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LONG GAPS BETWEEN PRIMES

KEVIN FORD, BEN GREEN, SERGEI KONYAGIN, JAMES MAYNARD, AND ERENCE TAO

ABSTRACT. Letp, denote thex-th prime. We prove that
log X log log X log log log log X
pnnliug(x (1 = pn) > log log log X
for sufficiently largeX, improving upon recent bounds of the first three and fifth agttand of the fourth au-

thor. Our main new ingredient is a generalization of a hysrly covering theorem of Pippenger and Spencer,
proven using the Rédl nibble method.
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1. INTRODUCTION

Let p,, denote the:!" prime, and let

G(X) = pgﬁgx(pnﬂ — DPn)

denote the the maximum gap between consecutive primeshiasst It is clear from the prime number
theorem that

G(X) =2 (1+0(1))log X,

as theaveragegap between the prime numbers which areX is ~ log X. In 1931, Westzynthiug [43]

proved that infinitely often, the gap between consecutiv@@numbers can be an arbitrarily large multiple

of the average gap, that i§,(X)/log X — oo asX — oo, improving upon prior results of Backlund![2]
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and Brauer-ZeitZ [5]. Moreover, he proved the quantitaltioenﬂ]
log X logs X
G(X A= A

(X) > log, X

In 1935 Erd6sl[11] sharpened this to
log X logy X
(logs X)?
and in 1938 Rankir [37] made a subsequent improvement
log X log, X log, X
(logg X)?

with ¢ = % The constant was increased several times: %G’Y by Schonhage [40], then i© = ¢ by
Rankin [38], toc = 1.31256¢” by Maier and Pomerance [29] and, most recently; 0 2¢” by Pintz [33].

Recently, in two independent papers|[13, 32], the autharsvetl thatc could be taken to be arbitrarily
large, answering in the affirmative a long-standing conjectof Erd6s[[12]. The methods of proof in
[13] and [32] differed in some key aspects. The argumentsld) (ised recent results [21,120,122] on
the number of solutions to linear equations in primes, wéerthe arguments in_[32] instead relied on
multidimensional prime-detecting sieves introduced.i@)][3The latter arguments have the advantage of
coming with quantitative control on the error terms, as vedrkbut in [31]. Using this, in unpublished work
of the fourth author the above bound was improved to

log X logy X
logs X

G(X)>

G(X) = (c+o(1))

(1.1) G(X) >

for sufficiently largeX.
Our main theorem is the following further quantitative iropement.

Theorem 1(Large prime gaps)For any sufficiently largeX, one has
log X logy X logy X
logs X ’

G(X) >

The implied constant is effective.

Our arguments combine ideas from the previous papers [13aB@ also involve a new generalization of
a hypergraph covering theorem of Pippenger and Spencemfdéh is of independent interest. In a sequel
[15] to this paper, a subset of the authors will extend thevaltoeorem to also cover chains of consecutive
large gaps between primes, by combining the methods in #gemwith the Maier matrix method. In view
of this, we have written some of the key propositions in tlaipgr in slightly more generality than is strictly
necessary to prove Theorémn 1, as the more general versitimssefresults will be useful in the sequell[15].

The results and methods of this paper have also subsequmsdtly applied by Maier and Rassias|[28]
(extending the method of the first author, Heath-Brown aedhird author([14]) to obtain large prime gaps
(of the order of that in Theoref 1) that contain a perféétpower of a prime for a fixed, and by Baker
and Freiberg[[3] to obtain lower bounds on the density oftlipgints of prime gaps normalized by any
function that grows slightly slower than the one in TheokériVe refer the interested reader to these papers
for further details.

Ias usual in the subjeciog, z = loglog z, log; x = logloglog z, and so on. The conventions for asymptotic notation such
as< ando() will be defined in Sectiohl2.
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1.1. Historical background. Based on a probabilistic model of primes, Cramér [8] conijesd] that

lim sup G(j() =1
X—o00 10g X

Granville [19] offered a refinement of Cramér's model and banjectured that thém sup above is in
fact at leasRe™™ = 1.1229.... These conjectures are well beyond the reach of our methGdanér's
model also predicts that the normalized prime gézg%;Tp” should have exponential distribution, that is,

Pn+1 — Pn = Clogp, for aboute‘cw(X) primes< X, for any fixedC' > 0. Numerical evidence from
prime calculations up té- 10'® [41] matches this prediction quite closely, with the exa@pbf values ofC
close tolog X, for which there is very little data available. In fagiax x4.101s G(X)/ log? X ~ 0.9206,
slightly below the predictions of Cramér and Granville.

Unconditional upper bounds fa#(X) are far from the conjectured truth, the best bef(gy) < X°-°2°
and due to Baker, Harman and Piritz [4]. Even the Riemann Hgsa onlf furnishes the bound(X) <
X1/210g X [1].

All works on lower bounds foz(X') have followed a similar overall plan of attack: show thatréhare
at leastG(X) consecutive integers X /2, X], each of which has a “very small” prime factor. To describe
the results, we make the following definition.

Definition 1. Letz be a positive integer. Defing(x) to be the largest integey for which one may select
residue classes,, mod p, one for each prime < z, which together “sieve out” (cover) the whole interval
ly] = {1,...,|y|}. Equivalently,Y (x) is the largest integef so that there aren consecutive integers
coprime toP(z).

The relation between this functidn and gaps between primes is encoded in the following simpieie.
Lemma 1.1. Write P(z) for the product of the primes less than or equaktoThen
G(P(z)+Y(z)+x) > Y(z).

Proof. Sety = Y (z), and select residue classgsmod p, one for each prime < x, which cover[y].
By the Chinese remainder theorem there is somer < m < x + P(z), with m = —a, (mod p) for

all primesp < x. We claim that all of the numbens, + 1,...,m + y are composite, which means that
there is a gap of length amongst the primes less than+ y, thereby concluding the proof of the lemma.
To prove the claim, suppose that< ¢ < y. Then there is somg such that = a, (mod p), and hence
m+t=—a,+a, =0 (mod p), and thugp dividesm + t. Sincem +t > m > = > p, m + t is indeed
composite. O

By the prime number theorem we haiéz) = e(*+°(1)* |t turns out (see below) thaf (x) has size
29 Thus the bound of Lemnia 1.1 implies that

G(X) =Y ((1+o0(1))log X)
asX — oo. In particular, Theorerl 1 is a consequence of the bound

xlog zlogs
1.2 Y —_—
(12) (1) > L

2Some slight improvements are available if one also assuame form of the pair correlation conjecture; seel [24].
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xlogxlogs x

which we will establish later in this paper. This improvestba boundY (z) > o obtained by
0g5 T

zlogx

Rankin [37], and the improvemetfit(x) > Togy @ obtained in unpublished work of the fourth author.

The functionY is intimately related taJacobsthal’s functiory. If n is a positive integer thep(n) is
defined to be the maximal gap between integers coprime tm particular;j(P(z)) is the maximal gap
between numbers free of prime factetse, or equivalentlyl plus the longest string of consecutive integers,
each divisible by some primeg < xz. The Chinese remainder theorem construction given in thefof
Lemmd 1.1 in fact proves that
(1.3) Y(z) =j(P(z)) - L.

This observation, together with results in the literatg®es upper bounds far. The best upper bound
known isY (z) < z2, which comes from Iwaniec’s work [26] on Jacobsthal’s fimat It is conjectured by
Maier and Pomerance that in fac(z) < z(log z)>T°()). This places a serious (albeit conjectural) upper
bound on how large gaps between primes we can hope to findwer lbounds foY’(z): a bound in the
region of G(X) g log X (loglog X )2+e(l) far from Cramér’s conjecture, appears to be the absaiuié |
of such an approach.

The lower bound on certain values of Jacobsthal’s functromiged by [1.2),[(1.13) can be inserted directly
into [36, Theorem 1] to obtain a lower bound for the maximunerdvof p(k,!), the least prime in the
arithmetic progressiohmod £k, in the case when the modulishas no small prime factors. We have

Corollary 1. For any natural numbek, let M (k) denote the maximum valuef, [) over alll coprime to
k. Suppose that has no prime factors less than or equalidor somex < log k. Then, ifx is sufficiently
large (in order to makeog, x, logs x positive), one has the lower bound

xlogxlogsx

Mk k
(k) > logy
Proof. Apply [36, Theorem 1] withn = P(z) if z < 3logk and withm = P(3logk) if 1logk < z <
log k. O
In view of [36, Theorem 3], one may also expect to be able togeolower bound of the form
log k log, k log, k
Mk k
(k) > o) —=—%

for a set of natural numbefsof density1, but we were unable to find a quick way to establish this froen th
results in this paper.

1.2. Method of proof. Our methods here are a combination of those in our previgperpdl3| 32], which
are in turn based in part on arguments in previous papersicylarly those of Rankin[[37] and Maier-
Pomerance [29]; we also modify some arguments of PippemgeSpencer [34] in order to make the lower
bound in Theorernl1 as efficient as possible.

As noted above, to prove Theoréin 1, it suffices to sieve ouni@nval [y] by residue classes, mod p

for each primep < x, wherey =< %ffﬁ. Actually, it is permissible to havé)(lo“’gx) survivors infy|
that are not sieved out by these residue classes, since preasiy eliminate such survivors by increasing
x by a constant multiplicative factor. Also, for minor tectali reasons, it is convenient to sieve @yt [z]
rather tharjy].

Following [13], we will sieve outly]\[z] by the residue classé&smod p both for very small prime®

(p < log?® z) and medium primep (betweenz := 083 #/(41og; 7) andx/2). The survivors of this process
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are essentially the s& of primes betweerr andy. After this initial sieving, the next stage will be to
randomly sieve out residue classes= (a, mod s),cs for small primess (betweenlog? = andz). (This
approach differs slightly from the approach takenlinl [324 @&arlier papers, in which the residue classes
1 mod s for small (and very small) primes are used instead.) This datvn the set of prime® to a
smaller seQ N S(a), whose cardinality is typically on the order %& log, x. The remaining task is then

to select integers,, for each primep betweenz /2 andz, such that the residue classgsmod p cut down
QN S(a) to a set of survivors of sizé)(lozx).

Assuming optimistically that one can ensure that the diffieresidue classes, mod p largely remove
disjoint sets fromQ N S(a), we are led to the need to select the integgrso that each, mod p contains
aboutlog, = of the primes inQ N S(a). In [13], the approach taken was to use recent results oarline
equations in primes [20, 21, 22] to locate arithmetic pregi@sq, ¢ + r!p,...,q + (r — 1)r!p consisting
entirely of primes for some suitable and then to takes, = ¢. Unfortunately, due to various sources of
ineffectivity in the known results on linear equations inpes, this method only works whenis fixed or
growing extremely slowly inc, whereas here we would need to takef the order oflog, . To get around
this difficulty, we use instead the methods from|[32], whiohlaased on the multidimensional sieve methods
introduced in[[30] to obtain bounded intervals with manynm@s. A routine modification of these methods
gives tuplesy + hip, ..., q + hip which contain>> log k primes, for suitable largg; in fact, by using the
calculations in[[31], one can takeas large a$og® x for some small absolute constante.g.c = 1/5), so
that the residue clagsmod p is guaranteed to capture log, = primes inQ.

