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LONG GAPS BETWEEN PRIMES

KEVIN FORD, BEN GREEN, SERGEI KONYAGIN, JAMES MAYNARD, AND TERENCE TAO

ABSTRACT. Let pn denote then-th prime. We prove that

max
p
n+16X

(pn+1 − pn) ≫
logX log logX log log log logX

log log logX

for sufficiently largeX, improving upon recent bounds of the first three and fifth authors and of the fourth au-
thor. Our main new ingredient is a generalization of a hypergraph covering theorem of Pippenger and Spencer,
proven using the Rödl nibble method.
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1. INTRODUCTION

Let pn denote thenth prime, and let

G(X) := max
pn+16X

(pn+1 − pn)

denote the the maximum gap between consecutive primes less thanX. It is clear from the prime number
theorem that

G(X) > (1 + o(1)) logX,

as theaveragegap between the prime numbers which are6 X is ∼ logX. In 1931, Westzynthius [43]
proved that infinitely often, the gap between consecutive prime numbers can be an arbitrarily large multiple
of the average gap, that is,G(X)/ logX → ∞ asX → ∞, improving upon prior results of Backlund [2]
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and Brauer-Zeitz [5]. Moreover, he proved the quantitativebound1

G(X) ≫ logX log3X

log4X
.

In 1935 Erdős [11] sharpened this to

G(X) ≫ logX log2X

(log3X)2

and in 1938 Rankin [37] made a subsequent improvement

G(X) > (c+ o(1))
logX log2X log4X

(log3X)2

with c = 1
3 . The constantc was increased several times: to12e

γ by Schönhage [40], then toc = eγ by
Rankin [38], toc = 1.31256eγ by Maier and Pomerance [29] and, most recently, toc = 2eγ by Pintz [33].

Recently, in two independent papers [13, 32], the authors showed thatc could be taken to be arbitrarily
large, answering in the affirmative a long-standing conjecture of Erdős [12]. The methods of proof in
[13] and [32] differed in some key aspects. The arguments in [13] used recent results [21, 20, 22] on
the number of solutions to linear equations in primes, whereas the arguments in [32] instead relied on
multidimensional prime-detecting sieves introduced in [30]. The latter arguments have the advantage of
coming with quantitative control on the error terms, as worked out in [31]. Using this, in unpublished work
of the fourth author the above bound was improved to

(1.1) G(X) ≫ logX log2X

log3X

for sufficiently largeX.
Our main theorem is the following further quantitative improvement.

Theorem 1(Large prime gaps). For any sufficiently largeX, one has

G(X) ≫ logX log2X log4X

log3X
.

The implied constant is effective.

Our arguments combine ideas from the previous papers [13, 32], and also involve a new generalization of
a hypergraph covering theorem of Pippenger and Spencer [34]which is of independent interest. In a sequel
[15] to this paper, a subset of the authors will extend the above theorem to also cover chains of consecutive
large gaps between primes, by combining the methods in this paper with the Maier matrix method. In view
of this, we have written some of the key propositions in this paper in slightly more generality than is strictly
necessary to prove Theorem 1, as the more general versions ofthese results will be useful in the sequel [15].

The results and methods of this paper have also subsequentlybeen applied by Maier and Rassias [28]
(extending the method of the first author, Heath-Brown and the third author [14]) to obtain large prime gaps
(of the order of that in Theorem 1) that contain a perfectkth power of a prime for a fixedk, and by Baker
and Freiberg [3] to obtain lower bounds on the density of limit points of prime gaps normalized by any
function that grows slightly slower than the one in Theorem 1. We refer the interested reader to these papers
for further details.

1As usual in the subject,log2 x = log log x, log3 x = log log log x, and so on. The conventions for asymptotic notation such
as≪ ando() will be defined in Section 2.
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1.1. Historical background. Based on a probabilistic model of primes, Cramér [8] conjectured that

lim sup
X→∞

G(X)

log2X
= 1.

Granville [19] offered a refinement of Cramér’s model and has conjectured that thelim sup above is in
fact at least2e−γ = 1.1229 . . .. These conjectures are well beyond the reach of our methods.Cramér’s
model also predicts that the normalized prime gapspn+1−pn

log pn
should have exponential distribution, that is,

pn+1 − pn > C log pn for aboute−Cπ(X) primes6 X, for any fixedC > 0. Numerical evidence from
prime calculations up to4 ·1018 [41] matches this prediction quite closely, with the exception of values ofC
close tologX, for which there is very little data available. In fact,maxX64·1018 G(X)/ log2X ≈ 0.9206,
slightly below the predictions of Cramér and Granville.

Unconditional upper bounds forG(X) are far from the conjectured truth, the best beingG(X) ≪ X0.525

and due to Baker, Harman and Pintz [4]. Even the Riemann Hypothesis only2 furnishes the boundG(X) ≪
X1/2 logX [7].

All works on lower bounds forG(X) have followed a similar overall plan of attack: show that there are
at leastG(X) consecutive integers in(X/2,X], each of which has a “very small” prime factor. To describe
the results, we make the following definition.

Definition 1. Letx be a positive integer. DefineY (x) to be the largest integery for which one may select
residue classesap mod p, one for each primep 6 x, which together “sieve out” (cover) the whole interval
[y] = {1, . . . , ⌊y⌋}. Equivalently,Y (x) is the largest integerm so that there arem consecutive integers
coprime toP (x).

The relation between this functionY and gaps between primes is encoded in the following simple lemma.

Lemma 1.1. WriteP (x) for the product of the primes less than or equal tox. Then

G(P (x) + Y (x) + x) > Y (x).

Proof. Sety = Y (x), and select residue classesap mod p, one for each primep 6 x, which cover[y].
By the Chinese remainder theorem there is somem, x < m 6 x + P (x), with m ≡ −ap (mod p) for
all primesp 6 x. We claim that all of the numbersm + 1, . . . ,m + y are composite, which means that
there is a gap of lengthy amongst the primes less thanm + y, thereby concluding the proof of the lemma.
To prove the claim, suppose that1 6 t 6 y. Then there is somep such thatt ≡ ap (mod p), and hence
m+ t ≡ −ap + ap ≡ 0 (mod p), and thusp dividesm+ t. Sincem+ t > m > x > p, m+ t is indeed
composite. �

By the prime number theorem we haveP (x) = e(1+o(1))x. It turns out (see below) thatY (x) has size
xO(1). Thus the bound of Lemma 1.1 implies that

G(X) > Y
(

(1 + o(1)) logX
)

asX → ∞. In particular, Theorem 1 is a consequence of the bound

(1.2) Y (x) ≫ x log x log3 x

log2 x
,

2Some slight improvements are available if one also assumes some form of the pair correlation conjecture; see [24].
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which we will establish later in this paper. This improves onthe boundY (x) ≫ x log x log3 x

log22 x
obtained by

Rankin [37], and the improvementY (x) ≫ x log x
log2 x

obtained in unpublished work of the fourth author.
The functionY is intimately related toJacobsthal’s functionj. If n is a positive integer thenj(n) is

defined to be the maximal gap between integers coprime ton. In particularj(P (x)) is the maximal gap
between numbers free of prime factors6 x, or equivalently1 plus the longest string of consecutive integers,
each divisible by some primep 6 x. The Chinese remainder theorem construction given in the proof of
Lemma 1.1 in fact proves that

(1.3) Y (x) = j(P (x)) − 1.

This observation, together with results in the literature,gives upper bounds forY . The best upper bound
known isY (x) ≪ x2, which comes from Iwaniec’s work [26] on Jacobsthal’s function. It is conjectured by
Maier and Pomerance that in factY (x) ≪ x(log x)2+o(1). This places a serious (albeit conjectural) upper
bound on how large gaps between primes we can hope to find via lower bounds forY (x): a bound in the
region ofG(X) ' logX(log logX)2+o(1), far from Cramér’s conjecture, appears to be the absolute limit
of such an approach.

The lower bound on certain values of Jacobsthal’s function provided by (1.2), (1.3) can be inserted directly
into [36, Theorem 1] to obtain a lower bound for the maximum over l of p(k, l), the least prime in the
arithmetic progressionl mod k, in the case when the modulusk has no small prime factors. We have

Corollary 1. For any natural numberk, letM(k) denote the maximum value ofp(k, l) over all l coprime to
k. Suppose thatk has no prime factors less than or equal tox for somex 6 log k. Then, ifx is sufficiently
large (in order to makelog2 x, log3 x positive), one has the lower bound

M(k) ≫ k
x log x log3 x

log2 x
.

Proof. Apply [36, Theorem 1] withm = P (x) if x 6 1
2 log k and withm = P (12 log k) if 1

2 log k < x 6
log k. �

In view of [36, Theorem 3], one may also expect to be able to prove a lower bound of the form

M(k) ≫ φ(k)
log k log2 k log4 k

log3 k

for a set of natural numbersk of density1, but we were unable to find a quick way to establish this from the
results in this paper.

1.2. Method of proof. Our methods here are a combination of those in our previous papers [13, 32], which
are in turn based in part on arguments in previous papers, particularly those of Rankin [37] and Maier-
Pomerance [29]; we also modify some arguments of Pippenger and Spencer [34] in order to make the lower
bound in Theorem 1 as efficient as possible.

As noted above, to prove Theorem 1, it suffices to sieve out an interval [y] by residue classesap mod p

for each primep 6 x, wherey ≍ x log x log3 x
log2 x

. Actually, it is permissible to haveO( x
log x) survivors in[y]

that are not sieved out by these residue classes, since one can easily eliminate such survivors by increasing
x by a constant multiplicative factor. Also, for minor technical reasons, it is convenient to sieve out[y]\[x]
rather than[y].

Following [13], we will sieve out[y]\[x] by the residue classes0 mod p both for very small primesp
(p 6 log20 x) and medium primesp (betweenz := xlog3 x/(4 log2 x) andx/2). The survivors of this process
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are essentially the setQ of primes betweenx andy. After this initial sieving, the next stage will be to
randomly sieve out residue classesã = (as mod s)s∈S for small primess (betweenlog20 x andz). (This
approach differs slightly from the approach taken in [32] and earlier papers, in which the residue classes
1 mod s for small (and very small) primes are used instead.) This cuts down the set of primesQ to a
smaller setQ ∩ S(ã), whose cardinality is typically on the order ofxlog x log2 x. The remaining task is then
to select integersnp for each primep betweenx/2 andx, such that the residue classesnp mod p cut down
Q∩ S(ã) to a set of survivors of sizeO( x

log x).
Assuming optimistically that one can ensure that the different residue classesnp mod p largely remove

disjoint sets fromQ∩ S(ã), we are led to the need to select the integersnp so that eachnp mod p contains
about log2 x of the primes inQ ∩ S(ã). In [13], the approach taken was to use recent results on linear
equations in primes [20, 21, 22] to locate arithmetic progressionsq, q + r!p, . . . , q + (r − 1)r!p consisting
entirely of primes for some suitabler, and then to takenp = q. Unfortunately, due to various sources of
ineffectivity in the known results on linear equations in primes, this method only works whenr is fixed or
growing extremely slowly inx, whereas here we would need to taker of the order oflog2 x. To get around
this difficulty, we use instead the methods from [32], which are based on the multidimensional sieve methods
introduced in [30] to obtain bounded intervals with many primes. A routine modification of these methods
gives tuplesq + h1p, . . . , q + hkp which contain≫ log k primes, for suitable largek; in fact, by using the
calculations in [31], one can takek as large aslogc x for some small absolute constantc (e.g. c = 1/5), so
that the residue classq mod p is guaranteed to capture≫ log2 x primes inQ.

There is however a difficulty due to the overlap between the residue classesnp mod p. In both of the
previous papers [13, 32], the residue classes were selectedrandomly and independently of each other, but
this led to a slight inefficiency in the sieving: with each residue classnp mod p containing approximately
log2 x primes, probabilistic heuristics suggest that one would have needed the original survivor setQ∩S(ã)
to have size about xlog x

log2 x
log3 x

rather than x
log x log2 x if one is to arrive atO( x

log x) after the final sieving
process. This is what ultimately leads to the additional loss of log4 x in (1.1) compared to Theorem 1. To
avoid this difficulty, we use some ideas from the literature on efficient hypergraph covering. Of particular
relevance is the work of Pippenger and Spencer [34] in which it is shown that whenever one has a large
hypergraphG = (V,E) which is uniform both in the sense of edgese ∈ E having constant cardinality, and
also in the sense of the degrees#{e ∈ E : v ∈ e} being close to constant inv, one can efficiently cover most
of V by almost disjoint edges inE. Unfortunately, the results in [34] are not directly applicable for a number
of technical reasons, the most serious of which is that the analogous hypergraph in this case (in which the
vertices are the sifted setQ ∩ S(ã) and the edges are sets of the form{q ∈ Q ∩ S(ã) : q ≡ np (mod p)}
for variousnp, p) does not have edges of constant cardinality. However, by modifying the “Rödl nibble” or
“semi-random” method used to prove the Pippenger-Spencer theorem, we are able to obtain a generalization
of that theorem in which the edges are permitted to have variable cardinality. This generalization is purely
combinatorial in nature and may be of independent interest beyond the application here to large prime gaps.

