P
n ”".GDConf co

Game Developers Conference®. = —
March 23-27, 2009 ' Mosco ///;// =

(IR G R O TR Ea T

Bruce Dawson
Principal Software Design Engineer
Microsoft
Windows Client Performance

TR G R EOTTREOT

" Agenda

» Locks and their problems

» Lockless programming — a
different set of problems!

Portable lockless programming
Lockless algorithms that work
Conclusions

>

\4

>

\4

>

\'

>

v

Focus is on improving intuition on
the reordering aspects of lockless
programming

Cell phones

» Please turn off all cell phones,
nagers, alarm clocks, crying
nabies, internal combustion
engines, leaf blowers, etc.

TR G R EOTTREam

TR G R EOTTREOT

Mandatory Multi-core Mention

»

»

»

»

»

»

Xbox 360: six hardware threads
PS3: nine hardware threads
Windows: quad-core PCs for $500

Multi-threading is mandatory if you want
to harness the available power

Luckily it's easy

@ As long as there is no sharing of non-constant
data

Sharing data is tricky

@ Easiest and safest way is to use OS features
such as locks and semaphores

Simple Job Queue

» Assigning work:
EnterCriticalSection(&workItemsLock) ;
workItems.push(workItem) ;
LeaveCriticalSection(&workItemsLock) ;

» Worker threads:
EnterCriticalSection(&workItemslLock) ;

WorkItem workItem = workItems.front () ;
workItems.pop () ;

LeaveCriticalSection(&workItemsLock) ;
DoWork (workItem) ;

TR G R EOTTREOT

The Problem With Locks...

>

v

Overhead - acquiring and releasing locks takes

time

@ So don’t acquire locks too often

» Deadlocks - lock acquisition order must be
consistent to avoid these
® So don’t have very many locks, or only acquire one

at a time

» Contention — sometimes somebody else has the
lock
@ S0 never hold locks for too long — contradicts point 1
® So have lots of little locks — contradicts point 2

» Priority inversions - if a thread is swapped out

while holding a lock, progress may stall

® Changing thread priorities can lead to this

@ Xbox 360 system threads can briefly cause this

TR G R EOTTREOT

» Use loc
@ Don't
@ Don't
@ Don't
@ Don't

» Or, try

TR G R EOTTREam

Sensible Reaction

ks carefully
ock too frequently

ock for too long
use too many locks
have one central lock

lockless

", Lockless Programming

d » Techniques for safe multi-threaded
data sharing without locks

» Pros:
®» May have lower overhead
®» Avoids deadlocks
®» May reduce contention
® Avoids priority inversions

» Cons
» Very limited abilities
® Extremely tricky to get right
® Generally non-portable

TR G R EOTTREOT

Job Queue Again

» Assigning work:
EnterCriticalSection(&workItemsLock) ;
workItems.push(workItem) ;
LeaveCriticalSection(&workItemsLock) ;

» Worker threads:
EnterCriticalSection(&workItemslLock) ;

WorkItem workItem = workItems.front () ;
workItems.pop () ;

LeaveCriticalSection(&workItemsLock) ;
DoWork (workItem) ;

TR G R EOTTREOT

TR G R EOTTREOT

Lockless Job Queue #1

» Assigning work:
EnterCriticalSection(&workItemsLock) ;
InterlockedPushEntrySList(workItem) ;
LeaveCriticalSection(&workItemsLock) ;

» Worker threads:
EnterCriticalSection(&workItemslLock) ;

WorkItem workItem =

InterlockedPopEntrySList() ;
LeaveCriticalSection(&workItemsLock) ;
DoWork (workItem) ;

- Lockless Job Stack #1

» Assigning work:

InterlockedPushEntrvSList(workTtem) ;

BROKEN on
gl Xbox 360!!!

WorkItem workItem =
InterlockedPopEntrySList() ;

DoWork (workItem) ;

IR G R R OTTREaTT

! Lockless Job Queue #2
{ 5

-~
-
|

» Assigning work — one writer only:
if(RoomAvail (readPt, writePt)) {
CircWorkList[writePt] = workItem;

Broken As

2 Executed B

CircWorkList[readPt];
readPt = WRAP(readPt + 1);
DoWork (workItem) ;

