
Software & Services Group

Loop Independence, Compiler 
Vectorization and Threading of Loops 

(SSE & AVX)

Michael Klemm
Software & Services Group

Developer Relations Division

1



Software & Services Group

Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR 
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. 
EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY 
WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL 
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, 
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY
APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR 
DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on 
the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for 
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes 
to them. The information here is subject to change without notice. Do not finalize a design with this information. 

The products described in this document may contain design defects or errors known as errata which may cause the 
product to deviate from published specifications. Current characterized errata are available on request. 

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product
order. 

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be 
obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

http://www.intel.com/design/literature.htm�


Software & Services Group

Optimization Notice

Optimization Notice

Intel® compilers, associated libraries and associated development tools may include or utilize options 
that optimize for instruction sets that are available in both Intel® and non-Intel microprocessors (for 
example SIMD instruction sets), but do not optimize equally for non-Intel microprocessors.  In 
addition, certain compiler options for Intel compilers, including some that are not specific to Intel 
micro-architecture, are reserved for Intel microprocessors.  For a detailed description of Intel 
compiler options, including the instruction sets and specific microprocessors they implicate, please 
refer to the “Intel® Compiler User and Reference Guides” under “Compiler Options."  Many library 
routines that are part of Intel® compiler products are more highly optimized for Intel microprocessors 
than for other microprocessors.  While the compilers and libraries in Intel® compiler products offer 
optimizations for both Intel and Intel-compatible microprocessors, depending on the options you 
select, your code and other factors, you likely will get extra performance on Intel microprocessors.

Intel® compilers, associated libraries and associated development tools may or may not optimize to 
the same degree for non-Intel microprocessors for optimizations that are not unique to Intel 
microprocessors.  These optimizations include Intel® Streaming SIMD Extensions 2 (Intel® SSE2), 
Intel® Streaming SIMD Extensions 3 (Intel® SSE3), and Supplemental Streaming SIMD Extensions 3 
(Intel® SSSE3) instruction sets and other optimizations.  Intel does not guarantee the availability, 
functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.  
Microprocessor-dependent optimizations in this product are intended for use with Intel 
microprocessors.

While Intel believes our compilers and libraries are excellent choices to assist in obtaining the best 
performance on Intel® and non-Intel microprocessors, Intel recommends that you evaluate other 
compilers and libraries to determine which best meet your requirements.  We hope to win your 
business by striving to offer the best performance of any compiler or library; please let us know if 
you find we do not.

Notice revision #20101101



Software & Services Group

Agenda

• Vector Instructions (SIMD)
• Compiler Switches for Optimization
• Controlling Auto-vectorization
• Controlling Auto-parallelization
• Manual Vectorization (SSE & AVX)
• Hands-on

4



Software & Services Group

Agenda

• Vector Instructions (SIMD)
• Compiler Switches for Optimization
• Controlling Auto-vectorization
• Controlling Auto-parallelization
• Manual Vectorization (SSE & AVX)
• Hands-on

5



Software & Services Group

What is SSE (and related instruction sets)

• SSE: Streaming SIMD extension
• SIMD: Single instruction, Multiple Data 

(Flynn’s Taxonomy)
• SSE allows the identical treatment of 2 double, 4 floats 

and 4 integers at the same time

a0a1a2a3

b0b1b2b3

Source vector a

Destination vector

a0 op b0a1 op b1a2 op b2a3 op b3

Source vector bop

=



Software & Services Group

SSE Data Types

2x double

4x float

16x byte

8x short

4x integer32

2x integer64

128 bit



Software & Services Group

AVX Data Types
128 bit 128 bit

Lane 1 Lane 0



Software & Services Group

Agenda

• Vector Instructions (SIMD)
• Compiler Switches for Optimization
• Controlling Auto-vectorization
• Controlling Auto-parallelization
• Manual Vectorization (SSE & AVX)
• Hands-on

9



Software & Services Group

Intel® Compiler Architecture

Interprocedural analysis and optimizations: inlining, 
constant prop, whole program detect, mod/ref, points-to