We will make a series of reductions to prove Theorem 1. To aid the reader, we summarize the chain of
implications below, indicating in which Section each implication or Theorem is proven (beneath), and in
which Section one may find a statement of each Theorem (above).

§6
Thm 5
§7,8

=⇒
§6

§4
Thm 4 =⇒

§4,5

§3
Thm 2 =⇒

§3
Thm 1
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2. NOTATIONAL CONVENTIONS

In most of the paper,x will denote an asymptotic parameter going to infinity, with many quantities
allowed to depend onx. The symbolo(1) will stand for a quantity tending to zero asx → ∞. The same
convention applies to the asymptotic notationX ∼ Y , which meansX = (1 + o(1))Y , andX . Y , which
meansX 6 (1 + o(1))Y . We useX = O(Y ), X ≪ Y , andY ≫ X to denote the claim that there is a
constantC > 0 such that|X| 6 CY throughout the domain of the quantityX. We adopt the convention
thatC is independent of any parameter unless such dependence is indicated, e.g. by subscript such as≪k.
In all of our estimates here, the constantC will be effective (we will not rely on ineffective results such as
Siegel’s theorem). If we can take the implied constantC to equal1, we writef = O6(g) instead. Thus for
instance

X = (1 +O6(ε))Y

is synonymous with
(1− ε)Y 6 X 6 (1 + ε)Y.

Finally, we useX ≍ Y synonymously withX ≪ Y ≪ X.
When summing or taking products over the symbolp, it is understood thatp is restricted to be prime.
Given a modulusq and an integern, we usen mod q to denote the congruence class ofn in Z/qZ.
Given a setA, we use1A to denote its indicator function, thus1A(x) is equal to1 whenx ∈ A and zero

otherwise. Similarly, ifE is an event or statement, we use1E to denote the indicator, equal to1 whenE is
true and0 otherwise. Thus for instance1A(x) is synonymous with1x∈A.

We use#A to denote the cardinality ofA, and for any positive realz, we let[z] := {n ∈ N : 1 6 n 6 z}
denote the set of natural numbers up toz.

Our arguments will rely heavily on the probabilistic method. Our random variables will mostly be discrete
(in the sense that they take at most countably many values), although we will occasionally use some contin-
uous random variables (e.g. independent real numbers sampled uniformly from the unit interval[0, 1]). As
such, the usual measure-theoretic caveats such as “absolutely integrable”, “measurable”, or “almost surely”
can be largely ignored by the reader in the discussion below.We will use boldface symbols such asX or a
to denote random variables (and non-boldface symbols such asX or a to denote deterministic counterparts
of these variables). Vector-valued random variables will be denoted in arrowed boldface, e.g.~a = (as)s∈S
might denote a random tuple of random variablesas indexed by some index setS.
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We writeP for probability, andE for expectation. IfX takes at most countably many values, we define
theessential rangeof X to be the set of allX such thatP(X = X) is non-zero, thusX almost surely takes
values in its essential range. We also employ the following conditional expectation notation. IfE is an event
of non-zero probability, we write

P(F |E) :=
P(F ∧E)

P(E)

for any eventF , and

E(X|E) :=
E(X1E)

P(E)

for any (absolutely integrable) real-valued random variable X. If Y is another random variable taking at
most countably many values, we define the conditional probability P(F |Y) to be the random variable that
equalsP(F |Y = Y ) on the eventY = Y for eachY in the essential range ofY, and similarly define the
conditional expectationE(X|Y) to be the random variable that equalsE(X|Y = Y ) on the eventY = Y .
We observe the idempotency property

(2.1) E(E(X|Y)) = EX

wheneverX is absolutely integrable andY takes at most countably many values.
We will rely frequently on the following simple concentration of measure result.

Lemma 2.1(Chebyshev inequality). LetX,Y be independent random variables taking at most countably
many values. LetY′ be a conditionally independent copy ofY overX; in other words, for everyX in
the essential range ofX, the random variablesY,Y′ are independent and identically distributed after
conditioning to the eventX = X. LetF (X,Y) be a (absolutely integrable) random variable depending on
X andY. Suppose that one has the bounds

(2.2) EF (X,Y) = α+O(εα)

and

(2.3) EF (X,Y)F (X,Y′) = α2 +O(εα2)

for someα, ε > 0 with ε = O(1). Then for anyθ > 0, one has

(2.4) E(F (X,Y)|X) = α+O6(θ)

with probability1−O(εα
2

θ2 ).

In practice, we will often establish (2.2) and (2.3) by first computing the conditional expectations

E(F (X,Y)|Y)

and

E(F (X,Y)F (X,Y′)|Y,Y′)

and then using (2.1). Thus we see that we can control theX-conditional expectation ofF (X,Y) via the
Y-conditional expectation, provided that we can similarly control theY,Y′-conditional expectation of
F (X,Y)F (X,Y′).
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Proof. LetZ denote the random variable

Z := E(F (X,Y)|X)

then by the conditional independence and identical distribution ofY,Y′ overX we have

Z
2 = E(F (X,Y)F (X,Y′)|X).

From (2.2) and (2.1) we have

EZ = α+O(εα)

while from (2.3), (2.1) we have

EZ2 = α2 +O(εα2)

and thus

E|Z− α|2 ≪ εα2.

The claim now follows from Markov’s inequality (or the Chebyshev inequality). �

3. SIEVING A SET OF PRIMES

We begin by using a variant of the Westzynthius-Erdős-Rankin method to reduce this problem to a prob-
lem of sieving a setQ of primesin [y]\[x], rather than integers in[y]\[x].

Given a large real numberx, define

(3.1) y := cx
log x log3 x

log2 x
,

wherec is a certain (small) fixed positive constant. Also let

(3.2) z := xlog3 x/(4 log2 x),

and introduce the three disjoint sets of primes

S := {s prime : log20 x < s 6 z},(3.3)

P := {p prime : x/2 < p 6 x},(3.4)

Q := {q prime : x < q 6 y}.(3.5)

For residue classes~a = (as mod s)s∈S and~b = (bp mod p)p∈P , define the sifted sets

S(~a) := {n ∈ Z : n 6≡ as (mod s) for all s ∈ S}
and likewise

S(~b) := {n ∈ Z : n 6≡ bp (mod p) for all p ∈ P}.
We then have

Theorem 2 (Sieving primes). Let x be sufficiently large and suppose thaty obeys(3.1). Then there are
vectors~a = (as mod s)s∈S and~b = (bp mod p)p∈P , such that

(3.6) #(Q∩ S(~a) ∩ S(~b)) ≪ x

log x
.
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We prove Theorem 2 in subsequent sections. Here, we show how this theorem implies (1.2), and hence
Theorem 1.

Let~a and~b be as in Theorem 2. We extend the tuple~a to a tuple(ap)p6x of congruence classesap mod p
for all primesp 6 x by settingap := bp for p ∈ P andap := 0 for p 6∈ S ∪ P, and consider the sifted set

T := {n ∈ [y]\[x] : n 6≡ ap (mod p) for all p 6 x}.

The elements ofT , by construction, are not divisible by any prime in(0, log20 x] or in (z, x/2]. Thus, each
element must either be az-smooth number (i.e., a number with all prime factors at mostz), or must consist
of a prime greater thanx/2, possibly multiplied by some additional primes that are allat leastlog20 x.
However, from (3.1) we know thaty = o(x log x). Thus, we see that an element ofT is either az-smooth
number or a prime inQ. In the second case, the element lies inQ∩S(~a)∩S(~b). Conversely, every element
of Q∩S(~a)∩S(~b) lies inT . Thus,T only differs fromQ∩S(~a)∩S(~b) by a setR consisting ofz-smooth
numbers in[y].

To estimate#R, let

u :=
log y

log z
,

so from (3.1), (3.2) one hasu ∼ 4
log2 x
log3 x

. By standard counts for smooth numbers (e.g. de Bruijn’s theorem
[6]) and (3.1), we thus have

#R ≪ ye−u log u+O(u log log(u+2)) =
y

log4+o(1) x
= o

(

x

log x

)

.

Thus, we find that#T ≪ x/ log x.
Next, letC be a sufficiently large constant such that#T is less than the number of primes in(x,Cx]. By

matching each of these surviving elements to a distinct prime in (x,Cx] and choosing congruence classes
appropriately, we thus find congruence classesap mod p for p 6 Cx which coverall of the integers in
(x, y]. In the language of Definition 1, we thus have

Y (Cx) > y − x+ 1,

and (1.2) follows from (3.1).

Remark1. One can replace the appeal to de Bruijn’s theorem here by the simpler bounds of Rankin [37,
Lemma II], if one makes the very minor change of increasing the4 in the denominator of (3.2) to5, and also
makes similar numerical changes to later parts of the argument.

It remains to establish Theorem 2. This is the objective of the remaining sections of the paper.

4. USING A HYPERGRAPH COVERING THEOREM

In the previous section we reduced matters to obtaining residue classes~a, ~b such that the sifted setQ ∩
S(~a)∩S(~b) is small. In this section we use a hypergraph covering theorem, generalizing a result of Pippenger
and Spencer [34], to reduce the task to that of finding residueclasses~b that have large intersection with
Q∩ S(~a).
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4.1. Heuristic discussion. Consider the following general combinatorial problem. Let(V,Ei)i∈I be a
collection of (non-empty) hypergraphs on a fixed finite vertex setV indexed by some finite index setI. In
other words,V andI are finite sets, and for eachi ∈ I, Ei is a (non-empty) collection of subsets ofV .
The problem is then to select a single edgeei from each setEi in such a way that the union

⋃

i∈I ei covers
as much of the vertex setV as possible. (In the context considered in [34], one considers choosing many
edges from a single hypergraph(V,E), which in our context would correspond to the special case when
(V,Ei) was independent ofi.) One should think of the setV \⋃i∈I ei as a sifted version ofV , with eachei
representing one step of the sieve.

One simple way to make this selection is a random one: one chooses a random edgeei uniformly at
random fromEi, independently ini. In that case, the probability that a given vertexv ∈ V survives the
sifting (that is, it avoids the random union

⋃

i∈I ei) is equal to
∏

i∈I
(1− P(v ∈ ei)).

In applications, the index setI is large and the probabilitiesP(v ∈ ei) are small, in which case the above
expression may be well approximated by

exp(−dI(v))
where we define thenormalized degreedI(v) of v to be the quantity

dI(v) :=
∑

i∈I
P(v ∈ ei).

If we make the informal uniformity assumption

(i) One hasdI(v) ≈ d for all (or almost all) verticesv,

we thus expect the sifted setV \⋃i∈I ei to have density approximatelyexp(−d).
Can one do better than this? Choosing theei independently is somewhat inefficient because it allows

different random edgesei, ej to collide with each other. If we could somehow modify the coupling between
theei so that they were always disjoint, then the probability thata given vertexv ∈ V survives the sieve
would now become

1−
∑

i∈I
P(v ∈ ei) = 1− dI(v).

This suggests that one could in principle lower the density of the sifted set fromexp(−d) to 1 − d (or
max(1−d, 0), since the density clearly cannot be negative), and in particular to sift outV almost completely
as soon asd exceeds1.

