
MIPSproTM C and C++ Pragmas

007–3587–005

COPYRIGHT
© 1999, 2002 - 2003 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated
elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic
documentation in any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA
government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable
license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of
the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy.,
Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, SGI, the SGI logo, and IRIX are registered trademarks and OpenMP is a trademark of Silicon Graphics, Inc.. in the
United States and/or other countries worldwide. Portions of this publication may have been derived from the OpenMP Language
Application Program Interface Specification. MIPSpro is a trademark of MIPS Technologies, Inc., and is used under license by Silicon
Graphics, Inc. UNIX and the X device are registered trademarks of The Open Group in the United States and other countries. X/Open
is a trademark of X/Open Company Ltd.

Cover design by Sarah Bolles, Sarah Bolles Design, and Dany Galgani, SGI Technical Publications.

New Features in this Guide

Support for OpenMP 2.0 has been added and is discussed in Chapter 10, "OpenMP
C/C++ API Multiprocessing Directives", page 95.

007–3587–005 iii

Record of Revision

Version Description

7.3 March 1999
This revision supports the 7.3 version of the MIPSpro compiler.

004 September 2002
This revision supports the 7.4 version of the MIPSpro compiler
which runs on the IRIX operating systems, version 6.5 and later.

005 June 2003
This revision supports the 7.4.1 version of the MIPSpro compiler
which runs on the IRIX operating systems, version 6.5 and later.

007–3587–005 v

Contents

About This Manual . xix

Related Publications . xix

Obtaining Publications . xx

Conventions . xx

Reader Comments . xxi

1. Alphabetical Listing of Directives 1

2. Automatic Parallelization #pragma Directives 11

#pragma concurrent . 11

#pragma concurrent call 12

#pragma concurrentize . 14

#pragma no concurrentize 14

#pragma permutation . 15

#pragma prefer concurrent 15

#pragma prefer serial . 16

#pragma serial . 16

3. C++ Instantiation #pragma Directives 17

#pragma instantiate . 17

#pragma can_instantiate 18

#pragma do_not_instantiate 19

4. Data Layout #pragma Directives 21

#pragma align_symbol . 21

#pragma fill_symbol . 23

007–3587–005 vii

Contents

#pragma pack . 24

5. DSM Optimization #pragma Directives 25

#pragma distribute . 25

onto Clause . 27

#pragma distribute_reshape 28

#pragma dynamic . 30

#pragma page_place . 31

#pragma redistribute . 32

onto Clause . 33

6. Inlining #pragma Directives 35

#pragma inline and #pragma noinline 35

Keywords . 36

Examples of #pragma inline and #pragma noinline 37

7. Loader Information #pragma Directives 41

#pragma hidden . 42

#pragma internal . 42

#pragma no_delete name . 43

#pragma optional . 43

#pragma protected . 44

#pragma section_gp . 45

#pragma section_non_gp . 45

#pragma weak . 46

8. Loop Nest Optimization #pragma Directives 49

#pragma aggressive inner loop fission 50

#pragma blocking size . 51

#pragma no blocking . 51

viii 007–3587–005

MIPSproTM C and C++ Pragmas

#pragma fission . 52

#pragma fissionable . 52

#pragma no fission . 52

#pragma fuse . 53

#pragma fusable . 53

#pragma no fusion . 53

#pragma no interchange . 54

#pragma ivdep . 54

#pragma prefetch . 55

#pragma prefetch_manual 56

#pragma prefetch_ref . 56

#pragma prefetch_ref_disable 58

#pragma unroll . 58

9. Multiprocessing #pragma Directives 61

#pragma copyin . 62

Example of #pragma copyin 62

#pragma critical . 63

#pragma enter gate and #pragma exit gate 66

#pragma independent . 69

#pragma local . 70

#pragma no side effects 71

#pragma one processor . 71

#pragma parallel . 72

#pragma parallel Clauses 74

shared: Specifying Shared Variables 74

local: Specifying Local Variables 75

if: Specifying Conditional Parallelization 75

007–3587–005 ix

Contents

numthreads: Specifying the Number of Threads 76

#pragma pfor . 76

C++ Multiprocessing Considerations With #pragma pfor 78

#pragma pfor Clauses . 79

iterate: Specifying the for Loop 79

local and lastlocal: Specifying Local Variables 80

reduction: Specifying Variables for Reduction 81

affinity: Thread Affinity 81

affinity: Data Affinity . 82

Data Affinity for Redistributed Arrays 83

Data Affinity for a Formal Parameter 84

Data Affinity and the #pragma pfor nest Clause 84

nest: Exploiting Nested Concurrency 85

schedtype: Sharing Loop Iterations Among Processors 85

chunksize: Specifying the Number of Iterations in a Chunk 88

#pragma pure . 89

#pragma set chunksize . 89

#pragma set numthreads 90

Using #pragma set numthreads 90

#pragma set schedtype . 90

#pragma shared . 91

#pragma synchronize . 91

10. OpenMP C/C++ API Multiprocessing Directives 95

Using Directives . 95

Conditional Compilation . 96

parallel Construct . 96

x 007–3587–005

MIPSproTM C and C++ Pragmas

Work–sharing Constructs . 97

Combined Parallel Work-sharing Constructs 97

Master and Synchronization Constructs 98

Data Environment Constructs 98

Directive Binding . 99

Directive Nesting . 100

11. Precompiled Header #pragma Directives 101

#pragma hdrstop . 101

#pragma no_pch . 102

#pragma once . 102

12. Scalar Optimization #pragma Directives 103

#pragma mips_frequency_hint 103

13. Warning Suppression Control #pragma Directives 105

#pragma set woff . 105

#pragma reset woff . 106

14. Miscellaneous #pragma Directives 109

#pragma ident . 109

#pragma int_to_unsigned 110

#pragma intrinsic . 110

#pragma unknown_control_flow 111

15. The Auto-Parallelizing Option (APO) 113

Index . 115

007–3587–005 xi

Figures

Figure 9-1 Critical Segment Execution 65

Figure 9-2 Execution Using Gates 67

Figure 9-3 Independent Segment Execution 70

Figure 9-4 One Processor Segment 72

Figure 9-5 Parallel Code Segments Using #pragma pfor 78

Figure 9-6 Loop Scheduling Types 87

Figure 9-7 Synchronization . 93

007–3587–005 xiii

Tables

Table 1-1 SGI #pragma Directives 2

Table 2-1 #pragma Analyzer Directives 11

Table 3-1 C++ Template Instantiation #pragma Directives 17

Table 4-1 Data Layout #pragma Directives 21

Table 5-1 Distributed Shared Memory #pragma Directives 25

Table 6-1 Inlining #pragma Directives 35

Table 7-1 Loader Information #pragma Directives 41

Table 8-1 Loop Nest Optimization #pragma Directives 49

Table 8-2 Clauses for #pragma prefetch_ref 57

Table 9-1 Multiprocessing #pragma Directives 61

Table 9-2 Choosing a schedtype 88

Table 11-1 Precompiled Header #pragma Directives 101

Table 12-1 Scalar Optimization #pragma Directives 103

Table 13-1 Warning Suppression Control #pragma Directives 105

Table 14-1 Miscellaneous #pragma Directives 109

007–3587–005 xv

Examples

Example 1-1 #pragma form 1

Example 1-2 _Pragma form 1

Example 2-1 concurrent call: ignoring dependences 13

Example 2-2 concurrent call: illegal assertion use 13

Example 4-1 #pragma align_symbol 22

Example 4-2 #pragma fill_symbol 23

Example 5-1 #pragma distribute 27

Example 5-2 #pragma distribute_reshape 30

Example 5-3 #pragma page_place 32

Example 5-4 #pragma redistribute 34

Example 6-1 Using the here keyword with the #pragma noinline directive . . . 37

Example 6-2 Using the here keyword with the #pragma inline and #pragma noinline
directives . 38

Example 6-3 Using the global keyword with the #pragma inline directive . . . 38

Example 6-4 Using the routine keyword with the #pragma inline directive . . . 39

Example 6-5 Using the routine keyword with the #pragma noinline directive . . 40

Example 8-1 #pragma blocking size 51

Example 8-2 #pragma ivdep 54

Example 8-3 #pragma unroll 59

Example 9-1 #pragma exit gate and #pragma enter gate 68

Example 9-2 #pragma parallel 73

Example 9-3 iterate clause 80

Example 9-4 Data affinity . 82

Example 9-5 Nested pfor . 84

007–3587–005 xvii

Contents

Example 13-1 #pragma set woff 106

Example 13-2 #pragma reset woff 107

xviii 007–3587–005

About This Manual

This publication documents the #pragma directives that are supported for the 7.4
release of the SGI MIPSpro C and C++ compilers. The pragma directives are used
within the source program to request special processing. Although pragmas are part
of the C/C++ language, the meaning of the pragma is implementation-specific.

Related Publications
The following documents contain information that may be helpful in porting code to
the newer SGI compilers:

• MIPS O32 Compiling and Performance Tuning Guide

• MIPSpro N32/64 Compiling and Performance Tuning Guide

• MIPSpro N32 ABI Handbook

• MIPSpro 64-Bit Porting and Transition Guide

The following documents contain information about SGI’s implementation of C and
C++:

• C Language Reference Manual

• C++ Programmer’s Guide

Several performance evaluation and debugging tools are available to help you
optimize and evaluate your code. See the ProDev WorkShop: Overview for a
description of the different tools that are available.

See the Guides to SGI Compilers and Compiling Tools for an overview of all SGI
compilers, compiler documentation, optimization tools, porting tools, and
performance tools.

In addition to the above SGI documentation, several third party documents contain
additional information which may be helpful. These books can be ordered from any
book vendor:

• Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Publishing
Company, special edition, 2000. ISBN 0201700735.

007–3587–005 xix

About This Manual

• Josuttis, Nicolai. The C++ Standard Library: A Tutorial and Reference.
Addison-Wesley Publishing Company, 1999. ISBN 0201379260.

• The C++ Standard, ISO/IEC 14882, Information Technology — Programming
Languages — C++ is available from the American Standards Institute at
http://www.ansi.org.

Obtaining Publications
You can obtain SGI documentation in the following ways:

• See the SGI Technical Publications Library at http://docs.sgi.com. Various
formats are available. This library contains the most recent and most
comprehensive set of online books, release notes, man pages, and other
information.

• If it is installed on your SGI system, you can use InfoSearch, an online tool that
provides a more limited set of online books, release notes, and man pages. With
an IRIX system, select Help from the Toolchest, and then select InfoSearch. Or
you can type infosearch on a command line.

• You can also view release notes by typing either grelnotes or relnotes on a
command line.

• You can also view man pages by typing man title on a command line.

Conventions
The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. (Output is shown in
nonbold, fixed-space font.)

xx 007–3587–005

MIPSproTM C and C++ Pragmas

[] Brackets enclose optional portions of a command or
directive line.

... Ellipses indicate that a preceding element can be
repeated.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
publication, contact SGI. Be sure to include the title and document number of the
publication with your comments. (Online, the document number is located in the
front matter of the publication. In printed publications, the document number is
located at the bottom of each page.)

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library Web page:

http://docs.sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Parkway, M/S 535
Mountain View, California 94043–1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

SGI values your comments and will respond to them promptly.

007–3587–005 xxi

Chapter 1

Alphabetical Listing of Directives

#pragma directives are used within the source program to request certain kinds of
special processing. #pragma directives are part of the C and C++ languages, but the
meaning of any #pragma directive is defined by the implementation.

#pragma directives are expressed in the following form:

#pragma identifier [arguments]

Compiler directives can also be specified in the following form, which has the
advantage in that it can appear inside macro definitions:

_Pragma("identifier");

This form has the same effect as using the #pragma form, except that everything that
appeared on the line following the #pragma must now appear inside the double
quotation marks and parentheses. The expression inside the parentheses must be a
single string literal, but it cannot be a macro that expands into a string literal.
_Pragma is a SGI extension to the C and C++ standards.

Example 1-1 #pragma form

The following is an example using the #pragma form:

#pragma ivdep

#pragma parallel local(i, j, k) \
shared(a, b, c)

Example 1-2 _Pragma form

The following is the same example using the alternative form:

_Pragma("ivdep")
_Pragma("parallel local(i, j, k) \

shared(a, b, c)")

Macro expansion occurs on the directive line after the directive name. (That is, macro
expansion is applied only to arguments.) For example, if NUM_CHUNKS is a macro
defined as the value 8, the original code is as follows:

#define NUM_CHUNKS 8

_Pragma("parallel numchunks(NUM_CHUNKS)")

007–3587–005 1

1: Alphabetical Listing of Directives

Table 1-1, page 2, is an alphabetical list of SGI supported #pragma directives, with a
short description of each and a link to the chapter where the directive is discussed.

Table 1-1 SGI #pragma Directives

#pragma Short Description Functional Group

aggressive inner loop
fission

Fission inner loops into as many loops as
possible.

Chapter 8, "Loop Nest
Optimization #pragma
Directives", page 49

align_symbol Specifies alignment of user variables,
typically at cache-line or page boundaries.

Chapter 4, "Data Layout
#pragma Directives", page
21

blocking size Sets the blocksize of the specified loop that
is involved in a blocking for the primary
(secondary) cache.

Chapter 8, "Loop Nest
Optimization #pragma
Directives", page 49

can_instantiate Indicates that the specified declaration can
be instantiated in the current compilation,
but need not be.

Chapter 3, "C++
Instantiation #pragma
Directives", page 17

concurrent Tells the compiler to ignore assumed
dependences in the following loop.

Chapter 2, "Automatic
Parallelization #pragma
Directives", page 11

concurrent call Tells the compiler that the function calls in
the following loop are safe to execute in
parallel.

Chapter 2, "Automatic
Parallelization #pragma
Directives", page 11

concurrentize Tells the compiler to parallelize the next
loop, overriding any #pragma no
concurrentize directive that may apply
to that loop.

Chapter 2, "Automatic
Parallelization #pragma
Directives", page 11

copyin Copies the value from the master thread’s
version of an -Xlocal-linked global
variable into the slave thread’s version.

Chapter 9, "Multiprocessing
#pragma Directives", page
61

critical Protects access to critical statements. Chapter 9, "Multiprocessing
#pragma Directives", page
61

2 007–3587–005

MIPSproTM C and C++ Pragmas

#pragma Short Description Functional Group

distribute Specifies data distribution. Chapter 5, "DSM
Optimization #pragma
Directives", page 25

distribute_reshape Specifies data distribution with reshaping. Chapter 5, "DSM
Optimization #pragma
Directives", page 25

do_not_instantiate Prevents instantiation of the specific
declaration in this compilation unit, even if
that instance is used in the code.