Loop optimizations: data deps, prefetch, vectorizer, 
unroll/interchange/fusion/dist, auto-parallel/OpenMP

Global scalar optimizations: partial redundancy elim, 
dead store elim, strength reduction, dead code elim

Code generation: vectorization, software pipelining, 
global scheduling, register allocation, code generation

Profiler

C++
Front End

FORTRAN
Front End

Disambiguation:t
ypes, array, 

pointer, 
structure, 
directives 

10



Software & Services Group

A few General Switches

Functionality Linux

Disable optimization -O0

Optimize for speed (no code size increase), no SWP -O1

Optimize for speed (default) -O2

High-level optimizer (e.g. loop unroll), -ftz (for Itanium) -O3

Vectorization for x86, -xSSE2 is default <many options>

Aggressive optimizations (e.g. -ipo, -O3, -no-prec-div, -static -xHost for x86 
Linux*)

-fast

Create symbols for debugging -g

Generate assembly files -S

Optimization report generation -opt-report

OpenMP support -openmp

Automatic parallelization for OpenMP* threading -parallel

11



Software & Services Group

Architecture Specific Switches

Functionality Linux

Optimize for current machine -xHOST

Generate SSE v1 code -xSSE1

Generate SSE v2 code (may also emit SSE v1 code) -xSSE2

Generate SSE v3 code (may also emit SSE v1 and v2 code) -xSSE3

Generate SSE v3 code for Atom-based processors -xSSE_ATOM

Generate SSSE v3 code (may also emit SSE v1, v2, and v3 code) -xSSSE3

Generate SSE4.1 code (may also emit (S)SSE v1, v2, and v3 code) -xSSE4.1

Generate SSE4.2 code (may also emit (S)SSE v1, v2, v3, and v4 code) -xSSE4.2

Generate AVX code -xAVX

12



Software & Services Group

Interprocedural Optimization
Extends optimizations across file boundaries

Compile & Optimize

Compile & Optimize

Compile & Optimize

Compile & Optimize

file1.c

file2.c

file3.c

file4.c

Without IPO

Compile & Optimize

file1.c

file4.c file2.c

file3.c

With IPO

-ip Only between modules of one source file

-ipo Modules of multiple files/whole application

13



Software & Services Group

IPO – A Multi-pass Optimization
A Two-Step Process

Linking
Mac*/Linux* icc -ipo main.o func1.o func2.o
Windows* icl /Qipo main.o func1.o func2.o

Pass 1

Pass 2

virtual  .o

executable

Compiling
Mac*/Linux* icc -c -ipo main.c func1.c func2.c
Windows* icl -c /Qipo main.c func1.c func2.c

14



Software & Services Group

What you should know about IPO

• O2 and O3 activate “almost” file-local IPO (-ip)
– Only a very few, time-consuming IP-optimizations are not done 

but for most codes, -ip is not adding anything
– Switch –ip-no-inlining disables in-lining 

• IPO extends compilation time and memory usage 
– See compiler manual when running into limitations

• Inlining of functions is the most important feature of 
IPO but there is much more
– Inter-procedural constant propagation
– MOD/REF analysis (for dependence analysis)
– Routine attribute propagation
– Dead code elimination
– Induction variable recognition 
– …many, many more 

15



Software & Services Group

Profile-Guided Optimizations (PGO)
• Use execution-time feedback to guide (final) 

optimization
• Helps I-cache, paging, branch-prediction
• Enabled optimizations:

– Basic block ordering
– Better register allocation
– Better decision on which functions to inline
– Function ordering
– Switch-statement optimization

16



Software & Services Group

Instrumented Compilation
icc -prof_gen prog.c

Instrumented Execution
prog.exe (on a typical dataset)

Feedback Compilation
icc -prof_use prog.c

DYN file containing
dynamic info: .dyn

Instrumented 
executable: 
prog.exe

Merged DYN
summary file: .dpi
Delete old dyn files 
unless you want their 
info included