IR G R R OTTREaTT

. Simple CPU/Compiler Model

Core 1 Core 0 '
Read pC

| write pC] Write pA
Write pB
Read pD
Write pC

Interconnect

—
—
e
g,
=
=
v
-
.
®.
"o
=
7»
-
=
=

.2 Cache

. Alternate CPU Model

Core 1 Core 0 ‘
Write pA

| write pC] Write pB
Write pC

Visible order:
Write pA
Write pC
Write pB

Interconnect

—
—
e
g,
=
=
v
-
.
®.
"o
=
7»
-
=
=

.2 Cache

.Alternate CPU - Reads Pass Reads

Core 1 Core 0 ‘
Read Al

(= Read A2
Read Al

Visible order:
Read Al
Read Al
Read A2

Interconnect

—
—
e
g,
=
=
v
-
.
®.
"o
=
7»
-
=
=

.2 Cache

.Alternate CPU - Writes Pass Reads

Core 1 Core 0 ‘
Read Al

[write A2 Write A2

Visible order:
Write A2
Read Al

Interconnect

—
—
e
g,
=
=
v
-
.
®.
"o
=
7»
-
=
=

.2 Cache

.Alternate CPU - Reads Pass Writes

Core 1 Core 0 ‘
Read Al

[Read A2] Write A2
Read A2
Read Al

Interconnect
Visible order:
Read Al
Read Al

Write A2
.2 Cache Read A2

—
—
e
g,
=
=
v
-
.
®.
"o
=
7»
-
=
=

(IR G R O TR Ea T

store can pass store? Yes* Yes* Yes*
. load can pass load? No Yes Yes Yes

store can pass load? No Yes Yes Yes

load can pass store?** Yes Yes Yes Yes

» "Pass" means "visible before"

» Memory models are actually more
complex than this
@ May vary for cacheable/non-cacheable, etc.

» This only affects multi-threaded lock-free
code!!!

* Only stores to different addresses can pass each other

** Loads to a previously stored address will load that value

. Improbable CPU - Reads Don’t Pass Writes

Core 1 Core 0 ‘
Read Al

[[Read A1] Write A2
Read Al

Interconnect

—
—
e
g,
=
=
v
-
.
®.
"o
=
7»
-
=
=

.2 Cache

", Reads Must Pass Writes!

d » Reads not passing writes would
mean L1 cache is frequently
disabled

®» Every read that follows a write would
stall for shared storage latency

» Huge performance impact

» Therefore, on x86 and x64 (on all
modern CPUs) reads can pass
writes

TR G R EOTTREOT

! Reordering Implications

4
: é » Publisher/Subscriber model

» Thread A:
g data = data;

g_dataReady = true;

» Thread B:
if(g dataReady)

process(g data);

» Is it safe?

TR G R EOTTREOT

. Publisher/Subscriber on PowerPC

C 1 C 0
o S Proc 1:

Wit Write g_data
[g_dataReadyJ Write g_dataReady

Proc 2:
Read g_dataReady
Read g_data

Interconnect

» Writes may reach
L2 out of order

—
—
e
g,
=
=
v
-
.
®.
"o
=
7»
-
=
=

.2 Cache

. Publisher/Subscriber on PowerPC

C 1 C 0
o S Proc 1:

[L Wrie Write g_data
g—dataReadYJ MyExportBarrier();
Write g_dataReady

Interconnect Proc 2:

Read g_dataReady
Read g_data

—
—
e
g,
=
=
v
-
.
®.
"o
=
7»
-
=
=

» Writes now reach

[2 Cache L2 in order

. Publisher/Subscriber on PowerPC

C 1 C 0
o == Proc 1:

[L Wrie [Read] Write g_data
g—dataReadYJ 9_dataReady MyExportBarrier();

Write g_dataReady

Interconnect Proc 2:

Read g_dataReady
Read g_data

—
—
e
g,
=
=
v
-
.
®.
"o
=
7»
-
=
=

Invalidate
[g_data J » Reads may leave
[2 Cache L2 out of order -
g_data may be
stale

. Publisher/Subscriber on PowerPC

C 1 C 0
o == Proc 1:

[L Wrie [{ Import J Write g_data
9—dataReadYJ carrier MyExportBarrier();

Write g_dataReady

Interconnect Proc 2:

Read g_dataReady
MyImportBarrier();
Read g_data

—
—
e
g,
=
=
v
-
.
®.
o
=
7.
-
=
=

Invalidate
g_data

L2 Cache » It's all good!

(TR G R EOTTREOT

x86/x64 FTW!!!

Not so fast...

)

\'

Compilers are just as evil as
Processors

Compilers will rearrange your code

as much as legally possible

®» And compilers assume your code is
single threaded

Compiler and CPU reordering
barriers needed

>

v

>

\4

>

v

» Prevents reordering of writes by compiler or CPU
@ Used when handing out access to data

» X86/x64: _ReadWriteBarrier();
@ Compiler intrinsic, prevents compiler reordering

» PowerPC: __ lwsync();
@ Hardware barrier, prevents CPU write reordering

» ARM: __dmb(); // Full hardware barrier
» IA64: _ mf(); // Full hardware barrier

» Positioning is crucial!