Chapter 3, "C++
Instantiation #pragma
Directives", page 17

dynamic Tells the compiler that the specified array
may be redistributed in the program.

Chapter 5, "DSM
Optimization #pragma
Directives", page 25

enter gate Indicates the point that all threads must
clear before any threads are allowed to pass
the corresponding #pragma exit gate.

Chapter 9, "Multiprocessing
#pragma Directives", page
61

exit gate Stops threads from passing this point until
all threads have cleared the corresponding
#pragma enter gate.

Chapter 9, "Multiprocessing
#pragma Directives", page
61

fill_symbol Tells the compiler to insert any necessary
padding to ensure that the user variable
does not share a cache-line with any other
symbol.

Chapter 4, "Data Layout
#pragma Directives", page
21

fission Fission the enclosing specified levels of
loops after this directive.

Chapter 8, "Loop Nest
Optimization #pragma
Directives", page 49

fissionable Disables validity testing. Chapter 8, "Loop Nest
Optimization #pragma
Directives", page 49

fusable Disables validity testing. Chapter 8, "Loop Nest
Optimization #pragma
Directives", page 49

fuse Fuse the following specified number of
loops, which must be immediately adjacent.

Chapter 8, "Loop Nest
Optimization #pragma
Directives", page 49

007–3587–005 3

1: Alphabetical Listing of Directives

#pragma Short Description Functional Group

hdrstop Indicates the point at which the
precompiled header mechanism snapshots
the headers. If -pch is off, #pragma
hdrstop is ignored.

Chapter 11, "Precompiled
Header #pragma
Directives", page 101

hidden Tells the compiler that the specified
symbols are invisible to all executables or
DSOs except the current one.

Chapter 7, "Loader
Information #pragma
Directives", page 41

ident Adds a .comment section in the object file
and puts the revision string inside the
.comment section.

Chapter 14, "Miscellaneous
#pragma Directives", page
109

independent Tells the compiler to run an independent
code section in parallel with the rest of the
code in the parallel region.

Chapter 9, "Multiprocessing
#pragma Directives", page
61

inline
{here|routine|global}]

Tells the compiler to inline the named
functions. Keywords: here (next statement
only), routine (rest of routine or until
corresponding noinline is found), and
global (entire file, or until corresponding
noinline is found).

Chapter 6, "Inlining
#pragma Directives", page
35

instantiate Causes a specified instance of a template
declaration to be immediately instantiated
at that spot.

Chapter 3, "C++
Instantiation #pragma
Directives", page 17

int_to_unsigned Identifies the specified function name as a
function whose type was int in a previous
release of the compilation system, but
whose type is unsigned int in the
MIPSpro compiler release.

Chapter 14, "Miscellaneous
#pragma Directives", page
109

internal Tells the compiler that the specified
symbols are not referenced outside the
current executable or DSO.

Chapter 7, "Loader
Information #pragma
Directives", page 41

intrinsic Allows certain preselected functions from
math.h, stdio.h, and string.h to be
inlined at a callsite for execution efficiency.

Chapter 14, "Miscellaneous
#pragma Directives", page
109

4 007–3587–005

MIPSproTM C and C++ Pragmas

#pragma Short Description Functional Group

ivdep Liberalizes dependence analysis. This
applies only to inner loops. Given two
memory references, where at least one is
loop variant, ignore any loop-carried
dependences between the two references.

Chapter 8, "Loop Nest
Optimization #pragma
Directives", page 49

local Tells the compiler the names of all the
variables that must be local to each thread.

Chapter 9, "Multiprocessing
#pragma Directives", page
61

mips_frequency_hint
{NEVER|INIT}

Specifies the expected frequency of
execution so the compiler can move
exception code and initialization code into
separate pages to minimize working set
size.

Chapter 12, "Scalar
Optimization #pragma
Directives", page 103

no blocking Prevents the compiler from involving this
loop in cache blocking.

Chapter 8, "Loop Nest
Optimization #pragma
Directives", page 49

no concurrentize Varies with placement. Tells the compiler
to not parallelize any loops in a subroutine
or file.

Chapter 2, "Automatic
Parallelization #pragma
Directives", page 11

no_delete Inhibits deletion of functions that are never
referenced.

Chapter 8, "Loop Nest
Optimization #pragma
Directives", page 49

no fission Keeps the following loop from being
fissioned. Its innermost loops, however, are
allowed to be fissioned.

Chapter 8, "Loop Nest
Optimization #pragma
Directives", page 49

no fusion Keeps the following loop from being fused
with other loops.

Chapter 8, "Loop Nest
Optimization #pragma
Directives", page 49

no interchange Prevents the compiler from involving the
loop directly following this directive (or
any loop nested within this loop) in an
interchange.

Chapter 8, "Loop Nest
Optimization #pragma
Directives", page 49

no side effects Tells the compiler to assume that all of the
named functions are safe to execute
concurrently.

Chapter 9, "Multiprocessing
#pragma Directives", page
61

007–3587–005 5

1: Alphabetical Listing of Directives

#pragma Short Description Functional Group

no_pch Disables the precompiled header
mechanism.

Chapter 11, "Precompiled
Header #pragma
Directives", page 101

noinline
{here|routine|global}

Tells the compiler not to inline the named
functions. Keywords: here (next statement
only), routine (rest of routine or until
corresponding inline is found), and
global (entire file, or until corresponding
inline is found).

Chapter 6, "Inlining
#pragma Directives", page
35

once Ensures (in -n32 and -64 mode) that each
include file is included at most one time
in each compilation unit.

Chapter 11, "Precompiled
Header #pragma
Directives", page 101

one processor Causes next statement to be executed on
only one processor.

Chapter 9, "Multiprocessing
#pragma Directives", page
61

optional Tells the linker that the specified symbols
are optional. This is the basic mechanism
used for adding extensions to a library that
can then be queried.

Chapter 7, "Loader
Information #pragma
Directives", page 41

pack Controls the layout of structure offsets,
such that the strictest alignment for any
structure member will be n bytes, where n
is 0, 1, 2, 4, 8, or 16. When n is 0, the
compiler returns to default alignment for
any subsequent struct definitions.

Chapter 4, "Data Layout
#pragma Directives", page
21

page_place Controls the placement of data on a DSM
(distributed shared memory) machine.

Chapter 5, "DSM
Optimization #pragma
Directives", page 25

permutation The specified array is a permutation array. Chapter 2, "Automatic
Parallelization #pragma
Directives", page 11

parallel Starts a parallel region. Chapter 9, "Multiprocessing
#pragma Directives", page
61

6 007–3587–005

MIPSproTM C and C++ Pragmas

#pragma Short Description Functional Group

pfor Marks a for loop to run in parallel. Chapter 9, "Multiprocessing
#pragma Directives", page
61

prefer concurrent Tells the compiler to parallelize the
following loop if it is safe.

Chapter 2, "Automatic
Parallelization #pragma
Directives", page 11

prefer serial Tells the compiler not to parallelize the
following loop.

Chapter 2, "Automatic
Parallelization #pragma
Directives", page 11

prefetch Controls prefetching for each level of the
cache.

Chapter 8, "Loop Nest
Optimization #pragma
Directives", page 49

prefetch_manual Specifies whether manual prefetches
(through #pragma directives) should be
respected or ignored.

Chapter 8, "Loop Nest
Optimization #pragma
Directives", page 49

prefetch_ref Generates a prefetch and connects it to the
specified reference (if possible).

Chapter 8, "Loop Nest
Optimization #pragma
Directives", page 49

prefetch_ref_disable Explicitly disables prefetching for the
specified reference.

Chapter 8, "Loop Nest
Optimization #pragma
Directives", page 49

protected Tells the compiler that the specified
symbols are not preemptible.

Chapter 7, "Loader
Information #pragma
Directives", page 41

pure Tells the compiler that a call to named
functions has no side effects and its return
value depends on the values of its
arguments.

Chapter 9, "Multiprocessing
#pragma Directives", page
61

redistribute Specifies dynamic data redistribution. Chapter 5, "DSM
Optimization #pragma
Directives", page 25

007–3587–005 7

1: Alphabetical Listing of Directives

#pragma Short Description Functional Group

reset woff Resets listed warnings to the state specified
in the command line.

Chapter 13, "Warning
Suppression Control
#pragma Directives", page
105

section_gp Causes an object to be placed in a
gp_relative section.

Chapter 7, "Loader
Information #pragma
Directives", page 41

section_non_gp Keeps an object from being placed in a
gp_relative section.

Chapter 7, "Loader
Information #pragma
Directives", page 41

serial Forces the loop immediately following it to
be serial, and restricts optimization by
forcing all enclosing loops to be serial also.

Chapter 2, "Automatic
Parallelization #pragma
Directives", page 11

set chunksize Tells the compiler which values to use for
chunksize.

Chapter 9, "Multiprocessing
#pragma Directives", page
61

set numthreads Tells the compiler which values to use for
numthreads.

Chapter 9, "Multiprocessing
#pragma Directives", page
61

set schedtype Tells the compiler which values to use for
schedtype.

Chapter 9, "Multiprocessing
#pragma Directives", page
61

set woff Suppresses listed compiler warnings. Chapter 13, "Warning
Suppression Control
#pragma Directives", page
105

shared Tells the compiler the names of all the
variables that the threads must share.

Chapter 9, "Multiprocessing
#pragma Directives", page
61

synchronize Stops threads until all threads reach this
point. This directive is a classic barrier
construct.

Chapter 9, "Multiprocessing
#pragma Directives", page
61

8 007–3587–005

MIPSproTM C and C++ Pragmas

#pragma Short Description Functional Group

unknown_control_flow Indicates which procedures have a
nonstandard control flow behavior.

Chapter 14, "Miscellaneous
#pragma Directives", page
109

unroll Suggests to the compiler that n-1 copies of
the loop body be added to the inner loop.
If the loop following this directive is an
inner loop, then it indicates standard
unrolling (version 7.2 and later). If the loop
following this directive is not innermost,
then outer loop unrolling (unroll and jam)
is performed (version 7.0 and later).

Chapter 8, "Loop Nest
Optimization #pragma
Directives", page 49

weak weak_symbol = strong_symbol Sets weak_symbol to be an alias for the
function or data object denoted by
strong_symbol, unless a defining declaration
for weak_symbol is encountered at static link
time. If encountered, the defining
declaration preempts the weak denotation.

Chapter 7, "Loader
Information #pragma
Directives", page 41

weak weak_symbol Tells the link editor not to issue a warning
if it does not find a defining declaration of
weak_symbol. Also allows the overriding of
a current definition by a non-weak
definition.

Chapter 7, "Loader
Information #pragma
Directives", page 41

007–3587–005 9

Chapter 2

Automatic Parallelization #pragma Directives

Table 2-1 lists the #pragma directives discussed in this chapter, along with a brief
description of each and the compiler versions in which the directive is supported.

Table 2-1 #pragma Analyzer Directives

#pragma Short Description
Compiler
Versions

#pragma concurrent Tells the compiler to ignore assumed dependences in the
next loop.

7.2 and later

#pragma concurrent call Tells the compiler that the function calls in the next loop
are safe to execute in parallel.

7.2 and later

#pragma concurrentize Tells the compiler to parallelize the next loop, overriding
any #pragma no concurrentize directive that may
apply to that loop.

7.2 and later

#pragma no concurrentize Varies with placement. Tells the compiler to not
parallelize any loops in a function or file.

7.2 and later

#pragma permutation The specified array is a permutation array. 7.2 and later

#pragma prefer concurrent Tells the compiler to parallelize the next loop if it is safe. 7.2 and later

#pragma prefer serial Tells the compiler to not parallelize the next loop. 7.2 and later

#pragma serial Forces the loop immediately following it to be serial, and
restricts optimization by forcing all enclosing loops to be
serial also.

7.2 and later

#pragma concurrent

The #pragma concurrent directive instructs the compiler, when analyzing the loop
immediately following this assertion, to ignore all dependences between two
references to the same array.

The syntax of #pragma concurrent is as follows:

007–3587–005 11

2: Automatic Parallelization #pragma Directives

#pragma concurrent

When using this directive, be aware of the following:

• If multiple loops in a nest can be parallelized, #pragma concurrent instructs
the compiler to parallelize the loop immediately following the directive.

• Applying this directive to an inner loop may cause the loop to be made outermost
by the compiler’s loop interchange operations.

• #pragma concurrent does not affect how the compiler analyzes function calls.
See "#pragma concurrent call", page 12.

• #pragma concurrent does not affect how the compiler analyzes dependences
between two potentially aliased pointers.

• If there are real dependences between array references, #pragma concurrent
may cause the compiler to generate incorrect code.

#pragma concurrent call

The #pragma concurrent call directive instructs the compiler to ignore the
dependences of any function calls contained in the loop that follows the directive.

The syntax for #pragma concurrent call is as follows:

#pragma concurrent call

This directive applies to the loop that immediately follows it and to all loops nested
inside that loop.

To prevent incorrect parallelization, make sure the following conditions are met when
using #pragma concurrent call:

• A function inside the loop cannot read from a location that is written to during
another iteration. This rule does not apply to a location that is a local variable
declared inside the function.

• A function inside the loop cannot write to a location that is read from or written
to during another iteration. This rule does not apply to a location that is a local
variable declared inside the function.

12 007–3587–005

MIPSproTM C and C++ Pragmas

Example 2-1 concurrent call: ignoring dependences

In this example the compiler ignores the dependences in the function fred() when it
analyzes the following loop:

#pragma concurrent call

for (i = 0; i < N; i++0

{

fred(...)

...

}

void fred (...)

{

...

}

Example 2-2 concurrent call: illegal assertion use

The following code shows an illegal use of the assertion. Function fred() writes to
variable T, which is also read by wilma() during other iterations.

float A[M], B[M];
int i, T;

#pragma concurrent call

for (i = 0; i < M; i++)

{

fred(B, i, &T);

wilma(A, i, &T);
}

void fred(float B[], int i, int* T)

{

*T = B[i];
}

void wilma(float A[], int i, int* T)

{

A[i] = *T;
}

007–3587–005 13

2: Automatic Parallelization #pragma Directives

By localizing the variable T, you can manually parallelize the preceding example
safely. But the compiler is not instructed to localize T, and the loop is illegally
parallelized because of the assertion.

#pragma concurrentize

The #pragma concurrentize directive instructs the compiler to parallelize an
entire file or function.