Step 1

Step 2

Step 3

PGO Usage: Three Step Process

17



Software & Services Group

Simple PGO Example: Code Re-Order
for (i=0; i < NUM_BLOCKS; i++)
{

switch (check3(i)) 
{

case 3:                    /* 25% */
x[i] = 3;  break;

case 10:                   /* 75% */
x[i] = i+10;  break;

default:                   /* 0% */
x[i] = 99;  break

}
}

“Case 10” is moved to the beginning 
– PGO can eliminate most tests&jumps for the common case – less 

branch mispredicts

18



Software & Services Group

What you should know about PGO

• Instrumentation run can be up to twice as long
– In-lining disabled, trace calls overhead

• Sometimes trace-files cannot be found
– Looking at right directory ?
– Clean exit() call is necessary to dump info 

• Debugger can help / break in PGO trace start/end calls

• Benefit depends on control flow structure:

Significant Benefit Little Benefit

19



Software & Services Group

Memory Reference Disambiguation
Options/Directives related to Aliasing

• -alias_args[-]

• -ansi_alias[-] 

• -fno-alias: No aliasing in whole program

• -fno-fnalias: No aliasing within single units

• -restrict (C99): -restrict and restrict attribute
– enables selective pointer disambiguation

• -safe_cray_ptr: No aliasing introduced by Cray-pointers

• -assume dummy_alias

• Related: Switch –ipo and directive IFDEP

20



Software & Services Group

Optimization Report Options
• opt_report

– generate an optimization report to stderr ( or file )

• opt_report_file <file>
– specify the filename for the generated report

• opt_report_phase <phase_name>
– specify the phase that reports are generated against

• opt_report_routine <name>
– reports on routines containing the given name

• opt_report_help
– display the optimization phases available for reporting

• vec-report<level>
– Generate vectorization report ( IA32, EM64T )

21



Software & Services Group

What did the Compiler do ? 
ipo ilo hpo

ipo_inl ilo_lowering hpo_analysis

ipo_cp ilo_strength_reduction hpo_openmp

ipo_align ilo_reassociation hpo_vectorization

ipo_modref ilo_copy_propagation hpo_threadization

ipo_lpt ilo_convert_insertion

ipo_subst ilo_convert_removal ecg

ipo_vaddr ecg_code_cycles

ipo_psplit hlo ecg_code_size

ipo_gprel hlo_scalar_expansion ecg_predication

ipo_pmerge hlo_unroll ecg_profiling

ipo_fps hlo_distribution ecg_inl

ipo_ppi hlo_fusion ecg_copy_propagation

ipo_unref hlo_prefetch ecg_brh

ipo_wp hlo_loop_collapsing ecg_speculation
ecg_swp

hlo_reroll

pgo hlo_loadpair (ecg*, loadpair for IPF only)

List of most 
phases the user 
can ask to get 
detailed reports 
from 

Only a few phases 
are relevant for 
the typical 
compiler user but 
these are really 
helpful !
Make use of it –
much easier than 
assembler code 
inspection

22



Software & Services Group

Sample HLO Report
icc -O3 -opt_report -opt_report_phase hlo

…
LOOP INTERCHANGE in loops at line: 7 8 9
Loopnest permutation ( 1 2 3 ) --> ( 2 3 1 )
LOOP INTERCHANGE in loops at line: 15 17
Loopnest permutation ( 1 2 3 ) --> ( 3 2 1 )
…

Loop at line 7 unrolled and jammed by 4
Loop at line 8 unrolled and jammed by 4
Loop at line 15 unrolled and jammed by 4
Loop at line 16 unrolled and jammed by 4
…

23



Software & Services Group

Some Intel-Specific Compiler Directives

IA-32, Intel64

IA-32, Intel64, 
IA-64

IA-32, Intel64, 
IA-64

IA-32, Intel64, 
IA-64

#pragma Architecture Description

vector/novector Indicates to the compiler that the loop should (not) be vectorized overriding 
the compiler’s heuristics

loop count(n) IA-32, Intel64, 
IA-64

Place before a loop to communicate the approximate number of iterations the 
loop will execute. Affects software pipelining, vectorization and other loop 
transformations.

distribute point Placed before a loop, the compiler will attempt to distribute the loop based on 
its internal heuristic.  Placed within a loop, the compiler will attempt to 
distribute the loop at the point of the pragma. All loop-carried dependencies 
will be ignored.