@ Write the data, MyExportBarrier, write the control
value

» Export-barrier followed by write is known as write-
release semantics

(TR G R EOTTREOT

(TR G R EOTTREOT

»

»

»

»

»

»

»

Prevents reordering of reads by compiler or CPU
@ Used when gaining access to data

x86/x64: _ReadWriteBarrier();
@ Compiler intrinsic, prevents compiler reordering

PowerPC: __lwsync(); or isync();
® Hardware barrier, prevents CPU read reordering

ARM: _ dmb(); // Full hardware barrier
IA64: _ mf(); // Full hardware barrier

Positioning is crucial!

® Read the control value, MyImportBarrier, read the
data

Read followed by import-barrier is known as read-
acquire semantics

Fixed Job Queue #2

» Assigning work — one writer only:
if(RoomAvail (readPt, writePt)) {
MyImportBarrier () ;
CircWorkList[writePt] = workItem;
MyExportBarrier () ;
writePt = WRAP(writePtr + 1);

» Worker thr C I I I
s Correct!!!
My Imj
WorkItem workItem =
CircWorkList[readPt];
MyExportBarrier () ;
readPt = WRAP(readPt + 1);

R G R EOTTREOT DOWOZI’.‘k(workItem);

Dekker’s/Peterson’s Algorithm

int T1 = 0, T2 = 0;

Proc 1:
void LockForTl () {
Tl = 1;

if(T2 '= 0) {

Proc 2:
void LockForT2 () {
T2 = 1;

if(Tl '=0) {

IR G R R OTTREaTT

. Dekker’s/Peterson’s Animation

Core 1 C 0
o S Proc 1:

Write Write T1
[et J [T2 J Read T2

Proc 2:
Write T2
Read T1

Interconnect

» Epic fail! (on
x86/x64 also)

—
—
e
g,
=
=
v
-
.
®.
"o
=
7»
-
=
=

Invalidate
T2

.2 Cache

. Dekker’s/Peterson’s Animation

C 1 C 0
o S Proc 1:

Write T1
Memory Memory
[[Barrier } [[Barrier } MemoryBarrier();

Read T2

Interconnect Proc 2:

Write T2
MemoryBarrier();
Read T1

—
—
e
g,
=
=
v
-
.
®.
"o
=
7»
-
=
=

Invalidate
T2

L2 Cache » It's all good!

TR G R EOTTREOT

- Full Memory Barrier

» MemoryBarrier();
® X86: __asm xchg Barrier, eax
® X64: _ faststorefence();
@ Xbox 360: __sync();
@ ARM: __dmb();
o IA64: _ mf();

» Needed for Dekker's algorithm,
implementing locks, etc.

» Prevents all reordering - including
preventing reads passing writes

» Most expensive barrier type

Dekker’s/Peterson’s Fixed

int T1 = 0, T2 = 0;

Proc 1:
void LockForTl () {
Tl = 1;

MemoryBarrier () ;
if(T2 '= 0) {

Proc 2:
void LockForT2 () {
T2 = 1;

MemoryBarrier () ;
if(T1 '= 0) {

IR G R R OTTREaTT

Dekker’'s/Peterson’s Still Broken

int T1 = 0, T2 = 0;

Proc 1:
void LockForTl () {
Tl = 1;

MyExportBarrier () ;
if(T2 '= 0) {

Proc 2:
void LockForT2 () {
T2 = 1;

MyExportBarrier () ;
if(T1 '= 0) {

IR G R R OTTREaTT

Dekker’'s/Peterson’s Still Broken

int T1 = 0, T2 = 0;

Proc 1:
void LockForTl () {
Tl = 1;

MyImportBarrier () ;
if(T2 '= 0) {

Proc 2:
void LockForT2 () {
T2 = 1;

MyImportBarrier () ;
if(T1 '= 0) {

IR G R R OTTREaTT

Dekker’'s/Peterson’s Still Broken

int T1 = 0, T2 = 0;

Proc 1:
void LockForTl () {
Tl = 1;

MyExportBarrier () ; MyImportBarrier() ;
if(T2 '= 0) {

Proc 2:
void LockForT2 () {
T2 = 1;

MyExportBarrier () ; MyImportBarrier();
if(T1 '=0) {

TR G R EOTTREam

TR G R EOTTREOT

What About Volatile?

» Standard volatile semantics not
designed for multi-threading

® Compiler can move normal reads/writes past
volatile reads/writes

@ Also, doesn’t prevent CPU reordering

» VC++ 2005+ volatile is better...