The syntax of #pragma concurrentize is as follows:

#pragma concurrentize

Placing the #pragma concurrentize directive inside a function overrides a
#pragma no concurrentize directive placed outside of it. In other words, this
directive allows you to selectively parallelize functions in a file that has been made
sequential with #pragma no concurrentize.

This directive works only with the MIPSpro APO option.

#pragma no concurrentize

The #pragma no concurrentize directive prevents parallelization of a file or
function.

The syntax of #pragma no concurrentize is as follows:

#pragma no concurrentize

The effect of #pragma no concurrentize depends on its placement:

• When placed inside a function, the directive prevent its parallelization.

• When placed outside of a function, #pragma no concurrentize prevents the
parallelization of all functions in the file, even those that appear ahead of it in the
file.

This directive works only with the MIPSpro APO option.

14 007–3587–005

MIPSproTM C and C++ Pragmas

#pragma permutation

When placed inside a function, the #pragma permutation directive instructs the
compiler that the specified array is a permutation array.

The syntax of #pragma permutation is as follows:

#pragma permutation [array]

array is the name of a permutation array. Every element of array has a distinct value.
The directive does not require the permutation array to be dense. In other words,
while every array[1] must have a distinct value, there can be gaps between those
values, such as array[1] = 1, array[2] = 4, array[3] = 9, and so on.

You can use this assertion to parallelize loops that use arrays for indirect addressing.
Without this directive, the compiler cannot determine that the array elements used as
indexes are distinct.

The #pragma permutation directive affects every loop in a function, even those
that precede it.

#pragma prefer concurrent

The #pragma prefer concurrent directive instructs the compiler to parallelize
the loop immediately following the directive, if it is safe to do so.

The syntax of the #pragma prefer concurrent directive is as follows:

#pragma prefer concurrent

This pragma is always safe to use. The compiler parallelizes the loop only when it
can determine that it is safe to do so.

When dealing with nested loops, the compiler follows these guidelines:

• If the loop specified by this directive is safe to parallelize, the compiler chooses it
to parallelize, even if other loops are also candidates for parallelization.

• If the specified loop is not safe to parallelize, the compiler uses its heuristics to
choose among loops that are safe.

007–3587–005 15

2: Automatic Parallelization #pragma Directives

• If this directive is applied to an inner loop, the compiler may make it the
outermost loop.

• If this assertion is applied to more than one loop in a nest, the compiler uses its
heuristics to choose one of the specified loops.

This directive works only with the MIPSpro APO option.

#pragma prefer serial

The #pragma prefer serial directive instructs the compiler to not parallelize the
loop that immediately follows it. It performs in the same way as the
#pragma serial directive.

The syntax of #pragma prefer serial is as follows:

#pragma prefer serial

This directive works only with the MIPSpro APO option.

#pragma serial

The #pragma serial directive instructs the compiler to not parallelize the loop
following the assertion. However, the compiler may parallelize another loop in the
same nest. The parallelized loop may be either inside or outside the designated
sequential loop.

The syntax for this directive is as follows:

#pragma serial

This directive works only with the MIPSpro APO option.

16 007–3587–005

Chapter 3

C++ Instantiation #pragma Directives

Instantiation #pragma directives control the instantiation of specific template entities
or sets of template entities.

Table 3-1 lists the C++ instantiation #pragma directives discussed in this chapter,
along with a brief description of each and the compiler versions in which the
directive is supported.

Table 3-1 C++ Template Instantiation #pragma Directives

#pragma Short Description
Compiler
Versions

#pragma instantiate Causes a specified instance of a template
declaration to be immediately instantiated at that
spot.

7.1 and later

#pragma can_instantiate Indicates that the specified declaration can be
instantiated in the current compilation, but need
not be.

7.0 and later

#pragma do_not_instantiate Prevents instantiation of the specific declaration in
this compilation unit, even if that instance is used
in the code.

7.0 and later

#pragma instantiate

The #pragma instantiate directive causes a specific instance of a template
declaration to be immediately instantiated.

The syntax of the #pragma instantiate directive is as follows:

#pragma instantiate entity

The entity argument can be any of the following:

007–3587–005 17

3: C++ Instantiation #pragma Directives

A template class name A<int>

A member function name A<int>::foo

A member function declaration void A<int>::foo(int, char)

A static data member name A<int>::name

A template function declaration char* foo(int, float)

The template definition of entity must be present in the compilation for an
instantiation to occur. If you use #pragma instantiate to explicitly request the
instantiation of a class or function for which no template definition is available, the
compiler issues a warning.

The declaration needs to be a complete declaration of a function or a static data
member, exactly as if you had specified it for a specialization of the template.

The argument to an instantiation #pragma directive cannot be a compiler-generated
function, an inline function, or a pure virtual function.

A member function name (for example, A<int>::foo) can be used as an argument
for a #pragma instantiate directive only if it refers to a single, user-defined
member function that is not an overloaded function. Compiler-generated functions
are not considered, so a name can refer to a user-defined constructor even if a
compiler-generated copy constructor of the same name exists. Overloaded member
functions can be instantiated by providing the complete member function declaration,
as the following example shows:

char * A<int>::foo(int))

Note: Using the #pragma instantiate directive to instantiate a template class is
equivalent to repeating the directive for each member function and static data
member declared in the class. When instantiating an entire class, you can exclude a
given member function or static data member by using the
#pragma do_not_instantiate directive.

#pragma can_instantiate

The #pragma can_instantiate directive indicates that the specified entity can be
instantiated in the current compilation, but need not be. It is used in conjunction with
automatic instantiation to indicate potential sites for instantiation if the template
entity is deemed to be required by the compiler.

18 007–3587–005

MIPSproTM C and C++ Pragmas

The syntax of the #pragma can_instantiate directive is as follows:

#pragma can_instantiate entity

The argument, entity, can be any of the following:

A template class name A<int>

A member function name A<int>::foo

A member function declaration void A<int>::foo(int, char)

A static data member name A<int>::name

A template function declaration char* foo(int, float)

The template definition of entity must be present in the compilation for an
instantiation to occur. If you use #pragma can_instantiate to explicitly request
the instantiation of a class or function for which no template definition is available,
the compiler issues a warning.

The argument to a #pragma can_instantiate directive cannot be a
compiler-generated function, an inline function, or a pure virtual function.

A member function name (for example, A<int>::foo) can be used as an argument
for a #pragma can_instantiate directive only if it refers to a single, user-defined
member function that is not an overloaded function. Compiler-generated functions
are not considered, so a name can refer to a user-defined constructor even if a
compiler-generated copy constructor of the same name exists. Overloaded member
functions can be instantiated by providing the complete member function declaration,
as shown in the following example:

char * A<int>::foo(int)

#pragma do_not_instantiate

The #pragma do_not_instantiate directive suppresses the instantiation of a
specified entity. It is typically used to suppress the instantiation of an entity for which
a specific definition is supplied.

The syntax of the #pragma do_not_instantiate directive is as follows:

#pragma do_not_instantiate entity

007–3587–005 19

3: C++ Instantiation #pragma Directives

The argument, entity, can be any of the following:

A template class name A<int>

A member function name A<int>::foo

A member function declaration void A<int>::foo(int, char)

A static data member name A<int>::name

A template function declaration char* foo(int, float)

The argument to a #pragma do_not_instantiate directive cannot be a
compiler-generated function, an inline function, or a pure virtual function.

A member function name (for example, A<int>::foo) can be used as an argument
for the #pragma do_not_instantiate directive only if it refers to a single,
user-defined member function that is not overloaded. Compiler-generated functions
are not considered, so a name can refer to a user-defined constructor even if a
compiler-generated copy constructor of the same name exists. Overloaded member
functions can be specified by providing the complete member function declaration, as
the following example shows:

char * A<int>::foo(int)

20 007–3587–005

Chapter 4

Data Layout #pragma Directives

Table 4-1 lists the #pragma directives discussed in this chapter, along with a short
description of each and the compiler versions in which the directive is supported.

Table 4-1 Data Layout #pragma Directives

#pragma Short Description
Compiler
Versions

#pragma align_symbol Specifies alignment of user variables, typically at
cache-line or page boundaries.

7.2 and later

#pragma fill_symbol Tells the compiler to insert any necessary padding to
ensure that the user variable does not share a cache-line or
page with any other symbol.

7.2 and later

#pragma pack Controls the layout of structure offsets, such that the
strictest alignment for any structure member will be n
bytes, where n is 0, 1, 2, 4, 8, or 16. When n is 0, the
compiler returns to default alignment for any subsequent
struct definitions.

7.0 and later

#pragma align_symbol

The #pragma align_symbol directive specifies the alignment of user variables,
typically at cache-line or page boundaries.

The syntax of the #pragma align_symbol directive is as follows:

#pragma align_symbol [symbol, size]

The first argument to this directive is a symbol. The symbol can be a global or
automatic variable, but it cannot be a formal parameter to a function, or an element of
a structured type such as a structure or array.

The second argument, size, can be any one of the following:

007–3587–005 21

4: Data Layout #pragma Directives

• L1cacheline, a machine-specific first-level cache-line size, typically 32 bytes

• L2cacheline, a machine-specific second-level cache-line size, typically 128 bytes

• page, a machine specific page size, typically 16 Kilobytes

• a user-specified value, which must be a power of two

The #pragma align_symbol directive aligns the start of symbol at the specified
alignment boundary.

For global variables, this directive must be specified where the variable is defined.
The directive is optional where the variable is declared.

!
Caution: When using the #pragma align_symbol directive, there are two points to
keep in mind:

• The #pragma align_symbol directive is ineffective for local variables of
fixed-size symbols, such as simple scalars or arrays of known size. Theis directive
is most effective for stack-allocated arrays of dynamically determined size.

• A variable cannot have both #pragma fill_symbol and #pragma
align_symbol directives applied to it.

Example 4-1 #pragma align_symbol

The following code fragment illustrates the use of the #pragma align_symbol
directive:

int x;

/* x is a global variable */

#pragma align_symbol (x, 32)

/* x will start at a 32-byte boundary */

#pragma align_symbol (x, 2)
/* Error: cannot request an alignment

lower than the natural alignment of the symbol. */

22 007–3587–005

MIPSproTM C and C++ Pragmas

#pragma fill_symbol

The #pragma fill_symbol directive instructs the compiler to insert any necessary
padding to ensure that the user variable does not share a cache-line, page, or other
specified block of memory with any other symbol.

The syntax of the fill_symbol pragma is as follows:

#pragma fill_symbol [symbol, size]

The first argument to this pragma is a symbol. The symbol can be a global or
automatic variable, but it cannot be a formal parameter to a function, or an element of
a structured type such as a structure or array.

The second argument can be any one of the following:

• L1cacheline, a machine-specific first-level cache-line size, typically 32 bytes

• L2cacheline, a machine-specific second-level cache-line size, typically 128 bytes

• page, a machine specific page size, typically 16 kilobytes

• a user-specified value that must be a power of two

The #pragma fill_symbol directive pads the named symbol with additional
storage so that the symbol is assured not to overlap with any other data item within
the storage of the specified size. The additional padding required is heuristically
divided between each end of the specified variable.

For instance, a #pragma fill_symbol directive for the L1cacheline guarantees that
the specified symbol will not suffer from false-sharing (multiple, unrelated symbols
sharing the same cache line) between multiple processors for the L1 cache line.

For global variables, this directive must be specified where the variable is defined.
The directive is optional where the variable is declared.

A variable cannot have both #pragma fill_symbol and #pragma align_symbol
directives applied to it.

Example 4-2 #pragma fill_symbol

The following code fragment illustrates the use of #pragma fill_symbol:

double y;

/* y is a global or local variable */

007–3587–005 23

4: Data Layout #pragma Directives

#pragma fill_symbol (y, L2cacheline)
/* Allocates extra storage

both before and after y so that

y is within an L2cacheline (128

bytes) all by itself. */

#pragma pack

The #pragma pack directive controls the layout of structure offsets. The strictest
alignment for any structure member is the specified number of bytes (1, 2, 4, 8, or 16).

The syntax of the #pragma pack directive is as follows:

#pragma pack [n]

The #pragma pack directive works according to the following rules:

• A struct type defined in the scope of a #pragma pack has up to n bytes of
alignment, where n is 0, 1, 2, 4, 8, or 16. When n is 0, the compiler returns to
default alignment for any subsequent structure definitions.

• The packed characteristics of the type apply wherever the type is used, even
outside the scope of the pragma in which the type was declared.

• The scope of a #pragma pack ends with the next #pragma pack, hence this
pragma does not nest. There is no way to “return” from one instance of the
directive to a lexically earlier instance of the directive.

!
Caution:
• SGI strongly discourages the use of #pragma pack, because it is a nonportable

feature and the semantics of this directive may change in future compiler releases.
• A structure declaration must be subjected to identical instances of a #pragma

pack directive in all files, or else misaligned memory accesses and erroneous
structure member dereferencing may ensue.

• References to fields in packed structures may be less efficient than references to
fields in unpacked structures.

• The #pragma pack directive is not supported for C++ in -n32 and -64 modes.

24 007–3587–005

Chapter 5

DSM Optimization #pragma Directives

Table 5-1 lists the #pragma directives discussed in this chapter, along with a short
description of each and the compiler versions in which the directive is supported.
These directives are useful primarily on systems with distributed shared memory,
such as Origin servers.

Table 5-1 Distributed Shared Memory #pragma Directives

#pragma Short Description
Compiler
Versions

#pragma distribute Specifies data distribution. 7.2 and later

#pragma distribute_reshape Specifies data distribution with reshaping. 7.2 and later

#pragma dynamic Tells the compiler that the specified array may be
redistributed in the program.

7.2 and later

#pragma page_place Allows the explicit placement of data. 7.1 and later

#pragma pfor (Discussed in Chapter 9,
"Multiprocessing #pragma Directives",
page 61)

affinity clause allows data-affinity or
thread-affinity scheduling; nest clause exploits
nested concurrency. See "#pragma pfor
Clauses", page 79

6.0 and later

#pragma redistribute Specifies dynamic redistribution of data. 7.2 and later

#pragma distribute

The #pragma distribute directive specifies the distribution of data across the
processors. It functions by influencing the mapping of virtual addresses to physical
pages without affecting the layout of the data structure. Because the granularity of
data allocation is a physical page (at least 16 KB), the achieved distribution is limited
by the underlying page granularity. However, the advantages to using this directive
are that it can be added to an existing program without any restrictions, and can be
used for affinity scheduling. See "affinity: Thread Affinity", page 81, for more
information about data affinity.