Suppose for the moment that such an optimal level of sieve efficiency is possible, and return briefly to
consideration of Theorem 2. We set the vertex setV equal toQ∩ S(~a) for some suitable choice of~a. If we
set

y := cx
log x log3 x

log2 x

for some smallc > 0 (in accordance with (3.1)), then standard probabilistic heuristics (together with
Mertens’ theorem and (3.1), (3.3)) suggest thatV should have cardinality about

y

log x
×
∏

s∈S

(

1− 1

s

)

≈ c
x

log x
log2 x,
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so in particular this set is roughlyc log2 x times larger thanP. In later sections, we will use the multidimen-
sional sieve from [32], [31] to locate for most primesp in P, a large number of residue classesbp mod p
that each intersectQ ∩ S(~a) in roughly≍ log2 x elements on the average. If we letEp be the set of all
such intersections(bp mod p) ∩ V , then the task of makingQ ∩ S(~a) ∩ S(~b) small is essentially the same
as making the sifted setV \⋃p∈P ep small, for some suitable edgesep drawn fromEp. By double counting,
the expected densityd here should be roughly

d ≍ #P × log2 x

#V
≍ 1

c
,

and so one should be able to sieve outQ ∩ S(~a) more or less completely oncec is small enough if one
had optimal sieving. In contrast, if one used independent sieving, one would expect the cardinality of
Q ∩ S(~a) ∩ S(~b) to be something likeexp(−1/c) × c x

log x log2 x, which would only be acceptable ifc was

slightly smaller than 1
log3 x

. This loss oflog3 x ultimately leads to the loss oflog4X in (1.1) as compared
against Theorem 1.

It is thus desirable to obtain a general combinatorial tool for achieving near-optimal sieve efficiency
for various collections(V,Ei)i∈I of hypergraphs. The result of Pippenger and Spencer [34] (extending
previous results of Rödl [39] and Frankl and Rödl [16], as well as unpublished work of Pippenger) asserts,
very roughly speaking, that one can almost attain this optimal efficiency under some further assumptions
beyond (i), which we state informally as follows:

(ii) The hypergraphs(V,Ei) do not depend oni.
(iii) The normalized codegrees

∑

i∈I P(v,w ∈ ei) for v 6= w are small.
(iv) The edgesei of Ei are ofconstantsize, thus there is ak such that#ei = k for all i and allei ∈ Ei.

The argument is based on theRödl nibble from [39], which is a variant of thesemi-random methodfrom
[1]. Roughly speaking, the idea is to break up the index setI into smaller piecesI1, . . . , Im. For the first
I1, we perform a “nibble” by selecting theei for i ∈ I1 uniformly and independently. For the next nibble at
I2, we restrict (or condition) theei for i ∈ I2 to avoid the edges arising in the first nibble, andthenselectei
for i ∈ I2 independently at random using this conditioned distribution. We continue performing nibbles at
I3, . . . , Im (restricting the edges at each nibble to be disjoint from theedges of previous nibbles) until the
index setI is exhausted. Intuitively, this procedure enjoys better disjointness properties than the completely
independent selection scheme, but it is harder to analyze the probability of success. To achieve the latter
task, Pippenger and Spencer rely heavily on the four hypotheses (i)-(iv).

In our context, hypothesis (iii) is easily satisfied, and (i)can also be established. Hypothesis (ii) is not
satisfied (theEp vary inp), but it turns out that the argument of Pippenger and Spencercan easily be written
in such a way that this hypothesis may be discarded. But it is the failure of hypothesis (iv) which is the
most severe difficulty: the size of the setsep = (bp mod p) ∩ V can fluctuate quite widely for different
choices ofp or bp. This creates an undesirable bias in the iterative nibblingprocess: with each nibble, larger
edgesei have a reduced chance of survival compared with smaller edges, simply because they have more
elements that could potentially intersect previous nibbles. Given that one expects the larger edges to be the
most useful for the purposes of efficient sieving, this bias is a significant problem. One could try to rectify
the issue by partitioning the edge setsEi depending on the cardinality of the edges, and working on one
partition at a time, but this seriously impacts hypothesis (i) in a manner that we were not able to handle.

Our resolution to this problem is to modify the iterative step of the nibbling process byreweighting
the probability distribution of theei at each step to cancel out the bias incurred by conditioning an edge
ei to be disjoint from previous nibbles. It turns out that thereis a natural choice of reweighting for this
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task even when the normalized degreesdI(v) vary in v. As a consequence, we can obtain a version of
the Pippenger-Spencer theorem in which hypothesis (ii) is essentially eliminated and (i), (iv) significantly
weakened, leaving only (iii) as the main hypothesis. We remark that a somewhat similar relaxation of
hypotheses (i)-(iv) was obtained by Kahn in [27], although the statement in [27] is not exactly in a form
convenient for our applications here.

4.2. Statement of covering theorem.We now rigorously state the hypergraph covering theorem that we
will use. In order to apply this theorem for our application,we will need a probabilistic formulation of this
theorem which does not, at first glance, bear much resemblance to the combinatorial formulation appearing
in [34]; we will discuss the connections between these formulations shortly. We will also phrase the theorem
in a completely quantitative fashion, avoiding the use of asymptotic notation; this will be convenient for the
purposes of proving the theorem via induction (on the numberm of “nibbles”).

Theorem 3 (Probabilistic covering). There exists a constantC0 > 1 such that the following holds. Let
D, r,A > 1, 0 < κ 6 1/2, and letm > 0 be an integer. Letδ > 0 satisfy the smallness bound

(4.1) δ 6

(

κA

C0 exp(AD)

)10m+2

.

Let I1, . . . , Im be disjoint finite non-empty sets, and letV be a finite set. For each1 6 j 6 m and i ∈ Ij,
let ei be a random finite subset ofV . Assume the following:

• (Edges not too large) Almost surely for allj = 1, . . . ,m andi ∈ Ij , we have

(4.2) #ei 6 r;

• (Each sieve step is sparse) For allj = 1, . . . ,m, i ∈ Ij andv ∈ V ,

(4.3) P(v ∈ ei) 6
δ

(#Ij)1/2
;

• (Very small codegrees) For everyj = 1, . . . ,m, and distinctv1, v2 ∈ V ,

(4.4)
∑

i∈Ij
P(v1, v2 ∈ ei) 6 δ

• (Degree bound) If for everyv ∈ V andj = 1, . . . ,m we introduce the normalized degrees

(4.5) dIj (v) :=
∑

i∈Ij
P(v ∈ ei)

and then recursively define the quantitiesPj(v) for j = 0, . . . ,m andv ∈ V by setting

(4.6) P0(v) := 1

and

(4.7) Pj+1(v) := Pj(v) exp(−dIj+1(v)/Pj(v))

for j = 0, . . . ,m− 1 andv ∈ V , then we have

(4.8) dIj (v) 6 DPj−1(v) (1 6 j 6 m, v ∈ V )

and

(4.9) Pj(v) > κ (0 6 j 6 m, v ∈ V ).
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Then we can find random variablese′i for eachi ∈ ⋃m
j=1 Ij with the following properties:

(a) For eachi ∈ ⋃m
j=1 Ij , the essential support ofe′i is contained in the essential support ofei, union

the empty set singleton{∅}. In other words, almost surelye′i is either empty, or is a set thatei also
attains with positive probability.

(b) For any0 6 J 6 m and any finite subsete of V with#e 6 A− 2rJ , one has

(4.10) P



e ⊂ V \
J
⋃

j=1

⋃

i∈Ij
e
′
i



 =
(

1 +O6(δ
1/10J+1

)
)

PJ(e)

where

(4.11) Pj(e) :=
∏

v∈e
Pj(v).

We prove this theorem in Section 5. It is likely that the smallness condition (4.1) can be relaxed, for in-
stance by modifying the techniques from [42]. However, thiswould not lead to any significant improvement
in the final bound onG(X) in Theorem 1, as in our application the condition (4.1) is already satisfied with
some room to spare. The parameterr does not appear explicitly in the smallness requirement (4.1), but is
implicit in that requirement since the conclusion is trivially true unless2r < A.

We now discuss some special cases of this theorem which are closer to the original hypergraph covering
lemma of Pippenger and Spencer. (Readers who are interestedonly in large gaps between primes can skip
ahead to Section 4.3.) If(V,E) is a hypergraph, we can take eachei to be an edge ofE drawn uniformly at
random. IfIj has cardinalitynj, we obtain the following corollary:

Corollary 2 (Combinatorial covering). There exists a constantC0 > 1 such that the following holds. Let
D, r > 1, 0 < κ 6 1/2, and letm > 0 andn1, . . . , nm > 1 be integers. SetA := 2rm+ 1, and letδ > 0
be a quantity obeying the smallness condition(4.1). Let (V,E) be a hypergraph, and assume the following
axioms:

(i) All edgese in E have cardinality at mostr.
(ii) For everyv ∈ V , the degreedeg(v) := #{e ∈ E : v ∈ e} is at most δ

n1/2#E,n = min(n1, . . . , nm).

(iii) For every distinctv,w ∈ V , the codegreecodeg(v,w) := {e ∈ E : v,w ∈ e} is at mostδn#E.
(iv) If for everyv ∈ V we introduce thePj(v) for j = 0, . . . ,m by

P0(v) := 1

and

Pj+1(v) = Pj(v) exp

(

− nj deg(v)

(#E)Pj(v)

)

(1 6 j 6 m),

then we have

(4.12)
nj+1 deg(v)

(#E)Pj(v)
6 D (0 6 j 6 m− 1)

and

(4.13) Pm(v) > κ.

Then we can find edgese1, . . . , el ∈ E with l 6 n1 + · · ·+ nm such that

#(V \(e1 ∪ · · · ∪ el)) ≪
∑

v∈V
Pm(v).
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Proof. LetN = n1 + · · · + nm. By Theorem 3 (withei andIj as indicated above), we may find random
variablese′i for i = 1, . . . , N taking values inE ∪ {∅} such that

P

(

v ⊂ V \
N
⋃

i=1

e
′
i

)

=
(

1 +O6

(

δ1/10
m+1
))

Pm(v)

for eachv ∈ V , and in particular by linearity of expectation

E#

(

V \
N
⋃

i=1

e
′
i

)

≪
∑

v∈V
Pm(v).

Thus we can find instancese′i of e′i such that

#

(

V \
N
⋃

i=1

e′i

)

≪
∑

v∈V
Pm(v).

Discarding the empty edgese′i, we obtain the claim. �

We now give a qualitative version of the above corollary, in which all objects involved can depend on
asymptotic parameterx going to infinity:

Corollary 3 (Generalized Pippenger-Spencer). Let (V,E) be a hypergraph, and letd > 1 be a quantity
obeying the following:

• One hasd = o(#E).
• All edgese in E have cardinalityO(1).
• For everyv ∈ V , one hasd 6 deg(v) ≪ d.
• For every distinctv,w ∈ V , one hascodeg(v,w) = o(d).

Then we can find edgese1, . . . , el ∈ E with l . #E
d such that

(4.14) #(V \(e1 ∪ · · · ∪ el)) = o(#V ).

Note that for any given vertexv, the probability that a randomly selected edgee from E will cover v is
deg(v)
#E , which is roughly d

E . Thus the conclusion of the above corollary uses an essentially optimal number
of edges.

Proof. By a diagonalization argument, it suffices for any fixedε > 0 (independent ofx) to show that one
can find edgese1, . . . , el ∈ E with l 6 (1 + ε)#E

d such that

#(V \(e1 ∪ · · · ∪ el)) ≪ ε#V

for sufficiently largex.
Let k > 1 be a fixed integer (depending onε) to be chosen later, and letm = k2. Forx large enough, we

can find a natural numbern1 such that

(4.15)
#E

d
6 n1k 6

(

1 +
ε

2

) #E

d
,

and we define
nj = ⌈n1e(1−j)/k⌉ (1 6 j 6 m).

We now verify the conditions of Corollary 2 with suitable choices of parametersD, r, κ, δ. Clearly (i) is
obeyed withr = O(1), and a short computation reveals that (ii), (iii) are obeyedfor someδ = o(1), and
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(iv) is obtained for someD = O(1) andκ≫ 1. Applying Corollary 2, we may thus find (forx sufficiently
large)e1, . . . , el ∈ E with l 6 n1 + · · ·nm such that

#(V \(e1 ∪ · · · ∪ el)) ≪
∑

v∈V
Pm(v).

We have

n1 + · · ·+ nm 6 m+ n1

∞
∑

j=1

e(1−j)/k = m+
n1

1− e−1/k
= k2 + n1(k +O(1)) 6 (1 + ε)

#E

d

by first takingk large enough, thenx large enough. Next, an easy induction shows thatPj(v) 6 pj for all
j = 0, . . . ,m, wherep0 := 1 and

pj+1 := pj exp

(

− nj+1d

(#E)pj

)

(0 6 j 6 m− 1).

Another easy induction using (4.15) shows thatpj 6 e−j/k for all 0 6 j 6 m. In particular,pm 6 e−k 6 ε
if k > log(1/ε). �

4.3. Applying the covering theorem. We now specialize Theorem 3 to a situation relevant for the appli-
cation to large prime gaps.