unroll, unroll(n), 
nounroll

Place before an inner loop (ignored on non-inmost loops).
#pragma unroll without a count allows the compiler to determine the unroll 
factor.  #pragma unroll(n) tell the compiler to unroll the loop n times.
#pragma nounroll is the same as #pragma unroll(0).

loop count n
loop count n1, n2, n3 …
loop count min=<l>, 
avg=<a>, max=<u>

Hint to the compile on expected loop iteration count:
(n): always n
(n1, n2, n3 …) either n1, n2, n3 … 
expected minimum count <l>, average count <a> and maximal count <u>

ivdep IA-32, Intel64, 
IA-64

Place before a loop to control vectorizaton/software pipelining 
The compiler is instructed to ignore “assumed” ( not proven ) dependencies 
preventing vectorization/software pipelining. For Itanium: Assume no 
BACKWARD dependencies, FORWARD loop-carried dependencies still can exist 
w/o preventing SWP. Use with –ivdep_parallel option to exclude loop-carried 
dependencies completely ( e.g. for indirect addressing)

24



Software & Services Group

C/C++ Compiler for Linux*
• Main goals/values of Intel C/C++ Linux Compiler:

– Compatible to GCC
– In general much faster than GCC

• In particular for typical HPC applications
– Provide critical features not offered by GCC like support for 

latest Intel® processors
• Compatibility splits into 3 parts:

– C/C++ source code language acceptance
• Almost done; missing features are questionable 

(e.g nested function in C supported by GCC )
– Switch-compatibility 

• Achieved for most relevant options 
– Object Code interoperability

• 100% reached today – even for complex C++ and OpenMP*

• The ultimate compatibility test: Linux kernel build
– No manual changes to source code required but requires 

‘wrapper’ script

25



Software & Services Group

Agenda

• Vector Instructions (SIMD)
• Compiler Switches for Optimization
• Controlling Auto-vectorization
• Controlling Auto-parallelization
• Manual Vectorization (SSE & AVX)
• Hands-on

26



Software & Services Group

Auto-vectorization

• Key requirements
– A compiler must not alter the program semantics
– If the compiler cannot determine all dependencies, it has to 

forego vectorization

• Compilers sometimes need to act very conservatively
– Pointers make it hard for the compiler to deduce memory layout
– Codes may produce overlapping arrays through pointer arithmetics
– If the compiler can’t tell, it does not vectorize

27



Software & Services Group

Data Dependencies

• Suppose two statements S1 and S2
• S2 depends on S1, iff S1 must be executed before S2

– Control-flow dependence
– Data dependence
– Dependencies can be carried over between loop iterations

• Flavors of data dependencies
FLOW ANTI
s1: a = 40 b = 40

b = 21 s1: a = b + 1

s2: c = a + 2 s2: b = 21

28



Software & Services Group

Compiler Options for Vectorization

• Vectorization is automatically enabled for O2
• Can be controlled through command line switches:

-vec enable vectorization
-no-vec disable vectorization

• Vectorization reports help find out about (non-)vectorized code
-vec-reportn enable vectorization diagnostics

0 report no diagnostic information.
1 report on vectorized loops (default)
2 report on vectorized and non-vectorized loops.
3 report on vectorized and non-vectorized loops and any proven or assumed

data dependences.
4 report on non-vectorized loops.
5 report on non-vectorized loops and the reason why they were not 

vectorized.
source /opt/intel/Compiler/11.1/064/bin/iccvarsh.sh intel64

29



Software & Services Group

Vectorization Hints

• Sometimes, the compiler needs some help when 
looking at your code

• Compiler pragmas:
– #pragma ivdep

Indicate that there is no loop-carried dependence in the loop
– #pragma vector always | aligned | unaligned 

Compiler is instructed to always vectorize a loop (and ignore 
internal heuristics)

• always: always vectorize
• aligned: use aligned load/store instructions
• anligned: use unaligned load/store instructions

30



Software & Services Group

Position of SIMD Features 

ASM code (addps)

Vector intrinsic (mm_add_ps())

SIMD intrinsic class (F32vec4 add)

SIMD feature (#pragma simd and simd
function annotation)

Auto vectorization hints (#pragma ivdep)

Fully automatic vectorization

Programmer control

Ease of use

31



Software & Services Group

Why Didn’t My Loop Vectorize? 