There is however a difficulty due to the overlap between tiselve classes, mod p. In both of the
previous papers [13, 82], the residue classes were selentddmly and independently of each other, but
this led to a slight inefficiency in the sieving: with eachide® classy, mod p containing approximately
log, = primes, probabilistic heuristics suggest that one woule meeeded the original survivor s S(a)

to have size abouﬂ){é—x{gg—i; rather thang 2 log,  if one is to arrive atO(y;;;) after the final sieving
process. This is what ultimately leads to the additionas loog, = in (1.Q) compared to Theorelm 1. To
avoid this difficulty, we use some ideas from the literatuneefficient hypergraph covering. Of particular
relevance is the work of Pippenger and Spencer [34] in which shown that whenever one has a large
hypergraph = (V, E') which is uniform both in the sense of edges E having constant cardinality, and
also in the sense of the degregééec € E : v € e} being close to constant in one can efficiently cover most
of V by almost disjoint edges iB. Unfortunately, the results if [34] are not directly applite for a number
of technical reasons, the most serious of which is that tladogous hypergraph in this case (in which the
vertices are the sifted s N S(a) and the edges are sets of the foftne 9 N S(a) : ¢ = n, (mod p)}
for variousn,,, p) does not have edges of constant cardinality. However, yifyiog the “Rodl nibble” or
“semi-random” method used to prove the Pippenger-Speheerém, we are able to obtain a generalization
of that theorem in which the edges are permitted to havehlarizardinality. This generalization is purely
combinatorial in nature and may be of independent interegbdid the application here to large prime gaps.
We will make a series of reductions to prove Theofém 1. Toladréader, we summarize the chain of
implications below, indicating in which Section each ineplion or Theorem is proven (beneath), and in
which Section one may find a statement of each Theorem (above)

Tgr%%E — Th%@ = Thd%lz — Thm[d
(6 5] 43l
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2. NOTATIONAL CONVENTIONS

In most of the paperg will denote an asymptotic parameter going to infinity, witlamg quantities
allowed to depend om. The symbolo(1) will stand for a quantity tending to zero as— oc. The same
convention applies to the asymptotic notati®n~ Y, which meansX = (1 + o(1))Y, andX <Y, which
meansX < (1+o0(1))Y. WeuseX = O(Y), X < Y, andY > X to denote the claim that there is a
constant” > 0 such that X| < CY throughout the domain of the quantify. We adopt the convention
thatC' is independent of any parameter unless such dependenahdated, e.g. by subscript suchas,.

In all of our estimates here, the constanivill be effective (we will not rely on ineffective results cln as
Siegel’s theorem). If we can take the implied constarib equall, we write f = O<(g) instead. Thus for
instance
X =(1+0<((e)Y
is synonymous with
1-)Y <X <(1+e)Y.
Finally, we useX =< Y synonymously withX <« Y <« X.

When summing or taking products over the symhgt is understood that is restricted to be prime.

Given a modulug and an integen, we usen mod ¢ to denote the congruence classwdh Z/qZ.

Given a setA, we usel 4 to denote its indicator function, thus, (z) is equal tol whenz € A and zero
otherwise. Similarly, ifE’ is an event or statement, we ukg to denote the indicator, equal tovhenFE is
true and) otherwise. Thus for instande (x) is synonymous with ;¢ 4.

We useft A to denote the cardinality of, and for any positive real, we let[z] .= {n e N:1 < n < z}
denote the set of natural numbers upto

Our arguments will rely heavily on the probabilistic meth@ur random variables will mostly be discrete
(in the sense that they take at most countably many valuiéspugh we will occasionally use some contin-
uous random variables (e.g. independent real numbers edrapiformly from the unit interval0, 1]). As
such, the usual measure-theoretic caveats such as “adgohiegrable”, “measurable”, or “almost surely”
can be largely ignored by the reader in the discussion baldswill use boldface symbols such Xsor a
to denote random variables (and non-boldface symbols suigh@ « to denote deterministic counterparts
of these variables). Vector-valued random variables veiltienoted in arrowed boldface, eg)= (as)ses
might denote a random tuple of random variakigsndexed by some index sét
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We write P for probability, andE for expectation. IfX takes at most countably many values, we define
the essential rangef X to be the set of alll such thaf?(X = X) is non-zero, thuX almost surely takes
values in its essential range. We also employ the followimggitional expectation notation. K is an event
of non-zero probability, we write

P(F|E) = %
for any eventt’, and
E(X|E) = %

for any (absolutely integrable) real-valued random vdeid. If Y is another random variable taking at
most countably many values, we define the conditional priéibaf?(F'|Y') to be the random variable that
equalsP(F|Y = Y) on the evenlY = Y for eachY in the essential range &f, and similarly define the
conditional expectatiof(X|Y) to be the random variable that equalsX|Y = Y') on the eveny =Y.
We observe the idempotency property

(2.1) E(E(X[Y)) = EX

wheneverX is absolutely integrable and takes at most countably many values.
We will rely frequently on the following simple concentiati of measure result.

Lemma 2.1 (Chebyshev inequality)Let X, Y be independent random variables taking at most countably
many values. LeY’ be a conditionally independent copy ¥f over X; in other words, for everyX in

the essential range dX, the random variablesy', Y’ are independent and identically distributed after
conditioning to the everX = X. Let F'(X,Y) be a (absolutely integrable) random variable depending on
X andY. Suppose that one has the bounds

(2.2) EF(X,Y) =a+O(ca)
and
(2.3) EF(X,Y)F(X,Y') = a? + O(ea?)

for somen, e > 0 withe = O(1). Then for anyd > 0, one has

(2.4) E(F(X,Y)|X) =a+ 0<(0)

2

with probability 1 — O(%z-).
In practice, we will often establish (2.2) anid (2.3) by firstrgouting the conditional expectations
E(F(X,Y)[Y)
and
E(F(X,Y)F(X,Y)|Y,Y’)

and then usind (211). Thus we see that we can controXifenditional expectation of'(X,Y) via the
Y -conditional expectation, provided that we can similarbnirol the Y, Y’-conditional expectation of
FX,Y)F(X,Y').
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Proof. Let Z denote the random variable
Z =E(F(X,Y)X)
then by the conditional independence and identical digioh of Y, Y’ overX we have
72 =E(F(X,Y)F(X,Y')|X).
From [2.2) and(Z]1) we have
EZ = a + O(ca)
while from (2.3), [2.1) we have
REZ? = o® 4+ O(ea?)
and thus
E|Z — of? < d?.
The claim now follows from Markov’s inequality (or the Chedyev inequality). O

3. SEVING A SET OF PRIMES

We begin by using a variant of the Westzynthius-Erdés-Ramethod to reduce this problem to a prob-
lem of sieving a se@ of primesin [y]\ [z], rather than integers ip]\[x].
Given a large real numbaet, define

(3.1) y e cp BT logs
log,

wherec is a certain (small) fixed positive constant. Also let

(32) 5= wlogg x/(41logy :c)’

and introduce the three disjoint sets of primes

(3.3) S = {sprime:log® z < s < z},
(3.4) P :={pprime: z/2 < p < x},
(3.5 Q:={qgprime: z < ¢ < y}.

For residue classes= (a; mod s).cs andb = (bp, mod p),cp, define the sifted sets
S(@):={ne€Z:n#as (mod s)forall s € S}

and likewise

S(b) :=={n €Z:n#b, (mod p) forall p € P}.
We then have

Theorem 2 (Sieving primes) Let 2 be sufficiently large and suppose thabbeys(3.1). Then there are
vectorsd = (as mod s)ses andb = (b, mod p),yep, Such that

-, T

(3.6) #(QNS(@)NSk) < log 7
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We prove Theorernl2 in subsequent sections. Here, we showhiswheorem implied (112), and hence
Theorent1L.

Let @ andb be as in Theoreffl 2. We extend the tupl® a tuple(a,),<, Of congruence classeg mod p
for all primesp < z by settinga, := b, for p € P anda,, := 0 for p ¢ S UP, and consider the sifted set

T :={n € [y]\[z] : n # ap (mod p) forall p < z}.

The elements of, by construction, are not divisible by any prime(in log? ] or in (2, z/2]. Thus, each
element must either bezasmooth number (i.e., a number with all prime factors at mpsbr must consist
of a prime greater tham /2, possibly multiplied by some additional primes that arealleastlog? z.
However, from[(3.11) we know that = o(x log ). Thus, we see that an elementfis either az-smooth
number or a prime iR. In the second case, the element liegQin S(a) N 5(5). Conversely, every element
of QN S(@)NS(b) liesinT. Thus,T only differs fromQ N S(@) N S(b) by a setR consisting of:-smooth
numbers iny].

To estimate# R, let

_logy
" logz’

so from [3.1),[(3.R) one has ~ 4}22? By standard counts for smooth numbers (e.g. de Bruijn'srérma
[6]) and [3.1), we thus have

R —ulogu+O(uloglog(u+2)) _ Y — € )
#R < ye 10g4+0(1) T ¢ log

Thus, we find tha#T < x/log x.
Next, letC be a sufficiently large constant such th&l is less than the number of primes(in, Cx]. By
matching each of these surviving elements to a distinct@iim{z, C'z] and choosing congruence classes

appropriately, we thus find congruence classgsod p for p < Cz which coverall of the integers in
(z,y]. In the language of Definitidn 1, we thus have

Y(Czx)2y—x+1,
and [1.2) follows from[(3]1).

Remarkl. One can replace the appeal to de Bruijn’s theorem here byintf@es bounds of Rankir [37,
Lemma Il], if one makes the very minor change of increasirggitim the denominator of (312) t6, and also
makes similar numerical changes to later parts of the argime

It remains to establish Theordmh 2. This is the objective efrmaining sections of the paper.

