
Lower Bound Techniques for Data Structures

by

Mihai Pǎtraşcu

Submitted to the Department of
Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2008

c© Massachusetts Institute of Technology 2008. All rights reserved.

Author .
Department of

Electrical Engineering and Computer Science
August 8, 2008

Certified by .
Erik D. Demaine

Associate Professor
Thesis Supervisor

Accepted by .
Professor Terry P. Orlando

Chair, Department Committee on Graduate Students

2

Lower Bound Techniques for Data Structures
by

Mihai Pǎtraşcu

Submitted to the Department of
Electrical Engineering and Computer Science
on August 8, 2008, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

We describe new techniques for proving lower bounds on data-structure problems, with the
following broad consequences:

• the first Ω(lg n) lower bound for any dynamic problem, improving on a bound that
had been standing since 1989;

• for static data structures, the first separation between linear and polynomial space.
Specifically, for some problems that have constant query time when polynomial space
is allowed, we can show Ω(lg n/ lg lg n) bounds when the space is O(n · polylog n).

Using these techniques, we analyze a variety of central data-structure problems, and
obtain improved lower bounds for the following:

• the partial-sums problem (a fundamental application of augmented binary search trees);

• the predecessor problem (which is equivalent to IP lookup in Internet routers);

• dynamic trees and dynamic connectivity;

• orthogonal range stabbing.

• orthogonal range counting, and orthogonal range reporting;

• the partial match problem (searching with wild-cards);

• (1 + ε)-approximate near neighbor on the hypercube;

• approximate nearest neighbor in the `∞ metric.

Our new techniques lead to surprisingly non-technical proofs. For several problems, we
obtain simpler proofs for bounds that were already known.

Thesis Supervisor: Erik D. Demaine
Title: Associate Professor

3

4

Acknowledgments

This thesis is based primarily on ten conference publications: [84] from SODA’04, [83] from
STOC’04, [87] from ICALP’05, [89] from STOC’06, [88] and [16] from FOCS’06, [90] from
SODA’07, [81] from STOC’07, [13] and [82] from FOCS’08. It seems appropriate to sketch
the story of each one of these publications.

It all began with two papers I wrote in my first two undergraduate years at MIT, which
appeared in SODA’04 and STOC’04, and were later merged in a single journal version [86].
I owe a lot of thanks to Peter Bro Miltersen, whose survey of cell probe complexity [72] was
my crash course into the field. Without this survey, which did an excellent job of taking
clueless readers to the important problems, a confused freshman would never have heard
about the field, nor the problems. And, quite likely, STOC would never have seen a paper
proving information-theoretic lower bounds from an author who clearly did not know what
“entropy” meant.

Many thanks also go to Erik Demaine, who was my research advisor from that freshman
year until the end of this PhD thesis. Though it took years before we did any work together,
his unconditional support has indirectly made all my work possible. Erik’s willingness to pay
a freshman to do whatever he wanted was clearly not a mainstream idea, though in retrospect,
it was an inspired one. Throughout the years, Erik’s understanding and tolerance for my
unorthodox style, including in the creation of this thesis, have provided the best possible
research environment for me.

My next step would have been far too great for me to take alone, but I was lucky enough
to meet Mikkel Thorup, now a good friend and colleague. In early 2004 (if my memory
serves me well, it was in January, during a meeting at SODA), we began thinking about
the predecessor problem. It took us quite some time to understand that what had been
labeled “optimal bounds” were not optimal, that proving an optimal bound would require a
revolution in static lower bounds (the first bound to beat communication complexity), and
to finally find an idea to break this barrier. This 2-year research journey consumed us, and
I would certainly have given up along the way, had it not been for Mikkel’s contagious and
constant optimism, constant influx of ideas, and the many beers that we had together.

This research journey remained one of the most memorable in my career, though, unfor-
tunately, the ending was underwhelming. Our STOC 2006 [89] paper went largely unnoticed,
with maybe 10 people attending the talk, and no special issue invitation. I consoled myself
with Mikkel’s explanation that ours had been paper with too many new ideas to be digested
soon after publication.

Mikkel’s theory got some support through our next joint paper. I proposed that we look
at some lower bounds via the so-called richness method for hard problems like partial match
or nearest neighbor. After 2 years of predecessor lower bounds, it was a simple exercise to
obtain better lower bound by richness; in fact, we felt like we were simplifying our technique
for beating communication complexity, in order to make it work here. Despite my opinion
that this paper was too simple to be interesting, Mikkel convinced me to submit it to FOCS.
Sure enough, the paper was accepted to FOCS’06 [88] with raving reviews and a special issue
invitation. One is reminded to listen to senior people once in while.

5

After my initial interaction with Mikkel, I had begun to understand the field, and I was
able to make progress on several fronts at the same time. Since my first paper in 2003, I
kept working on a very silly dynamic problem: prove a lower bound for partial sums in the
bit-probe model. It seemed doubtful that anyone would care, but the problem was so clean
and simple, that I couldn’t let go. One day, as I was sitting in an MIT library (I was still
an undergraduate and didn’t have an office), I discovered something entirely unexpected.
You see, before my first paper proving an Ω(lg n) dynamic lower bound, there had been
just one technique for proving dynamic bounds, dating back to Fredman and Saks in 1989.
Everybody had tried, and failed, to prove a logarithmic bound by this technique. And there
I was, seeing a clear and simple proof of an Ω(lg n) bound by this classic technique. This
was a great surprise to me, and it had very interesting consequences, including a new bound
for my silly little problem, as well as a new record lower bound in the bit-probe model. With
the gods clearly on my side (Miltersen was on the PC), this paper [87] got the Best Student
Paper award at ICALP.

My work with Mikkel continued with a randomized lower bound for predecessor search
(our first bound only applied to deterministic algorithms). We had the moral obligation
to “finish” the problem, as Mikkel put it. This took quite some work, but in the end, we
succeeded, and the paper [90] appeared in SODA’07.

At that time, I also wrote my first paper with Alex Andoni, an old and very good friend,
with whom I would later share an apartment and an office. Surprisingly, it took us until
2006 to get our first paper, and we have only written one other paper since then, despite
our very frequent research discussions over beer, or while walking home. These two papers
are a severe underestimate of the entertaining research discussions that we have had. I owe
Alex a great deal of thanks for the amount of understanding of high dimensional geometry
that he has passed on to me, and, above all, for being a highly supportive friend.

Our first paper was, to some extent, a lucky accident. After a visit to my uncle in
Philadelphia, I was stuck on a long bus ride back to MIT, when Alex called to say that
he had some intuition about why (1 + ε)-approximate nearest neighbor should be hard. As
always, intuition is hard to convey, but I understood at least that he wanted to think in very
high dimensions, and let the points of the database be at constant pairwise distance. Luckily,
on that bus ride I was thinking of lower bounds for lopsided set disjointness (a problem left
open by the seminal paper of Miltersen et al. [73] from STOC’95). It didn’t take long after
passing to realize the connection, and I was back on the phone with Alex explaining how his
construction can be turned in a reduction from lopsided set disjointness to nearest neighbor.

Back at MIT, the proof obviously got Piotr Indyk very excited. We later merged with
another result of his, yielding a FOCS’06 paper [16]. Like in the case of Alex, the influence
that Piotr has had on my thinking is not conveyed by our number of joint papers (we only
have one). Nonetheless, my interaction with him has been both very enjoyable and very
useful, and I am very grateful for his help.

My second paper with Alex Andoni was [13] from FOCS’08. This began in spring 2007
as a series of discussions between me and Piotr Indyk about approximate near neighbor in
`∞, discussions which got me very excited about the problem, but didn’t really lead to any

6

solution. By the summer of 2007, I had made up my mind that we had to seek an asymmetric
communication lower bound. That summer, both I and Alex were interns at IBM Almaden,
and I convinced him to join on long walks on the beautiful hills at Almaden, and discuss
this problem. Painfully slowly, we developed an information-theoretic understanding of the
best previous upper bound, and an idea about how the lower bound should be proved.

Unfortunately, our plan for the lower bound led us to a rather nontrivial isoperimetric
inequality, which we tried to prove for several weeks in the fall of 2007. Our proof strategy
seemed to work, more or less, but it led to a very ugly case analysis, so we decided to
outsource the theorem to a mathematician. We chose none other than our third housemate,
Dorian Croitoru, who came back in a few weeks with a nicer proof (if not lacking in case
analysis).

My next paper on the list was my (single author) paper [81] from STOC’07. Ever since
we broke the communication barrier with Mikkel Thorup, it had been clear to me that the
most important and most exciting implication had to be range query problems, where there
is a huge gap between space O(n2) and space O(n polylog n). Extending the ideas to these
problems was less than obvious, and took quite a bit of time to find the right approach, but
eventually I ended up with a proof of an Ω(lg n/ lg lg n) lower bound for range counting in 2
dimensions.

In FOCS’08 I wrote follow-up to this, the (single author) paper [82], which I found very
surprising in its techniques. That paper is perhaps the coronation of the work in this thesis,
showing that proofs for many interesting lower bounds (both static and dynamic) can be
obtained by simple reductions from lopsided set disjointness.

The most surprising lower bound in that paper is perhaps the one for 4-dimensional
range reporting. Around 2004–2005, I got motivated to work on range reporting, by talking
to Christian Mortensen, then a student at ITU Copenhagen. Christian had some nice results
for the 2-dimensional case, and I was interested in proving that the 3-dimensional case is
hard. Unfortunately, my proofs always seemed to break down one way or another. Christian
eventually left for industry, and the problem slipped from my view.

In 2007, I got a very good explanation for why my lower bound had failed: Yakov
Nekrich [79] showed in SoCG’07 a surprising O((lg lg n)2) upper bound for 3 dimensions
(making it “easy”). It had never occurred to me that a better upper bound could exist,
which in some sense served to remind me why lower bounds are important. I was very
excited by this development, and immediately started wondering whether the 4-dimensional
would also collapse to near-constant time. My bet was that it wouldn’t, but what kind of
structure could prove 4 dimensions hard, if 3 dimensions were easy?

Yakov Nekrich and Marek Karpinski invited me for a one-week visit to Bonn in October
2007, which prompted a discussion about the problem, but not much progress towards a
lower bound. After my return to MIT, the ideas became increasingly more clear, and by the
end of the fall I had an almost complete proof, which nonetheless seemed “boring” (technical)
and unsatisfying.

In the spring of 2008, I was trying to submit 4 papers to FOCS, during my job interview
season. Needless to say, this was a challenging experience. I had an interview at Google

7

scheduled two days before the deadline, and I made an entirely unrealistic plan to go to New
York with the 5am train, after working through the night. By 5am, I had a serious headache
and the beginning of a cold, and I had to postpone the interview at the last minute. However,
this proved to be a very auspicious incident. As I was lying on an MIT couch the next day
trying to recover, I had an entirely unexpected revelation: the 4-dimensional lower bound
could be proved by a series of reductions from lopsided set disjointness! This got developed
into the set of reductions in [82], and submitted to the conference. I owe my sincere apologies
to the Google researchers for messing their schedules with my unrealistic planning. But in
the end, I’m glad things hapenned this way, and the incident was clearly good for science.

8

Contents

1 Introduction 13
1.1 What is the Cell-Probe Model? . 13

1.1.1 Examples . 13
1.1.2 Predictive Power . 14

1.2 Overview of Cell-Probe Lower Bounds . 15
1.2.1 Dynamic Bounds . 16
1.2.2 Round Elimination . 16
1.2.3 Richness . 17

1.3 Our Contributions . 18
1.3.1 The Epoch Barrier in Dynamic Lower Bounds 18
1.3.2 The Logarithmic Barrier in Bit-Probe Complexity 18
1.3.3 The Communication Barrier in Static Complexity 19
1.3.4 Richness Lower Bounds . 20
1.3.5 Lower Bounds for Range Queries . 22
1.3.6 Simple Proofs . 23

2 Catalog of Problems 25
2.1 Predecessor Search . 25

2.1.1 Flavors of Integer Search . 25
2.1.2 Previous Upper Bounds . 26
2.1.3 Previous Lower Bounds . 27
2.1.4 Our Optimal Bounds . 28

2.2 Dynamic Problems . 29
2.2.1 Maintaining Partial Sums . 29
2.2.2 Previous Lower Bounds . 30
2.2.3 Our Results . 31
2.2.4 Related Problems . 31

2.3 Range Queries . 33
2.3.1 Orthogonal Range Counting . 34
2.3.2 Range Reporting . 36
2.3.3 Orthogonal Stabbing . 38

2.4 Problems in High Dimensions . 39
2.4.1 Partial Match . 39

9

2.4.2 Near Neighbor Search in L1, L2 . 41

2.4.3 Near Neighbor Search in L-infinity 44

3 Dynamic Omega(log n) Bounds 47

3.1 Partial Sums: The Hard Instance . 47

3.2 Information Transfer . 48

3.3 Interleaves . 49

3.4 A Tree For The Lower Bound . 50

3.5 The Bit-Reversal Permutation . 52

3.6 Dynamic Connectivity: The Hard Instance 53

3.7 The Main Trick: Nondeterminism . 55

3.8 Proof of the Nondeterministic Bound . 55

3.9 Bibliographical Notes . 58

4 Epoch-Based Lower Bounds 59

4.1 Trade-offs and Higher Word Sizes . 60

4.2 Bit-Probe Complexity . 60

4.3 Lower Bounds for Partial Sums . 63

4.3.1 Formal Framework . 64

4.3.2 Bounding Probes into an Epoch . 65

4.3.3 Deriving the Trade-offs of Theorem 4.1 67

4.3.4 Proof of Lemma 4.3 . 68

5 Communication Complexity 71

5.1 Definitions . 71

5.1.1 Set Disjointness . 71

5.1.2 Complexity Measures . 72

5.2 Richness Lower Bounds . 72

5.2.1 Rectangles . 73

5.2.2 Richness . 74

5.2.3 Application to Indexing . 74

5.3 Direct Sum for Richness . 75

5.3.1 A Direct Sum of Indexing Problems 75

5.3.2 Proof of Theorem 5.6 . 76

5.4 Randomized Lower Bounds . 77

5.4.1 Warm-Up . 77

5.4.2 A Strong Lower Bound . 79

5.4.3 Direct Sum for Randomized Richness 80

5.4.4 Proof of Lemma 5.17 . 82

5.5 Bibliographical Notes . 83

10

6 Static Lower Bounds 85
6.1 Partial Match . 86
6.2 Approximate Near Neighbor . 87
6.3 Decision Trees . 89
6.4 Near-Linear Space . 90

7 Range Query Problems 93
7.1 The Butterfly Effect . 94

7.1.1 Reachability Oracles to Stabbing . 94
7.1.2 The Structure of Dynamic Problems 95

7.2 Adding Structure to Set Disjointness . 98
7.2.1 Randomized Bounds . 99

7.3 Set Disjointness to Reachability Oracles . 99

8 Near Neighbor Search in `∞ 103
8.1 Review of Indyk’s Upper Bound . 104
8.2 Lower Bound . 107
8.3 An Isoperimetric Inequality . 109
8.4 Expansion in One Dimension . 110

9 Predecessor Search 113
9.1 Data Structures Using Linear Space . 115

9.1.1 Equivalence to Longest Common Prefix 115
9.1.2 The Data Structure of van Emde Boas 116
9.1.3 Fusion Trees . 117

9.2 Lower Bounds . 119
9.2.1 The Cell-Probe Elimination Lemma 119
9.2.2 Setup for the Predecessor Problem 120
9.2.3 Deriving the Trade-Offs . 121

9.3 Proof of Cell-Probe Elimination . 124
9.3.1 The Solution to the Direct Sum Problem 125
9.3.2 Proof of Lemma 9.9 . 126

11

12

Chapter 1

Introduction

1.1 What is the Cell-Probe Model?

Perhaps the best way to understand the cell-probe model is as the “von Neumann bottle-
neck,” a term coined by John Backus in his 1977 Turing Award lecture. In the von Neumann
architecture, which is pervasive in today’s computers, the memory and the CPU are isolated
components of the computer, communicating through a simple interface. At sufficiently high
level of abstraction, this interface allows just two functions: reading and writing the atoms of
memory (be they words, cache lines, or pages). In Backus’ words, “programming is basically
planning and detailing the enormous traffic of words through the von Neumann bottleneck.”

Formally, let the memory be an array of cells, each having w bits. The data structure is
allowed to occupy S consecutive cells of this memory, called “the space.” The queries, and,
for dynamic data structures, the updates, are implemented through algorithms that read
and write cells. The running time of an operation is just the number of cell probes, i.e. the
number of reads and writes executed. All computation based on cells that have been read is
free.

Formally, the cell-probe model is a “non-uniform” model of computation. For a static
data structure the memory representation is an arbitrary function of the input database.
The query and update algorithms may maintain unbounded state, which is reset between
operations. The query/update algorithms start with a state that stores the parameters of
the operation; any information about the data structure must be learned through cell probes.
The query and updates algorithms are arbitrary functions that specify the next read and
write based on the current state, and specify how the state changes when a value is read.

1.1.1 Examples

Let us now exemplify with two fundamental data structure problems that we want to study.
In Chapter 2, we introduce a larger collection of problems that the thesis is preoccupied
with.

In the partial sums problem, the goal is to maintain an array A[1 . . n] of words (w-bit
integers), initialized to zeroes, under the following operations:

13

update(k,∆): modify A[k]← ∆.

sum(k): returns the partial sum
∑k

i=1 A[i].

The following are three very simple solutions to the problem:

• store that array A in plain form. The update requires 1 cell probe (update the
corresponding value), while the query requires up to n cell probes to add values
A[1] + · · ·+ A[k].

• maintain an array S[1 . . n], where S[k] =
∑k

i=1 A[i]. The update requires O(n) cell
probes to recompute all sums, while the query runs in constant time.

• maintain an augmented binary search tree with the array element in the leaves, where
each internal node stores the sum of the leaves in its subtree. Both the query time and
the update time are O(log n).

Dynamic problems are characterized by a trade-off between the update time tu and the
query time tq. Our goal is to establish the optimal trade-off, by describing a data structure
and a proof of a matching lower bound.

In most discussion in the literature, one is interested in the “running time per operation”,
i.e. a single value max{tu, tq} which describes the complexity of both operations. In this view,
we will say that the partial sums problem admits an upper bound of O(lg n), and we will
seek an Ω(lg n) lower bound. Effectively, we want to prove that binary search trees are the
optimal solution for this problem.

To give an example of a static problem, consider predecessor search. The goal is to
preprocess a set A of n integers (of w bits each), and answer the following query efficiently:

predecessor(x): find max{y ∈ A | y < A}.

This problem can be solved with space O(n), and query time O(lg n): simply store the
array in sorted order, and solve the query by binary search. Static problems can always be
solved by complete tabulation: storing the answers to all possible queries. For predecessor
search, this gives space O(2w), and constant query time. Later, we will see better upper
bounds for this problem.

Static problems are characterized by a trade-off between the space S and the query time
t, which we want to understand via matching upper and lower bounds. In the literature,
one is often interested in the query time achievable with linear, or near-linear space S =
O(n polylog n).

1.1.2 Predictive Power

For maximal portability, upper bounds for data structures are often designed in the word
RAM model of computation, which considers any operation from the C programming lan-
guage as “constant time.” Sometimes, however, it makes sense to consider variations of the
model to allow a closer alignment of the theoretical prediction and practical performance.
For example, one might augment the model with a new operation available on a family of
CPUs. Alternatively, some operations, like division or multiplication, may be too slow on a

14

time

epoch:
updates:

bits written:
u

0
r0

tuw

u u

1
r1

rtuw

u u u u

2
r2

r2tuw

u u u u u u u u

3
r3

r3tuw

u u u u u u u u u u u u u u u u

4
r4

r4tuw

?
query

info about epoch 3: 0 (r0 + r1 + r2)tuw < 2r2tuw bits

Figure 1-1: Epochs grow exponentially at a rate of r, looking back from the query. Not
enough information about epoch 3 is recorded outside it, so the query needs to probe a cell
from epoch 3 with constant probability.

particular CPU, and one may exclude them from the set of constant-time operations while
designing a new data structure.

By contrast, it has been accepted for at least two decades that the “holy grail” of lower
bounds is to show results in the cell-probe model. Since the model ignores details particular
to the CPU (which operations are available in the instruction set), a lower bound will apply
to any computer that fits the von Neumann model. Furthermore, the lower bound holds for
any implementation in a high-level programming language (such as C), since these languages
enforce a separation between memory and the processing unit.

To obtain realistic lower bounds, it is standard to assume that the cells have w = Ω(lg n)
bits. This allows pointers and indices to be manipulated in constant time, as is the case
on modern computers and programming languages. To model external memory (or CPU
caches), one can simply let w ≈ B lg n, where B is the size of a page or cache line.

1.2 Overview of Cell-Probe Lower Bounds

The cell-probe model was introduced three decades ago, by Yao [106] in FOCS’78. Unfor-
tunately, his initial lower bounds were not particularly strong, and, as it often happens in
Computer Science, the field had to wait for a second compelling paper before it took off.

In the case of cell-probe complexity, this came not as a second paper, but as a pair of
almost simultaneous papers appearing two decades ago. In 1988, Ajtai [3] proved a lower
bound for a static problem: predecessor search. In STOC’89, Fredman and Saks [51] proved
the first lower bounds for dynamic problems, specifically for the partial sums problem and
for union-find.

Static and dynamic lower bounds continued as two largely independent threads of re-
search, with the sets of authors working on the two fields being almost disjoint. Dynamic
lower bounds relied on the ad hoc chronogram technique of Fredman and Saks, while static
lower bounds were based on communication complexity, a well-studied field of complexity
theory.

15

1.2.1 Dynamic Bounds

We first sketch the idea behind the technique of Fredman and Saks [51]; see Figure 1-1.
The proof begins by generating a sequence of random updates, ended by exactly one query.
Looking back in time from the query, we partition the updates into exponentially growing
epochs: for a certain r, epoch i contains the ri updates immediately before epoch i − 1.
The goal is to prove that for each i, the query needs to read a cell written in epoch i with
constant probability. Then, by linearity of expectation over all epochs, we can bound the
expected query time to tq = Ω(logr n).

Observe that information about epoch i cannot be reflected in earlier epochs (those
occurred back in time). On the other hand, the latest i− 1 epochs contain less than 2 · ri−1

updates. Assume the cell-probe complexity of each update is bounded by tu. Then, during
the latest i− 1 epochs, only 2 ri−1tuw bits are written. Setting r = C · tuw for a sufficiently
large constant C, we have ri � 2 ri−1tuw, so less than one bit of information is reported
about each update in epoch i. Assume that, in the particular computation problem that
we want to lower bound, a random query is forced to learn information about a random
update from each epoch. Then, the query must read a cell from epoch i with constant
probability, because complete information about the needed update is not available outside
the epoch. We have a lower bound of tq = Ω(logr n) = Ω(lg n/ lg(wtu)). For the natural case
w = Θ(lg n), we have max{tu, tq} = Ω(lg n/ lg lg n).

All subsequent papers [22, 70, 74, 59, 8, 49, 5, 9, 58] on dynamic lower bounds used this
epoch-based approach of Fredman and Saks (sometimes called the “chronogram technique”).

Perhaps the most influential in this line of research was that the paper by Alstrup,
Husfeldt, and Rauhe [8] from FOCS’98. They proved a bound for the so-called marked
ancestor problem, and showed many reductions from this single bound to various interesting
data-structure problems.

In STOC’99, Alstrup, Ben-Amram, and Rauhe [5] showed optimal trade-offs for the
union-find problem, improving on the original bound of Fredman and Saks [51].

1.2.2 Round Elimination

The seminal paper of Ajtai [3] turned out to have a bug invalidating the results, though
this did not stop it from being one of the most influential papers in the field. In STOC’94,
Miltersen [71] corrected Ajtai’s error, and derived a new set of results for the predecessor
problem. More importantly, he recasted the proof as a lower bound for asymmetric commu-
nication complexity.

The idea here is to consider a communication game in which Alice holds a query and Bob
holds a database. The goal of the players is to answer the query on the database, through
communication. A cell-probe algorithm immediately gives a communication protocol: in
each round, Alice sends lgS bits (an address), and Bob replies with w bits (the contents
of the memory location). Thus, a lower bound on the communication complexity implies a
lower bound on the cell-probe complexity.

The technique for proving a communication lower bound, implicit in the work of Ajtai [3]

16

and Miltersen [71], was made explicit in STOC’95 by Miltersen, Nisan, Safra, and Wigder-
son [73]. This technique is based on the round elimination lemma, a result that shows how to
eliminate a message in the communication protocol, at the cost of reducing the problem size.
If all messages can be eliminated and the final problem size is nontrivial (superconstant),
the protocol cannot be correct.

Further work on the predecessor problem included the PhD thesis of Bing Xiao [105], the
paper of Beame and Fich from STOC’99 [21], and the paper of Sen and Venkatesh [95]. These
authors obtained better lower bounds for predecessor search, by showing tighter versions of
round elimination.

Another application of round elimination was described by Chakrabarti, Chazelle, Gum,
and Lvov [26] in STOC’99. They considered the d-dimensional approximate nearest neighbor
problem, with constant approximation and polynomial space, and proved a time lower bound
of Ω(lg lg d/ lg lg lg d). This initial bound was deterministic, but Chakrabarti and Regev [27]
proved a randomized bound via a new variation of the round elimination lemma.

1.2.3 Richness

Besides explicitly defining the round elimination concept, Miltersen et al. [73] also introduced
a second technique for proving asymmetric lower bounds for communication complexity.
This technique, called the richness method, could prove bounds of the form: either Alice
communicates a bits, or Bob communicates b bits (in total over all messages). By converting
a data structure with cell-probe complexity t into a communication protocol, Alice will
communicate t lgS bits, and Bob will communicate t · w bits. Thus, we obtain the lower
bound t ≥ min{ a

lgS
, b
w
}. Typically, the b values in such proofs are extremely large, and the

minimum is given by the first term. Thus, the lower bound is t ≥ a/ lgS, or equivalently
S ≥ 2a/t.

The richness method is usually used for “hard” problems, like nearest neighbor in high
dimensions, where we want to show a large (superpolynomial) lower bound on the space.
The bounds we can prove, having form S ≥ 2a/t, are usually very interesting for constant
query time, but they degrade very quickly with larger t.

The problems that were analyzed via the richness method were:

• partial match (searching with wildcards), by Borodin, Ostrovsky, and Rabani [25] in
STOC’99, and by Jayram, Khot, Kumar, and Rabani [64] in STOC’03.

• exact near neighbor search, by Barkol and Rabani [20] in STOC’00. Note that there
exists a reduction from partial match to exact near neighbor. However, the bounds for
partial match were not optimal, and Barkol and Rabani chose to attack near neighbor
directly.

• deterministic approximate near neighbor, by Liu [69].

17

1.3 Our Contributions

In our work, we attack all the fronts of cell-probe lower bounds described above.

1.3.1 The Epoch Barrier in Dynamic Lower Bounds

As the natural applications of the chronogram technique were being exhausted, the main bar-
rier in dynamic lower bounds became the chronogram technique itself. By design, the epochs
have to grow at a rate of at least Ω(tu), which means that the large trade-off that can be
shown is tq = Ω(lg n/ lg tu), making the largest possible bound max{tu, tq} = Ω(lg n/ lg lg n).

This creates a rather unfortunate gap in our understanding, since upper bounds of O(lg n)
are in abundance: such bounds are obtained via binary search trees, which are probably the
single most useful idea in dynamic data structures. For example, the well-studied partial
sums problem had an Ω(lg n/ lg lg n) lower bound from the initial paper of Fredman and
Saks [51], and this bound could not be improved to show that binary search trees are optimal.

In 1999, Miltersen [72] surveyed the field of cell-probe complexity, and proposed sev-
eral challenges for future research. Two of his three “big challenges” asked to prove an
ω(lg n/ lg lg n) lower bound for any dynamic problem in the cell-probe model, respectively
an ω(lg n) lower bound for any problem in the bit-probe model (see §1.3.2). Of the remaining
four challenges, one asked to prove Ω(lg n) for partial sums.

These three challenges are solved in our work, and this thesis. In joint work with Erik
Demaine appearing in SODA’04 [84], we introduced a new technique for dynamic lower
bounds, which could prove an Ω(lg n) lower bound for the partial sums problem. Though
this was an important 15-year old open problem, the solution turned out to be extremely
clean. The entire proof is some 3 pages of text, and includes essentially no calculation.

In STOC’04 [83], we augmented our technique through some new ideas, and obtained
Ω(lg n) lower bounds for more problems, including an instance of list manipulation, dynamic
connectivity, and dynamic trees. These two publications were merged into a single journal
paper [86].

The logarithmic lower bounds are described in Chapter 3. These may constitute the
easiest example of a data-structural lower bound, and can be presented to a large audience.
Indeed, our proof has been taught in a course by Jeff Erickson at the University of Illinois at
Urbana and Champaign, and in a course co-designed by myself and Erik Demaine at MIT.

1.3.2 The Logarithmic Barrier in Bit-Probe Complexity

The bit-probe model of computation is an instantiation of the cell-probe model with cells of
w = 1 bit. While this lacks the realism of the cell-probe model with w = Ω(lg n) bits per
cell, it is a clean theoretical model that has been studied often.

In this model, the best dynamic lower bound was Ω(lg n), shown by Miltersen [74]. In
his survey of cell-probe complexity [72], Miltersen lists obtaining an ω(lg n) bound as one of
the three “big challenges” for future research.

18

We address this challenge in our joint work with Tarniţǎ [87] appearing in ICALP’05.
Our proof is based on a surprising discovery: we present a subtle improvement to the classic
chronogram technique of Fredman and Saks [51], which, in particular, allows it to prove
logarithmic lower bounds in the cell-probe model. Given that the chronogram technique was
the only known approach for dynamic lower bounds before our work in 2004, it is surprising
to find that the solution to the desired logarithmic bound has always been this close.

To summarize our idea, remember that in the old epoch argument, the information
revealed by epochs 1, . . . , i− 1 about epoch i was bounded by the number of cells written in
these epochs. We will now switch to a simple alternative bound: the number of cells read
during epochs 1, . . . , i−1 and written during epoch i. This doesn’t immediately help, since all
cell reads from epoch i−1 could read data from epoch i, making these two bounds identical.
However, one can randomize the epoch construction, by inserting the query after a random
number of updates. This randomization “smoothes” out the distribution of epochs from
which cells are read, i.e. a query reads O(tq/ logr n) cells from every epoch, in expectation over
the randomness in the epoch construction. Then, the O(ri−1) updates in epochs 1, . . . , i− 1
only read O(ri−1 · tu/ logr n) cells from epoch i. This is not enough information if r �
tu/ logr n = Θ(tu/tq), which implies tq = Ω(logr n) = Ω(lg n/ lg tu

tq
). From this, it follows

that max{tu, tq} = Ω(lg n).

Our improved epoch technique has an immediate advantage: it is the first technique that
can prove a bound for the regime tu < tq. In particular, we obtain a tight update/query
trade-off for the partial sums problem, whereas previous approaches could only attack the
case tu > tq. Furthermore, by carefully using the new lower bound in the regime tu < tq,
we obtain an Ω

(
(lgn

lg lgn
)2
)

lower bound in the bit-prove model. This offers the highest known
bound in the bit-probe model, and answers Miltersen’s challenge.

Intuitively, performance in the bit-probe model should typically be slower by a lg n factor
compared to the cell-probe model. However, our Ω̃(lg2 n) bound in the bit-probe world is

far from an echo of an Ω̃(lg n) bound in the cell-probe world. Indeed, Ω(lgn
lg lgn

) bounds in the
cell-probe model have been known since 1989, but the bit-probe record has remained just
the slightly higher Ω(lg n). In fact, our bound is the first to show a quasi-optimal Ω̃(lg n)
separation between bit-probe complexity and the cell-probe complexity, for superconstant
cell-probe complexity.

Our improved epoch construction, as well as our bit-probe lower bounds, are presented
in Chapter 4.

1.3.3 The Communication Barrier in Static Complexity

All bounds for static data structures were shown by transforming the cell-probe algorithm
into a communication protocol, and proving a communication lower bound for the problem
at hand, either by round elimination, or by the richness method.

Intuitively, we do not expect this relation between cell-probe and communication com-
plexity to be tight. In the communication model, Bob can remember past communication,
and may answer new queries based on this. Needless to say, if Bob is just a table of cells, he

19

cannot “remember” anything, and his responses must be a function of Alice’s last message
(i.e. the address being probed).

The most serious consequence of the reduction to communication complexity is that the
lower bounds are insensitive to polynomial changes in the space S. For instance, going from
space S = O(n3) to space S = O(n) only translates into a change in Alice’s message size by
a factor of 3. In the communication game model, this will increase the number of rounds
by at most 3, since Alice can break a longer message into three separate messages, and Bob
can remember the intermediate parts.

Unfortunately, this means that communication complexity cannot be used to separate
data structures of polynomial space, versus data structures of linear space. By contrast, for
many natural data-structure problems, the most interesting behavior occurs close to linear
space. In fact, when we consider applications to large data bases, the difference between
space O(n3) and space O(n polylog n) is essentially the difference between interesting and
uninteresting solutions.

In our joint work with Mikkel Thorup [89] appearing in STOC’06, we provided the first
separation between data structures of polynomial size, and data structures of linear size. In
fact, our technique could prove an asymptotic separation between space Θ(n1+ε) and space
n1+o(1), for any constant ε > 0.

Our idea was to consider a communication game in which Alice holds k independent
queries to the same database, for large k. At each step of the cell-probe algorithm, these
queries need to probe a subset of at most k cells from the space of S cells. Thus, Alice
needs to send O(lg

(
S
k

)
) = O(k lg S

k
) bits to describe the memory addresses. For k close

to n, and S = n1+o(1), this is asymptotically smaller than k lgS. This means that the
“amortized” complexity per query is o(lgS), and, if our lower bound per query is as high
as for a single query, we obtain a better cell-probe lower bound. A result in communication
complexity showing that the complexity of k independent problems increases by a factor of
Ω(k) compared to one problem is called a direct sum result.

In our paper [89], we showed a direct sum result for the round elimination lemma. This
implied an optimal lower bound for predecessor search, finally closing this well-studied prob-
lem. Since predecessor search admits better upper bounds with space O(n2) than with space
O(n polylog n), a tight bound could not have been obtained prior to our technique breaking
the communication barrier.

For our direct sum version of round elimination, and our improved predecessor bounds,
the reader is referred to Chapter 9.

1.3.4 Richness Lower Bounds

A systematic improvement. A broad impact of our work on the richness method was
to show that the cell-probe consequence of richness lower bounds had been systematically
underestimated: any richness lower bound implies better cell-probe lower bounds than what
was previously thought, when the space is n1+o(1). In other words, we can take any lower
bound shown by the richness method, and obtain a better lower bound for small-space data
structures by black-box use of the old result.

20

Remember that proving Alice must communicate Ω(a) bits essentially implies a cell-probe
lower bound of t = Ω(a/ lgS). By our trick for beating communication complexity, we will
consider k = O(n/ poly(w)) queries in parallel, which means that Alice will communicate
O(t · k lg S

k
) = O(tk lg Sw

n
) bits in total.

Our novel technical result is a direct sum theorem for the richness measure: for any
problem f that has an Ω(a) communication lower bound by richness, k independent copies of
f will have a lower bound of Ω(k ·a). This implies that t·k lg Sw

n
= Ω(k ·a), so t = Ω(a/ lg Sw

n
).

Our new bounds is better than the classic t = Ω(a/ lgS), for space n1+o(1). In particular, for
the most important case of S = O(n polylog n) and w = O(polylog n), our improved bound
is better by Θ(lg n/ lg lg n).

Our direct sums theorems for richness appeared in joint work with Mikkel Thorup [88]
at FOCS’06, and are described in Chapter 5.

Specific problems. Our work has also extended the reach of the richness method, proving
lower bound for several interesting problem.

One such problem is lopsided set disjointness (LSD), in which Alice and Bob receive
sets S and T (|S| � |T |), and they want to determine whether S ∩ T = ∅. In their
seminal work from STOC’95, Miltersen et al. [73] proved a deterministic lower bound for
lopsided set disjointness, and left the randomized case as an “interesting open problem.”
The first randomized bounds were provided in our joint work with Alexandr Andoni and
Piotr Indyk [16], appearing in FOCS’06, and strengthened in our (single-author) paper [82]
appearing in FOCS’08. Some of these lower bounds are described in Chapter 5.

Traditionally, LSD was studied for its fundamental appeal, not because of data-structural
applications. However, in [82] we showed a simple reduction from LSD to partial match.
Despite the work of [73, 25, 64], the best bound for partial match was suboptimal, showing
that Alice must communicate Ω(d/ lg n) bits, where d is the dimension. Our reduction,
coupled with our LSD result, imply an optimal bound of Ω(d) on Alice’s communication,
closing this issue. The proof of our reduction appears in Chapter 6.

Since partial match reduces to exact near neighbor, we also obtain an optimal communi-
cation bound for that problem. This supersedes the work of [20], who had a more complicated
proof of a tight lower bound for exact near neighbor.

Turning our attention to (1+ε)-approximate nearest neighbor, we find the existing lower
bounds unsatisfactory. The upper bounds for this problem use nO(1/ε2) space, by dimension-
ality reduction. On the other hand, the lower bounds of [26, 27] allowed constant ε and
polynomial space, proving a tight time lower bound of Ω(lg lg d/ lg lg lg d) in d dimensions.
However, from a practical perspective, the main issue with the upper bound is the prohibitive
space usage, not the doubly logarithmic query time. To address this concern, our paper with
Andoni and Indyk [16] proved a communication lower bound in which Alice’s communication
is Ω(1

ε2
lg n) bits. This shows that the space must be nΩ(1/(tε2)), for query time t. Our lower

bound is once more by reduction from LSD, and can be found in Chapter 6.

Finally, we consider the near neighbor problem in the `∞ metric, in which Indyk [61] had
shown an exotic trade-off between approximation and space, obtaining O(lg lg d) approxi-

21

mation for any polynomial space. In our joint work with Andoni and Croitoru [13], we gave
a very appealing reformulation of Indyk’s algorithm in information-theoretic terms, which
made his space/approximation trade-off more natural. Then, we described a richness lower
bound for the problem, showing that this space/approximation trade-off is optimal. These
results can be found in Chapter 8.

1.3.5 Lower Bounds for Range Queries

By far, the most exciting consequence of our technique for surpassing the communication
barrier is that it opens the door to tight bounds for range queries. Such queries are some
of the most natural examples of what computers might be queried for, and any statement
about their importance is probably superfluous. The introductory lecture of any database
course is virtually certain to contain an example like “find employees with a salary between
70000 and 95000, who have been hired between 1998 and 2001.”

Orthogonal range queries can be solved in constant time if polynomial space is allowed,
by simply precomputing all answers. Thus, any understanding of these problems hinges on
our technique to obtain better lower bounds for space O(n polylog n).

In my papers [81, 82], I prove optimal bounds for range counting in 2 dimensions, stabbing
in 2 dimensions, and range reporting in 4 dimensions. Surprisingly, our lower bounds are
once more by reduction from LSD.

Range counting problems have traditionally been studied in algebraic models. In the
group and semigroup models, each point has an associated weight from an arbitrary commu-
tative (semi)group and the “counting” query asks for the sum of the weights of the points in
the range. The data structure can only manipulate weights through the black-box addition
operator (and, in the group model, subtraction).

The semigroup model has allowed for every strong lower bounds, and nearly optimal
results are known in all dimensions. By contrast, as soon as we allow subtraction (the group
model), the lower bounds are very weak, and we did not even have a good bound for 2
dimensions. This rift between our understanding of the semigroup and stronger models has
a deeper conceptual explanation. In general, semigroup lower bounds hide arguments of a
very geometric flavor. If a value is included in a sum, it can never be taken out again (no
subtraction is available), and this immediately places a geometric restriction on the set of
ranges that could use the cell. Thus, semigroup lower bounds are essentially bounds on
a certain kind of “decomposability” of geometric shapes. On the other hand, bounds in
the group or cell-probe model require a different, information theoretic understanding of
the problem. In the group model, the sum stored in a cell does not tell us anything in
isolation, as terms could easily be subtracted out. The lower bound must now find certain
bottlenecks in the manipulation of information that make the problem hard. Essentially, the
difference in the type of reasoning behind semigroup lower bounds and group/cell-probe lower
bounds is parallel to the difference between “understanding geometry” and “understanding
computation”. Since we have been vastly more successful at the former, it should not come
as a surprise that progress outside the semigroup model has been extremely slow.

Proving good bounds outside the restrictive semigroup model has long been recognized as

22

lopsided set disjointness [82, 16, 73]

reachability oracles
in the butterfly

loses lg lg n

partial match
[82, 88, 64, 25, 73]

(1 + ε)-ANN
in `1, `2

[16, 27, 26]

dyn. marked
ancestor [8]

2D stabbing 3-ANN in `∞
[13, 61]

NN in `1, `2

[82, 88, 20, 25]

worst-case
union-find

[51, 5]

dyn. 1D
stabbing

partial sums
[87, 86, 58, 22, 51]

4D range
reporting

[82]

2D range
counting

[82, 81]

dyn. NN
in 2D [9]

dyn. 2D range
reporting

dyn. graphs
[86, 87, 74, 49, 59]

Figure 1-2: Dashed lines indicate reductions that were already known, while solid lines
indicate novel reductions. For problems in bold, the results of this thesis are stronger than
what was previously known. Citations indicate work on lower bounds.

an important challenge. As early as 1982, Fredman [48] asked for better bounds in the group
model for dynamic range counting. In FOCS’86, Chazelle [31] echoed this, and also asked
about the static case. Our results answer these old challenges, at least in the 2-dimensional
case.