• Linux Windows
-vec-reportn /Qvec-reportn

• Set diagnostic level dumped to stdout

n=0: No diagnostic information
n=1: (Default) Loops successfully vectorized 
n=2: Loops not vectorized – and the reason why not
n=3: Adds dependency Information
n=4: Reports only non-vectorized loops
n=5: Reports only non-vectorized loops and adds dependency info

32



Software & Services Group

SIMD Extension for Vector-Level Parallelism
User-mandated vectorization using new SIMD Pragma and SIMD Function 
Annotation

– SIMD pragma provides additional information to compiler to enable 
vectorization of  loops ( at this time only inner loop )

– SIMD Function Annotations add inter-procedural information to facilitate 
vectorization

– Supplements automatic vectorization but differently to what traditional 
pragmas ( “automatic vectorization hints”) like IVDEP, VECTOR ALWAYS, etc do

• Traditional pragmas: A hint; not necessary overriding compiler’s heuristic
• New SIMD extensions : More like an assertion: in case vectorization still fails, it is 

considered a fault (an option controls whether it is really treated as error);

•Relationship similar to OpenMP versus automatic parallelization

SIMD Extension OpenMP

Pure Automatic
Vectorization

Automatic 
Parallelization

33



Software & Services Group

SIMD Directives: Sample 

Due to the overlapping nature of array accesses from the different call sites, it 
might not be semantically correct to use restrict keyword or IVDEP directive  
( there are dependencies between iterations for one call  )

But it might be true for all calls, that e.g 4 consecutive iterations can be executed 
in parallel without violating any dependencies  

foo(float *a, float *b, float *c, int n)
{    
for (int k=0; k<n; k++)   c[k] = a[k] + b[k];

}

void foo(float *a, float *b, float *c, int n)
{
#pragma simd vectorlength(4)
for (int k=0; k<n; k++ )  c[k] = a[k] + b[k];

}

34



Software & Services Group

SIMD Directive and Clauses
#pragma simd [<clause-list>] 

• No clause – that is :  #pragma simd
– Enforce vectorization ; ignore dependencies etc

• vectorlength(n1, n2, …, nN) 
– Executing ni iterations as one vector instruction of vector length ni, is semantically 

equivalent to ni scalar interations
• private(var1, var2, …, varN)

– variables private to each iteration. initial value is broadcast to all private instances, 
and the last value is copied out from the last iteration instance.

• linear(var1:step1, var2:step2, …, varN:stepN)
– for every iteration of scalar loop, vari is incremented by stepi,. Every iteration of 

the vector loop, therefore increments vari by VL*stepi
• reduction(operator:var1, var2,…, varN)

– Loop code implements reduction (like “+”) on arguments listed which can be 
vectorized 

• [no]assert
– to assert or not to assert when the vectorization fails. Default is to assert for SIMD 

pragma. 

35



Software & Services Group

SIMD Function Annotation: Sample 

The SIMD annotation introduces ‘foo’ as a function which will be available as a 
vectorized version. For the calling functions this enables vectorization of 
the loop and will adapt argument and return value handling correspondingly  

__attribute__((simd)) float foo(float);

void vfoo(float *restrict a, float *restrict b, int n) {
int i;
for (i=0; i<n; i++)   a[i] = foo(b[i]);

}

float foo(float x) {
...

}

$ icc example.c -O3 -vec-report3 –restrict –vec:simd 

example.c(9): (col. 3) remark: LOOP WAS VECTORIZED.
example.c(14): (col. 3) remark: FUNCTION WAS VECTORIZED

36



Software & Services Group

SIMD Function Annotations
(Only a Subset)

__attribute__((simd [(clauses)])) and clause can be
• processor(cpuid)

– Generate  a vector version of the function for the given processor. The 
default processor is taken from the implicit or explicit processor- or 
architecture- specific flag in the compiler command line.