007–3587–005 25

5: DSM Optimization #pragma Directives

The syntax of the #pragma distribute directive is as follows:

#pragma distribute array[dst1][[dst2]...] [onto (dim1, dim2[, dim3 ...])]

• array is the name of the array you want to have distributed.

• array is the name of the array you want to have distributed.

– *: not distributed.

– block: partitions the elements of an array dimension into blocks equal to the
size of the dimension (N) divided by the number of processors (P). The size of
each block will be equal to N/P, rounded up to the nearest integer value
(ceiling (N/P)).

– cyclic[size_expr]: partitions the elements of an array dimension into chunks
and distributes the chunks sequentially across the processors. The size of the
pieces is equal to the value of size_expr. If size_expr is not specified, the chunk
size defaults to 1. A cyclic distribution with a chunk size that is either greater
than 1 or is determined at run time is sometimes also called block-cyclic.

• dim is the specification for partitioning the processors across the distributed
dimensions (see "onto Clause", page 33, for more information).

The following is some additional information about #pragma distribute:

• You must specify the #pragma distribute directive in the declaration part of
the program, along with the array declaration.

• You can specify a data distribution directive for any local or global array.

• Each dimension of a multi-dimensional array can be independently distributed.

• A distributed array is distributed across all of the processors being used in that
particular execution of the program, as determined by the environment variable
MP_SET_NUMTHREADS.

26 007–3587–005

MIPSproTM C and C++ Pragmas

Example 5-1 #pragma distribute

The following code fragment demonstrates the use of #pragma distribute:

float A[200][300];
...

#pragma distribute A[cyclic][block];

...

On a machine with eight processors, the first dimension of array A is distributed
across the processors in chunks of 1, and the second dimension is distributed in
chunks of 25 for each processor.

onto Clause

If an array is distributed in more than one dimension, then by default the processors
are apportioned as equally as possible across each distributed dimension. For
instance, if an array has two distributed dimensions, then an execution with 16
processors assigns 4 processors to each dimension (4 � 4 = 16), whereas an execution
with 8 processors assigns 4 processors to the first dimension and 2 processors to the
second dimension.

You can override this default and explicitly control the number of processors in each
dimension by using the onto clause. The onto clause allows you to specify the
processor topology when an array is being distributed in more than one dimension.
For instance, if an array is distributed in two dimensions, and you want to assign
more processors to the second dimension than to the first dimension, you can use the
onto clause as in the following code fragment:

float A[100][200];

/* Assign to the second dimension twice as many processors as to

the first dimension. */

#pragma distribute A[block][block] onto (1, 2)

007–3587–005 27

5: DSM Optimization #pragma Directives

#pragma distribute_reshape

The #pragma distribute_reshape directive, like #pragma distribute,
specifies the desired distribution of an array. In addition, however, the
#pragma distribute_reshape directive declares that the program makes no
assumptions about the storage layout of that array. The compiler performs aggressive
optimizations for reshaped arrays that violate standard layout assumptions but
guarantee the desired data distribution for that array.

For information about using data affinity with #pragma redistribute-reshape,
see "affinity: Thread Affinity", page 81.

The syntax of the #pragma distribute_reshape directive is as follows:

#pragma distribute_reshape array[dst1][[dst2]...]

The #pragma distribute_reshape directive accepts the same distributions as the
#pragma distribute directive:

• array is the name of the array you want to have distributed.

• dst is the distribution specification for each dimension of the array. It can be any
one of the following:

– *: not distributed.

– block: partitions the elements of an array dimension into blocks equal to the
size of the dimension (N) divided by the number of processors (P). The size of
each block will be equal to N/P, rounded up to the nearest integer value
(ceiling (N/P)).

– cyclic [size_expr]: partitions the elements of an array dimension into chunks
and distributes the chunks sequentially across the processors. The size of the
pieces is equal to the value of size_expr. If size_expr is not specified, the chunk
size defaults to 1. A cyclic distribution with a chunk size that is either greater
than 1 or is determined at run time is sometimes also called block-cyclic.

The following is some additional information about
#pragma distribute_reshape:

• You must specify the #pragma distribute_reshape directive in the
declaration part of the program, along with the array declaration.

• You can specify a data distribution directive for any local or global array.

28 007–3587–005

MIPSproTM C and C++ Pragmas

• Each dimension of a multi-dimensional array can be independently distributed.

• A distributed array is distributed across all of the processors being used in that
particular execution of the program, as determined by the environment variable
MP_SET_NUMTHREADS.

• A reshaped array is passed as an actual parameter to a subroutine, in which case
two possible scenarios exist:

– The array is passed in its entirety (func(A) passes the entire array A, whereas
func(A([i][j]) passes a portion of A). The C compiler automatically clones a
copy of the called function and compiles it for the incoming distribution. The
actual and formal parameters must match in the number of dimensions, and
the size of each dimension.

The C++ compiler does not perform this cloning automatically, due to
interactions in the compiler with the C++ template instantiation mechanism.
For C++, therefore, the user has the following two options:

1. The first option is to specify #pragma distribute_reshape directly on
the formal parameter of the called function.

2. The second option is to compile with -MP:clone=on to enable automatic
cloning in C++.

!
Caution: This option may not work for some programs that use templates.

– You can restrict a function to accept a particular reshaped distribution on a
parameter by specifying a #pragma distribute_reshape directive on the
formal parameter within the function. All calls to this function with a
mismatched distribution will lead to compile- or link-time errors.

– A portion of the array can be passed as a parameter, but the callee must access
only a single processor’s portion. If the callee exceeds a single processor’s
portion, then the results are undefined. You can use intrinsics to access details
about the array distribution.

007–3587–005 29

5: DSM Optimization #pragma Directives

!
Caution: Because the #pragma distribute_reshape directive specifies that the
program does not depend on the storage layout of the reshaped array, restrictions on
reshaping arrays include the following (for more details on reshaping arrays, see the
C Language Reference Manual):

• The distribution of a reshaped array cannot be changed dynamically (that is, there
is no #pragma redistribute_reshape directive).

• Initialized data cannot be reshaped.
• Arrays that are explicitly allocated through alloca/malloc and accessed

through pointers cannot be reshaped. Use variable length arrays instead.
• An array that is equivalenced to another array cannot be reshaped.
• A global reshaped array cannot be linked -Xlocal. This user error is not caught

by the compiler or linker.

Example 5-2 #pragma distribute_reshape

The following code fragment demonstrates the use of
#pragma distribute_reshape:

float A[400][300];

...

#pragma distribute_reshape A[block][cyclic(3]);

...

On a machine with eight processors, the first dimension of array A is distributed in
chunks of 50 for each processor, and the second dimension is distributed across the
processors in chunks of 3.

#pragma dynamic

By default, the compiler assumes that a distributed array is not dynamically
redistributed, and directly schedules a parallel loop for the specified data affinity. In
contrast, a redistributed array can have multiple possible distributions, and data
affinity for a redistributed array must be implemented in the run-time system based
on the particular distribution.

The #pragma dynamic directive notifies the compiler that the named array may be
dynamically redistributed at some point in the run. This tells the compiler that any
data affinity for that array must be implemented at run time. For information about

30 007–3587–005

MIPSproTM C and C++ Pragmas

using data affinity with #pragma dynamic, see "affinity: Thread Affinity", page
81.

The syntax of the #pragma dynamic directive is as follows:

#pragma dynamic array

array is the name of the array in question.

The #pragma dynamic directive informs the compiler that array may be dynamically
redistributed. Data affinity for such arrays is implemented through a run-time
lookup. Implementing data affinity in this manner incurs some extra overhead
compared to a direct compile-time implementation, so you should use the
#pragma dynamic directive only if it is actually necessary.

You must explicitly specify the #pragma dynamic declaration for a redistributed
array under the following conditions:

• The function contains a pfor loop that specifies data affinity for the array.

• The distribution for the array is not known.

Under the following conditions, you can omit the #pragma dynamic directive and
just supply the #pragma distribute directive with the particular distribution:

• The function contains data affinity for the redistributed array.

• The array has a specified distribution throughout the duration of the function.

Because reshaped arrays cannot be dynamically redistributed, this is an issue only for
regular data distribution.

#pragma page_place

The #pragma page_place directive is useful for dealing with irregular data
structures. It allows you to explicitly place data in the physical memory of a
particular processor. This directive is often used in conjunction with thread affinity
(see "affinity: Thread Affinity", page 81, for more information).

The syntax of the #pragma page_place directive is as follows:

007–3587–005 31

5: DSM Optimization #pragma Directives

#pragma page_place [object, size, threadnum]

1. object is the object you want to place

2. size is the size in bytes

3. threadnum is the number of the destination processor

On a system with physically distributed shared memory, you can explicitly place all
data pages spanned by the virtual address range [&object, &object+ size-1] in
the physical memory of the processor corresponding to the specified thread. This
directive is an executable statement; therefore, you can use it to place either statically
or dynamically allocated data.

The function getpagesize() can be invoked to determine the page size. On the
Origin2000

TM

server, the minimum page size is 16384 bytes.

Example 5-3 #pragma page_place

The following is an example of the use of #pragma page_place:

double A[8192];
#pragma page_place (A[0], 32768, 0)

#pragma page_place (A[4096], 16384, 1)

The first #pragma page_place directive causes the first half of the array to be
placed in the physical memory associated with thread 0. The second causes the next
quarter of the array to be placed in the physical memory associated with thread 1.
The remaining portion of A is allocated based on the operating system’s allocation
policy (default is “first-touch”).

#pragma redistribute

The #pragma redistribute directive allows you to dynamically redistribute
previously distributed arrays. For information about using data affinity with
#pragma redistribute, see "affinity: Thread Affinity", page 81.

The syntax of the redistribute pragma is as follows:

#pragma redistribute array[dst1][[dst2]...]
[onto (dim1, dim2[, dim3 ...])]

32 007–3587–005

MIPSproTM C and C++ Pragmas

• array is the name of the array you wish to have distributed.

• dst is the distribution specification for each dimension of the array. It can be any
one of the following:

– *: not distributed.

– block: partitions the elements of an array dimension into blocks equal to the
size of the dimension (N) divided by the number of processors (P). The size of
each block will be equal to N/P, rounded up to the nearest integer value
(ceiling (N/P)).

– cyclic [size_expr]: partitions the elements of an array dimension into chunks
and distributes the chunks sequentially across the processors. The size of the
pieces is equal to the value of size_expr. If size_expr is not specified, the chunk
size defaults to 1. A cyclic distribution with a chunk size that is either greater
than 1 or is determined at run time is sometimes also called block-cyclic.

• dim is the specification for partitioning the processors across the distributed
dimensions (see "onto Clause", page 33, for more information).

The following is some additional information about #pragma redistribute:

• It is an executable statement and can appear in any executable portion of the
program.

• It changes the distribution permanently (or until another redistribute
statement).

• It also affects subsequent affinity scheduling.

onto Clause

If an array is distributed in more than one dimension, then by default the processors
are apportioned as equally as possible across each distributed dimension. For
instance, if an array has two distributed dimensions, then an execution with 16
processors assigns 4 processors to each dimension (4 � 4 = 16), whereas an execution
with 8 processors assigns 4 processors to the first dimension and 2 processors to the
second dimension.

You can override this default and explicitly control the number of processors in each
dimension by using the onto clause. The onto clause allows you to specify the
processor topology when an array is being distributed in more than one dimension.
For instance, if an array is distributed in two dimensions, and you want to assign

007–3587–005 33

5: DSM Optimization #pragma Directives

more processors to the second dimension than to the first dimension, you can use the
onto clause as in the following code fragment:

float A[100][200];

/* Assign to the second dimension twice as many processors as to

the first dimension. */

#pragma redistribute A[block][block] onto (1, 2)

Example 5-4 #pragma redistribute

The following code fragment demonstrates the use of #pragma redistribute:

float A[500][300];

...
#pragma redistribute A[cyclic(1)][cyclic (5)];

...

After the #pragma redistribute directive, the first dimension of array A is
distributed across the processors in chunks of 1, the second dimension in chunks of 5.

34 007–3587–005

Chapter 6

Inlining #pragma Directives

Table 6-1 lists the #pragma directives discussed in this chapter, along with a brief
description of each and the compiler versions in which the directive is supported.

Table 6-1 Inlining #pragma Directives

#pragmas Short Description
Compiler
Versions

#pragma inline (see "#pragma
inline and #pragma noinline",
page 35)

Tells the compiler to inline the named functions.
Keywords:
- here (next statement only)
- routine (rest of routine or until corresponding
noinline or inline is found)
- global (entire file, or until corresponding noinline
or inline is found)

7.1 and later

#pragma noinline (see "#pragma
inline and #pragma noinline",
page 35)

Tells the compiler not to inline the named functions.
Keywords:
- here (next statement only)
- routine (rest of routine or until corresponding
noinline or inline is found)
- global (entire file, or until corresponding noinline
or inline is found)

7.1 and later

#pragma inline and #pragma noinline

The #pragma inline and #pragma noinline directives instruct the compiler
whether or not to inline the named functions. These directives can have next-line,
entire routine, or global scope.

The syntax of the #pragma inline and #pragma noinline directives is as follows:

#pragma [no] inline {here|routine|global} [name1[,name2 ...]]

007–3587–005 35

6: Inlining #pragma Directives

here, routine, and global are keywords (see "Keywords", page 36).

The optional name1 and name2 are function names. If they are present, they follow
these rules:

• If any functions are named in the directive, it applies only to them.

• If no function names are given, the pragma applies to all functions.

• If a specified function does not exist, a warning message is issued, and the pragma
is ignored.

If the list of function names is empty, the parentheses around the function names are
not required.

Keywords

The following list describes the here, routine, and global keywords. These
keywords must appear in lowercase, because function names are case sensitive.

here The directive applies only to the next statement.

routine The directive applies to the rest of the routine, or until
a corresponding #pragma noinline appears. (Or, if
the first directive was a #pragma noinline, until the
corresponding #pragma inline.)

global The directive applies to the entire file, or until toggled
with a #pragma noinline directive. (Or, if the first
directive was a #pragma noinline, until the
corresponding #pragma inline directive.) Typically,
#pragma global directives appear only at the top of
the source file.

no keyword The #pragma inline and #pragma noinline
directives with no keyword have the same effect as
using the here keyword, unless the directives appear
at the top of the file, before any lines of source code. In

36 007–3587–005

MIPSproTM C and C++ Pragmas

that case, the #pragma directives apply to the entire
file, as if the global keyword had been used.

!
Caution: For C++ code, #pragma inline and #pragma noinline take C++ style
function names. If you use mangled names, the results are undefined. The compiler
gives a warning if it cannot find the supplied name.