Corollary 4. Letx → ∞. LetP ′, Q′ be sets with#P ′ 6 x and#Q′ > (log2 x)
3. For eachp ∈ P ′, let ep

be a random subset ofQ′ satisfying the size bound

(4.16) #ep 6 r = O

(

log x log3 x

log22 x

)

(p ∈ P ′).

Assume the following:

• (Sparsity) For allp ∈ P ′ andq ∈ Q′,

(4.17) P(q ∈ ep) 6 x−1/2−1/10.

• (Uniform covering) For all but at most 1
(log2 x)

2#Q′ elementsq ∈ Q′, we have

(4.18)
∑

p∈P ′

P(q ∈ ep) = C +O6

(

1

(log2 x)
2

)

for some quantityC, independent ofq, satsifying

(4.19)
5

4
log 5 6 C ≪ 1.

• (Small codegrees) For any distinctq1, q2 ∈ Q′,

(4.20)
∑

p∈P ′

P(q1, q2 ∈ ep) 6 x−1/20.

Then for any positive integerm with

(4.21) m 6
log3 x

log 5
,

we can find random setse′p ⊆ Q′ for eachp ∈ P ′ such that

#{q ∈ Q′ : q 6∈ e
′
p for all p ∈ P ′} ∼ 5−m#Q′
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with probability1 − o(1). More generally, for anyQ′′ ⊂ Q′ with cardinality at least(#Q′)/
√

log2 x, one
has

#{q ∈ Q′′ : q 6∈ e
′
p for all p ∈ P ′} ∼ 5−m#Q′′

with probability1− o(1). The decay rates in theo(1) and∼ notation are uniform inP ′, Q′, Q′′.

For the arguments in this paper, we only need the caseQ′′ = Q′, but the more general situationQ′′ ⊂ Q′

will be of use in the sequel [15] of this paper when we considerchains of large gaps.

Proof. It suffices to establish the claim forx sufficiently large, as the claim is trivial for boundedx. The
number of exceptional elementsq of Q′ that fail (4.18) iso(5−m#Q′′), thanks to (4.21). Thus we may
discard these elements fromQ′ and assume that (4.18) holds forall q ∈ Q′, since this does not significantly
affect the conclusions of the corollary.

By (4.19), we may find disjoint intervalsI1, . . . ,Im in [0, 1] with length

(4.22) |Ij | =
51−j log 5

C

for j = 1, . . . ,m. Let~t = (tp)p∈P ′ be a tuple of elementstp of [0, 1] drawn uniformly and independently
at random for eachp ∈ P ′ (independently of theep), and define the random sets

Ij = Ij(~t) := {p ∈ P ′ : tp ∈ Ij}
for j = 1, . . . ,m. These sets are clearly disjoint.

We will verify (for a suitable choice of~t) the hypotheses of Theorem 3 with the indicated setsIj and
random variablesep, and with suitable choices of parametersD, r,A > 1 and0 < κ 6 1/2, andV = Q′.

Set

(4.23) δ := x−1/20

and observe from (4.17) that (ifx is sufficiently large) one has

(4.24) P(q ∈ ep) 6
δ

(#Ij)1/2

for all j = 1, . . . ,m, p ∈ Ij, andq ∈ Q′. Clearly the small codegree condition (4.20) implies that

(4.25)
∑

p∈Ij
P(q1, q2 ∈ ep) 6 δ (1 6 j 6 m).

Let q ∈ Q′, 1 6 j 6 m and consider the independent random variables(X
(q,j)
p (~t))p∈P ′ , where

X
(q,j)
p (~t) =

{

P(q ∈ ep) if p ∈ Ij

0 otherwise.

By (4.18), (4.19) and (4.22), for everyj and everyq ∈ Q′,

∑

p∈P ′

EX(q,j)
p (~t) =

∑

p∈P ′

P(q ∈ ep)P(p ∈ Ij(~t)) = |Ij|
∑

p∈P ′

P(q ∈ ep) = 51−j log 5 +O6

(

4/5

(log2 x)
2

)

.
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By (4.17), we have|X(q,j)
p (~t)| 6 x−1/2−1/10 for all p, and hence by Hoeffding’s inequality,

P





∣

∣

∣

∑

p∈P ′

(X(q,j)
p (~t)− EX(q,j)

p (~t))
∣

∣

∣
>

1

(log2 x)
2



 6 2 exp

{

− (log2 x)
−4

2x−1−1/5#Ij

}

6 2 exp

{

− x1/5

(log2 x)
4

}

≪ 1

x4
.

By a union bound, there is a deterministic choice~t of ~t (and henceI1, . . . , Im) such that foreveryq ∈ Q′

andeveryj = 1, . . . ,m, we have
∣

∣

∣

∑

p∈P ′

(X(q,j)
p (~t)− EX(q,j)

p (~t))
∣

∣

∣
<

1

(log2 x)
2
.

We fix this choice~t (so that theIj are now deterministic), and we conclude that

(4.26)
∑

p∈P ′

X
(q,j)
p (~t) =

∑

p∈Ij
P(q ∈ ep) = 51−j log 5 +O6

(

2

(log2 x)
2

)

uniformly for all j = 1, . . . ,m, and allq ∈ Q′.
From (4.5) and (4.21), we now have

dIj(q) = (1 +O6(µ))5
−j+1 log 5

for all q ∈ Q′, 1 6 j 6 m and some|µ| 6 2/ log2 x. A routine induction using (4.6), (4.7) then shows (for
x sufficiently large) that

(4.27) Pj(q) = (1 +O6(4
jµ))5−j = 5−j(1 +O6(2(log2 x)

−ν)) (0 6 j 6 m),

whereν = log(5/4)/ log(5). In particular we have

dIj(q) 6 DPj−1(q) (1 6 j 6 m)

for someD = O(1), and
Pj(q) > κ (1 6 j 6 m),

where
κ≫ 5−m.

We now set
A := 2rm+ 2.

By (4.21) and (4.16),

A≪ log x log23 x

log22 x
,

and so
κA

C0 exp(AD)
≫ exp

(

−O
(

log x log33 x

log22 x

))

.

By (4.21) and (4.23), we see that

δ1/10
m+2

6 exp

(

− log x

2000(log2 x)
log 10/ log 5

)

,
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and so (4.1) is satisfiedx is large enough (note thatlog 10/ log 5 < 2). Thus all the hypotheses of Theorem
3 have been verified for this choice of parameters (note thatA,κ andD are independent ofP ′, Q′).

Applying Theorem 3 (withV = Q′) and using (4.27), one thus obtains random variablese
′
p for p ∈

⋃m
j=1 Ij whose essential range is contained in the essential range ofep together with∅, such that

(4.28) P



q 6∈
m
⋃

j=1

⋃

p∈Ij
e
′
p



 = 5−m
(

1 +O((log2 x)
−ν)
)

for all q ∈ Q′, and

(4.29) P



q1, q2 6∈
m
⋃

j=1

⋃

p∈Ij
e
′
p



 = 5−2m
(

1 +O((log2 x)
−ν)
)

for all distinctq1, q2 ∈ Q′.
Sete′p = ∅ for p ∈ P ′\⋃m

j=1 Ij . LetQ′′ be as in the corollary, and consider the random variable

Y := #{q ∈ Q′′ : q 6∈ e
′
p for all p ∈ P ′} =

∑

q∈Q′′

1q 6∈
⋃m

j=1

⋃
p∈Ij

e′p
.

Using (4.28) and (4.29), we obtain

EY = 5−m
(

1 +O((log2 x)
−ν)
)

#Q′′

and

EY2 = 5−2m
(

1 +O((log2 x)
−ν)
)

(#Q′′)2 +O(5−m#Q′′) = 5−2m
(

1 +O((log2 x)
−ν)
)

(#Q′′)2,

(here we use (4.21) and the mild bound#Q′′ > (log2 x)
2), and so from Chebyshev’s inequality we have

Y ∼ 5−m#Q′′

with probability1− o(1), as required. �

In view of the above corollary, we may now reduce Theorem 2 to the following claim.

Theorem 4 (Random construction). Let x be a sufficiently large real number and definey by (3.1). Then
there is a quantityC with

(4.30) C ≍ 1

c

with the implied constants independent ofc, a tuple of positive integers(h1, . . . , hr) with r 6
√
log x, and

some way to choose random vectors~a = (as mod s)s∈S and~n = (np)p∈P of congruence classesas mod s
and integersnp respectively, obeying the following:

• For every~a in the essential range of~a, one has

P(q ∈ ep(~a)|~a = ~a) 6 x−1/2−1/10 (p ∈ P),

whereep(~a) := {np + hip : 1 6 i 6 r} ∩ Q ∩ S(~a).
• With probability1− o(1) we have that

(4.31) #(Q∩ S(~a)) ∼ 80c
x

log x
log2 x.



LONG GAPS BETWEEN PRIMES 19

• Call an element~a in the essential range of~a good if, for all but at most x
log x log2 x

elementsq ∈
Q ∩ S(~a), one has

(4.32)
∑

p∈P
P(q ∈ ep(~a)|~a = ~a) = C +O6

(

1

(log2 x)
2

)

.

Then~a is good with probability1− o(1).

We now show why Theorem 4 implies Theorem 2. By (4.30), we may choose0 < c < 1/2 small enough
so that (4.19) holds. Take

m =

⌊

log3 x

log 5

⌋

.

Now let~a and~n be the random vectors guaranteed by Theorem 4. Suppose that we are in the probability
1− o(1) event that~a takes a value~a which is good and such that (4.31) holds. Fix some~a within this event.
We may apply Corollary 4 withP ′ = P andQ′ = Q ∩ S(~a) for the random variablesnp conditioned to
~a = ~a. A few hypotheses of the Corollary must be verified. First, (4.18) follows from (4.32). The small
codegree condition (4.20) is also quickly checked. Indeed,for distinct q1, q2 ∈ Q′, if q1, q2 ∈ ep(~a) then
p|q1 − q2. But q1 − q2 is a nonzero integer of size at mostx log x, and is thus divisible by at most one prime
p0 ∈ P ′. Hence

∑

p∈P ′

P(q1, q2 ∈ ep(~a)) = P(q1, q2 ∈ ep0(~a)) 6 x−1/2−1/10,

the sum on the left side being zero ifp0 doesn’t exist. By Corollary 4, there exist random variablese
′
p(~a),

whose essential range is contained in the essential range ofep(~a) together with∅, and satisfying

{q ∈ Q ∩ S(~a) : q 6∈ e
′
p(~a) for all p ∈ P} ∼ 5−m#(Q∩ S(~a)) ≪ x

log x

with probability1 − o(1), where we have used (4.31). Sincee
′
p(~a) = {n′

p + hip : 1 6 i 6 r} ∩ Q ∩ S(~a)
for some random integern′

p, it follows that

{q ∈ Q ∩ S(~a) : q 6≡ n
′
p (mod p) for all p ∈ P} ≪ x

log x

with probability1− o(1). Taking a specific~n′ = ~n′ for which this relation holds and settingbp = n′p for all
p concludes the proof of the claim (3.6) and establishes Theorem 2.

It remains to establish Theorem 4. This will be achieved in later sections.

5. PROOF OF COVERING THEOREM

We now prove Theorem 3. LetC0 be a sufficiently large absolute constant.
We induct onm. The casem = 0 is vacuous, so suppose thatm > 1 and that the claim has already

been proven form− 1. LetD, r,A, κ, δ, Ij , ei, V be as in the theorem. By the induction hypothesis, we can
already find random variablese′i for i ∈ ⋃m−1

j=1 Ij obeying the conclusions (a), (b) of the theorem form− 1.
In particular, we may form the partially sifted set

W := V \
m−1
⋃

j=1

⋃

i∈Ij
e
′
i,
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and we have

(5.1) P(e ⊂ W) = (1 +O6(δ
1/10m))Pm−1(e)

whenevere ⊂ V has cardinality#e 6 A− 2r(m− 1).
Our task is then to construct random variablese

′
i for i ∈ Im, possibly coupled with existing random

variables such asW, whose essential range is contained in that ofei together with the empty set, and such
that

(5.2) P

(

e ⊂ W\
⋃

i∈Im
e
′
i

)

=
(

1 +O6(δ
1/10m+1

)
)

Pm(e)

for all finite subsetse of V with #e 6 A − 2rm. Note that we may assume thatA > 2rm, as the claim
(4.10) is trivial otherwise. In particular we have

(5.3) A− 2r(m− 1) > 2r.