• linear(param1:step1, param2:step2, …,paramN:stepN)
– Consecutive invocations of the function increment parami by stepi

• scalar(param1, param2, …, paramN) 
– indicates the values of these parameters can be broadcasted to all 

iterations as a performance optimization

• mask
– to generate a masked vector version of the function.

• user
– not to generate this vector version since it is provided by the 

programmer.

37



Software & Services Group

38

CEAN: C/C++ Extensions for Array Notation
Add array notation to C/C++ similar to what was done for Fortran 
language in Fortran90 to express data parallel (e.g. SSE-) code explicitly
Sample: 

Intel Confidential - Internal Use Only

// CEAN Version – outer loop
// “vectorized”

y[0:M-K] = 0;

for (j = 0; j < K; j++)
y[0:M-K]+= x[j:M-K]*c[j];

• Nothing totally new; many similar initiatives in the past 30 years
• E.g.:  “Vector C” for Control Data 205, +25 years ago

• CEAN requires switch –farray-notation in 12.0 Compiler 

// Traditional: 
for (i=0; i < M-K; i++)
{

s = 0;
for (j = 0; j < K; j++)

s += x[i+j] * c[j]
y[i] = s;

}

38



Software & Services Group

CEAN Array Sections
• Array sections

– Specification per dimension is lower bound : count [:stride]
– This is different from Fortran lower bound : upper bound : [stride]
– Samples: 

A[:] // All of vector A

B[2:6] // Elements 2 to 7 of vector B

C[:][5] // Column 5 of matrix C

D[0:3:2] // Elements 0,2,4 of vector D

• Basic, data parallel operations on array sections
– Support for most C/C++ arithmetic and logic operators like “+”,  “/”, ”<“, 

“&&”, “+=“, …
– The shape of the sections must be identical, scalars are expanded 

implicitly
– Sample:

( a[0:s]+b[5:s] )* pi // pi * {a[i]+b[i+5], (i=0;i<s;i++)}

39



Software & Services Group

CEAN Assignment
Assignment evaluates LHS and assigns values to RHS in 
parallel 

– The shapes of the RHS and LHS  array section must be the same
– Scalar is expanded automatically
– Conceptually, RHS is evaluated completely before LHS

• Compiler ensures semantic in code being generated
• This can be a critical performance issue (temporary array variable)

– Samples:

a[:][:] = b[:][2][:] + c;

e[:] = d;          // scalar expansion
e[:] = b[:][1][:]; // error, shapes different 
a[:][:] = e[:];   // error, shapes different
a[b[0:s]] = c[:] // scatter operation
c[0:s] = a[b[:]] // gather operation

40



Software & Services Group

CEAN – Some Advanced Features

• Functions can take array sections as arguments and can return 
sections

– Any assumption on order (side effects) are a mistake
– Compiler may generate calls to vectorized library functions
– Examples:

a[:] = pow(b[:], c); // b[:]**c
a[:] = pow(c, b[:]); // c**b[:]

a[:] = foo(b[:])   // user defined 

• Reductions combine elements in an array section into a single 
value using pre-defined operators or a user function

– Pre-defined, e.g. _sec_reduce_{add, mul, min, …}

sum = __sec_reduce_add(a[:]*b[:]); // dot product

res = __sec_reduce(fn, a[:], 0); // apply function fn

41



Software & Services Group

Agenda

• Vector Instructions (SIMD)
• Compiler Switches for Optimization
• Controlling Auto-vectorization
• Controlling Auto-parallelization
• Manual Vectorization (SSE & AVX)
• Hands-on

42



Software & Services Group

Auto-parallelization

• Key requirements
– A compiler must not alter the program semantics
– If the compiler cannot determine all dependencies, it has to 

forego parallelization

• Compilers sometimes need to act very conservatively
– Pointers make it hard for the compiler to deduce memory layout
– Codes may produce overlapping arrays through pointer arithmetics
– If the compiler can’t tell, it does not parallelize

• Past 30 years have shown that auto-parallelization 
– is a tough problem in general
– is only applicable to very regular loops
– cannot take care of manual parallelization tasks

