance and
support for fine-grained dynamic threading. Bader et al. [4]
also endorse heavily threaded systems because of concerns of
memory accesses being mostly non-contiguous (low locality).

Cong et al. [12] compare a Sun Niagara 2 to a IBM Power
7 when executing graph algorithms to understand architec-
tural implications. They find memory latency (not memory
bandwidth) to be a bottleneck for both platforms, and neither
platform has enough threads to fully hide it.

To better understand graph algorithm architectural require-
ments, prior work has explicitly examined the locality behavior
of graph algorithms. Cong et al. [13] study several Mini-
mum Spanning Tree algorithms with a reuse distance metric
(temporal locality). They find graph algorithms do have less
(but not no) locality, but observe some algorithms with less
locality sometimes perform better, and hypothesize this is due
to not accounting for spatial locality. Analytical models for
BEFS can accurately predict the reuse distance of BFS on certain
random graphs [47]. Murphy et al. [33] examine serial traces
from a variety of benchmark suites including graph algorithms.
Despite locality metrics based on an extremely small cache for
the time of publication, they observe that integer applications
tend to have less locality than floating-point applications, but
are still far better than random.

Efforts to improve performance by explicit NUMA opti-
mizations typically require complicated manual modifications
and are not generally applicable to all graph algorithms.
Agarwal et al. [1] improve BFS performance using custom
inter-socket queues. With a high-end quad-socket server, they
are able to outperform a Cray XMT. Satish et al. [11] minimize
inter-socket communication for BFS, and provide a detailed
performance model for their implementation.

Although hardware prefetchers may struggle to predict
non-streaming memory accesses, explicit software prefetching
has been investigated as a means to improve graph algorithm
performance [1], [12], [23]. Not unlike explicit NUMA op-
timizations, for graph algorithms, using software prefetching
requires human intervention. Software prefetching can be dif-
ficult to implement effectively for all graph algorithms because
it is often hard to generate the addresses desired sufficiently
before they are needed.

Green et al. investigate improving graph algorithm perfor-
mance by reducing branch mispredictions using conditional
moves [22]. They conclude that branch mispredictions are
responsible for a 30%—50% performance loss, but in our results
(Section V) we do not observe such a large penalty when
considering the limitations imposed by data dependences and
fitting loads into the instruction window.

Runahead execution is a technique to improve processor
performance in the presence of cache misses [16], and in
the case of an out-of-order core, runahead execution attempts
to economically obtain the benefits of a larger instruction
window [34].

The Cray XMT, and its predecessor the MTA-2 [2], are
systems explicitly designed to handle irregular problems in-
cluding graph algorithms [41]. Designed for workloads without
locality, they feature many hardware threads and no data
caches.

There has been substantial effort characterizing graph pro-
cessing workloads on GPUs. Since GPUs are optimized for
regular data parallelism, Burtscher et al. propose metrics to
quantify control-flow irregularity and memory-access irregu-
larity and they perform performance counter measurements on
real hardware [9]. For some graph algorithms, they observe
the performance characteristics depend substantially on the
inputs. A continuation of that research uses a software sim-
ulator to change GPU architectural parameters and observes
performance is more sensitive to L2 cache parameters than
to DRAM parameters, which suggests there is exploitable
locality [37]. Xu et al. also use a simulator and identify
synchronization with the CPU (kernel invocations and data
transfers) as well as GPU memory latency to be the biggest
performance bottlenecks [44]. Che et al. profile the Pannotia
suite of graph algorithms and observe substantial diversity
across algorithms and inputs [10]. Wu et al. investigate the
most important primitives needed for higher-level program-
ming models for graph algorithms [43]. Contrasting these GPU
works from our work, in addition to the difference in hardware
platform (CPU versus GPU), we use much larger input graphs
enabled by executing on real hardware (no downsizing to
reduce simulation time) and by using server-sized memory (not
constrained by GPU memory capacity).

X. CONCLUSION

Our diverse workload (varied implementations, algorithms,
and input graphs) demonstrates there is no single representative
benchmark and we find the input graph to have the largest
impact on the performance characteristics.

Most of our workload fails to fully utilize IVB’s off-
chip memory bandwidth due to having an insufficient num-
ber of outstanding memory requests. The biggest bandwidth
bottleneck is the instruction window, because it cannot hold
a sufficient number of instructions to incorporate the needed
number of rare cache-missing instructions. A high LLC hit rate
makes these cache misses rare, and we find this challenges
the misconception that graph algorithms have little locality.
TLB misses are only measurably detrimental when at least a
moderate amount of memory bandwidth is utilized, and we find
transparent huge pages to be effective at ameliorating much of
the performance loss due to TLB misses. Branch mispredic-
tions and unresolved data dependences can also hinder memory
bandwidth utilization, but they are secondary to the interaction
between the cache hit rate and the instruction window size.
Bandwidth is also moderately hindered by NUMA effects,
so software techniques to increase intra-socket locality or
hardware techniques to decrease inter-socket latency will be
beneficial.

The parallel scaling of our workload indicates that perfor-
mance typically scales linearly with memory bandwidth con-
sumption. Since our workload fails to fully utilize IVB’s mem-
ory bandwidth, an improved processor architecture could use
the same memory system but improve performance by utilizing
more memory bandwidth. For our workload on IVB, SMT
is typically beneficial, and when it improves performance, it
does so by using more memory bandwidth. Unfortunately, in
the context of an out-of-order core, SMT helps only modestly,
and additional techniques will be needed to utilize the rest of
the unused memory bandwidth.



Overall, we see no perfect solution to the performance

challenges presented by graph algorithms. Many techniques
can improve performance, but all of them will have quickly
diminishing returns, so greatly improving performance will
require a multifaceted approach.
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