SoftwareX 6 (2017) 91-93

journal homepage: www.elsevier.com/locate/softx

Contents lists available at ScienceDirect

S

1
1NOL01

SoftwareX g

MGtoolkit: A python package for implementing metagraphs A

D. Ranathunga®*, H. Nguyen ?, M. Roughan "

2 Teletraffic Research Centre, University of Adelaide, Australia

Check for
updates

b ARC Centre of Excellence for Mathematical and Statistical Frontiers, University of Adelaide, Australia

ARTICLE INFO ABSTRACT
Article history: In this paper we present MGtoolkit: an open-source Python package for implementing metagraphs - a
Received 3 February 2017 first of its kind. Metagraphs are commonly used to specify and analyse business and computer-network

Received in revised form 11 April 2017
Accepted 11 April 2017

analysis results.
Keywords:

Metagraph implementation
Computer-network policy
Policy analysis

policies alike. MGtoolkit can help verify such policies and promotes learning and experimentation with
metagraphs. The package currently provides purely textual output for visualising metagraphs and their

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version

Permanent link to code/repository used for this code version

Legal Code License

Code versioning system used

Software code languages, tools, and services used

Compilation requirements, operating environments & dependencies
If available Link to developer documentation/manual

Support email for questions

V1.0.1

https://github.com/ElsevierSoftwareX/SOFTX-D-17-00014

MIT

git

Python2.7

Mac OS X, Linux
https://readthedocs.org/projects/mgtoolkit/badge/?version=latest
mgtkhelp@gmail.com

1. Motivation

A metagraph is a generalised graph theoretic structure that has
several useful applications. They are commonly used to construct
and analyse business policies in decision-support systems and
workflow-management systems [1]. Metagraphs are also useful
to analyse, optimise and troubleshoot communication-network
policies [2].

A metagraph is a directed graph between a collection of sets of
‘atomic’ elements. Each set is a node in the graph and each directed
edge represents the relationship between the sets. A simple exam-
pleis given in Fig. 1(a) where multiple sets of users (Uy, Uy, Us) are
related to sets of network resources (Rq, R,) by the directed edges
eq, e; and ez which describes which user u; is allowed to access
resource rj.

* Corresponding author.
E-mail address: dinesha.ranathunga@adelaide.edu.au (D. Ranathunga).

http://dx.doi.org/10.1016/j.s0ftx.2017.04.001

In this paper we describe an off-the-shelf tool for implementing
metagraphs — MGtoolkit - implemented in Python. At the time of
writing, we are aware of one other metagraph API- ‘Haskell library
for metagraph data structure’ [3].

Developing a metagraph tool faces several key challenges. For
instance, a metagraph does not use simple edge weights in its
adjacency matrix. Also, metagraphs admit representations other
than those used for simple graphs, but as in simple graphs, the
representation is important for certain algorithms. In addition,
there are many operations defined on a metagraph that must be
supported by such a tool. These operations help analyse useful
properties such as connectivity, redundancy and allow metagraph
transformations, but go beyond standard graph operators.

Metagraphs have many uses in general. One in particular is
in specifying and analysing communication-network policies. We
will demonstrate the use of metagraphs here by taking access-
control policies in a computer network as an example. But, meta-
graphs can be equally used in other policy contexts (e.g., QoS,
network-service chaining, traffic measurement etc.).

2352-7110/© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.softx.2017.04.001
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2017.04.001&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-17-00014
https://readthedocs.org/projects/mgtoolkit/badge/%3Fversion%3Dlatest
mailto:mgtkhelp@gmail.com
mailto:dinesha.ranathunga@adelaide.edu.au
http://dx.doi.org/10.1016/j.softx.2017.04.001
http://creativecommons.org/licenses/by/4.0/

92 D. Ranathunga et al. / SoftwareX 6 (2017) 91-93

permit
e

R,

permit

Uy

(a) Metagraph consisting of five sets and three
edges.

(b) Metagraph that shows the advantage of a meta-
path over simple paths.

Fig. 1. Metagraph examples.