From (4.9), (4.11) we note that

(5.4) Pj(ẽ) > κ#ẽ

wheneverj = 1, . . . ,m and allẽ ⊂ V . In particular, by (5.4) and (4.2), wheneverẽi is in the essential range
of ei, we have

(5.5) Pj(ẽi) > κr.

For future reference, we observe that from (5.3) and (4.1), we have

(5.6) rκ−r 6 Aκ−r 6 A2κ−2r 6 A2Dκ−A 6 δ−1/10m+2
.

For eachi ∈ Im, and everyW in the essential range ofW, define the normalization factor

(5.7) Xi(W ) := E

(

1ei⊂W

Pm−1(ei)

)

=
∑

ẽi⊂W

P(ei = ẽi)

Pm−1(ẽi)
.

We will see shortly, and this is crucial to our argument, thatXi(W) concentrates to 1. With this in mind,
we letFi = Fi(W) be the event that

(5.8) |Xi(W) − 1| 6 δ
1

3×10m .

Very small values ofXi(W ), in particular setsW with Xi(W ) = 0, are problematic for us and must be
avoided. Fortunately, this occurs with very small probability.

We now define the random variablese′i for i ∈ Im. If Fi(W) fails, we sete′i = ∅. Otherwise, ifFi(W)
holds, then after conditioning on a fixed valueW of W, we choosee′i from the essential range ofei using
the conditional probability distribution

(5.9) P(e′i = ẽi|W =W ) :=
1ẽi⊂W

Xi(W )

P(ei = ẽi)

Pm−1(ẽi)

for all ẽi in the essential range ofei, and also require that thee′i are conditionally jointly independent for
i ∈ Im on each eventW =W . Note from (5.7) that (5.9) defines a probability distribution, and so thee′i are
well defined as random variables. Informally,e

′
i is ei conditioned to the eventei ⊂W , and then reweighted

by Pm−1(ei) to compensate for the bias caused by this conditioning.
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Lemma 5.1. We have
P(Fi(W)) = 1−O(δ

1
3×10m ).

Proof. By Chebyshev’s inequality (Lemma 2.1), it suffices to show that

(5.10) EXi(W) = 1 +O(δ
1

10m )

and

(5.11) E(Xi(W)2) = 1 +O(δ
1

10m ).

We begin with (5.10). Let̃ei be in the essential range ofei. From (4.2) and (5.3) we have

#ẽi 6 r 6 A− 2r(m− 1)

and thus by (5.7) and (5.1), we have

EXi(W) =
∑

W

P(W =W )
∑

ẽi⊂W

P(ei = ẽi)

Pm−1(ẽi)

=
∑

ẽi

P(ei = ẽi)
P(ẽi ⊂ W)

Pm−1(ẽi)
= 1 +O6(δ

1
10m ).

Now we show (5.11). Let̃ei andêi be in the essential range ofei. From (4.2), (5.3) we have

#ẽi ∪ êi 6 A− 2r(m− 1)

and from (4.11) we have
Pm−1(ẽi ∪ êi)

Pm−1(ẽi)Pm−1(êi)
=

1

Pm−1(ẽi ∩ êi)
and thus by (5.7) and (5.1) we have

E(Xi(W)2) =
∑

ẽi,êi

P(ei = ẽi)P(ei = êi)
P(ẽi ∪ êi ⊂ W)

Pm−1(ẽi)Pm−1(êi)

=
(

1 +O6(δ
1

10m )
)

∑

ẽi,êi

P(ei = ẽi)P(ei = êi)

Pm−1(ẽi ∩ êi)
.

The denominatorPm−1(ẽi ∩ êi) is 1 if ẽi ∩ êi = ∅, and is at leastκr otherwise, thanks to (5.5). Thus, by
(4.2), (4.3) and a union bound,

∑

ẽi,êi

P(ei = ẽi)P(ei = êi)

Pm−1(ẽi ∩ êi)
= 1 +O



κ−r
∑

ẽi

P(ei = ẽi)
∑

v∈ẽi
P(v ∈ ei)



 = 1 +O(rδκ−r),

and the claim (5.11) follows from (5.6). �

It remains to verify (5.2). Lete be a fixed subset ofV with

(5.12) #e 6 A− 2rm.

For anyW in the essential range ofW, letY (W ) denote the quantity

Y (W ) := P

(

e ⊂W\
⋃

i∈Im
e
′
i|W =W

)

.
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From (4.7), (4.11), (2.1), our task is now to show that

EY (W) =
(

1 +O6(δ
1/10m+1

)
)

Pm−1(e) exp

(

−
∑

v∈e

dIm(v)

Pm−1(v)

)

.

ClearlyY (W) is only non-zero whene ⊂ W. From (5.1) we have

(5.13) P(e ⊂ W) = (1 +O6(δ
1/10m))Pm−1(e),

so it will suffice to show that

E(Y (W)|e ⊂ W) =
(

1 +O(δ
1

9×10m )
)

exp

(

−
∑

v∈e

dIm(v)

Pm−1(v)

)

.

From (4.8), (5.12) and (4.1), we have

exp

(

−
∑

v∈e

dIm(v)

Pm−1(v)

)

> exp(−AD) > δ1/10
m+2

,

so it suffices to show that

(5.14) E(Y (W)|e ⊂ W) =
(

1 +O(δ
1

9×10m )
)

exp

(

−
∑

v∈e

dIm(v)

Pm−1(v)

)

+O(δ
1

8×10m ).

Suppose thatW is in the essential range ofW with e ⊂ W . As thee′i, i ∈ Im, are jointly conditionally
independent on the eventW =W , we may factorY (W ) as

Y (W ) =
∏

i∈Im
(1− P(e ∩ e

′
i 6= ∅|W =W )).

Sincee′i = ∅ if Fi(W ) fails, we may write

Y (W ) =
∏

i∈Im
(1− 1Fi(W )P(e ∩ e

′
i 6= ∅|W =W )).

Now suppose thati ∈ Im and thatW is such thatFi(W ) holds. From the union bound we have

P(e ∩ e
′
i 6= ∅|W =W ) 6

∑

v∈e
P(v ∈ e

′
i|W =W ).

From (5.9), (5.8), and (5.5), we have

P(v ∈ e
′
i|W =W ) =

∑

ẽi:v∈ẽi
P(e′i = ẽi|W =W ) ≪ κ−rP(v ∈ ei),

and hence by (4.3), (5.12)

P(e ∩ e
′
i 6= ∅|W =W ) ≪ Aκ−rδ/(#Im)1/2.

From Taylor’s expansion, we then have

1− 1Fi(W )P(e ∩ e
′
i 6= ∅|W =W ) = exp

(

−1Fi(W )P(e ∩ e
′
i 6= ∅|W =W ) +O((Aκ−rδ)2/#Im)

)

.
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From (5.6), we have(Aκ−rδ)2 = O(δ
1

9×10m ), and so

Y (W ) = (1 +O(δ
1

9×10m )) exp

(

−1Fi(W )

∑

i∈Im
P(e ∩ e

′
i 6= ∅|W =W )

)

.

Next, we apply inclusion-exclusion to write

P(e ∩ e
′
i 6= ∅|W =W ) =

∑

v∈e
P(v ∈ e

′
i|W =W )−O





∑

v,w∈e:v 6=w

P(v,w ∈ e
′
i|W =W )



 .

The error term is handled by summing (5.9) over allẽi with v,w ∈ ẽi, and using (5.8) and (5.5). For distinct
v,w ∈ e, we have

P(v,w ∈ e
′
i|W =W ) =

∑

ẽi:v,w∈ẽi
P(e′i = ẽi|W =W ) ≪ κ−r

∑

ẽi:v,w∈ẽi
P(ei = ẽi) ≪ κ−rP(v,w ∈ ei).

Hence by (4.4), (5.12)
∑

i∈Im

∑

v,w∈e
v 6=w

P(v,w ∈ e
′
i|W =W ) ≪ κ−rA2 max

v,w∈e
v 6=w

∑

i∈Im
P(v,w ∈ ei) ≪ A2κ−rδ.

From (5.6), we haveA2κ−rδ = O(δ
1

9×10m ), and so

Y (W ) = (1 +O(δ
1

9×10m )) exp

(

−1Fi(W )

∑

v∈e

∑

i∈Im
P(v ∈ e

′
i|W =W )

)

.

Also we trivially have0 6 Y (W ) 6 1. Thus, to prove (5.14), it suffices to show that
∑

v∈e

∑

i∈Im
1Fi(W)P(v ∈ e

′
i|W) =

∑

v∈e

dIm(v)

Pm−1(v)
+O(δ

1
9×10m )

with probability1 − O(δ
1

8×10m ), conditionally on the event thate ⊂ W. From (5.12), (5.6), and the union
bound, it thus suffices to show that for eachv ∈ e, one has

(5.15)
∑

i∈Im
1Fi(W)P(v ∈ e

′
i|W) =

dIm(v)

Pm−1(v)
+O(δ

1
8×10m )

with probability1−O(δ
1

7×10m ), conditionally on the event thate ⊂ W.
We have

(5.16) 1Fi(W)P(v ∈ e
′
i|W) =

1Fi(W)

Xi(W)

∑

ẽi:v∈ẽi
1ẽi⊂W

P(ei = ẽi)

Pm−1(ẽi)

and, by (5.8),

(5.17)
1Fi(W)

Xi(W)
= 1 +O((1 − 1Fi(W)) + δ

1
3×10m ).

Upon inserting (5.16) and (5.17) into (5.15), the left side of (5.15) breaks into two pieces, a “main term”
and an “error term”.
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Let us first estimate the error
∑

i∈Im
O
(

1− 1Fi(W) + δ
1

3×10m

)

∑

ẽi:v∈ẽi
1ẽi⊂W

P(ei = ẽi)

Pm−1(ẽi)
.

By (5.5) and (4.5), we may bound this by

O(κ−r)
∑

i∈Im
(1− 1Fi(W) + δ

1
3×10m ))P(v ∈ ei) = O(κ−r)dIm(v)(1 − 1Fi(W) + δ

1
3×10m ).

By Lemma 5.1, the unconditional expectation of this random variable is

O
(

κ−rδ
1

3×10m dIm(v)
)

.

Thus, by (5.13), the conditional expectation of this randomvariable to the evente ⊂ W is

≪ κ−rδ
1

3×10m
dIm(v)

Pm−1(e)
≪ κ−Aδ

1
3×10m .

By (5.6), this can be bounded by

O(δ
2

7×10m ).

Thus, by Markov’s inequality, this error isO(δ
1

7×10m ) with probability 1 − O(δ
1

7×10m ), conditionally on
e ⊂ W. By the triangle inequality, it thus suffices to show that themain term satisfies

∑

i∈Im

∑

ẽi:v∈ẽi
1ẽi⊂W

P(ei = ẽi)

Pm−1(ẽi)
=

dIm(v)

Pm−1(v)
+O(δ

1
8×10m )

with probability1−O(δ
1

7×10m ), conditionally one ⊂ W.
Applying Lemma 2.1 (and (4.8), (4.1)), it suffices to show that

(5.18) E





∑

i∈Im

∑

ẽi:v∈ẽi
1ẽi⊂W

P(ei = ẽi)

Pm−1(ẽi)

∣

∣

∣e ⊂ W



 =
dIm(v)

Pm−1(v)
+O(δ

1
2×10m )

and

(5.19) E

(

∑

i,i′∈Im

∑

ẽi:v∈ẽi
êi:v∈êi

1ẽi⊂W

P(ei = ẽi)

Pm−1(ẽi)
1êi⊂W

P(ei′ = êi)

Pm−1(êi)

∣

∣

∣
e ⊂ W

)

=

(

dIm(v)

Pm−1(v)

)2

+O(δ
1

2×10m ).

We begin with (5.18). For any giveni ∈ Im, we have from (5.1), (5.3) that

P(e ∪ ẽi ⊂ W)

P(e ⊂ W)
= (1 +O(δ1/10

m
))
Pm−1(e ∪ ẽi)
Pm−1(e)

.

By (4.11), we can rewrite

Pm−1(e ∪ ẽi)
Pm−1(ẽi)Pm−1(e)

=
1

Pm−1(v)Pm−1(ẽi ∩ e\{v})
.

By (2.1), we may thus write the left-hand side of (5.18) as

∑

i∈Im

∑

ẽi:v∈ẽi

P(ei = ẽi)

Pm−1(ẽi)

P(e ∪ ẽi ⊂ W)

P(e ⊂ W)
=

1 +O(δ1/10
m
)

Pm−1(v)

∑

i∈Im

∑

ẽi:v∈ẽi

P(ei = ẽi)

Pm−1(ẽi ∩ e\{v})
.