@ Acts as read-acquire/write-release on
x86/x64 and Itanium

@ Doesn’t prevent hardware reordering on Xbox
360

» Watch for atomic<T> in C++0x

@ Sequentially consistent by default but can
choose from four memory models

Double Checked Locking

Foo* GetFoo () {
static Foo* volatile s pFoo;
Foo* tmp = s pFoo;
if('tmp) {
EnterCriticalSection(&initLock) ;

tmp = s pFoo; // Reload inside lock
if('tmp) |

tmp = new Foo();

s pFoo = tmp;
}

LeaveCriticalSection(&initLock) ;
}
return tmp; }

» This is broken on many systems

TR G R EOTTREOT

TR G R EOTTREOT

Possible Compiler Rewrite

Foo* GetFoo () {

static Foo* volatile s pFoo;
Foo* tmp = s pFoo;
if('tmp) {
EnterCriticalSection(&initLock) ;
tmp = s pFoo; // Reload inside lock
if('tmp) {
s _pFoo = (Foo*)new char[sizeof (Foo)];
new (s_pFoo) Foo; tmp = s pFoo;
}
LeaveCriticalSection(&initLock) ;
}
return tmp,; }

Double Checked Locking

Foo* GetFoo () {
static Foo* volatile s pFoo;
Foo* tmp = s pFoo; MyImportBarrier()
if('tmp) {
EnterCriticalSection(&initLock) ;

tmp = s pFoo; // Reload inside lock
if('tmp) |

tmp = new Foo();

MyExportBarrier(); s pFoo = tmp;
}

LeaveCriticalSection(&initLock) ;
}
return tmp; }

» Fixed

TR G R EOTTREOT

TR G R EOTTREOT

InterlockedXxx

»

»

»

»

Necessary to extend lockless algorithms
to greater than two threads
@ A whole separate talk...

InterlockedXxx is a full barrier on
Windows for x86, x64, and Itanium

Not a barrier at all on Xbox 360
@ Qops. Still atomic, just not a barrier

InterlockedXxx Acquire and Release are
portable across all platforms

® Same guarantees everywhere

@ Safer than regular InterlockedXxx on Xbox 360
@ No difference on x86/x64

@ Recommended

L,
g 4

(TR G R EOTTREOT

Practical Lockless Uses

»

»

»

»

»

»

Reference counts

Setting a flag to tell a thread to
exit

Publisher/Subscriber with one
reader and one writer — lockless
pIpE

SLists

XMCore on Xbox 360

Double checked locking

! Barrier Summary
: re

M » MyExportBarrier when publishing
data, to prevent write reordering

» MyImportBarrier when acquiring
data, to prevent read reordering

» MemoryBarrier to stop all
reordering, including reads passing
writes

» Identify where you are
publishing/releasing and where
you are subscribing/acquiring

(TR G R EOTTREOT

TR G R EOTTREOT

Summary

>

\4

»

»

»

»

»

Prefer using locks — they are full barriers

» Acquiring and releasing a lock is a memory
barrier

Use lockless only when costs of locks are
shown to be too high

Use pre-built lockless algorithms if
possible

Encapsulate lockless algorithms to make
them safe to use

Volatile is not a portable solution

Remember that InterlockedXxx is a full
barrier on Windows, but not on Xbox
360

(IR G R O TR Ea T

References

»

»

»

»

»

»

Intel memory model documentation in Intel® 64 and IA-32
Architectures Software Developer's Manual Volume 3A:
System Programming Guide

® http://download.intel.com/design/processor/manuals/253668.pdf

AMD "Multiprocessor Memory Access Ordering"

& http://www.amd.com/us-
en/assets/content type/white papers and tech docs/24593.pdf

PPC memory model explanation

& http://www.ibm.com/developerworks/eserver/articles/powerpc.ht
ml

Lockless Programming Considerations for Xbox 360 and
Microsoft Windows

& http://msdn.microsoft.com/en-us/library/bb310595.aspx

Perils of Double Checked Locking
® http://www.aristeia.com/Papers/DDJ] Jul Aug 2004 revised.pdf

Java Memory Model Cookbook
® http://g.oswego.edu/dl/jmm/cookbook.html

http://download.intel.com/design/processor/manuals/253668.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24593.pdf
http://www.ibm.com/developerworks/eserver/articles/powerpc.html
http://msdn.microsoft.com/en-us/library/bb310595.aspx
http://www.aristeia.com/Papers/DDJ_Jul_Aug_2004_revised.pdf
http://g.oswego.edu/dl/jmm/cookbook.html

Questions?

» bdawson@microsoft.com

(IR G R O TR Ea T

mailto:bdawson@microsoft.com

! Feedback forms
>

» Please fill out feedback forms

(IR G R O TR Ea T