1.3.6 Simple Proofs

An important contribution of our work is to show clean, simple proofs of lower bounds, in
an area of Theoretical Computer Science that is often dominated by exhausting technical
details.

Perhaps the best illustration of this contribution is in Figure 1-2, which shows the lower
bounds that can be obtained by reduction from lopsided set disjointness. (The reader unfa-
miliar with the problems can consult Chapter 2.)

This reduction tree is able to unify a large fraction of the known results in dynamic
data structures and static data structures (both in the case of large space, and for near-
linear space). In many cases, our proofs by reduction considerably simplify the previous
proofs. Putting all the work in a single lower bound has exciting consequences from the
teaching perspective: instead of presenting many different lower bounds (even “simple” ones
are seldom light on technical detail!), we can now present many interesting results through
clean algorithmic reductions, which are easier to grasp.

Looking at the reduction tree, it may seem hard to imagine a formal connection between
lower bounds for such different problems, in such different settings. Much of the magic of our
results lies in considering a somewhat artificial problem, which nonetheless gives the right

23

link between the problems: reachability queries in butterfly graphs. Once we decide to use
this middle ground, it is not hard to give reductions to and from set disjointness, dynamic
marked ancestor, and static 4-dimensional range reporting. Each of these reductions is
natural, but the combination is no less surprising.

These reductions are described in Chapters 6 and 7.

24

Chapter 2

Catalog of Problems

This section introduces the various data-structure problems that we consider throughout
this thesis. It is hoped that the discussion of each topic is sufficiently self-contained, that
the reader can quickly jump to his or her topic of interest.

2.1 Predecessor Search

2.1.1 Flavors of Integer Search

Binary search is certainly one of the most fundamental ideas in computer science — but
what do we use it for? Given a set S with |S| = n values from some ordered universe U , the
following are natural and often-asked queries the can be solved by binary search:

exact search: given some x ∈ U , is x ∈ S?

predecessor search: given some x ∈ U , find max{y ∈ S | y < S}, i.e. the predecessor of
x in the set S.

1D range reporting: given some interval [x, y], report all/one of the points in S ∩ [x, y].

Exact search is ubiquitous in computer science, while range reporting is a natural and
important database query. Though at first sight predecessor search may seem less natural,
it may in fact be the most widely used of the three. Some of its many applications include:

• IP-lookup, perhaps the most important application, is the basic query that must be
answered by every Internet router when forwarding a packet (which probably makes
it the most executed algorithmic problem in the world). The problem is equivalent to
predecessor search [44].

• to make data structures persistent, each cell is replaced with a list of updates. Deciding
which version to use is a predecessor problem.

• orthogonal range queries start by converting any universe U into “rank space” {1, . . . , n}.
The dependence on the universe becomes an additive term in the running time.

• the succinct incarnation of predecessor search is known as the “rank/select problem,”
and it underlies most succinct data structures.

25

• (1 + ε)-approximate near neighbor in any constant dimension (with the normal Eu-
clidean metric) is equivalent to predecessor search [28].

• in the emergency planning version of dynamic connectivity, a query is equivalent to
predecessor search; see our work with Mikkel Thorup [85].

It is possible to study search problems in an arbitrary universe U endowed with a com-
parison operation (the so called comparison model), in which case the Θ(lg n) running time
of binary search is easily seen to be optimal. However, this “optimality” of binary search is
misleading, given that actual computers represent data in some well-specified formats with
bounded precision.

The most natural universe is U = {0, . . . , 2w − 1}, capturing the assumption that values
are arbitrary w-bit integers that fit in a machine word. The standard floating point repre-
sentation (IEEE 754, 1985) was designed so that two w-bit floating point values compare the
same as two w-bit integers. Thus, any algorithm for search queries that applies to integers
carries over to floating point numbers. Furthermore, most algorithms apply naturally to
strings, which can be interpreted as numbers of high, variable precision.

By far, the best known use of bounded precision is hashing. In fact, when one thinks
of exact search queries, the first solution that comes to mind is probably hash tables, not
binary search. Hash tables provide an optimal solution to this problem, at least if we accept
randomization in the construction. Consider the following theorem due to Fredman, Komlós,
and Szemerédi [50]:

Theorem 2.1. There exists a dictionary data structure using O(n) words of memory that
answers exact search queries deterministically in O(1) time. The data structure can be
constructed by a randomized algorithm in O(n) time with high probability.

Dietzfelbinger and Meyer auf der Heide [39] give a dynamic dictionary that implements
queries deterministically in constant time, while the randomized updates run in constant
time with high probability.

By contrast, constant time is not possible for predecessor search. The problem has been
studied intensely in the past 20 years, and it was only in our recent work with Mikkel
Thorup [89, 90] that the optimal bounds were understood. We discuss the history of this
problem in the next section.

One-dimensional range reporting remains the least understood of the three problems. In
our work with Christian Mortensen and Rasmus Pagh [76], we have shown surprising upper
bounds for dynamic range reporting in one dimension, with a query time that is exponentially
faster than the optimal query time for predecessor search. However, there is currently no
lower bound for the problem, and we do not know whether it requires superconstant time
per operation.

2.1.2 Previous Upper Bounds

The famous data structure of van Emde Boas [101] from FOCS’75 can solve predecessor
search in O(lgw) = O(lg lgU) time, using linear space [103]. The main idea of this data

26

structure is to binary search for the longest common prefix between the query and a value
in the database.

It is interesting to note that the solution of van Emde Boas remains very relevant in
modern times. IP look-up has received considerable attention in the networking community,
since a very fast solution is needed for the router to keep up with the connection speed.
Research [44, 36, 102, 1] on software implementations of IP look-up has rediscovered the van
Emde Boas solution, and engineered it into very efficient practical solutions.

In external memory with pages of B words, predecessor search can be solved by B-trees
in time O(logB n). In STOC’90, Fredman and Willard [52] introduced fusion trees, which
use an ingenious packing of multiple values into a single word to simulate a page of size
B = wε. Fusion trees solve predecessor search in linear space and O(logw n) query time.
Since w = Ω(lg n), the search time is always O(lg n/ lg lg n), i.e. fusion trees are always
asymptotically better than binary search. In fact, taking the best of fusion trees and van
Emde Boas yields a search time of O(min{ lgn

lgw
, lgw}) ≤ O(

√
lg n). Variations on fusion trees

include [53, 104, 11, 10], though the O(logw n) query time is not improved.
In 1999, Beame and Fich [21] found a theoretical improvement to van Emde Boas’ data

structure, bringing the search time down to O(lgw
lg lgw

). Combined with fusion trees, this gave

them a bound of O(min { lgn
lgw

, lgw
lg lgw
}) ≤ O(

√
lgn

lg lgn
). Unfortunately, the new data structure

of Beame and Fich uses O(n2) space, and their main open problems asked whether the space
could be improved to (near) linear.

The exponential trees of Andersson and Thorup [12] are an intriguing construction that
uses a predecessor structure for nγ “splitters,” and recurses in each bucket of O(n1−γ) el-
ements found between pairs of splitters. Given any predecessor structure with polynomial
space and query time tq ≥ lgε n, this idea can improve it in a black-box fashion to use O(n)
space and O(tq) query time. Unfortunately, applied to the construction of Beame and Fich,
exponential trees cannot reduce the space to linear without increasing the query to O(lgw).
Nonetheless, exponential trees seem to have generated optimism that the van Emde Boas
bound can be improved.

Our lower bounds, which are joint work with Mikkel Thorup [89, 90] and appear Chap-
ter 9, refute this possibility and answer the question of Beame and Fich in the negative. We
show that for near-linear space, such as space n · lgO(1) n, the best running time is essentially
the minimum of the two classic solutions: fusion trees and van Emde Boas.

2.1.3 Previous Lower Bounds

Ajtai [3] was the first to prove a superconstant lower bound. His results, with a correction
by Miltersen [71], show that for polynomial space, there exists n as a function of w making
the query time Ω(

√
lgw), and likewise there exists w a function of n making the query

complexity Ω(3
√

lg n).
Miltersen et al. [73] revisited Ajtai’s proof, extending it to randomized algorithms. More

importantly, they captured the essence of the proof in an independent round elimination
lemma, which is an important tool for proving lower bounds in asymmetric communication.

27

Beame and Fich [21] improved Ajtai’s lower bounds to Ω(lgw
lg lgw

) and Ω(
√

lgn
lg lgn

) respec-

tively. Sen and Venkatesh [95] later gave an improved round elimination lemma, which
extended the lower bounds of Beame and Fich to randomized algorithms.

Chakrabarti and Regev [27] introduced an alternative to round elimination, the message
compression lemma. As we showed in [89], this lemma can be used to derive an optimal
space/time trade-off when the space is S ≥ n1+ε. In this case, the optimal query time turns
out to be Θ

(
min

{
logw n,

lgw
lg lgS

})
.

Our result seems to have gone against the standard thinking in the community. Sen
and Venkatesh [95] asked whether message compression is really needed for the result of
Chakrabarti and Regev [27], or it could be replaced by standard round elimination. By
contrast, our result shows that message compression is essential even for classic predecessor
lower bounds.

It is interesting to note that the lower bounds for predecessor search hold, by reductions,
for all applications mentioned in the previous section. To facilitate these reductions, the
lower bounds are in fact shown for the colored predecessor problem: the values in S are
colored red or blue, and the query only needs to return the color of the predecessor.

2.1.4 Our Optimal Bounds

Our results from [89, 90] give an optimal trade-off between the query time and the space S.
Letting a = lg S·w

n
, the query time is, up to constant factors:

min



logw n

lg w−lgn
a

lg w
a

lg(a
lgn
· lg w

a)

lg w
a

lg(lg w
a
/ lg lgn

a)

(2.1)

The upper bounds are achieved by a deterministic query algorithm. For any space S, the
data structure can be constructed in time O(S) with high probability, starting from a sorted
list of integers. In addition, our data structure supports efficient dynamic updates: if tq is the
query time, the (randomized) update time is O(tq + S

n
) with high probability. Thus, besides

locating the element through one predecessor query, updates change a minimal fraction of
the data structure.

In the external memory model with pages of B words, an additional term of logB n is
added to (2.1). Thus, our result shows that it is always optimal to either use the standard
B-trees, or ignore external memory completely, and use the best word RAM strategy.

For space S = n · poly(w lg n) and w ≥ (1 + ε) lg n, the trade-off is simplified to:

min
{

logw n, lgw
/

lg
w

lg lg n

}
(2.2)

28

The first branch corresponds to fusion trees. The second branch demonstrates that van Emde
Boas cannot be improved in general (for all word sizes), though a very small improvement
can be made for word size w > (lg n)ω(1). This improvement is described in our paper with
Mikkel Thorup [89].

Our optimal lower bound required a significant conceptual development in the field.
Previously, all lower bounds were shown via communication complexity, which fundamentally
cannot prove a separation between data structures of polynomial size and data structures
of linear size (see Chapter 1). This separation is needed to understand predecessor search,
since Beame and Fich beat the van Emde Boas bound using quadratic space.

The key idea is to analyze many queries simultaneously, and prove a direct-sum version
of the round elimination lemma. As opposed to previous proofs, our results cannot afford to
increase the distributional error probability. Thus, a second conceptual idea is to consider a
stronger model for the induction on cell probes: in our model, the algorithm is allowed to
reject a large fraction of the queries before starting to make probes.

This thesis. Since this thesis focuses of lower bounds, we omit a discussion of the upper
bounds. Furthermore, we want to avoid the calculations involved in deriving the entire trade-
off of (2.1), and keep the thesis focused on the techniques. Thus, we will only prove the lower
bound for the case w = Θ(lg n), which is enough to demonstrate the optimality of van Emde
Boas, and a separation between linear and polynomial space. The reader interested in the
details of the entire trade-off calculation is referred to our publication [89].

In Chapter 9, we first review fusion trees and the van Emde Boas data structure from an
information-theoretic perspective, building intuition for our lower bound. Then, we prove
our direct-sum round elimination for multiple queries, which implies the full trade-off (2.1)
(though, we only include the calculation for w = 3 lg n).

2.2 Dynamic Problems

2.2.1 Maintaining Partial Sums

This problem, often described as “maintaining a dynamic histogram,” asks to maintain an
array A[1 . . n] of integers, subject to:

update(k,∆): modify A[k]← ∆, where ∆ is an arbitrary w-bit integer.

sum(k): returns the “partial sum”
∑k

i=1 A[i].

This problem is a prototypical application of augmented binary search trees (BSTs), which
give an O(lg n) upper bound. The idea is to consider a fixed balanced binary tree with n
leaves, which represent the n values of the array. Each internal node is augmented with a
value equal to the sum of the values in its children (equivalently, the sum of all leaves in the
node’s subtree).

A large body of work in lower bounds has been dedicated to understanding the partial
sums problem, and in fact, it is by far the best studied dynamic problem. This should

29

not come as a surprise, since augmented BSTs are a fundamental technique in dynamic
data structures, and the partial sums problem likely offers the cleanest setting in which this
technique can be studied.

2.2.2 Previous Lower Bounds

The partial-sums problem has been a favorite target for new lower bound ideas since the
dawn of data structures. Early efforts concentrated on algebraic models of computation. In
the semigroup or group models, the elements of the array come from a black-box (semi)group.
The algorithm can only manipulate the ∆ inputs through additions and, in the group model,
subtractions; all other computations in terms of the indices touched by the operations are
free.

In the semigroup model, Fredman [47] gave a tight Ω(lg n) bound. Since additive inverses
do not exist in the semigroup model, an update A[i] ← ∆ invalidates all memory cells
storing sums containing the old value of A[i]. If updates have the form A[i] ← A[i] + ∆,
Yao [107] proved a lower bound of Ω(lg n/ lg lg n). Finally, in FOCS’93, Hampapuram and
Fredman [54] proved an Ω(lg n) lower bound for this version of the problem.

In the group model, a tight bound (including the lead constant) was given by Fredman [48]
for the restricted class of “oblivious” algorithms, whose behavior can be described by matrix
multiplication. In STOC’89, Fredman and Saks [51] gave an Ω(lg n/ lg lg n) bound for the
general case, which remained the best known before our work.

In fact, the results of Fredman and Saks [51] also contained the first dynamic lower
bounds in the cell-probe model. Their lower bound trade-off between the update time tu
and query time tq states that tq = Ω(lg n

/
lg(w+tu+lg n)), which implies that max{tu, tq} =

Ω(lg n
/

lg(w + lg n)).

In FOCS’91, Ben-Amram and Galil [22] reproved the lower bounds of Fredman and Saks
in a more formalized framework, centered around the concepts of problem and output vari-
ability. Using these ideas, they showed [23] Ω(lg n/ lg lg n) lower bounds in more complicated
algebraic models (allowing multiplication, etc).

Fredman and Henzinger [49] reproved the lower bounds of [51] for a more restricted
version of partial sums, which allowed them to construct reductions to dynamic connectivity,
dynamic planarity testing, and other graph problems. Husfeldt, Rauhe, Skyum [59] also
explored variations of the lower bound allowing reduction to dynamic graph problems.

Husfeldt and Rauhe [58] gave the first technical improvement after [51], by proving that
the lower bounds hold even for nondeterministic query algorithms. A stronger improvement
was given in FOCS’98 by Alstrup, Husfeldt, and Rauhe [8], who prove that tq lg tu = Ω(lg n).
While this bound cannot improve max{tu, tq} = Ω(lg n/ lg lg n), it at least implies tq =
Ω(lg n) when the update time is constant.

The partial sums problem has also been considered in the bit-probe model of computation,
where each A[i] is a bit. Fredman [48] showed a bound of Ω(lg n/ lg lg n) for this case. The
highest bound for any dynamic problem in the bit-probe model was Ω(lg n), due to Miltersen
et al. [74].

30

In 1999, Miltersen [72] surveyed the field of cell-probe complexity, and proposed sev-
eral challenges for future research. Two of his three “big challenges” asked to prove an
ω(lg n/ lg lg n) lower bound for any dynamic problem in the cell-probe model, respectively
an ω(lg n) lower bound for any problem in the bit-probe model. Of the remaining four
challenges, one asked to prove Ω(lg n) for partial sums, at least in the group model of com-
putation.

2.2.3 Our Results

In our work with Erik Demaine [86, 87], we broke these barriers in cell-probe and bit-probe
complexity, and showed optimal bounds for the partial sums problem.

In Chapter 3, we describe a very simple proof of an Ω(lg n) lower bound for partial sums,
finally showing that the natural upper bound of binary search trees is optimal. The cleanness
of this approach (the proof is roughly 3 pages of text, involving no calculation) stands in
sharp contrast to the 15 years that the problem remained open.

In Chapter 4, we prove a versatile trade-off for partial sums, via a subtle variation to
the classic chronogram technique of Fredman and Saks [51]. This trade-off is optimal in
the cell-probe model, in particular reproving the Ω(lg n) lower bound. It is surprising to
find that the answer to Miltersen’s big challenges consists of a small variation of what was
already know.

Our trade-off also allows us to show an Ω(lg n/ lg lg lg n) bound for partial sums in the
bit-probe model, improving on Fredman’s 1982 result [48]. Finally, it allows us to show an

Ω
((

lgn
lg lgn

)2)
lower bound in the bit-probe model, for dynamic connectivity. This gives a new

record for lower bounds in the bit-probe model, addressing Miltersen’s challenge to show an
ω(lg n) bound.

Intuitively, performance in the bit-probe model should typically be slower by a lg n factor
compared to the cell-probe model. However, our Ω̃(lg2 n) bound in the bit-probe world is

far from an echo of an Ω̃(lg n) bound in the cell-probe world. Indeed, Ω(lgn
lg lgn

) bounds in the
cell-probe model have been known since 1989, but the bit-probe record has remained just
the slightly higher Ω(lg n). In fact, our bound is the first to show a quasi-optimal Ω̃(lg n)
separation between bit-probe complexity and the cell-probe complexity, for superconstant
cell-probe complexity.

2.2.4 Related Problems

List manipulation. In practice, one often seeks a cross between linked lists and array:
maintaing a collection of items under typical linked-list operations, with the additional in-
dexing operation (that is typical of array). We can consider the following natural operations,
ignoring all details of what constitutes a “record” (all manipulation is done through pointers
to black-box records):

insert(p, r): insert record r immediately after record p in its list.

delete(r): delete record r from its list.

31

link(h1, h2): concatenate two lists, identified by their head records h1 and h2.

cut(h, p): split the list with head at h into two lists, the second beginning from record p.

index(k, h): return a pointer to the k-th value in the list with header at h.

rank(p): return the rank (position) of record p in its list.

find(p): return the head of the list that contains record p.

All these operations, and many variants thereof, can be solved in O(lg n) time per oper-
ation using augmented binary search trees. For insert/delete updates, the binary search
tree algorithm must be able to maintain balance in a dynamic tree. Such algorithms abound
(consider red-black trees, AVL trees, splay trees, etc). For link/cut, the tree algorithm
must support split and merge operations. Many dynamic trees support these operations
in O(lg n) time, including 2-3-4 trees, AVL trees, splay trees, etc.

It turns out that there is a complexity gap between list manipulation with link/cut
operations, and list manipulation with insert/delete. In the former case, updates can
make large topological changes to the lists, while in the latter, the updates only have a very
local record-wise effect.

If the set of operations includes link, cut, and any of the three queries (including
the minimalist find), we can show an Ω(lg n) lower bound for list manipulation. Thus,
augmented binary search trees give an optimal solution. The lower bound is described in
Chapter 3, and needs a few interesting ideas beyond the partial-sums lower bound.

If the set of updates is restricted to insert and delete (with all queries allowed),
the problem admits an O(lg n/ lg lg n) solution, as proved by Dietz [38]. This restricted
case of list manipulation can be shown equivalent to the partial sums problem, in which
every array element is A[i] ∈ {0, 1}. The original lower bound of Fredman and Saks [51],
as well as our trade-off from Chapter 4 show a tight Ω(lg n/ lg lg n) bound for restricted
partial sums problem. By reduction, this implies a tight bound for list manipulation with
insert/delete.

Dynamic connectivity. Dynamic graph problems ask to maintain a graph under various
operations (typically edge insertions and deletions), and queries for typical graph properties
(connectivity of two vertices, MST, shortest path, etc). This has been a very active area of
research in the past two decades, and many surprising results have appeared.

Dynamic connectivity is the most basic dynamic graph problem. It asks to maintain an
undirected graph with a fixed set of n vertices subject to the following operations:
insert(u, v): insert an edge (u, v) into the graph.

delete(u, v): delete the edge (u, v) from the graph.

connected(u, v): test whether u and v lie in the same connected component.

If the graph is always a forest, Sleator and Tarjan’s classic “dynamic trees” [97] achieve an
O(lg n) upper bound. A simpler solution is given by Euler tour trees [55], which show that
the problem is equivalent to list manipulation. If we maintain the Euler tour of each tree as
a list, then an insert or delete can be translated to O(1) link/cut operations, and the
query can be solved by comparing the results of two find queries.

32

For general graphs, the first to achieve polylogarithmic time per operation were Henzinger
and King [55], who gave an O(lg3 n) running time, using randomization and amortization.
Henzinger and Thorup [56] improve the bound to O(lg2 n). Holm, de Lichtenberg, and
Thorup [57] gave a simple deterministic solution with the same amortized running time,
O(lg2 n). The best known result is by Thorup [99], achieving very close to logarithmic time:
O(lg n · (lg lg n)3). For plane graphs, Eppstein et al. [40] gave an O(lg n) upper bound.

Our results from Chapter 3 imply an Ω(lg n) lower bound for dynamic connectivity, even
in forests and plane graphs. It is easy to show by reductions that our bounds hold for many
dynamic graph problems, including dynamic MST, dynamic planarity testing, etc.

2.3 Range Queries

Range-query problems include some of the most natural and fundamental problems in com-
putational geometry and databases. The goal is to represent a set of n objects in d dimen-
sions, such that certain queries about objects that intersect a given range can be answered
efficiently. In this line of research, the dimension d is a small constant (2, 3, 4, . . .), and
constants in the O-notation may depend on d.

Usual choices for the query include counting the number of points in the range, reporting
all points in the range, and existential queries (test whether the range contains any point,
or is empty).

By far, the most common instantiation of the problem is when the n objects are points,
and the range is an axis-parallel rectangle [a1, b1] × · · · × [ad, bd]. This problem is usually
termed orthogonal range queries, though the choice is so common that talking about range
queries without further qualification usually means orthogonal range queries. Such queries
are some of the most natural examples of what computers might be queried for. The intro-
ductory lecture of any database course is virtually certain to contain an example like “find
employees with a salary between 70000 and 95000, who have been hired between 1998 and
2001.”

An important special case of orthogonal range queries consists of dominance queries,
where query rectangles have the form [0, b1]× · · · × [0, bd]. One may also consider ranges of
a more geometric flavor, including half-spaces, simplices, balls etc.

A second common instantiation of range queries are the stabbing problems, where that
query asks for the objects stabbed by a point. Typically, the objects are axis-aligned boxes.

Range queries have been studied intensively, and an overview is well beyond the scope of
this work. Instead, we refer the reader to a survey by Agarwal [2]. Below, we discuss mainly
the known lower bounds, as well as our new results.

General flavor. The general flavor of all upper bound results is given by that standard use
of range trees. This idea can raise a d-dimensional solution to a solution in d+1 dimensions,
paying a factor of roughly O(lg n) in time and space. It is generally believed that this
cost for each additional the dimension is optimal. Unfortunately, we cannot prove optimal
lower bounds for large d, since current lower bound techniques cannot show superlogarithmic

33

bounds in the cell-probe model. Then, it remains to ask about optimal bounds for small
dimension.

Another artifact of our slow progress on lower bounds is that we cannot separate space
S from, say, space S · lg n in the cell-probe model. Thus, while it would be interesting to
show that the space needs to grow with the dimension, all work has concentrated on showing
growth in the time bound. For static lower bounds, one just assumes that the space is an
arbitrary O(n · polylog n).

There is also a question about the universe of the coordinate values. Using a predecessor
structure for each of the d coordinates, it is possible to reduce all coordinates to rank space,
{1, . . . , n}. Thus, the bounds only depend additively on the original universe.

On the other hand, colored predecessor search can be reduced to essentially any range
query, including dominance range reporting in 2 dimensions. Thus, the complexity of range
queries must depend additively on the predecessor complexity. Since the predecessor bound
is well understood (see §2.1), we will eliminate this noise from the bounds, and assume all
coordinate values are originally in the range {1, . . . , n}. In almost all cases, the predecessor
bound is a asymptotically smaller, so the additional term is inconsequential anyway.

2.3.1 Orthogonal Range Counting

As mentioned before, these queries ask to count the points inside a range [a1, b1]×· · ·×[ad, bd].
As with the partial sums problem, range counting has been traditionally studied in algebraic
models. In the group and semigroup models, each point has an associated weight from
an arbitrary commutative (semi)group and the “counting” query asks for the sum of the
weights of the points in the range. The data structure can only manipulate weights through
the black-box addition (and, in the group model, subtraction), and must work for any choice
of the (semi)group. The running time of a query is the number of algebraic operations
performed. Any other computation, i.e. planning algebraic operations based on coordinates,
is free.

The semigroup model has allowed for every strong lower bounds. As early as 1981, Fred-
man [47] showed that dynamic range reporting (with insert and delete operations) has a
lower bound of Ω(lgd n) in the semigroup model. The delete operation is particularly con-
venient for lower bound in the semigroup model, because any memory cell storing a sum that
contains the deleted element in now entirely useless (there is no way to subtract the deleted
element). With only inserts allowed, Yao [107] showed a lower bound of Ω(lg n/ lg lg n)
for dimension d = 1. This was significantly strengthened by Chazelle [31], who showed
a dynamic lower bound of Ω

(
(lg n/ lg lg n)d

)
in d dimensions, and a static lower bound of

Ω
(
(lg n/ lg lg n)d−1

)
.

In recent years, different types of nonorthogonal ranges were analyzed in the semigroup
model, and very strong lower bounds were shown. See, for instance, the survey of Agarwal [2].

By contrast, the lower bounds in the group model have remained quite weak. Not only
do known lower bounds fail to grow appropriately with the dimension, but we cannot even
get satisfactory bounds in, say, 2 dimensions. No static lower bound had been proved before
our work, perhaps with the exception of a result by Chazelle [32]. This result states that for

34

n input points and n query ranges in 2D, the offline problem takes Ω(n lg lg n) time. This
implies that any static data structure that can be constructed in o(n lg lg n) time, requires
query time Ω(lg lg n) — a result that is exponentially weaker than the upper bound.

The group/semigroup gap. Why is there such a rift between our lower-bound abilities
in the semigroup and stronger models? In general, semigroup lower bounds hide arguments
of a very geometric flavor. To see why, note than when a value is included in a sum, it can
never be taken out again (no subtraction is available). In particular, if a the sum stored in
one cell includes an input point, this immediately places a geometric restriction on the set
of ranges that could use the cell (the range must include the input point). Thus, semigroup
lower bounds are essentially bounds on a certain kind of “decomposability” of geometric
shapes.

On the other hand, bounds in the group or cell-probe model require a different, informa-
tion theoretic understanding of the problem. In the group model, the sum stored in a cell
does not tell us anything, as terms could easily be subtracted out. The lower bound must
now find certain bottlenecks in the manipulation of information that make the problem hard.
On the bright side, when such bottlenecks were found, it was generally possible to use them
both for group-model lower bounds (arguing about dimensionality in vector spaces), and for
cell-probe lower bounds (arguing about entropy).

Philosophically speaking, the difference in the type of reasoning behind semigroup lower
bounds and group/cell-probe lower bounds is parallel to the difference between “understand-
ing geometry” and “understanding computation”. Since we have been vastly more successful
at the former, it should not come as a surprise that progress outside the semigroup model
has been extremely slow.

As one might expect, proving good bounds outside the restrictive semigroup model has
been recognized as an important challenge for a long time. As early as 1982, Fredman [48]
asked for better bounds in the group model for dynamic range counting. In FOCS’86,
Chazelle [31] echoed this, and also asked about the static case.

Our results. We address the challenges of Fredman and Chazelle, and obtain an almost
perfect understanding the range counting in 2 dimensions. See Table 2.1 for a summary of
the known and new results.

The upper bounds have been stated in a variety of sources; see e.g. [31]. The following
theorems give formal statements for our lower bounds. We note that the trade-offs we obtain
are very similar to the ones known in the semigroup model. The space/time trade-offs are
known to be tight for space Ω(n lg1+ε n). The query/time trade-off is tight for update time
tu = Ω(lg2+ε n). Lower bounds are shown for a fixed set of input points in [n]2, and dominance
queries.

Theorem 2.2. In the group model, a static data structure of size n ·σ must take Ω(lgn
lg σ+lg lgn

)
expected time for dominance counting queries.

Theorem 2.3. In the cell-probe model with w-bit cells, a deterministic static data structure
of size n · σ must take Ω(lgn

lg σ+lgw
) time for dominance counting queries.

35

Problem Model Lower Bounds Dimension
static semigroup Ω

(
(lg n/ lg lg n)d−1

)
[31]

group Ω(lg lg n) ? [32] d = 2
O
(
(lgn

lg lgn)d−1
)

Ω(lg n/ lg lg n) new d = 2
cell-probe Ω(lg lg n) [90] d = 2

Ω(lg n/ lg lg n) new d = 2
dynamic semigroup, with delete Ω(lgd n) [47]

semigroup, no delete Ω(lg n/ lg lg n) [107] d = 1
O(lgd n) Ω

(
(lg n/ lg lg n)d

)
[31]

Ω(lg n) [54] d = 1
group Ω(lg n/ lg lg n) [51] d = 1

Ω(lg n) [86] d = 1
Ω
(
(lg n/ lg lg n)2

)
new d = 2

Table 2.1: Old and new results for orthogonal range counting. The upper bound for static
data structures assumes O(n polylog n) space. (?) The bound of [32], starred, says that
for n input points and n queries, the offline problem takes Ω(n lg lg n) time.

Theorem 2.4. In the group model, a dynamic data structure which supports updates in
expected time tu requires tq = Ω

(
(lgn

lg tu+lg lgn
)2
)

expected time for dominance counting queries.

Unfortunately, our techniques cannot obtain better bounds in higher dimensions. De-
pending on mood, the reader may view this as a breakthrough (e.g. providing the first
convincingly superconstant bounds for the static case), or as a lucky discovery that moves
the borderline of the big open problem from d = 2 to d = 3. We believe there is truth in
both views.

Another unfortunate limitation is that we cannot obtain an Ω̃(lg2 n) bound in the cell-
probe model.

2.3.2 Range Reporting

As mentioned before, range reporting is the problem of reporting the points in a box [a1, b1]×
· · ·× [ad, bd]. Reporting k points must take Ω(k) time, so, to avoid this technicality, our lower
bounds only deal with the existential range reporting problem (report whether there exists
any point in the range).

Range reporting has enjoyed some attention recently. In FOCS’00, Alstrup, Brodal, and
Rauhe [7] showed how to solve static 2D range reporting in O(lg lg n) time and almost linear
space.

Dynamic range reporting in 2D has a lower bound of Ω(lg n/ lg lg n), as shown by Alstrup,
Husfeldt, and Rauhe [8] in FOCS’98. Their proof goes via the marked ancestor problem,
and dynamic stabbing in 1D; see §2.3.3. Mortensen [75] showed how to obtain a tight
O(lg n/ lg lg n) upper bound in SODA’03.

Note that a (near-)constant running time for static 2D stabbing is natural in retrospect,
since dominance reporting in 2D can be solved in constant time by the famous range mini-

36

mum query (RMQ) results [24]. However, until recently, it seemed safe to conjecture that 3D

range reporting would require Ω̃(lg n) query time for space O(n · polylog n) — that is, that
there is no special trick to play in 3D, and one just has to recurse to range trees to lift the
2D solution into 3D. This is even more reasonable a conjecture, given that the dynamic 2D
problem has a lower bound of Ω(lg n/ lg lg n). Traditionally, dynamic d-dimensional problems
tended to behave like static problems in d+ 1 dimensions.

However, this conjecture was refuted by a recent result of Nekrich [79] from SoCG’07. It
was shown that 3D range reporting can be done in doubly-logarithmic query time, specifically
tq = O(lg2 lg n). Without threatening the belief that ultimately the bounds should grow
by Θ(lg n/ lg lg n) per dimension, this positive result raised the intriguing question whether
further dimensions might also collapse to nearly constant time before this exponential growth
begins.

Four dimensions. In Chapter 7, we show that the 4th dimension will not see a similar
improvement:

Theorem 2.5. A data structure for range reporting in 4 dimensions using space n ·σ in the
cell probe model with w-bit cells, requires query time Ω(lgn

lg(w+σ)
).

For the main case w = O(lg n) and S = O(n · polylog n), the query time must be
Ω(lg n/ lg lg n). This is almost tight, since the result of Nekrich implies an upper bound of
O(lg n lg lg n).

Reachability oracles in butterfly graphs. The natural question that our result stirs
is: why would 4 dimensions be hard, if 3 dimensions turned out to be easy? The question
has a simple, but fascinating answer: reachability oracles in butterfly graphs.

The following problem appears very hard: preprocess a sparse directed graph in less than
n2 space, such that reachability queries (can u be reached from v?) are answered efficiently.
The problem seems to belong to folklore, and we are not aware of any nontrivial positive
results. By contrast, for undirected graphs, many oracles are known.

We show the first lower bound supporting the apparent difficulty of the problem:

Theorem 2.6. A reachability oracle using space nσ in the cell probe model with w-bit cells,
requires query time Ω(lgn

lg(σ+w)
).

The bound holds even if the graph is a subgraph of a butterfly graph, and in fact it is
tight for this special case. If constant time is desired, our bounds shows that the space needs
to be n1+Ω(1). This stands in contrast to undirected graphs, for which connectivity oracles
are easy to implement with O(n) space and O(1) query time. Note however, that our lower
bound is still very far from the conjectured hardness of the problem.

After showing this result, we give a reduction from reachability on butterfly graphs to
static 4D range reporting, which proves the logarithmic complexity gap between 3 and 4
dimensions. These results are describe in Chapter 7.

37

Reporting in 2 dimensions. As mentioned already, in FOCS’00, Alstrup, Brodal, and
Rauhe [7] showed how to solve static 2D range reporting in O(lg lg n) time and almost linear
space. This raises the question whether the query time can be reduced to constant. In
the case of dominance queries, it can indeed by made O(1) using range minimum queries.
However, in Chapter 9, we show that:

Theorem 2.7. A data structure for 2-dimensional range reporting in rank space [n]2, using
memory O(n ·polylog n) in the cell-probe model with cells of O(lg n) cells, requires Ω(lg lg n)
query time.

To the best of our knowledge, this is the first separation between dominance queries and
the general case. Our lower bound, in fact, hinges on some fairly deep developments in lower
bounds for predecessor search: it relies on our lower bounds for the direct sum of predecessor
problems.

2.3.3 Orthogonal Stabbing

A dual of range queries is stabbing : preprocess a set of n boxes of the form [a1, b1] × · · · ×
[ad, bd], such that we can quickly find the box(es) containing a query point.

Stabbing is a very important form of classification queries. For instance, network routers
have rules (access control lists) applying to packets coming from some IP range, and heading
to another IP range. A query is needed for every packet passing through the router, making
this a critical problem. This application has motivated the following theoretically-minded
papers [100, 44, 17, 41], as well as a significant body of practically-minded ones.

Another important application of stabbing is method dispatching, in experimental object
oriented languages that (unlike, say, Java and C++) allow dynamic dispatching on more
arguments than the class. This application has motivated the following theoretically-minded
papers [78, 6, 45, 46], as well as a number of practically-minded ones.

Previous results. Static stabbing in one dimension can be solved easily by predecessor
search (after locating the query among the interval end-points, you can determined the
stabbed interval in constant time). For the sake of a lower bound, one can also obtain the
inverse reduction: colored predecessor search reduces to stabbing (add an interval for each
red point, and its next blue point; the query stabs an interval iff its predecessor is red).

Dynamic stabbing in one dimension is as hard as the marked ancestor problem of Alstrup,
Husfeldt, and Rauhe [8] in FOCS’98. In this problem, we are to maintain a complete tree of
degree b and depth d, in which vertices have a mark bit. The updates may mark or unmark
a vertex. The query is given a leaf v, and must determine whether the path from the root
to v contains any marked node.

Marked ancestor reduces to dynamic stabbing in 1D, by associating each vertex with an
interval extending from the leftmost to the rightmost leaf in its subtree. Marking a node
adds the interval to the set, and unmarking removes it. Then, an ancestor of a leaf is marked
iff the leaf stabs an interval currently in the set.

38

Alstrup et al. [8] showed a lower bound trade-off for the marked ancestor problem, stating
that tq = Ω(lg n/ lg(w + tu)). In particular, max{tq, tu} = Ω(lg n/ lg lg n) for word size
w = O(polylog n), and this bound carries over to dynamic range stabbing in 1D. A tight
upper bound for range stabbing is obtained by Thorup [100] in STOC’03.

Our results. We show the first superconstant lower bounds for static stabbing in 2-
dimensions, which is the application relevant to routers, and arguably the most frequently
needed case of multimethod dispatching.

Theorem 2.8. A data structure for orthogonal range stabbing in 2 dimensions using space
n · σ in the cell probe model with w-bit cells, requires query time Ω(lgn

lg(σw)
).

Our bound is tight, matching the upper bound of [30]. Our bound holds by reduction
from reachability oracles in butterfly graphs; see §2.3.2.

Reductions. It is easy to see that stabbing in d dimensions reduces to range reporting
in 2d dimensions, since boxes can be expressed as 2d-dimensional points. Thus, our lower
bound for 2D stabbing immediately implies our lower bound for 4D reporting.

Existential range stabbing in 2D also reduces to (weighted) range counting in 2D by the
following neat trick. We replace a rectangle [a1, b1]× [a2, b2] by 4 points: (a1, b1) and (a2, b2)
with weight +1, and (a1, b2) and (a2, b1) with weight −1. To test whether (q1, q2) stabs a
rectangle, query the sum in the range [0, q1]× [0, q2]. If the query lies inside a rectangle, the
lower-left corner contributes +1 to count. If the query point is outside, the corners cancel
out.

Our lower bounds for stabbing can in fact guarantee that the query never stabs more
than one rectangle. Then, in the above reduction, it suffices to count points mod 2. Thus,
we obtain a lower bound even for the unweighted range counting problem.

2.4 Problems in High Dimensions

2.4.1 Partial Match

Formally, the problem asks to preprocess a data base of n strings in {0, 1}d, and support the
following query: given a pattern in {0, 1, ?}d, determine whether any string in the database
matches this pattern (where ? can match anything).

Since it is defined on the hypercube, the partial match problem is only interesting in very
high dimensions. In fact, partial match is a stylized version of many practically important
queries in high dimensions:

Range queries: Preprocess a set of n points in Rd to answer orthogonal range queries, such
as reporting points in the range [a1, b1] × · · · × [ad, bd]. Partial match can be seen as
a dominance query on the hypercube: double the dimension and apply the following
transformation: 0 7→ 01; 1 7→ 10; ? 7→ 11.

39

Near neighbor in `∞: A natural example of an orthogonal range in high dimensions is the
hypercube, which has the nice feature that dimensions are treated symmetrically. This
defines the near neighbor problem in `∞; see §2.4.3 for a discussion of this problem.

Intersection queries: Preprocess a family of sets F = {S1, . . . , Sd}, where Si ⊆ [n], to
answer the query: given a subcollection of F , is the intersection of those sets empty?
This is one of the main queries in search engines: the set Si is the list of documents
containing word i, and the query asks for a document containing some set of words.

Searching with wild-cards: Preprocess a collection of strings over an alphabet Σ, to
search for query strings in Σ∪{?}, where ? is a wild card matching any letter. Partial
match is the case Σ = {0, 1}.

It should be noted that these problems only degenerate into the partial match problem
in high dimensions; in low dimensions, other considerations are more important. See, for
example, the ample literature of range queries, discussed in §2.3.

The “low-dimensional” version of searching with wild-cards puts a bound k on the num-
ber of ?’s in the string. This problem is considerably less explored than range reporting.
However, a recent break-through result of Cole, Gottlieb and Lewenstein [33] achieved results
reminiscent of range reporting: they use space O(n lgk n) and time O(lgk n · lg lg n), for any
constant k.

Problem status. The first upper bounds for partial match was obtained by Rivest [93],
who showed that the trivial 2d space can be slightly improved when d ≤ 2 lg n. Charikar,
Indyk, and Panigrahy [29] showed that query time O(n/2τ) can be achieved with space

n·2O(d lg2 d/
√
τ/ lgn). This is currently the best known theoretical result, though many heuristic

solutions are used in practical applications.
It is generally conjectured that the problem suffers from the curse of dimensionality. A

fairly plausible conjecture seems to be that there is no constant ε > 0, such that query time
O(n1−ε) can be supported with space poly(m) · 2O(d1−ε).

Partial match has been investigated in the asymmetric communication model (where Alice
holds the query and Bob holds the database), in the hope of obtaining evidence for this curse
of dimensionality. In STOC’95, Miltersen et al. [73] could show an Ω(

√
lg d) cell-probe lower

bound via round elimination. In STOC’99, Borodin, Ostrovsky, and Rabani [25] used the
richness method to show that either the querier sends a = Ω(lg d · lg n) bits, or the database
sends b = Ω(n1−ε) bits, for any ε > 0. In STOC’03, Jayram, Khot, Kumar, and Rabani [64]
significantly strengthened the bound to prove that either Alice sends a = Ω(d/ lg n) bits, or
Bob sends b = Ω(n1−ε) bits.