43



Software & Services Group

Compiler Options for Parallelization

• Vectorization is not automatically enabled
• Can be controlled through command line switches:

-parallel enable parallelization
-par-thresholdn parallelization threshold

n = 0 parallelize always
n = 100 parallelize only if performance gain is 100%
n = 50 parallelize if probability of performance gain is 50%

• Parallelization reports:
-par-reportn enable vectorization diagnostics

0 report no diagnostic information.
1 report on successfully parallelized loops (default)
2 report on successfully and unsuccessfully parallelized loops
3 like 2, but also give information about proven and assumed data

dependendies

44



Software & Services Group

Compiler Options for Parallelization

• Controlling scheduling: -par-schedule-keyword
auto Lets the compiler or run-time system determine the 

scheduling algorithm.
static Divides iterations into contiguous pieces.
static-balanced Divides iterations into even-sized chunks.
static-steal Divides iterations into even-sized chunks, but allows 

threads to steal parts of chunks from neighboring
threads. 

dynamic Gets a set of iterations dynamically.
guided Specifies a minimum number of iterations.
guided-analytical Divides iterations by using exponential distribution or 

dynamic distribution. 
runtime Defers the scheduling decision until run time.

45



Software & Services Group

Agenda

• Vector Instructions (SIMD)
• Compiler Switches for Optimization
• Controlling Auto-vectorization
• Controlling Auto-parallelization
• Manual Vectorization (SSE & AVX)
• Hands-on

46



Software & Services Group

Element-wise Vector Multiplication

void vec_eltwise_product(vec_t* a, vec_t* b, 
vec_t* c) {

size_t i;
for (i = 0; i < a->size; i++) {

c->data[i] = a->data[i] * b->data[i];
}

}

47



Software & Services Group

Element-wise Vector Multiplication (SSE)

48

void vec_eltwise_product_sse(vec_t* a, vec_t* b,
vec_t* c) {

size_t i;
__m128 va;
__m128 vb;
__m128 vc;
for (i = 0; i < a->size; i += 4) {

va = _mm_loadu_ps(&a->data[i]);
vb = _mm_loadu_ps(&b->data[i]);
vc = _mm_mul_ps(va, vb);
_mm_storeu_ps(&c->data[i], vc);

}
}



Software & Services Group

Element-wise Vector Multiplication (SSE)

49

void vec_eltwise_product_avx(vec_t* a, vec_t* b, 
vec_t* c) {

size_t i;
__m256 va;
__m256 vb;
__m256 vc;
for (i = 0; i < a->size; i += 8) {

va = _mm256_loadu_ps(&a->data[i]);
vb = _mm256_loadu_ps(&b->data[i]);
vc = _mm256_mul_ps(va, vb);
_mm256_storeu_ps(&c->data[i], vc);

}
}



Software & Services Group

Zen and the Art of Permutation

SRC1

DEST

X7 X6 X5 X4 X3 X2 X1 X0

X7 .. 
X4

X7 .. 
X4

X7 .. 
X4

X7 .. 
X4

X3 .. 
X0

X3 .. 
X0

X3 .. 
X0

X3 .. 
X0

• New in-lane PS and 
PD Permutes
– Permute controlled via 

immediate

w

Y1 Y0

X0,X1,Y0, or Y1 X0,X1,Y0, or Y1

X1 X0SRC1

SRC2

DEST

• New 128-bit permutes
– Useful for lane-crossing 

operations

vPermilPS dest, src, imm

vPerm2F128 dest, src1, src2, imm

How to compute 
the control 

value for the 
permutation?