2. Background
The formal structure of a metagraph can be defined as follows:

Definition 1 (Metagraph). A metagraph S = (X, E) is a graphical
construct specified by a generating set X and a set of edges E de-
fined on X. A generating set is a set of variables X = {x1, x2, ..., X;}
and an edge e € E is a paire = (V,, W,) such thatV, C X is the
invertex and W, C X is the outvertex.

This definition is similar to that of a directed hypergraph, but in
addition metagraphs have several useful operators and properties.
One in particular is the notion of a metapath [1] which describes
connectivity between sets of elements in a metagraph, but is some-
what different from a path in a graph.

Definition 2 (Metapath). A metapath from source B C X to target
C C Xinametagraph S = (X, E) is set of edges E’ such that every
e’ € E’ is on a path from an element in B to an element in C. In
addition [, Ve \ UyWe] € Band C C |, We.

A metapath is more useful than a simple path (i.e, a sequence
of edges). Fig. 1(b) illustrates this using two simple paths from x;
to xs: (eq, e3) and (e,, e3). Element x; can reach xs without knowing
anything about the intermediate nodes x,, X3, x4 if all three edges
ey, ez, ez are used but the simple paths do no capture this fact. But
{e1, ez, e3} does not represent a simple path; there is no sequence
of connected edges consisting of these edges. Rather, this metapath
is the union of edges in two simple paths.

Reachability between a source node and a target node can
be determined by finding valid metapaths between the two in a
metagraph [1] (e.g, the metapath from x; to x5 in Fig. 1(b) is
{e1, ez, e3}).

Metagraphs have a property called dominance which allows to
determine whether a metapath has any redundant components
(edges or elements) [1]. A metapath is input-dominant if no proper
subset of its source connects to the target; edge-dominant if no
proper subset of its edges is also a metapath from the source to the
target; and dominant if it is both input- and edge-dominant [1].
Non-dominant metapaths indicate redundancies in a metagraph
and hence, redundancies in the policies depicted by the metagraph.

In metagraph theory, the notion of cutsets and bridges allow
one to locate edges that are critical [1]. A cutset is a set of edges
which if removed, eliminates all metapaths between a given source
and a target. A singleton cutset is a bridge. In an access-control
policy context for instance, bridges and cutsets indicate if there
exists a critical policy or a policy set that enable access between
certain users and resources.

It is also possible to derive a projection for a given metagraph.
A projection is a simplified metagraph that provides a high-level
view of the original metagraph by concealing certain details [1].
In a complex metagraph with many edges, a projection helps to
visualise the important aspects with clarity and ease. For instance,
in a complex access-control policy with many rules, projections

help administrators visualise connectivity between a subset of
users and resources.

Metagraphs can have attributes associated with their edges.
One such attributed metagraph is a conditional metagraph [1]. A
conditional metagraph includes propositions - statements that
may be true or false - assigned to their edges as qualitative at-
tributes [1]. The generating set of these metagraphs are partitioned
into a variables set and a propositions set.

Conditional metagraphs are particularly useful in specifying
access-control policies because they allow a policy (such as per-
mit user u; to access resource r1) to be activated conditionally
(e.g., during business hours only).

3. Overview of MGtoolkit

MGtoolkit is implemented in Python 2.7, which is an inter-
preted, object-oriented, open-source language. Python has a con-
cise but natural syntax for many of its data types, which makes
programs exceedingly clear and easy to read; as the saying goes,
‘Python is executable pseudocode.” Dependencies of MGtoolkit in-
clude the packages NumPy 1.9 and NetworkX 1.7; both very pop-
ular and stable open source Python packages.

Fig. 2 depicts the entity model we have employed in the un-
derlying framework. Some attributes have been omitted in the
Metagraph entity for simplicity.

A Metagraph entity consists of a set of Node entities and a set
of Edge entities. Each Node contains a subset of elements from the
metagraph’s generating set. An Edge has the members: invertex
and outvertex, assigned a Node each, and an attributes mem-
ber that returns any edge attributes.

AMetagraph entity also has the methods: add_edges_from()
and remove_edges_from(), to add and delete edges as nec-
essary. In addition, the entity includes methods to derive
its adjacency matrix, find metapaths, check metapath proper-
ties (e.g, is_dominant_ metapath()) and edge properties
(e.g., is_cutset()).