Our results. In our work [82], and Chapter 6, we give a reduction from lopsided set
disjointness to partial match, showing that:

Theorem 2.9. Let Alice hold a string in {0, 1, ?}d, and Bob hold n strings in {0, 1}d. In
any bounded-error protocol answering the partial match query, either Alice sends Ω(d) bits
or Bob sends Ω(n1−ε) bits, for any constant ε > 0.

40

This improves the best previous bound for Alice’s communication from Ω(d/ lg n) to the
optimal Ω(d).

Our reduction is a simple exercise, and it seems surprising that the connection was not
established before. Notably, Barkol and Rabani [20] gave a difficult lower bound for exact
near neighbor in the Hamming cube, showing a = Ω(d) and b = Ω(n1/8−ε), though it was
well known that partial match reduces to exact near neighbor. This suggests that partial
match was viewed as a “nasty” problem. Our result greatly simplifies their proof, as well as
improving Bob’s communication to Ω(n1−ε).

Theorem 2.9 implies that a decision tree for the partial match problem with predicate size
O(nε) must either have size 2Ω(d), or depth Ω(n1−2ε/d). Thus, the course of dimensionality
is true for decision trees in a very strong form.

By the standard relation between asymmetric communication and cell-probe complexity,
Theorem 2.9 also implies that a data structure with query time t must use space 2Ω(d/t),
assuming the word size is O(n1−ε/t). We normally assume the word size to be O(d), or
maybe dO(1), making the condition w = O(n1−ε/t) essentially trivial. As usual with such
bounds, the cell-probe result is optimal for constant query time, but degrades quickly with
t.

Our direct sum results for richness (see Chapter 6) slightly strengthen the implication of
Theorem 2.9 to t = Ω(d/ lg S·w

n
). This implies, for example, a time lower bound of Ω(d/ lgw)

for space S = O(n · poly(d lg n)), which is of course very far from the upper bounds.

2.4.2 Near Neighbor Search in `1, `2

Nearest neighbor search (NNS) is the problem of preprocessing a collection of n points,
such that we can quickly find the database point closest to a given query point. This is a
key algorithmic problem arising in several areas such as data compression, databases and
data mining, information retrieval, image and video databases, machine learning, pattern
recognition, statistics and data analysis.

The most natural examples of spaces in which NNS can be defined are the `dp norms,

denoting the space <d endowed with the distance ‖x−y‖p =
(∑d

i=1 |xi − yi|p
)1/p

. Significant

attention has been devoted to NNS in the Euclidean norm `2 and the Manhattan norm `1.
We refer the reader to surveys in [14, 96, 94]. Another very important, but less understood
space is `∞, which we discuss in §2.4.3.

Exact NNS is conjectured to suffer from a “curse of dimensionality,” which makes the
bounds grow exponentially with the dimension. For example, two natural solutions for NNS
are:

• answer queries by a linear scan, using linear space and linear query time.

• construct the d-dimensional Voronoi diagram, which uses space nΘ(d), but allows query
time poly(d lg n).

The conjectured curse of dimensionality states that the transition between these two types
of bounds is sharp: it is impossible to achieve O(n1−ε) query time with space no(d).

41

Though many heuristic solutions have been designed for practical instances, from a the-
oretical perspective, the curse of dimensionality has only been overcome by allowing approx-
imation. In the c-approximate nearest neighbor problem, the goal is to return a point which
is at most a factor c farther than the nearest neighbor.

A very clean setup for NNS is the Hamming cube {0, 1}d. In this case, ‖p − q‖H =

‖p − q‖1 =
(
‖p − q‖2

)2
, so a c approximation for `2 is equivalent to a c2 approximation for

`1. Essentially, it suffices to consider the problem in this particular case, since there exist
efficient embeddings of other spaces into the Hamming cube.

Hardness of Exact NNS

Perhaps the strongest evidence for the curse of dimensionality of NNS is a simple reduction
from partial match (see §2.4.1). If the query contains k wildcards, and we map translate
these wildcards into a coordinate value of 1

2
, the nearest distance between the query and

an integral point is k
2

is `1 and
√
k/4 in `2. If the query is matched by a database string,

the string is precisely at this minimum distance. Otherwise, the nearest neighbor is farther
away.

Before our work, communication lower bounds for partial match were not optimal: [64]
only bounded the communication of the querier by Ω(d/ lg n). In STOC’00, Barkol and
Rabani [20] circumvented the partial match problem, and considered exact NNS directly.
They considered the problem in the Hamming cube, and showed that either Alice must
communicate a = Ω(d) bits, or Bob must send b = Ω(n1/8−δ) bits, for any δ > 0. Our result
for partial match (Theorem 2.9) supersedes this result: Bob’s communication is improved to
Ω(n1−δ), and our proof is considerably simpler.

Upper Bounds for Approximate NNS

Solutions to the approximate nearest neighbor problem often go via the c-approximate near
neighbor problem. In this problem, a data structure must be constructed for a given set of
points S, approximation c, and radius r. Given a point q, the near-neighbor query returns:

• a point p ∈ S at distance ‖p− q‖ ≤ c · r; or

• No, if all points p ∈ S are at distance ‖p− q‖ > r.

Note that there is an overlap between the two cases. In the decision version of this
problem, the query returns:

• Yes, if there is a point p ∈ S at distance ‖q − p‖ ≤ r.

• No, if all points p ∈ S are at distance ‖q − p‖ > c · r.
• an unspecified value otherwise.

One can use approximate near neighbor to solve approximate nearest neighbor by con-
structing near-neighbor structures for all r = ci, and doing a binary search for the correct r
at query time.

42

Solutions for approximate NNS attack two ranges of parameters: approximation 1 + ε,
and “large” approximation c (for instance, c = 2).

In the 1 + ε regime, the landmark papers of Kushilevitz, Ostrovsky, and Rabani [67]
and Indyk and Motwani [63] solved the near neighbor problem with space nO(1/ε2) and very
efficient query time. These results demonstrate that exponential dependence on the dimen-
sion can be overcome for any constant approximation, though, of course, the space bound is
only interesting from a theoretical perspective. In some sense, the curse of dimensionality is
replaced by a “curse of approximation.”

The main idea behind these data structures is the dimensionality reduction method. This
can be exemplified by the Johnson-Lindenstrauss lemma, which states for any fixed points
p, q in arbitrary dimension, a projection π on a “random” hyperplane of dimension O(1

ε2
lg 1

δ
)

satisfies (ignoring normalization):

Pr
[
(1− ε)‖p− q‖2 ≤ ‖π(p)− π(q)‖2 ≤ (1 + ε)‖p− q‖2

]
≤ δ

Proofs are given for various notions of a “random hyperplane”.
Thus, the database can be projected to a space of dimension d′ = O(1

ε2
lg n), and the

distance from the query to the nearest neighbor does not change by more than 1+ε with high
probability. After reducing the problem to low dimensions, one can essentially use complete
tabulation to achieve space exponential in the dimension. The idea is to store “all” points
in <d′ within distance 1 from some p ∈ S. To do this, we impose a cubic grid on <d′ , with
each cell having diameter ε. It can be shown [63] that each unit ball in <d′ touches at most
(1/ε)O(d′) grid cells. Therefore, we can afford to store all such cells within the given space
bound.

To answer a query, we simply check if a grid cell containing the query point has been
stored. The query algorithm is extremely efficient: it only needs to apply the projection to
the query, and then look up the resulting point. Thus, the cell-probe complexity is constant.

The paper of Indyk and Motwani [63] also initiated the study of c-approximate near
neighbor, for “large” c. They introduced locality sensitive hashing (LSH), a technique used
in all subsequent work in this regime. By constructing a family of LSH functions with
parameter ρ, one can obtain a data structure with space Õ(n1+ρ) and query time Õ(nρ).
They constructed such a family with ρ = 1/c for the `1 and `2 metric, obtaining a near-

neighbor data structures with space Õ(n1+1/c) and query time Õ(n1/c).
Panigrahy [80] showed how to use LSH functions to obtain data structures with very

efficient query time or near-linear space. In particular, he obtained query time poly(d lg n)

with space n1+O(ρ) = n1+O(1/c), as well as space Õ(n) with query time nO(ρ) = nO(1/c).
Motwani, Naor, and Panigrahy [77] showed a geometric lower bound on the parameter

of LSH functions: in `1, ρ = Ω(1/c), while in `2, ρ = Ω(1/c2). Of course, this does not rule
out data structures using other techniques.

Datar, Immorlica, Indyk, and Mirrokni [34] improved the LSH upper bound for `2 to
some ρ < 1

c
. Finally, Andoni and Indyk [14] showed ρ = 1

c2
+ o(1), asymptotically matching

the lower bound.

43

Unlike the regime of 1 + ε approximations, work in the regime of high approximation has
produced practical data structures (see, for example, the popular E2LSH package of Andoni
and Indyk). Usually, the solution for approximate near neighbor is used as a heuristic filter:
the query scans all points at distance at most c · r from the query (hoping they are few), and
finds the true nearest neighbor.

Lower Bounds for Approximate NNS

Prior to our work, lower bounds for approximate NNS have focused on the difference be-
tween the near-neighbor and the nearest-neighbor problems. If we want constant 1 + ε
approximation and we accept polynomial space as “efficient,” then [67, 63] solve the near
neighbor problem optimally, with constant query time. However, in the Hamming cube, the
nearest neighbor problem will have an O(lg lg d) query time: the query must binary search
for i ≤ log1+ε d, such that the distance to the nearest neighbor is between (1 + ε)i and
(1 + ε)i+1. In STOC’99, Chakrabarti, Chazelle, Gum, and Lvov [26] used round elimination
to show the first lower bound for approximate nearest neighbor. In FOCS’04, Chakrabarti
and Regev [27] slightly improved the upper bound to O(lg lg d/ lg lg lg d), and showed a
matching lower bound.

In our joint work with Alex Andoni and Piotr Indyk [16], we turned to the main cause
of impracticality for 1 + ε approximation: the prohibitive space usage. We considered ap-
proximate near neighbor in the usual asymmetric communication setting, and showed:

Theorem 2.10. Let Alice receive a query q ∈ {0, 1}d and Bob receive a database S of n
points from {0, 1}d, where d = (1

ε
lg n)O(1). In any randomized protocol solving the (1 + ε)-

approximate near neighbor problem, either Alice sends Ω(1
ε2

lg n) bits, or Bob sends Ω(n1−δ)
bits, for any δ > 0.

This theorem is shown by reduction from lopsided set disjointness; a proof can be found
in Chapter 6. As usual, this lower bound implies that for data structures with constant cell-
probe complexity, and for decision trees, the space must be nΩ(1/ε2). Thus, dimensionality
reduction method gives an optimal (but prohibitive) space bound.

Very recently, Talwar, Panigrahy, and Wieder [98] considered the space consumption in
the regime of high approximation. They showed that a data structure with constant query
time requires space n1+Ω(1/c) in the `1 case, and n1+Ω(1/c2) in the `2 case.

Finally, Liu [69] considered the case of approximate NNS when randomization is disal-
lowed. For any constant approximation, he showed that in a deterministic protocol, either
the querier sends a = Ω(d) bits, or the database sends b = Ω(nd) bits. This suggests that, in
absence of randomization, approximate NNS might also suffer from a curse of dimensionality.

2.4.3 Near Neighbor Search in `∞

The `∞ space is dictated by a very natural metric that measures the maximum distance over
coordinates: ‖x−y‖∞ = maxdi=1 |xi−yi|. Though recent years have seen a significant increase

44

in our understanding of high-dimensional nearest neighbor search in `1 and `2 spaces, `∞
remains the odd-man out, with a much less understood, and intriguingly different structure.

In fact, there is precisely one data structure for with provable theoretical guarantees
for NNS in `∞. In FOCS’98, Indyk [61] proved the following unorthodox result: there is
a data structure (in fact, a decision tree) of size O(nρ), for any ρ > 1, which achieves ap-
proximation 4dlogρ log 4de + 1 for NNS in the d-dimensional `∞ metric. The query time is
O(d ·polylog n). For 3-approximation, Indyk can achieve space nlog d+1. Note that in the im-
portant regime of polynomial space, Indyk’s algorithm achieves an uncommon approximation
factor of O(log log d).

Partial match can be reduced to 3-approximate near neighbor in `∞, by applying the
following transformation to each coordinate of the query: 0 7→ −1

2
; ? 7→ 1

2
; 1 7→ 3

2
. Thus, it

is likely that efficient solutions are only possible for approximation c ≥ 3.

Applications of `∞

For some applications, especially when coordinates are rather heterogeneous, `∞ may be a
natural choice for a similarity metric. If the features represented by coordinates are hard
to relate, it is hard to add up their differences numerically, in the sense of `1 or `2 (the
“comparing apples to oranges” phenomenon). One popular proposal is to convert each
coordinate to rank space, and use the maximum rank difference as an indication of similarity.
See for example [42].

However, the most compelling reasons for studying `∞ are extroverted, stemming from
its importance in a theoretical understanding of other problems. For example, many NNS
problems under various metrics have been reduced to NNS under `∞ via embeddings (maps
that preserve distances up to some distortion). A well-known result of Matoušek states that
any metric on n points can be embedded into `∞ with dimension d = O(cn1/c log n) and
distortion 2c − 1. In particular, if we allow dimension n, the embedding can be isometric
(no distortion). Of course, this general guarantee on the dimension is too high for many
applications, but it suggests that `∞ is a very good target space for trying to embed some
particular metric more efficiently.

Early embeddings into `∞ with interesting dimension included various results for Haus-
dorff metrics [43], embedding tree metrics into dimension O(log n) [68], and planar graphs
metrics into dimension O(log n) [66] (improving over [91]).

More recently, embeddings have been found into generalizations of `∞, namely product
spaces. For a metric M, the max-product over k copies of M is the space Mk with the
distance function d∞,M(x, y) = maxki=1 dM(xi, yi), where x, y ∈Mk. Indyk [62] has extended
his original NNS algorithm from `∞ to max-product spaces, thus an algorithm for the Frechet
metric.

In current research, it was shown by Andoni, Indyk, and Krauthgamer [15] that algo-
rithms for max-product spaces yield (via a detour through sum-product spaces) interesting
upper bounds for the Ulam metric and the Earth-Mover Distance. By embedding these met-
rics into (iterated) sum-products, one can achieve approximations that are provably smaller
than the best possible embeddings into `1 or `2.

45

Thus, the bottleneck in some of the best current algorithms for Frechet, Ulam and EMD
metrics is the `∞ metric. In particular, Indyk’s unusual log-logarithmic approximation for
polynomial space carries over to these metrics.

Our Results

The unusual structure of `∞ NNS (as evidenced by an uncommon approximation result)
and the current developments leading to interesting applications plead for a better under-
standing of the problem. The reduction from partial match to NNS with approximation
better than 3 does not explain the most interesting feature of the problem, namely the
space/approximation trade-off. It also leaves open the most interesting possibility: a con-
stant factor approximation with polynomial space. (It appears, in fact, that researchers were
optimistic about such an upper bound being achievable [60].)

In our joint work with Alex Andoni and Dorian Croitoru [13], presented in Chapter 8,
we show the following lower bound for the asymmetric communication complexity of c-
approximate NNS in `∞:

Theorem 2.11. Assume Alice holds a point q, and Bob holds a database D of n points in
d dimensions. Fix δ > 0, and assume d satisfies Ω(lg1+δ n) ≤ d ≤ o(n). For any ρ > 10,
define c = Θ(O(logρ log2 d) > 3.

In any deterministic protocol solving the c-approximate near neighbor problem in `∞,
either Alice sends Ω(ρ lg n) bits, or Bob sends Ω(n1−δ) bits.

Our lower bound stems from a new information-theoretic understanding of Indyk’s algo-
rithm, also presented in Chapter 8. We feel that this conceptual change allows for a cleared
explanation of the algorithm, which may be of independent interest.

Note that our lower bound is tight in the communication model, by Indyk’s algorithm.
As usual, the communication bound implies that for data structures with constant cell-probe
complexity, as well as for decision trees of depth O(n1−δ), the space must be nΩ(ρ). Since
Indyk’s result is a deterministic decision tree with depth O(d · polylog n), we obtain an
optimal trade-off between space and approximation, at least in the decision tree model.

This suggests that Indyk’s unusual space/approximation trade-off, in particular the
Θ(lg lg d) approximation with polynomial space, is in fact inherent to NNS in `∞.

46

Chapter 3

Dynamic Ω(lg n) Bounds

In this chapter, we prove our first lower bounds: we show that the partial sums and dynamic
connectivity problems require Ω(lg n) time per operation. We introduce the proof technique
using the partial sums problem; dynamic connectivity requires two additional tricks, de-
scribed in §3.6 and §3.7. The proofs are surprisingly simple and clean, in contrast to the
fact that proving any Ω(lg n) bound was a well-known open problem for 15 years before our
paper [86].

3.1 Partial Sums: The Hard Instance

It will pay to consider the partial sums problem in a more abstract setting, namely over
an arbitrary group G. Remember that the problem asked to maintain an array A[1 . . n],
initialized to zeroes (the group identity), under the following operations:
update(k,∆): modify A[k]← ∆, where ∆ ∈ G.

sum(k): returns the partial sum
∑k

i=1 A[i].

Our proof works for any choice of G. In the cell-probe model with w-bit cells, the most
natural choice of G is Z/2wZ, i.e. integer arithmetic modulo 2w. In this case, the argument
∆ of an update is a machine word. Letting δ = lg |G|, our proof will show that any data
structure requires an average running time of Ω(δ

w
·n lg n) to execute a sequence of n updates

and n queries chosen from a particular distribution. If δ = w, we obtain an amortized Ω(lg n)
bound per operation.

The hard instance is described by a permutation π of size n, and a sequence 〈∆1, . . . ,∆n〉 ∈
Gn. Each ∆i is chosen independently and uniformly at random from G; we defer the choice
of π until later. For t from 1 to n, the hard instance issues two operations: the query
sum(π(t)), followed by update(π(t),∆t). We call t the “time,” saying, for instance, that
sum(π(t)) occurs at time t.

A very useful visualization of an instance is as a two-dimensional chart, with time on one
axis, and the index in A on the other axis. The answer to a query sum(π(t)) is the sum of
the update points in the rectangle [0, t] × [0, π(t)]; these are the updates which have already
occurred, and affect indices relevant to the partial sum. See Figure 3-1 (a).

47

(a)

time

rankupdate(1, ∆1)
sum(1)

update(5, ∆2)
sum(5)

update(3, ∆3)
sum(3)

update(7, ∆4)
sum(7)

update(2, ∆5)
sum(2)

update(6, ∆6)
sum(6)

update(4, ∆7)
sum(4)

update(8, ∆8)
sum(8)

(b)

time

t0

t1

t2

ld R1, Mem[34]
st R2, Mem[41]
st R3, Mem[34]
st R3, Mem[41]
st R9, Mem[74]
ld R7, Mem[34]
st R1, Mem[41]
st R2, Mem[21]
ld R1, Mem[34]
ld R2, Mem[74]
st R5, Mem[21]
ld R4, Mem[41]
ld R1, Mem[34]
st R5, Mem[34]

Figure 3-1: (a) An instance of the partial sums problem. The query sum(6) occurring at
time 6 has the answer ∆1 +∆2 +∆3 +∆5. (b) The execution of a hypothetical cell-probe
algorithm. IT (t0, t1, t2) consists of cells 41 and 74.

3.2 Information Transfer

Let t0 < t1 < t2, where t0 and t2 are valid time values, and t1 is non-integral to avoid ties.
These time stamps define two adjacent intervals of operations: the time intervals [t0, t1] and
[t1, t2]; we will be preoccupied by the interaction between these time intervals. Since the
algorithm cannot maintain state between operations, such interaction can only be caused by
the algorithm writing a cell during the first interval and reading it during the second.

Definition 3.1. The information transfer IT (t0, t1, t2) is the set of memory locations which:

• were read at a time tr ∈ [t1, t2].

• were written at a time tw ∈ [t0, t1], and not overwritten during [tw + 1, tr].

The definition is illustrated in Figure 3-1 (b). Observe that the information transfer is a
function of the algorithm, the permutation π, and the sequence ∆.

For now, let us concentrate on bounding |IT (t0, t1, t2)|, ignoring the question of how
this might be useful. Intuitively, any dependence of the queries from [t1, t2] on updates
from the interval [t0, t1] must come from the information in the cells IT (t0, t1, t2). Indeed,
IT (t0, t1, t2) captures the only possible information flow between the intervals: an update
happening during [t0, t1] cannot be reflected in a cell written before time t0.

Let us formalize this intuition. We break the random sequence
〈
∆1, . . . ,∆n

〉
into the

sequence ∆[t0,t1] =
〈
∆t0 , . . . ,∆bt1c

〉
, and ∆? containing all other values. The values in ∆?

are uninteresting to our analysis, so fix them to some arbitrary ∆?. Let At be the answer
of the query sum(π(t)) at time t. We write A[t1,t2] =

〈
Adt1e, . . . , At2

〉
for the answers to the

queries in the second interval.
In information theoretic terms, the observation that all dependence of the interval [t1, t2]

on the interval [t0, t1] is captured by the information transfer, can be reformulated as saying

48

that the entropy of the observable outputs of interval [t1, t2] (i.e., the query results A[t1,t2])
is bounded by the information transfer:

Lemma 3.2. H
(
A[t1,t2]

∣∣ ∆? = ∆?
)
≤ w + 2w · E

[
|IT (t0, t1, t2)|

∣∣ ∆? = ∆?
]
.

Proof. The bound follows by proposing an encoding for A[t1,t2], since the entropy is upper
bounded by the average length of any encoding. Our encoding is essentially the information
transfer; formally, it stores:
• first, the cardinality |IT (t0, t1, t2)|, in order to make the encoding prefix free.

• the address of each cell; an address is at most w bits in our model.

• the contents of each cell at time t1, which takes w bits per cell.

The average length of the encoding is w + 2w ·E
[
|IT (t0, t1, t2)|

∣∣ ∆? = ∆?
]

bits, as needed.
To finish the proof, we must show that the information transfer actually encodes A[t1,t2]; that
is, we must give a decoding algorithm that recovers A[t1,t2] from IT (t0, t1, t2).

Our decoding algorithm begins by simulating the data structure during the time period
[1, t0 − 1]; this is possible because ∆? is fixed, so all operations before time t0 are known. It
then skips the time period [t0, t1], and simulates the data structure again during the time
period [t1, t2]. Of course, simulating the time period [t1, t2] recovers the answers A[t1,t2], which
is what we wanted to do.

To see why it is possible to simulate [t1, t2], consider a read instruction executed by a
data structure operation during [t1, t2]. Depending on the time tw when the cell was last
written, we have the following cases:
tw > t1: We can recognize this case by maintaining a list of memory locations written during

the simulation; the data is immediately available.

t0 < tw < t1: We can recognize this case by examining the set of addresses in the encoding;
the cell contents can be read from the encoding.

tw < t0: This is the default case, if the cell doesn’t satisfy the previous conditions. The
contents of the cell is determined from the state of the memory upon finishing the first
simulation up to time t0 − 1.

3.3 Interleaves

In the previous section, we showed an upper bound on the dependence of [t1, t2] on [t0, t1];
we now aim to give a lower bound. Refer to the example in Figure 3-2 (a). The information
that the queries in [t1, t2] need to know about the updates in [t0, t1] is the sequence

〈
∆6, ∆6+

∆3 + ∆4, ∆6 + ∆3 + ∆4 + ∆5

〉
. Equivalently, the queries need to know

〈
∆6, ∆3 + ∆4, ∆5

〉
,

which are three independent random variables, uniformly distributed in the group G.
This required information comes from interleaves between the update indices in [t0, t1],

on the one hand, and the query indices in [t1, t2], on the other. See Figure 3-2 (b).

Definition 3.3. If one sorts the set {π(t0), . . . , π(t2)}, the interleave number IL(t0, t1, t2)
is defined as the number of transitions between a value π(i) with i < t1, and a consecutive
value π(j) with j > t1.

49

(a)

t0

t1

t2

∆1 ∆2

∆3

∆4

∆5
∆6

∆7

∆8

∆9 ∆10

∆11
∆12

(b)

t0

t1

t2

Figure 3-2: (a) The vertical lines describe the information that the queries in [t1, t2] from
the updates in [t0, t1]. (b) The interleave number IL(t0, t1, t2) is the number of down arrows
crossing t1, where arrows indicate left-to-right order.

The interleave number is only a function of π. Figure 3-2 suggests that interleaves
between two intervals cause a large dependence of the queries A[t1,t2] on the updates ∆[t1,t2],
i.e. A[t1,t2] has large conditional entropy, even if all updates outside ∆[t1,t2] are fixed:

Lemma 3.4. H
(
A[t1,t2]

∣∣ ∆? = ∆?
)

= δ · IL(t0, t1, t2).

Proof. Each answer in A[t1,t2] is a sum of some random variables from ∆[t0,t1], plus a constant
that depends on the fixed ∆?. Consider the indices L = {π(t0), . . . , π(bt1c)} from the first
interval, and R = {π(dt1e), . . . , π(t2)} from the second interval. Relabel the indices of R as
r1 < r2 < · · · and consider these ri’s in order:

• If L ∩ [ri−1, ri] = ∅, the answer to sum(ri) is the same as for sum(ri−1), except for a
different constant term. The answer to sum(ri) contributes nothing to the entropy.

• Otherwise, the answer to sum(ri) is a random variable independent of all previous
answers, due to the addition of random ∆’s to indices L ∩ [ri−1, ri]. This random
variable is uniformly distributed in G, so it contributes δ bits of entropy.

Comparing Lemmas 3.4 and 3.2, we see that E
[
|IT (t0, t1, t2)|

∣∣ ∆? = ∆?
]
≥ δ

2w
·

IL(t0, t1, t2)− 1 for any fixed ∆?. By taking expectation over ∆?, we have:

Corollary 3.5. For any fixed π, t0 < t1 < t2, and any algorithm solving the partial sums
problem, we have E∆

[
|IT (t0, t1, t2)|

]
≥ δ

2w
· IL(t0, t1, t2)− 1.

3.4 A Tree For The Lower Bound

The final step of the algorithm is to consider the information transfer between many pairs
of intervals, and piece together the lower bounds from Corollary 3.5 into one lower bound

50

(a) t0

t1

t2

(b)

t0

t1

t2

Figure 3-3: The bit-reversal permutation of size n = 16, and the lower-bound tree over the
time axis. Each node has a maximal possible interleave: e.g. 2 in (a), and 4 in (b).

for the total running time of the data structure. The main trick for putting together these
lower bounds is to consider a lower-bound tree T : an arbitrary binary tree with n leaves,
where each leaf denotes a time unit (a query and update pair). In other words, T is built
“over the time axis,” as in Figure 3-3.

For each internal node v of T , we consider the time interval [t0, t1] spanning the left
subtree, and the interval [t1, t2] spanning the right subtree. We then define:

• the information transfer through the node: IT (v) = |IT (t0, t1, t2)|. Essentially, IT (v)
counts the cells written in the left subtree of v, and read in the right subtree.

• the interleave at the node: IL(v) = IL(t0, t1, t2).

Theorem 3.6. For any algorithm and fixed π, the expected running time of the algorithm
over a random sequence ∆ is at least δ

2w

∑
v∈T IL(v) − n.

Proof. First, observe that on any problem instance (any fixed ∆), the number of read instruc-
tions executed by the algorithm is at least

∑
v∈T IT (v). Indeed, for each read instruction,

let tr be the time it is executed, and tw ≤ tr be the time when the cell was last written.
If tr = tw, we can ignore this trivial read. Otherwise, this read instruction appears in the
information transfer through exactly one node: the lowest common ancestor of tw and tr.
Thus,

∑
v IT (v) never double-counts a read instruction.

Now we apply Corollary 3.5 to each node, concluding that for each v, E∆[IT (v)] ≥
δ

2w
· IL(v)− 1. Thus, the total expected running time is at least δ

2w

∑
v IL(v)− (n− 1). It

is important to note that each lower bound for |IT (v)| applies to the expected value under
the same distribution (a uniformly random sequence ∆). Thus we may sum up these lower
bounds to get a lower bound on the entire running time, using linearity of expectation.

To complete our lower bound, it remains to design an access sequence π that has high
total interleave,

∑
v∈T IL(v) = Ω(n lg n), for some lower-bound tree T . From now on, assume

n is a power of 2, and let T be a perfect binary tree.

51

Claim 3.7. If π is a uniformly random permutation, Eπ

[∑
v∈T IL(v)

]
= Ω(n lg n).

Proof. Consider a node v with 2k leaves in its subtree, and let S be the set of indices touched
in v’s subtree, i.e. S = {π(t0), . . . , π(t2)}. The interleave at v is the number of down arrows
crossing from the left subtree to the right subtree, when S is sorted; see Figure 3-2 (b) and
Figure 3-3. For two indices j1 < j2 that are consecutive in S, the probability that j1 is
touched in the left subtree, and j2 is touched in the right subtree will be k

2k
· k

2k−1
> 1

4
. By

linearity of expectation over the 2k−1 arrows, Eπ[IL(v)] = (2k−1) · k
2k
· k

2k−1
= k

2
. Summing

up over all internal nodes v gives Eπ

[∑
v IL(v)

]
= 1

4
n log2 n.

Thus, any algorithm requires Ω(δ
w
·n lg n) cell probes in expectation on problem instances

given by random ∆ and random π. This shows our Ω(lg n) amortized lower bound for δ = w.

3.5 The Bit-Reversal Permutation

An interesting alternative to choosing π randomly, is to design a worst-case π that maximizes
the total interleave

∑
v∈T IL(v). We construct π recursively. Assume π′ is the worst-case

permutation of size n. Then, we shuffle two copies of π′ to get a permutation π of size 2n.
Formally:

π =
〈
2π′(1)− 1, · · · , 2π′(n)− 1, 2π′(1), · · · , 2π′(n)

〉
The two halves interleave perfectly, giving an interleave at the root equal to n. The order
in each half of π is the same as π′. Thus, by the recursive construction, each node with
2k leaves in its subtree has a perfect interleave of k. Summing over all internal nodes,∑

v IL(v) = 1
2
n log2 n. Refer to Figure 3-3 for an example with n = 16, and an illustration

of the perfect interleave at each node.
The permutation that we have just constructed is the rather famous bit-reversal permu-

tation. Subtracting 1 from every index, we get a permutation of the elements {0, . . . , n− 1}
which is easy to describe: the value π(i) is the number formed by reversing the lg n bits of
i. To see this connection, consider the recursive definition of π: the first half of the values
(most significant bit of i is zero) are even (least significant bit of π(i) is zero); the second
half (most significant bit of i is one) are odd (least significant bit of π(i) is one). Recursively,
all bits of i except the most significant one appear in π′ in reverse order.

Duality of upper and lower bounds. An important theme of this thesis is the idea that
a good lower bound should be a natural dual of the best upper bound. The standard upper
bound for the partial-sums problem is a balanced binary search tree with the array A[1 . . n]
in its leaves. Every internal node is augmented to store the sum of all leaves in its subtree.
An update recomputes all values on the leaf-to-root path, while a query sums left children
hanging from the root-to-leaf path.

Thinking from a lower bound perspective, we can ask when an update (a cell write) to
some node v is “actually useful.” If v is a left child, the value it stores is used for any
query that lies in the subtree of its right sibling. A write to v is useful if a query to the
sibling’s subtree occurs before another update recomputes v’s value. In other words, a write

52

time

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10]A[11]A[12]A[13]A[14]A[15]A[16]

v

updates write v

queries read v

Figure 3-4: An augmented binary search tree solving a partial-sums instance. The writes to
some node v are “useful” when interleaves occur in the time-sorted order.

instruction is useful whenever there is an interleave between v’s left and right subtrees,
sorting operations by time. See Figure 3-4.

Intuitively, the amount of “useful work” that the algorithm does is the sum of the in-
terleaves at every node of the binary search tree. To maximize this sum, we can use a
bit-reversal permutation again. Note the bit-reversal permutation is equal to its own inverse
(reversing the bits twice gives the identity); in other words, the permutation is invariant un-
der 90-degree rotations. Thus, the lower-bound tree sitting on the time axis counts exactly
the same interleaves that generate work in the upper bound.

3.6 Dynamic Connectivity: The Hard Instance

We now switch gears to dynamic connectivity. Remember that this problem asks to maintain
an undirected graph with a fixed set V of vertices, subject to the following operations:

insert(u, v): insert an edge (u, v) into the graph.

delete(u, v): delete the edge (u, v) from the graph.

connected(u, v): test whether u and v lie in the same connected component.

We aim to show an amortized lower bound of Ω(lg |V |) per operation.
It turns out that the problem can be dressed up as an instance of the partial sums

problem. Let n =
√
V − 1, and consider the partial sums problem over an array A[1 . . n],

where each element comes from the group G = S√V , the permutation group on
√
V elements.

We consider a graph whose vertices form an integer grid of size
√
V by

√
V ; see Figure 3-5.

53

A[1] A[2] A[3] A[4] A[5] A[6]

Figure 3-5: Our hard instance of dynamic connectivity implements the partial-sums problem
over the group S√V .

Edges only connect vertices from adjacent columns; the edges between column i and i + 1
describe the permutation A[i] from the partial sums problem.

In other words, the graph is a disjoint union of
√
V paths. Each path stretches from

column 1 to column
√
V , and the paths are permuted arbitrarily between columns. This has

a strong partial-sums flavor: a node at coordinates (1, y1) on the first column is connected to
a node (k, y2) on the kth column, if and only if the partial sum permutation A[1]◦· · ·◦A[k−1]
has y1 going to y2.

Given our choice of the group G, we have δ = lg
(
(
√
V)!
)

= Θ
(√

V · lg V
)
. For dy-

namic connectivity, we concentrate on the natural word size w = Θ(lg V), so this group is
represented by Θ(

√
V) memory words. Even though these huge group elements may seem

worrisome (compared to the previous setting where each A[i] was a word), notice that nothing
in our proof depended on the relation between δ and w. Our lower bound still holds, and it

implies that a partial-sums operation requires Ω(δ
w
· lg n) = Ω(

√
V lg V
lg V

· lg
√
V) = Ω(

√
V · lg V)

cell probes on average.
Observe that a partial sums update can be implemented by O(

√
V) dynamic connec-

tivity updates: when some A[i] changes, we run
√
V delete’s of the old edges between

columns i and i+ 1, followed by
√
V insert’s of the new edges. If we could implement sum

using O(
√
V) connected queries, we would deduce that the dynamic connectivity problem

requires a running time of Ω(
√
V ·lg V√
V

) = Ω(lg V) per operation.
Unfortunately, it is not clear how to implement sum through few connected queries,

since connectivity queries have boolean output, whereas sum needs to return a permutation
with Θ

(√
V · lg V

)
bits of entropy. To deal with this issue, we introduce a conceptual change

to the partial sums problem, considering a different type of query:
verify-sum(k, σ): test whether sum(k) = σ.

This query is easy to implement via
√
V connectivity queries: for i = 1 to

√
V , these

queries test whether the point (1, i) from the first column is connected to point (k, σ(k)) from
the kth column. This runs a pointwise test of the permutation equality σ = A[1]◦· · ·◦A[k−1].

Below, we extend our lower bound to partial sums with verify-sum queries:

54

Theorem 3.8. In the cell-probe model with w-bit cells, any data structure requires Ω(δ
w
n lg n)

expected time to support a sequence of n update and n verify-sum operations, drawn from
a certain probability distribution.

By our construction, this immediately implies that, in the cell-probe model with cells of
Θ(lg V) bits, dynamic connectivity requires Ω(lg V) time per operation.

3.7 The Main Trick: Nondeterminism

Our lower bound technique thus far depends crucially on the query answers having high
entropy, which lower bounds the information transfer, by Lemma 3.2. High entropy is natural
for sum queries, but impossible for verify-sum. To deal with this problem, we augment
our model of computation with nondeterminism, and argue that sum and verify-sum are
equivalent in this stronger model.

Technically, a nondeterministic cell-probe algorithm is defined as follows. In the be-
ginning of each query, an arbitrary number of threads are created. Each thread proceeds
independently according to the following rules:

1. first, the thread may read some cells.

2. the thread decides whether the accept or reject. Exactly one thread must accept.

3. the accepting thread may now write some cells, and must output the answer.

An alternative view of our model is that an all-powerful prover reveals the query answer,
and then probes a minimal set of cells sufficient to certify that the answer is correct. We
define the running time of the query as the number of cell reads and writes executed by the
accepting1 thread.

A deterministic algorithm for verify-sum running in time t immediately implies a non-
deterministic algorithm for sum, also running in time t. The algorithm for sum starts by
guessing the correct sum (trying all possibilities in separate threads), and verifying the guess
using verify-sum. If the guess was wrong, the thread rejects; otherwise, it returns the
correct answer.

3.8 Proof of the Nondeterministic Bound

We will now show that the lower bound for partial sums holds even for nondeterministic
data structures, implying the same bound for verify-sum queries. The only missing part
of the proof is a new version of Lemma 3.2, which bounds the entropy of (nondeterministic)
queries in terms of the information transfer.

Remember that in Definition 3.1, we let the information transfer IT (t0, t1, t2) be the set
of cells that were: (1) read at a time tr ∈ [t1, t2]; and (2) written at a time tw ∈ [t0, t1], and

1There is no need to consider rejecting threads here. If we have a bound t on the running time of the
accepting thread, the algorithm may immediately reject after running for time t + 1, since it knows it must
be running a rejecting thread.

55

not overwritten during [tw + 1, tr]. Condition 2. remains well defined for nondeterministic
algorithms, since only the unique accepting thread may write memory cells. For condition
1., we will only look at the reads made by the accepting threads, and ignore the rejecting
threads.

More formally, let the accepting execution of a problem instance be the sequence of cell
reads and writes executed by the updates and the accepting threads of each query. Define:

W (t0, t1) : the set of cells written in the accepting execution during time interval [t0, t1].

R(t0, t1) : the set of cells read in the accepting execution during time interval [t0, t1], which
had last been written at some time tw < t0.

Then, IT (t0, t1, t2) = W (t0, t1) ∩R(t1, t2). Our replacement for Lemma 3.2 states that:

Lemma 3.9. H
(
A[t1,t2]

∣∣ ∆? = ∆?
)
≤ O

(
E
[
w·|IT (t0, t1, t2)| + |R(t0, t2)| + |W (t1, t2)|

∣∣ ∆? =
∆?
])
Note that this lemma is weaker than the original Lemma 3.2 due to the additional terms

depending on W (t0, t1) and R(t1, t2). However, these terms are fairly small, adding O(1) bits
of entropy per cell, as opposed to O(w) bits for each cell in the information transfer. This
property will prove crucial.

Before we prove the lemma, we redo the analysis of §3.4, showing that we obtain the
same bounds for nondeterministic data structures. As before, we consider a lower-bound
tree T , whose n leaves represent time units (query and update pairs). For each internal
node v of T , let [t0, t1] span the left subtree, and [t1, t2] span the right subtree. We then
define IT (v) = |IT (t0, t1, t2)|, W (v) = |W (t0, t1)|, and R(v) = |R(t1, t2)|.

Let T be the total running time of the data structure on a particular instance. As before,
observe that each cell read in the accepting execution is counted in exactly one IT (v), at
the lowest common ancestor of the read and write times. Thus, T ≥

∑
v∈T IT (v).

For each node, we compare Lemmas 3.9 and 3.4 to obtain a lower bound in terms of the
interleave at the node:

E[w · IT (v) +W (v) +R(v)] = Ω(δ · IL(v)) (3.1)

Note that summing up R(v)+W (v) over the nodes on a single level of the tree gives at most
T , because each instruction is counted in at most one node. Thus, summing (3.1) over all
v ∈ T yields: E[w·T + T ·depth(T)] = Ω(δ

∑
v IL(v)). By using the bit-reversal permutation

and letting T be a perfect binary tree, we have
∑

v IL(v) = Ω(n lg n), and depth(T) = lg n.
Since w = Ω(lg n) in our model, the lower bound becomes E[2w ·T] = Ω(δ ·n lg n), as desired.

Proof of Lemma 3.9. The proof is an encoding argument similar to Lemma 3.2, with one
additional complication: during decoding, we do not know which thread will accept, and we
must simulate all of them. Note, however, that the cells read by the rejecting threads are
not included in the information transfer, and thus we cannot afford to include them in the
encoding. But without these cells, it is not clear how to decode correctly: when simulating
a rejecting thread, we may think incorrectly that a cell was not written during [t0, t1]. If we

56

give the algorithm a stale version of the cell (from before time t0), a rejecting thread might
now turn into an accepting thread, giving us an incorrect answer.

To fix this, our encoding will contain two components:
C1: for each cell in IT (t0, t1, t2), store the cell address, and the contents at time t1.

C2: a dictionary for cells in
(
W (t0, t1) ∪R(t1, t2)

)
\ IT (t0, t1, t2), with one bit of associated

information: “W” if the cell comes from W (t0, t1), and “R” if it comes from R(t1, t2).

Component C2 will allow us to stop the execution of rejecting threads that try to read
a “dangerous” cell: a cell written in [t0, t1], but which is not in the information transfer
(and thus, its contents in unknown). The presence of C2 in the encoding accounts for a
covert information transfer: the fact that a cell was not written during [t0, t1] is a type of
information that the algorithm can learn during [t1, t2].

The immediate concern is that the dictionary of C2 is too large. Indeed, a dictionary
storing a set S from some universe U , with some r-bit data associated to each element,
requires at least lg

(|U |
|S|

)
+ |S| ·r bits of space. Assuming that the space of cells is [2w], C2 will

use roughly (|W (t0, t1)|+ |R(t1, t2)|) ·w bits of space, an unacceptable bound that dominates
the information transfer.