4. USING A HYPERGRAPH COVERING THEOREM

In the previous section we reduced matters to obtainingluestlasses, b such that the sifted s& N

=,

S(a)nS(b) is small. In this section we use a hypergraph covering tiepgeneralizing a result of Pippenger

and Spencer [34], to reduce the task to that of finding restdasses that have large intersection with
QNS (a).
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4.1. Heuristic discussion. Consider the following general combinatorial problem. L(BtE;);c; be a
collection of (non-empty) hypergraphs on a fixed finite vedetl” indexed by some finite index sét In
other words,V and I are finite sets, and for eache I, E; is a (non-empty) collection of subsets vt
The problem is then to select a single edgérom each sef; in such a way that the unidn;.; e; covers
as much of the vertex sé&f as possible. (In the context consideredLin| [34], one comsideoosing many
edges from a single hypergraph’, £'), which in our context would correspond to the special casenwh
(V, E;) was independent af) One should think of the sé&f\ | J,.; e; as a sifted version df’, with eache;
representing one step of the sieve.

One simple way to make this selection is a random one: oneselsoa random edge uniformly at
random fromFE;, independently in. In that case, the probability that a given veriexc V' survives the
sifting (that is, it avoids the random unidn,_; e;) is equal to

[[a-Pwee)).

icl
In applications, the index sétis large and the probabilitieB(v € e;) are small, in which case the above
expression may be well approximated by

exp(—d;(v))
where we define theormalized degreé;(v) of v to be the quantity

dr(v) :== ZIP’(U €e).
icl
If we make the informal uniformity assumption
(i) One hasi;(v) = d for all (or almost all) vertices,

we thus expect the sifted s&t\ | J,; e; to have density approximatetgp(—d).

Can one do better than this? Choosing ¢héndependently is somewhat inefficient because it allows
different random edges;, e; to collide with each other. If we could somehow modify the ging between
the e; so that they were always disjoint, then the probability thafiven vertexo € V survives the sieve
would now become

1- Z]P’(v ce)=1—-dr(v).
icl
This suggests that one could in principle lower the densitthe sifted set fromexp(—d) to 1 — d (or
max(1—d, 0), since the density clearly cannot be negative), and inquati to sift outl” almost completely
as soon ag exceedd.

Suppose for the moment that such an optimal level of sieveiesiity is possible, and return briefly to

consideration of Theoref 2. We set the vertexiseijual toQ N S(a) for some suitable choice at If we

set

log xlog;
Y i =cr————
logy

for some smalle > 0 (in accordance with[(3]1)), then standard probabilistiaristics (together with

Mertens’ theorem and (3.1}, (3.3)) suggest tfiathould have cardinality about

Y 1 T
1—-- |~ 1
log x . H ( s> Clogm 82 %,

seS
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so in particular this set is roughblog, x times larger tharP. In later sections, we will use the multidimen-
sional sieve from([32],[31] to locate for most primgsn P, a large number of residue clasggsnod p
that each intersea@ N S(a) in roughly < log, « elements on the average. If we B}, be the set of alll

—.

such intersectiongh, mod p) NV, then the task of makin@ N S(a@) N S(b) small is essentially the same
as making the sifted sét\ Up673 e, small, for some suitable edgesdrawn fromE,. By double counting,
the expected density here should be roughly

dx#PXIngxxl

#V c’

and so one should be able to sieve @ut S(@) more or less completely oneeis small enough if one
had optimal sieving. In contrast, if one used independesntirgj, one would expect the cardinality of

—.

QnS(a) NS(b) to be something likexp(—1/c) x cio- log, x, which would only be acceptabledfwas

slightly smaller thaq@. This loss oflog; = ultimately leads to the loss dfg, X in (1.1) as compared
against Theorernl 1.

It is thus desirable to obtain a general combinatorial t@ol&chieving near-optimal sieve efficiency
for various collectiongV, E;);c; of hypergraphs. The result of Pippenger and Spencer [34¢riding
previous results of Rodl [39] and Frankl and Radll[16], adlvias unpublished work of Pippenger) asserts,
very roughly speaking, that one can almost attain this agtefficiency under some further assumptions
beyond (i), which we state informally as follows:

(i) The hypergraphsV, E;) do not depend on
(iii) The normalized codegre€s,; ; P(v, w € e;) for v # w are small.
(iv) The edgeg; of E; are ofconstantsize, thus there is lasuch thatte; = k for all i and alle; € E;.

The argument is based on tRé&dI nibble from [39], which is a variant of theemi-random methoftom
[1]. Roughly speaking, the idea is to break up the index/sato smaller piecedq,..., I,,. For the first
I, we perform a “nibble” by selecting the for i € I; uniformly and independently. For the next nibble at
I, we restrict (or condition) the; for i € I to avoid the edges arising in the first nibble, @nenselecte;
for i € I, independently at random using this conditioned distrdutiWe continue performing nibbles at
I3, ..., I, (restricting the edges at each nibble to be disjoint frometthges of previous nibbles) until the
index setl is exhausted. Intuitively, this procedure enjoys bettsjoilitness properties than the completely
independent selection scheme, but it is harder to analy@erbability of success. To achieve the latter
task, Pippenger and Spencer rely heavily on the four hygethé)-(iv).
In our context, hypothesis (iii) is easily satisfied, andc@ih also be established. Hypothesis (ii) is not
satisfied (the, vary inp), but it turns out that the argument of Pippenger and Spesareeasily be written
in such a way that this hypothesis may be discarded. But lidddilure of hypothesis (iv) which is the
most severe difficulty: the size of the sefs= (b, mod p) N V' can fluctuate quite widely for different
choices ofp or b,,. This creates an undesirable bias in the iterative niblgimagess: with each nibble, larger
edgese; have a reduced chance of survival compared with smallersedgaply because they have more
elements that could potentially intersect previous nigbfgiven that one expects the larger edges to be the
most useful for the purposes of efficient sieving, this bsaa significant problem. One could try to rectify
the issue by partitioning the edge séisdepending on the cardinality of the edges, and working on one
partition at a time, but this seriously impacts hypothegisi(@a manner that we were not able to handle.
Our resolution to this problem is to modify the iterative st the nibbling process byeweighting
the probability distribution of the; at each step to cancel out the bias incurred by conditionmgdge
e; to be disjoint from previous nibbles. It turns out that thexex natural choice of reweighting for this
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task even when the normalized degregév) vary in v. As a consequence, we can obtain a version of
the Pippenger-Spencer theorem in which hypothesis (iissemtially eliminated and (i), (iv) significantly
weakened, leaving only (iii) as the main hypothesis. We r&ntlaat a somewhat similar relaxation of
hypotheses (i)-(iv) was obtained by Kahn in][27], althoubha statement in [27] is not exactly in a form
convenient for our applications here.

4.2. Statement of covering theorem.We now rigorously state the hypergraph covering theorervtiea
will use. In order to apply this theorem for our applicatiore will need a probabilistic formulation of this
theorem which does not, at first glance, bear much resemitartbe combinatorial formulation appearing
in [34]; we will discuss the connections between these fdatians shortly. We will also phrase the theorem
in a completely quantitative fashion, avoiding the use ghgstotic notation; this will be convenient for the
purposes of proving the theorem via induction (on the numbef “nibbles”).

Theorem 3 (Probabilistic covering) There exists a constardt, > 1 such that the following holds. Let
D,r;A>1,0 <k <1/2,and letm > 0 be an integer. Le > 0 satisfy the smallness bound

oA 10m+2
4.1 0S| =———
@y (Gren)
Letly,..., I, be disjoint finite non-empty sets, and 1&tbe a finite set. For each < j < m andi € I},
let e; be a random finite subset bf. Assume the following:
¢ (Edges not too large) Almost surely for gll= 1,...,m andi € I;, we have
(4.2) #e; <1
¢ (Each sieve step is sparse) Forgl=1,...,m, i € I andv € V,
)
N - .
o (Very small codegrees) For evefy=1,...,m, and distinctvy, vy € V,
(4.4) Z]P’(vl,vg €e;) <o
i€l
e (Degree bound) If for every € V andj = 1,...,m we introduce the normalized degrees
(4.5) dr;(v) == ZIP’(U €e)
i€l

and then recursively define the quantitiégv) for j = 0,...,m andv € V by setting

(4.6) Py(v):=1
and

(4.7) Pj41(v) := Pj(v) exp(—di,., (v)/ P (v))
forj =0,...,m —1andv € V, then we have

(4.8) d,(v) <DPia(v)  (1<j<mueV)
and

(4.9) Pi(v) >k 0<j<muveV).
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Then we can find random variablesfor eachi € U;“zl I; with the following properties:

(a) For each: € U;”Zl I;, the essential support @f is contained in the essential supportegf union
the empty set singletoff)}. In other words, almost surely, is either empty, or is a set that also
attains with positive probability.

(b) Forany0 < J < m and any finite subsetof V with #e < A — 2r.J, one has

J
(4.10) P (e cn\yUy eg) = (1 + O (5107 )) Pj(e)
j=14cl;
where
(4.11) Pi(e) =] P ().

vee

We prove this theorem in Sectih 5. It is likely that the smedis condition (411) can be relaxed, for in-
stance by modifying the techniques fram|[42]. However, tinsild not lead to any significant improvement
in the final bound orZ(X) in Theoreni 1, as in our application the conditibn [(4.1) ieadly satisfied with
some room to spare. The parametatoes not appear explicitly in the smallness requirenied),(but is
implicit in that requirement since the conclusion is trilyidrue unles2r < A.

We now discuss some special cases of this theorem whichagerdb the original hypergraph covering
lemma of Pippenger and Spencer. (Readers who are inter@asteth large gaps between primes can skip
ahead to Sectidn 4.3.) (V, E) is a hypergraph, we can take eaglto be an edge of’ drawn uniformly at
random. If/; has cardinalityr ;, we obtain the following corollary:

Corollary 2 (Combinatorial covering) There exists a constaidfy > 1 such that the following holds. Let
D,r>1,0< kK <1/2,and letm > 0andnq,...,n,, > 1beintegers. Setl := 2rm + 1, and letd > 0
be a quantity obeying the smallness conditfdrl). Let(V, E') be a hypergraph, and assume the following
axioms:

(i) All edgesein E have cardinality at most.

(i) Foreveryv € V,the degreeleg(v) := #{e € F:v € e}is atmost##E, n=min(ny,...,ny).

(ii) For every distincty, w € V, the codegreeodeg(v, w) := {e € E : v,w € e} is at most%#E.