The source and target members of a Metapath return sub-
sets of elements in a metagraph’s generating set. The edge_list
member returns an edge set between the source and target
which satisfy Definition 2.

A ConditionalMetagraph entity extends a Metagraph and
supports proposition attributes in addition to variables. A Con-
ditionalMetagraph inherits the base properties and methods
of a Metagraph and additionally supports methods to derive its
context metagraphs (i.e, get_context()), check connectivity
properties (e.g., is_fully_connected())and redundancy prop-
erties (e.g., is_non_redundant()).

Listing 1: MGtoolkit implementation of policy in Figure 1(a).
define policy metagraph
variable_set = {’ul’,’u2’,’u3’,’u4’,’ub’,’u6’,’r1’,’r2’,°r3’}
propositions_set = {’action=permit’, ’action=deny’}
cm = ConditionalMetagraph(variable_set, propositions_set)

U W=

cm.add_edges_from([

D. Ranathunga et al. / SoftwareX 6 (2017) 91-93 93

Class ConditionalMetagraph

+ variables_set : Set

+ propositions_set : Set

+ get_context ()

+ is_connected ()

+ is_fully_connected ()

+ is_redundantly_connected ()

Class Node Class Metagraph
+ element_set : Set + nodes - Set
* —1 —{ + edges : Set
+ generating_set : Set
Class Edge + add_edges_from ()
+ remove_edges_from ()
+ invertex : Node ittt R 1 adjacency_matrix ()
+ outvertex : Node + get_all_metapaths ()
+ attributes : Set + is_dominant_metapath ()
+ is_cutset ()
Class Metapath *_4 + get_projection ()
+ incidence_matrix ()
+ source : Set + get_inverse ()
+ target : Set

+ is_non_redundant ()

+ edge_list : Set

Fig. 2. MGtoolkit entity relationship model (*~1 denotes a many-to-one relationship and — denotes an extension).

6 Edge({’u1’,’u2’,’u3’}, {’r1’,’r2’}, attributes=[’action=permit’]),
7 Edge({’u3’,’u4’,’u5’}, {’r2’,’r3’}, attributes=[’action=deny’]),
8 Edge({’u2’,’u3’,’u5’,’u6’}, {’r1’,’r2’}, attributes=[’action=permit’])])

10 # compute redundancies and conflicts
11 all_metapaths = cm.get_all_metapaths()
12 for metapath in all_metapaths:

13 if cm.has_redundancies(metapath):

14 print (’redundancy detected: \%s’\lrepr(metapath))
15 if cm.has_conflicts(metapath):

16 print(’conflict detected: \%s’\%repr(metapath))

Listing 2: Partial output from running code in Listing 1.
1 conflict detected: Metapath({ Edge(set([’ul’,’u2’,’u3’,’action=permit’]),
set([’r1’,°r2’])), Edge({’u3’,’u4’,’u5’}, {’r2’,’r3’}, attributes
=[’action=deny’])})

The code snippet in Listing 1 instantiates the example access-
control policy in Fig. 1(a) using MGtoolkit and then checks pol-
icy consistency. It returns a redundancy and two conflicts-one
is shown in Listing 2. The redundancy is due to e; and e3 both
enabling access to R; from u;, and us. The conflicts stem from e
denying access to R,. More detailed examples based on business
policies and workflows can be found on pages 81, 109 and 126 of
the metagraph text [1].

4. Impact and challenges

There are many packages available for analysing graphs,
e.g., igraph, NetworkX, Gephi [4-6]. These are being increasingly
utilised. Metagraphs provide a powerful generalisation of simple
graphs and are particularly suitable for modelling business and
computer-network policies [1,2].

MGtoolkit is the first publicly available Python API for imple-
menting metagraphs. It serves two key purposes. Firstly, the API
allows users to learn about metagraphs in an interactive manner
by creating metagraph examples, applying metagraph operations
and evaluating the results. The documentation and tutorials asso-
ciated with the package simplify the learning curve. Secondly, the
API is a building block for developing and analysing metagraph-
based applications such as decision-support systems. Developers
can harness the advantages and power of metagraphs in to their
applications by simply importing MGtoolkit.