LONG GAPS BETWEEN PRIMES 25

As in the proof of Lemma 5.1, the denominor is 1 unlessẽi ande\{v} have a common element, in which
case the denominator is> κr by (5.5). Thus

1

Pm−1(ẽi ∩ e\{v})
= 1 +O

(

κ−r
∑

w∈e\{v}
1w∈ẽi

)

.

From (4.5) one has
∑

i∈Im

∑

ẽi:v∈ẽi
P(v ∈ ei) = dIm(v),

and from (4.4) one has
∑

i∈Im
P(v,w ∈ ei) 6 δ

for all w 6= v. Therefore, by (5.12), the left side of (5.18) is

1 +O(δ1/10
m
)

Pm−1(v)

(

dIm(v) +O(Aδκ−r)
)

.

The claim now follows from (5.6) and (4.8).
Now we prove (5.19). For anyi, i′ ∈ Im, we have from (5.1), (5.3) that

P(ẽi ∪ êi ∪ e ⊂ W)

P(e ⊂ W)
= (1 +O(δ1/10

m
))
Pm−1(ẽi ∪ êi ∪ e)

Pm−1(e)
,

so we are reduced (after applying (4.8), (5.6)) to showing that

∑

i,i′∈Im

∑

ẽi:v∈ẽi
êi:v∈êi

P(ei = ẽi)P(ei′ = êi)
Pm−1(v)

2Pm−1(ẽi ∪ êi ∪ e)
Pm−1(ẽi)Pm−1(êi)Pm−1(e)

= dIm(v)
2 +O(δ

1
10m ).

The quantity Pm−1(v)2Pm−1(ẽi∪êi∪e)
Pm−1(ẽi)Pm−1(êi)Pm−1(e)

is equal to1 whenẽi, êi, e only intersect atv, and isO(κ−2r) other-
wise thanks to (5.5). Hence we may estimate this ratio by

1 +O



κ−2r
∑

w∈e\{v}
(1w∈ẽi + 1w∈êi)



+O



κ−2r
∑

w∈ẽi\{v}
1w∈êi



 .

From (4.5) one has
∑

i,i′∈Im
P(v ∈ ei)P(v ∈ ei′) = dIm(v)

2,

so from (5.6) it suffices to show that
∑

i,i′∈Im

∑

w∈e\{v}
P (v ∈ ei, v ∈ ei′ , w ∈ ei) 6 DAδ,(5.20)

∑

i,i′∈Im

∑

w∈e\{v}
P (v ∈ ei, v ∈ ei′ , w ∈ ei′) 6 DAδ,(5.21)

∑

i,i′∈Im
E
[

1v∈ei,v∈ei′ (#(ei ∩ ei′)− 1)
]

6 Drδ.(5.22)
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For (5.20), we use (4.5) to write the left-hand side as

dIm(v)
∑

w∈e\{v}

∑

i∈Im
P(v,w ∈ ei),

which by (4.8), (5.12), (4.4) is bounded byDAδ, as desired. Similarly for (5.21). For (5.22), we take
expectations inei′ first using (2.1), (4.4) to upper bound the left-hand side of (5.22) by

∑

i∈Im
E



1v∈ei
∑

w∈ei\{v}
δ



 ,

which by (4.2), (4.5), (4.8) is bounded byDrδ, as desired. This proves (5.19), which implies (5.15) and in
turn (5.14). The proof of Theorem 3 is now complete.

6. USING A SIEVE WEIGHT

If r is a natural number, anadmissibler-tuple is a tuple(h1, . . . , hr) of distinct integersh1, . . . , hr that
do not cover all residue classes modulop, for any primep. For instance, the tuple(pπ(r)+1, . . . , pπ(r)+r)
consisting of the firstr primes larger thanr is an admissibler-tuple.

We will establish Theorem 4 by a probabilistic argument involving a certain weight function, the details
of which may be found in the following.

Theorem 5 (Existence of good sieve weight). Let x be a sufficiently large real number and lety be any
quantity obeying(3.1). LetP,Q be defined by(3.4), (3.5). Letr be a positive integer with

(6.1) r0 6 r 6 log1/5 x

for some sufficiently large absolute constantr0, and let(h1, . . . , hr) be an admissibler-tuple contained in
[2r2]. Then one can find a positive quantity

(6.2) τ > x−o(1)

and a positive quantityu = u(r) depending only onr with

(6.3) u ≍ log r

and a non-negative functionw : P×Z → R+ supported onP×(Z∩ [−y, y]) with the following properties:

• Uniformly for everyp ∈ P, one has

(6.4)
∑

n∈Z
w(p, n) =

(

1 +O

(

1

log102 x

))

τ
y

logr x
.

• Uniformly for everyq ∈ Q andi = 1, . . . , r, one has

(6.5)
∑

p∈P
w(p, q − hip) =

(

1 +O

(

1

log102 x

))

τ
u

r

x

2 logr x
.

• Uniformly for everyh = O(y/x) that is not equal to any of thehi, one has

(6.6)
∑

q∈Q

∑

p∈P
w(p, q − hp) = O

(

1

log102 x
τ

x

logr x

y

log x

)

.
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• Uniformly for all p ∈ P andn ∈ Z,

(6.7) w(p, n) = O(x1/3+o(1)).

Remark2. One should think ofw(p, n) as being a smoothed out indicator function for the event thatn +
h1p, . . . , n+ hrp are all almost primes in[y]. As essentially discovered in [30], by choosing the smoothing
correctly, one can ensure that approximatelylog r of the elements of this tuplen + h1p, . . . , n + hrp are
genuinely prime rather than almost prime, when weighted byw(p, n); this explains the presence of the
bounds (6.3). The estimate (6.6) is not, strictly speaking,needed for our current argument; however, it
is easily obtained by our methods, and will be of use in a followup work [15] to this paper in which the
analogue of Theorem 1 for chains of large gaps is established.

The proof of this theorem will rely on the estimates for multidimensional prime-detecting sieves estab-
lished by the fourth author in [31], and will be the focus of subsequent sections. In this section, we show
how Theorem 5 implies Theorem 4.

Let x, c, y, z,S,P,Q be as in Theorem 4. We setr to be the maximum value permitted by Theorem 5,
namely

(6.8) r := ⌊log1/5 x⌋
and let(h1, . . . , hr) be the admissibler-tuple consisting of the firstr primes larger thanr, thushi = pπ(r)+i

for i = 1, . . . , r. From the prime number theorem we havehi = O(r log r) for i = 1, . . . , r, and so
we havehi ∈ [2r2] for i = 1, . . . , r if x is large enough (there are many other choices possible, e.g.
(h1, . . . , hr) = (12, 32, . . . , (2r − 1)2)). We now invoke Theorem 5 to obtain quantitiesτ, u and a weight
w : P × Z → R+ with the stated properties.

For eachp ∈ P, let ñp denote the random integer with probability density

P(ñp = n) :=
w(p, n)

∑

n′∈Z w(p, n
′)

for all n ∈ Z (we will not need to impose any independence conditions on the ñp). From (6.4), (6.5) we
have

(6.9)
∑

p∈P
P(q = ñp + hip) =

(

1 +O

(

1

log102 x

))

u

r

x

2y
(q ∈ Q, 1 6 i 6 r).

Also, from (6.4), (6.7), (6.2) one has

(6.10) P(ñp = n) ≪ x−1/2−1/6+o(1)

for all p ∈ P andn ∈ Z.
We choose the random vector~a := (as mod s)s∈S by selecting eachas mod s uniformly at random from

Z/sZ, independently ins and independently of thẽnp. The resulting sifted setS(~a) is a random periodic
subset ofZ with density

σ :=
∏

s∈S

(

1− 1

s

)

.

From the prime number theorem (with sufficiently strong error term), (3.2) and (3.3),

σ =

(

1 +O

(

1

log102 x

))

log(log20 x)

log z
=

(

1 +O

(

1

log102 x

))

80 log2 x

log x log3 x/ log2 x
,
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so in particular we see from (3.1) that

(6.11) σy =

(

1 +O

(

1

log102 x

))

80cx log2 x.

We also see from (6.8) that

(6.12) σr = xo(1).

We have a useful correlation bound:

Lemma 6.1. Let t 6 log x be a natural number, and letn1, . . . , nt be distinct integers of magnitude
O(xO(1)). Then one has

P(n1, . . . , nt ∈ S(~a)) =

(

1 +O

(

1

log16 x

))

σt.

Proof. For eachs ∈ S, the integersn1, . . . , nt occupyt distinct residue classes modulos, unlesss divides
one ofni − nj for 1 6 i < j 6 t. Sinces > log20 x and theni − nj are of sizeO(xO(1)), the latter
possibility occurs at mostO(t2 log x) = O(log3 x) times. Thus the probability thatas mod s avoids all of
then1, . . . , nt is equal to1− t

s except forO(log3 x) values ofs, where it is instead(1+O( 1
log19 x

))(1− t
s).

Thus,

P(n1, . . . , nt ∈ S(~a)) =

(

1 +O

(

1

log19 x

))O(log3 x)
∏

s∈S

(

1−
(

t

s

))

=

(

1 +O

(

1

log16 x

))

σt
∏

s∈S

(

1 +O

(

t2

s2

))

=

(

1 +O

(

1

log16 x

))

σt. �

Among other things, this gives the claim (4.31):

Corollary 5. With probability1− o(1), we have

(6.13) #(Q ∩ S(~a)) ∼ σ
y

log x
∼ 80c

x

log x
log2 x.

Proof. From Lemma 6.1, we have

E#(Q∩ S(~a)) =
(

1 +O

(

1

log16 x

))

σ#Q

and

E#
(

(Q ∩ S(~a))
)2

=

(

1 +O

(

1

log16 x

))

(σ#Q+ σ2(#Q)(#Q− 1)),

and so by the prime number theorem we see that the random variable#Q∩S(~a) has mean(1+o( 1
log2 x

))σ y
log x

and varianceO
(

1
log16 x

(σ y
log x)

2
)

. The claim then follows from Chebyshev’s inequality (with plenty of

room to spare). �
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For eachp ∈ P, we consider the quantity

(6.14) Xp(~a) := P(ñp + hip ∈ S(~a) for all i = 1, . . . , r),

and letP(~a) denote the set of all the primesp ∈ P such that

(6.15) Xp(~a) =

(

1 +O6

(

1

log3 x

))

σr.

In light of Lemma 6.1, we expect most primes inP to lie in P(~a), and this will be confirmed below
(Lemma 6.3). We now define the random variablesnp as follows. Suppose we are in the event~a = ~a for
some~a in the range of~a. If p ∈ P\P(~a), we setnp = 0. Otherwise, ifp ∈ P(~a), we definenp to be the
random integer with conditional probability distribution

(6.16) P(np = n|~a = ~a) :=
Zp(~a;n)

Xp(~a)
, Zp(~a;n) = 1n+hjp∈S(~a) for j=1,...,rP(ñp = n),

with thenp (p ∈ P(~a)) jointly independent, conditionally on the event~a = ~a. From (6.14) we see that these
random variables are well defined.

Lemma 6.2. With probability1− o(1), we have

(6.17) σ−r
r
∑

i=1

∑

p∈P(~a)

Zp(~a; q − hip) =

(

1 +O

(

1

log32 x

))

u

σ

x

2y

for all but at most x
2 logx log2 x

of the primesq ∈ Q ∩ S(~a).

Let~a be good andq ∈ Q ∩ S(~a). Substituting definition (6.16) into the left hand side of of(6.17), using
(6.15), and observing thatq = np + hip is only possible ifp ∈ P(~a), we find that

σ−r
r
∑

i=1

∑

p∈P(~a)

Zp(~a; q − hip) = σ−r
r
∑

i=1

∑

p∈P(~a)

Xp(~a)P(np = q − hip|~a = ~a)

=

(

1 +O

(

1

log3 x

)) r
∑

i=1

∑

p∈P(~a)

P(np = q − hip|~a = ~a)

=

(

1 +O

(

1

log3 x

))

∑

p∈P
P(q ∈ ep(~a)|~a = ~a),

whereep(~a) = {np + hip : 1 6 i 6 r} ∩Q∩S(~a) is as defined in Theorem 4. Relation (4.32) (that is,~a is
good with probability1− o(1)) follows upon noting that by (6.8), (6.3) and (6.11),

C :=
u

σ

x

2y
∼ 1

c
.