(iv) If for everyv € V we introduce theP;(v) for j =0, ..., m by

PO(U) =1

d
" n; deg(v) .
Pji1(v) = Pj(v) exp <—m> (1<j<m),
then we have
nj+1deg(v)

(.12 #E)P;()

<D (0<j<m—1)

and
(4.13) P, (v) > k.
Then we can find edges, . .., e¢; € E withl < nj + --- 4+ n,, such that

#(V\(erU---Ue) < Y Plv).

veV
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Proof. Let N = nj + - -+ + n,,. By TheoreniB (withe; andI; as indicated above), we may find random
variablese fori = 1,..., N taking values inE U {(} such that

N
IP’(U C V\i:lee;> = (1 + O¢ <51/10m+1)) P (v)

for eachv € V, and in particular by linearity of expectation

N
E+ (V\ U eg> <> P(v).

i=1 veV
Thus we can find instance$ of e/ such that

N
4 (V\ U eg> <> Pu(v).
i=1

veV
Discarding the empty edge$, we obtain the claim. O

We now give a qualitative version of the above corollary, inish all objects involved can depend on
asymptotic parameter going to infinity:
Corollary 3 (Generalized Pippenger-Spencekket (V, E) be a hypergraph, and let > 1 be a quantity
obeying the following:
One hasi = o(#E).
All edgese in E have cardinalityO(1).

For everyv € V, one hasi < deg(v) < d.
For every distincty, w € V, one hasodeg(v, w) = o(d).

Then we can find edges, ... ,e; € Ewith] < # such that
(4.14) #(V\(e1 U---Uep)) = o(#V).
Note that for any given vertex, the probability that a randomly selected edgieom FE will cover v is

d;ﬁg—](;), which is roughly%. Thus the conclusion of the above corollary uses an esfigrdimal number
of edges.

Proof. By a diagonalization argument, it suffices for any fixed- 0 (independent of) to show that one
can find edges;, ...,e; € Ewithl < (1 + s)% such that

#(V\(e1U- - Ue)) < e#V
for sufficiently larger.
Letk > 1 be a fixed integer (depending ehto be chosen later, and let = k2. Forz large enough, we
can find a natural number; such that
#E
d

#E

(4.15) -

e (14)

and we define

n; = [npe(t=9)/k] (1<j<m).
We now verify the conditions of Corollafyl 2 with suitable ates of parameter®, r, x, 6. Clearly (i) is
obeyed withr = O(1), and a short computation reveals that (i), (iii) are obefj@dsomes = o(1), and



LONG GAPS BETWEEN PRIMES 15

(iv) is obtained for somé = O(1) andx > 1. Applying Corollary[2, we may thus find (far sufficiently
large)eq, ..., e € Ewithl < nji+ ---n,, such that

#(V\(erU---Ueg)) < Z P, (v).
veV
We have

n

#E
1—e1/k d

nit g <mng Y eI =m — B+ (k+0(1) < (1+¢)

j=1
by first takingk large enough, them large enough. Next, an easy induction shows fat) < p; for all
j=0,...,m,wherepy := 1 and

le+1d > .
Dit1 ::p-exp(— 0<j<m—1).
’ ’ (#E)p;

Another easy induction using(4115) shows that e=7/ for all 0 < j < m. In particular,p,, < e™* < e
if &> log(1/e). O
4.3. Applying the covering theorem. We now specialize Theoreh 3 to a situation relevant for thmi-ap
cation to large prime gaps.

Corollary 4. Letz — oo. LetP’, Q' be sets with:P' < x and#9Q’ > (log, x)3. For eachp € 7/, lete,
be a random subset @’ satisfying the size bound

(4.16) #e, <r=0 (%) (peP).
logs x

Assume the following:
e (Sparsity) For allp € P’ andq € Q’,
(4.17) P(q € e,) < x~ /2710,
e (Uniform covering) For all but at mosm#g’ elementg; € Q', we have
1
(4.18) p;]p(q ce,) =C+Oc (W)

for some quantity”’, independent of, satsifying

9
(4.19) Jlog5<C<1.
e (Small codegrees) For any distingt, g» € Q’,
(4.20) > Pl gz €ep) <a V.
peP’

Then for any positive integen with

< logs :1:7
log 5
we can find random set:g C @' for eachp € P’ such that

#{ge @ :qg e, forallpe P} ~5 "4

(4.21)
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with probability 1 — o(1). More generally, for any” C Q' with cardinality at least#Q’)/+/log, x, one
has

#{ge Q" :qg e forallpe P} ~5m#Q"
with probability 1 — o(1). The decay rates in the{1) and ~ notation are uniform ir?’, @', 9".

For the arguments in this paper, we only need the &ise- @', but the more general situati@®’ c 9’
will be of use in the sequel [15] of this paper when we consathatins of large gaps.

Proof. It suffices to establish the claim far sufficiently large, as the claim is trivial for bounded The
number of exceptional elemengsof Q' that fail (4.18) iso(5-™#Q"), thanks to[(4.21). Thus we may
discard these elements fro@f and assume thdt (4]18) holds fl ¢ € Q’, since this does not significantly
affect the conclusions of the corollary.

By (4.19), we may find disjoint interval¥y, . . ., .#,, in [0, 1] with length

5177 log 5
(4.22) Il = —5—
forj =1,...,m. Lett = (tp)pep be a tuple of elements, of [0, 1] drawn uniformly and independently

at random for each € P’ (independently of the,), and define the random sets
Ij = IJ(E) = {p ep . tp € eﬂj}

forj =1,...,m. These sets are clearly disjoint.
We will verify (for a suitable choice of) the hypotheses of Theordm 3 with the indicated $etand
random variableg,, and with suitable choices of parametérsr, A > 1 and0 < x < 1/2, andV = Q'.
Set

(4.23) §i=a Y2
and observe froni (4.17) that (ifis sufficiently large) one has
0
forall j =1,...,m,p € I;, andg € Q'. Clearly the small codegree conditidn (4.20) implies that
(4.25) d Plapce)<s  (1<j<m).
pelj

Letq € @', 1 < j < m and consider the independent random variab)ég’j)(f))pep/, where

X (@:9)(£) = Plgee,) ifpel;
g 0 otherwise.

By (4.18), [4.19) and (4.22), for evepyand everyy ¢ Q’,
SOEXE)(E) = Y Plgee)P(p € () =[5 D Plg € ey) =5"Tlog5+ O< (%) .

log, )2
peP’! peEP’ peP’ 25} )
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By @.17), we haveX Y7 (£)| < 2~1/2-1/10 for all p, and hence by Hoeffding’s inequality,
1 (logy ) ~*

> < _

Z Tlog, w)?) s 26’“’{ 2011541,

9 x1/5 1
< e
exp (log2 x)4 < i

P ( 3 (X9 () - EX@9)(8))

peP’!

By a union bound, there is a deterministic choiaz t (and hencd, ..., I,,) such that foreveryg € Q'
andeveryj = 1,...,m, we have
. N 1
X (@:0)(F) — EX(@9) (¢ .
\p}@j/( 09 - EXP©)] < s

We fix this choicel (so that thel; are now deterministic), and we conclude that

. . 2
(@:9) (1) — _rl—j
(4.26) X (E) =Y P(g€ep) =57 logh+ Oc < o5, w)2>
pEP’ pEIJ‘
uniformly forallj = 1,...,m,and allg € Q.

From [4.5) and((4.21), we now have
dr;(q) = (1 + O<(n)57 " log s

forallg € @', 1 < j < mand somdu| < 2/log, z. Aroutine induction usind (416),_(4.7) then shows (for
x sufficiently large) that

(4.27) Pi(q) = (14 0<(#p))577 = 577(1 + O<(2(logy 2)™)) (0 <j<m),
wherer = log(5/4)/log(5). In particular we have
dr;(¢) < DPj—1(q)  (1<j<m)

for someD = O(1), and
Pi(q) =2k (1<j<m),

where
k> 5.
We now set
A :=2rm+2.
By (4.21) and[(4.16),
A< log lé)gg x
logs x
and so

kA log z log3
e > 0 —=—===)).
Coexp(4D) = P < < log} « >>

By (4.21) and[(4.23), we see that

<o log =
X €X - )
P\ 2000(10g, x)es 107105
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and so[(4.11) is satisfied s large enough (note thaig 10/ log 5 < 2). Thus all the hypotheses of Theorem
have been verified for this choice of parameters (note4hatand D are independent ¢’, Q').

Applying Theoreni B (withv = Q') and using[(4.27), one thus obtains random variablgor p <
Uj~, I; whose essential range is contained in the essential ranggtafether with), such that

(4.28) P <q¢ UUe ) ™ (1+ O((logy ) ™))

Jj=1pel;

forallg € @, and

(4.29) P <q1,qz U e ) = 572" (1+ O((logy ) ™))

Jj=1pel;

for all distinctqy, q2 € Q.
Sete;, = () for p € P\ U/, I;. Let Q" be as in the corollary, and consider the random variable

Y =#{ge Q" :q¢e,forallpe P’} =) LU, Uper, o
q€Q”
Using [4.28) and (4.29), we obtain
EY =57 (1+ O((logyz)™")) #9Q"

and

EY?=572" (14 O((logyz)™")) (#Q")* + O™ "#Q") = 572" (1 + O((logy x) ™)) (#Q")?,
(here we usd (4.21) and the mild bougi®” > (log, z)?), and so from Chebyshev’s inequality we have

Y ~ 5T #Q”

with probability 1 — o(1), as required. O

In view of the above corollary, we may now reduce Theokém hédfollowing claim.

Theorem 4 (Random construction)Let x be a sufficiently large real number and defipdy (3.1). Then

there is a quantityC' with
1
(4.30) C = -
&

with the implied constants independentcpé tuple of positive integer&:,, ..., h,) withr < y/log z, and
some way to choose random vectars: (a; mod s),cs andii = (n,),cp of congruence classeg mod s
and integersn,, respectively, obeying the following:

e For everya in the essential range @f, one has
P(q € e,(a@)|d = a) < 2 V210 (pep),
wheree, (@) := {n, + hip: 1 <i<r}nAns(a).
¢ With probability1 — o(1) we have that

R X
(4.31) QN S@) ~ 80—

logy z.
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e Call an elementi in the essential range &t goodif, for all but at mostm elements; €
QnS(a), one has

(4.32) S P(q € ep(@)ld = @) = C + O ((;

peEP
Thena is good with probabilityl — o(1).

We now show why Theorefd 4 implies Theorem 2. By (4.30), we nfmpse) < ¢ < 1/2 small enough
so that[(4.1B) holds. Take
{}ogng
m = .
log 5

Now leta andn be the random vectors guaranteed by Thedrem 4. Supposeétaevin the probability
1 —o(1) event thatl takes a valu@ which is good and such that (4131) holds. Fix saineithin this event.
We may apply Corollary]4 wittP’ = P and Q' = Q N S(a) for the random variablen,, conditioned to
a = a. A few hypotheses of the Corollary must be verified. Fifst1®} follows from [4.32). The small
codegree conditiori (4.20) is also quickly checked. Indéaddistinctq;,q2 € Q’, if ¢1,¢2 € e,(a) then
plg1 — g2 Butgqy — g2 is a nonzero integer of size at maskg x, and is thus divisible by at most one prime
po € P’. Hence

Z P(Ql?QQ € ep(c_i)) = ]P)(qla Q2 € epO(C_i)) < $_1/2_1/10,

peP’!
the sum on the left side being zeropif doesn't exist. By Corollar/l4, there exist random variatdgsi),
whose essential range is contained in the essential ranggftogether with), and satisfying
X

{ee QN S(a):qéey(a)forallpe P} ~ 5 "#(QNS(d) < Tog s

with probability 1 — o(1), where we have useld (4131). Singgd) = {nj, + h;p: 1 <i <7} N QAN S(a)
for some random integet, it follows that

X

- . /
{g€e @NS(@):q#mn, (mod p)forallp e P} < Tog

with probability 1 — o(1). Taking a specifiai’ = 7i’ for which this relation holds and settihg = n;, for all
p concludes the proof of the clairin_(8.6) and establishes EHmid.
It remains to establish Theordmh 4. This will be achieved terlaections.