Examples of #pragma inline and #pragma noinline

The following examples illustrate different aspects of the #pragma inline and
#pragma noinline directives.

Example 6-1 Using the here keyword with the #pragma noinline directive

This example illustrates the use of the #pragma noinline directive with the here
keyword. All occurrences of f1(int) are marked for inlining, except the one directly
following #pragma noinline here.

int ig = 0;

double dg = 0.;

inline void f1(int) {ig++;}
void f1(double){dg++;}

void main ()

{

int i;
double d;

f1(i); // f1(int) is marked for inlining

f1(d);

#pragma noinline here (void f1(int))
f1(i); // f1(int) is not marked for inlining

f1(d);

f1(i); // f1(int) is marked for inlining

printf(‘‘Result is %d\n’’, ig + (int) dg);

}

007–3587–005 37

6: Inlining #pragma Directives

Example 6-2 Using the here keyword with the #pragma inline and #pragma noinline
directives

This example illustrates the use of the #pragma inline and #pragma noinline
directives with the here keyword. All occurrences of f1(int) are marked for
inlining, except the one directly following #pragma noinline here. The only
occurrence of f1(double) that is marked for inlining is the one directly following
#pragma inline here.

int ig = 0;

double dg = 0.;

inline void f1(int) {ig++;}

void f1(double){dg++;}

void main ()
{

int i;

double d;

f1(i); // f1(int) is marked for inlining
f1(d); // f1(double) is not marked for inlining

#pragma noinline here (void f1(int))

f1(i); // f1(int) is not marked for inlining

#pragma inline here (void f1(double))
f1(d); // f1(double) is marked for inlining

f1(i); // f1(int) is marked for inlining

printf(‘‘Result is %d\n’’, ig + (int) dg);

}

Example 6-3 Using the global keyword with the #pragma inline directive

This example illustrates the use of the #pragma inline directive with the global
keyword. All occurrences of f1(int) following the #pragma inline global are
marked for inlining, except the one following the #pragma noinline here.

int ig = 0;

double dg = 0.;

void f1(int) {ig++;}

38 007–3587–005

MIPSproTM C and C++ Pragmas

void f1(double){dg++;}

void main ()

{

#pragma inline global (void f1(int));

int i;
double d;

f1(i); // f1(int) is marked for inlining

f1(d); // f1(double) is not marked for inlining

#pragma noinline here (void f1(int))

f1(i); // f1(int) is not marked for inlining

#pragma inline here (void f1(double))

f1(d); // f1(double) is marked for inlining

f1(i); // f1(int) is marked for inlining

printf(‘‘Result is %d\n’’, ig + (int) dg);

}

Example 6-4 Using the routine keyword with the #pragma inline directive

This example illustrates the use of the #pragma inline directive with the routine
keyword. All occurrences of f1(int) following #pragma inline routine are
marked for inlining, except the one following #pragma noinline here.

int ig = 0;

double dg = 0.;

void f1(int) {ig++;}
void f1(double){dg++;}

void main ()

{

#pragma inline routine (void f1(int))
int i;

double d;

f1(i); // f1(int) is marked for inlining

f1(d); // f1(double) is not marked for inlining

#pragma noinline here (void f1(int))

f1(i); // f1(int) is not marked for inlining

007–3587–005 39

6: Inlining #pragma Directives

#pragma inline here (void f1(double))

f1(d); // f1(double) is marked for inlining

f1(i); // f1(int) is marked for inlining

printf(‘‘Result is %d\n’’, ig + (int) dg);
}

Example 6-5 Using the routine keyword with the #pragma noinline directive

This example illustrates the use of the #pragma noinline directive with the
routine keyword. None of the occurrences of f1(int) following
#pragma noinline routine are marked for inlining, except the one following
#pragma inline here.

int ig = 0;

double dg = 0.;

inline void f1(int) {ig++;}
void f1(double){dg++;}

void main ()

{

int i;
double d;

#pragma noinline routine (void f1(int))

f1(i); // f1(int) is not marked for inlining

f1(d); // f1(double) is not marked for inlining

#pragma inline here (void f1(int))

f1(i); // f1(int) is marked for inlining

#pragma noinline here (void f1(double))

f1(d); // f1(double) is not marked for inlining
f1(i); // f1(int) is not marked for inlining

printf(‘‘Result is %d\n’’, ig + (int) dg);

}

40 007–3587–005

Chapter 7

Loader Information #pragma Directives

Table 7-1 lists the #pragma directives discussed in this chapter, along with a brief
description of each and the compiler versions in which the directive is supported.

Table 7-1 Loader Information #pragma Directives

#pragma Short Description
Compiler
Versions

#pragma hidden Tells the compiler that the specified symbols are
invisible to all executables or DSOs except the
current one.

7.2 and later

#pragma internal Tells the compiler that the specified symbols are not
referenced outside the current executable or DSO.

7.2 and later

#pragma no_delete Inhibits deletion of functions that are never
referenced.

7.1 and later

#pragma optional Tells the linker that the specified symbols are
optional. This is the basic mechanism used for
adding extensions to a library that can then be
queried.

7.2.1 and
later

#pragma protected Tells the compiler that the specified symbols are not
preemptible.

7.1 and later

#pragma section_gp Causes an object to be placed in a gp_relative
section.

7.2 and later

#pragma section_non_gp Keeps an object from being placed in a gp_relative
section.

7.2 and later

007–3587–005 41

7: Loader Information #pragma Directives

#pragma Short Description
Compiler
Versions

#pragma weak Tells the link editor not to issue a warning if it does
not find a defining declaration of the weak_symbol.
Also allows the overriding of a current definition by
a non-weak definition.

7.0 and later

#pragma weak
weak_symbol = strong_symbol

Sets weak_symbol to be an alias for the function or
data object denoted by strong_symbol, unless a
defining declaration for weak_symbol is encountered
at static link time. If encountered, the defining
declaration preempts the weak denotation.

7.0 and later

#pragma hidden

The #pragma hidden directive tells the compiler that the specified symbols are
invisible to all executables or DSOs except the current one. This allows hidden data
objects to be placed in the small data area and accessed using the (fast) gp-relative
load/store. Hidden symbols need not be put into the hash table of a DSO because
they are not globally visible.

The syntax of the #pragma hidden directive is as follows:

#pragma hidden symbol1 [, symbol2 ...]

#pragma hidden is not currently supported in C++, except for symbols marked
extern ‘‘C’’.

All of the listed symbols are marked as STO_HIDDEN. This means that the symbol
definition can be referenced only within an object, not from outside. Even though a
hidden symbol cannot be directly referenced from outside a DSO, its address may be
taken and passed, so it is possible to call a hidden function from another DSO.

#pragma internal

The #pragma internal directive tells the compiler that the specified functions are
not referenced outside the current executable or DSO. Internal symbols are the same

42 007–3587–005

MIPSproTM C and C++ Pragmas

as hidden symbols, except that they are guaranteed not to be referenced from outside
a DSO, even through pointers or weak bindings.

The syntax of the #pragma internal directive is as follows:

#pragma internal func1 [, func2 ...]

#pragma internal is not currently supported in C++, except for symbols marked
extern ‘‘C’’.

The specified functions are marked STO_INTERNAL. This means that this function
need not save, restore, or recalculate $gp (global pointer), because it is callable only
from a location that has the same $gp (global pointer) value.

#pragma no_delete name
The #pragma no_delete directive inhibits deletion of functions that are never
referenced.

The syntax of the #pragma no_delete directive is as follows:

#pragma no_delete

Note: This pragma applies only to C++ and is not available for C programs. It
applies only to functions, not data. It changes the ELF symbol name from its current
name to a local name, thus making the ELF name (as seen by dis(1)) unusual and
causing the name to not appear to debuggers.

#pragma optional

The #pragma optional directive tells the linker that the specified symbols are
optional.

The static linker (ld), converts references to optional definitions (in another DSO) to
optional references. Unresolved optional references are not reported as errors.

007–3587–005 43

7: Loader Information #pragma Directives

The run-time linker (rld) resolves any unresolved optional references to a special
symbol in libc.so.1.

Programs can check for the existence of an optional symbol by use of macros defined
in the header file /usr/include/optional_sym.h.

This is the basic mechanism used for adding extensions to a library that you can then
query. For example, when new functions are added to the next revision of
libfoo.so, they can be added as optional functions; then programs can check for
their existence and use them only when the new revision of the library is available
and avoid them on older systems, thus giving backwards and forwards compatibility
across a series of releases.

The syntax of the #pragma optional directive is as follows:

#pragma optional symbol1 [, symbol2 ...]

The following rules apply to #pragma optional:

• #pragma optional must come after the declaration or definition of symbol.

• #pragma optional is not currently supported in C++, except for symbols
marked extern ‘‘C’’.

#pragma protected

The #pragma protected directive tells the compiler that the specified symbols are
not preemptible, but are visible from outside of a DSO.

The syntax of the #pragma protected directive is as follows:

#pragma protected symbol1 [, symbol2 ...]

#pragma protected is not currently supported in C++, except for symbols marked
extern ‘‘C’’.

The specified symbols are marked STO_PROTECTED. This means that the symbol
definition cannot be preempted by another definition.

44 007–3587–005

MIPSproTM C and C++ Pragmas

#pragma section_gp

MIPS binaries have a global pointer (gp) that can be used to reference global data
more efficiently (by using gp + offset) than constructing the entire address when that
variable is referenced. Only a limited set of elements can be referenced in this fashion
because the size of offset is limited to 16 bits. The compiler heuristically places global
data in either gp-relative or non-gp-relative sections. However, it is sometimes useful
to manually control which variables go within the gp-relative section and which need
to be addressed explicitly.

The #pragma section_gp directive causes an object to be placed in a gp_relative
section, while the #pragma section_non_gp directive causes an object to be placed
in a non-gp-relative section.

The syntax of the #pragma section_gp directive is as follows:

#pragma section_gp symbol1[, symbol2 ...]

symbol must be a static or global variable.

#pragma section_non_gp

MIPS binaries have a global pointer (gp) that can be used to reference global data
more efficiently (by using gp + offset) than constructing the entire address when that
variable is referenced. Only a limited set of elements can be referenced in this fashion
because the size of offset is limited to 16 bits. The compiler heuristically places global
data in either gp-relative or non-gp-relative sections. However, it is sometimes useful
to manually control which variables go within the gp-relative section and which need
to be addressed explicitly.

The #pragma section_gp directive causes an object to be placed in a gp_relative
section, while the #pragma section_non_gp directive causes an object to be placed
in a non-gp-relative section.

The syntax of the #pragma section_non_gp directive is as follows:

#pragma section_non_gp symbol1[, symbol2 ...]

symbol must be a static or global variable.

007–3587–005 45

7: Loader Information #pragma Directives

#pragma weak

The #pragma weak directive can be used in two ways. It can instruct the link editor
to not issue a warning if it does not find a defining declaration of the specified weak
symbol, or it can allow the overriding of a current definition by a non-weak definition.

Weak definitions behave as follows:

• A definition is weak if a symbol defined in an executable or DSO is marked as
weak at the point of definition.

• A weak definition is preemptible and will be preempted by any strong global
definition of the same name in the executable, the DSOs linked in at static link
time, or the DSOs linked in at run time. Multiple weak definitions follow the
same preemption rules as for global symbols except that they will all be
preempted by any strong definition of their name.

• Multiple global weak definitions of a symbol may or may not result in an error:

– At static link time, multiple global definitions of a weak symbol within a DSO
or executable result in an error. For example, linking a.o and b.o when they
both have definitions for the symbol x results in an error.

– At run time, multiple global weak definitions of a symbol across the executable
and its DSOs, result in the first definition preempting all others. No error
message is generated. For example, if your executable, j, references the DSOs
k.so and l.so that have weak definitions of the symbol y, the first definition
encountered is used, and the other is ignored.

• Unresolved weak references do not cause a run-time error, even if the
environment variable LD_BIND_NOW is set. They have a value of 0 (that is, the
symbol address is taken as 0). Attempting a call of a weak undefined function
symbol gets either a core dump (if LD_BIND_NOW is 1) or a fatal run-time linker
error on an attempted address of an unresolved symbol (if LD_BIND_NOW is not
1). Attempting a load or store of an undefined weak symbol results in a core
dump because the address is 0, and 0 is normally not a legal virtual address.

• Weak references do not trigger the loading of delay-loaded libraries. This implies
that weak object references may go unresolved until some other event triggers the
loading of the delay-load library.

The syntax of the #pragma weak directive is as follows:

#pragma weak weak_symbol [= strong_symbol]

46 007–3587–005

MIPSproTM C and C++ Pragmas

When #pragma weak applies to a C++ function, weak_symbol and strong_symbol must
be the mangled names.

The #pragma weak directive can be used in the following two ways:

• #pragma weakweak_symbol

Used in this way, the #pragma weak directive tells the link editor to not issue a
warning if it does not find a defining declaration of weak_symbol. References to the
symbol use the appropriate lvalue if the symbol is defined; otherwise, it uses
memory location zero (0).

• #pragma weak weak_symbol = strong_symbol

In this case, the weak_symbol is an alias that denotes the same function or data
object as that denoted by the strong_symbol, unless a defining declaration for the
weak_symbol is encountered at static link time or in dynamically linked libraries. If
encountered, the defining declaration preempts the weak denotation.

Observe the following conventions when using this form of the directive:

– Define the strong_symbol within the same compilation unit in which the
directive occurs.

– Declare the weak and strong symbols with compatible types. When the strong
symbol is a data object, its declaration must be initialized.

– Declare the weak_symbol with extern linkage in the same compilation unit. The
extern declaration of the weak symbol is not required, unless the symbol is
referenced within the compilation unit, but Silicon Graphics recommends it for
type-checking purposes.

Weak extern declarations are typically used to export non-ANSI C symbols
from a library without polluting the ANSI C name-space. As an example, libc
may export a weak symbol read(), which aliases a strong symbol _read(),
where _read() is used in the implementation of the exported symbol
fread(). You can either use the exported (weak) version of read(), or define
your own version of read(), thereby preempting the weak denotation of this
symbol. This will not alter the definition of fread(), because it depends only
on the (strong) symbol _read(), which is outside of the ANSI C name-space.

For example, the following code defines a new version of read() (which is a
weak symbol in libc.so.1):

007–3587–005 47

7: Loader Information #pragma Directives

/* read() is a weak symbol in libc.so.1
This program omits error checking and makes no

attempt at good style!