Before proving Lemma 6.2, we first confirm thatP\P(~a) is small with high probability.

Lemma 6.3. With probability1 − O(1/ log3 x), P(~a) contains all butO( 1
log3 x

x
log x) of the primesp ∈ P.

In particular, E#P(~a) = #P(1 +O(1/ log3 x)).
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Proof. By linearity of expectation and Markov’s inequality, it suffices to show that for eachp ∈ P, we have
p ∈ P(~a) with probability1−O( 1

log6 x
). By Lemma 2.1, it suffices to show that

(6.18) EXp(~a) = P(ñp + hip ∈ S(~a) for all i = 1, . . . , r) =

(

1 +O

(

1

log12 x

))

σr

and

(6.19) EXp(~a)
2 = P(ñ(1)

p + hip, ñ
(2)
p + hip ∈ S(~a) for all i = 1, . . . , r) =

(

1 +O

(

1

log12 x

))

σ2r,

whereñ(1)
p , ñ

(2)
p are independent copies ofñp that are also independent of~a.

The claim (6.18) follows from Lemma 6.1 (performing the conditional expectation over̃np first). A
similar application of Lemma 6.1 allows one to write the left-hand side of (6.19) as

(

1 +O

(

1

log16 x

))

Eσ#{ñ(l)
p +hip:i=1,...,r;l=1,2}.

From (6.10) we see that the quantity#{ñ(l)
p + hip : i = 1, . . . , r; l = 1, 2} is equal to2r with probability

1−O(x−1/2−1/6+o(1)), and is less than2r otherwise. The claim now follows from (6.12). �

Proof of Lemma 6.2.We first show that replacingP(~a) with P has negligible effect on the sum, with prob-
ability 1− o(1). Fix i and susbtituten = q − hip. By Markov’s inequality, it suffices to show that

(6.20) E
∑

n

σ−r
∑

p∈P\P(~a)

Zp(~a;n) = o

(

u

σ

x

2y

1

r

1

log32 x

x

log x log2 x

)

.

By Lemma 6.1, we have

E
∑

n

σ−r
∑

p∈P
Zp(~a;n) = σ−r

∑

p∈P

∑

n

P(ñp = n)P(n+ hjp ∈ S(~a) for j = 1, . . . , r)

=

(

1 +O

(

1

log16 x

))

#P.

Next, by (6.15) and Lemma 6.3 we have

E
∑

n

σ−r
∑

p∈P(~a)

Zp(~a;n) = σ−r
∑

~a

P(~a = ~a)
∑

p∈P(~a)

Xp(~a)

=

(

1 +O

(

1

log3 x

))

E #P(~a) =

(

1 +O

(

1

log3 x

))

#P;

subtracting, we conclude that the left-hand side of (6.20) isO(#P/ log3 x) = O(x/ log4 x). The claim then
follows from (3.1) and (6.1).

By (6.20), it suffices to show that with probability1 − o(1), for all but at most x
2 log x log2 x

primesq ∈
Q ∩ S(~a), one has

(6.21)
r
∑

i=1

∑

p∈P
Zp(~a; q − hip) =

(

1 +O6

(

1

log32 x

))

σr−1u
x

2y
.
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Call a primeq ∈ Q bad if q ∈ Q ∩ S(~a) but (6.21) fails. Using Lemma 6.1 and (6.9), we have

E

[

∑

q∈Q∩S(~a)

r
∑

i=1

∑

p∈P
Zp(~a; q − hip)

]

=
∑

q,i,p

P(q + (hj − hi)p ∈ S(~a) for all j = 1, . . . , r)P(ñp = q − hip)

=

(

1 +O

(

1

log102 x

))

σy

log x
σr−1u

x

2y

and

E

[

∑

q∈Q∩S(~a)

( r
∑

i=1

∑

p∈P
Zp(~a; q − hip)

)2]

=
∑

p1,p2,q
i1,i2

P(q + (hj − hiℓ)pℓ ∈ S(~a) for j = 1, . . . , r; ℓ = 1, 2)

× P(ñ(1)
p1 = q − hi1p1)P(ñ

(2)
p2 = q − hi2p2)

=

(

1 +O

(

1

log102 x

))

σy

log x

(

σr−1u
x

2y

)2

,

where(ñ(1)
p1 )p1∈P and(ñ(2)

p2 )p2∈P are independent copies of(ñp)p∈P over~a. In the last step we used the
fact that the terms withp1 = p2 contribute negligibly.

By Chebyshev’s inequality (Lemma 2.1) it follows that the number of badq is≪ σy
log x

1
log32 x

≪ x
log x log22 x

with probability1−O(1/ log2 x). This concludes the proof. �

It remains to establish Theorem 5. This is the objective of the remaining sections of the paper.

7. MULTIDIMENSIONAL SIEVE ESTIMATES

We now recall a technical multidimensional sieve estimate from [31] (a minor variant of [31, Proposition
6.1]). In this section we will follow the notation from [31],which is a little different from that in the rest of
this paper, with the exception that we will take the set denotedP in that paper to be equal to the setP of
all primes from the outset.

A linear formwill be a functionL : Z → Z of the formL(n) = l1n + l2 with integer coefficientsl1, l2
andl1 6= 0. LetA be a set of integers. Given a linear formL(n) = l1n+ l2, we define the sets

A(x) := {n ∈ A : x 6 n 6 2x},
A(x; q, a) := {n ∈ A(x) : n ≡ a (mod q)},
PL,A(x) := L(A(x)) ∩ P,

PL,A(x; q, a) := L(A(x; q, a)) ∩ P,

for anyx > 0 and congruence classa mod q, and define the quantity

ϕL(q) := ϕ(|l1|q)/ϕ(|l1|),
whereϕ is the Euler totient function. We recall the standard bounds

(7.1) X > ϕ(X) ≫ X

log2X

sinceϕ(X)/X is smallest whenX is composed only of primes≪ logX. Thanks to this bound, most
factors of the form X

ϕ(X) appearing below become relatively harmless, and we recommend that they may be
ignored for a first reading.
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A finite setL = {L1, . . . , Lk} of linear forms is said to beadmissibleif
∏k

i=1 Li(n) has no fixed prime
divisor; that is, for every primep there exists an integernp such that

∏k
i=1 Li(np) is not divisible byp.

Definition 2. [31] Let x be a large quantity, letA be a set of integers,L = {L1, . . . , Lk} a finite set of
linear forms, andB a natural number. We allowA,L, k,B to vary withx. Let 0 < θ < 1 be a quantity
independent ofx. LetL′ be a subset ofL. We say that the tuple(A,L,P, B, x, θ) obeys Hypothesis 1 at
L′ if we have the following three estimates:

(1) (A(x) is well-distributed in arithmetic progressions) We have
∑

q6xθ

max
a

∣

∣

∣

∣

#A(x; q, a)− #A(x)

q

∣

∣

∣

∣

≪ #A(x)

log100k
2
x
.

(2) (PL,A(x) is well-distributed in arithmetic progressions) For anyL ∈ L′, we have
∑

q6xθ; (q,B)=1

max
a:(L(a),q)=1

∣

∣

∣

∣

#PL,A(x; q, a) −
#PL,A(x)

ϕL(q)

∣

∣

∣

∣

≪ #PL,A(x)

log100k
2
x
.

(3) (A(x) not too concentrated) For anyq < xθ anda ∈ Z we have

#A(x; q, a) ≪ #A(x)

q
.

In [31] this definition was only given in the caseL′ = L, but we will need the (mild) generalization to
the case in whichL′ is a (possibly empty) subset ofL.

As is common in analytic number theory, we will have to address the possibility of an exceptional Siegel
zero. As we want to keep all our estimates effective, we will not rely on Siegel’s theorem or its consequences
(such as the Bombieri-Vinogradov theorem). Instead, we will rely on the Landau-Page theorem, which we
now recall. Throughout,χ denotes a Dirichlet character.

Lemma 7.1(Landau-Page theorem). LetQ > 100. Suppose thatL(s, χ) = 0 for some primitive character
χ of modulus at mostQ, and somes = σ + it. Then either

1− σ ≫ 1

log(Q(1 + |t|)) ,

or elset = 0 and χ is a quadratic characterχQ, which is unique. Furthermore, ifχQ exists, then its
conductorqQ is square-free apart from a factor of at most4, and obeys the lower bound

qQ ≫ log2Q

log22Q
.

Proof. See e.g. [9, Chapter 14]. The final estimate follows from the bound1−β ≫ q−1/2 log−2 q for a real
zeroβ of L(s, χ) with χ of modulusq, which can also be found in [9, Chapter 14]. �

We can then eliminate the exceptional character by deletingat most one prime factor ofqQ.

Corollary 6. LetQ > 100. Then there exists a quantityBQ which is either equal to1 or is a prime of size

BQ ≫ log2Q

with the property that

1− σ ≫ 1

log(Q(1 + |t|))
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wheneverL(σ + it, χ) = 0 andχ is a character of modulus at mostQ and coprime toBQ.

Proof. If the exceptional characterχQ from Lemma 7.1 does not exist, then takeBQ := 1; otherwise we
takeBQ to be the largest prime factor ofqQ. As qQ is square-free apart from a factor of at most4, we have
log qQ ≪ BQ by the prime number theorem, and the claim follows. �

We will only need the above definition in the following special case:

Lemma 7.2. Let x be a large quantity. Then there exists a natural numberB 6 x, which is either1 or
a prime, such that the following holds. LetA := Z, let θ := 1/3, and letL = {L1, . . . , Lk} be a finite
set of linear formsLi(n) = ain + bi (which may depend onx) with k 6 log1/5 x, 1 6 |ai| 6 log x, and
|bi| 6 x log2 x. Letx 6 y 6 x log2 x, and letL′ be a subset ofL such thatLi is non-negative on[y, 2y] and
ai is coprime toB for all Li ∈ L′. Then(A,L,P, B, y, θ) obeys Hypothesis 1 atL′ with absolute implied
constants (i.e. the bounds in Hypothesis 1 are uniform over all such choices ofL andy).

Proof. Parts (1) and (3) of Hypothesis 1 are easy; the only difficult verification is (2). We apply Corollary 6
with Q := exp(c1

√
log x) for some small absolute constantc1 to obtain a quantityB := BQ with the stated

properties. By the Landau-Page theorem (see [9, Chapter 20]), we have that ifc1 is sufficiently small then
we have the effective bound

(7.2) φ(q)−1
∑∗

χ

|ψ(z, χ)| ≪ x exp(−3c
√

log x)

for all 1 < q < exp(2c
√
log x) with (q,B) = 1 and allz 6 x log4 x. Here the summation is over all prim-

itive χ mod q andψ(z, χ) =
∑

n6z χ(n)Λ(n). Following a standard proof of the Bombieri-Vinogradov
Theorem (see [9, Chapter 28], for example), we have (for a suitable constantc > 0)
(7.3)
∑

q<x1/2−ǫ

(q,B)=1

sup
(a,q)=1

z6x log4 x

∣

∣

∣π(z; q, a)− π(z)

φ(q)

∣

∣

∣≪ x exp(−c
√

log x) + log x
∑

q<exp(2c
√
log x)

(q,B)=1

∑∗

χ

sup
z6x log4 x

|ψ(z, χ)|
φ(q)

.

Combining these two statements and using the triangle inequality gives the bound required for (2). �

We now recall the construction of sieve weights from [31, Section 7]. On first reading we recommend
the reader not pay too much attention to the details; the key point is the existence of a weightw(n) which
will establish Theorem 5. The reason it is necessary to know the construction is the technical issue that
the weightsw(n) depend on a given admissible set of linear forms, and we require that the final estimates
obtained are essentially uniform over similar admissible sets.

Let W :=
∏

p62k2; p∤B p. For each primep not dividingB, let rp,1(L) < · · · < rp,ωL(p)(L) be the

elementsn of [p] for which p|∏k
i=1 Li(n). If p is also coprime toW , then for each1 6 a 6 ωL(p), let

jp,a = jp,a(L) denote the least element of[k] such thatp|Ljp,a(rp,a(L)).
LetDk(L) denote the set

Dk(L) := {(d1, . . . , dk) ∈ N
k : µ2(d1 . . . dk) = 1; (d1 . . . dk,WB) = 1;

(dj , p) = 1 wheneverp ∤ BW andj 6= jp,1, . . . , jp,ωL(p)}.
Define the singular series

S(L) :=
∏

p∤B

(

1− ωL(p)
p

)(

1− 1

p

)−k

,
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and

SWB(L) :=
∏

p∤WB

(

1− ωL(p)
p

)(

1− 1

p

)−k

,

the function
ϕωL

(d) :=
∏

p|d
(p− ωL(p)),

and letR be a quantity of size
xθ/10 6 R 6 xθ/3.