5. PROOF OF COVERING THEOREM

We now prove Theoreim 3. L&l be a sufficiently large absolute constant.

We induct onm. The casen = 0 is vacuous, so suppose that > 1 and that the claim has already
been proven forn — 1. Let D, r, A, k, 4, 1;,e;,V be as in the theorem. By the induction hypothesis, we can
already find random variables for i € U;.”:‘ll I; obeying the conclusions (a), (b) of the theoremvfor- 1.

In particular, we may form the partially sifted set

m—1
w:=n J e

j=1iel;
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and we have
(5.1) P(e € W) = (1 + O< (61" ) Ppo_i(e)

whenever C V has cardinalitye < A — 2r(m — 1).

Our task is then to construct random variabéé¢dor i € I,,, possibly coupled with existing random
variables such asV, whose essential range is contained in that;abgether with the empty set, and such
that

(5.2) P <e cw\ (J e;> = (1 + 045”““"“)) Po(e)

i€lm
for all finite subsets of V' with #e < A — 2rm. Note that we may assume that> 2rm, as the claim
(4.10) is trivial otherwise. In particular we have

(5.3) A—-2r(m—1) > 2r.
From [4.9),[(4.111) we note that
(5.4) Pj(é) > k7#°
wheneverj = 1,...,mand alle C V. In particular, by[(5.4) and (4.2), wheneglis in the essential range
of e;, we have
(5.5) Pj(&) > K"
For future reference, we observe that fram|(5.3) (4.8)hawe
(5.6) re T < AkTT < A% < A2DrmA < s-1/1om?,

For each € I,,,, and evenyii/ in the essential range &V, define the normalization factor

(5.7) X,(W) = E <17CW> _ oy Hlei=é)

Pr_1(e) it Pr_1(é;)

We will see shortly, and this is crucial to our argument, thagtW) concentrates to 1. With this in mind,
we letF; = F;(W) be the event that

(5.8) X (W) — 1] < g5107,

Very small values ofX; (W), in particular setd¥ with X;(1W) = 0, are problematic for us and must be
avoided. Fortunately, this occurs with very small prolighil

We now define the random variablesfor i € I,,,. If F;(W) fails, we sete] = (). Otherwise, ifF;(W)
holds, then after conditioning on a fixed vallié of W, we choose:, from the essential range ef using
the conditional probability distribution

1éiCW ]P’(e,- = éi)

Xi(W) Pp-1(&)

for all ¢; in the essential range @f, and also require that the are conditionally jointly independent for
i € I,, on each evertV = W. Note from [5.7) tha{{5]9) defines a probability distributi and so the/, are

well defined as random variables. Informakyis e; conditioned to the everi; C W, and then reweighted
by P,,—1(e;) to compensate for the bias caused by this conditioning.
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Lemma 5.1. We have )
P(F,(W)) = 1 — O(§50™).

Proof. By Chebyshev’s inequality (Lemnia 2.1), it suffices to shoat th

(5.10) EX;(W) =1+ O(5om)
and
(5.11) E(X;(W)2) =1+ O(51m).

We begin with[[5.1D). Leg; be in the essential range ef. From [4.2) and(5]3) we have
#e;, <r<A—-2r(m—1)
and thus by[(5]7) and (8.1), we have

el—eZ
ZIPW W) Z )

e;CW -1 62
i CW 1
_Z]}D L) =14 Oc(610m).
m 1(62)

Now we show[(5.1]1). Let; andé; be in the essential range ef. From [4.2),[(5.B) we have
#e; U é; QA—Q’I"(m—l)
and from [(4.111) we have

and thus by[(5]7) and (3.1) we have

- . ]P)(éi Ué; C W)
= ]P e, = ¢€; ]P e, = ¢; = N
Z ( JB( )Pm—l(ei)Pm—l(ei)

€i,€4

= (1 + Og((gw#m)) Z P(e; = éi)]P)(eiA: éi).

P (éi N ei)

The denominatof,,—1(¢; N é;) is 1if &; N é; = 0, and is at least” otherwise, thanks td (5.5). Thus, by
(4.2), [4.3) and a union bound,

Z P(e;):_éli()g(ﬁiéi:) éi) =1+0 (/{7‘ ;P(ei =¢;) Z P(v € ei)) =14 0(rés™"),

1,6 VEE;
and the claim[({5.111) follows frond (3.6). O
It remains to verify[(5.R). Let be a fixed subset df with
(5.12) #e < A—2rm.

For anylV in the essential range &V, let Y (W) denote the quantity

Y(W):=P <eC W\ e;|W:W> .

i€Ln
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From [4.7),[(4.11)[(2]1), our task is now to show that

o oo sam(-E 1)

ClearlyY (W) is only non-zero whea ¢ W. From [5.1) we have
(5.13) Ple C W) = (1+0<(6"1")) Prus(e),

so it will suffice to show that

E(Y(W)le C W) = (1 + owW)) exp <_ Z dr,, (v) )
From [4.8),[(5.1R) and_(4.1), we have

exp | =37 22} 5 (- ap) 5 107,
vEe Pm_l(v)

so it suffices to show that

dr,, (v)
Pm_l(v)

(5.14)  E(Y(W)le C W) = (1 + 0(5W10m)> exp ( -3

) + 055,

Suppose thalV is in the essential range &V with e C W. As theel, i € I,,,, are jointly conditionally
independent on the eveW = W, we may factory” (W) as

YW) = [[ @ -Plene] W =W)).
i€l
Sincee) = () if F;(W) fails, we may write
YW) = [ (0~ LranPlene # 0[W = W)
i€lm
Now suppose thate I,,, and thatiV is such that¥; (1) holds. From the union bound we have
Plene; # )W =W) <) Pvee|W=TW).

vee

From [5.9),[(5.B), and_(5.5), we have
P(v € e}][W =W) = Z Pe; =& |W=W) < "P(v € &),

€;:VEE;
and hence by (413), (5.112)
Plene, # O[W = W) < Ac™"6/(#1,)"/%.
From Taylor’'s expansion, we then have

1—1pmPlene; #0W = W) = exp (1w PleNe; # O[W = W) + O((AK™"6)%/#1)) -
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From [5.6), we havg¢Ax—"§)? = O(&gxllom ), and so

Y (W) = (1 + 055157 )) exp <_1FZ_(W) Y Plene] #0|W = W)) .

i€lm
Next, we apply inclusion-exclusion to write

vee

]P’(eﬂe;;é@WW)Z]P’(UEe;WW)O( > P(v,wee;WW)) :

v,weevFw

The error term is handled by summiig (5.9) overallith v, w € ¢;, and using[(5J8) and (8.5). For distinct
v,w € e, we have

P(v,w € e}|[W = W) = Z Ple,=&W=W)< k" Z Ple;=¢) < k"Plv,w € €;).

€;:0,WEE; €; U, WEE;
Hence by[(4.4)[(5.12)
Z Z P(v,w € ei|[W = W) « k" A? max P(v,w € e;) < A%™"4.
i€lm viée v{,iwe i€lm
VFW

From [5.6), we havel?s " = 0(69Xllom ), and so

Y (W) = (1 4 057177 ) exp (—1FZ_(W) Y ) PueeW= W)) :

vee i€l
Also we trivially have0 < Y/(W) < 1. Thus, to provel(5.14), it suffices to show that
d 1
Z Z 1FZ-(W)]P)(’U = eé]W) = Imi(v) + O(égxllom)
vEe i€l vee Pp—1(v)

with probability 1 — 0(58x1107” ), conditionally on the event thatc W. From [5.12),[(5.6), and the union
bound, it thus suffices to show that for eack e, one has
dr,, (v)

5.15 1r ]P’vee;-W:i_FO(Sﬁ
( ) ZEEI;L F;(W) ( ‘ ) Pm—l(v) ( )

with probability 1 — 0(67X110m ), conditionally on the event thatC W.

We have
1g,ow) P(e; = &)
5.16 1r ]P’vee;-W = - 1z —_—
(5.16) Foow) P( W) W) ég;él WG
and, by[(5.8),
L w) 1
(517) XZ(W) =1+ O((l — 1Fz(W)) + §3x10 )

Upon inserting[(5.16) and (5.117) into (5115), the left sidg18) breaks into two pieces, a “main term”
and an “error term”.
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Let us first estimate the error

ZO(l—lF —|—53><10m> Z le,cw :(ééz)

i€1m €;:VEE;

By (5.5) and[(4.5), we may bound this by
O(k™") Z (1- L, w) + 53x110m )P(v € e;) =0(k™")dy, (v)(1 — lp,w) + 53x110m ).
i€l
By Lemmd5.1, the unconditional expectation of this randamable is
0 (,{-rd—?,x;om d, (v)) :
Thus, by [(5.1B), the conditional expectation of this rand@mable to the event C W is
o1 dp (V) A1
& KgTTEBx0m L e T A Ex10T

Pm_l(e)
By (5.6), this can be bounded by

O(571om),
Thus, by Markov's inequality, this error ©(5710™ ) with probability 1 — O(6710™ ), conditionally on
e C W. By the triangle inequality, it thus suffices to show that in@in term satisfies

P(e; = é¢; dr,, (v 1
> 2. lacwp— 1(60) =Pni_f(2)+0(5sxw )

i€y, €;:VEE;

with probability 1 — O(émlom ), conditionally one C W.
Applying Lemmd 2.1l (and_(418), (4.1)), it suffices to showttha

] e = &) . _dp,(v) -
(5.18) (Z > 162Cw & cw) _7Pm_1(v)+0(5 )

i€Lm €;:vEE;

and

(5.19) E( YD laew h (;'))1éicwlp;gei’7:(éi)