*/

#include <stdio.h>

char *read(int);

int main(int argc, char **argv)

{

char *var;

int c;

c = getchar();

var = read(c);

printf(‘‘%s\n’’,var);

return c;
}

char *read(int val)

{

static char buf[100];

sprintf(buf,’’%d’’,val);
return buf;

}

This program reads a single character from standard input and prints the
character’s decimal value. Even though getchar() uses the libc.so version
of fread(), the redefinition of read() has no effect on the internal processing
in libc.so because fread() uses the strong symbol _read().

!
Caution: The #pragma weak directive is not supported in -o32 C++.

48 007–3587–005

Chapter 8

Loop Nest Optimization #pragma Directives

Table 8-1 contains an alphabetical list of the #pragma directives discussed in this
chapter, along with a brief description of each and the compiler versions in which the
directive is supported.

Table 8-1 Loop Nest Optimization #pragma Directives

#pragma Short Description
Compiler
Versions

#pragma aggressive inner
loopfission

Tells the compiler to fission inner loops into as many
loops as possible.

7.0 and later

#pragma blocking size Sets the blocksize of the specified loop, if it is involved
in a blocking for the primary (or secondary) cache.

7.0 and later

#pragma fission Tells the compiler to fission the enclosing specified
levels of loops after this directive.

7.0 and later

#pragma fissionable Disables validity testing. 7.0 and later

#pragma fusable Disables validity testing. 7.0 and later

#pragma fuse Tells the compiler to fuse the following n loops, which
must be immediately adjacent.

7.0 and later

#pragma ivdep Liberalizes dependence analysis. This applies only to
inner loops. Given two memory references, where at
least one is loop variant, ignore any loop-carried
dependences between the two references.

6.0 and later

#pragma no blocking Prevents the compiler from involving this loop in cache
blocking.

7.0 and later

#pragma no fission Keeps the following loop from being fissioned. Its
innermost loops, however, are allowed to be fissioned.

7.0 and later

#pragma no fusion Keeps the following loop from being fused with other
loops.

7.0 and later

007–3587–005 49

8: Loop Nest Optimization #pragma Directives

#pragma Short Description
Compiler
Versions

#pragma no interchange Prevents the compiler from involving the loop directly
following this directive (or any loop nested within this
loop) in an interchange.

7.0 and later

#pragma prefetch Specifies prefetching for each level of the cache. Scope:
entire function containing the directive.

7.1 and later

#pragma prefetch_manual Specifies whether manual prefetches (through #pragma
directives) should be respected or ignored. Scope:
entire function containing the directive.

7.1 and later

#pragma prefetch_ref Generates a prefetch and connects it to the specified
reference (if possible).

7.0 and later

#pragma
prefetch_ref_disable

Disables prefetching for the specified reference in the
current loop nest.

7.1 and later

#pragma unroll Suggests to the compiler that a specified number of
copies of the loop body be added to the inner loop. If
the loop following this directive is an inner loop, then it
indicates standard unrolling (version 7.2 and later). If
the loop following this directive is not innermost, then
outer loop unrolling (unroll and jam) is performed
(version 7.0 and later).

7.0 and later

#pragma aggressive inner loop fission

The #pragma aggressive inner loop fission directive instructs the compiler
to fission inner loops into as many loops as possible.

The syntax of the #pragma aggressive inner loop fission directive is as
follows:

#pragma aggressive inner loop fission

The #pragma aggressive inner loop fission directive must be followed by
an inner loop and has no effect if that loop is no longer inner after loop interchange.

50 007–3587–005

MIPSproTM C and C++ Pragmas

#pragma blocking size

The #pragma blocking size directive sets the blocksize of the specified loop.

The syntax of the #pragma blocking size directive is as follows:

#pragma blocking size [n1, n2]

The loop specified, if it is involved in a blocking for the primary (secondary) cache,
will have a blocksize of n1 (n2). The compiler tries to include this loop within such a
block. If a 0 blocking size is specified, then the loop is not stripped, but the entire
loop is inside the block.

Example 8-1 #pragma blocking size

In the following code, the compiler makes 20 � 20 blocks when blocking:

void amat (double x, double y, double z, int n, int m, int mm)

{

int i, j, k;

for (k = 0; k < n; k++)
{

#pragma blocking size (20)

for (j = 0; j < m; j++)

{

#pragma blocking size (20)

for (i = 0; i < mm; i++)
z[i,k] = z[i,k] + x[i,j] * y[j,k]

}

}

}

#pragma no blocking

The #pragma no blocking directive prevents the compiler from involving this
loop in cache blocking.

The syntax of the #pragma no blocking directive is as follows:

007–3587–005 51

8: Loop Nest Optimization #pragma Directives

#pragma no blocking

#pragma fission

The #pragma fission directive instructs the compiler to fission the enclosing n
levels of loops after this directive.

The syntax of the #pragma fission directive is as follows:

#pragma fission [n]

The default for n is 1. The compiler performs a validity test unless
#pragma fissionable is also specified. The compiler does not reorder statements.

#pragma fissionable

The #pragma fissionable directive disables validity testing for loop fissioning.

The syntax of the #pragma fissionable directive is as follows:

#pragma fissionable

#pragma no fission

The #pragma no fission instructs the compiler to not fission the loop directly
following this directive. Any inner loops, however, are allowed to be fissioned.

The syntax of the #pragma no fission directive is as follows:

#pragma no fission

52 007–3587–005

MIPSproTM C and C++ Pragmas

#pragma fuse

The #pragma fuse directive instructs the compiler to fuse the specified number of
immediately adjacent loops.

The syntax of the #pragma fuse directive is as follows:

#pragma fuse [num, level]

The loops to be fused must immediately follow the #pragma fusion directive.

The default value for num is 2. Fusion is attempted on each pair of adjacent loops
and the level, by default, is determined by the maximal perfectly nested loop levels of
the fused loops, although partial fusion is allowed. Iterations may be peeled as
needed during fusion; the limit of this peeling is 5 or the number specified by the
-LNO:fusion_peeling_limit option. No fusion is done for non-adjacent outer
loops.

When the #pragma fusable directive is present, no validity test is done and the
fusion is done up to the maximal common levels.

#pragma fusable

The #pragma fusable directive disables validity testing for loop fusing.

The syntax of the #pragma fusable directive is as follows:

#pragma fusable

#pragma no fusion

The #pragma no fusion directive instructs the compiler that the loop following
this directive should not be fused with other loops.

The syntax of the #pragma no fusion directive is as follows:

#pragma no fusion

007–3587–005 53

8: Loop Nest Optimization #pragma Directives

#pragma no interchange

The #pragma no interchange directive prevents the compiler from involving the
next loop in an interchange. This directive also applies to any loop nested within the
indicated loop.

The syntax of the #pragma no interchange directive is as follows:

#pragma no interchange

The pragma directive statement must immediately precede the loop to which it
applies.

#pragma ivdep

The #pragma ivdep directive instructs the compiler to liberalize dependence
analysis.

The syntax of the #pragma ivdep directive is as follows:

#pragma ivdep

Given two memory references, where at least one is loop variant, this directive
instructs the compiler to ignore any loop-carried dependences between the two
references. The #pragma ivdep directive applies only to inner loops. If
#pragma ivdep is used on a loop that has an inner loop, the compiler ignores it.

Example 8-2 #pragma ivdep

The following are some examples of the use of #pragma ivdep:

• ivdep does not break the dependence because b(k) is not loop variant:

#pragma ivdep
for (i = 0; i < n; i++)

b[k] = b[k] +a[i];

• ivdep breaks the dependence, but the compiler warns the user that it is breaking
an obvious dependence:

#pragma ivdep

for (i = 0; i < n; i++)

54 007–3587–005

MIPSproTM C and C++ Pragmas

a[i] = a[i-1] + 3.0;

• ivdep breaks the dependence:

#pragma ivdep
for (i = 0; i < n; i++)

a[b[i]] = a[b[i]] + 3.0;

• ivdep does not break the dependence on a[i] because it is within an iteration:

#pragma ivdep

for (i = 0; i < n; i++)

{

a[i] = b[i];

c[i] = a[i] + 3.0;
}

If -OPT:cray_ivdep=TRUE is specified, ivdep instructs the compiler to use Cray
semantics and break all backward dependences:

• ivdep breaks the dependence but the compiler warns the user that it is breaking
an obvious dependence:

#pragma ivdep

for (i = 0; i < n; i++)

{

a[i] = a[i - 1] + 3.0;
}

• ivdep does not break the dependence, because the it is from the load to the store,
and the load comes lexically before the store:

#pragma ivdep

for (i = 0; i < n; i++)

{

a[i] = a[i + 1] + 3.0;
}

To break all dependences, specify the following: -OPT:liberal_ivdep=TRUE.

#pragma prefetch

The #pragma prefetch directive specifies prefetching for each level of the cache.

007–3587–005 55

8: Loop Nest Optimization #pragma Directives

The syntax of the #pragma prefetch directive is as follows:

#pragma prefetch [n1, n2]

n1 controls the level 1 cache; n2 controls level 2. n1 and n2 can have the following
values:

•

• 0: prefetching is off (default for all processors except R10000)

• 1: prefetching is on but conservative (default at -03 when prefetch is on)

• 2: prefetching on and aggressive

The scope of this directive is the entire function that contains it.

#pragma prefetch_manual

The #pragma prefetch_manual directive instructs the compiler as to whether
manual prefetches (through #pragma directives) should be respected or ignored.

The syntax of the #pragma prefetch_manual directive is as follows:

#pragma prefetch_manual[n]

n can have a value of 0 (the compiler ignores manual prefetches; this is the default for
all processors except R10000) or 1 (the compiler respects manual prefetches; default at
-03 for R10000 and beyond).

The scope of this directive is the entire function that contains it.

#pragma prefetch_ref

The #pragma prefetch_ref directive generates a prefetch and connects it to the
specified reference (if possible).

The syntax of the #pragma prefetch_ref directive is as follows:

56 007–3587–005

MIPSproTM C and C++ Pragmas

pragma prefetch_ref = ref [, stride = num1 [, num2]]
[, level = [lev1][, lev2]]
[, kind = {rd|wr}]
[, size = sz]

ref is the object you want prefetched.

Table 8-2, page 57 describes each of the possible #pragma prefetch_ref clauses.
These clauses are optional.

Table 8-2 Clauses for #pragma prefetch_ref

Clause Effect
Default
Value

stride Prefetches every num iteration(s) of this loop. 1

level Specifies the level in memory hierarchy to prefetch. The
possible values for level are
1: prefetch from L2 to L1 cache
2: prefetch from memory to L1 cache

2

kind Specifies read or write. write

size Specifies the size (in KB) of the object referenced in this
loop. Must be a constant.

N/A

The #pragma prefetch_ref directive instructs the compiler to take the following
actions:

• Generate a prefetch and connect to the specified object (if possible).

• Search for references in the current loop-nest that match the supplied object.

– If such a reference is found, then the prefetch for that object is scheduled
relative to the prefetch node, based on the miss latency for the specified level
of the cache.

– If no such reference is found, the prefetch is generated at the start of the loop
body.

• Ignore all references by the automatic prefetcher (if enabled) to this variable in this
loop-nest.

007–3587–005 57

8: Loop Nest Optimization #pragma Directives

• Have the automatic prefetcher (if enabled) use the supplied size (if specified) in its
volume analysis for this object.

This directive has no scope; it just generates a prefetch.

#pragma prefetch_ref_disable

The #pragma prefetch_ref_disable directive explicitly disables prefetching for
the specified reference (in the current loop nest).

The syntax of the #pragma prefetch_ref_disable directive is as follows:

#pragma prefetch_ref_disable = ref [, size = num]

• ref is the object for which you want to disable prefetching.

• num specifies the size (in KB) of the object referenced in this loop (optional). The
size must be a constant. This explicitly disables the prefetching of all references to
object ref in the current loop nest. If enabled, the auto-prefetcher runs but ignores
ref. The size is used for volume analysis.

The scope of this directive is the entire function containing it.

#pragma unroll

The #pragma unroll directive suggests to the compiler the type of unrolling that
should be done.

The syntax of the #pragma unroll directive is as follows:

#pragma unroll [n]

This directive instructs the compiler to add n-1 copies of the loop body to the inner
loop. If the loop that this directive immediately precedes is an inner loop, then it
indicates standard unrolling (version 7.2 and later). If the loop that this directive
immediately precedes is not innermost, then outer loop unrolling (unroll and jam) is
performed (version 7.0 and later).

58 007–3587–005

MIPSproTM C and C++ Pragmas

The value of n must be at least 1. If it is 1, then unrolling is not performed.

!
Caution: The #pragma unroll directive works only on loops that are legal to
unroll. Loops are often not unrollable in C because of potential aliasing. In these
cases, you may want to use restrict pointers or the option -OPT:alias=disjoint
(see the C Language Reference Manual for more information on restrict pointers). When
-OPT:alias=disjoint is specified, distinct pointer expressions are assumed to
point to distinct, non-overlapping objects.

-OPT:alias=disjoint is unsafe and may cause existing C programs to fail in
obscure ways, so it should be used with extreme care.

Example 8-3 #pragma unroll

The following code samples show the effect of using #pragma unroll. The code in
Sample 1 becomes Sample 2, not Sample 3:

• Sample 1:

#pragma unroll (2)

for (i = 0; i < 10; i++)
{

for (j = 0; j < 10; j++)

{

a i[j] = a[i][j] + b[i][j];

}

}

• Sample 2:

for (i = 0; i < 10; i + 2)
{

for (j = 0; j < 10; j++)

{

a [i][j] = a[i][j] + b[i][j];

ai+1j = ai+1j + bi+1j;
}

}

• Sample 3:

for (i = 0; i < 10; i + 2)

{

007–3587–005 59

8: Loop Nest Optimization #pragma Directives

for (j = 0; j < 10; j++)
a[i][j] = a[i][j] + b[i][j];

for (j = 0; j < 10; j++)

{

a[i+1][j] = a[i+1][[j] + b[i+1][j];

}
}

The #pragma unroll directive is attached to the given loop, so that if an
interchange is performed, the corresponding loop is still unrolled. That is, Sample
1 is equivalent to the following:

#pragma interchange

for (j = 0; j < 10; j++)

{

#pragma unroll (2)
for (i = 0; i < 10; i++)

a[i][j] = a[i][j] + b[i][j];

}

60 007–3587–005

Chapter 9

Multiprocessing #pragma Directives

Table 9-1 contains an alphabetical list of the #pragma directives discussed in this
chapter, along with a brief description of each and the compiler versions in which the
directive is supported.