We believe our API is a first step to revisit old questions and
tackle new challenges. For instance, in the specification and anal-
ysis of computer network policies: current approaches either lack
high-level specification capability or formal semantics. MGtoolkit
is a gateway to harness the best of both of these worlds.

We have used the GitHub open source code hosting and devel-
opment platform to enable user collaboration.

A key drawback in developing MGtoolkit was the fact that
the only metagraph text available for reference contained several
discrepancies. For instance, the inverse metagraph generation al-
gorithm given in the text failed to replicate the example output
provided (Figure 4.9 on page 47 in [1]). Upon clarification with the
author, we found that the example was in fact incorrect.

Also several metapath examples given contradicted the defini-
tion of a metapath (e.g., metapath M, on page 28 in[1]). We strictly
adhered to the definition because the formal metagraph properties
derived were based on the definition.

5. Conclusions and future work

In this paper, we present MGtoolkit: an open-source Python
package for implementing metagraphs. The software promotes
learning and experimentation with metagraphs and can help anal-
yse business- and computer-network policies alike.

In the future, we are planning several applications based on
MGtoolkit, one in particular is a tool for the formal analysis of
computer-network policies. Additionally, some of the algorithms
suggested in [1] are not efficient and we plan to improve on them.

Acknowledgement

This project was supported by the Australian Govern-
ment through the Australian Research Council Linkage Project
LP140100489.

References

[1] Basu A, Blanning RW. Metagraphs and their applications. Springer Science &
Business Media; 2007.

Nguyen HX, Pham T, Hoang K, Nguyen DD, Parsonage E. A prototype of policy
defined wireless access networks. In: International Telecommunication Net-
works and Applications Conference. 2016. p. 1-5.

Gushcha A, Haskell library for metagraph data structure; 2017. [Online]. Avail-
able: https://github.com/Teaspot-Studio/metagraph.

igraph Steering Committee. Get started with python-igraph; 2006. [Online].
Available: http://igraph.org/python/.

NetworkX Developer Team. High-productivity software for complex networks;
2004. [Online]. Available: https://networkx.github.io/.

Bastian M, Heymann S, Jacomy M, Gephi: An Open Source Software for Exploring
and Manipulating Networks; (2009) https://gephi.org/.

2

[3

[4

[5

6

http://refhub.elsevier.com/S2352-7110(17)30008-0/sb1
http://refhub.elsevier.com/S2352-7110(17)30008-0/sb1
http://refhub.elsevier.com/S2352-7110(17)30008-0/sb1
http://refhub.elsevier.com/S2352-7110(17)30008-0/sb1
http://refhub.elsevier.com/S2352-7110(17)30008-0/sb1
http://refhub.elsevier.com/S2352-7110(17)30008-0/sb1
http://refhub.elsevier.com/S2352-7110(17)30008-0/sb1
http://refhub.elsevier.com/S2352-7110(17)30008-0/sb2
http://refhub.elsevier.com/S2352-7110(17)30008-0/sb2
http://refhub.elsevier.com/S2352-7110(17)30008-0/sb2
http://refhub.elsevier.com/S2352-7110(17)30008-0/sb2
http://refhub.elsevier.com/S2352-7110(17)30008-0/sb2
http://refhub.elsevier.com/S2352-7110(17)30008-0/sb2
http://refhub.elsevier.com/S2352-7110(17)30008-0/sb2
http://refhub.elsevier.com/S2352-7110(17)30008-0/sb2
http://refhub.elsevier.com/S2352-7110(17)30008-0/sb2
http://refhub.elsevier.com/S2352-7110(17)30008-0/sb2
http://refhub.elsevier.com/S2352-7110(17)30008-0/sb2
http://refhub.elsevier.com/S2352-7110(17)30008-0/sb2
https://github.com/Teaspot-Studio/metagraph
http://igraph.org/python/
https://networkx.github.io/
https://gephi.org/

	MGtoolkit: A python package for implementing metagraphs
	Motivation
	Background
	Overview of MGtoolkit
	Impact and challenges
	Conclusions and future work
	Acknowledgement
	References