RS el VEE;
€;:vEE;

eC W) = <%>2 + O(5m0m),

We begin with[(5.1B). For any givenc I,,,, we have from[(5J1)[(5]3) that

Pecw) —(LTOOTT))=E T
By (4.11), we can rewrite
Pm_1(€ U éi) 1

Pr-1(€)Pn-1(e) ~ Pp-1(v)Pm—1(€& Ne\{v})’
By (2.1), we may thus write the left-hand side [of (5.18) as

el—eZ Pleué; CW) 14—051/10m P(e; = ¢é;)
> X 5 PecW) 'S Y p ey

6
i€lm, €;:vE€E; m 1 v i€lm, €;:vEE;
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As in the proof of Lemm@a5l1, the denominor is 1 unlésande\{v} have a common element, in which
case the denominator is " by (5.8). Thus

1
P_1(éine\{v})

—140(k Y lues).
wee\{v}
From [4.5) one has

Z Z P(v € ;) =dj,, (v),

iEIm éiZUEéi
and from [4.4) one has
Z Plv,w € e;) <§

1€lm,
for all w # v. Therefore, byl[(5.12), the left side of (5118) is
14+ O(5'/10™)
Pm_l(v)
The claim now follows from[(5)6) an@ (4.8).
Now we prove[(5.19). For any i’ € I,,,, we have from[(5]1)[{5]3) that

]P)(éiUéiUE C W) Pm_l(éiUéiUe)
P(e C W) P—1(e)
so we are reduced (after applyirig (4.8), [5.6)) to showimag th

o~ e = & Pm_l(v)sz_l(é,-Ué,-Ue) . v 2 ﬁ
Z Z ]P)(ez = EZ)P( i = z) Pm_1(€i)Pm_1(éi)Pm_1(e) = d[m( ) + 0(5 )

(dr,, (v) + O(AK™)) .

= (1+0(3"1"))

i,ilelm €i:VEE;
€;:v€Ee;

The quantity- :’:é?’));]: ’j;(lé(?;i}fjﬁe(l) is equal tol whené;, ¢;, e only intersect ab, and isO(x~2") other-

wise thanks to[(5]5). Hence we may estimate this ratio by

1+0 (Kz2r Z (1w€éi + 1w€él)) +0 (szr Z 1w6éz) .

wee\{v} weé;\{v}

From [4.5) one has
Z P(v € e))P(v € ey) = d,, (v)?,

01! €Im
so from [5.6) it suffices to show that
(5.20) Z Z P(v€e,veEernwcee;) < DA,
1,4 €lm wee\{v}
(5.21) Z Z P(vee;,veernweey) < DAS,
i,i'€lm wee\{v}
(5.22) > E [luce wee, (#(eiNey) —1)] < Dré.

ii'€lm
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For (5.20), we usé (4.5) to write the left-hand side as

dr,, (v) Z Z P(v,w € €;),

wee\{v} i€lm

which by [4.8), [(5.1R),[(4]4) is bounded kiyAJs, as desired. Similarly fol (5.21). Fdr (5]122), we take
expectations ir; first using [2.1),[(4.4) to upper bound the left-hand sidébgfZ) by

Z E 11)692‘ Z 5 )
i€lm wee; \{v}

which by [4.2),[(4.5),[(4)8) is bounded yrd, as desired. This proves (5119), which implies (5.15) and in
turn (5.14). The proof of Theorem 3 is now complete.

6. USING A SIEVE WEIGHT

If r is a natural number, amdmissibler-tupleis a tuple(hq, ..., h,) of distinct integers, . .., h, that
do not cover all residue classes modgldor any primep. For instance, the tupl@ )41, - - -, Pr(r)+r)
consisting of the first primes larger tham is an admissible-tuple.

We will establish Theorem] 4 by a probabilistic argument mvy a certain weight function, the details
of which may be found in the following.

Theorem 5 (Existence of good sieve weighthet x be a sufficiently large real number and lgtbe any
quantity obeyind3.7). LetP, Q be defined by3.4), (3.5). Letr be a positive integer with

(6.1) rog <1< logl/5 z

for some sufficiently large absolute constagtand let(hq, ..., h,) be an admissible-tuple contained in
[2r2]. Then one can find a positive quantity

(6.2) >0

and a positive quantity, = u(r) depending only on with

(6.3) u = logr

and a non-negative function : P x Z — R supported orP x (ZN[—y, y|) with the following properties:
e Uniformly for everyp € P, one has

1 Yy
(6.4) w(p,n :<1+O< >>T —.
1% (p,m) logéox log" x
e Uniformly for everyg € Q andi = 1,...,r, one has
1 u T
6.5 —hip)=11 - Z )
(6.5) I;Dw(@q P) < +O<log%0$>>7—7“210grw

e Uniformly for everyh = O(y/z) that is not equal to any of th;, one has

1 T Y
6.6 — hp) = .
©9 S S wina =0 (o o)

qeQ peP
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e Uniformly for allp € P andn € Z,
(6.7) w(p,n) = O(m1/3+°(1)).

Remark2. One should think ofv(p,n) as being a smoothed out indicator function for the eventithat
hip,...,n+ h,.p are all almost primes ify]. As essentially discovered in [30], by choosing the smaxhi
correctly, one can ensure that approximatelyr of the elements of this tuple + hip,...,n + h,.p are
genuinely prime rather than almost prime, when weightedulgy, n); this explains the presence of the
bounds [(6.B). The estimate _(5.6) is not, strictly speakimggded for our current argument; however, it
is easily obtained by our methods, and will be of use in a ¥alip work [15] to this paper in which the
analogue of Theoref 1 for chains of large gaps is established

The proof of this theorem will rely on the estimates for nditiensional prime-detecting sieves estab-
lished by the fourth author in [31], and will be the focus obsequent sections. In this section, we show
how Theoreni b implies Theorem 4.

Letz,c,y,2,S,P,Q be as in Theoreml 4. We seto be the maximum value permitted by Theorgm 5,
namely

(6.8) = |log!? ]

and let(hy, . .., h;,) be the admissible-tuple consisting of the first primes larger tham, thush; = p(y4;

fori = 1,...,7. From the prime number theorem we have= O(rlogr) for : = 1,...,r, and so

we haveh; € [2r?] fori = 1,...,r if = is large enough (there are many other choices possible, e.g.

(h1,...,hy) = (12,32,...,(2r — 1)?)). We now invoke Theoreii 5 to obtain quantities: and a weight
w : P x Z — RT with the stated properties.
For eachp € P, letn,, denote the random integer with probability density

w(p,n)
Zn’GZ ’LU(p, n,)

for all n € Z (we will not need to impose any independence conditions emf). From [6.4), [(6.5) we
have

P(n, =n) :=

1
(6.9) Zp(q:ﬁp-l-hz’p):(l‘i'O(lfo))E; (e @ 1<i<r).
peP 082"/ / T Y
Also, from (6.4),[(6.7),[(6)2) one has
(6.10) P(n, = n) < ¢~ Y/271/6+o)

forallp € P andn € Z.
We choose the random vectr= (a;, mod s)scs by selecting each; mod s uniformly at random from
Z/sZ, independently ins and independently of th&,. The resulting sifted sef(a) is a random periodic

subset ofZ with density
1
o= <1 - g> |

seS
From the prime number theorem (with sufficiently strong eteom), [3.2) and (3]3),

20
0_:<1+O< 10 >>log(log x):<1+0< 110 >> 80log, x ’
logy” x log z log’ x ) ) log xlogs x/logy x
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so in particular we see frorh (3.1) that

1
(6.11) oy = <1 + 0 <710>> 80cx log, x.
logy”
We also see froni_(6.8) that
(6.12) o = z°W).

We have a useful correlation bound:

Lemma 6.1. Let¢t < logx be a natural number, and lety,...,n; be distinct integers of magnitude

O(z°M). Then one has
1
]P)(nl, o, Nt € S(ﬁ)) = <1 + O <T>> O't.
log™ x

Proof. For eachs € S, the integersuy, ..., n; occupyt distinct residue classes modulpunlesss divides
one ofn; —njfor1 < i < j < t. Sinces > log?®z and then; — n; are of sizeO(z°(), the latter
possibility occurs at mogD(¢?log z) = O(log® z) times. Thus the probability that, mod s avoids all of
theni, ..., n; is equal tol — £ except forO(log® z) values ofs, where it is insteadl + O(log%x))(l - 1.

Thus,
1 O(log® z) "
]P’(nl,...,ntGS(a)):<1+O<®>> 51;[9<1_<;>>

= (1+0 () ) I (140 ()

seS

1
=140 t O
< " <log16:1:>>(I

Among other things, this gives the claim (4.31):

Corollary 5. With probability1l — o(1), we have

(6.13) #(QNS@) ~o ~ 80c

log x log

log, .
Proof. From Lemma& 6.1, we have

E4(0N S(&)) = (1 +0 (bg%%)) o#Q

and

E#(@n5@)° = (1+0 (s ) ) 4+ P - 1)

and so by the prime number theorem we see that the randorbleati@n.S (a) has mearil+o(

Y
log, m))alogm
and varianceD <1T( 10?295)2)- The claim then follows from Chebyshev's inequality (wittemqty of

room to spare). O
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For eactp € P, we consider the quantity
(6.14) X,(a@) =P, + hipe S@ forali=1,...,r),
and letP(@) denote the set of all the primgs= P such that

(6.15) X, (@) = (1 s (%)) o
log” x

In light of Lemmal6.1, we expect most primes/hto lie in P(a), and this will be confirmed below
(Lemma[6.8). We now define the random variahigsas follows. Suppose we are in the evant a for
somed in the range ofi. If p € P\P(@), we setn, = 0. Otherwise, ifp € P(d), we definen, to be the
random integer with conditional probability distribution

L Zy(a;n R B
(6.16) P(np =nla=a) = ;)(( (6))7 Zp(a§n) = 1n+hjpeS(d) forj:l,...,r]P)(np =n),
p

with then,, (p € P(a)) jointly independent, conditionally on the eveht= . From [6.14) we see that these
random variables are well defined.

Lemma 6.2. With probabilityl —o(1), we have
o 1 U T
=1 peP(a

for all but at most.

W of the primes; € Q N S(a).

Letd be good and € Q N S(@). Substituting definition (6.16) into the left hand side of{6fl7), using
(6.15), and observing that= n, + h;p is only possible ifp € P(&), we find that

Y Y Zaa-h) =Y Y K@, = g~ hpli=

1=1 peP(a) =1 peP(d)

<1+O<log w))z Z P(n, = ¢ — hipld = d@)

1=1 peP(a

wheree, (@) = {n, + h;p: 1 <i <r}NQANS(a)is as defined in Theorel 4. Relatin (4.32) (thagits
good with probabilityl — o(1)) follows upon noting that by (618), (6.3) arid (6111),

u x 1

= — — ~ —

o2y c
Before proving LemmB 612, we first confirm thag P (&) is small with high probability.