Table 9-1 Multiprocessing #pragma Directives

#pragma Short Description
Compiler
Versions

#pragma copyin Copies the value from the master thread’s version of
an -Xlocal-linked global variable into the slave
thread’s version.

6.0 and later

#pragma critical Protects access to critical statements. 6.0 and later

#pragma enter gate (see "#pragma
enter gate and #pragma exit
gate", page 66)

Indicates the point that all threads must clear before
any threads are allowed to pass the corresponding
exit gate.

6.0 and later

#pragma exit gate (see "#pragma
enter gate and #pragma exit
gate", page 66)

Stops threads from passing this point until all
threads have cleared the corresponding enter
gate.

6.0 and later

#pragma independent Tells the compiler to run independent code section
in parallel with the rest of the code in the parallel
region.

6.0 and later

#pragma local Tells the compiler the names of all the variables that
must be local to each thread.

6.0 and later

#pragma no side effects Tells the compiler to assume that all of the named
functions are safe to execute concurrently.

7.1 and later

#pragma one processor Causes the next statement to be executed on only
one processor.

6.0 and later

#pragma parallel (see also
"#pragma parallel Clauses", page
74)

Marks the start of a parallel region. 6.0 and later

007–3587–005 61

9: Multiprocessing #pragma Directives

#pragma Short Description
Compiler
Versions

#pragma pfor (see also "#pragma
pfor Clauses", page 79)

Marks a for loop to run in parallel. 6.0 and later

#pragma pure Tells the compiler that return value depends
exclusively on argument values and causes no side
effects.

7.3 and later

#pragma set chunksize Tells the compiler which values to use for
chunksize.

6.0 and later

#pragma set numthreads Tells the compiler which values to use for
numthreads.

6.0 and later

#pragma set schedtype Tells the compiler which values to use for
schedtype.

6.0 and later

#pragma shared Tells the compiler the names of all the variables that
the threads must share.

6.0 and later

#pragma synchronize Stops threads until all threads reach this point. 6.0 and later

#pragma copyin

The #pragma copyin directive allows you to copy values from the master thread’s
version of an -Xlocal-linked global variable into the slave thread’s version.

#pragma copyin has the following syntax:

#pragma copyin item1 [, item2 ...]

Each item must be a localized (that is, linked -Xlocal) global variable.

Do not place this directive inside a parallel region.

Example of #pragma copyin

The following line of code demonstrates the use of the #pragma copyin directive:

62 007–3587–005

MIPSproTM C and C++ Pragmas

#pragma copyin x,y, A[i]

This propagates the master thread’s values for x, y, and the ith element of array A
into each slave thread’s copy of the corresponding variable. All of these items must
be linked -Xlocal. This directive is translated into executable code, so in this
example i is evaluated at the time this statement is executed.

#pragma critical

Sometimes the bulk of the work done by a loop can be done in parallel, but the entire
loop cannot run in parallel because of a single data-dependent statement. Often, you
can move such a statement out of the parallel region. When that is not possible, you
can use the #pragma critical directive to place a lock on the statement to
preserve the integrity of the data.

The syntax of the #pragma critical directive is as follows:

#pragma critical [lock_variable]
[code]

The statement after the #pragma critical directive code is executed by all threads,
one at a time.

In the multiprocessing C/C++ compiler, you can use the #pragma critical
directive to put a lock on a critical statement (or compound statement using {}). When
you put a lock on a statement, only one thread at a time can execute that statement. If
one thread is already working on a #pragma critical protected statement, any
other thread that needs to execute that statement must wait until the first thread has
finished executing it.

The lock variable is an optional integer variable that must be initialized to zero. The
parentheses are required. If you do not specify a lock variable, the compiler
automatically uses a global lock variable. Multiple critical constructs inside the same
parallel region are considered to be dependent on each other unless they use distinct
explicit lock variables.

007–3587–005 63

9: Multiprocessing #pragma Directives

!
Caution: This #pragma directive works slightly differently in the IRIS POWER C
Analyzer (PCA) for compiler versions 7.1 and older. See theIRIS POWER C User’s
Guide for more information.

Figure 9-1, page 65, illustrates critical segment execution.

64 007–3587–005

MIPSproTM C and C++ Pragmas

A

A

A

A

...
#pragma parallel ...
{ ...
#pragma critical
 { ...
 }
} ...

} A

a12043

Figure 9-1 Critical Segment Execution

007–3587–005 65

9: Multiprocessing #pragma Directives

#pragma enter gate and #pragma exit gate

The #pragma enter gate and #pragma exit gate directives provide an
additional tool for coordinating the processing of code within a parallel region. These
directives work as a matched set, by establishing a section of code bounded by gates at
the beginning and end. These gates form a special barrier. No thread can exit a gated
region until all threads have entered it. This construct gives more flexibility when
managing dependences between the work-sharing constructs in a parallel region.

By using #pragma enter gate and #pragma exit gate pairs, you can make
subtle distinctions about which construct is dependent on which other construct.

The syntax of the #pragma enter gate directive is as follows:

#pragma enter gate

Put this directive after the work-sharing construct that all threads must clear before
any can pass #pragma exit gate.

The syntax of the #pragma exit gate directive is as follows:

#pragma exit gate

Put this directive before the work-sharing construct that is dependent on the
preceding #pragma enter gate. No thread enters this work-sharing construct until
all threads have cleared the work-sharing construct controlled by the corresponding
#pragma enter gate.

Nesting of the #pragma enter gate and #pragma exit gate directives is not
supported.

!
Caution: These directives work slightly differently in the IRIS POWER C Analyzer
(PCA) for compiler versions 7.1 and older. See the IRIS POWER C User’s Guide for
more information.

Figure 9-2, page 67, is a “time-lapse” sequence showing execution using enter and
exit gates.

66 007–3587–005

MIPSproTM C and C++ Pragmas

1

enter gate
exit gate

2

3

4

...

#pragma parallel ...
{ ...
#pragma enter gate
 ...
#pragma exit gate
 ...
} ...

a12044

Figure 9-2 Execution Using Gates

007–3587–005 67

9: Multiprocessing #pragma Directives

Example 9-1 #pragma exit gate and #pragma enter gate

This example shows how to use these two directives to work with parallelized
segments that have some dependences.

Suppose you have a parallel region consisting of the work-sharing constructs A, B, C,
D, E, and so forth. A dependence may exist between B and E such that you cannot
execute E until all the work on B has completed (see the following code).

#pragma parallel ...

{

..A..

..B..

..C..

..D..

..E.. (depends on B)

}

One option is to put a #pragma synchronize before E. But this #pragma directive
is wasteful if all the threads have cleared B and are already in C or D. All the faster
threads pause before E until the slowest thread completes C and D.

#pragma parallel ...

{

..A..

..B..

..C..

..D..
#pragma synchronize

..E..

}

To reflect this dependence, put #pragma enter gate after B and
#pragma exit gate before E. Putting #pragma enter gate after B tells the
system to note which threads have completed the B work-sharing construct. Putting
#pragma exit gate prior to the E work sharing construct tells the system to allow
no thread into E until all threads have cleared B. See the following example:

#pragma parallel ...

{

..A..

..B..

#pragma enter gate

68 007–3587–005

MIPSproTM C and C++ Pragmas

..C..

..D..

#pragma exit gate

..E..

}

#pragma independent

Running a loop in parallel is a class of parallelism sometimes called “fine-grained
parallelism” or “homogeneous parallelism.” It is called homogeneous because all the
threads execute the same code on different data. Another class of parallelism is called
“coarse-grained parallelism” or “heterogeneous parallelism.” As the name suggests,
the code in each thread of execution is different.

Ensuring data independence for heterogeneous code executed in parallel is not
always as easy as it is for homogeneous code executed in parallel. (Ensuring data
independence for homogeneous code is not a trivial task, either.)

The syntax of the #pragma independent directive is as follows:

#pragma independent
[code]

The #pragma independent directive has no modifiers. Use this directive to tell the
multiprocessing C/C++ compiler to run code in parallel with the rest of the code in
the parallel region. Other threads can proceed past this code as soon as it starts
execution.

Figure 9-3, page 70, shows an independent segment with execution by only one
thread.

007–3587–005 69

9: Multiprocessing #pragma Directives

A B

...
#pragma parallel ...
{ ...
#pragma independent
 { ...
 }
#pragma independent
 { ...
 }
} ...

} A

} B

a12045

Figure 9-3 Independent Segment Execution

#pragma local

The #pragma local directive tells the multiprocessing C/C++ compiler the names
of all the variables that must be local to each thread.

The syntax of the #pragma local directive is as follows:

#pragma local variable1 [, variable2...]

70 007–3587–005

MIPSproTM C and C++ Pragmas

Note: A variable in a local clause cannot have initializers and cannot be an array
element or a field within a class, structure, or union.

#pragma no side effects

The #pragma no side effects directive tells the compiler that the only
observable effect of a call to any of the named functions is its return value. In
particular, the function does not modify an object or file that exists before it is called,
and does not create a new object or file that persists after the completion of the call.
This implies that if its return value is not used, the call may be skipped.

The syntax of the #pragma no side effects directive is as follows:

#pragma no side effects function1 [, function2...]

The functions named must be declared before the directive.

#pragma no side effects is not currently supported in C++, except for symbols
marked extern‘‘C’’.

#pragma one processor

The #pragma one processor directive causes the statement that follows it to be
executed by one thread.

The syntax of the #pragma one processor directive is as follows:

#pragma one processor
[code]

If a thread is executing the statement enclosed by this directive, other threads that
encounter this statement must wait until the statement has been executed by the first
thread, then skip the statement and continue.

007–3587–005 71

9: Multiprocessing #pragma Directives

If a thread has completed execution of the statement enclosed by this directive, then all
threads encountering this statement skip the statement and continue without pause.

Figure 9-4, page 72, shows code executed by only one thread. No thread can proceed
past this code until it has been executed.

Apause for A pause for A pause for A

...
#pragma parallel ...
{ ...
#pragma one processor
 { ...
 }
} ...

} A

a12046

Figure 9-4 One Processor Segment

#pragma parallel

The #pragma parallel directive indicates that the subsequent statement (or
compound statement) is to be run in parallel. #pragma parallel has four clauses,
shared, local, if, and numthreads, that provide the compiler with more
information on how to run the block of code (see "#pragma parallel Clauses",

72 007–3587–005

MIPSproTM C and C++ Pragmas

page 74). These clauses can either be listed on the same line as the #pragma
parallel directive or broken out into separate #pragma directives.

The syntax of the #pragma parallel directive is as follows:

#pragma parallel [clause1[, clause2 ...]]

Use the #pragma parallel directive to start a parallel region. This directive has a
number of clauses (see "#pragma parallel Clauses", page 74 for more details), but
to run a single loop in parallel, the only clauses you usually need are shared and
local. These options tell the multiprocessing C/C++ compiler which variables to
share between all threads of execution and which variables to treat as local.

The code that makes up the parallel region is usually delimited by curly braces ({ })
and immediately follows the #pragma parallel directives and its modifiers.

Objects are shared by default unless declared within a parallel program region. If they
are declared within a parallel program region, they are local by default. For example:

main() {

int x, s, l;

#pragma parallel shared (s) local (l)

{

int y;

/* within this parallel region, by the default rules

x and s are shared whereas l and y are local */

...

}
...

}

!
Caution: This directive works slightly differently in the IRIS POWER CTM Analyzer
(PCA) for compiler versions 7.1 and older. See the IRIS POWER C User’s Guide for
more information.

Example 9-2 #pragma parallel

For example, suppose you want to start a parallel region in which to run the
following code in parallel:

007–3587–005 73

9: Multiprocessing #pragma Directives

for (idx=n; idx; idx--) {
a[idx] = b[idx] + c[idx];
}

Enter the following code before the statement or compound statement (code in curly
braces, { }) that makes up the parallel region:

#pragma parallel shared(a, b, c) shared(n) local(idx)

#pragma pfor

Or you can enter the following code:

#pragma parallel

#pragma shared(a, b, c)

#pragma shared(n)
#pragma local(idx)

#pragma pfor

Any code within a parallel region, but not within any of the explicit parallel
constructs (pfor, independent, one processor, and critical), is local code. Local code
typically modifies only local data and is run by all threads.

#pragma parallel Clauses
The #pragma parallel directive has four possible clauses; each clause may also be
written as a separate directive, following the #pragma parallel directive:

• shared

• local

• if

• numthreads

shared: Specifying Shared Variables

The shared clause tells the compiler the names of all the variables that the threads
must share.

The syntax of #pragma parallel with the shared clause is as follows:

74 007–3587–005

MIPSproTM C and C++ Pragmas

#pragma parallel shared [var1 [, var2 ...]]

Note: A variable in a shared clause cannot be an array element or a field within a
class, structure, or union.

local: Specifying Local Variables

The local clause tells the multiprocessing C/C++ compiler the names of all the
variables that must be local to each thread.

The syntax of #pragma parallel with the local clause is as follows:

#pragma parallel local [var1 [, var2 ...]]

A variable in a local clause cannot have initializers and cannot be any of the following:

• An array element

• A field within a class, structure, or union

• An instance of a C++ class

if: Specifying Conditional Parallelization

The if clause lets you set up a condition that is evaluated at run time to determine
whether to run the statements serially or in parallel. At compile time, it is not always
possible to judge how much work a parallel region does (for example, loop indices
are often calculated from data supplied at run time). The if clause lets you avoid
running trivial amounts of code in parallel when the possible speedup does not
compensate for the overhead associated with running code in parallel.

The syntax of #pragma parallel with the if clause is as follows:

#pragma parallel if [expr]

The if condition, expr, must evaluate to an integer. If expr is false (evaluates to zero),
then the subsequent statements run serially. Otherwise, the statements run in parallel.

007–3587–005 75

9: Multiprocessing #pragma Directives

numthreads: Specifying the Number of Threads

The numthreads clause tells the multiprocessing C/C++ compiler how many of the
available threads to use when running this region in parallel. (The default is all the
available threads.)

In general, you should avoid having more threads of execution than you have
processors, and you should specify numthreads with the MP_SET_NUMTHREADS
environment variable at run time. If you want to run a loop in parallel while you run
other code, you can use this option to tell the compiler to use only some of the
available threads.

The syntax of #pragma parallel with the numthreads clause is as follows:

#pragma parallel numthreads [expr]

The variable expr should evaluate to a positive integer.