Software & Services Group

Zen and the Art of Permutation

Control value:

X7 X6 X5 X4 X3 X2 X1 X0

X7 .. 
X4

X7 .. 
X4

X7 .. 
X4

X7 .. 
X4

X3 .. 
X0

X3 .. 
X0

X3 .. 
X0

X3 .. 
X0

8 bits

D C B A D C B A

A B C D A B C D

00 01 10 11 = 27 (0x1B)



Software & Services Group

Zen and the Art of Permutation

Control value:

X7 X6 X5 X4 X3 X2 X1 X0

X7 .. 
X4

X7 .. 
X4

X7 .. 
X4

X7 .. 
X4

X3 .. 
X0

X3 .. 
X0

X3 .. 
X0

X3 .. 
X0

8 bits

D C B A D C B A

A B C D A B C D

10 10 10 10 = 170 (0xAA)



Software & Services Group

Agenda

• Vector Instructions (SIMD)
• Compiler Switches for Optimization
• Controlling Auto-vectorization
• Controlling Auto-parallelization
• Manual Vectorization (SSE & AVX)
• Hands-on

53



Software & Services Group

Lab 1: Vectorization

• Look into the “vectors” directory.
• There you will find a code like this:

void scalar_product(vec_t* a, vec_t* b, vec_t *c) {
size_t i;
for (i = 0; i < a->size; i++) {

c->data[i] = a->data[i] * b->data[i];
}

}

• Try to find out
– Why the compiler cannot vectorize the code
– Do you need to change the code?
– Which compiler options do you need to enable vectorization

54



Software & Services Group

Lab 2: Parallelization

• Look into the “vectors” directory.
• There you will find a code like this:

void scalar_product(vec_t* a, vec_t* b, vec_t *c) {
size_t i;
for (i = 0; i < a->size; i++) {

c->data[i] = a->data[i] * b->data[i];
}

}

• Try to find out
– Why the compiler cannot parallelize the code
– Do you need to change the code?
– Which compiler options do you need to enable parallelization

55



Software & Services Group

Lab 3: Manual Vectorization

• Look into the “vectors” directory.

• Implement the SSE and AVX functions for computing the scalar 
product of two vectors.

– The functions are marked with “TODO”.

• Hints:
– You will need the following new instructions:

SSE: _mm_hadd_ps()
AVX: _mm256_maskstore_ps

• The “Intrinsics Guide for Intel® AVX” is very useful for the hands-on
(see http://software.intel.com/en-us/avx/)

56



Software & Services Group

Questions?

57



Software & Services Group

58


	Loop Independence, Compiler Vectorization and Threading of Loops (SSE & AVX)
	Legal Disclaimer
	Optimization Notice
	Agenda
	Agenda
	What is SSE (and related instruction sets)
	SSE Data Types
	AVX Data Types
	Agenda
	Intel® Compiler Architecture
	A few General Switches
	Architecture Specific Switches
	Interprocedural Optimization�Extends optimizations across file boundaries
	IPO – A Multi-pass Optimization�A Two-Step Process
	What you should know about IPO
	Profile-Guided Optimizations (PGO)
	PGO Usage: Three Step Process
	Simple PGO Example: Code Re-Order
	What you should know about PGO
	Memory Reference Disambiguation�Options/Directives related to Aliasing
	Optimization Report Options
	What did the Compiler do ? 
	Sample HLO Report�icc -O3 -opt_report -opt_report_phase hlo
	Some Intel-Specific Compiler Directives
	C/C++ Compiler for Linux*
	Agenda
	Auto-vectorization
	Data Dependencies
	Compiler Options for Vectorization
	Vectorization Hints
	Position of SIMD Features 
	Why Didn’t My Loop Vectorize? 
	SIMD Extension for Vector-Level Parallelism
	SIMD Directives: Sample 
	SIMD Directive and Clauses
	SIMD Function Annotation: Sample 
	SIMD Function Annotations�(Only a Subset)
	CEAN: C/C++ Extensions for Array Notation
	CEAN Array Sections
	CEAN Assignment
	CEAN – Some Advanced Features
	Agenda
	Auto-parallelization
	Compiler Options for Parallelization
	Compiler Options for Parallelization
	Agenda
	Element-wise Vector Multiplication
	Element-wise Vector Multiplication (SSE)
	Element-wise Vector Multiplication (SSE)
	Zen and the Art of Permutation
	Zen and the Art of Permutation
	Zen and the Art of Permutation
	Agenda
	Lab 1: Vectorization
	Lab 2: Parallelization
	Lab 3: Manual Vectorization
	Questions?
	Slide Number 58