We address this concern by pulling an interesting rabbit out of the hat: a retrieval-only
dictionary (also known as a “Bloomier filter”). The idea is that the membership (is some
x ∈ S?) and retrieval (return the data associated with some x ∈ S) functionalities of a
dictionary don’t need to be bundled together. If we only need the retrieval query and never
run membership tests, we do not actually need to store the set S, and we can avoid the lower
bound of lg

(|U |
|S|

)
bits:

Lemma 3.10. Consider a set S from a universe U , where each element of S has r bits of
associated data. We can construct a data structure occupying O(|S| · r + lg lg |U |) bits of
memory that answers the following query:
retrieve(x) : if x ∈ S, return x’s associated data; if x /∈ S, return an arbitrary value.

Proof. To the reader familiar with the field, this is a simple application of perfect hash
functions. However, for the sake of completeness, we choose to include a simple proof based
on the the probabilistic method.

Let n = |S|, u = |U |. Consider a hash function h : U → [2n]. If the function is injective
on S, we can use an array with 2n locations of r bits each, storing the data associated to
each x ∈ S at h(x). For retrieval, injectivity of S guarantees that the answer is correct
whenever x ∈ S.

There are
(

2n
n

)
·n! · (2n)u−n choices of h that are injective on S, out of (2n)u possibilities.

Thus, if h is chosen uniformly at random, it works for any fixed S with probability
(

2n
n

)
·

n!
/

(2n)n ≥ 2−O(n). Pick a family H of 2O(n) · lg
(
u
n

)
independently random h. For any fixed

S, the probability that no h ∈ H is injective on S is (1− 1
2O(n))

|H| = exp
(
Θ
(

lg
(
u
n

)))
< 1/

(
u
n

)
.

By a union bound over all
(
u
n

)
choices of S, there exists a family H such that for any S,

there exists h ∈ H injective on S.
Since our lemma does not promise anything about the time efficiency of the dictionary,

we can simply construct H by iterating over all possibilities. The space will be 2n · r bits for

57

the array of values, plus lg |H| = O(n + lg lg u) bits to specify a hash function from H that
is injective on S.

We will implement C2 using a retrieval-only dictionary, requiringO
(
|W (t0, t1)|+|R(t1, t2)|

)
bits of space. Component C1 requires O(w) · |IT (t0, t1, t2)| bits. It only remains to show that
the query answers A[t1,t2] can be recovered from this encoding, thus giving an upper bound
on the entropy of the answers.

To recover the answers A[t1,t2], we simulate the execution of the data structure during
[t1, t2]. Updates, which do not use nondeterminism, are simulated as in Lemma 3.2. For a
query happening at time t ∈ [t1, t2], we simulate all possible threads. A cell read by one of
these threads falls into one of the following cases:

W (t1, t): We can recognize this case by maintaining a list of memory locations written during
the simulation; the contents of the cell is immediately available.

IT (t0, t1, t2): We can recognize this case by examining the addresses in C1; the cell contents
can be read from the encoding.

W (t0, t1) \ IT (t0, t1, t2): We can recognize this case by querying the dictionary C2. If the
retrieval query returns “W,” we know that the answer cannot be “R” (the correct
answer may be “W,” or the cell may be outside the dictionary set, in which case an
arbitrary value is returned). But if the answer cannot be “R,” the cell cannot be in
R(t1, t2). Thus, this thread is certainly not the accepting thread, and the simulation
may reject immediately.

W (1, t0 − 1) \W (t0, t): This is the default case, if the cell doesn’t satisfy previous conditions.
The contents of the cell is known, because the operations before time t0 are fixed, as
part of ∆?.

It should be noted that C2 allows us to handle an arbitrary number of rejecting threads.
All such threads are either simulated correctly until they reject, or the simulation rejects
earlier, when the algorithm tries to read a cell in W (t0, t1) \ IT (t0, t1, t2).

3.9 Bibliographical Notes

In our paper [86], we generalize the argument presented here to prove lower bound trade-offs
between the update time tu and the query time tq. We omit these proofs from the current
thesis, since our improved epoch arguments from the next chapter will yield slightly better
trade-offs than the ones obtained in [86].

Dictionaries supporting only retrieval have found another beautiful application to the
range reporting problem in one dimension. See our paper [76] for the most recent work on
1-dimensional range reporting. Dynamic dictionaries with retrieval were investigated in our
paper [37], which gives tight upper and lower bounds.

58

Chapter 4

Epoch-Based Lower Bounds

This chapter presents a subtle improvement to the classic chronogram technique of Fredman
and Saks [51], which enables it to prove logarithmic lower bounds in the cell-probe model..
To fully appreciate this development, one must remember that the chronogram technique
was the only known approach for proving dynamic lower bounds from 1989 until our work
in 2004 [86]. At the same time, obtaining a logarithmic bound in the cell-probe model was
viewed as one of the most important problems in data-structure lower bounds. It is now
quite surprising to find that the answer has always been this close.

Formally, our result is the following:

Theorem 4.1. Consider an implementation of the partial-sums problem over a group G
with |G| ≥ 2δ, in the cell-probe model with b-bit cells. Let tu denote the expected amortized
running time of an update, and tq the expected running time of a query. Then, in the average
case of an input distribution, the following lower bounds hold:

tq lg

(
tu

lg n
· b+ lg lg n

δ

)
= Ω

(⌈
δ

b+ lg lg n

⌉
· lg n

)
tu lg

(
tq

lg n
/
⌈

δ

b+ lg lg n

⌉)
= Ω

(
δ

b+ lg(tq/d δbe)
· lg n

)

Note that the theorem does not assume δ ≤ b, so it also gives interesting results in the
bit-prove model, where group element are larger than a single cell. Another strengthening
of the chronogram technique apparent in this theorem is that it is now possible to derive
lower bound trade-offs in the regime of fast updates and slow queries. This implies almost
matching the bounds achieved by buffer trees, which constitute one of the most important
tools for external-memory algorithms.

Before we prove the theorem, we first apply it in some interesting interesting setups, and
compare with the best previously known results.

59

4.1 Trade-offs and Higher Word Sizes

Assuming b = Ω(lg n) and δ ≤ b, our bounds simplify to:

tq

(
lg

tu
lg n

+ lg
b

δ

)
= Ω(lg n) tu lg

tq
lg n

= Ω

(
δ

b
· lg n

)
The first trade-off, which is optimal [86], represents a strengthening of the normal trade-
offs obtained by the chronogram technique. Note in particular that our trade-off implies
max{tu, tq} = Ω(lg n), which had been a major open problem since [51].

The second trade-off for fast updates is fundamentally new; all previous technique are
helpless in the regime tq ≥ tu.

Buffer trees [18] are a general algorithmic paradigm for obtaining fast updates, given a

higher cell size. For our problem, this yields a cell-probe upper bound of tu = O(
⌈
δ+lgn
b
· lgtq/ lgn n

⌉
),

for any tq = Ω(lg n). Thus, we obtain tight bounds when δ = Ω(lg n). (Note that in the
cell-probe model, we have a trivial lower bound of tu ≥ 1, matching the ceiling in the upper
bound.)

To appreciate these bounds in a natural setup, let us consider the external memory model,
which is the main motivation for looking at a higher cell size. In this model, the unit for
memory access is a page, which is modeled by a cell in the cell-probe model. A page contains
B words, which are generally assumed to have Ω(lg n) bits. The model also provides for a
cache, a set of cells which the algorithm can access at zero cost. We assume that the cache
is not preserved between operations (algorithmic literature is ambivalent in this regard).
This matches the assumption of the cell-probe model, where each operation can only learn
information by probing the memory. Note that the nonuniformity in the cell-probe model
allows unbounded internal state for an operation, so any restriction on the size of the cache
cannot be captured by cell-probe lower bounds.

Under the natural assumption that δ matches the size of the word, we see that our lower
bound becomes tu = Ω(1

B
lgtq/ lgn n). Buffer trees offer a matching upper bound, if the update

algorithm is afforded a cache of Ω(tq/ lg n) pages. As mentioned before, we cannot expect
cell-probe lower bounds to be sensitive to cache size.

4.2 Bit-Probe Complexity

The bit-probe model is an instantiation of the cell-probe model with one-bit cells. Bit-probe
complexity can be considered a fundamental measure of computation. Though a cell size of
Θ(lg n) bits is more realistic when comparing to real-world computers, the bit-probe measure
posses an appeal of its own, due to the exceedingly clean mathematical setup.

Setting b = δ = 1, which is the most natural interpretation of partial sums in the bit-

60

probe model, our lower bounds simplify to:

tq lg

(
tu

lg n/ lg lg n

)
= Ω(lg n) tu · lg

(
tq

lg n

)
· lg tq = Ω(lg n)

The folklore solution to the problem achieves the following trade-offs:

tq lg
tu

lg n
= Ω(lg n) tu · lg

tq
lg n

= Ω(lg n)

It can be seen that our lower bounds come close, but do not exactly match the upper bounds.
In the most interesting point of balanced running times, the upper bound is max{tu, tq} =
O(lg n), while our lower bound implies max{tu, tq} = Ω(lgn

lg lg lgn
). Thus, our lower bound is

off by just a triply logarithmic factor.
Previously, the best known lower bound was max{tu, tq} = Ω(lgn

lg lgn
) achieved by Fredman

in 1982 [48]. This was by a reduction to the greater-than problem, which Fredman introduced
specifically for this purpose. As we showed in [87], there is an O(lgn

lg lgn
) upper bound for this

problem, so Fredman’s technique cannot yield a better result for partial sums.

Dynamic connectivity and a record bit-probe bound. With b = 1 and supercon-
stant δ, Theorem 4.1 easily implies a nominally superlogarithmic bound on max{tu, tq}. For

instance, for partial sums in Z/nZ (i.e. δ = lg n), we obtain max{tu, tq} = Ω(lg2 n
lg lgn·lg lg lgn

).

This is a modest improvement over the Ω(lg2 n
(lg lgn)2

) bound of Fredman and Saks [51].
However, it is not particularly relevant to judge the magnitude of such bounds, as we are

only proving a hardness of Ω̃(lg n) per bit in the query output and update input, and we can
obtain arbitrarily high nominal bounds. As advocated by Miltersen [72], the proper way to
gauge the power of lower bound techniques is to consider problems with a minimal set of
operations, and, in particular, decision queries. Specifically, for a language L, we look at the
dynamic language membership problem, defined as follows. For any fixed n (the problem
size), maintain a string w ∈ {0, 1}n under two operations: flip the i-th bit of w, and report
whether w ∈ L.

Based on our partial sums lower bound, we prove a lower bound of Ω((lgn
lg lgn

)2) for dynamic
connectivity, which is a dynamic language membership problem. This has has an important
complexity-theoretic significance, as it is the highest known bound for an explicit dynamic
language membership problem. The previous record was Ω(lg n), shown in [74]. Miltersen’s
survey of cell-probe complexity [72] lists improving this bound as the first open problem
among three major challenges for future research.

It should be noted that our Ω̃(lg2 n) bound is far from a mere echo of a Ω̃(lg n) bound
in the cell-probe model. Indeed, Ω(lgn

lg lgn
) bounds in the cell-probe model have been known

since 1989 (including for dynamic connectivity), but the bit-probe record has remained just

the slightly higher Ω(lg n). Our bound is the first to show a quasi-optimal Ω̃(lg n) separation
between bit-probe complexity and the cell-probe complexity with cells of Θ(lg n) bits, when
the cell-probe complexity is superconstant.

61

A[1] A[2] A[3] A[4] A[5] A[6]

Figure 4-1: Our graphs can be viewed as a sequence of
√
n permutation boxes.

The main trick for obtaining this lower bound is to use the trade-offs for slow queries
and fast updates, a regime in which we give the first known lower bounds. It is not hard
to convert a decision query into one returning a large output, at the price of an appropriate
slow down. This is the second time, after the analysis of buffer trees, when our extension of
the chronogram technique for the regime of slow queries turns out to be very relevant.

Theorem 4.2. Consider a bit-probe implementation for dynamic connectivity, in which up-
dates take expected amortized time tu, and queries take expected time tq. Then, in the average

case of an input distribution, tu = Ω
(

lg2 n
lg2(tu+tq)

)
. In particular max{tu, tq} = Ω

(
(lgn

lg lgn
)2
)

.

Proof. We first describe the shape of the graphs used in the reduction to Theorem 4.1; refer
to Figure 4-1. The vertex set is roughly given by an integer grid of size

√
n ×
√
n. The

edge set is given by a series of permutation boxes. A permutation box connects the nodes in
a column to the nodes in the next column arbitrarily, according to a given permutation in
S√n. Notice that the permutations decompose the graph into a collection of

√
n paths. As

the paths evolve horizontally, the y coordinates change arbitrarily at each point due to the
permutations. In addition to this, there is a special test vertex to the left, which is connected
to some vertices in the first column.

We now describe how to implement the partial sums macro-operations in terms of the
connectivity operations:

update(i, π): sets πi = π. This is done by removing all edges in permutation box i and
inserting new edges corresponding to the new permutation π. Thus, the running time
is O(tu ·

√
n).

sum(i): returns σ = π1 ◦ · · · ◦ πi. We use O(lg n) phases, each one guessing a bit of σ(j) for
all j. Phase k begins by removing all edges incident to the test node. Then, we add
edges from the test vertex to all vertices in the first column, whose row number has
a one in the k-th bit. Then, we test connectivity of all vertices from the i-th column
and the test node, respectively. This determines the k-th bit of σ(j) for all j. In total,
sum takes time O((tu + tq)

√
n · lg n).

62

Finally, we interpret the lower bounds of Theorem 4.1 for these operations. We have
b = 1 and δ = Θ(

√
n · lg n). The first trade-off is less interesting, as we have slowed down

queries by a factor of lg n. The second trade-off becomes:

tu
√
n·lg

(
(tu + tq)

√
n · lg n

√
n · lg2 n/ lg lg n

)
= Ω

(√
n · lg n

lg(tu + tq)
· lg n

)
⇒ tu lg

(
tu + tq

lg n/ lg lg n

)
= Ω

(
lg2 n

lg(tu + tq)

)
Since the lower bound implies max{tu, tq} = Ω((lgn

lg lgn
)2), we have lg(tu+tq

lgn/ lg lgn
) = Θ(lg(tu +

tq)), so the bound simplifies to tu = Ω(lg2 n
lg2(tu+tq)

).

4.3 Lower Bounds for Partial Sums

We begin by reviewing the chronogram method, at an intuitive level. One first generates a
sequence of random updates, ended by one random query. Looking back in time from the
query, one partitions the updates into exponentially growing epochs: for a certain r, epoch
i contains the ri updates immediately before epoch i− 1. One then argues that for all i, the
query needs to read at least one cell from epoch i with constant probability. This is done
as follows. Clearly, information about epoch i cannot be reflected in earlier epochs (those
occurred back in time). On the other hand, the latest i − 1 epochs contain only O(ri−1)
updates. Assume the cell-probe complexity of each update is bounded by tu. Then, during
the latest i− 1 epochs, only O(ti−1tub) bits are written. If r = C · tu bδ for a sufficiently large
constant C, this number is at most, say, 1

10
riδ. On the other hand, updates in epoch i contain

riδ bits of entropy, so all information known outside epoch i can only fix a constant fraction
of these updates. If a random query is forced to learn information about a random update
from epoch i, it is forced to read a cell from epoch i with constant probability, because the
information is not available outside the epoch. This means a query must make Ω(1) probes
in expectation into every epoch, so the lower bound on the query time is given by the number
of epochs that one can construct, i.e. tq = Ω(logr n) = Ω(lgn

lg(tub/δ)
). A trade-off of this form

was indeed obtained by [8], and is the highest trade-off obtained by the chronogram method.
Unfortunately, even for δ = b, this only implies max{tu, tq} = Ω(lgn

lg lgn
).

We now describe the new ideas that we use to improve this result. Intuitively, the analysis
done by the chronogram technique is overly pessimistic, in that it assumes all cells written in
the latest i− 1 epochs concentrate on epoch i, encoding a maximum amount of information
about it. In the setup from above, this may actually be tight, up to constant factors, because
the data structure knows the division into epochs, and can build a strategy based on it.
However, we can randomize the construction of epochs to foil such strategies. We generate a
random number of updates, followed by one query; since the data structure cannot anticipate
the number of updates, it cannot base its decisions on a known epoch pattern. Due to this
randomization, we intuitively expect each update to write O(tub

logr n
) bits “about” a random

epoch, as there are Θ(lgr n) epochs in total. In this case, it would suffice to pick r satisfying
r = Θ(tub

δ lgr n
), i.e. lg r = Θ(lg b·tu

δ lgn
). This yields tq = Ω(logr n) = Ω(lgn

lg(tu/ lgn)+lg(b/δ)
), which

63

means max{tu, tq} = Ω(lg n) when δ = b.
Unfortunately, formalizing the intuition that the information written by updates “splits”

between epochs seems to lead to elusive information theoretic arguments. To circumvent
this, we need a second very important idea: we can look at cell reads, as opposed to cell
writes. Indeed, regardless of how many cells epochs 1 through i − 1 write, the information
recorded about epoch i is bounded by the information that was read out of epoch i in the first
place. On the other hand, the information theoretic value of a read is more easily graspable,
as it is dictated by combinatorial properties, like the time when the read occurs and the
time when the cell was last written. We can actually show that in expectation, O(tu

logr n
) of

the reads made by each update obtain information about a random epoch. Then, regardless
of how many cells are written, subsequent epochs can only encode little information about
epoch i, because very little information was read by the updates in the first place.

Once we have this machinery set up, there is a potential for applying a different epoch
construction. Assume tu is already “small”. Then, since we don’t need to divide tu by too
much to get few probes into each epoch, we can define epochs to grow less than exponentially
fast. In particular, we will define epochs to grow by a factor of r every r times, which means
we can obtain a higher lower bound on tq (in particular, tq = ω(lg n) is possible). Such
a result is inherently impossible to obtain using the classic chronogram technique, which
decides on the epoch partition in advance. As discussed in the introduction, this is a crucial
contribution of our paper, since it leads both to an understanding of buffer trees, and a
ω(lg n) bit-probe lower bound.

4.3.1 Formal Framework

We first formalize the overall construction. We consider 2M − 1 random updates, and insert
a random query at a uniformly random position after the M -th update. Now we divide
the last M operations before the query into k epochs. Denote the lengths of the epochs by
`1, . . . , `k, with `1 being the closest to the query. For convenience, we define si =

∑i
j=1 `j.

Our analysis will mainly be concerned with two random variables. Let T u
i be the number

of probes made during epochs {1, . . . , i− 1} that read a cell written during epoch i. Also let
T q
i be the number of probes made by the query that read a cell written during epoch i.

All chronogram lower bounds have relied on an information theoretic argument showing
that if epochs 1 up to i− 1 write too few cells, T q

i must be bounded from below (usually by
a constant). As explained above, we instead want to argue that if T u

i is too small, T q
i must

be large. Though crucial, this change is very subtle, and the information theoretic analysis
follows the same general principles. The following lemma, the proof of which is deferred to
Section 4.3.4, summarizes the results of this analysis:

Lemma 4.3. For any i such that si ≤ 3
√
n, the following holds in expectation over a random

instance of the problem:

E[T u
i]

`i

(
b+ lg

tusi−1

E[T u
i]

)
+ E[T q

i] ·min

{
δ, b+ lg

tq
E[T q

i]

}
= Ω(δ)

64

We will set M = 3
√
n so that the lemma applies to all epochs i. The lower bound

of the lemma is reasonably easy to grasp intuitively. The first term measures the average
information future updates learn about each of the `i updates in epoch i. There are T u

i future
probes into epoch i. In principle, each one gathers b bits. However, there is also information
hidden in the choice of which future probes hit epoch i. This amounts to O(lg tusi−1

E[Tu
i]

) bits

per probe, since the total number of future probes is in expectation tusi−1 (there are si−1

updates in future epochs). The second term in the expression quantifies the information
learned by the query about epoch i. If the query makes T q

i probes into epoch i, each one
extracts b bits of information directly, and another O(lg tq

E[T q
i]

) bits indirectly, by the choice

of which probes hit epoch i. However, there is also another way to bound the information
(hence the min). If E[T q

i] ≤ 1, we have probability at most T q
i that the query reads any cell

from epoch i. If no cell is read, the information is zero. Otherwise, the relevant information
is at most δ, since the answer of the query is δ bits. Finally, the lower bound on the total
information gathered (the right hand side of the expression) is Ω(δ) because a random query
needs a random prefix sum of the updates happening in epoch i, which has Ω(δ) bits of
entropy.

Apart from relating to T u
i instead of cell writes, the essential idea of this lemma is not

novel. However, our version is particularly general, presenting several important features.
For example, we achieve meaningful results for E[T q

i] > 1, which is essential to analyzing
the case δ > b. We also get a finer bound on the “hidden information” gathered by a cell
probe, such as the O(lg tusi−1

E[Tu
i]

) term. In contrast, previous results could only bound this by

O(lg n), which is irrelevant when b = Ω(lg n), but limits the lower bounds for the bit-probe
model.

It is easy and instructive to apply Lemma 4.3 using the ideas of the classic chronogram
technique. Define epochs to grow exponentially with rate r ≥ 2, i.e. `i = ri and si = O(ri).
Assume for simplicity that tu and tq are worst-case bounds per operation. Then T u

i ≤ tu ·si−1,
since the number of probes into epoch i is clearly bounded by the total number of probes
made after epoch i. By Lemma 4.3 we can write O(si−1

`i
tub) + E[T q

i]δ = Ω(δ), which means

O(tub
r

) + E[T q
i]δ = Ω(δ). Setting r = Ctu

b
δ

for a sufficiently large constant C, we obtain

E[T q
i] = Ω(1). Then tq ≥

∑
i E[T q

i] = Ω(logrM) = Ω(lgn
lg(tub/δ)

).
As explained before, the key to improving this bound is to obtain a better bound on

E[T u
i]. The next section gives an analysis leading to such a result. Then, Section 4.3.3 uses

this analysis to derive our lower bounds.

4.3.2 Bounding Probes into an Epoch

Since we will employ two different epoch constructions, our analysis needs to talk about gen-
eral `i and si. However, we will need to relate to a certain exponential behavior of the epoch

sizes. This property is captured by defining a parameter β = maxi∗
(∑

i≥i∗
min{`i,si−1,si∗}

`i

)
.

Lemma 4.4. In expectation over a random instance of the problem and a uniformly random
i ∈ {1, . . . , k}, we have E[

Tu
i

`i
] = O(β

k
· tu).

65

Proof. Fix the sequence of updates arbitrarily, which fixes all cell probes. Let T be the total
number of cell probes made by updates. Now consider an arbitrary cell probe, and analyze
the probability it will be counted towards T u

i . Let r be the time when the probe is executed,
and w the time when the cell was last written, where “time” is given by the index of the
update. Let i∗ be the unique value satisfying si∗−1 ≤ r − w < si∗ .

Note that if i < i∗, for any choice of the query position after r, epoch i will begin after
w. In this case, the probe cannot contribute to T u

i .
Now assume i ≥ i∗, and consider the positions for the query such that the cell probe

contributes to T u
i . Since w must fall between the beginning of epoch i and its end, there are

at most `i good query positions. In addition, epoch i − 1 must begin between w + 1 and
r, so there are at most r − w < si∗ good query positions. Finally, epoch i − 1 must begin
between r − si−1 + 1 and r, so there are at most si−1 good query positions. Since there are
M possible choices for the query position, the probability the cell probe contributes to T u

i is

at most min{`i,si∗ ,si−1}
M

.

We now consider the expectation of
Tu
i

`i
over the choice of i and the position of the query.

We apply linearity of expectation over the T cell probes. A probe with a certain value i∗

contributes to the terms min{`i,si∗ ,si−1}
Mk`i

for any i ≥ i∗. The sum of all terms for one cell

probe is bounded by β
Mk

, so the expectation of
Tu
i

`i
is bounded by βT

kM
. Finally, we also

take the expectation over random updates. By definition of tu, E[T] ≤ (2M − 1)tu. Then

E[
Tu
i

`i
] = O(β

k
tu).

We now analyze the two epoch constructions that we intend to use. In the first case,
epochs grow exponentially at a rate of r ≥ 2, i.e. `i = ri. Then, si ≤ 2ri, so:

∑
i≥i∗

min{`i, si−1, si∗}
`i

≤ si∗−1

`i∗
+
∑
i>i∗

si∗

`i
≤ 2

r
+
∞∑
j=1

2

rj
= O

(
1

r

)

Then, β = O(1
r
), and k = Θ(logrM) = Θ(logr n), so β

k
= O(1

r logr n
).

In the second case, assume r ≤
√
M and construct r epochs of size rj, for all j ≥ 1.

Then k = Θ(r logr
M
r

) = Θ(r logr n). Note that si ≤ (r + 2)`i, since si includes at most r
terms equal to `i, while the smaller terms represent r copies of an exponentially decreasing
sum with the highest term `i

r
. Now we have:

∑
i≥i∗

min{`i, si−1, si∗}
`i

≤
∑
i≥i∗

min{1, si
∗

`i
} ≤

∑
i≥i∗

min{1, (r + 2)`i∗

`i
} ≤ r·1+r(r+2)

∞∑
j=1

1

rj
= O(r)

This means β = O(r) and β
k

= O(r
r logr n

) = O(1
logr n

).

Comparing the two constructions, we see that the second one has r times more epochs,
but also r times more probes per epoch. Intuitively, the first construction is useful for large
tu, since it can still guarantee few probes into each epoch. The second one is useful when tu
is already small, because it can construct more epochs, and thus prove a higher lower bound
on tq.

66

4.3.3 Deriving the Trade-offs of Theorem 4.1

We now put together Lemma 4.3 with the analysis of the previous section to derive our lower
bound trade-offs. In the previous section, we derived bounds of the form E[

Tu
i

`i
] = O(β

k
· tu),

where the expectation is also over a random i. By the Markov bound, for at least 2k
3

choices of
i, the bound holds with the constant in the O-notation tripled. Also note that tq ≥

∑
iE[T q

i],

so for at least 2k
3

choices of i, we have E[T q
i] ≤ 3tq

k
. Then for at least k

3
choices of i the above

bounds of T u
i and T q

i hold simultaneously. These are the i for which we apply Lemma 4.3.

Since the expression of Lemma 4.3 is increasing in E[
Tu
i

`i
] and E[T q

i], we can substitute
upper bounds for these, obtaining:

β

k
tu

(
b+ lg

tusi−1/`i
(β/k)tu

)
+

tq
k
·min

{
δ, b+ lg

tq
3tq/k

}
= Ω(δ)

⇒ β

k
tu

(
b+ lg

si−1/`i
β/k

)
+

tq
k

/ max

{
1

δ
,

1

b+ lg k

}
= Ω(δ)

⇒ β

k
tu ·

b+ lg(si−1k/(`iβ))

δ
+

tq
k

/
⌈

δ

b+ lg k

⌉
= Ω(1) (4.1)

Since the left hand side is increasing in β
k
, we can again substitute an upper bound. This

bound is Θ(1)
r logr n

for the first epoch construction, and Θ(1)
logr n

for the second one. Also note that
si−1

`i
= O(1

r
) in the first construction and O(r) in the second one. Then lg si−1k

`iβ
becomes

O(lg k).

Now let us analyze the trade-off implied by the first epoch construction. Note that it is
valid to substitute the upper bound lg k ≤ lg lg n in (4.1). Also, we use the calculated values
for k and β

k
:

tu
r logr n

· b+ lg lg n

δ
+

tq
logr n

/
⌈

δ

b+ lg lg n

⌉
= Ω(1) (4.2)

We can choose r large enough to make the first term smaller than any constant ε > 0. This
is true for r satisfying ε r

lg r
> tu

lgn
· b+lg lgn

δ
, which holds for lg r = Θ(lg(tu

lgn
· b+lg lgn

δ
)). For a

small enough constant ε, the second term in (4.2) must be Ω(1), which implies our tradeoff:

tq lg

(
tu

lg n
· b+ lg lg n

δ

)
= Ω

(⌈
δ

b+ lg lg n

⌉
· lg n

)
Now we move to the second epoch construction. Remember that k = Θ(r logr n). We

can choose r such that the second term of (4.1) is Θ(ε), i.e. bounded both from above and
from below by small constants. For small enough ε, the O(ε) upper bound implies that the
first term of (4.1) is Ω(1):

tu
logr n

· b+ lg(r logr n)

δ
= Ω(1) ⇒ tu lg r = Ω

(
δ

b+ lg(r logr n)
· lg n

)
(4.3)

67

To understand this expression, we need the following upper bounds:

tq
r logr n

/
⌈

δ

b+ lg(r logr n)

⌉
= Ω(ε)

⇒


tq

r logr n
/
(⌈

δ
b+lg lgn

⌉
· 1

lg r

)
= Ω(1)⇒ lg r = O

(
lg
(

tq
lgn

/
⌈

δ
b+lg lgn

⌉))
tq

r logr n
/
(⌈

δ
b

⌉
· 1

lg(r logr n)

)
= Ω(1)⇒ lg(r logr n) = O

(
lg
(
tq /

⌈
δ
b

⌉))
Plugging into (4.3), we obtain our final tradeoff:

tu lg

(
tq

lg n
/
⌈

δ

b+ lg lg n

⌉)
= Ω

(
δ

b+ lg(tq/d δbe)
· lg n

)

4.3.4 Proof of Lemma 4.3

Remember that our goal is to prove that for any epoch i with si ≤ 3
√
n, the following holds

in expectation over a random instance of the problem:

E[T u
i]

`i

(
b+ lg

tusi−1

E[T u
i]

)
+ E[T q

i] ·min

{
δ, b+ lg

tq
E[T q

i]

}
= Ω(δ) (4.4)

Pick `i queries independently at random, and imagine that each is run as the query in our
hard instance. That is, each of these queries operates on its own copy of the data structure,
all of which are in the same state. Now we define the following random variables:

QI = the indices of the `i queries.

QA = the correct answers of the `i queries.

U I
i = the indices of the updates in epoch i.

U∆
i = the ∆ parameters of the updates in epoch i.

U I∆
¬i = the indices and ∆ parameters of the updates in all epochs except i.

By [86, Lemma 5.3], H(QA | QI , U I
i , U

I∆
¬i) = Ω(`iδ), where H denotes conditional binary

entropy. This result is very intuitive. We expect the set of query indices QI to interleave with
the set of update indices U I

i in Ω(`i) places. Each interleaving gives a query that extracts δ
bits of information about U∆

i (it extract a partial sum linearly independent from the rest).
Thus, the set of query answers has Ω(`iδ) bits of entropy. The cited lemma assumes our
condition si ≤ 3

√
n, because we do not want updates after epoch i to overwrite updates from

epoch i. If there are at most 3
√
n updates in epoch i and later, they all touch distinct indices

with probability 1− o(1).

68

We now propose an encoding for QA given QI and U I∆
¬i . Comparing the size of this

encoding with the previous information lower bound, we will obtain the conclusion of Lemma
4.3. Consider the following random variables:

T u
<i = the number of cell probes made during epochs {1, . . . , i− 1}.

T u
i = as defined previously, the number of cell probes made during epochs {1, . . . , i−1} that

read a cell written during epoch i.

TQ = the total number of cell probes made by all `i queries.

TQ
i = the total number of cell probes made by all `i queries that read a cell written during

epoch i.

Lemma 4.5. There exists an encoding for QA given QI and U I∆
¬i whose size in bits is:

O

(
T u
i · b+ lg

(
T u
<i

T u
i

)
+ min

{
TQ
i · δ + lg

(
`i
TQ
i

)
, TQ

i · b+ lg

(
TQ

TQ
i

)})
Proof. The encoding begins by describing the cell probes made during epochs {1, . . . , i− 1}
into epoch i. First, we specify the subset of probes reading a cell from epoch i in the set

of all probes made by future epochs. This takes O
(

lg
(
Tu
<i
Tu
i

))
bits, where the O notation

accounts for lower order terms from encoding the integers T u
<i and T u

i using O(lg T u
<i) and

O(lg T u
i) bits respectively. Second, for all probes into epoch i, we specify the contents of the

cell, taking T u
i · b bits.

We now claim that based on the previous information, one can deduce the contents of all
cells that were not last written during epoch i. We can of course simulate the data structure
before epoch i, because we know the updates from U I∆

¬i . Also, we can simulate the data
structure after epoch i, because we know which probes read a cell from epoch i, and we have
the cell contents in the encoding.

We now choose among two strategies for dealing with the `i queries. In the first strategy,
the encoding specifies all queries which make at least one cell-probe into epoch i. Obviously,

there are at most TQ
i such queries, so this takes O

(
lg
(`i
TQ
i

))
bits. For each query making at

least one cell probe into epoch i, we simply encode its answer using at most TQ
i · δ bits in

total. Otherwise, we can simulate the query and find the answer: we know the queried index
from QI , and we know the contents of all cells that were last written in an epoch other than
i.

In the second strategy, the encoding describes all cell probes made by the queries into
epoch i. This is done by specifying which is the subset of such cell probes, and giving the

cell contents for each one. Thus, in the second strategy we use TQ
i · b + O

(
lg
(
TQ

TQ
i

))
bits.

Given this information, we can simulate all queries and obtain the answers.
It is important to point out that we actually need to know which probes touch a cell

written during epoch i. Otherwise, we would have no way to know whether a cell has been
updated during epoch i, or it still has the old value from the simulation before epoch i.

69

We now aim to analyze the expected size of the encoding. By linearity of expectation over
the `i random queries, E[TQ] = tq`i and E[TQ

i] = E[T q
i]`i. Using convexity of x 7→ x lg y

x
, we

have:

E

[
lg

(
TQ

TQ
i

)]
= O

(
E

[
TQ
i · lg

TQ

TQ
i

])
= O

(
E[TQ

i] · lg E[TQ]

E[TQ
i]

)
= O

(
E[T q

i]`i · lg
tq

E[T q
i]

)
Similarly, E[lg

(`i
TQ
i

)
] = O(E[T q

i]`i · lg 1
E[T q

i]
).

To bound T u
<i, note that it is the sum of si−1 random variables Xj, each giving the

number of probes made by the j-th update before the query. By definition of tu, the total
number of probes made by all 2M − 1 updates is in expectation at most (2M − 1)tu. Our
query is inserted randomly in one of M possible positions, so the update described by Xj is

chosen randomly among M possibilities. Then, E[Xj] ≤ (2M−1)tu
M

< 2tu, and by linearity of
expectation E[T u

<i] = O(tusi−1). Then, using convexity as before, we can bound:

E

[
lg

(
T u
<i

T u
i

)]
= O

(
E

[
T u
i · lg

T u
<i

T u
i

])
= O

(
E[T u

i] · lg E[T u
<i]

E[T u
i]

)
= O

(
E[T u

i] · lg tusi−1

E[T u
i]

)
We now use the previous calculations and the fact E[min{a, b}] ≤ min{E[a],E[b]} to

bound the expected size of the encoding. Comparing with the entropy lower bound of
Ω(δ`i), we obtain:

E[T u
i]

`i

(
b+ lg

tusi−1

E[T u
i]

)
+ E[T q

i] ·min

{
δ + lg

1

E[T q
i]
, b+ lg

tq
E[T q

i]

}
≥ cδ

Here c is a positive constant. This is the desired (4.4), except that the first term in the
min is δ + lg 1

T q
i

instead of δ. We now show that this makes no difference up to constant

factors. First of all, when the second term in the min is smaller, the expressions are obviously
identical. Otherwise, pick a constant c′ > 0 such that c′ lg 1

c′
≤ c

2
. If E[T q

i] ≤ c′, we have
E[T q

i lg 1
T q
i

] ≤ c
2
. Then, moving the offending term to the right hand side, we obtain a lower

bound of cδ − c
2

= Ω(δ). Finally, assume E[T q
i] > c′. Then (4.4) is trivially true if the

constant in the Ω notation is at most c′, because just the term E[T q
i δ] is larger than the

lower bound.

70

Chapter 5

Communication Complexity

A key tool in showing lower bounds for data structures is asymmetric communication com-
plexity. In this chapter, we introduce communication games and prove some useful lower
bounds on their complexity. The connections to data structures are sometimes rather subtle,
and will only be apparent in later chapters. While following this chapter, we hope the reader
will be motivated by the intrinsic appeal of communication problems, and the promise of
future applications.

5.1 Definitions

We consider communication games between two players, traditionally named Alice and Bob.
Alice receives an input x from some set X of allowed inputs, while Bob receives an input
y ∈ Y . The goal of the players is to compute some function f(x, y), by communicating to
share knowledge about their respective inputs.

The communication between Alice and Bob proceeds according to a predetermined pro-
tocol. Players take alternate turns to send messages; each message is a sequence of bits,
whose length and contents are dictated by the protocol. Messages must be self-delimiting,
i.e. the receiving party must know when the message is over; in virtually all protocols that
we discuss, the messages of each player have fixed length, so this property tends to be trivial.
At the end of the protocol, both Alice and Bob must know the answer (the output of the
function that they want to compute). Since most functions we deal with are boolean, a
protocol that fails this criterion can just be augmented with a final 1-bit message in which
the answer is communicated to the other player.

5.1.1 Set Disjointness

The most important communication problem that we will consider is the set disjointness
function: Alice receives a set S, Bob receives a set T , and they want to compute a bit
indicating whether S ∩ T = ∅. To specify the problem entirely, assume S and T are subsets
of some universe U . The problem is parameterized by u = |U |, and quantities n and m

71

bounding the set sizes: |S| ≤ n, |T | ≤ m. In other words, the set X of Alice’s inputs consists
of all subsets of U with at most n elements; Y consists of all subsets of U with at most m
elements.

In standard complexity theory, “set disjointness” usually refers to the symmetric case
n = m = u. Unfortunately, this problem is not useful for data structures, and we will
concentrate on lopsided set disjointness (LSD), where n� m.

As two trivial examples of communication protocols, consider the following:

• Alice sends a message of O
(

log2

(
u
n

))
bits, specifying her set. Bob now knows S, so he

knows whether S ∩ T = ∅. He replies with a one-bit message, giving this answer.

• Bob sends a message of O
(

log2

(
u
m

))
bits, specifying T . Alice replies with one bit,

giving the answer.

5.1.2 Complexity Measures

The protocol solving a communication problem is the equivalent of an algorithm solving a
computational problem. Given a communication problem, our goal is to design a protocol
that is as “efficient” as possible, or prove a lower bound on how efficient the best protocol
can be. The two common efficiency measures that we will use are:

• the pair (A,B), where A is the total number of bits communicated by Alice during the
protocol, and B the total number of bits communicated by Bob. These quantities are
measured in the worst case, i.e. we look at maximum number of bits communicated
for any problem instance.

• the number of rounds of communication. Sometimes, we impose the restriction that
messages from Alice have some fixed length mA and messages from Bob some fixed
length mB. Then, the number of rounds is the only parameter of the protocol.

Both of our LSD protocols from above have one round of communication. In the first,
A = dlog2

(
u
n

)
e and B = 1. In the second, A = 1 and B = dlog2

(
u
m

)
e. These suggest a

trade-off between A and B; below, we will investigate this trade-off, proving matching upper
and lower bounds.

5.2 Richness Lower Bounds

To introduce our first communication lower bound, we concentrate on a very simple commu-
nication problem: Indexing. In this problem, Alice receives an index x ∈ [m], Bob receives
a vector y[1 . . .m] of bits, and they want to compute y[x]. Indexing can be seen as a special
case of LSD with n = 1 and m = u, where y is the characteristic vector of U \ T .

Thinking of upper bounds, what trade-off between A and B can we come up with? If
Alice is allowed to communicate A bits, she can begin by sending the most significant A− 1
bits of x. Bob can reply with the values of Y at every index x that is possible given Alice’s
message. In other words, he sends a subvector from Y of length m/2A−1, as the lower order

72

log2m − A+ 1 bits of x are unknown to him. Now, Alice can just send a final bit with the
correct answer.

We thus obtained an upper bound trade-off of B = dm/2A−1e. Intuitively, this upper
bound seems the best possible. Whatever Alice sends in A bits of communication, there
will be an uncertainty of m/2A about her input. Then, it seems Bob is forced to send the
plain values in his vector for all the plausible indices, or otherwise the protocol may make a
mistake. Below, we formalize this intuition into a proof showing that B ≥ m/2O(A).

5.2.1 Rectangles

Consider a communication problem f : X × Y → {0, 1}. A combinatorial rectangle of f is a
matrix minor of the truth table, i.e. a set X × Y , where X ⊆ X and Y ⊆ Y . While we call
X ×Y a rectangle, the reader should note that this is not a rectangle in our usual geometric
sense, because the rows in X and the columns in Y may not be consecutive.

For a moment, suppose you are an outside observer who doesn’t know the inputs of either
Alice or Bob, and you watch the communication taking place, trying to guess their inputs.
After seeing some transcript of the communication, what have you learned about the input?

Claim 5.1. The possible problem instances that lead to a fixed communication transcript are
always a combinatorial rectangle.

Figure 5-1:
Y

X0

X1

A
li
ce

B
ob

“0”

“1”

X

Y0 Y1

Proof. This can be seen by induction on the bits sent by the protocol. Before
any communication, all inputs are plausible to the outside observer, giving
the entire truth table X × Y . Say the next bit is sent by Alice. The value
of the bit breaks the plausible inputs of Alice in two disjoint classes: the
inputs X0 for which she would send a “zero,” and the inputs X1 for which
she would send a “one.” Observing the bit she sent, the observer’s belief
about the input changes to Xi×Y . Thus, the belief changes to a subrectangle
that drops some of the rows of the old rectangle. Similarly, when Bob sends
a bit, the belief changes to a subrectangle dropping some columns.

Now assume that the observer has watched the communication until the end. What can
we say about the resulting rectangle?