Lemma 6.3. With probabilityl — O(1/log? ), P(a) contains all butO( o
In particular, E#P(a) = #P(1 + O(1/ log® ).

) of the primegp € P.

3 ¢ logx
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Proof. By linearity of expectation and Markov’s inequality, it faés to show that for eaghe P, we have
p € P(&) with probability 1 — O(log%w). By Lemmd2.1, it suffices to show that

(6.18) EX, (@) =P@n,+hjpe S@) forali=1,...,r)= (1 + 0 <71 12 >> o
og - w
and

(6.19) EX,(8)? =P(@m{") + hip, 2P + hip € S(& )fora||¢:1,...,r):<1+0<1%>>02’“,
og - x

whereﬁﬁ,l), ﬁéz) are independent copies 0f, that are also independent &f
The claim [6.18) follows from Lemmia 8.1 (performing the citiothal expectation oven, first). A
similar application of Lemmia_ 6.1 allows one to write theJefind side of[(6.19) as

(1 +0 < 16 >> Ry +hipi=1,...rl=1,2}
log™ x

From (6.10) we see that the quantﬁ;{ﬁp +hip:i=1,...,r;1 = 1,2} is equal to2r with probability
1 — O(z~1/2-1/6+0(1)) "and is less thar otherwise. The claim now follows frorh (6112). O

Proof of Lemm&6]2We first show that replacin@(a) with P has negligible effect on the sum, with prob-
ability 1 — o(1). Fix ¢ and susbtitutes = ¢ — h;p. By Markov’s inequality, it suffices to show that

ux 1 1 x
(6.20) EY» o7 Zp(a;n) <—— - ) .
Z pg;;(a) o2y r logg’ z log xlogy x

By Lemmd6.1, we have

EZO‘_TZZ a,n —U_Tzzpnp—n (n+hjpesS@forj=1....r)

peEP peEP n

1
~(1+0 (o)) #7

Next, by [6.15) and Lemnia 8.3 we have

EZJ_T Z p(a;n —U_TZIP’Q’ a) X,(@)

peP(a) pEP(@)

~(1+0(pr;) ) Brr@= (140 () ) #7

subtracting, we conclude that the left-hand sidéof (6.20)(i#P/ log® ) = O(x/log* x). The claim then
follows from (3.1) and[(6)1).
By (6.20), it suffices to show that with probability— o(1), for all but at mostm primesq €

Qn S(d), one has

1 1 T
(6.21) Z > Zy(d;q— <1 + O¢ <@>> o' tu—.

i=1 peP 2y
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Call a primeg € Q badif ¢ € QN S(&) but (6.21) fails. Using Lemma 8.1 arld (5.9), we have

{ > ZZZ —h,-p)}:Z]P’(q+(hj—hi)peS(ﬁ)forallj:1,...,7“)]P’(f1p:q—hip)

qeoNnsS(a) i=1 peP q,t,p

1 oy IR
—(1 r =
< +O<log%°x>> logz © "2y
and

r 2
E[ Z (ZZZA&T;q—hm)) ] = Z P(q+ (hj — hi,)pe € S(A) forj =1,...,r;£=1,2)

geonsS(a) " i=1peP P1,P2,9
11,12

x P(a() = ¢ — b, p1)P(02) = g — hi,p2)

1 oy 1z 2
=(1+0 Tu— |,
< <log%°w>> log <U ! 2y>

where(ﬁéll))plep and(ﬁg))mep are independent copies @, ),cp overa. In the last step we used the
fact that the terms witlp; = po contribute negligibly.
By Chebyshev’s inequality (Lemnia 2.1) it follows that thewher of bad; is < L« <

log z log T logx log% T

with probability 1 — O(1/log, x). This concludes the proof. O

It remains to establish Theordmh 5. This is the objective efrémaining sections of the paper.

7. MULTIDIMENSIONAL SIEVE ESTIMATES

We now recall a technical multidimensional sieve estimaedaf[31] (a minor variant of [31, Proposition
6.1]). In this section we will follow the notation from [BIWhich is a little different from that in the rest of
this paper, with the exception that we will take the set ded@t in that paper to be equal to the set of
all primes from the outset.

A linear formwill be a functionL : Z — Z of the formL(n) = lyn + Iy with integer coefficients;, [
andl; # 0. Let A be a set of integers. Given a linear foil(in) = l1n + l2, we define the sets

A(z) ={ne A:xz <n <2},
A(z;q,a) :={n € A(z) :n=a (mod ¢)},
PrAx) = L(A(@) N2,
Pra(r;q,a) == L(A(x;q,a)) N Z,
for anyx > 0 and congruence clagsmod ¢, and define the quantity

er(q) = ¢(|lilg)/e(L]),
wherey is the Euler totient function. We recall the standard bounds

(7.1) X 2 p(X)>

logy X

since(X)/X is smallest whenX is composed only of primes log X. Thanks to this bound, most
factors of the formm appearing below become relatively harmless, and we recaomthat they may be
ignored for a first reading.
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Afinite setL = {Ly,..., Li} of linear forms is said to badmissiblef Hle L;(n) has no fixed prime
divisor; that is, for every prime there exists an integer, such thall_[f:1 L;(nyp) is not divisible byp.
Definition 2. [31] Letx be a large quantity, letd be a set of integersf = {L4,..., L} a finite set of
linear forms, andB a natural number. We allowd, £, k, B to vary withxz. Let0 < # < 1 be a quantity

independent of. Let £’ be a subset of. We say that the tupleA, £, &, B, x,6) obeys Hypothesis 1 at
L' if we have the following three estimates:

(1) (A(x) is well-distributed in arithmetic progressions) We have

5 maxfedtrsa, o) - FAE) o A

100k2 .°
q<a? r

log

2) (21 4(x) is well-distributed in arithmetic progressions) For ahyc £/, we have
( A prog y

#Pr.4(x) #Pr.A(x)
01(q) 100K2 -

#Pp A(15q,0) —

Z max
a:(L(a),q)=1

q<z?; (¢,B)=1 log

(3) (A(z) not too concentrated) For any < 2 anda € Z we have

#A(z;9,0) < %@)-

In [31] this definition was only given in the cag® = £, but we will need the (mild) generalization to
the case in whiclt’ is a (possibly empty) subset &f

As is common in analytic number theory, we will have to additee possibility of an exceptional Siegel
zero. As we want to keep all our estimates effective, we vaitlnely on Siegel’'s theorem or its consequences
(such as the Bombieri-Vinogradov theorem). Instead, werely on the Landau-Page theorem, which we
now recall. Throughouty denotes a Dirichlet character.

Lemma 7.1(Landau-Page theorembet@ > 100. Suppose thak(s, x) = 0 for some primitive character
x of modulus at mogf), and some = o + it. Then either

1
l—o>» ——rr,
log(Q(1 + [t]))
or elset = 0 and x is a quadratic charactetyg, which is unique. Furthermore, ity exists, then its
conductorgg is square-free apart from a factor of at mastand obeys the lower bound

log® Q

qQ > —5—-

log3 @
Proof. See e.g.[[9, Chapter 14]. The final estimate follows from thendl1 — 3 >> ¢~ /2 log =2 ¢ for a real
zerof of L(s, x) with x of modulusg, which can also be found i[9, Chapter 14]. O

We can then eliminate the exceptional character by deletimgost one prime factor af,.
Corollary 6. Let@ > 100. Then there exists a quantifyy which is either equal td or is a prime of size
Bg > log, Q
with the property that

1
Lo a1
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whenevetl(c + it, x) = 0 and x is a character of modulus at mo§tand coprime taB,.

Proof. If the exceptional characteyry from Lemma_ 7.1l does not exist, then takg := 1; otherwise we
take Bg to be the largest prime factor of,. As qq is square-free apart from a factor of at méstve have
log qo < Bg by the prime number theorem, and the claim follows. d

We will only need the above definition in the following spédase:

Lemma 7.2. Let x be a large quantity. Then there exists a natural numBek x, which is eitherl or

a prime, such that the following holds. Ldt:= Z, letd := 1/3, and letL = {L4,..., Ly} be a finite
set of linear formsL;(n) = a;n + b; (which may depend on) with k < log'/° z, 1 < |a;| < logz, and

|bi| < xlog? z. Letz < y < xlog? x, and letL’ be a subset of such thatL; is non-negative ofy, 2y] and

a; is coprime toB for all L; € £'. Then(A, L, &, B, y, 6) obeys Hypothesis 1 &' with absolute implied
constants (i.e. the bounds in Hypothesis 1 are uniform olauah choices ofZ andy).

Proof. Parts (1) and (3) of Hypothesis 1 are easy; the only difficetification is (2). We apply Corollaiyl 6
with @ := exp(c1+/log =) for some small absolute constantto obtain a quantity3 := B with the stated
properties. By the Landau-Page theorem (sée [9, Chaptgr@8lhave that it is sufficiently small then
we have the effective bound

(7.2) o)D" (2, x)| < wexp(—3cy/logx)
X

forall 1 < ¢ < exp(2cy/logx) with (¢, B) = 1 and allz < xlog* 2. Here the summation is over all prim-
itive x mod ¢ andy(z,x) = >, . x(n)A(n). Following a standard proof of the Bombieri-Vinogradov
Theorem (see [9, Chapter 28], for example), we have (fortalslei constant > 0)

(7.3)

sup ‘W(z;q,a) — % < zexp(—cy/logz) + log x Z Z* “up W((;(U;()\.
g<zt/2—e (<a,({):41 q g<exp(zoylogz) X *<cloglz q
(¢,B)=1 *ST8 T (¢,B)=1

Combining these two statements and using the triangle aligggives the bound required for (2). O

We now recall the construction of sieve weights from|[31,t®ec7]. On first reading we recommend
the reader not pay too much attention to the details; the kéyt 5 the existence of a weight(n) which
will establish Theoreri]5. The reason it is necessary to kidmwcbnstruction is the technical issue that
the weightsw(n) depend on a given admissible set of linear forms, and we nedjat the final estimates
obtained are essentially uniform over similar admissikels.s

Let W := Hp<2k2;MB p. For each prime not dividing B, letr,1(£) < -+ < 7p,,.(») (L) be the

elementsn of [p] for which p| Hle L;(n). If pis also coprime tdV, then for eachl < a < we(p), let
Jp.a = Jpa(L) denote the least element(éf such thap|L;, , (rp.q(L)).
Let Dy (L) denote the set

Dp(L) :={(d1,...,dp) € N*: p2(dy...d) =1;(dy ... dy,, WB) = 1;
(dj,p) = 1 whenevep { BW andj # jp1, ... >jp7wc(p)}'

o (-2 (-)"

piB

Define the singular series
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and

o JL 8 ()

pWB
the function

o (d) =[] (p — wep)),
pld
and letR be a quantity of size
Let F : % — 2% be a smooth function supported on the simplex
Rk:{(tl,...,tk) GRI_T_:tl—I-'“—I—tk < 1}.
Forany(ri,...,) € Di(L) define
o p,(c)(r1, ... ,re)WHB* log 1 log 7,
y(Tl,...,T’k)(ﬁ) T QO(WB)k 6V[/B(ﬁ)‘F’ IOgR’...’ logR .