LetF : Rk → R be a smooth function supported on the simplex

Rk = {(t1, . . . , tk) ∈ Rk
+ : t1 + · · ·+ tk 6 1}.

For any(r1, . . . , rk) ∈ Dk(L) define

y(r1,...,rk)(L) :=
1Dk(L)(r1, . . . , rk)W

kBk

ϕ(WB)k
SWB(L)F

(

log r1
logR

, . . . ,
log rk
logR

)

.

For any(d1, . . . , dk) ∈ Dk(L), define

λ(d1,...,dk)(L) := µ(d1 . . . dk)d1 . . . dk
∑

di|ri for i=1,...,k

y(r1,...,rk)(L)
ϕωL

(r1 . . . rk)
,

and then define the functionw = wk,L,B,R : Z → R+ by

(7.4) w(n) :=





∑

d1,...,dk:di|Li(n) for all i

λ(d1,...,dk)(L)





2

.

We note that the restriction of the support ofF toRk means thatλ(d1,...,dk)(L) andy(r1,...,rk) are supported
on the set

Sk(L) = Dk(L) ∩ {(d1, . . . , dk) :
k
∏

i=1

di 6 R}.

We then have the following result, a slightly modified form ofProposition 6.1 from [31]:

Theorem 6. Fix θ, α > 0. Then there exists a constantC depending only onθ, α such that the following
holds. Suppose that(A,L,P, B, x, θ) obeys Hypothesis 1 at some subsetL′ of L. Write k := #L, and
suppose thatx > C, B 6 xα, andC 6 k 6 log1/5 x. Moreover, assume that the coefficientsai, bi of the
linear formsLi(n) = ain + bi in L obey the size bound|ai|, |bi| 6 xα for all i = 1, . . . , k. Then there
exists a smooth functionF : Rk → R depending only onk and supported on the simplexRk, and quantities
Ik, Jk depending only onk with

Ik ≫ (2k log k)−k

and

(7.5) Jk ≍ log k

k
Ik

such that, forw(n) given in terms ofF as above, the following assertions hold uniformly forxθ/10 6 R 6
xθ/3.
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• We have

(7.6)
∑

n∈A(x)

w(n) =

(

1 +O

(

1

log1/10 x

))

Bk

ϕ(B)k
S(L)#A(x)(logR)kIk.

• For any linear formL(n) = aLn + bL in L′ with aL coprime toB andL(n) > R on [x, 2x], we
have
∑

n∈A(x)

1P(L(n))w(n) =

(

1 +O

(

1

log1/10 x

))

φ(|aL|)
|aL|

Bk−1

ϕ(B)k−1
S(L)#PL,A(x)(logR)

k+1Jk

+O

(

Bk

ϕ(B)k
S(L)#A(x)(logR)k−1Ik

)

.

(7.7)

• LetL(n) = a0n+ b0 be a linear form such that the discriminant

∆L := |a0|
k
∏

j=1

|a0bj − ajb0|

is non-zero (in particularL is not inL). Then

(7.8)
∑

n∈A(x)

1
P∩[xθ/10,+∞)(L(n))w(n) ≪

∆L

ϕ(∆L)

Bk

ϕ(B)k
S(L)#A(x)(logR)k−1Ik.

• We have the crude upper bound

(7.9) w(n) ≪ x2θ/3+o(1)

for all n ∈ Z.

Here all implied constants depend only onθ, α and the implied constants in the bounds of Hypothesis 1.

Proof. The first estimate (7.6) is given by [31, Proposition 9.1], (7.7) follows from [31, Proposition 9.2] in
the case(aL, B) = 1, (7.8) is given by [31, Propositon 9.4] (takingξ := θ/10 andD := 1), and the final
statement (7.9) is given by part (iii) of [31, Lemma 8.5]. Thebounds forJk andIk are given by [31, Lemma
8.6]. �

We remark that the estimate (7.8) is only needed here to establish the estimate (6.6) which is not, strictly
speaking, necessary for the results of this paper, but will be useful in a subsequent work [15] based on this
paper.

8. VERIFICATION OF SIEVE ESTIMATES

We can now prove Theorem 5. Letx, y, r, h1, . . . , hr be as in that theorem.
We set

A := Z,

θ := 1/3,

k := r,

R := (x/4)θ/3,

and letB = xo(1) be the quantity from Lemma 7.2.
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We define the functionw : P × Z → R+ by setting

w(p, n) := 1[−y,y](n)wk,Lp,B,R(n)

for p ∈ P andn ∈ Z, whereLp is the (ordered) collection of linear formsn 7→ n + hip for i = 1, . . . , r,
andwk,Lp,B,R was defined in (7.4). Note that the admissibility of ther-tuple (h1, . . . , hr) implies the
admissibility of the linear formsn 7→ n+ hip.

A key point is that many of the key components ofwk,Lp,B,R are essentially uniform inp. Indeed, for

any primes, the polynomial
∏k

i=1(n+ hip) is divisible bys only at the residue classes−hip mod s. From
this we see that

ωLp(s) = #{hi (mod s)} whenevers 6= p.

In particular,ωLp(s) is independent ofp as long ass is distinct fromp, so

S(Lp) =

(

1 +O

(

k

x

))

S,(8.1)

SBW (Lp) =

(

1 +O

(

k

x

))

SBW ,

for someS, SBW independent ofp, with the error terms uniform inp. Moreover, ifs ∤ WB thens > 2k2,
so all thehi are distinctmods (since thehi are less than2k2). Therefore, ifs ∤ pWB we haveωLp(s) = k
and

{js,1(Lp), . . . , js,ω(s)(Lp)} = {1, . . . , k}.
Since allp ∈ P are at leastx/2 > R, we haves 6= p whenevers 6 R. From this we see thatDk(Lp) ∩
{(d1, . . . , dk) :

∏k
i=1 di 6 R} is independent ofp, and so we have

λ(d1,...,dk)(Lp) =
S(Lp)

S
λ(d1,...,dk) =

(

1 +O

(

k

x

))

λ(d1,...,dk),

for someλ(d1,...,dk) independent ofp, and where the error term is independent ofd1, . . . , dk.
It is clear thatw is non-negative and supported onP × [−y, y], and from (7.9) we have (6.7). We set

(8.2) τ := 2
Bk

ϕ(B)k
S(logR)k(log x)kIk

and

(8.3) u :=
ϕ(B)

B

logR

log x

kJk
2Ik

.

SinceB is either1 or prime, we have
ϕ(B)

B
≍ 1,

and from definition ofR we also have

(8.4)
logR

log x
≍ 1.

From (7.5) we thus obtain (6.3). From [31, Lemma 8.1(i)] we have

S > x−o(1),

and from [31, Lemma 8.6] we have
Ik = xo(1),
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and so we have the lower bound (6.2). (In fact, we also have a matching upper boundτ 6 xo(1), but we will
not need this.)

It remains to verify the estimates (6.4) and (6.5). We begin with (6.4). Letp be an element ofP. We shift
then variable by3y and rewrite

∑

n∈Z
w(p, n) =

∑

n∈A(2y)

wk,Lp−3y,B,R(n) +O(x1−c+o(1))

whereLp − 3y denotes the set of linear formsn 7→ n + hip − 3y for i = 1, . . . , k. (Thex1−c+o(1) error
arises from (6.7) and roundoff effects ify is not an integer.) This set of linear forms remains admissible, and

S(Lp − 3y) = S(Lp) =

(

1 +O

(

k

x

))

S.

The claim (6.4) now follows from (8.2) and the first conclusion (7.6) of Theorem 6 (withx replaced by2y,
L′ = ∅, andL = Lp − 3y), using Lemma 7.2 to obtain Hypothesis 1.

Now we prove (6.5). Fixq ∈ Q and i ∈ {1, . . . , k}. We introduce the set̃Lq,i of linear forms
L̃q,i,1, . . . , L̃q,i,k, where

L̃q,i,i(n) := n

and

L̃q,i,j(n) := q + (hj − hi)n (1 6 j 6 k, j 6= i)

We claim that this set of linear forms is admissible. Indeed,for any primes 6= q, the solutions of

n
∏

j 6=i

(q + (hj − hi)n) ≡ 0 (mod s)

aren ≡ 0 andn ≡ −q(hj − hi)
−1 (mod s) for hj 6≡ hi (mod s), the number of which is equal to#{hj

(mod s)}. Thus,

S(L̃q,i) =

(

1 +O

(

k

x

))

S,

SBW (L̃q,i) =

(

1 +O

(

k

x

))

SBW ,

as before. Again, fors ∤ WB we have that thehi are distinct (mod s), and so ifs < R ands ∤ WB we
haveωL̃q,i

(s) = k and

{js,1(L̃q,i), . . . , js,ω(s)(L̃q,i)} = {1, . . . , k}.
In particular,Dk(L̃q,i) ∩ {(d1, . . . , dk) :

∏k
i=1 di 6 R} is independent ofq, i and so

λ(d1,...,dk)(L̃q,i) =

(

1 +O

(

k

x

))

λ(d1,...,dk),

where again theO(kx) error is independent ofd1, . . . , dk. From this, sinceq − hip takes values in[−y, y],
we have that

wk,L̃q,i,B,R(p) =

(

1 +O

(

k

x

))

wk,Lp,B,R(q − hip)
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wheneverp ∈ P (note that thedi summation variable implicit on both sides of this equation is necessarily
equal to1). Thus, recalling thatP = P ∩ (x/2, x], we can write the left-hand side of (6.5) as

(

1 +O

(

k

x

))

∑

n∈A(x/2)

1P(L̃q,i,i(n))wk,L̃q,i,B,R(n).

Applying the second conclusion (7.7) of Theorem 6 (withx replaced byx/2, L′ = {L̃q,i,i}, andL = L̃q,i)
and using Lemma 7.2 to obtain Hypothesis 1, this expression becomes

(

1 +O

(

1

log102 x

))

Bk−1

ϕ(B)k−1
S#PL̃q,i,i,A(x/2)(logR)

k+1Jk

+O

(

Bk

ϕ(B)k
S#A(x/2)(logR)k−1Ik

)

.

Clearly#A(x/2) = O(x), and from the prime number theorem one has

#PL̃q,i,i,A(x/2) =

(

1 +O

(

1

log102 x

))

x

2 log x
.

for any fixedC > 0. Using (8.2), (8.3), we can thus write the left-hand side of (6.5) as
(

1 +O

(

1

log102 x

))

u

k
τ

x

2 logk x
+O

(

1

logR
τ

x

logk x

)

.

From (6.1), (6.3), the second error term may be absorbed intothe first, and (6.5) follows.
Finally, we prove (6.6). Fixh = O(y/x) not equal to any of thehi, and fixp ∈ P. By the prime number

theorem, it suffices to show that
∑

q∈Q
w(p, q − hp) ≪ 1

log102 x
τ

y

logk x
.

By construction, the left-hand side is the same as
∑

x−hp<n6y−hp

1P(n + hp)wk,Lp,B,R(n)

which we can shift as
∑

n∈A(y−x)

1
P∩[xθ/10,+∞)(n− y + 2x)wk,Lp−y+2x−hp,B,R(n) +O(x1−c+o(1))

where again theO(x1−c+o(1)) error is a generous upper bound for roundoff errors. This error is acceptable
and may be discarded. Applying (7.8), we may then bound the main term by

≪ ∆

ϕ(∆)

Bk

ϕ(B)k
S(Lp − y + 2x− hp)y(logR)k−1Ik =

∆

ϕ(∆)

Bk

ϕ(B)k
S(Lp)y(logR)

k−1Ik

where

∆ :=
k
∏

j=1

|hp − hip|.
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Applying (8.1), (8.2), we may simplify the above upper boundas

≪ ∆

ϕ(∆)

y

(logR)(log x)k
τ.

Now h − hi = O(y/x) = O(log x) for eachi, hence∆ 6 (O(x log x))k, and it follows from (7.1), (8.4)
and (6.1) that

∆

ϕ(∆)
≪ log2∆ ≪ log2 x≪ logR

log102 x
.

This concludes the proof of Theorem 5, and hence Theorem 1.
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[2] R. J. Backlund,Über die Differenzen zwischen den Zahlen, die zu den erstenn Primzahlen teilerfremd sind, Commentationes
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