Claim 5.2. At the end of a correct deterministic protocol, one always arrives at a monochro-
matic rectangle (consisting entirely of zeros, or entirely of ones).

Proof. At the end of the protocol, both Alice and Bob must know the answer to the prob-
lem. But if the rectangle is not monochromatic, there exists a row or a column that is not
monochromatic. If, for instance, some row x is bichromatic, Alice sometimes makes a mistake
on input x. There are inputs of Bob leading both to zero and one answers, and these inputs
are indistinguishable to Alice because they yield the same communication transcript.

Though this may not be obvious at first, our intuition about the optimality of the protocol
for Indexing was an intuitive argument based on rectangles. We reasoned that no matter

73

what Alice communicates in a total of A bits, she cannot (in the worst case) reduce her side
of the rectangle to |X | < |X|/2A = m/2A. Suppose by symmetry that our final rectangle is
monochromatically one. Then, all of Bob’s inputs from Y must have a one at positions in
X , so we have |Y| ≤ |Y |/2|X |. Since a bit of communication from Bob can at most halve Y
on average, Bob must communicate Ω(|X |) = Ω(m/2A) bits.

5.2.2 Richness

The next step to formalizing our intuition is to break it into two claims:
• If Alice sends A bits and Bob B bits, in the worst case they will obtain a 1-rectangle

of size roughly |X|/2A × |Y |/2B.

• Any large enough rectangle of the problem at hand contains some zeroes. The quan-
titative meaning of “large enough” dictates the lower bounds that can be proved.

We now formalize the first claim. Clearly, some minimal assumption about the function
is needed (if, say, f were identically zero, one could never arrive at a 1-rectangle).

Definition 5.3. A function f : X×Y → {0, 1} is called [u, v]-rich if its truth table contains
at least v columns that have at least u one-entries.

Lemma 5.4. Let f be a [u, v]-rich problem. If f has a deterministic protocol in which
Alice sends A bits and Bob sends B bits, then f contains a 1-rectangle of size at least
u/2A × v/2A+B.

Proof. By induction on the length of the protocol. Let’s say that we are currently in a
rectangle X × Y that is [u, v]-rich. We have two cases:
• Bob communicates the next bit. Let’s say Y0 ⊂ Y is the set of columns for which he

sends zero, and Y1 ⊂ Y is the set for which he sends one. Since X × Y contains v
columns with at least u ones, either X × Y0 or X × Y1 contain v/2 columns with at
least u ones. We continue the induction in the [u, v

2
]-rich rectangle.

• Alice communicates the next bit, breaking X into X0 ∪ X1. For an arbitrary column
among the v columns that made X ×Y rich, we can say that it either has u/2 ones in
X0, or u/2 ones in X1. Thus, in either X0×Y or X1×Y , there are at least v/2 columns
that have at least u/2 ones. We continue in a rectangle that is [u

2
, v

2
]-rich.

At the end of the protocol, we reach a monochromatic rectangle that is [u/2a, v/2a+b]-rich.
Since the rectangle has some ones (it has nonzero richness), it must be monochromatically
one. Furthermore, it must have size at least u/2a by v/2a+b to accommodate the richness.

5.2.3 Application to Indexing

To complete the analysis of Indexing, note that the problem is [m
2
, 2m−1]-rich. Indeed, half

of the vector settings (i.e. 2m−1 columns) have at least m
2

ones, because either a vector or
its negation have this property. By Lemma 5.4, we obtain a 1-rectangle of size m/2A+1 by
2m/2A+B+1.

74

If the rectangle is X × Y = {x1, x2, . . . } × {y1, y2, . . . }, every yi[xj] must be equal
to one. There are only 2m−|X

′| distinct yi’s which have all xj coordinates equal to one.
Thus, |Y| ≤ 2m−|X |, so A + B + 1 ≥ |X | = m/2A+1. We obtain the trade-off lower bound
B ≥ m/2A+1 − A− 1, which implies B ≥ m/2O(A).

5.3 Direct Sum for Richness

We now return to our original goal of understanding the complexity of LSD. As with
indexing, we begin by considering the upper bounds. Armed with a good understanding of
the upper bound, the lower bound will become very intuitive.

Figure 5-2:

A

B

1 Θ(n) Θ(n lg u
n)

1

Θ(n)

Θ(u)

Our protocol is a simple generalization of the protocol for
Indexing, in which Alice sent as many high-order bits of her
value as she could afford. Formally, let k ≥ u be a parameter.
We break the universe [u] into k blocks of size Θ(u/k). The
protocol proceeds as follows:

1. Alice sends the set of blocks in which her elements lie.
This takes A = O

(
lg
(
k
n

))
= O(n lg k

n
) bits.

2. For every block containing an element of Alice, Bob
sends a vector of Θ(u/k) bits, indicating which elements
are in T . This takes B = n · u

k
bits.

3. Alice replies with one more bit giving the answer.

To compute the trade-off, eliminate the parameter k between A and B: we have k = n·2O(A/n)

and thus B = u/2O(A/n). Values of A = o(n) are ineffective: Bob has to send Θ(u) bits,
just as in the trivial protocol in which he describes his entire set. Similarly, to achieve any
B = o(n), Alice has to send Θ(n lg u

n
) bits, which allows her to describe her set entirely. The

trade-off curve is plotted symbolically in Figure 5-2.

5.3.1 A Direct Sum of Indexing Problems

Figure 5-3:
U

S T

A
lic

e B
ob

We now aim to prove a lower bound matching the trade-off
from above. This can be done by the elementary richness argu-
ment we used for Indexing, but the proof requires some care-
ful bounding of binomial coefficients that describe the rectan-
gle size. Instead, we choose to analyze LSD in an indirect but
clean way, which also allows us to introduce an interesting
topic in communication complexity: direct sum problems.

Thinking back of our LSD protocol, the difficult case is
when the values in Alice’s set fall into different blocks (if two
values are in the same block, Bob saves some communication
because he only needs to describe one block instead of two).
This suggests that we should construct a hard instance by breaking the universe into n

75

blocks, and placing one of Alice’s value in each block (Figure 5-3). Intuitively, this LSD
problem consists of n independent copies of indexing: each of Alice’s values indexes into a
vector of u/n bits, describing a block of Bob’s set. The sets S and T are disjoint if and only
if all of the n indices hit elements outside Bob’s set (which we can indicate by a “one” in
the vector being indexed). Thus, in our family of instances, the LSD query has become the
logical and of n Indexing queries.

Definition 5.5. Given a communication problem f : X ×Y → {0, 1}, let the communication
problem

∧n f : Xn × Y n → {0, 1} be defined by
(∧n f

)
(~x, ~y) =

∏
i fi(xi, yi).

This is an example of a direct sum problem, in which Alice and Bob each receive n
independent inputs; the players want to output an aggregate (in this case, the logical and)
of the function f applied to each pair of corresponding inputs. As we have explained above∧n Indexing is a special case of LSD.

Intuitively, a n-wise direct sum problem should have a lower bound that is n times larger
than the original. While it can be shown that this property is not always true, we can prove
that any richness lower bound gets amplified k-fold, in the following sense:

Theorem 5.6. Let f : X × Y → {0, 1} be [ρ|X|, v]-rich, and assume
∧n f has a communi-

cation protocol in which Alice sends A = n · a bits and Bob sends B = n · b bits. Then f has
a 1-rectangle of size ρO(1)|X|/2O(a) × v/2O(a+b).

Before we prove the theorem, let us see that it implies an optimal lower bound for LSD.
We showed that Indexing is [|X|

2
, |Y |

2
]-rich. Then, if LSD has a protocol in which Alice sends

A bits and Bob sends B bits, the theorem finds a 1-rectangle of Indexing of size |X|/2O(A/n)

by |Y |/2O(A+B)/n. But we showed that any 1-rectangle X × Y must have |Y| ≤ |Y |/2|X |, so
2O(A+B)/n ≥ |X | = |X|/2O(A/n). The instance of Indexing are on blocks of size u/n, thus
|X| = u

n
, and we obtain the trade-off:

Theorem 5.7. Fix δ > 0. In a deterministic protocol for LSD, either Alice sends Ω(n lg m
n

)

bits, or Bob sends n ·
(
m
n

)1−δ
bits.

5.3.2 Proof of Theorem 5.6

We begin by restricting Y to the v columns with u one entries. This maintains richness, and
doesn’t affect anything about the protocol.

Claim 5.8.
∧n f is [(ρ|X|)n, vn]-rich.

Proof. Since
∧n f only has vn columns, we want to show that all columns contain enough

ones. Let ~y ∈ Y n be arbitrary. The set of ~x ∈ Xn with
(∧n f

)
(~x, ~y) = 1 is just the n-wise

Cartesian product of the sets {x ∈ X | f(x, yi) = 1}. But each set in the product has at
least ρ|X| elements by richness of f .

Now we apply Lemma 5.4 to find a 1-rectangle of
∧n f of size (ρ|X|)n/2A × vn/2A+B,

which can be rewritten as (ρ
2a
|X|)n × (1

2a+b
|Y |)n. Then, we complete the proof of the

theorem by applying the following claim:

76

Claim 5.9. If
∧n f contains a 1-rectangle of dimensions (α|X|)n × (β|Y |)n, then f contains

a 1-rectangle of dimensions α3|X| × β3|Y |.

Proof. Let X ×Y be the 1-rectangle of
∧n f . Also let Xi and Yi be the projections of X and

Y on the i-th coordinate, i.e. Xi = {xi | ~x ∈ X}. Note that for all i, Xi ×Yi is a 1-rectangle
for fi. Indeed, for any (x, y) ∈ Xi ×Yi, there must exists some (~x, ~y) ∈ X ×Y with ~x[i] = x
and ~y[i] = y. But

(∧n f
)
(~x, ~y) =

∏
j f(xj, yj) = 1 by assumption, so f(x, y) = 1.

Now note that there must be at least 2
3
n dimensions with |Xi| ≥ α3|X|. Otherwise, we

would have |X | ≤
∏

i |Xi| < (α3|X|)k/3 · |X|2k/3 = (α|X|)k = |X |, contradiction. Similarly,
there must be at least 2

3
k dimensions with |Yi| ≥ β3|Y |. Consequently, there must be an

overlap of these good dimensions, satisfying the statement of the lemma.

This completes the proof of Theorem 5.6.

5.4 Randomized Lower Bounds

5.4.1 Warm-Up

We first prove a slightly weaker randomized lower bound for LSD:

Theorem 5.10. Assume Alice receives a set S, |S| = m and Bob receives a set T, |T | = n,
both sets coming from a universe of size 2mn, for m < nγ, where γ < 1/3 is a constant. In
any randomized, two-sided error communication protocol deciding disjointness of S and T ,
either Alice sends Ω(m

logm
lg n) bits or Bob sends Ω(n1−δ/m2) bits, for any δ > 0.

First we define the hard instance. The elements of our sets come from the universe
[2m] × [n]. Alice receives S = {(i, si) | i ∈ [m]}, for s1, . . . , sm chosen independently at
random from [n]. Bob receives T = {(tj, j) | j ∈ [n], for t1, . . . , tn chosen independently from
[2m]. The output should be 1 iff the sets are disjoint. Note that the number of choices is
nm for S and (2m)n for T , and that S and T are chosen independently.

The lower bound follows from the following variant of the richness lemma, based on [73,
Lemma 6]. The only change is that we make the dependence on ε explicit, because we will
use ε = o(1).

Lemma 5.11. Consider a problem f : X × Y → {0, 1}, such that the density of {(x, y) |
f(x, y) = 1} in X × Y is Ω(1). If f has a randomized two-sided error [a, b]-protocol, then
there is a rectangle of f of dimensions at least |X|/2O(a lg(1/ε)) × |Y |/2O((a+b) lg(1/ε)) in which
the density of zeros is at most ε.

To apply the lemma, we first show the disjointness function is 1 with constant probability.

Lemma 5.12. As S and T are chosen randomly as described above, Pr[S ∩ T = ∅] = Ω(1).

Proof. Note that S∩T ⊂ [n]× [m]. We have Pr[(i, j) ∈ S∩T] = 1
n(2m)

when i ∈ [n], j ∈ [m].

Then by linearity of expectation E[|S ∩ T |] = 1
2
. Since |S ∩ T | ∈ {0, 1, 2, . . . }, we must have

Pr[|S ∩ T | = 0] ≥ 1
2
.

77

Thus, it remains to show that no big enough rectangle has a small density of zeros.
Specifically, we show the following:

Lemma 5.13. Let δ > 0 be arbitrary. If we choose S ∈ S, T ∈ T uniformly and indepen-
dently at random, where |S| > 2n(1−δ)m and T ≥ (2m)n · 2/en1−δ/(8m2), then the probability
S ∩ T 6= ∅ is at least 1

16m2 .

We use the richness lemma with ε = 1
32m2 . If there exists an [a, b] protocol for our

problem, we can find a rectangle of size
(
nm/2O(a lgm)

)
×
(
(2m)n/2O((a+b) lgm)

)
, in which

the fraction of zeros is at most ε. To avoid contradicting Lemma 5.13, we must either have
2O(a lgm) > nδm/2, or 2O((a+b) lgm) > en

1−δ/(8m2)/2. This means either a = Ω(m
lgm

lg n) or

a+ b = Ω(n1−δ/(m2 lgm)). If m < nγ, for constant γ < 1
3
, this implies that a = Ω(m

lgm
lg n)

or b = Ω(n1−δ/m2), for any δ > 0.

Proof. (of Lemma 5.13) Choosing S at random from S induces a marginal distribution on
[n]. Now consider the heaviest n1−δ elements in this distribution. If the total probability
mass of these elements is at most 1− 1

2m
, we call i a well-spread coordinate.

Lemma 5.14. If |S| > 2n(1−δ)m, there exists a well-spread coordinate.

Proof. Assume for contradiction that no coordinate is well-spread. Consider the set S ′
formed by S ∈ S such that no si is outside the heaviest n1−δ elements in Si. By a union
bound, the probability over S ∈ S that some si is not among the heavy elements is at most
m 1

2m
= 1

2
. Then, |S ′| ≥ |S|/2. On the other hand |S ′| ≤ (n1−δ)m, since for each coordinate

we have at most n1−δ choices. This contradicts the lower bound on |S|.

Let i be a well-spread coordinate. We now lower bound the probability of S ∩ T 6= ∅ by
the probability of S ∩ T containing an element on coordinate i. Furthermore, we ignore the
n1−δ heaviest elements of Si. Let the remaining elements be W , and p(j) = Pr[si = j] when
j ∈ W . Note that p(j) ≤ 1/n1−δ, and

∑
j∈W p(j) ≥ 1

2m
.

Define σ(T) =
∑

j∈W :tj=i
p(j). For some choice of T , σ(T) gives exactly the probability

of an interesting intersection, over the choice of S ∈ S. Thus, we want to lower bound
ET [σ(T) | T ∈ T].

Assume for now that T is uniformly distributed in the original space (not in the subspace
T). Note that σ(T) =

∑
j∈W Xj, where Xj is a variable equal to p(j) when tj = i and 0

otherwise. By linearity of expectation, ET [σ(T)] =
∑

j∈W
p(j)
2m
≥ 1/(2m)2. Since Xj’s are

independent (tj’s are independent when T is not restricted), we can use a Chernoff bound
to deduce σ(T) is close to this expectation with very high probability over the choice of T .
Indeed, Pr[σ(T) < 1

2
· 1

(2m)2
] < e−n

1−δ/(8m2).

Now we can restrict ourselves to T ∈ T . The probability σ(T) < 1
8m2 is so small,

that it remains small even in this restricted subspace. Specifically, this probability is at
most Pr[σ(T) < 1

8m2]/Pr[T ∈ T] ≤ exp(−n1−δ/(8m2))/(2 exp(−n1−δ/(8m2))) = 1
2
. Since

σ(T) ≥ 0, (∀)T , we conclude that ET [σ(T) | T ∈ T] ≥ 1
2
· 1

8m2 = 1
16m2 .

78

5.4.2 A Strong Lower Bound

We now strengthen Theorem 5.10 to the following:

Theorem 5.15. Assume Alice receives a set S, |S| = m and Bob receives a set T, |T | = n,
both sets coming from a universe of size 2mn, for m < nγ, where γ < 1 is a constant. In
any randomized, two-sided error communication protocol deciding disjointness of S and T ,
either Alice sends Ω(m lg n) bits or Bob sends Ω(n1−δ) bits, for any δ > 0.

Proof. We have a quadratic universe of size m · n, which we view as n blocks of size m.
Alice’s set contains a random point in each block, and Bob’s set contains m/n points in the
each block. Note that this is a product distribution and the function is balanced (Pr[S∩T =
∅] = Ω(1) and Pr[S∩T 6= ∅] = Ω(1)). This suggests that we should use randomized richness.

By Lemma 5.11, the problem boils down to proving that in a big enough rectangle S×T ,
Pr[S ∩ T 6= ∅ | S ∈ S, T ∈ T] = Ω(1).

For values in our universe i ∈ [mn], we let p(i) be the probability that a set S ∈ S
contains i. Note that S contains one element in each block, so p(·) is a probability density
function on each block. We have H(S ∈ S) ≥ n lgm − o(n lg m

n
) by assuming that the

rectangle is large (Alice communicate o(n lg m
n

) bits). Each S is a vector of n choices, each
from a block of size m. The entropy of almost all coordinates must be lgm− o(lg m

n
). This

means that the distribution p(·) has weight 1 − o(1) on values with p(i) < (m/n)o(1)

m
. (If too

many points have high probability, the entropy must be far from the maximum lgm.)
Having fixed p(·) (depending on S), let us calculate f(T) = ES∈S [|S ∩ T |]. This is

obviously
∑

i∈T p(i). Now we are going to pick T from the original marginal distribution
(ignore T for now), and we’re going to look at the distribution induced on f(T). The
mean is m · 1

m
= 1, because the p(i)’s on each block summed up to one. Now note that

each element of T is chosen independently and picks some p(i) to be added to the sum.
Thus we have a Chernoff bound kicking in, and f(T) is concentrated around its mean. The
probability of deviating a constant from the mean is given by the upper bounds on p(i). If
max p(i) = α · mean p(i) = α

m
, the Chernoff bound is exponential in m/ poly(α). But we

showed that 1− o(1) of the weight is on values with p(i) < (m/n)o(1)

m
. So we can discard the

big values, still keeping the expectation of f(T) = 1 − o(1), and apply a Chernoff bound
exponential in m/(m/n)o(1) = n · (m

n
)1−o(1).

Now if Bob communicated n · (m
n

)1−ε for ε > 0, then T is so large, that even if all the
deviation from the Chernoff bound is inside T , it cannot change the average of f(T) by more
than a constant. (Formally Pr[S] is ω of the Chernoff probability.) Then the average of f(T)
even on T is Ω(1).

We have just shown that ES×T [|S ∩ T |] = Ω(1). But how do we get E[|S ∩ T |] = Ω(1)
to mean Pr[S ∩ T 6= ∅] = Ω(1)? We are going to consider a bicriterion error function:
ε̃(S, T) = ε(S, T) + α · |S ∩ T |2. Here ε was the error measure of the protocol, and α is a
small enough constant. By concentration Var[|S ∩ T |] = O(1) so ε̃ is bounded by a small
constant: amplify the original protocol to reduce ε, and choose α small.

Randomized richness gives us a large rectangle for which the protocol answers “disjoint”,
and in which the error is a constant bigger than the original. This means that ES×T [|S ∩

79

T |2] = O(1). But since |S ∩T | is positive, have expectation Ω(1), and has a bounded second
moment, it must be that Pr[|S ∩ T | > 0] = Ω(1). Thus Pr[S ∩ T 6= ∅] = Ω(1), contradicting
the fact that the error was a very small constant.

5.4.3 Direct Sum for Randomized Richness

It will be useful to have a version of our direct-sum result for randomized richness. We
now describe such a result, which comes from our paper [88]. Consider a vector of problems
~f = (f1, . . . , fk), where fi : X × Y → {0, 1}. We define another data structure problem⊕k ~f : ([k] × X) × Y k → {0, 1} as follows. The data structure receives a vector of inputs
(y1, . . . , yk) ∈ Y k. The representation depends arbitrarily on all of these inputs. The query

is the index of a subproblem i ∈ [k], and an element x ∈ X. The output of
⊕k ~f is fi(x, yi).

Let us first recapitulate how randomized richness is normally applied to communication
games. We say problem f is α-dense if Ex∈X,y∈Y [f(x, y)] ≥ α, i.e. at least an α fraction of
the truth table of f contains ones. Then, one applies Lemma 5.11, showing that, in order
to prove a communication lower bound, one has to prove that every large rectangle contains
Ω(1) zeros. Unfortunately, we cannot use this lemma directly because we do not know how
to convert k outputs, some of which may contain errors, into a single meaningful boolean
output. Instead, we need a new lemma, which reuses ideas of the old lemma in a more subtle
way. A technical difference is that our new lemma will talk directly about data structures,
instead of going through communication complexity.

Define ρi : X × Y × {0, 1} → {0, 1} by ρi(x, y, z) = 1 if fi(x, y) 6= z, and 0 otherwise.
Also let ρ : Xk × Y k × {0, 1}k → [0, 1] be ρ(x, y, z) = 1

k

∑
i ρi(xi, yi, zi). In other words, ρ

measures the fraction of the outputs from z which are wrong.

Lemma 5.16. Let ε > 99
k

be arbitrary, and f1, . . . , fk be ε-dense. Assume
⊕k ~f can be

solved in the cell-probe model with w-bit cells, using space S, cell-probe complexity T , and
error rate ≤ ε. Then there exists a canonical rectangle X × Y ⊂ Xk × Y k for some output
z ∈ {0, 1}k satisfying:

|X | ≥ |X|k/2O(Tk lg S
k

), |Y| ≥ |Y |k/2O(Tkw)∑
i

zi ≥
ε

3
k, Ex∈X ,y∈Y [ρ(x, y, z)] ≤ ε2.

Proof. First we decrease the error probability of the data structure to ε2

9
. This requires O(1)

repetitions, so it only changes constant factors in S and T . Now we use the easy direction of
Yao’s minimax principle to fix the coins of the data structure (nonuniformly) and maintain
the same error over the uniform distribution on the inputs.

We now convert the data structure to a communication protocol. We simulate one query
to each of the k subproblems in parallel. In each round, Alice sends the subset of k cells
probed, and Bob replies with the contents of the cells. Alice sends a total of O(Tk lg S

k
) bits,

and Bob a total of O(Tkw) bits. At the end, the protocol outputs the vector of k answers.

80

Let Pi(xi, y) be the output of the data structure when running query (i, xi) on input
y. Note that this may depend arbitrarily on the entire input y, but depends only on one
query (since the query algorithm cannot consider parallel queries). When the communication
protocol receives x and y as inputs, it will output P (x, y) = (P1(x1, y), . . . , Pk(xk, y)). Note
that some values Pi(xi, y) may be wrong (different from fi(xi, yi)), hence some coordinates
of P (x, y) will contain erroneous answers. To quantify that, note Ex,y[ρ(x, y, P (x, y))] =

Ei,xi,y[ρi(xi, yi, Pi(xi, y))] ≤ ε2

9
, i.e. the average fraction of wrong answers is precisely the

error probability of the data structure.
We now wish to show that the set W = {(x, y) |

∑
i Pi(xi, y) ≥ ε

3
k} has density Ω(1)

in Xk × Y k. First consider the set W1 = {(x, y) |
∑

i fi(xi, yi) ≥
2ε
3
k}. As (x, y) is chosen

uniformly from Xk × Y k, fi(xi, yi) are independent random variables with expectation ≥ ε.
Then, by the Chernoff bound, Prx,y[(x, y) ∈ W1] ≥ 1 − ekε/18 ≥ 1 − e−99/18 ≥ 2

3
. Now

consider W2 = {(x, y) | ρ(x, y, P (x, y)) ≥ ε
3
}. Since Ex,y[ρ(x, y, P (x, y))] = ε2

9
, the Markov

bound shows that the density of W2 is at most ε
3
. Finally, observe that W1 \W2 ⊆ W , so W

has density ≥ 1
3
.

The communication protocol breaks Xk×Y k into disjoint canonical rectangles, over which
P (x, y) is constant. Consider all rectangles for which P (x, y) has at least ε

3
k one entries. The

union of these rectangles isW . Now eliminate all rectanglesR with E(x,y)∈R[ρ(x, y, P (x, y))] ≥
ε2, and let W ′ be the union of the remaining ones. Since the average of ρ(x, y, P (x, y)) over
Xk × Y k is ε2

9
, a Markov bound shows the total density of the eliminated rectangles is at

most 1
9
. Then, |W ′| ≥ 2

3
|W |.

Now observe that membership in W ′ is [Ω(|X|k),Ω(|Y |k)]-rich. Indeed, since |W ′| =
Ω(|X|k|Y |k), a constant fraction of the rows must contain Ω(|Y |k) elements from W ′. Now
note that the communication protocol can be used to decide membership in W ′, so we apply
Lemma 5.4. This shows that one of the rectangles reached at the end of the protocol must
contain only elements of W ′, and have size Ω(|X|k)/2O(Tk lg(S/k)) × Ω(|Y |k)/2O(Tkw). In fact,
because Lemma 5.4 finds a large canonical rectangle, this must be one of the rectangles
composing W ′, so we know the answer corresponding to this rectangle has at least ε

3
k ones,

and the average ρ(x, y, P (x, y)) over the rectangle is at most ε2.

The direct-sum result that we want will rely on the following key combinatorial lemma,
whose proof is deferred to §5.4.4:

Lemma 5.17. For i ∈ [d], consider a family of functions φi : X × Y → {0, 1}, and
define φ : Xd × Y d → [0, 1] by φ(x, y) = 1

d

∑
i φi(xi, yi). Let X ⊂ Xd,Y ⊂ Y d with

|X | ≥ (|X|/α)d, |Y| ≥ (|Y |/β)d, where α, β ≥ 2. Then there exists i ∈ [d] and a rectan-
gle A × B ⊂ X × Y with |A| ≥ |X|

/
αO(1), |B| ≥ |Y |

/
βO(1), such that Ea∈A,b∈B[φi(a, b)] =

O(Ex∈X ,y∈Y [φ(x, y)]).

Using this technical result, we can show our main direct-sum property:

Theorem 5.18. Let ε > 99
k

be arbitrary, and f1, . . . , fk be ε-dense. Assume
⊕k ~f can be

solved in the cell-probe model with w-bit cells, using space S, cell-probe complexity T , and
error ε. Then some fi has a rectangle of dimensions |X|/2O(T lg(S/k)) × |Y |/2O(Tw) in which
the density of zeros is at most ε.

81

Proof. First we apply Lemma 5.16, yielding a rectangle X × Y . By reordering coordinates,
assume the first d = ε

3
k elements of z are ones. We now wish to fix xd+1, . . . , xk and

yd+1, . . . , yk such that the remaining d-dimensional rectangle is still large, and the average
of ρ(x, y, z) over it is small. There are at most |X|k−d choices for fixing the x elements. We
can eliminate all choices which would reduce the rectangle by a factor of at least 3|X|k−d.
In doing so, we have lost a 1

3
fraction of the density. Similarly, we eliminate all choices for

the y elements which would reduce the rectangle by a factor of 3|Y |k−d.
We still have a third of the mass remaining, so the average of ρ(x, y, z) can only have in-

creased by a factor of 3. That means Ei∈[k][ρi(xi, yi, zi)] ≤ 3ε2, which implies Ei∈[d][ρi(xi, yi, zi)] ≤
3ε2 · k

d
= 9ε. We now fix xd+1, . . . , xk and yd+1, . . . , yk among the remaining choices,

such that this expected error is preserved. Thus, we have found a rectangle X ′ × Y ′ ⊂
Xd × Y d with |X ′| ≥ |X|d/2O(Tk lg(S/k)) and |Y ′| ≥ |Y |d/2O(Tkw). Since d = Θ(k), we
can freely substitute d for k in these exponents. Besides largeness, the rectangle satisfies
Ei∈[d],x∈X ′,y∈Y ′ [ρi(xi, yi, 1)] ≤ 9ε.

We now apply Lemma 5.17 on the rectangle X ′ × Y ′, with α = 2O(T lg(S/k)), β =
2O(Tw) and φi(x, y) = ρi(x, y, 1). We obtain a rectangle A × B ⊂ X × Y of dimensions
|A| ≥ |X|/2O(T lg(S/k)), |B| ≥ |Y |/2O(Tw), which has the property Ea∈A,b∈B[ρi(a, b, 1)] = O(ε),
i.e. Pra∈A,b∈B[fi(a, b) = 0] = O(ε).

5.4.4 Proof of Lemma 5.17

Define Xi to be the weighted projection of X on dimension i (i.e. a distribution giving the
frequency of every value on coordinate i). Thus, Xi is a distribution on X with density

function ℘Xi(z) = |{x∈X|xi=z}|
|X | .

We identify sets like X and Y with the uniform distributions on the sets. Treating φ
and φi as random variables (measuring some error to be minimized), let ε = EX×Y [φ] =
1
d

∑
i EXi×Yi [φi].

We now interpret the lower bound on the size of X as bounding the entropy, and use
submodularity of the Shannon entropy H to write:∑

i

H(Xi) ≥ H(X) ≥ d · (lg |X| − lgα) ⇒ 1

d
·
∑
i

(
lg |X| −H(Xi)

)
≤ lgα

Observe that each term in the sum is positive, since H(Xi) ≤ lg |X|. We can conclude that:

(∃)i : lg |X| −H(Xi) ≤ 3 lgα; lg |Y | −H(Yi) ≤ 3 lg β; EXi×Yi [φi] ≤ 3ε,

because there are strictly less than d
3

coordinates that violate each of these three constraints.
For the remainder of the proof, fix some i satisfying these constraints.

Let A′ be the set of elements z ∈ X with ℘Xi(z) ≤ α8/|X|, where ℘Xi is the density
function of the distribution Xi. In the probability space on which distribution Xi is observed,

82

A′ is an event. We have:

H(Xi) = H(A′) + Pr[A′] ·H(Xi | A′) + (1− Pr[A′]) ·H(Xi | ¬A′)

≤ 1 + Pr[A′] · lg |X| +
(
1− Pr[A′]

)
· lg |X|

α8
= lg |X|+ 1−

(
1− Pr[A′]

)
· 8 lgα

We claim that Pr[A′] ≥ 1
2
. Otherwise, we would haveH(Xi) ≤ lg |X|+1−4 lgα, contradicting

the lower bound H(Xi) ≥ lg |X| − 3 lgα, given α ≥ 2.
Now let X ′ be the distribution Xi conditioned on A′ (equivalently, the distribution re-

stricted to the support A′). Performing an analogous analysis on Yi, we define a support B′

and restricted distribution Y ′. Observe that:

EX ′×Y ′ [φi] = EXi×Yi [φi | A′ ∧B′] ≤
EXi×Yi [φi]

Pr[A′ ∧B′]
≤ 4 · EXi×Yi [φi] ≤ 12ε

We now want to conclude that EA′×B′ [φi] is small. This is not immediately true, because
changing from some distribution X ′ on support A′ to the uniform distribution on A′ may
increase the average error. To fix this, we consider a subset A ⊆ A′, discarding from A′ every
value x with E{x}×Y ′ [φi] > 24ε. Since the expectation over x is 12ε, a Markov bound implies
that Pr[A] ≥ 1

2
Pr[A′] ≥ 1

4
. We now have a bound for every x ∈ A, and thus EA×Y ′ [φi] ≤ 24ε.

Now perform a similar pruning of B, concluding that EA×B[φi] ≤ 48ε.
Finally, we must show that |A| ≥ |X|/αO(1). This follows because PrXi [A] ≥ 1

4
, and for

any x ∈ A we had ℘Xi(x) ≤ α8/|X|. The same analysis holds for |B|.

5.5 Bibliographical Notes

Communication complexity is a major topic of research in complexity theory, with numerous
interesting applications. However, “traditional” communication complexity has focused on
symmetric problems, and usually studied the total communication of both players, i.e. A+B.
This measure of complexity does not seem useful for data structures.

Asymmetric communication complexity was introduced by Miltersen, Nisan, Safra, and
Wigderson [73] in STOC’95, though it was implicit in previous work by Ajtai [3] and Mil-
tersen [71]. The richness technique, and the first lower bounds for Indexing and LSD date
back to this seminal paper [73]. The direct-sum property for richness lower bounds was
shown in our paper [88] from FOCS’06.

The randomized lower bound for symmetric set disjointness, originally due to [65, 92],
is probably the most used result from traditional communication complexity. Bar-Yossef,
Jayram, Kumar, and Sivakumar [19] provide the most accessible (though by no means simple)
proof of this result, based on a direct sum idea similar to that of §5.3. The randomized LSD
lower bounds date back to our paper [16] from FOCS’06.

83

84

Chapter 6

Static Lower Bounds

In this chapter, we prove our first lower bounds for static data structures. The standard
approach for such bounds is to convert a cell-probe algorithm into an asymmetric commu-
nication protocol. In the communication model, Alice holds a query, and Bob holds the
database. The two players communicate to answer the query on the database. Each round
of communication simulates a cell probe: the querier sends lgS bits, where S is the space
(the number of cells used by the data structure), and the database responds with w bits,
where w is the cell size.

As in the previous chapter, we can analyze this communication problem by the richness
method, and show lower bounds of the following form: either Alice must send a bits, or
Bob must send b bits. If the data structure makes t cell probes to answer the query, in the
communication protocol, Alice sends t lgS bits, and Bob sends tw bits. Comparing with the
lower bounds, one concludes that the cell-probe complexity must be at least t ≥ min{ a

lgS
, b
w
}.

In general, b is prohibitively large, so the first bound dominates for reasonable word size.
Thus, the time-space trade-off can be rewritten as S ≥ 2Ω(a/t).

We analyze two problems in this framework: partial match (in §6.1), and (1 + ε)-
approximate near neighbor search (in §6.2). These results appeared in our papers [16, 82],
and both follow by reduction from the communication complexity of set disjointness. See
Chapter 2 for background on these problems.

Decision trees. Intuitively, we do not expect the relation between cell-probe and com-
munication complexity to be tight. In the communication model, Bob can remember past
communication, and answer new queries based on this. Needless to say, if Bob is just a table
of cells, he cannot remember anything, and his responses must be a function of Alice’s last
message (i.e. the address of the cell probe).

This reduction to a much stronger model has its limitations. The bounds that we obtain,
which look like S ≥ 2Ω(a/t), are tight for constant query time (demonstrating interesting phe-
nomena about the problem), but they degrade too quickly with t, and become uninteresting
even for small t.

On the other hand, asymmetric communication complexity can be used to obtain very
good lower bounds in a more restricted model of computation: decision trees. In this model,

85

we can typically show that the decision tree must have size 2Ω(a), unless its depth (query
time) is prohibitively large.

The reduction between decision trees and asymmetric communication is explored in §6.3.

Beating communication complexity. As mentioned above, the implications of commu-
nication lower bounds for cell-probe data structures are far from satisfactory. For example,
the entire strategy is, by design, insensitive to polynomial changes in the space (up to con-
stants in the lower bound). But this is unrealistic for data structures, where the difference
between space n lgO(1) n and (say) space O(n3) is plainly the difference between an interesting
solution and an uninteresting one.

To put this in a different light, note that a communication complexity of O(d) bits from
the querier equates data structures of size 2O(d) which solve the problem in constant time, and
data structures of size O(n) which solve the problem in a mere O(d/ lg n) time. Needless to
say, this equivalence appears unlikely. Thus, we need new approaches which can understand
the time/space trade-offs in the cell-probe model at a finer granularity than direct reduction
to communication. We make progress in this direction, in the case when the space is n1+o(1).

Interestingly, we do not need to throw out the old work in the communication model.
We can take any lower bound shown by the richness method, for problems with a certain
compositional structure, and obtain a better lower bound for small-space data structures by
black-box use of the old result. Thus, we can boost old bounds for polynomial space, in the
case of near-linear space.

Let S be the space in cells used by the data structure. If one uses richness to show
a lower bound of Ω(d) bits for the communication of the querier, the standard approach
would imply a cell-probe lower bound of Ω(d/ lgS). In contrast, we can show a lower bound
of Ω(d/ lg Sd

n
), which is an improvement for S = n1+o(1). In the most interesting case of

near-linear space S = n(d lg n)O(1), the bound becomes Ω(d/ lg d). Compared to Ω(d/ lg n),
this is a significant improvement for natural values of d, such as d = lgO(1) n. In particular,
for d = O(lg n), previous lower bounds could not exceed a constant, whereas we obtain
Ω(lg n/ lg lg n). Note that for d = O(lg n) we have constant upper bounds via tabulation,
given large enough polynomial space.

Our technique is introduced in §6.4, where it is illustrated with the familiar partial match
problem. In the next chapter, we give more exciting application to range queries, where our
idea yields many tight bounds.

6.1 Partial Match

First, we must clarify the notion of reduction from the communication complexity of LSD
to a data-structure problem. In such a reduction, Bob constructs a database based on his
set T , and Alice constructs a query based on S. It is then shown that LSD can be solved
based on the answer to the k queries on Bob’s database. If the data structure has size S
and query time t, this reduction in fact gives a communication protocol for LSD, in which
Alice communicates t lgS bits, and Bob communicates tw bits. This is done by simulating

86

the query algorithm: for each cell probe, Alice sends the address, and Bob sends the content
from his constructed database. At the end, the answer to LSD is determined from the
answer of the query.

In the previous chapter, we showed a lower bound for LSD via a direct sum argument
for indexing problems. This gives a special case of LSD, that we call Blocked-LSD. In
this problem, the universe is interpreted as [N] × [B], and elements as pairs (u, v). It is
guaranteed that (∀)x ∈ [N], S contains a single element of the form (x, ?).

Reduction 6.1. Blocked-LSD reduces to one partial match query over n = N ·B strings
in dimension d = O(N lgB).

Proof. Consider a constant weight code φ mapping the universe [B] to {0, 1}b. If we use
weight b/2, we have

(
b
b/2

)
= 2Ω(b) codewords. Thus, we may set b = O(lgB).

If S = {(1, s1), . . . , (N, sN)}, Alice constructs the query string φ(s1)φ(s2) · · · , i.e. the
concatenation of the codewords of each si. We have dimension d = N · b = O(N lgB).

For each point (x, y) ∈ T , Bob places the string 0(x−1)b φ(y) 0(N−x)b in the database.
Now, if (i, si) ∈ T , the database contains a string with φ(si) at position (i − 1)b, and the
rest zeros. This string is dominated by the query, which also has φ(si) at that position. On
the other hand, if a query dominates some string in the database, then for some (i, si) ∈ S
and (i, y) ∈ T , φ(si) dominates φ(y). But this means si = y because in a constant weight
code, no codeword can dominate another.

From the lower bound on Blocked-LSD, we know that in a communication protocol
solving the problem, either Alice sends Ω(N lgB) bits, or Bob sends N · B1−δ ≥ n1−δ bits.
Rewriting this bound in terms of n and d, either Alice sends Ω(d) bits, or Bob sends n1−δ

bits, for constant δ > 0.
This implies that a data structure with query time t requires space 2Ω(d/t), as long as the

word size is w ≤ n1−δ/t.

6.2 Approximate Near Neighbor

We consider the decision version of approximate near neighbor over the Hamming space.
Given a set P ⊂ {0, 1}d of n points and a distance r, build a data structure which given
q ∈ {0, 1}d does the following, with probability at least, say, 2/3:

• If there is p ∈ P such that ‖q − p‖ ≤ r, answer Yes;

• If there is no p ∈ P such that ‖q − p‖ ≤ (1 + ε)r, answer No.

Here we use ‖ · ‖ for the Hamming norm. It is standard to assume cells have Θ(d) bits, i.e. a
point can be stored in one cell. The lower bound holds for the Euclidean space as well.

To prove the lower bound, we consider the asymmetric communication complexity of the
problem for dimension d = (1

ε
lg n)O(1). We assume that Alice holds q, while Bob holds P .

We show that to solve the problem, either Alice sends Ω(1
ε2

lg n) bits, or Bob sends Ω(n1−δ)
bits, for any constant δ > 0.

87

By the standard relation to cell-probe complexity, this implies that any data structure
with constant cell-probe complexity must use space nΩ(1/ε2), with is optimal (see Chapter 2).
Note that the cell size w is usually much smaller than n1−δ, typically b = d logO(1) n, so that
bound on Bob’s communication is very permissive.

Thus, our result establishes a tight quantitative dependence between the approximation
factor and the exponent in the space bound (for the constant query time case). Given
that the exponent must be quadratic in 1/ε, our results indicate a fundamental difficulty in
designing practical data structures which are very accurate and very fast.

Theorem 6.2. Consider the communication complexity of (1+ε)-approximate near neighbor

in {0, 1}d, where d = O(log2 n
ε5

). For any ε = Ω(n−γ), γ < 1/2, in any randomized protocol

deciding the (1 + ε)-NN problem, either Alice sends Ω(logn
ε2

) bits or Bob sends Ω(n1−δ) bits,
for any δ > 0.

Proof. We show how to map an instance of lopsided set disjointness, given by T and S,
into an instance of (1 + ε)-approximate near neighbor, given by respectively the dataset
P ⊂ {0, 1}d and the query q ∈ {0, 1}d. For this purpose, first, Alice and Bob map their sets
S and T into query q̃ ∈ <U and dataset P̃ ⊂ <U , i.e., an (1 + ε)-NN instance in Euclidean
U -dimensional space, lU2 . Then, Alice and Bob map their points from the lU2 metric to
Hamming cube {0, 1}O(log2 n/ε5), essentially preserving the distances among all the points q̃
and P̃ .