Forany(di,...,d;) € Di(L), define

y(rl,...,rk)(ﬁ)
Nty (L) = p(d o di)dyody Y D
d;|r; fori=1,....k Lo, (7‘1 - Tk)

and then define the function = wy, c g g : Z — R by

2
(7.4) w(n) = ( Z )‘(dl,...,dk)(c)) .

dl,...,dk:di|Li(n) forall 4

We note that the restriction of the supportioto R, means thah 4, . 4,)(£) andy,, ., are supported
on the set

k
Sp(L) = Dp(L) N {(dr,...,dy) : [[di < R}.
=1

We then have the following result, a slightly modified formRybposition 6.1 from [31]:

Theorem 6. Fix 8, « > 0. Then there exists a constafitdepending only o, o such that the following
holds. Suppose thdt4, £, #, B, z,0) obeys Hypothesis 1 at some sub8ébf L. Write k := #L, and
suppose that > C, B < z%, andC < k < log1/5 x. Moreover, assume that the coefficieajsb; of the
linear formsL;(n) = a;n + b; in L obey the size bound;|, |b;] < «* forall « = 1,...,k. Then there
exists a smooth functiof : R — R depending only ok and supported on the simpl&;, and quantities
Iy, Ji, depending only o with

I, > (2klog k)~F
and

_ logk

(7.5) Jp = p Iy

such that, forw(n) given in terms of” as above, the following assertions hold uniformly 6f'° < R <
2?73,
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e We have
(7.6) S w(n) = <1+o< ! )) B £)#A()(log BT
| néA() log'/"0z/ ) ¢(B)" s
e For any linear formL(n) = arn + by, in £ with az, coprime toB and L(n) > R on [z, 2z], we
have
1 ¢(lar]) B! ket
1op(L =|1+0 S(L)#2» log R Jj
S 1oty = (1+0 (g ) ) St e S 21 e o R,

+0 <B—k6(ﬁ)#.,4(:n)(log R)F11 )
P(B)F ‘)
e LetL(n) = apn + by be alinear form such that the discriminant

k
AL = ‘CL()’ H ’aobj - CijQ’

j=1

is non-zero (in particularL is not in£). Then

Ar BF k—1
7.8 1A o) (L(n))w(n) < S(L)#A(x)(log R 1.
(7.8) ;) o/ o) (L0 (n) € s~ S A@) (log ) Ik
e We have the crude upper bound

(7.9) w(n) < x2/3+0)

forall n € Z.

Here all implied constants depend only &y and the implied constants in the bounds of Hypothesis 1.

Proof. The first estimate (716) is given by [31, Proposition 9.[A]Z{#ollows from [31, Proposition 9.2] in
the cas€ar, B) = 1, (Z.8) is given byl[31, Propositon 9.4] (takigg:= 6/10 and D := 1), and the final
statement(719) is given by part (i) of [31, Lemma 8.5]. THwunds for.J, andI; are given by([31, Lemma
8.6]. O

We remark that the estimafe_(I7.8) is only needed here tolestabe estimate (616) which is not, strictly
speaking, necessary for the results of this paper, but willdeful in a subsequent woik [15] based on this
paper.

8. VERIFICATION OF SIEVE ESTIMATES

We can now prove Theorelm 5. Lety, r, hy, ..., h, be as in that theorem.

We set
A =17,
0:=1/3,
k:=r,
R:= (z/4)%3,

and letB = 2°() be the quantity from Lemmia 7.2.
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We define the functiom : P x Z — R™ by setting

w(p,n) = 1[—y,y] (n)wk,ﬁp,B,R(n)
forp € P andn € Z, whereL,, is the (ordered) collection of linear forms— n + hypfori =1,... r,
and wy, ¢, ,r Was defined in[(7]4). Note that the admissibility of théuple (h1, ..., h,) implies the
admissibility of the linear forma +— n + h;p.
A key point is that many of the key componentswaf -, 5 r are essentially uniform ip. Indeed, for

any primes, the polynomial]_[le(n + h;p) is divisible bys only at the residue classegh;p mod s. From
this we see that

wr,(s) = #{h; (mod s)} whenevers # p.
In particular,w.,(s) is independent gb as long as is distinct fromp, so

(8.1) S(L,) = <1 +0 <E>> S,

X

Spw (Ly) = <1 +0 <§>> Saw,

for some®&, &gy independent op, with the error terms uniform ip. Moreover, ifs t W B thens > 2k2,
so all theh; are distinctmods (since theh; are less thagk?). Therefore, ifs { pIV B we havew,, (s) = k
and

{js,l(ﬁp)v s 7js,w(s) (ﬁp)} = {17 ) k}
Since allp € P are at least:/2 > R, we haves # p whenevers < R. From this we see thdy(L,) N
{(dy,...,dg): Hle d; < R} is independent ob, and so we have

S(L k
Ady,di) (Lp) = %)\(dl,...,dk) = (1 + O (;)) Ady,edyy)

for some\y, ... 4,) independent of, and where the error term is independentgf. . . , dy.
It is clear thatw is non-negative and supported Bnx [—y, y|, and from [[7.9) we havé (8.7). We set
k

(8.2) =2 S(log R)*(log 2)* I,
iy Slog ) log )

and
(8.3) _ #(B)log RkJg

B logx 21
SinceB is eitherl or prime, we have

p(B) _

B )

and from definition ofR we also have
1
(8.4) oslt
log x
From [7.5) we thus obtain (8.3). From |31, Lemma 8.1(i)] weeha
6 2 :L-_O(l)7

and from[31, Lemma 8.6] we have
I = x0(1)7
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and so we have the lower bouid {6.2). (In fact, we also havetehing upper bouna < z°(!), but we will
not need this.)

It remains to verify the estimates (6.4) abd {6.5). We begth {.4). Letp be an element oP. We shift
then variable by3y and rewrite

Y wlp,n) = Y wpr,—sypr0)+ 0 W)

nez neA(2y)
where£, — 3y denotes the set of linear forms— n + hyp — 3y fori = 1,... k. (Thexz!'~t°() error
arises from[(6.7) and roundoff effectsjifs not an integer.) This set of linear forms remains admissdnd

S(L,y —3y) = S(L,) = (1 +0 <§>> &.

The claim [6.4) now follows fronl(812) and the first conclusi@.8) of Theoreril6 (withr replaced by2y,
L' =0,andl = L, — 3y), using Lemm&a7I2 to obtain Hypothesis 1.

Now we prove [(6F). Fixy € Q andi € {1,...,k}. We introduce the seﬁ(m of linear forms
Lgits--- Lgix Where

and

Lgijn)==q+ (hj—h)n  (1<j<k,j#i)
We claim that this set of linear forms is admissible. Inddedany primes # ¢, the solutions of

nH(q + (hj — hi)n) =0 (mod s)
J#
aren = 0 andn = —q(hj — h;)™! (mod s) for h; # h; (mod s), the number of which is equal t{h;

(mod s)}. Thus,
S(Lyi) = (1 +0 <§>> G,

Gpw(Lyi) = (1 +0 <§>> Spw,

as before. Again, fos { W B we have that thé,; are distinct (mod s), and so ifs < R ands t WB we
havew; .(s) =k and

{js,l(‘éq,i)v s 7js,w(s) (Zq,z)} = {17 SR k}
In particular, Dy (£,:) N {(dy,...,ds) : TI*_, d: < R} is independent of, i and so

; k
Aldr,eudy) (Lqi) = (1 +0 <;>> Adydy)

where again thé)(%) error is independent afy, . .., d,. From this, since — h;p takes values if—y, y|,
we have that

k
Wi zy0B.RP) = <1 + 0 <E>> w2, B,R(q — hip)
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wheneverp € P (note that thel; summation variable implicit on both sides of this equati®mécessarily
equal tol). Thus, recalling thaP = &2 N (x/2, x|, we can write the left-hand side ¢f (6.5) as

k ~
<1 + O <E>> Z 1'@(Lq,ivi(n))wkv‘éfbi’B’R(n).
neA(z/2)

Applying the second conclusiof (7.7) of Theorgim 6 (witreplaced byz/2, £' = {L,;:}, andL = L)
and using Lemm@a 712 to obtain Hypothesis 1, this expressonrhes

1 Bk-1 k41
<1 +0 <10g%0 x>> S(B)F 1 6#:@£q7i’i”A(ﬂj/2)(log R g

k
+0 (%G#A(:ﬂﬂ)(log R)k‘11k> .

Clearly#.A(z/2) = O(z), and from the prime number theorem one has

1 T
#e@qu,i,i,A(x/m = <1 + O <log%0$>> 2logac'

for any fixedC' > 0. Using [8.2),[(8.8), we can thus write the left-hand sid€6o]

1 U z 1 T
140 —+— )7 +0 T .
( <log%0 3:>> k' 2logh (logR log” w>

From [6.1),[(6.B), the second error term may be absorbedhetéirst, and[(6)5) follows.
Finally, we prove[(6)6). Fix = O(y/z) not equal to any of thé;, and fixp € P. By the prime number
theorem, it suffices to show that

> w(p,q—hp) <
qeQ

Y
— T
log%O z loghx
By construction, the left-hand side is the same as
> lp(n+hp)wke,.sr(0)
r—hp<n<y—hp
which we can shift as
Y Lonono o (0 =y + 22)wk £, —yi20-hp,p,R() + O(a! D)
neA(y—=x)

where again the(z'~°t°()) error is a generous upper bound for roundoff errors. Thisrésracceptable
and may be discarded. Applying (¥.8), we may then bound the taem by

A BF A BF
<L —F= S(L, —y+ 2z — hp)y(log R)* 1T, = ——

k—1
©(A) p(B)k o(A) @(B)kG(ﬁp)y(log R)" I,

where

k
A= H |hp — h;p.

j=1
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Applying (8.1), [8.2), we may simplify the above upper bowasd
A Y
(&) (log R)(log 2)F
Now h — h; = O(y/z) = O(log z) for eachi, henceA < (O(zlog z))*, and it follows from [7.1),[(8}4)
and [6.1) that

<

A log R
—— K logy A < logy r € ———.
p(A) ? 27 T logl

This concludes the proof of Theorém 5, and hence Theblem 1.
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