For the set T ⊂ [U], we define P̃ , {eu | u ∈ T}, where eu is a standard <d basis
vector, with 1 in the coordinate u, and 0 everywhere else. For the set S, we set the query
q̃ , 3ε ·

∑
u∈S eu; note that ‖q̃‖2

2 = m · (3ε)2 = 1.

We show that if S ∩ T = ∅, then ‖q̃ − p̃‖2 =
√

2 for all p̃ ∈ P̃ , and, if S ∩ T 6= ∅, then
there exists a point p̃ ∈ P̃ such that ‖q̃ − p̃‖2 ≤ (1− 4ε

3
)
√

2. Indeed, we have that

• if S ∩ T = ∅, then for any p̃ ∈ P̃ , we have that ‖q̃ − p̃‖2
2 = ‖q̃‖2

2 + ‖p̃‖2
2 − 2q̃ · p̃ = 2;

• if S ∩ P 6= ∅, then for u∗ ∈ S ∩ P and for p̃ = eu∗ ∈ P , we have ‖q̃ − p̃‖2
2 =

‖q̃‖2
2 + ‖p̃‖2

2 − 2q̃ · p̃ = 2− 2(3εeu∗) · eu∗ = 2(1− 3ε).

To construct P ⊂ {0, 1}d and q ∈ {0, 1}d, Alice and Bob perform a randomized mapping
of lU2 into {0, 1}d for d = O(log2 n/ε5), such that the distances are only insignificantly
distorted, with high probability. Alice and Bob use a source of public random coins to
construct the same randomized mapping. First, they construct a randomized embedding

f1 mapping lU2 into l
O(logn/ε2)
1 with distortion less than (1 + ε/16). Then, they construct

the standard embedding f2 mapping l
O(logn/ε2)
1 into {0, 1}O(log2 n/ε5). The embedding f2 first

scales up all coordinates by D = O(logn
ε3

), then rounds the coordinates, and finally transforms
each coordinate into its unary representation. We set the constants such that the resulting
approximation of f2 is an additive term O(logn

ε2
) < Dε

√
2

16
.

Next, Alice and Bob construct q = f2(f1(q̃)) ∈ {0, 1}d and P = {f2(f1(p̃)) | p̃ ∈ P̃} ⊂
{0, 1}d. Notice that for any p = f2(f1(p̃)) ∈ P , if ‖q̃ − p̃‖2 ≥

√
2, then ‖q − p‖H ≥

D
√

2(1 − ε/16) − Dε
√

2
16

= D
√

2(1 − ε
8
), and if ‖q̃ − p̃‖2 ≤

√
2(1 − 4ε

3
), then ‖q − p‖H ≤

D
√

2(1− 4ε
3

)(1 + ε/16) + Dε
√

2
16
≤ D
√

2(1− ε− 5ε
24

).

88

Finally, Alice and Bob can run the (1+ε)-NN communication protocol with r = D
√

2(1−
ε − 5ε

24
) to decide whether S ∩ T = ∅. Note that the error probability of the resulting set

disjointness protocol is bounded away from 1/2 since (1+ε)-NN communication protocol has
error probability bounded away from 1/2, and the embedding f2 ◦ f1 fails with probability
at most n−Ω(1).

6.3 Decision Trees

We formally define what we mean by a decision tree for a data structure problem. Consider
a partial problem F : I → {0, 1} with I ⊂ X × Y , where X is the set of “queries” and Y is
the set of “datasets”.

For y ∈ Y , a decision tree Ty is a complete binary tree in which:

• each internal node v is labeled with a predicate function fv : X → {0, 1}. We assume
fv comes from some set F of allowed predicates.

• each edge is labeled with 0 or 1, indicating the answer to the parent’s predicate.

• each leaf is labeled with 0 or 1, indicating the outcome of the computation.

Evaluating Ty on x is done by computing the root’s predicate on x, following the corre-
sponding edge, computing the next node’s predicate, and so on until a leaf is reached. The
label of the leaf is the output, denoted Ty(x).

We let the size s of the tree to be the total number of the nodes. The depth d of the tree
is the longest path from the root to a leaf. The predicate size is w = dlog2Fe.

We say that problem F can be solved by a decision tree of size s, depth d, and predicate
size w iff, for any y, there exists some tree Ty of size at most s, depth at most d, and node
size at most w, such that Ty(x) = F (x, y) whenever (x, y) ∈ I.

Our result on the decision tree lower bound follows from the following folklore lemma,
which converts an efficient decision tree solving a problem F into an efficient communication
protocol.

Lemma 6.3. Consider any (promise) problem F : I → {0, 1}, where I ⊂ X × Y . Suppose
there exists a decision tree of size s, depth d, and node size w.

If Alice receives x ∈ X and Bob receives y ∈ Y , there exists a communication protocol
solving the problem F , in which Alice sends a total of a = O(log s) bits and Bob sends
b = O(dw log s) bits.

Proof. Before the protocol, Bob constructs his decision tree Ty. Suppose, for a moment, that
the decision tree is balanced, that is d = O(log s). Then, Alice and Bob can run the following
“ideal” protocol. In round one, Bob sends the predicate fr of the root r of the decision tree.
Alice computes fr(x) (a bit) and sends it back. Then Bob follows the corresponding edge in
the tree, and sends the predicate of the corresponding child, etc. We obtain communication
a ≤ d and b ≤ w · d.

In general, however, the decision tree TD is not balanced. In this case, Alice and Bob
can simulate a standard binary search on a tree. Specifically, Bob finds a separator edge

89

that splits the tree in two components, each of size at least s/3. Let this separating edge
be (u, v). In round one, Alice and Bob want to detect whether, in the ideal protocol, Alice
would eventually follow the edge (u, v). To determine this, Bob sends the predicates for all
nodes on the path from the root r to u. Alice evaluates these predicates on x and sends
back a 1 if she would follow the edge (u, v), and 0 otherwise. Then, the players recurse on
the remaining part of the tree; they are done after O(log s) such rounds.

In the end, Alice sends only a = O(log s) bits, i.e. one bit per round. Bob sends O(d ·w)
bits per round, and thus b = O(dw log s).

From this, we obtain the following very strong implications for the partial match and
near neighbor problems:

Theorem 6.4. A decision tree for the partial match problem with predicate size O(nδ) must
either have size 2Ω(d), or depth Ω(n1−2δ/d).

Theorem 6.5. A decision tree with predicate size O(nδ), for (1+ε)-approximate near neigh-
bor search in the Hamming cube {0, 1}d, must either have size nΩ(1/ε2), or depth Ω(n1−2δ/d).

Note that with depth O(n), one can just perform a linear scan of the database to find
the answer. Then, the space (decision tree size) is just linear. These bounds show that for
strongly sublinear query time, the space must be prohibitively large.

6.4 Near-Linear Space

We first describe the intuition for why a lower bound of Ω(d/ lg n) for space S = nO(1),
should also imply a lower bound of Ω(d/ lg d), when the space is S = n · (d lg n)O(1). For very
small databases, namely n = dO(1), the lower bound for polynomial space can be rewritten as
Ω(d/ lg d). If n is larger, one can hope to partition the problem into k = n/dO(1) independent
subproblems, each with database of size N = dO(1). Intuitively, each subproblem “gets” space
S/k = (d · lg n)O(1) = NO(1), and hence it requires Ω(d/ lg d) cell probes.

Transforming this intuition into an actual lower bound is surprisingly simple. Instead
of simulating one query as part of a communication protocol, we will simulate k queries in
parallel. In each step, the queriers need to send the subset of k cells which are probed, among
the S cells in memory. Sending this information requires O(lg

(
S
k

)
) = O(k lg S

k
) bits. This

is O(lg S
k
) bits “on average” per query, whereas the normal reduction sends O(lgS) bits for

one query. We will typically use k = n/ lgO(1) n.
Our direct sum results from the previous chapter are crucial in this context. They can

show that considering k independent copies increases the communication lower bound by a
factor of Ω(k), which is exactly the intuition described above.

Technical details. Let PMd
n be the partial match problem with a query in {0, 1, ?}d and

a database of n strings in {0, 1}d.

90

Theorem 6.6. Consider a bounded error (Monte Carlo) data structure solving PMd
n in the

cell-probe model with cells of dO(1) bits, using space S. Assuming d ≥ 2 lg n, the cell-probe
complexity of a query must be Ω(d/ lg Sd

n
).

Proof. It is easy to convert a solution to PMd
n into a solution to

⊕k PMD
N , where N = n/k

and D = d−lg k ≥ d/2. One simply prefixes query and database strings with the subproblem
number, taking lg k bits.

As we showed above, a lower bound for the communication complexity of partial match
can be obtained by a very simple reduction from LSD. Our LSD lower bound from Chapter 5
was by richness. Interpreting this richness lower bound in the context of partial match, we
see that on a certain domain X × Y for PMD

N , we have:

• PMD
N is 1

2
-dense.

• for any δ > 0, in any rectangle of size |X|/2O(δD)×|Y |/2O(N1−δ/D2), the density of zeros
is Ω(1).

For concreteness, set δ = 1
2

in the above result. Applying our direct sum result for

randomized richness, Theorem 5.18, to
⊕k PMD

N , we obtain that either T lg S
k

= Ω(D), or

T ′w = Ω(
√
N/D2). Setting N = w2 ·D4 ·d = dO(1), the second inequality becomes T = Ω(d),

while the first becomes T = Ω(lg Sd
n

). We thus conclude that T ≥ min{Ω(d), Ω(d/ lg Sd
n

)} =
Ω(d/ lg Sd

n
).

91

92

Chapter 7

Range Query Problems

In the previous chapter, we introduced a neat trick in using asymmetric communication
complexity to obtain cell-probe lower bounds: consider multiple queries at the same time
(on Alice’s side) communicating to the same database. This allowed us to obtain lower
bounds of Ω(lg n/ lg lg n) for a data structure using space O(n · polylog n) in the cell-probe
model with words of O(lg n) bits.

Unfortunately, our application was not so compelling. We showed Ω(lg n/ lg lg n) lower
bounds for partial match, a very hard problem, where the optimal bound should probably be
around n1−o(1). In this chapter, we demonstrate significantly more interesting applications.
The simple idea of analyzing multiple queries at the same time turns out to capture the
fundamental complexity of very important range query problems.

See Chapter 2 for ample background on the various range query problems that we consider
here.

Our results stem from a lower bound on an unusual problem: reachability oracles in
butterfly graphs.

Theorem 7.1. Consider a data structure that represents a directed graph G that is a subgraph
of a (directed) butterfly graph, and answers the following query:

reachable(u, v): is node v reachable from u through a directed path in G?

If the data structure uses space nσ in the cell probe model with w-bit cells, the query time
must be Ω(lgn

lg(σ+w)
).

The proof of this result is given in §7.1, and it follows, somewhat surprisingly, by reduction
from the complexity of lopsided set disjointness.

In §7.3, we show two corollaries of this result:

Theorem 7.2. A data structure for orthogonal range stabbing in 2 dimensions using space
n · σ in the cell probe model with w-bit cells, requires query time Ω(lgn

lg(σw)
).

Theorem 7.3. A data structure for the dynamic marked ancestor problem, with amortized
update time tu = O(polylog n) requires query time tq = Ω

(
lgn

(lg lgn)2

)
.

93

Figure 7-1: A butterfly with degree 2 and depth 4.

The lower bound for 2-dimensional stabbing immediately implies our lower bound for 4-
dimensional range reporting, and 2-dimensional range counting by the reductions discussed
in Chapter 2.

Our lower bound for the marked ancestor problem reproves the important result of Al-
strup, Husfeldt, and Rauhe [8], with a lg lg n loss in the query bound. Despite this slightly
weaker bound, we feel our proof is interesting, as it shows a dynamic lower bound by arguing
only about static problems, and significantly clears up the structure of the problems under
consideration.

7.1 The Butterfly Effect

The butterfly is a well-known graph structure with high “shuffle abilities.” The graph (Fig-
ure 7-1) is specified by two parameters: the degree b, and the depth d. The graph has d+ 1
layers, each having bd vertices. The vertices on level 0 are sources, while the ones on level d
are sinks. Each vertex except the sinks has out-degree d, and each vertex except the sources
has in-degree d. If we view vertices on each level as vectors in [b]d, the edges going out of
a vertex on level i go to vectors that may differ only on the ith coordinate. This ensures
that there is a unique path between any source and any sink: the path “morphs” the source
vector into the sink node by changing one coordinate at each level.

For convenience, we will slightly abuse terminology and talk about “reachability oracles
for G,” where G is a butterfly graph. This problem is defined as follows: preprocess a
subgraph of G, to answer queries of the form: is sink v reachable from source u? The query
can be restated as: is any edge on the unique source–sink path missing from the subgraph?

7.1.1 Reachability Oracles to Stabbing

The reduction from reachability oracles to stabbing is very easy to explain formally, and we
proceed to do that now. However, there is a deeper meaning to this reduction, which will
be explored in §7.1.2.

94

Reduction 7.4. Let G be a butterfly with M edges. The reachability oracle problem on G
reduces to 2-dimensional stabbing over M rectangles.

Proof. If some edge of G does not appear in the subgraph, what source-sink paths does
this cut off? Say the edge is on level i, and is between vertices (· · · , vi−1, vi, vi+1, · · ·) and
(· · · , vi−1, v

′
i, vi+1, · · ·). The sources that can reach this edge are precisely (?, · · · , ?, vi, vi+1, · · ·),

where ? indicates an arbitrary value. The sinks that can be reached from the edge are
(· · · , vi−1, v

′
i, ?, · · ·). The source–sink pairs that route through the missing edge are the

Cartesian product of these two sets.
This Cartesian product has precisely the format of a 2D rectangle. If we read a source

vector (v1, . . . , vd) as a number in base b with the most significant digit being vd, the set of
sources that can reach the edge is an interval of length bi−1. Similarly, a sink is treated as a
number with the most significant digit v1, giving an interval of length bd−i.

For every missing edge, we define a rectangle with the source and sink pairs that route
through it. Then, a sink is reachable from a source iff no rectangle is stabbed by the (sink,
source) point.

Observe that the rectangles that we constructed overlap in complicated ways. This is in
fact needed, because 2-dimensional range stabbing with non-overlapping rectangles can be
solved with query time O(lg2 lg n) [35].

As explained in Chapter 2, 2D range stabbing reduces to 2D range counting and 4D
range reporting.

7.1.2 The Structure of Dynamic Problems

The more interesting reduction is to the marked ancestor problem. The goal is to convert
a solution to the dynamic problem into a solution to some static problem for which we can
prove a lower bound.

A natural candidate would be to define the static problem to be the persistent version of
the dynamic problem. Abstractly, this is defined as follows:

input: an (offline) sequence of updates to a dynamic problem, denoted by u1, . . . , um.

query: a query q to dynamic problem and a time stamp τ ≤ m. The answer should be the
answer to q if it were executed by the dynamic data structure after updates u1, . . . , uτ .

An algorithm result for making data structures persistent can be used to imply a lower
bound for the dynamic problem, based on a lower bound for the static problem. The following
is a standard persistence result:

Lemma 7.5. If a dynamic problem can be solved with update time tu and query time tq, its
(static) persistent version will have a solution with space O(m · tu) and query time O(tq ·
lg lg(m · tu)).

Proof. We simulate the updates in order, and record their cell writes. Each cell in the
simulation has a collection of values and timestamps (which indicate when the value was

95

updated). For each cell, we build a predecessor structure a la van Emde Boas [101] over
the time-stamps. The structures occupy O(m · tu) space in total, supporting queries in
O(lg lg(mtu)) time. To simulate the query, we run a predecessor query for every cell read,
finding the last update that changed the cell before time τ .

Thus, if the static problem is hard, so is the dynamic problem (to within a doubly
logarithmic factor). However, the reverse is not necessarily true, and the persistent version
of marked ancestor turns out to be easy, at least for the incremental case. To see that,
compute for each node the minimum time when it becomes marked. Then, we can propagate
down to every leaf the minimum time seen on the root-to-leaf path. To query the persistent
version, it suffices to compare the time stamp with this value stored at the leaf.

As it turns out, persistence is still the correct intuition for generating a hard static
problem. However, we need the stronger notion of full persistence. In partial persistence, as
seen above, the updates create a linear chain of versions (an update always affects the more
recent version). In full persistence, the updates create a tree of versions, since updates are
allowed to modify any historic version.

For an abstract dynamic problem, its fully-persistent version is defined as follows:

input: a rooted tree (called the version tree) in which every node is labeled with a sequence
of update operations. The total number of updates is m.

query: a query q to the dynamic problem, and a node τ of the version tree. The answer
should be the answer to q if it were executed after the sequence of updates found on
the path through the version tree from the root to τ .

Like the partially persistent problem, the fully persistent one can be solved by efficient
simulation of the dynamic problem:

Lemma 7.6. If a dynamic problem can be solved with update time tu and query time tq, the
fully-persistent static problem has a solution with space O(m·tu) and query time O(tq lg lg(m·
tu)).

Proof. For each cell of the simulated machine, consider the various nodes of the version tree
in which the cell is written. Given a “time stamp” (node) τ , we must determine the most
recent change that happened on the path from τ to the root. This is the longest matching
prefix problem, which is equivalent to predecessor search. Thus, the simulation complexity
is the same as in Lemma 7.5.

We now have to prove a lower bound for the fully-persistent version of marked ancestor,
which we accomplish by a reduction from reachability oracles in the butterfly:

Reduction 7.7. Let G be a subgraph of a butterfly with M edges. The reachability oracle
problem on G reduces to the fully-persistent version of the marked ancestor problem, with an
input of O(M) offline updates. The tree in the marked ancestor problem has the same degree
and depth as the butterfly.

96

(a)

a0 a1

b0 b1 b2 b3

c0 c1 c2 c3 c4 c5 c6 c7

d0d1d2d3d4d5d6d7d8d9d10d11d12d13d14d15 (b) d0d1d2d3d4d5d6d7d8d9d10d11d12d13d14d15

c0 c1 c2 c3 c4 c5 c6 c7 c0 c1 c2 c3 c4 c5 c6 c7

b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3

a0a1a0a1a0a1a0a1a0a1a0a1a0a1a0a1

Figure 7-2: (a) The marked ancestor problem. (b) An instance of fully-persistent marked
ancestor.

Proof. Our inputs to the fully-persistent problem have the pattern illustrated in Figure 7-2.
At the root of the version tree, we have update operations for the leaves of the marked
ancestor tree. If we desire a lower bound for the incremental marked ancestor problems, all
nodes start unmarked, and we have an update for every leaf that needs to be marked. If we
want a decremental lower bound, all nodes start marked, and all operations are unmark.

The root has b subversions; in each subversion, the level above the leaves in the marked
ancestor tree is updates. The construction continues similarly, branching our more versions
at the rate at which level size decreases. Thus, on each level of the version tree we have bd

updates, giving bd · d updates in total.

With this construction of the updates, the structure of the fully persistent marked ances-
tor problem is isomorphic to a butterfly. Imagine what happens when we query a leaf v of
the marked ancestor tree, at a leaf t of the version tree. We think of both v and t as vectors
in [b]d, spelling out the root to leaf paths. The path from the root to v goes through every
level of the version tree:

• on the top level, there is a single version (t is irrelevant), in which v is updated.

• on the next level, the subversion we descend to is decided by the first coordinate of t.
In this subversion, v’s parent is updated. Note that v’s parent is determined by the
first d− 1 coordinates of v.

• on the next level, the relevant subversion is dictated by the first two coordinates of
t. In this subversion, v’s grandparent is updated, which depends on the first d − 2
coordinates of v.

• etc.

This is precisely the definition of a source-to-sink path in the butterfly graph, morphing
the source into the sink one coordinate at a time. Each update will mark a node if the
corresponding edge in the butterfly is missing in the subgraph. Thus, we encounter a marked
ancestor iff some edge is missing.

97

Let us see how Reduction 7.7 combines with Lemma 7.6 to give an actual lower bound.
Given a butterfly graph with m edges, we generate at most m updates. From Lemma 7.6, the
space of the fully persistent structure is S = O(m · tu), and the query time O(tq lg lg(mtq)),
where tu and tq are the assumed running times for dynamic marked ancestor. If tu =
O(polylogm), the space is S = O(m polylogm).

The lower bound for reachability oracles from Theorem 7.1 implies that for spaceO(m polylogm),
the query time must be Ω

(
lgm

lg lgm

)
. But we have an upper bound of O(tq lg lg(mtq)) for the

query time, so tq = Ω
(

lgm
lg2 lgm

)
. This is weaker by a lg lgm factor compared to the original

bound of [8].

7.2 Adding Structure to Set Disjointness

Remember that in the lopsided set disjointness (LSD) problem, Alice and Bob receive sets
S and T and must determine whether S ∩ T = ∅. Denote the size of Alice’s set by |S| = N ,
and let B be the fraction between the universe and N . In other words, S, T ⊆ [N ·B]. Note
that |T | may be as large as N ·B.

In Chapter 5, we showed the following deterministic lower bound for LSD:

Theorem 7.8. Fix δ > 0. In a deterministic protocol for LSD, either Alice sends Ω(N lgB)
bits, or Bob sends NB1−δ bits.

Just as it is more convenient to work with 3SAT that circuit-SAT for showing NP-
completeness, our reductions uses a more restricted version of LSD, which we call 2-
Blocked-LSD. In this problem, the universe is interpreted as [N

B
] × [B] × [B]. It is guar-

anteed that for all x ∈ [N
B

] and y ∈ [B], S contains a single element of the form (x, y, ?) and
a single element of the form (x, ?, y).

It is possible (and in fact easy) to reanalyze the lower bounds of Chapter 5, and show that
they also apply to 2-Blocked-LSD. However, in the spirit of this chapter, we choose to
design a reduction from general LSD to this special case. We show that LSD is reducible to
2-Blocked-LSD with communication complexity essentially O(N). Since the lower bound
is ω(N), it must also hold for 2-Blocked-LSD.

Lemma 7.9. LSD reduces to 2-Blocked-LSD by a deterministic protocol with communi-
cation complexity O(N + lg lgB).

Proof. Consider a random permutation π of the universe. If Alice and Bob can agree on a
permutation, they can apply it on their own inputs and solve LSD on π(S) and π(T).

In 2-Blocked-LSD, there are (B!)N/B valid instances of S. Since π(S) is a uni-
formly random N -subset of the universe, the probability that it generates an instance of
2-Blocked-LSD is:

(B!)N/B
/(NB

N

)
≥
(
B

e

)B·(N/B) /(eNB
N

)N
=

(
B

e

)N /(
B · e

)N
= e−2N

98

We are looking for a small set F of permutations, such that for any input S, there exists
π ∈ F for which π(S) is an instance of 2-Blocked-LSD. Then, Alice and Bob can agree
on F in advance. When seeing an instance S of LSD, Alice chooses a π that maps it to an
instance of 2-Blocked-LSD, and sends the index of π in F to Bob, using lg |F| bits.

By the probabilistic method, we show there exist F of size e2N ·2N lgB, i.e. lg |F| = O(N).
Choose every element of F randomly. For a fixed S, the probability that no element is
good is at most (1 − e−2N)|F| ≤ exp(−|F|/e−2N) = e−2N lgB. But there are only

(
NB
N

)
≤

(eB)N < e2N lgB choices of S, so by a union bound F works for all possible S with nonzero
probability.

Finally, we must clarify the notion of reduction from a communication problem to a
data-structure problem. In such a reduction, Bob constructs a database based on his set T ,
and Alice constructs a set of k queries. It is then shown that LSD can be solved based on
the answer to the k queries on Bob’s database. If we are interested in lower bounds for space
n1+o(1), we must reduce to a large number k of queries. In each cell probe, the queries want
to read some k cells from the memory of size S. Then, Alice can send lg

(
S
k

)
bits, and Bob

can reply with k · w. Observe that lg
(
S
k

)
= Θ(k lg S

k
)� k lgS, if k is large enough.

7.2.1 Randomized Bounds

In Chapter 5, we also showed the following randomized lower bound for LSD:

Theorem 7.10. Assume Alice receives a set S, |S| = n and Bob receives a set T, |T | = m,
both sets coming from a universe of size 2nm, for m < nγ, where γ < 1 is a constant. In
any randomized, two-sided error communication protocol deciding disjointness of S and T ,
either Alice sends Ω(m lg n) bits or Bob sends Ω(n1−δ) bits, for any δ > 0.

This bound will not be enough for our reduction to reachability oracles in butterfly
graphs, because the universe is quadratic in the set sizes. We can replace this lower bound
by an optimal randomized lower bound for LSD which only needs a linear universe.

However, we can also give a simple self-contained proof of a randomized lower bound
without requiring this more complicated result. This alternative proof works by reducing
from

⊕k LSD, a direct sum of randomized LSD problems. All this is needed is the direct
sum result for randomized richness, which we proved in §5.4.3.

7.3 Set Disjointness to Reachability Oracles

Since we want a lower bound for near-linear space, we must reduce LSD to k parallel queries
on the reachability oracle. The entire action is in what value of k we can achieve. Note,
for instance, that k = N is trivial, because Alice can pose a query for each item in her
set. However, a reduction with k = N is also useless. Remember that the communication
complexity of Alice is t · lg

(
S
k

)
≥ t lg

(
NB
N

)
. But LSD is trivially solvable with communication

99

lg
(
NB
N

)
, since Alice can communicate her entire set. Thus, there is no contradiction with

the lower bound.

To get a lower bound on t, k must be made as small as possible compared to N . Intu-
itively, a source–sink path in a butterfly of depth d traverses d edges, so it should be possible
to test d elements by a single query. To do that, the edges must assemble in contiguous
source–sink paths, which turns out to be possible if we carefully match the structure of the
butterfly and the 2-Blocked-LSD problem:

Reduction 7.11. Let G be a degree-B butterfly graph with N non-sink vertices and N · B
edges, and let d be its depth. 2-Blocked-LSD reduces to N

d
parallel queries to a reachability

oracle for a subgraph of G.

Proof. Remember that in 2-Blocked-LSD, elements are triples (x, y, z) from the universe
[N
B

]× [B]× [B]. We define below a bijection between [N
B

]× [B] and the non-sink vertices of
G. Since (x, y) is mapped to a non-sink vertex, it is natural to associate (x, y, z) to an edge,
specifically edge number z going out of vertex (x, y).

Bob constructs a reachability oracle for the graph G excluding the edges in his set T .
Then, Alice must find out whether any edge from her set S has been deleted. By mapping
the universe [N

B
]× [B] to the nodes carefully, we will ensure that Alice’s edges on each level

form a perfect matching. Then, her set of N edges form N
d

disjoint paths from sources to
sinks. Using this property, Alice can just issue N

d
queries for these paths. If any of the

source–sink pairs is unreachable, some edge in S has been deleted.

To ensure Alice’s edges form perfect matchings at each level, we first decompose the
non-sink vertices of G into N

B
microsets of B elements each. Each microset is associated to

some level i, and contains nodes of the form (· · · , vi−1, ?, vi+1, ·) on level i. A value (x, y) is
mapped to node number y in a microset identified by x (through some arbitrary bijection
between [N

B
] and microsets).

Let (x, 1, z1), . . . , (x,B, zB) be the values in S that give edges going out of microset x. If
the nodes of the microset are the vectors (· · · , vi−1, ?, vi+1, ·), the nodes to which the edges of
S go are the vectors (· · · , vi−1, zj, vi+1, ·) on the next level, where j ∈ [B]. Observe that edges
from different microsets cannot go to the same vertex. Also, edges from the same microset
go to distinct vertices by the 2-Blocked property: for any fixed x, the zj’s are distinct. Since
all edges on a level point to distinct vertices, they form a perfect matching.

Let us now compute the lower bounds implied by the reduction. We obtain a protocol for
2-Blocked-LSD in which Alice communicates t lg

(
S
k

)
= O(tk lg S

k
) = O(N · t

d
lg Sd

N
) bits,

and Bob communicates k · t · w = O(N · t
d
· w) bits. On the other hand, the lower bound

for 2-Blocked-LSD says that Alice needs to communicate Ω(N lgB) bits, or Bob needs to
communicate NB1−δ, for any constant δ > 0. It suffices to use, for instance, δ = 1

2
.

Comparing the lower bounds with the reduction upper bound, we conclude that either
t
d

lg Sd
N

= Ω(lgB), or t
d
w = Ω(

√
B). Set the degree of the butterfly to satisfy B ≥ w2 and

lgB ≥ lg Sd
N

. Then, t
d

= Ω(1), i.e. t = Ω(d). This is intuitive: it shows that the query needs
to be as slow as the depth, essentially traversing a source to sink path.

100

Finally, note that the depth is d = Θ(logB N). Since lgB ≥ max
{

2 lgw, lg Sd
N

}
= Ω

(
lgw+

lg Sd
N

)
= Ω

(
lg Sdw

N

)
. Note that certainly d < w, so lgB = Ω(lg Sw

N
). We obtain t = Ω(d) =

Ω(lgN/ lg Sw
N

).

101

102

Chapter 8

Near Neighbor Search in `∞

In this chapter, we deal with near neighbor search (NNS) under the distance d(p, q) =
‖p−q‖∞ = maxi∈[d] |pi−qi|, called the `∞ norm. See §2.4.3 for background on near-neighbor
search, and, in particular, for a discussion of this important metric.

The structure of the `∞ space is intriguingly different, and more mysterious than other
natural spaces, such as the `1 and `2 norms. In fact, there is precisely one data structure
for NNS under `∞ with provable guarantees. In FOCS’98, Indyk [61] described an NNS
algorithm for d-dimensional `∞ with approximation 4dlogρ log2 4de+1, which required space

dnρ lgO(1) n and query time d · lgO(1) n, for any ρ > 1. For 3-approximation, Indyk also
gives a solution with storage O(nlog2 d+1). Note that in the regime of polynomial space, the
algorithm achieves an uncommon approximation factor of O(lg lg d).

In this chapter, we begin by describing Indyk’s data structure in a manner that is con-
ceptually different from the original description. Our view relies on an information-theoretic
understanding of the algorithm, which we feel explains its behavior much more clearly.

Inspired by this understanding, we are able to prove a lower bound for the asymmetric
communication complexity of c-approximate NNS in `∞:

Theorem 8.1. Assume Alice holds a point q ∈ {0, . . . ,m}d, and Bob holds a database
D ⊂ {−m, . . .m}d of n points. They communicate via a deterministic protocol to output:
“1” if there exists some p ∈ D such that ‖q − p‖∞ ≤ 1;

“0” if, for all p ∈ D, we have ‖q − p‖∞ ≥ c.

Fix δ, ε > 0; assume the dimension d satisfies Ω(lg1+ε n) ≤ d ≤ o(n), and the approximation
ratio satisfies 3 < c ≤ O(lg lg d). Further define ρ = 1

2
(ε

2
lg d)1/c > 10.

Then, either Alice sends Ω(δρ lg n) bits, or Bob sends Ω(n1−δ) bits.

Note that this result is tight in the communication model, suggesting the Indyk’s unusual
approximation is in fact inherent to NNS in `∞. As explained in Chapter 6, this lower bound
on asymmetric communication complexity immediately implies the following corollaries for
data structures:

Corollary 8.2. Let δ > 0 be constant, and assume Ω(lg1+δ n) ≤ d ≤ o(n). Consider
any cell-probe data structure solving d-dimensional NNS under `∞ with approximation c =

103

O(logρ log2 d). If the word size is w = n1−δ and the query complexity is t, the data structure

requires space nΩ(ρ/t).

Corollary 8.3. Let δ > 0 be constant, and assume Ω(lg1+δ n) ≤ d ≤ o(n). A decision tree
of depth n1−2δ with predicate size nδ that solves d-dimensional near-neighbor search under
`∞ with approximation c = O(logρ log2 d), must have size nΩ(ρ).

As with all known lower bounds for large space, Corollary 8.2 is primarily interesting for
constant query time, and degrades exponentially with t. On the other hand, the lower bound
for decision trees holds even for extremely high running time (depth) of n1−δ. A decision
tree with depth n and predicate size O(d lgM) is trivial: simply test all database points.

Indyk’s result is a deterministic decision tree with depth O(d · poly log n) and predicate
size O(lg d + lgM). Thus, we show an optimal trade-off between space and approximation,
at least in the decision tree model. In particular, for polynomial space, the approximation
factor of Θ(lg lg d) is intrinsic to NNS under `∞.

8.1 Review of Indyk’s Upper Bound

Decision trees. Due to the decomposability of `∞ as a maximum over coordinates, a
natural idea is to solve NNS by a decision tree in which every node is a coordinate comparison.
A node v is reached for some set Qv ⊆ Zd of queries. If the node compares coordinate i ∈ [d]
with a “separator” x, its two children will be reached for queries in Q` = Qv ∩ {q | qi < x},
respectively in Qr = Qv ∩ {q | qi > x} (assume x is non-integral to avoid ties).

pi

x− 1 x x + 1

N` Nr

Q` Qr

v

` r

Figure 8-1: A separator x on coordinate i.

Define [x, y]i =
{
p | pi ∈ [x, y]

}
. Then, Q` =

Qv ∩ [−∞, x]i and Qr = Qv ∩ [x,∞]i.
If the query is known to lie in some Qv, the

set of database points that could still be a near
neighbor is Nv = D ∩

(
Qv + [−1, 1]d

)
, i.e. the

points inside the Minkowski sum of the query
set with the `∞ “ball” of radius one. For our
example node comparing coordinate i ∈ [d] with
x, the children nodes have N` = Nv ∩ [−∞, x+
1]i, respectively Nr = Nv ∩ [x− 1,+∞]i.

Observe that N` ∩Nr = Nv ∩ [x− 1, x+ 1]i.
In some sense, the database points in this slab
are being “replicated,” since both the left and
right subtrees must consider them as potential
near neighbors. This recursive replication of database points is the cause of superlinear
space. The contribution of Indyk [61] is an intriguing scheme for choosing a separator that
guarantees a good bound on this recursive growth.

Information progress. Our first goal is to get a handle on the growth of the decision
tree, as database points are replicated recursively. Imagine, for now, that queries come from

104

some distribution µ. The reader who enjoys worst-case algorithms need not worry: µ is just
an analysis gimmick, and the algorithm will be deterministic.

We can easily bound the tree size in terms of the measure of the smallest Qv ever reached:
there can be at most 1/minv Prµ[Qv] distinct leaves in the decision tree, since different
leaves are reached for disjoint Qv’s. Let IQ(v) = log2

1
Prµ[Qv]

; this can be understood as the

information learned about the query, when computation reaches node v. We can now rewrite
the space bound as O

(
2maxv IQ(v)

)
.

Another quantity that can track the behavior of the decision tree is HN(v) = log2 |Nv|.
Essentially, this is the “entropy” of the identity of the near neighbor, assuming that all
database points are equally likely neighbors.

At the root λ, we have IQ(λ) = 0 and HN(λ) = lg n. Decision nodes must reduce the
entropy of the near neighbor until HN reaches zero (|Nv| = 1). Then, the algorithm can
simply read the single remaining candidate, and test whether it is a near neighbor of the
query. Unfortunately, decision nodes also increase IQ along the way, increasing the space
bound. The key to the algorithm is to balance this tension between reducing the entropy of
the answer, HD, and not increasing the information about the query, IQ, too much.

In this information-theoretic view, Indyk’s algorithm shows that we can (essentially)
always find a separator that decreases HN by some δ but does not increase IQ by more than
ρ · δ. Thus, HD can be pushed from lg n down to 0, without ever increasing IQ by more than
ρ lg n. That is, space O(nρ) is achieved.

Searching for separators. At the root λ, we let i ∈ [d] be an arbitrary coordinate,
and search for a good separator x on that coordinate. Let π be the frequency distribution
(the empirical probability distribution) of the projection on coordinate i of all points in the
database. To simplify expressions, let π(x : y) =

∑y
j=x π(j).

If x is chosen as a separator at the root, the entropy of the near neighbor in the two child
nodes is reduced by:

HN(λ)−HN(`) = log2

|Nλ|
|N`|

= log2

|D|
|D ∩ [−∞, x+ 1]i|

= log2

1

π(−∞ : x+ 1)

HN(λ)−HN(r) = log2

1

π(x− 1 :∞)

Remember that we have not yet defined µ, the assumed probability distribution on the
query. From the point of view of the root, it only matters what probability µ assigns toQ` and
Qr. Let us reason, heuristically, about what assignments are needed for these probabilities
in order to generate difficult problem instances. If we understand the most difficult instance,
we can use that setting of probabilities to obtain an upper bound for all instances.

First, it seems that in a hard instance, the query needs to be close to some database point
(at least with decent probability). Let us simply assume that the query is always planted in
the neighborhood of a database point; the problem remains to find this near neighbor.

Assume by symmetry that HN(`) ≥ HN(r), i.e. the right side is smaller. Under our
heuristic assumption that the query is planted next to a random database point, we can

105

lower bound Prµ[Qr] ≥ π(x + 1,∞). Indeed, whenever the query is planted next to a point
in [x+1,∞]i, it cannot escape from Qr = [x,∞]i. Remember that our space guarantee blows
up when the information about Qv increases quickly (i.e. the probability of Qv decreases).
Thus, the worst case seems to be when Prµ[Qr] is as low as possible, namely equal to the
lower bound.

To summarize, we have convinced ourselves that it’s reasonable to define µ such that:

Pr
µ

[Q`] = π(−∞ : x+ 1); Pr
µ

[Qr] = π(x+ 1,∞) (8.1)

We apply similar conditions at all nodes of the decision tree. Note that there exists a µ
satisfying all these conditions: the space of queries is partitioned recursively between the left
and right subtrees, so defining the probability of the left and right subspace at all nodes is
an (incomplete) definition of µ.

From (8.1), we can compute the information revealed about the query:

IQ(`)− IQ(λ) = log2

Pr[Qλ]

Pr[Q`]
= log2

1

π(−∞ : x+ 1)

IQ(r)− IQ(λ) = log2

1

π(x+ 1 :∞)

Remember that our rule for a good separator was “∆IQ ≤ ρ · ∆HN .” On the left side,
IQ(`) − IQ(λ) = HN(λ) − HN(`), so the rule is trivially satisfied. On the right, the rule
asks that: log2

1
π(x+1:∞)

≤ ρ · log2
1

π(x−1:∞)
. Thus, x is a good separator iff π(x + 1 : ∞) ≥[

π(x− 1 :∞)
]ρ

.

Finale. As defined above, any good separator satisfies the bound on the information
progress, and guarantees the desired space bound of O(nρ). We now ask what happens
when no good separator exists.

We may assume by translation that the median of π is 0, so π([1 :∞]) ≤ 1
2
. If x = 11

2
is

not a good separator, it means that π(3 :∞) <
[
π(1 :∞)

]ρ ≤ 2−ρ. If x = 31
2

is not a good

separator, then π(5 : ∞) <
[
π(3 : ∞)

]ρ ≤ 2−ρ
2
. By induction, the lack of a good separator

implies that π(2j + 1 : ∞) < 2−ρ
j
. The reasoning works symmetrically to negative values,

so π(−∞ : −2j − 1) < 2−ρ
j
.

Thus, if no good separator exists on coordinate i, the distribution of the values on that
coordinate is very concentrated around the median. In particular, only a fraction of 1

2d
of

the database points can have |xi| > R = 2 logρ log2 4d. Since there is no good separator on
any coordinate, it follows that less than d · n

2d
= n

2
points have some coordinate exceeding

R. Let D? be the set of such database points.

To handle the case when no good separator exists, we can introduce a different type of
node in the decision tree. This node tests whether the query lies in an `∞ ball of radius
R+ 1 (which is equivalent to d coordinate comparisons). If it does, the decision tree simply
outputs any point in D \D?. Such a point must be within distance 2R + 1 of the query, so

106

it is an O(logρ log d) approximation.

If the query is outside the ball of radius R+1, a near neighbor must be outside the ball of
radius R, i.e. must be in D?. We continue with the recursive construction of a decision tree
for point set D?. Since |D?| ≤ |D|/2, we get a one-bit reduction in the entropy of the answer
for free. (Formally, our µ just assigns probability one to the query being outside the ball of
radius R + 1, because in the “inside” case the query algorithm terminates immediately.)

8.2 Lower Bound

Armed with this information-theoretic understanding of Indyk’s algorithm, the path to a
lower bound is more intuitive. We will define a distribution on coordinates decaying roughly
like 2−ρ

x
, since we know that more probability in the tail gives the algorithm an advantage.

Database points will be independent and identically distributed, with each coordinate drawn
independently from this distribution.

In the communication view, Alice’s message sends a certain amount of information re-
stricting the query space to some Q. The entropy of the answer is given by the measure of
N(Q) = Q+ [−1, 1]d, since the expected number of points in this space is just n ·Pr[N(Q)].
The question that must be answered is: fixing Pr[Q], how small can Pr[N(Q)

]
be?

We will show an isoperimetric inequality proving that the least expanding sets are exactly
the ones generated by Indyk’s algorithm: intersections of coordinate cuts [x,∞]i. Note that
Pr
[
[x,∞]i

]
≈ 2−ρ

x
, and N

(
[x,∞]i

)
= [x − 1,∞]i. Thus, the set expands to measure

Pr
[
x − 1,∞]i

]
≈ 2−ρ

x−1 ≈ Pr
[
[x,∞]i

]1/ρ
. Our isoperimetric inequality will show that for

any Q, its neighborhood has measure Pr[N(Q)] ≥ Pr[Q]1/ρ.

Then, if Alice’s message has o(ρ lg n) bits of information, the entropy of the near neighbor
decreases by only o(lg n) bits. In other words, n1−o(1) of the points are still candidate near
neighbors, and we can use this to lower bound the message that Bob must send.

The crux of the lower bound is not the analysis of the communication protocol (which is
standard), but proving the isoperimetric inequality. Of course, the key to the isopermitetric
inequality is the initial conceptual step of defining an appropriate biased distribution, in
which the right inequality is possible. The proof is rather non-standard for an isoperimetric
inequality, because we are dealing with a very particular measure on a very particular space.
Fortunately, a few mathematical tricks save it from being too technical.

Formal details. We denote the communication problem, c-approximate NNS, by the
partial function F . Let the domain of F̄ be X × Y , where X = {0, 1, . . .m}d and Y =(
{0, 1, . . .m}d

)n
. Complete the function F by setting F̄ (q,D) = F (q,D) whenever F (q,D)

is defined (in the “0” or “1” instances), and F̄ (q,D) = ? otherwise.

As explained already, our lower bound only applies to deterministic protocols, but it
requires conceptual use of distributions on the input domains X and Y . First define a
measure π over the set {0, 1, . . .m}: for i ≥ 1, let π({i}) = πi = 2−(2ρ)i ; and let π0 =
1−

∑
i≥1 πi ≥

1
2
. Here ρ is a parameter to be determined.

107

Now, define a measure µ over points by generating each coordinate independently ac-
cording to π: µ(x1, x2, . . . , xd)}) = πx1 · · · πxd . Finally, define a measure η over the database
by generating each point independently according to µ.

First, we show that F̄ is zero with probability Ω(1):

Claim 8.4. If d ≥ lg1+ε n and ρ ≤ 1
2
(ε

2
lg d)1/c, then Prq←µ,D←η[F̄ (q,D) 6= 0] ≤ 1

2
.

Proof. Consider q and some p ∈ D: their jth coordinates differ by c or more with probability
at least 2π0πc ≥ πc. Thus,

Pr[‖q−p‖∞ < c] ≤ (1−πc)d ≤ e−πcd ≤ e−2−(ε/2) lg d·d ≤ e−d
1−ε/2 ≤ e−(lgn)(1+ε)(1−ε/2) ≤ e−(lgn)1+ε/4

By a union bound over all p ∈ D, we get that q has no neighbor at distance less than c with
probability at least 1− n · exp(−(lg n)1+ε/4) = 1− o(1).

Claim 8.5. If Alice sends a bits and Bob sends b bits, there exists a combinatorial rectangle
Q × D ⊆ X × Y of measure µ(Q) ≥ 2−O(a) and η(D) ≥ 2−O(a+b), on which F̄ only takes
values in {0, ?}.

Proof. This is just the deterministic richness lemma (Lemma 5.4) in disguise. Let F ′ :
X × Y → {0, 1} be the output of the protocol. We have F ′(q,D) = F̄ (q,D) whenever
F̄ (q,D) 6= ?. Since Pr[F ′(q,D) = 0] ≥ 1

2
, F ′ is rich: half of the columns are at least half

zero (in the weighted sense). Thus, we can find a rectangle of size µ(Q) ≥ 2−O(a) and
η(D) ≥ 2−O(a+b), on which F ′ is identically zero. Since the protocol is always correct, this
means that F̄ is 0 or ? on the rectangle.

To obtain a lower bound, we show that any big rectangle must contain at least a value
of “1.” This will follow from the following isoperimetric inequality in our measure space,
shown in §8.3:

Theorem 8.6. Consider any set S ⊆ {0, 1, . . .m}d, and let N(S) be the set of points at
distance at most 1 from S under `∞: N(S) = {p | ∃s ∈ S : ‖p − s‖∞ ≤ 1}. Then,

µ(N(S)) ≥
(
µ(S)

)1/ρ
.

Claim 8.7. Consider any rectangle Q × D ⊆ X × Y of size µ(Q) ≥ 2−δρ lgn and η(D) ≥
2−O(n1−δ). Then, there exists some (q,D) ∈ Q×D such that F̄ (q,D) = 1.

Proof. By isoperimetry, µ(N(Q)) ≥
(
µd(Q)

)1/ρ ≥ 1/nδ. All we need to show is that there
exists a set D ∈ D that intersects with N(Q).

For D ∈ Y , let σ(D) = |D ∩ N(Q)|. The proof uses a standard concentration trick on
σ. Suppose D is chosen randomly according to η, i.e. not restricted to D. Then E[σ(D)] =
n · Prµ[N(Q)] ≥ n1−δ. Furthermore, σ(D) is tightly concentrated around this mean, by the

Chernoff bound. In particular, Pr[σ(D) = 0] ≤ e−Ω(n1−δ).
This probability is so small, that it remains small even is we restrict to D. We have

Pr[σ(D) = 0 | D ∈ D] ≤ Pr[σ(D)=0]
Pr[D∈D]

≤ e−Ω(n1−δ)/η(D). Thus, if η(D) ≥ 2−γ·n
1−δ

for some

108

small enough constant γ, we have Pr[σ(D) = 0 | D ∈ D] = o(1). In other words, there exists
some D ∈ D such that N(Q)∩D 6= ∅, and thus, there exists an instance in the rectangle on
which F̄ = 1.

Combining Claims 8.5 and 8.7, we immediately conclude that either Alice sends a =
Ω(δρ lg n) bits or Bob sends b = Ω(n1−δ) bits. This concludes the proof of Theorem 8.1.

8.3 An Isoperimetric Inequality

This section proves the inequality of Theorem 8.6: for any S, µ(N(S)) ≥
(
µ(S)

)1/ρ
. As with

most isoperimetric inequalities, the proof is by induction on the dimensions. In our case, the
inductive step is provided by the following inequality, whose proof is deferred to §8.4:

Lemma 8.8. Let ρ ≥ 10 be an integer, and define πi = 2−(2ρ)i for all i ∈ {1, . . . ,m}, and
π0 = 1−

∑m
i=1 πi. For any β0, . . . , βm ∈ R+ satisfying

∑m
i=0 πiβ

ρ
i = 1, the following inequality

holds (where we interpret β−1 and βm+1 as zero):

m∑
i=0

πi ·max {βi−1, βi, βi+1} ≥ 1 (8.2)

To proceed to our inductive proof, let µd be the d-dimensional variant of our distribution.
The base case is d = 0. This space has exactly one point, and µ0(S) is either 0 or 1. We

have N(S) = S, so µ0(N(S)) = µ0(S) =
(
µ0(S)

)1/ρ
.

Now consider the induction step for d−1 to d dimensions. Given a set S ⊂ {0, 1, . . .m}d,
let S[i] be the set of points in S whose first coordinate is i, i.e. S[i] = {(s2, . . . , sd) |
(i, s2, . . . , sd) ∈ S}. Define:

βi =

(
µd−1(S[i])

µd(S)

)1/ρ

⇒
m∑
i=0

πiβ
ρ
i =

m∑
i=0

πi ·
µd−1(S[i])

µd(S)
=

1

µd(S)

m∑
i=0

πiµd−1(S[i]) = 1

We have N(S)[i] = N(S[i−1]) ∪ N(S[i]) ∪ N(S[i+1]). Thus, we can lower bound:

µd(N(S)) =
m∑
i=0

πi·µd−1

(
N(S)[i]

)
≥

m∑
i=0

πi·max
{
µd−1(N(S[i−1])), µd−1(N(S[i])), µd−1(N(S[i+1]))

}
But the inductive hypothesis assures us that µd−1(N(S[i])) ≥

(
µd−1(S[i])

)1/ρ
= βi ·(

µd(S)
)1/ρ

. Thus:

µd(N(S)) ≥
(
µd(S)

)1/ρ ·
m∑
i=0

πi ·max
{
βi−1, βi, βi+1

}
≥
(
µd(S)

)1/ρ
,

where we have used inequality (8.2) in the last step. This finishes the proof of Theorem 8.6.

109

8.4 Expansion in One Dimension

Let Γ =
{

(β0, . . . , βm) ∈ Rm+1 |
∑m

i=0 πiβ
ρ
i = 1

}
, and denote by f (β0, . . . , βm) the left hand

side of (8.2). Since f is a continuous function on the compact set Γ ⊂ Rm+1, it achieves its
minimum. Call an (m+ 1)-tuple (β0, . . . , βm) ∈ Γ optimal if f (β0, . . . , βm) is minimal. Our
proof strategy will be to show that if (β0, . . . , βm) is optimal, then βi = 1.

We consider several possible configurations for sizes of βi’s in an optimal β, and rule
them out in three separate lemmas. We then prove the inequality by showing that these
configurations are all the configurations that we need to consider.

Lemma 8.9. If there exists an index i ∈ {1, . . . ,m− 1} such that βi−1 > βi < βi+1, then
β̄ = (β0, . . . , βm) is not optimal.

Proof. Define a new vector β̄′ = (β0, . . . , βi−2, βi−1 − ε, βi + δ, βi+1 − ε, βi+2, . . . , βm), where
ε, δ > 0 are chosen suitably so that β̄′ ∈ Γ, and βi−1− ε > βi + δ < βi+1− ε. It’s easy to see
that f

(
β̄
)
> f

(
β̄′
)
, which contradicts the optimality of β̄.

Lemma 8.10. If there exists an index i ∈ {1, . . . ,m} such that βi−1 > βi ≥ βi+1, then
β̄ =(β0, . . . , βm) is not optimal.

Proof. Let β =
(
πi−1β

ρ
i−1+πiβ

ρ
i

πi−1+πi

)1/ρ

and define β̄′ = (β0, . . . , βi−2, β, β, βi+1, . . . βm). Then

β̄′ ∈ Γ, and βi−1 > β > βi.

We claim that f(β̄) > f(β̄′). Comparing the expressions for f
(
β̄
)

and f
(
β̄′
)

term by
term, we see that it’s enough to check that:

πi max
{
βi−1, βi, βi+1

}
+ πi+1 max

{
βi, βi+1, βi+2

}
> πi max

{
β, βi+1

}
+ πi+1 max

{
β, βi+1, βi+2

}
where the terms involving πi+1 are ignored when i = m. For i = m, the inequality becomes
βi−1 > β which holds by assumption. For i = 1, . . . ,m− 1, this inequality is equivalent to:

πi(βi−1 − β) > πi+1 · (max {β, βi+2} −max {βi, βi+2})

which, in its strongest form (when βi ≥ βi+2), is equivalent to πi(βi−1 − β) > πi+1(β − βi).
But this is equivalent to: (

πiβi−1 + πi+1βi
πi + πi+1

)ρ
>
πi−1β

ρ
i−1 + πiβ

ρ
i

πi−1 + πi

which we can rewrite as: (
ci + t

ci + 1

)ρ
− ci−1 + tρ

ci−1 + 1
> 0, (8.3)

letting t = βi
βi−1
∈ [0, 1), and ci = πi

πi+1
≥ 2(2ρ)i+1−(2ρ)i (for i > 0 this is an equality; only for

i = 0 is this a strict inequality, because p is large).

110

We are now left to prove (8.3). Let F (t) denote the left hand side of this inequality, and
note that F (0) > 0, because:(

ci
ci + 1

)ρ
=

(
1− 1

ci + 1

)ρ
≥ 1− ρ

ci + 1
> 1− 1

ci−1 + 1
=

ci−1

ci−1 + 1

Here we used Bernoulli’s inequality: (1− x)n ≥ 1− nx for 0 < x < 1/n. Then, we observed
that ci + 1 > 2(2ρ)i+1−(2ρ)i > ρ · (2(2ρ)i + 1) = ρ(1

πi−1
ci−1 + 1) > ρ(ci−1 + 1).

Now we let t ∈ (0, 1) and write F (t) = F (0) + tρG(t), where:

G(t) = 1
(ci+1)ρ

((
ρ
1

)
cρ−1
i

1
t

+
(
ρ
2

)
cρ−2
i

1
t2

+ · · ·+
(
ρ
ρ−1

)
ci

1
tρ−1

)
+
(

1
(ci+1)ρ

− 1
ci−1+1

)
.

If G(t) ≥ 0, then clearly F (t) ≥ F (0) > 0, so we are done. Otherwise, G(t) < 0, and in
this case it easily follows that G(1) < G(t) < 0, hence F (t) = F (0)+ tρG(t) > F (0)+G(1) =
F (1) = 0, as desired. This concludes the proof of the lemma.

Lemma 8.11. If there is an index i ∈ {0, 1 . . . ,m− 1} such that βi−1 ≤ βi < βi+1, then
β = (β0, β1, . . . , βm) is not optimal.

Proof. We proceed as in the previous lemma. Let β =
(
πiβ

ρ
i +πi+1β

ρ
i+1

πi+πi+1

)1/ρ

, and define β̄′ =

(β0, . . . , βi−1, β, β, βi+2, . . . , βm). As before, β̄′ ∈ Γ and βi < β < βi+1. We claim that
f(β̄) > f(β̄′). Comparing the expressions for f

(
β̄
)

and f
(
β̄′
)

term by term, we see that it’s
enough to check that

πi−1·max {βi−2, βi−1, βi}+πi·max {βi−1, βi, βi+1} > πi−1·max {βi−2, βi−1, β}+πi·max {βi−1, β, β}

where the terms involving πi−1 appear unless i = 0. If i = 0, the above inequality becomes
βi+1 > β and we are done. For i = 1, . . .m− 1, the inequality is equivalent to

πi(βi+1 − β) > πi−1 · (max {β, βi−2} −max {βi, βi−2})

which, in its strongest form (when βi ≥ βi−2) is equivalent to πi(βi+1 − β) > πi−1(β − βi).
The latter inequality is equivalent to(

πiβi+1 + πi−1βi
πi + πi−1

)ρ
>
πi+1β

ρ
i+1 + πiβ

ρ
i

πi+1 + πi

which we can rewrite as (
ci−1t+ 1

ci−1 + 1

)ρ
− cit

ρ + 1

ci + 1
> 0, (8.4)

where ci = πi/πi+1 as before, and t = βi/βi+1 ∈ [0, 1).

We are left to prove (8.4). Let F (t) denote the left hand side of this inequality, and note

111

that F (0) > 0, because:(
1

ci−1 + 1

)ρ
>

1

(2ci−1)ρ
=

1

πρi−1

· 2−ρ·(2ρ)i−ρ > 2−ρ·(2ρ)i−ρ ≥ 2(2ρ)i−(2ρ)i+1

=
1

ci
>

1

ci + 1

Now we let t ∈ (0, 1) and write F (t) = F (0) + tρG(t), where

G(t) = 1
(ci−1+1)ρ

((
ρ
1

)
ci−1

1
t

+
(
ρ
2

)
c2
i−1

1
t2

+ · · ·+
(
ρ
ρ−1

)
cρ−1
i−1

1
tρ−1

)
+
((ci−1

ci−1+1

)ρ − ci
ci−1+1

)
.

If G(t) ≥ 0, then clearly F (t) ≥ F (0) > 0, so we are done. Otherwise, G(t) < 0, in which case
it easily follows that G(1) < G(t) < 0, hence F (t) = F (0)+tρG(t) > F (0)+G(1) = F (1) = 0,
as desired. This concludes the proof of the lemma.

To prove Lemma 8.8, assume β̄ = (β0, . . . , βm) ∈ Γ is optimal. By Lemmas 8.9 and 8.10,
it follows that β0 ≤ β1 ≤ · · · ≤ βm. Now Lemma 8.11 implies that β0 = β1 = · · · = βm.
Since β̄ ∈ Γ, we have βi = 1, and hence the minimal value of f over Γ is f (1, 1, . . . , 1) = 1.

This concludes the proof of Lemma 8.8.

112

Chapter 9

Predecessor Search

In this chapter, we tell the fascinating story of the predecessor problem, reviewing upper
bounds before delving into lower bounds, in an attempt to illustrate the powerful information-
theoretic structures that abound in this problem.

See §2.1 for an introduction to the problem and a survey of known results. In this
chapter, we concentrate on the static problem. When talking about upper bounds, we tend
to focus on the information-theoretic aspects and gloss over implementation details on the
word RAM. Formally, our descriptions can be seen as giving algorithms in the cell-probe
model, in which it is free to compute anything on the data that has been read. We also
ignore details regarding construction. In all cases, the preprocessing time can be made
linear in the size of the data structure, starting from sorted input. For the data structures
that use hash tables, the preprocessing time holds with high probability; the query is always
deterministic.

Upper bounds. We begin in §9.1 with two fundamental techniques giving static, linear-
space data structures: the data structure of van Emde Boas [101], and the fusion trees of
Fredman and Willard [52].

The van Emde Boas data structure, dating back to FOCS’75, is undoubtedly a corner-
stone of modern data structure theory. As the first interesting algorithm that exploited
bounded precision for faster running times, it has prompted the modern study of predeces-
sor search, sorting, sublogarithmic point location etc. The basic idea has continued to be an
inspiration in other contexts, being applied for instance in cache oblivious layouts.

Fusion trees showed that o(lg n) search is always achievable, and demonstrated the the-
oretical power of word-level parallelism. This is perhaps the most widely used technique for
exploiting bounded precision. The idea is to sketch multiple items down to a smaller size,
and pack them in a single word. Then, regular word operations act “in parallel” over this
vector of sketched data items.

113

Lower bounds. In §9.2, we prove our lower bounds, implying that the query time is, up
to constant factors:

min



logw n

lg w−lgn
a

lg w
a

lg(a
lgn
· lg w

a)

lg w
a

lg(lg w
a
/ lg lgn

a)

Here, we defined a = lg S·w
n

, where S was the space. Our main contribution is the tight
lower bounds for a = o(lg n) (in particular, branches two and four of the trade-off). As
mentioned already, previous techniques were helpless, since none could separate linear and
polynomial space.

To avoid technical details and concentrate on the main developments, this thesis only
gives the proof for the simplest case w = 3 lg n, and a = o(lg n). In addition, we only talk
about deterministic data structures. For the randomized lower bounds, see our publica-
tion [90].

A very strong consequence of our proofs is the idea that sharing between subproblems
does not help for predecessor search. Formally, the best cell-probe complexity achievable
by a data structure representing k independent subproblems (with the same parameters) in
space k · σ is asymptotically equal to the best complexity achievable by a data structure for
one subproblem, which uses space σ. The simplicity and strength of this statement make it
interesting from both the data-structural and complexity-theoretic perspectives.

At a high level, it is precisely this sort of direct-sum property that enables us to beat
communication complexity. Say we have k independent subproblems, and total space S.
While in the communication game Alice sends lgS bits per round, our results intuitively
state that lg S

k
bits are sufficient. Then, by carefully controlling the increase in k and the

decrease in key length (the query size), we can prevent Alice from communicating her entire
input over a superconstant number of rounds.

A nice illustration of the strength of our result are the tight bounds for near linear
universes, i.e. w = lg n + δ, with δ = o(lg n). On the upper bound side, the algorithm can
just start by a table lookup based on the first lg n bits of the key, which requires linear space.
Then, it continues to apply van Emde Boas for δ-bit keys inside each subproblem, which
gives a complexity of O(lg δ

a
). Obtaining a lower bound is just as easy, given our techniques.

We first consider n/2δ independent subproblems, where each has 2δ integers of 2δ bits each.
Then, we prefix the integers in each subproblem by the number of the subproblem (taking
lg n−δ bits), and prefix the query with a random subproblem number. Because the universe
of each subproblem (22δ) is quadratically bigger than the number of keys, we can apply
the usual proof showing the optimality of van Emde Boas’ bound for polynomial universes.
Thus, the complexity is Ω(lg δ

a
).

In the course of proving the deterministic lower bounds, we introduce a new concept
which is crucial to the induction hypothesis: we allow the algorithm to reject queries, under
certain conditions. In fact, the deterministic proof rejects almost all queries; nonetheless the

114

few accepted queries remaining carry enough information to contradict a fast query time.
We note that which queries are accepted depends non-trivially on the data structure and
query algorithm.

Implications to range searching. Another problem closely related to predecessor search
is static range searching in two dimensions. Given a set of n points at integer coordinates
in the plane, the query asks whether an axis-parallel rectangle contains any point. Consider
the colored predecessor problem, where elements of the set Y are red or blue, and the query
should only return the color of the predecessor. Lower bounds for this problem (such as
ours) also apply to range queries. The trick is to consider the interval stabbing problem,
where intervals are define by a red point and the next blue point. This problem is itself
easily reducible to 2D range searching (even to the special case of dominance queries, where
one corner of the rectangle is always the origin).

An interesting special case is when coordinates are distinct integers in [n], i.e. the problem
is in rank space. This restriction occurs naturally in many important cases, such as recursion
from higher-dimensional range structures, or geometric approaches to pattern matching. In
FOCS’00, Alstrup et al. [7] gave a query time of O(lg lg n), using space O(n lgε n). Clearly,
predecessor lower bounds are irrelevant, since predecessors in [n] are trivial to find with O(n)
space. In fact, no previous technique could prove a superconstant lower bound.

Our results imply a tight Ω(lg lg n) time bound for space Õ(n). Note that this requires
a novel approach, since for dominance queries, as obtained by the old reduction, there is a
constant-time upper bound (the RMQ data structures). In a nutshell, we consider a uniform
3
√
n × 3
√
n grid on top of our original space. In each cell, we construct a hard subproblem

using the colored predecessor problem. This is possible since we get to place 3
√
n points in

the space
[
n2/3

]2
. Finally, we can use the direct-sum properties of our lower bound, to argue

that for this set of problems, the query time cannot be better than for one problem with 3
√
n

points and Õ(3
√
n) space.

9.1 Data Structures Using Linear Space

9.1.1 Equivalence to Longest Common Prefix

We write lcp(x, y) for the longest common prefix of x and y, i.e. the largest i, such that the
most significant i bits of x and y are identical. The longest common prefix query on a set
S = {y1, . . . , yn} is defined as:
lcp(x): returns some i ∈ [n] that maximizes lcp(x, yi).

It is immediate that predecessor search can solve lcp queries, because either the prede-
cessor or the successor maximizes the common prefix.

It turns out that a reverse reduction also holds, and we will only reason about lcp queries
from now on. (Note, though, that this reduction is not needed in practice. Most lcp data
structures can solve predecessor search with some ad hoc tweaks, which enjoy better constant
factors.)

115

Lemma 9.1. If the lcp problem can be solved with space S and query time tq, predecessor
search can be solved with space S +O(n) and query time tq +O(1).

Proof. Consider a binary trie of depth w, and the root-to-leaf paths representing the values
in S = {y1, . . . , yn}. There are precisely n − 1 branching nodes among these n paths. Our
data structure has two components:

• A hash table stores all the branching nodes, i.e. pairs (`, v), where ` is the depth of
the node and v is the prefix leading to that node. We also store as associated data the
minimum and maximum values in S beginning with prefix v.

• For each yi ∈ S, we store a bit vector of size w (exactly a word) indicating which
ancestors of x are branching nodes.

The query for the predecessor of x proceeds as follows:

• Run the lcp query; let i = lcp(x).

• Compute ` = lcp(x, yi).

• Find the highest branching node, v, on the path yi below height `. This is done by
examining the bit vector indicating the branching nodes above yi, which takes constant
time because the bit vector is a word.

• If v is to the left of x, the maximum value under v (stored as associated data in the
hash table) is the predecessor.

• If v is to the right of x, the minimum value under v is the successor, and the predecessor
is immediately before it in S.

9.1.2 The Data Structure of van Emde Boas

To introduce this idea, let us consider the following communication problem:

Definition 9.2. In the Greater-Than problem, Alice has an n-bit number x, and Bob has
an n-bit number y. They must communicate to determine whether x > y.

Perhaps the most natural idea for this problem is to binary search for the length of the
longest common prefix between x and y, giving a randomized protocol with lg n rounds.
Formally, the algorithm works as follows:

• If n = 1, Alice sends x, and Bob outputs the answer.

• If n ≥ 2, Alice sends a hash code of the most significant dn
2
e bits of x. Call these bits

hi(x), and the remaining bits lo(x). Let h be the hash function.

• Bob sends a bit indicating whether h(hi(x)) is equal to h(hi(y)).

– In the “different” case, the players know hi(x) 6= hi(y), so x < y iff hi(x) < hi(y).
They recurse on hi(x) and hi(y).

116

– In the “equal” case, the players assume hi(x) = hi(y), which holds with good 1

probability, and recurse on lo(x) and lo(y).

The van Emde Boas data structure implements essentially the same idea for predecessor
search: it binary searches for the length of the longest common prefix between the query
and a value in the set. This idea was presented in somewhat obscure terms in the original
paper of van Emde Boas [101]. The version we describe here was a later simplification of
Willard [103], introduced under the name of “y-fast trees.”

The algorithm. Let hi(y; `) be the most significant ` bits of a w-bit integer y. Given the
input set S = {y1, . . . , yn}, the data structure works as follows:

construction: For ` = 1 . . w, we hold a hash table H` with {hi(y1; `), . . . , hi(yn; `)}. This
requires space O(n · w), but we show below how to improve this to O(n).

query: Binary search for the largest ` such that hi(x; `) ∈ H`.

The query time is a very efficient O(lgw). The query time may also be expressed as
O(lg lg u), where u = 2w is the universe of the values.

While the double logarithm has historically been used for some artistic effect, we feel it
makes readers overly optimistic about performance, and should be avoided. Consider the
following back of the envelope calculation. If keys have 128 bits, as addresses in IPv6 do,
then lgw is 7; note that the double logarithm comes from the huge universe 2128. The leading
constant is nontrivial, since each step needs a query to a hash table. If we approximate this
constant as “three times slower than binary search” (computing a hash function, plus two
memory accesses), then van Emde Boas becomes competitive with binary search only for
sets of size n = 221 = 2M .

Bucketing. The space can be reduced to O(n) by a standard bucketing trick. We group
the n elements of S in O(n/w) buckets of O(w) elements each. Each bucket is stored as a
sorted array, and the minimum in each bucket is inserted in the predecessor structure from
above. The space becomes O(n).

To answer a query, first run the query algorithm from above to find the bucket i in
which the predecessor should be searched. Then, do a binary search inside bucket i, taking
additional O(lgw) time.

9.1.3 Fusion Trees

In external memory, if a page of B words can be read in constant time, predecessor search is
solved in time O(logB n) via B-trees. That basis of this solution is that fact that in external

1 We omit a rigorous analysis of the failure probability, since this is just a toy example. To make the
analysis precise, h is chosen from a universal family using public coins. The range of h is O(lg lg n) bits,
making a false positive occur with probability 1/ polylog(n). The protocol fails with probability o(1) by a
union bound over the lg n rounds.

117

memory, predecessor search among O(B) elements can solved in constant time. B-trees are
simply recursive B-ary search, based on this primitive.

Fredman and Willard asked the following intriguing question: on the word RAM, can we
have constant-time search among B elements, for some B = ω(1)? The memory unit is a
word, which can only store one complete value. But can we somehow compress ω(1) words
into just one word, and still be able to search for predecessors in compressed form?

The answer of Fredman and Willard [52] was affirmative. They designed a sketch that
could compress B = O(

√
w) words down to a single word, such that lcp queries can be

answered based on these sketches. By Lemma 9.1, this gives a predecessor structure among
B elements with O(1) query time and O(B) space.

This primitive is used to construct a B-tree, giving query time O(logw n). Since w =
Ω(lg n), this is always O(lg n/ lg lg n), i.e. it is theoretically better than binary search for any
word size. In fact, taking the best of fusion trees and van Emde Boas yields min{lgw, logw n} =
O(
√

lg n), a quadratic improvement over binary search. However, it should be noted that,
unlike van Emde Boas, fusion trees do not lead to convincing practical improvements, due
to the large constant factors involved.

Sketching. Let S = {y1, . . . , yB} be the values we want to sketch. As before, we view these
values as root-to-leaf paths in a binary trie of depth w. There are B− 1 branching nodes on
these paths; let T be the set of depths at which these nodes occur. We write projT (x) for
the projection of a value x on the bit positions of T , i.e. an integer of |T | bits, with the bits
of x appearing at the positions in T .

The sketch of S is simply projT (S) = {projT (y1), . . . ,projT (yB)}. This takes B · |T | =
O(B2) bits, which fits in a word for B = O(

√
w). We now claim that answering lcp(x)

on the original set S is equivalent to answering lcp(projT (x)) on the sketch projT (S), a
constant-time operation because the sketch is a word.

To prove our claim formally, consider a mental experiment in which we trace the path
of x in the trie of S, and, in parallel, trace the path of projT (x) in the trie of depth |T |
representing projT (S).

We show inductively that lcp(projT (x)) in the sketch trie is also a valid answer for
lcp(x) in the original trie. We have the following cases for a node met by the path of x in
the original trie:

• a branching node. This level is included in T , hence in the sketch. By induction, the
lcp is valid in the two subtrees.

• a non-branching node, on some path(s) from S. The level is not necessarily included
in the sketch, but may be, due to an unrelated branching node. If this level of the trie,
the path in the sketch tree follows the corresponding node. Otherwise

• a node off any path in S. The first time this happens, we stop tracing the paths, since
the lcp has been determined.

118

Implementation on the RAM. Implementing this algorithm on the word RAM is tech-
nically involved. The main ingredient of [52] is an implementation of projT (x), which can
compress |T | scattered bits of x, via some carefully chosen multiplications and mask, into a
space of O(|T |4) contiguous bits. Thus, one can only sketch B = O(w1/5) values into a word,
which is still enough for an asymptotic query time of O(logw n).

An objection to [52] is that it uses multiplication, which is not an AC0 operation (i.e. can-
not be implemented in constant depth by a polynomial size circuit). Andersson, Miltersen
and Thorup [11] show how to implement fusion trees using nonstandard AC0 operations.
The atomic heaps of Fredman and Willard [53] obtain O(lg n/ lg lg n) query time without
multiplication, via look-up tables of size O(nε).

9.2 Lower Bounds

9.2.1 The Cell-Probe Elimination Lemma

An abstract decision data structure problem is defined by a function f : D×Q→ {0, 1}. An
input from D is given at preprocessing time, and the data structure must store a representa-
tion of it in some bounded space. An input from Q is given at query time, and the function
of the two inputs must be computed through cell probes. We restrict the preprocessing and
query algorithms to be deterministic. In general, we consider a problem in conjunction with
a distribution D over D×Q. Note that the distribution need not (and, in our case, will not)
be a product distribution. We care about the probability the query algorithm is successful
under the distribution D, for a notion of success to be defined shortly.

As mentioned before, we work in the cell-probe model, and let w be the number of bits in
a cell. We assume the query’s input consists of at most w bits, and that the space bound is at
most 2w. For the sake of an inductive argument, we extend the cell-probe model by allowing
the data structure to publish some bits at preprocessing time. These are bits depending
on the data structure’s input, which the query algorithm can inspect at no charge. Closely
related to this concept is our model for a query being accepted. We allow the query algorithm
not to return the correct answer, but only in the following very limited way. After inspecting
the query and the published bits, the algorithm can declare that it cannot answer the query
(we say it rejects the query). Otherwise, the query is accepted : the algorithm can make cell
probes, and at the end it must answer the query correctly. Thus, it is not possible to reject
later. In contrast to more common models of error, it actually makes sense to talk about
tiny (close to zero) probabilities of accept, even for problems with boolean output.

For an arbitrary problem f and an integer k ≤ 2w, we define a direct-sum problem⊕k f : Dk × ([k] × Q) → {0, 1} as follows. The data structure receives a vector of inputs
(d1, . . . , dk). The representation depends arbitrarily on all of these inputs. The query is
the index of a subproblem i ∈ [k], and an element q ∈ Q. The output of

⊕k f is f(q, di).
We also define a distribution

⊕kD for
⊕k f , given a distribution D for f . Each di is

chosen independently at random from the marginal distribution on D induced by D. The
subproblem i is chosen uniformly from [k], and q is chosen from the distribution on Q

119

conditioned on di.
Given an arbitrary problem f and an integer h ≤ w, we can define another problem f (h)

as follows. The query is a vector (q1, . . . , qh). The data structure receives a regular input
d ∈ D, and integer r ∈ [h] and the prefix of the query q1, . . . , qr−1. The output of f (h) is
f(d, qr). Note that we have shared information between the data structure and the querier
(i.e. the prefix of the query), so f (h) is a partial function on the domain D ×

⋃t−1
i=0 Q

i ×Q.
Now we define an input distribution D(h) for f (h), given an input distribution D for f . The
value r is chosen uniformly at random. Each query coordinate qi is chosen independently
at random from the marginal distribution on Q induced by D. Now d is chosen from the
distribution on D, conditioned on qr.

We give the f (h) operator precedence over the direct sum operator, i.e.
⊕k f (h) means⊕k [f (h)

]
. Using this notation, we are ready to state our central cell-probe elimination

lemma:

Lemma 9.3. There exists a universal constant C, such that for any problem f , distribution
D, and positive integers h and k, the following holds. Assume there exists a solution to⊕k f (h) with accept probability α over

⊕kD(h), which uses at most kσ words of space,
1
C

(α
h
)3k published bits and T cell probes. Then, there exists a solution to

⊕k f with accept

probability α
4h

over
⊕kD, which uses the same space, k h

√
σ · Cw2 published bits and T − 1

cell probes.

9.2.2 Setup for the Predecessor Problem

Let P (n, `) be the colored predecessor problem on n integers of ` bits each. Remember that
this is the decision version of predecessor search, where elements are colored red or blue, and
a query just returns the color of the predecessor. We first show how to identify the structure
of P (n, `)(h) inside P (n, h`), making it possible to apply our cell-probe elimination lemma.

Lemma 9.4. For any integers n, `, h ≥ 1 and distribution D for P (n, `), there exists a
distribution D∗(h) for P (n, h`) such that the following holds. Given a solution to

⊕k P (n, h`)

with accept probability α over
⊕kD∗(h), one can obtain a solution to

⊕k P (n, `)(h) with accept
probability α over

⊕kD(h), which has the same complexity in terms of space, published bits,
and cell probes.

Proof. We give a reduction from P (n, `)(h) to P (n, h`), which naturally defines the dis-

tribution D∗(h) in terms of D(h). A query for P (n, `)(h) consists of x1, . . . , xh ∈ {0, 1}`.
Concatenating these, we obtain a query for P (n, h`). In the case of P (n, `)(h), the data
structure receives i ∈ [h], the query prefix x1, . . . , xi−1 and a set Y of `-bit integers. We
prepend the query prefix to all integers in Y , and append zeros up to h` bits. Then, finding
the predecessor of xi in Y is equivalent to finding the predecessor of the concatenation of
x1, . . . , xh in this new set.

Observe that to apply the cell-probe elimination lemma, the number of published bits
must be just a fraction of k, but applying the lemma increases the published bits signifi-
cantly. We want to repeatedly eliminate cell probes, so we need to amplify the number of

120

subproblems each time, making the new number of published bits insignificant compared to
the new k.

Lemma 9.5. For any integers t, `, n ≥ 1 and distribution D for P (n, `), there exists a
distribution D∗t for P (n · t, `+ lg t) such that the following holds. Starting from a solution to⊕k P (n · t, `+ lg t) with accept probability α over

⊕kD∗t, one can construct a solution to⊕kt P (n, `) with accept probability α over
⊕ktD, which has the same complexity in terms

of space, published bits, and cell probes.

Proof. We first describe the distribution D∗t. We draw Y1, . . . , Yt independently from D,
where Yi is a set of integers, representing the data structures input. Prefix all numbers in Yj
by j using lg t bits, and take the union of all these sets to form the data structure’s input
for P (nt, ` + lg t). To obtain the query, pick j ∈ {0, . . . , t − 1} uniformly at random, pick
the query from D conditioned on Yj, and prefix this query by j. Now note that

⊕ktD and⊕kD∗t are really the same distribution, except that the lower lg t bits of the problems index
for
⊕ktD are interpreted as a prefix in

⊕kD∗t. Thus, obtaining the new solution is simply
a syntactic transformation.

Our goal is to eliminate all cell probes, and then reach a contradiction. For this, we need
the following:

Lemma 9.6. For any n ≥ 1 and ` ≥ log2(n + 1), there exists a distribution D for P (n, `)
such that the following holds. For all (∀)0 < α ≤ 1 and k ≥ 1, there does not exist a solution
to
⊕k P (n, `) with accept probability α over

⊕kD, which uses no cell probes and less than
αk published bits.

Proof. The distribution D is quite simple: the integers in the set are always 0 up to n− 1,
and the query is n. All that matters is the color of n − 1, which is chosen uniformly at
random among red and blue. Note that for

⊕k P (n, `) there are only k possible queries,
i.e. only the index of the subproblem matters.

Let p be the random variable denoting the published bits. Since there are no cell probes,
the answers to the queries are a function of p alone. Let α(p) be the fraction of subproblems
that the query algorithm doesn’t reject when seeing the published bits p. In our model,
the answer must be correct for all these subproblems. Then, Pr[p = p] ≤ 2−α(p)k, as only
inputs which agree with the α(p)k answers of the algorithm can lead to these published bits.

Now observe that α = Ep[α(p)] ≤ Ep

[
1
k

log2
1

Pr[p=p]

]
= 1

k
H(p), where H(·) denotes binary

entropy. Since the entropy of the published bits is bounded by their number (less than αk),
we have a contradiction.

9.2.3 Deriving the Trade-Offs

Because we will only be dealing with ` = w = O(lg n), the bounds do not change if the space
is S words instead of S bits. To simplify calculations, the exposition in this section assume
the space is S words.

121

Our proof starts assuming that we for any possible distribution have a solution to P (n, `)
which uses n · 2a space, no published bits, and successfully answers all queries in T probes,
where T is small. We will then try to apply T rounds of the cell-probe elimination from
Lemma 9.3 and 9.4 followed by the problem amplification from Lemma 9.5. After T rounds,
we will be left with a non-trivial problem but no cell probes, and then we will reach a
contradiction with Lemma 9.6. Below, we first run this strategy ignoring details about the
distribution, but analyzing the parameters for each round. Later in Lemma 9.7, we will
present a formal inductive proof using these parameters in reverse order, deriving difficult
distributions for more and more cell probes.

We denote the problem parameters after i rounds by a subscript i. We have the key length
`i and the number of subproblems ki. The total number of keys remains n, so the have n/ki
keys in each subproblem. Thus, the problem we deal with in round i + 1 is

⊕ki P (n
ki
, `i),

and we will have some target accept probability αi. The number of cells per subproblem is
σi = n

ki
2a. We start the first round with `0 = `, α0 = 1, k0 = 1 and σ0 = n · 2a.

For the cell probe elimination in Lemma 9.3 and 9.4, our proof will use the same value
of h ≥ 2 in all rounds. Then αi+1 ≥ αi

4h
, so αi ≥ (4h)−i. To analyze the evolution of `i

and ki, we let ti be the factor by which we increase the number of subproblems in round i
when applying the problem amplification from Lemma 9.5. We now have ki+1 = ti · ki and
`i+1 = `i

h
− lg ti.

When we start the first round, we have no published bits, but when we apply Lemma 9.3
in round i + 1, it leaves us with up to ki h

√
σi · Cw2 published bits for round i + 2. We have

to choose ti large enough to guarantee that this number of published bits is small enough
compared to the number of subproblems in round i + 2. To apply Lemma 9.3 in round

i + 2, the number of published bits must be at most 1
C

(αi+1

h
)3ki+1 =

α3
i ti

64Ch6ki. Hence we
must set ti ≥ h

√
σi · 64C2w2h6(1

αi
)3. Assume for now that T = O(lg `). Using h ≤ `, and

αi ≥ (4h)−T ≥ 2O(lg2 `), we conclude it is enough to set:

(∀)i : ti ≥ h

√
n

ki
· 2a/h · w2 · 2Θ(lg2 `) (9.1)

Now we discuss the conclusion reached at the end of the T rounds. We intend to apply
Lemma 9.6 to deduce that the algorithm after T stages cannot make zero cell probes, implying
that the original algorithm had to make more than T probes. Above we made sure that we
after T rounds had 1

C
(αT
h

)3kT < αTkT published bits, which are few enough compared to the
number kT of subproblems. The remaining conditions of Lemma 9.6 are:

`T ≥ 1 and
n

kT
≥ 1 (9.2)

Since `i+1 ≤ `i
2

, this condition entails T = O(lg `), as assumed earlier.

Lemma 9.7. With the above parameters satisfying (9.1) and (9.2), for i = 0, . . . , T , there is
a distribution Di for P (n

ki
, `i) so that no solution for

⊕ki P (n
ki
, `i) can have accept probability

αi over
⊕ki Di using n · 2a space, 1

C
(αi
h

)3ki published bits, and T − i cell probes.

122

Proof. The proof is by induction over T − i. A distribution that defies a good solution as in
the lemma is called difficult. In the base case i = T , the space doesn’t matter, and we get
the difficult distribution directly from (9.2) and Lemma 9.6. Inductively, we use a difficult
distribution Di to construct a difficult distribution Di−1.

Recall that ki = ki−1ti−1. Given our difficult distribution Di, we use the problem am-
plification in Lemma 9.5, to construct a distribution D∗ti−1

i for P (n
ki
· ti−1, `i + lg ti−1) =

P (n
ki−1

, `i+lg ti−1), which guarantees that no solution for
⊕ki−1 P (n

ki−1
, `i + lg ti−1) can have

accept probability αi over
⊕ki−1 D∗ti−1

i using n · 2a space, 1
C

(αi
h

)3ki published bits, and T − i
cell probes.

Recall that (9.1) implies ki−1
h
√
σi−1 · Cw2 ≤ 1

C
(αi
h

)3ki, hence that ki−1
h
√
σi−1 is less than

the number of bits allowed published for our difficult distribution D∗ti−1

i . Also, recall that
σjkj = n · 2a for all j. We can therefore use the cell probe elimination in Lemma 9.3,

to construct a distribution
(
D∗ti−1

i

)(h)

for P (n
ki−1

, `i + lg ti−1)(h) so that no solution for⊕ki−1 P (n
ki−1

, `i + lg ti−1)(h) can have accept probability αi−1 ≥ hαi over
⊕ki−1

(
D∗ti−1

i

)(h)

using n · 2a space, 1
C

(αi−1

h
)3ki−1 published bits, and T − i + 1 cell probes. Finally, us-

ing Lemma 9.4, we use
(
D∗ti−1

i

)(h)

to construct the desired difficult distribution Di−1 for

P (n
ki−1

, h(`i + lg ti−1)) = P (n
ki−1

, `i−1).

We now show how to choose h and ti in order to maximize the lower bound T , under the
conditions of (9.1) and (9.2). We only consider the case ` = w = γ lg n, for constant γ ≥ 3.
In this case, it is enough to set h = 2 and ti = (n

ki
)3/4. Then, n

ki+1
= (n

ki
)1/4, so lg n

ki
= 4−i lg n

and lg ti = 3
4
4−i lg n. By our recursion for `i, we have `i+1 = `i

2
− 3

4
4−i lg n. Given `0 ≥ 3 lg n,

it can be seen by induction that `i ≥ 3 · 4−i lg n. Indeed, `i+1 ≥ 3 · 4−i · 1
2

lg n− 3
4
4−i lg n ≥

3 ·4−(i+1) lg n. By the above, (9.2) is satisfied for T ≤ Θ(lg lg n). Finally, note that condition
(9.1) is equivalent to:

lg ti ≥
1

h
lg
n

ki
+
a

h
+ Θ(lgw + lg2 `)

⇔ 3

4
4−i lg n ≥ 1

2
4−i lg n+

a

2
+ Θ(lg2 lg n)

⇔ T ≤ Θ

(
lg min

{
lg n

a
,

lg n

lg2 lg n

})
= Θ

(
lg

lg n

a

)
Since (9.1) and (9.2) are satisfied, we can apply Lemma 9.7 with i = 0 and the initial
parameters `0 = w, α0 = 1, k0 = 1. We conclude that there is a difficult distribution D0 for
P (n, `) with no solution getting accept probability 1 using n · 2a space, 0 published bits, and
T cell probes. Thus we have proved:

Theorem 9.8. In any solution to the static colored predecessor problem on n `-bit keys, if
` = γ lg n for constant γ ≥ 3, and we are allowed n · 2a space, then there are data instances
for which some queries take Ω

(
lg lgn

a

)
cell probes.

123

9.3 Proof of Cell-Probe Elimination

We assume a solution to
⊕k f (h), and use it to construct a solution to

⊕k f . The new
solution uses the query algorithm of the old solution, but skips the first cell probe made by
this algorithm. A central component of our construction is a structural property about any
query algorithm for

⊕k f (h) with the input distribution
⊕kD(h). We now define and claim

this property. In §9.3.1 uses it to construct a solution for
⊕k f , while §9.3.2 gives the proof.

We first introduce some convenient notation. Remember that the data structure’s input
for
⊕k f (h) consists of a vector (d1, . . . , dk) ∈ Dk, a vector selecting the interesting segments

(r1, . . . , rk) ∈ [h]k and the query prefixes Qi
j for all j ∈ [ri − 1]. Denote by d, r and

Q the random variables giving these three components of the input. Also let p be the
random variable representing the bits published by the data structure. Note that p can
also be understood as a function p(d, r,Q). The query consists of an index i selecting the
interesting subproblem, and a vector (q1, . . . , qh) with a query to that subproblem. Denote
by i and q these random variables. Note that in our probability space

⊕k f (h), we have
qj = Qi

j, (∀)j < ri.
Fix some instance p of the published bits and a subproblem index i ∈ [k]. Consider a

prefix (q1, . . . , qj) for a query to this subproblem. Depending on qj+1, . . . , qh, the query algo-
rithm might begin by probing different cells, or might reject the query. Let Γi(p; q1, . . . , qj)
be the set of cells that could be inspected by the first cell probe. Note that this set could be
∅, if all queries are rejected.

Now define:

δi(p) =

{
0, iff Γi(p; Qi) = ∅
Pr
[
|Γi(p; q1, . . . ,qri)| ≥ min{σ,|Γi(p;Qi)|}

h√σ | i = i
]

otherwise
(9.3)

The probability space is that defined by
⊕kD(h) when the query is to subproblem i. In

particular, such a query will satisfy qj = Qi
j, (∀)j < ri, because the prefix is known to the

data structure. Note that this definition completely ignores the suffix qri+1, . . . ,qh of the
query. The intuition behind this is that for any choice of the suffix, the correct answer to the
query is the same, so this suffix can be “manufactured” at will. Indeed, an arbitrary choice
of the suffix is buried in the definition of Γi.

With these observations, it is easier to understand (9.3). If the data structure knows
that no query to subproblem i will be accepted, δi = 0. Otherwise, we compare two sets of
cells. The first contains the cells that the querier might probe given what the data structure
knows: Γi(p,Qi) contains all cells that could be probed for various qiri and various suffixes.
The second contains the cells that the querier could choose to probe considering its given
input qiri (the querier is only free to choose the suffix). Obviously, the second set is a subset
of the first. The good case, whose probability is measured by δi, is when it is a rather large
subset, or at least large compared to σ.

For convenience, we define δ∗(p) = Ei[δ
i(p)] = 1

k

∑
i δ
i(p). Using standard notation from

probability theory, we write δi(p | E), when we condition on some event E in the probability

124

of (9.3). We also write δi(p | X) when we condition on some random variable X, i.e. δi(p | X)
is a function x 7→ δi(p | X = x). We are now ready to state our claim, to be proven in §9.3.2.

Lemma 9.9. There exist r and Q, such that:

Ed[δ∗(p(r,Q,d) | r = r,Q = Q,d)] ≥ α

2h

9.3.1 The Solution for
⊕k f

As mentioned before, we use the solution for
⊕k f (h), and try to skip the first cell probe. To

use this strategy, we need to extend an instance of
⊕k f to an instance of

⊕k f (h). This is
done using the r and Q values whose existence is guaranteed by Lemma 9.9. The extended
data structure’s input consists of the vector (d1, . . . , dk) given to

⊕k f , and the vectors r

and Q. A query’s input for
⊕k f is a problem index i ∈ [k] and a q ∈ Q. We extend this to

(q1, . . . , qh) by letting qj = Qi
j, (∀)j < ri, and qri = q, and manufacturing a suffix qri+1, . . . , qh

as described below.
First note that extending an input of

⊕k f to an input of
⊕k f (h) by this strategy

preserves the desired answer to a query (in particular, the suffix is irrelevant to the answer).
Also, this transformation is well defined because r and Q are “constants”, defined by the
input distribution

⊕kD(h). Since our model is nonuniform, we only care about the existence
of r and Q, and not about computational aspects.

To fully describe a solution to
⊕k f , we must specify how to obtain the data structure’s

representation and the published bits, and how the query algorithm works. The data struc-
ture’s representation is identical to the representation for

⊕k f (h), given the extended input.
The published bits for

⊕k f consist of the published bits for
⊕k f (h), plus a number of

published cells from the data structure’s representation. Which cells are published will be
detailed below. We publish the cell address together with its contents, so that the query
algorithm can tell whether a particular cell is available.

The query algorithm is now simple to describe. Remember that q1, . . . , qri−1 are pre-
scribed by Q, and qri = q is the original input of

⊕k f . We now iterate through all possible
query suffixes. For each possibility, we simulate the extended query using the algorithm
for
⊕k f (h). If this algorithm rejects the query, or the first probed cell is not among the

published cells, we continue trying suffixes. Otherwise, we stop, obtain the value for the
first cell probe from the published cells and continue to simulate this query using actual cell
probes. If we don’t find any good suffix, we reject the query. It is essential that we can
recognize accepts in the old algorithm by looking just at published bits. Then, searching for
a suffix that would not be rejected is free, as it does not involve any cell probes.

Publishing Cells

It remains to describe which cells the data structure chooses to publish, in order to make
the query algorithm accept with the desired probability. Let p be the bits published by the⊕k f (h) solution. Note that in order for query (i, q) to be accepted, we must publish one

125

cell from Γi(p; Qi, q). Here, we slightly abuse notation by letting Qi, q denote the ri entries
of the prefix Qi, followed by q. We will be able to achieve this for all (i, q) satisfying:

Γi(p; Qi) 6= ∅, |Γi(p; Qi, q)| ≥ min{σ, |Γi(p; Qi)|}
h
√
σ

(9.4)

Comparing to (9.3), this means the accept probability is at least δ∗(p | r = r,Q = Q,d =
(d1, . . . , dk)). Then on average over possible inputs (d1, . . . , dk) to

⊕k f , the accept proba-
bility will be at least α

2h
, as guaranteed by Lemma 9.9.

We will need the following standard result:

Lemma 9.10. Consider a universe U 6= ∅ and a family of sets F such that (∀)S ∈ F
we have S ⊂ U and |S| ≥ |U |

B
. Then there exists a set T ⊂ U, |T | ≤ B ln |F| such that

(∀)S ∈ F , S ∩ T 6= ∅.

Proof. Choose B ln |F| elements of U with replacement. For a fixed S ∈ F , an element is
outside S with probability at most 1 − 1

B
. The probability all elements are outside S is at

most (1 − 1
B

)B ln |F| < e− ln |F| < 1
|F| . By the union bound, all sets in F are hit at least once

with positive probability, so a good T exists.

We distinguish three types of subproblems, parallel to (9.4). If Γi(p; Qi) = ∅, we make
no claim (the accept probability can be zero). Otherwise, if |Γi(p; Qi)| < σ, we handle

subproblem i using a local strategy. Consider all q such that |Γi(p; Qi, q)| ≥ |Γi(p;Qi)|
h√σ . We now

apply Lemma 9.10 with the universe Γi(p; Qi) and the family Γi(p; Qi, q), for all interesting
q’s. There are at most 2w choices of q, bounding the size of the family. Then, the lemma
guarantees that the data structure can publish a set of O(h

√
σ · w) cells which contains at

least one cell from each interesting set. This means that each interesting q can be handled
by the algorithm.

We handle the third type of subproblems, namely those with |Γi(p; Qi)| ≥ σ, in a global
fashion. Consider all “interesting” pairs (i, q) with |Γi(p; Qi, q)| ≥ σ1−1/h. We now apply
Lemma 9.10 with the universe consisting of all kσ cells, and the family being Γi(p; Qi, q),
for interesting (i, q). The cardinality of the family is at most 2w, since i and q form a query,
which takes at most one word. Then by Lemma 9.10, the data structure can publish a set
of O(k h

√
σ · w) cells, which contains at least one cell from each interesting set. With these

cells, the algorithm can handle all interesting (i, q) queries.
The total number of cells that we publish is O(k h

√
σ ·w). Thus, we publish O(k h

√
σ ·w2)

new bits, plus O(k) bits from the assumed solution to
⊕k f (h). For big enough C, this is at

most k h
√
σ · Cw2.

9.3.2 An Analysis of
⊕k f (h): Proof of Lemma 9.9

Our analysis has two parts. First, we ignore the help given by the published bits, by assuming
they are constantly set to some value p. As ri and Qi are chosen randomly, we show that

126

the conditions of (9.3) are met with probability at least 1
h

times the accept probability for
subproblem i. This is essentially a lower bound on δi, and hence on δ∗.

Secondly, we show that the published bits do not really affect this lower bound on δ∗. The
intuition is that there are two few published bits (much fewer than k) so for most subproblems
they are providing no information at all. That is, the behavior for that subproblem is
statistically close to when the published bits would not be used. Formally, this takes no
more than a (subtle) application of Chernoff bounds. The gist of the idea is to consider
some setting p for the published bits, and all possible inputs (not just those leading to p
being published). In this probability space, δi are independent for different i, so the average
is close to δ∗ with overwhelmingly high probability. Now pessimistically assume all inputs
where the average of δi is not close to δ∗ are possible inputs, i.e. input for which p would be
the real published bits. However, the probability of this event is so small, that even after a
union bound for all p, it is still negligible.

We now proceed to the first part of the analysis. Let αi(p) be the probability that
the query algorithm accepts when receiving a random query for subproblem i. Formally,
αi(p) = Pr[Γi(p; q) 6= ∅ | i = i]. We define αi(p | E), αi(p | X) and α∗(·) similar to
the functions associated to δi. Observe that the probability of correctness guaranteed by
assumption is α = Er,Q,d[α∗(p(r,Q,d) | r,Q,d)].

Lemma 9.11. For any i and p, we have δi(p) ≥ αi(p)
h

.

Proof. Let us first recall the random experiment defining δi(p). We select a uniformly random
r ∈ [h] and random q1, . . . , qr−1. First we ask whether Γi(p; q1, . . . , qr−1) = ∅. If not, we ask
about the probability that a random qr is good, in the sense of (9.3). Now let us rephrase
the probability space as follows: first select q1, . . . , qh at random; then select r ∈ [h] and use
just q1, . . . , qr as above. The probability that the query (q1, . . . , qh) is accepted is precisely
αi(p). Let’s assume it doesn’t. Then, for any r, Γi(p; q1, . . . , qr−1) 6= ∅ because there is at
least one suffix which is accepted. We will now show that there is at least one choice of r
such that qr is good when the prefix is q1, . . . , qr−1. When averaged over q1, . . . , qr−1, this

gives a probability of at least αi(p)
h

To show one good r, let φr = min{|Γi(p; q1, . . . , qr−1)|, σ}. Now observe that φ1

φ2
· φ2

φ3
·

· · · · φh−1

φh
= φ1

φh
≤ φ1 ≤ σ. By the pigeonhole principle, (∃)r : φr

φr+1
≤ σ1/h. This implies

|Γi(p; q1, . . . , qr)| ≥ min{σ,|Γi(p;q1,...,qr−1)|
h√σ , as desired.

Note that if the algorithm uses zero published bits, we are done. Thus, for the rest of the
analysis we may assume 1

C
(α
h
)3k ≥ 1. We now proceed to the second part of the analysis,

showing that δ∗ is close to the lower bound of the previous lemma, even after a union bound
over all possible published bits.

Lemma 9.12. With probability at least 1− α
8h

over random r,Q and d, we have (∀)p : δ∗(p |
r,Q,d) ≥ α∗(p)

h
− α

4h

127

Proof. Fix p arbitrarily. By definition, δ∗(p | r,Q,d) = 1
k

∑
i δ
i(p | r,Q,d). By Lemma 9.11,

E[δi(p | r,Q,d)] = δi(p) ≥ αi(p)
h

, which implies δ∗(p) ≥ α∗(p)
h

. Thus, our condition can be
rephrased as:

1

k

∑
i

δi(p | r,Q,d) ≥ E

[
1

k

∑
i

δi(p | r,Q,d)

]
− α

4h

Now note that δi(p | r,Q,d) only depends on ri,Qi and di, since we are looking at the
behavior of a query to subproblem i for a fixed value of the published bits; see the definition
of δi in (9.3). Since (ri,Qi,di) are independent for different i, it follows that δi(p | r,Q,d) are
also independent. Then we can apply a Chernoff bound to analyze the mean δ∗(p | r,Q,d)
of these independent random variables. We use an additive Chernoff bound [4]:

Pr
r,Q,d

[
δ∗(p | r,Q,d) < δ∗(p)− α

4h

]
< e−Ω(k(α

h
)2)

Now we take a union bound over all possible choices p for the published bits. The proba-
bility of the bad event becomes 2

1
C

(α
h

)3ke−Ω((α
h

)2k). For large enough C, this is exp(−Ω((α
h
)2k)),

for any α and h. Now we use that 1
C

(α
h
)3k ≥ 1, from the condition that there is at lest one

published bit, so this probability is at most e−Ω(Ch/α). Given that h
α
≥ 1, this is at most α

8h

for large enough C.

Unfortunately, this lemma is not exactly what we would want, since it provides a lower
bound in terms of α∗(p). This accept probability is measured in the original probability
space. As we condition on r,Q and d, the probability space can be quite different. However,
we show next that in fact α∗ cannot change too much. As before, the intuition is that
there are too few published bits, so for most subproblems they are not changing the query
distribution significantly.

Lemma 9.13. With probability at least 1− α
8

over random r,Q and d, we have: (∀)p : α∗(p |
r,Q,d) ≤ α∗(p) + α

4

Proof. The proof is very similar to that of Lemma 9.12. Fix p arbitrarily. By definition,
α∗(p | r,Q,d) is the average of αi(p | r,Q,d). Note that for fixed p, αi depends only on
ri,Qi and di. Hence, the αi values are independent for different i, and we can apply a
Chernoff bound to say the mean is close to its expectation. The rest of the calculation is
parallel to that of Lemma 9.12.

We combine Lemmas 9.12 and 9.13 by a union bound. We conclude that with probability
at least 1− α

4
over random r,Q and d, we have that (∀)p:

δ∗(p | r,Q,d) ≥ α∗(p)
h
− α

4h

α∗(p | r,Q,d) ≤ α∗(p) + α
4

}
⇒ δ∗(p | r,Q,d)− α∗(p | r,Q,d)

h
≥ − α

2h
(9.5)

Since this holds for all p, it also holds for p = p, i.e. the actual bits p(r,Q,d) published
by the data structure given its input. Now we want to take the expectation over r,Q and

128

d. Because δ∗(·), α∗(·) ∈ [0, 1], we have δ∗(·) − 1
h
α∗(·) ≥ − 1

h
. We use this as a pessimistic

estimate for the cases of r,Q and d where (9.5) does not hold. We obtain:

E

[
δ∗(p | r,Q,d) − α∗(p | r,Q,d)

h

]
≥ − α

2h
− α

4
· 1

h

⇒ E
[
δ∗(p | r,Q,d)

]
≥ 1

h
E
[
α∗(p | r,Q,d)

]
− 3α

4h
=

1

h
α− 3α

4h
=

α

4h

129

130

Bibliography

[1] Yehuda Afek, Anat Bremler-Barr, and Sariel Har-Peled. Routing with a clue.
IEEE/ACM Transactions on Networking, 9(6):693–705, 2001. See also SIGCOMM’99.

[2] Pankaj K. Agarwal. Range searching. In Jacob E. Goodman and Joseph O’Rourke,
editors, Handbook of Discrete and Computational Geometry (2nd edition). Chapman
& Hall/CRC, 2004.

[3] Miklós Ajtai. A lower bound for finding predecessors in Yao’s cell probe model. Com-
binatorica, 8(3):235–247, 1988.

[4] Noga Alon and Joel Spencer. The Probabilistic Method. John Wiley, 2nd edition, 2000.

[5] Stephen Alstrup, Amir M. Ben-Amram, and Theis Rauhe. Worst-case and amortised
optimality in union-find. In Proc. 31st ACM Symposium on Theory of Computing
(STOC), pages 499–506, 1999.

[6] Stephen Alstrup, Gerth S. Brodal, Inge Li Gørtz, and Theis Rauhe. Time and space
efficient multi-method dispatching. In Proc. 8th Scandinavian Workshop on Algorithm
Theory (SWAT), pages 20–29, 2002.

[7] Stephen Alstrup, Gerth S. Brodal, and Theis Rauhe. New data structures for orthog-
onal range searching. In Proc. 41st IEEE Symposium on Foundations of Computer
Science (FOCS), pages 198–207, 2000.

[8] Stephen Alstrup, Thore Husfeldt, and Theis Rauhe. Marked ancestor problems. In
Proc. 39th IEEE Symposium on Foundations of Computer Science (FOCS), pages 534–
543, 1998.

[9] Stephen Alstrup, Thore Husfeldt, and Theis Rauhe. A cell probe lower bound for dy-
namic nearest-neighbor searching. In Proc. 12th ACM/SIAM Symposium on Discrete
Algorithms (SODA), pages 779–780, 2001.

[10] Arne Andersson, Peter Bro Miltersen, Søren Riis, and Mikkel Thorup. Static dictio-
naries on AC0 RAMs: Query time Θ(

√
log n/ log log n) is necessary and sufficient.

In Proc. 37th IEEE Symposium on Foundations of Computer Science (FOCS), pages
441–450, 1996.

131

[11] Arne Andersson, Peter Bro Miltersen, and Mikkel Thorup. Fusion trees can be imple-
mented with AC0 instructions only. Theoretical Computer Science, 215(1-2):337–344,
1999.

[12] Arne Andersson and Mikkel Thorup. Dynamic ordered sets with exponential search
trees. Journal of the ACM, 54(3), 2007. See also FOCS’96, STOC’00.

[13] Alexandr Andoni, Dorian Croitoru, and Mihai Pǎtraşcu. Hardness of nearest-neighbor
search under l-infinity. In Proc. 49th IEEE Symposium on Foundations of Computer
Science (FOCS), 2008.

[14] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions. Communications of the ACM, 51(1):117–122,
2008. See also FOCS’06.

[15] Alexandr Andoni, Piotr Indyk, and Robert Krauthgamer. Overcoming the `1 non-
embeddability barrier: Algorithms for product metrics. Manuscript, 2008.

[16] Alexandr Andoni, Piotr Indyk, and Mihai Pǎtraşcu. On the optimality of the di-
mensionality reduction method. In Proc. 47th IEEE Symposium on Foundations of
Computer Science (FOCS), pages 449–458, 2006.

[17] David Applegate, Gruia Calinescu, David S. Johnson, Howard J. Karloff, Katrina
Ligett, and Jia Wang. Compressing rectilinear pictures and minimizing access control
lists. In Proc. 18th ACM/SIAM Symposium on Discrete Algorithms (SODA), pages
1066–1075, 2007.

[18] Lars Arge. The buffer tree: A technique for designing batched external data structures.
Algorithmica, 37(1):1–24, 2003. See also WADS’95.

[19] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statis-
tics approach to data stream and communication complexity. Journal of Computer
and System Sciences, 68(4):702–732, 2004. See also FOCS’02.

[20] Omer Barkol and Yuval Rabani. Tighter lower bounds for nearest neighbor search and
related problems in the cell probe model. Journal of Computer and System Sciences,
64(4):873–896, 2002. See also STOC’00.

[21] Paul Beame and Faith E. Fich. Optimal bounds for the predecessor problem and
related problems. Journal of Computer and System Sciences, 65(1):38–72, 2002. See
also STOC’99.

[22] Amir M. Ben-Amram and Zvi Galil. A generalization of a lower bound technique due
to Fredman and Saks. Algorithmica, 30(1):34–66, 2001. See also FOCS’91.

[23] Amir M. Ben-Amram and Zvi Galil. Lower bounds for dynamic data structures on
algebraic RAMs. Algorithmica, 32(3):364–395, 2002. See also FOCS’91.

132

[24] Michael A. Bender and Martin Farach-Colton. The lca problem revisited. In Proc. 4th
Latin American Theoretical Informatics (LATIN), pages 88–94, 2000.

[25] Allan Borodin, Rafail Ostrovsky, and Yuval Rabani. Lower bounds for high dimensional
nearest neighbor search and related problems. In Proc. 31st ACM Symposium on
Theory of Computing (STOC), pages 312–321, 1999.

[26] Amit Chakrabarti, Bernard Chazelle, Benjamin Gum, and Alexey Lvov. A lower bound
on the complexity of approximate nearest-neighbor searching on the hamming cube. In
Proc. 31st ACM Symposium on Theory of Computing (STOC), pages 305–311, 1999.

[27] Amit Chakrabarti and Oded Regev. An optimal randomised cell probe lower bound for
approximate nearest neighbour searching. In Proc. 45th IEEE Symposium on Founda-
tions of Computer Science (FOCS), pages 473–482, 2004.

[28] Timothy M. Chan. Closest-point problems simplified on the RAM. In Proc. 13th
ACM/SIAM Symposium on Discrete Algorithms (SODA), pages 472–473, 2002.

[29] Moses Charikar, Piotr Indyk, and Rina Panigrahy. New algorithms for subset query,
partial match, orthogonal range searching, and related problems. In Proc. 29th In-
ternational Colloquium on Automata, Languages and Programming (ICALP), pages
451–462, 2002.

[30] Bernard Chazelle. A functional approach to data structures and its use in multidimen-
sional searching. SIAM Journal on Computing, 17:427–462, 1988. See also FOCS’85.

[31] Bernard Chazelle. Lower bounds for orthogonal range searching II. The arithmetic
model. Journal of the ACM, 37(3):439–463, 1990. See also FOCS’86.

[32] Bernard Chazelle. Lower bounds for off-line range searching. Discrete & Computational
Geometry, 17(1):53–65, 1997. See also STOC’95.

[33] Richard Cole, Lee-Ad Gottlieb, and Moshe Lewenstein. Dictionary matching and
indexing with errors and don’t cares. In Proc. 36th ACM Symposium on Theory of
Computing (STOC), pages 91–100, 2004.

[34] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-sensitive
hashing scheme based on p-stable distributions. In Proc. 20th ACM Symposium on
Computational Geometry (SoCG), pages 253–262, 2004.

[35] Mark de Berg, Marc J. van Kreveld, and Jack Snoeyink. Two- and three-dimensional
point location in rectangular subdivisions. Journal of Algorithms, 18(2):256–277, 1995.
See also SWAT’92.

[36] Mikael Degermark, Andrej Brodnik, Svante Carlsson, and Stephen Pink. Small for-
warding tables for fast routing lookups. In Proc. ACM SIGCOMM, pages 3–14, 1997.

133

[37] Erik D. Demaine, Friedhelm Meyer auf der Heide, Rasmus Pagh, and Mihai Pǎtraşcu.
De dictionariis dynamicis pauco spatio utentibus (lat. on dynamic dictionaries using
little space). In Proc. Latin American Theoretical Informatics (LATIN), pages 349–
361, 2006.

[38] Paul F. Dietz. Optimal algorithms for list indexing and subset rank. In Proc. 1st
Workshop on Algorithms and Data Structures (WADS), pages 39–46, 1989.

[39] Martin Dietzfelbinger and Friedhelm Meyer auf der Heide. A new universal class of hash
functions and dynamic hashing in real time. In Proc. 17th International Colloquium
on Automata, Languages and Programming (ICALP), pages 6–19, 1990.

[40] David Eppstein, Giuseppe F. Italiano, Roberto Tamassia, Robert E. Tarjan, Jeffery R.
Westbrook, and Moti Yung. Maintenance of a minimum spanning forest in a dynamic
planar graph. Journal of Algorithms, 13(1):33–54, 1992. See also SODA’90.

[41] David Eppstein and S. Muthukrishnan. Internet packet filter management and rectan-
gle geometry. In Proc. 12th ACM/SIAM Symposium on Discrete Algorithms (SODA),
pages 827–835, 2001.

[42] Ronald Fagin. Combining fuzzy information from multiple systems. Journal of Com-
puter and System Sciences, 58(1):83–99, 1999. See also PODS’96, PODS’98.

[43] Martin Farach-Colton and Piotr Indyk. Approximate nearest neighbor algorithms for
hausdorff metrics via embeddings. In Proc. 40th IEEE Symposium on Foundations of
Computer Science (FOCS), pages 171–180, 1999.

[44] Anja Feldmann and S. Muthukrishnan. Tradeoffs for packet classification. In Proc.
IEEE INFOCOM, pages 1193–1202, 2000.

[45] Paolo Ferragina and S. Muthukrishnan. Efficient dynamic method-lookup for object
oriented languages. In Proc. 4th European Symposium on Algorithms (ESA), pages
107–120, 1996.

[46] Paolo Ferragina, S. Muthukrishnan, and Mark de Berg. Multi-method dispatching: A
geometric approach with applications to string matching problems. In Proc. 31st ACM
Symposium on Theory of Computing (STOC), pages 483–491, 1999.

[47] Michael L. Fredman. A lower bound on the complexity of orthogonal range queries.
Journal of the ACM, 28:696–705, 1981.

[48] Michael L. Fredman. The complexity of maintaining an array and computing its partial
sums. Journal of the ACM, 29(1):250–260, 1982.

[49] Michael L. Fredman and Monika Rauch Henzinger. Lower bounds for fully dynamic
connectivity problems in graphs. Algorithmica, 22(3):351–362, 1998.

134

[50] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table
with 0(1) worst case access time. Journal of the ACM, 31(3):538–544, 1984. See also
FOCS’82.

[51] Michael L. Fredman and Michael E. Saks. The cell probe complexity of dynamic data
structures. In Proc. 21st ACM Symposium on Theory of Computing (STOC), pages
345–354, 1989.

[52] Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic bound
with fusion trees. Journal of Computer and System Sciences, 47(3):424–436, 1993. See
also STOC’90.

[53] Michael L. Fredman and Dan E. Willard. Trans-dichotomous algorithms for mini-
mum spanning trees and shortest paths. Journal of Computer and System Sciences,
48(3):533–551, 1994. See also FOCS’90.

[54] Haripriyan Hampapuram and Michael L. Fredman. Optimal biweighted binary trees
and the complexity of maintaining partial sums. SIAM Journal on Computing, 28(1):1–
9, 1998. See also FOCS’93.

[55] Monika Rauch Henzinger and Valerie King. Randomized fully dynamic graph algo-
rithms with polylogarithmic time per operation. Journal of the ACM, 46(4):502–516,
1999. See also STOC’95.

[56] Monika Rauch Henzinger and Mikkel Thorup. Sampling to provide or to bound: With
applications to fully dynamic graph algorithms. Random Structures and Algorithms,
11(4):369–379, 1997. See also ICALP’96.

[57] Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic determin-
istic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and
biconnectivity. Journal of the ACM, 48(4):723–760, 2001. See also STOC’98.

[58] Thore Husfeldt and Theis Rauhe. New lower bound techniques for dynamic partial
sums and related problems. SIAM Journal on Computing, 32(3):736–753, 2003. See
also ICALP’98.

[59] Thore Husfeldt, Theis Rauhe, and Søren Skyum. Lower bounds for dynamic transitive
closure, planar point location, and parentheses matching. In Proc. 5th Scandinavian
Workshop on Algorithm Theory (SWAT), pages 198–211, 1996.

[60] Piotr Indyk. Approximate algorithms for high-dimensional geometric problems. Invited
talk at DIMACS Workshop on Computational Geometry’02. http://people.csail.
mit.edu/indyk/high.ps, 2001.

[61] Piotr Indyk. On approximate nearest neighbors under `∞ norm. Journal of Computer
and System Sciences, 63(4):627–638, 2001. See also FOCS’98.

135

http://people.csail.mit.edu/indyk/high.ps
http://people.csail.mit.edu/indyk/high.ps

[62] Piotr Indyk. Approximate nearest neighbor algorithms for Frechet metric via product
metrics. In Proc. 18th ACM Symposium on Computational Geometry (SoCG), pages
102–106, 2002.

[63] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing
the curse of dimensionality. In Proc. 30th ACM Symposium on Theory of Computing
(STOC), pages 604–613, 1998.

[64] T. S. Jayram, Subhash Khot, Ravi Kumar, and Yuval Rabani. Cell-probe lower bounds
for the partial match problem. Journal of Computer and System Sciences, 69(3):435–
447, 2004. See also STOC’03.

[65] Bala Kalyanasundaram and Georg Schnitger. The probabilistic communication com-
plexity of set intersection. SIAM Journal on Discrete Mathematics, 5(4):545–557, 1992.
See also Structures’87.

[66] Robert Krauthgamer, James R. Lee, Manor Mendel, and Assaf Naor. Measured de-
scent: A new embedding method for finite metrics. Geometric And Functional Analysis,
15(4):839–858, 2005. See also FOCS’04.

[67] Eyal Kushilevitz, Rafail Ostrovsky, and Yuval Rabani. Efficient search for approximate
nearest neighbor in high dimensional spaces. SIAM Journal on Computing, 30(2):457–
474, 2000. See also STOC’98.

[68] Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and some
of its algorithmic applications. Combinatorica, 15(2):215–245, 1995. See also FOCS’94.

[69] Ding Liu. A strong lower bound for approximate nearest neighbor searching. Infor-
mation Processing Letters, 92(1):23–29, 2004.

[70] Peter Bro Miltersen. The bit probe complexity measure revisited. In Proc. 10th Sym-
posium on Theoretical Aspects of Computer Science (STACS), pages 662–671, 1993.

[71] Peter Bro Miltersen. Lower bounds for Union-Split-Find related problems on random
access machines. In Proc. 26th ACM Symposium on Theory of Computing (STOC),
pages 625–634, 1994.

[72] Peter Bro Miltersen. Cell probe complexity - a survey. In Proc. 19th Conference on
the Foundations of Software Technology and Theoretical Computer Science (FSTTCS),
1999. Advances in Data Structures Workshop.

[73] Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data struc-
tures and asymmetric communication complexity. Journal of Computer and System
Sciences, 57(1):37–49, 1998. See also STOC’95.

136

[74] Peter Bro Miltersen, Sairam Subramanian, Jeffrey S. Vitter, and Roberto Tamas-
sia. Complexity models for incremental computation. Theoretical Computer Science,
130(1):203–236, 1994. See also STACS’93.

[75] Christian Worm Mortensen. Fully dynamic orthogonal range reporting on ram. SIAM
Journal on Computing, 35(6):1494–1525, 2006. See also SODA’03.

[76] Christian Worm Mortensen, Rasmus Pagh, and Mihai Pǎtraşcu. On dynamic range
reporting in one dimension. In Proc. 37th ACM Symposium on Theory of Computing
(STOC), pages 104–111, 2005.

[77] Rajeev Motwani, Assaf Naor, and Rina Panigrahy. Lower bounds on locality sensi-
tive hashing. SIAM Journal on Discrete Mathematics, 21(4):930–935, 2007. See also
SoCG’06.

[78] S. Muthukrishnan and Martin Müller. Time and space efficient method-lookup for
object-oriented programs. In Proc. 7th ACM/SIAM Symposium on Discrete Algorithms
(SODA), pages 42–51, 1996.

[79] Yakov Nekrich. A data structure for multi-dimensional range reporting. In Proc. 23rd
ACM Symposium on Computational Geometry (SoCG), pages 344–353, 2007.

[80] Rina Panigrahy. Entropy based nearest neighbor search in high dimensions. In Proc.
17th ACM/SIAM Symposium on Discrete Algorithms (SODA), pages 1186–1195, 2006.

[81] Mihai Pǎtraşcu. Lower bounds for 2-dimensional range counting. In Proc. 39th ACM
Symposium on Theory of Computing (STOC), pages 40–46, 2007.

[82] Mihai Pǎtraşcu. (data) structures. In Proc. 49th IEEE Symposium on Foundations of
Computer Science (FOCS), 2008.

[83] Mihai Pǎtraşcu and Erik D. Demaine. Lower bounds for dynamic connectivity. In
Proc. 36th ACM Symposium on Theory of Computing (STOC), pages 546–553, 2004.

[84] Mihai Pǎtraşcu and Erik D. Demaine. Tight bounds for the partial-sums problem.
In Proc. 15th ACM/SIAM Symposium on Discrete Algorithms (SODA), pages 20–29,
2004.

[85] Mihai Pǎtraşcu and Mikkel Thorup. Planning for fast connectivity updates. In Proc.
48th IEEE Symposium on Foundations of Computer Science (FOCS), pages 263–271,
2007.

[86] Mihai Pǎtraşcu and Erik D. Demaine. Logarithmic lower bounds in the cell-probe
model. SIAM Journal on Computing, 35(4):932–963, 2006. See also SODA’04 and
STOC’04.

137

[87] Mihai Pǎtraşcu and Corina Tarniţǎ. On dynamic bit-probe complexity. Theoretical
Computer Science, 380:127–142, 2007. See also ICALP’05.

[88] Mihai Pǎtraşcu and Mikkel Thorup. Higher lower bounds for near-neighbor and further
rich problems. In Proc. 47th IEEE Symposium on Foundations of Computer Science
(FOCS), pages 646–654, 2006.

[89] Mihai Pǎtraşcu and Mikkel Thorup. Time-space trade-offs for predecessor search. In
Proc. 38th ACM Symposium on Theory of Computing (STOC), pages 232–240, 2006.

[90] Mihai Pǎtraşcu and Mikkel Thorup. Randomization does not help searching predeces-
sors. In Proc. 18th ACM/SIAM Symposium on Discrete Algorithms (SODA), pages
555–564, 2007.

[91] Satish Rao. Small distortion and volume preserving embeddings for planar and Eu-
clidean metrics. In Proc. 15th ACM Symposium on Computational Geometry (SoCG),
pages 300–306, 1999.

[92] Alexander A. Razborov. On the distributional complexity of disjointness. Theoretical
Computer Science, 106(2):385–390, 1992.

[93] Ronald L. Rivest. Partial-match retrieval algorithms. SIAM Journal on Computing,
5(1):19–50, 1976. See also FOCS’74 and Stanford PhD thesis.

[94] Hanan Samet. Foundations of Multidimensional and Metric Data Structures. Elsevier,
2006.

[95] Pranab Sen and Srinivasan Venkatesh. Lower bounds for predecessor searching in the
cell probe model. Journal of Computer and System Sciences, 74(3):364–385, 2008. See
also ICALP’01, CCC’03.

[96] Gregory Shakhnarovich, Trevor Darrell, and Piotr Indyk, editors. Nearest Neighbor
Methods in Learning and Vision. Neural Processing Information Series, MIT Press,
2006.

[97] Daniel D. Sleator and Robert E. Tarjan. A data structure for dynamic trees. Journal
of Computer and System Sciences, 26(3):362–391, 1983. See also STOC’81.

[98] Kunal Talwar, Rina Panigrahy, and Udi Wieder. A geometric approach to lower bounds
for approximate near-neighbor search and partial match. In Proc. 49th IEEE Sympo-
sium on Foundations of Computer Science (FOCS), 2008.

[99] Mikkel Thorup. Near-optimal fully-dynamic graph connectivity. In Proc. 32nd ACM
Symposium on Theory of Computing (STOC), pages 343–350, 2000.

[100] Mikkel Thorup. Space efficient dynamic stabbing with fast queries. In Proc. 35th ACM
Symposium on Theory of Computing (STOC), pages 649–658, 2003.

138

[101] Peter van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an
efficient priority queue. Mathematical Systems Theory, 10:99–127, 1977. Conference
version by van Emde Boas alone in FOCS’75.

[102] Marcel Waldvogel, George Varghese, Jonathan S. Turner, and Bernhard Plattner. Scal-
able high speed ip routing lookups. In Proc. ACM SIGCOMM, pages 25–36, 1997.

[103] Dan E. Willard. Log-logarithmic worst-case range queries are possible in space Θ(N).
Information Processing Letters, 17(2):81–84, 1983.

[104] Dan E. Willard. Examining computational geometry, van Emde Boas trees, and hash-
ing from the perspective of the fusion tree. SIAM Journal on Computing, 29(3):1030–
1049, 2000. See also SODA’92.

[105] Bing Xiao. New bounds in cell probe model. PhD thesis, University of California at
San Diego, 1992.

[106] Andrew Chi-Chih Yao. Should tables be sorted? Journal of the ACM, 28(3):615–628,
1981. See also FOCS’78.

[107] Andrew Chi-Chih Yao. On the complexity of maintaining partial sums. SIAM Journal
on Computing, 14:277–288, 1985.

139

	Introduction
	What is the Cell-Probe Model?
	Examples
	Predictive Power

	Overview of Cell-Probe Lower Bounds
	Dynamic Bounds
	Round Elimination
	Richness

	Our Contributions
	The Epoch Barrier in Dynamic Lower Bounds
	The Logarithmic Barrier in Bit-Probe Complexity
	The Communication Barrier in Static Complexity
	Richness Lower Bounds
	Lower Bounds for Range Queries
	Simple Proofs

	Catalog of Problems
	Predecessor Search
	Flavors of Integer Search
	Previous Upper Bounds
	Previous Lower Bounds
	Our Optimal Bounds

	Dynamic Problems
	Maintaining Partial Sums
	Previous Lower Bounds
	Our Results
	Related Problems

	Range Queries
	Orthogonal Range Counting
	Range Reporting
	Orthogonal Stabbing

	Problems in High Dimensions
	Partial Match
	Near Neighbor Search in L1, L2
	Near Neighbor Search in L-infinity

	Dynamic Omega(log n) Bounds
	Partial Sums: The Hard Instance
	Information Transfer
	Interleaves
	A Tree For The Lower Bound
	The Bit-Reversal Permutation
	Dynamic Connectivity: The Hard Instance
	The Main Trick: Nondeterminism
	Proof of the Nondeterministic Bound
	Bibliographical Notes

	Epoch-Based Lower Bounds
	Trade-offs and Higher Word Sizes
	Bit-Probe Complexity
	Lower Bounds for Partial Sums
	Formal Framework
	Bounding Probes into an Epoch
	Deriving the Trade-offs of Theorem 4.1
	Proof of Lemma 4.3

	Communication Complexity
	Definitions
	Set Disjointness
	Complexity Measures

	Richness Lower Bounds
	Rectangles
	Richness
	Application to Indexing

	Direct Sum for Richness
	A Direct Sum of Indexing Problems
	Proof of Theorem 5.6

	Randomized Lower Bounds
	Warm-Up
	A Strong Lower Bound
	Direct Sum for Randomized Richness
	Proof of Lemma 5.17

	Bibliographical Notes

	Static Lower Bounds
	Partial Match
	Approximate Near Neighbor
	Decision Trees
	Near-Linear Space

	Range Query Problems
	The Butterfly Effect
	Reachability Oracles to Stabbing
	The Structure of Dynamic Problems

	Adding Structure to Set Disjointness
	Randomized Bounds

	Set Disjointness to Reachability Oracles

	Near Neighbor Search in
	Review of Indyk's Upper Bound
	Lower Bound
	An Isoperimetric Inequality
	Expansion in One Dimension

	Predecessor Search
	Data Structures Using Linear Space
	Equivalence to Longest Common Prefix
	The Data Structure of van Emde Boas
	Fusion Trees

	Lower Bounds
	The Cell-Probe Elimination Lemma
	Setup for the Predecessor Problem
	Deriving the Trade-Offs

	Proof of Cell-Probe Elimination
	The Solution to the Direct Sum Problem
	Proof of Lemma 9.9