#pragma pfor

The #pragma pfordirective marks a for loop to run in parallel. This directive must
follow a #pragma parallel directive and be contained within a parallel region.
#pragma pfor takes several clauses (see "#pragma parallel Clauses", page 74,
for more details), which control the following aspects:

• How the work load is partitioned over the available processors

• Which variables are local to each process

• Which variables are involved in a reduction operation

• Which iterations are assigned to which threads

• How the iterations are shared by the available processors

• How many iterations make up the “chunks” assigned to the threads

Use #pragma pfor to run a for loop in parallel only if the loop meets all of the
following conditions:

• The #pragma pfor is contained within a parallel region.

76 007–3587–005

MIPSproTM C and C++ Pragmas

• All the values of the index variable can be computed independently of the
iterations.

• All iterations are independent of each other; that is, data used in one iteration
does not depend on data created by another iteration. If the loop can be run
backwards, the iterations are probably independent.

• The number of iterations is known (no infinite or data-dependent loops) at
execution time. The number of times the loop must be executed must be
determined once, upon entry to the loop, and based on the loop initialization, loop
test, and loop increment statements.

Note: If the number of times the loop is actually executed is different from what is
computed above, the results are undefined. This can happen if the loop test and
increment change during the execution of the loop, or if there is an early exit from
within the for loop. An early exit or a change to the loop test and increment
during execution may have serious performance implications.

• The chunksize, if specified, is computed before the loop is executed, and the
behavior is undefined if its value changes within the loop.

• The loop control variable cannot be an array element, or a field within a class,
structure, or union.

• The test or the increment should not contain expressions with side effects.

!
Caution: This directive works differently in the IRIS POWER CTM Analyzer (PCA) for
compiler versions 7.1 and older. See the IRIS POWER C User’s Guide for more
information.

Figure 9-5, page 78, shows parallel code segments using #pragma pfor running on
four threads with simple scheduling.

007–3587–005 77

9: Multiprocessing #pragma Directives

A(0-99) A(100-199) A(200-299) A(300-399)

...
#pragma parallel local (i)...
{
#pragma pfor
 for (i=0;i<400;i++) {
 ...
 }
} ...

} A(0-399)

a12047

Figure 9-5 Parallel Code Segments Using #pragma pfor

C++ Multiprocessing Considerations With #pragma pfor

If you are writing a #pragma pfor loop for the multiprocessing C++ compiler, the
index variable i can be declared within the for statement using the following:

int i = 0;

The ANSI C++ Standard states that the scope of the index variable declared in a for
statement extends to the end of the for statement, as in the following example:

#pragma pfor

for (int i = 0, ...) { ... }

The MIPSpro 7.2 C++ compiler does not enforce this rule. By default, the scope
extends to the end of the enclosing block. The default behavior can be changed by

78 007–3587–005

MIPSproTM C and C++ Pragmas

using the command line option -LANG:ansi-for-init-scope=on which enforces
the ANSI C++ standard.

To avoid future problems, write for loops in accordance with the ANSI standard, so
a subsequent change in the compiler implementation of the default scope rules does
not break your code.

#pragma pfor Clauses
The #pragma pfor directive accepts the following clauses:

• iterate: tells the multiprocessing C compiler the information it needs to
partition the work load over the available processors.

• local: specifies the variables that are local to each process.

• lastlocal: specifies the variables that are local to each process, saving only the
value of the variables from the logically last iteration of the loop.

• reduction: specifies variables involved in a reduction operation.

• affinity: assigns certain iterations to specific threads (for Origin200
TM

and
Origin2000

TM

only).

• nest: exploits nested concurrency.

• schedtype: specifies how the loop iterations are to be shared among the
processors.

• chunksize: specifies how many iterations make up a chunk.

iterate: Specifying the for Loop

The syntax of #pragma pfor with the iterate clause is as follows:

#pragma pfor iterate [index = expr1; expr2; expr3]

The iterate clause tells the multiprocessing C compiler the information it needs to
identify the unique iterations of the loop and partition them to particular threads of
execution. This clause is optional. The compiler automatically infers the appropriate
values from the subsequent for loop.

007–3587–005 79

9: Multiprocessing #pragma Directives

The following list describes the components of the iterate clause.

• index: the index variable of the for loop you want to run in parallel.

• expr1: the starting value for the index variable.

• expr2: the number of iterations for the loop you want to run in parallel.

• expr3: the increment of the for loop you want to run in parallel.

Example 9-3 iterate clause

The following is an example using the iterate clause:

Consider this for loop:

for (idx=n; idx; idx--)

{

a[idx] = b[idx] + c[idx];
}

The iterate clause to pfor should be as follows:

iterate(idx=n;n;-1)

This loop counts down from the value of n, so the starting value is the current value
of n. The number of trips through the loop is n, and the increment is -1.

local and lastlocal: Specifying Local Variables

The syntax of #pragma pfor with the local clause is as follows:

#pragma pfor local [var1[, var2,...]]

The local clause specifies the variables that are local to each process. If a variable is
declared as local, each iteration of the loop is given its own uninitialized copy of the
variable. You can declare a variable as local if its value does not depend on any other
iteration of the loop and if its value is used only within a single iteration. In effect the
local variable is just temporary; a new copy can be created in each loop iteration
without changing the final answer.

The pfor local clause has the same restrictions as the parallel local clause
(see "local: Specifying Local Variables", page 75).

80 007–3587–005

MIPSproTM C and C++ Pragmas

The syntax of #pragma pfor with the lastlocal clause is as follows:

#pragma pfor lastlocal (var1[, var2,...])

The lastlocal clause specifies the variables that are local to each process. Unlike
with the local clause, the compiler saves the value from only the logically last
iteration of the loop when it completes.

reduction: Specifying Variables for Reduction

The syntax of #pragma pfor with the reduction clause is as follows:

#pragma pfor reduction [var1[, var2,...]]

Specifies variables involved in a reduction operation. In a reduction operation, the
compiler keeps local copies of the variables and combines them when it exits the
loop. An element of the reduction list must be an individual variable (also called a
scalar variable) and cannot be an array or structure. However, it can be an individual
element of an array. When the reduction clause is used, it appears in the list with
the correct subscripts.

One element of an array can be used in a reduction operation, while other elements of
the array are used in other ways. To allow for this, if an element of an array appears
in the reduction list, the entire array can also appear in the share list.

The two types of reductions supported are sum(+) and product(*). For more
information, see the C Language Reference Manual .

The compiler confirms that the reduction expression is legal by making some simple
checks. The compiler does not, however, check all statements in the for loop for
illegal reductions. You must ensure that the reduction variable is used correctly in a
reduction operation.

affinity: Thread Affinity

Thread affinity assigns particular iterations to a particular thread.

The syntax of #pragma pfor with the affinity clause for thread affinity is as
follows:

007–3587–005 81

9: Multiprocessing #pragma Directives

#pragma pfor affinity variable = thread [expr]

The effect of thread affinity is to execute iteration i on the thread number given by the
user-supplied expression (modulo the number of threads). Because the threads may
need to evaluate this expression in each iteration of the loop, the variables used in the
expression (other than the loop induction variable) must be declared shared and must
not be modified during the execution of the loop. Violating these rules may lead to
incorrect results.

If the expression does not depend on the loop induction variable, then all iterations
will execute on the same thread and will not benefit from parallel execution.

Thread affinity is often used in conjunction with the #pragma page-place directive
("#pragma page_place", page 31).

Data affinity for loops with non-unit stride can sometimes result in non-linear affinity
expressions. In such situations the compiler issues a warning, ignores the affinity
clause, and defaults to simple scheduling.

affinity: Data Affinity

Data affinity applies only to distributed arrays and is supported only on Origin
systems. See Chapter 5, "DSM Optimization #pragma Directives", page 25 for more
information about distributed arrays.

The syntax of #pragma pfor with the affinity clause for data affinity is as
follows:

#pragma pfor affinity[idx] = data[array[expr]]

idx is the loop-index variable

array is the distributed array

expr indicates an element owned by the processor on which you want this iteration to
execute

Example 9-4 Data affinity

The following code shows an example of data affinity:

82 007–3587–005

MIPSproTM C and C++ Pragmas

#pragma distribute A[block]
#pragma parallel shared (A, a, b) local (i)

#pragma pfor affinity(i) = data(A[a*i + b])

for (i = 0; i < n; i++)

A[a*i + b] = 0;

The multiplier for the loop index variable (a) and the constant term (b) must both be
literal constants, with a greater than zero.

The effect of this clause is to distribute the iterations of the parallel loop to match the
data distribution specified for the array A, such that iteration i is executed on the
processor that owns element A[a*i + b], based on the distribution for A. The iterations
are scheduled based on the specified distribution, and are not affected by the actual
underlying data-distribution (which may differ at page boundaries, for example).

In the case of a multi-dimensional array, affinity is provided for the dimension that
contains the loop-index variable. The loop-index variable cannot appear in more than
one dimension in an affinity directive.

In the following example, the loop is scheduled based on the block distribution of the
first dimension. See Chapter 5, "DSM Optimization #pragma Directives", page 25, for
more information about distribution directives.

#pragma distribute A[block][cyclic(1)]

#pragma parallel shared (A, n) local (i, j)

#pragma pfor

#pragma affinity (i) = data(A[i + 3, j])

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

A[i + 3, j] = A[i + 3, j-1];

Data Affinity for Redistributed Arrays

By default, the compiler assumes that a distributed array is not dynamically
redistributed, and directly schedules a parallel loop for the specified data affinity. In
contrast, a redistributed array can have multiple possible distributions, and data
affinity for a redistributed array must be implemented in the run-time system based
on the particular distribution.

However, the compiler does not know whether or not an array is redistributed,
because the array may be redistributed in another function (possibly even in another
file). Therefore, you must explicitly specify the #pragma dynamic declaration for

007–3587–005 83

9: Multiprocessing #pragma Directives

redistributed arrays. This directive is required only in those functions that contain a
pfor loop with data affinity for that array (see "#pragma dynamic", page 30, for
additional information). This informs the compiler that the array can be dynamically
redistributed. Data affinity for such arrays is implemented through a run-time lookup.

Data Affinity for a Formal Parameter

You can supply a distribute directive on a formal parameter, thereby specifying
the distribution on the incoming actual parameter. If different calls to the subroutine
have parameters with different distributions, then you can omit the distribute
directive on the formal parameter; data affinity loops in that subroutine are
automatically implemented through a run-time lookup of the distribution. (This is
permissible only for regular data distribution. For reshaped array parameters, the
distribution must be fully specified on the formal parameter.)

Data Affinity and the #pragma pfor nest Clause

The nest clause for #pragma pfor is described in "nest: Exploiting Nested
Concurrency", page 85. This section discusses how the nest clause interacts with the
affinity clause when the program has reshaped arrays.

When you combine a nest clause and an affinity clause, the default scheduling is
simple, except when the program has reshaped arrays and is compiled -O3. In that
case, the default is to use data affinity scheduling for the most frequently accessed
reshaped array in the loop (chosen heuristically by the compiler). To obtain simple
scheduling even at -O3, you can explicitly specify the schedtype on the parallel loop.

Example 9-5 Nested pfor

The following example illustrates a nested pfor with an affinity clause:

#pfor nest(i, j) affinity(i, j) = data(A[i][j])

for (i = 2; i < n; i++)

for (j = 2; j < m; j++)

A[i][j] = A[i][j] + i * j;

84 007–3587–005

MIPSproTM C and C++ Pragmas

nest: Exploiting Nested Concurrency

The nest clause allows you to exploit nested concurrency in a limited manner.
Although true nested parallelism is not supported, you can exploit parallelism across
iterations of a perfectly nested loop-nest.

The syntax of #pragma pfor with the nest clause is as follows:

#pragma pfor nest[i, j[, ...]]

This clause specifies that the entire set of iterations across the (i, j[...]) loops
can be executed concurrently. The restriction is that the loops must be perfectly
nested; that is, no code is allowed between either the for statements or the ends of
the respective loops, as illustrated in the following example:

#pragma pfor nest(i, j)

for (i = 0; i < n; i++)
for (j = 0; j < m; j++)

A[i][j] = 0;

The existing clauses, such as local and shared, behave as before. You can combine
a nested pfor with a schedtype of simple or interleaved (dynamic and gss are
not currently supported). The default is simple scheduling.

Note: The nest clause requires support from the MP run-time library (libmp). IRIX
operating system versions 6.3 (and above) are automatically shipped with this new
library. If you want to access these features on a system running IRIX 6.2, then
contact your local SGI service provider or SGI Customer Support for libmp.

schedtype: Sharing Loop Iterations Among Processors

The syntax of #pragma pfor with the schedtype clause is as follows:

#pragma pfor schedtype [type]

The schedtype clause tells the multiprocessing C compiler how to share the loop
iterations among the processors. The schedtype chosen depends on the type of
system you are using and the number of programs executing (see Table 9-2, page 88).

007–3587–005 85

9: Multiprocessing #pragma Directives

You can use the types in the following list to modify schedtype.

• simple (the default): tells the run-time scheduler to partition the iterations evenly
among all the available threads.

• dynamic: tells the run-time scheduler to give each thread chunksize iterations of
the loop. chunksize should be smaller than the number of total iterations divided
by the number of threads. The advantage of dynamic over simple is that dynamic
helps distribute the work more evenly than simple.

• interleave: tells the run-time scheduler to give each thread chunksize iterations
of the loop, which are then assigned to the threads in an interleaved way.

• gss (guided self-scheduling): tells the run-time scheduler to give each processor a
varied number of iterations of the loop. This is like dynamic, but instead of a fixed
chunksize, the chunksize iterations begin with big pieces and end with small pieces.

If I iterations remain and P threads are working on them, the piece size is roughly
I/(2P) + 1.

Programs with triangular matrices should use gss.

• runtime: tells the compiler that the real schedule type will be specified at run
time, based on environment variables.

Figure 9-6, page 87, shows how the iteration chunks are apportioned over the various
processors by the different types of loop scheduling.

86 007–3587–005

MIPSproTM C and C++ Pragmas

T1 T2 T3 T4simple

T1 T1T2 T2T3 T3T4 T1 T4 T2 T3T4dynamic

gss

runtime Selected by MP_SCHEDTYPE environment variable

interleave

T2 T4 T1 T3

T1 T2T2 T1T3 T4T4 T1 T2 T3 T4T3 T1 T2 T3 T4

T1 T4 T3 T2T1 T4T3T2 T1 T4 T3 T2

a12048

Figure 9-6 Loop Scheduling Types

The best schedtype to use for any given program depends on your system,
program, and data. For instance, with certain types of data, some iterations of a loop
can take longer to compute than others, so some threads may finish long before the
others. In this situation, if the iterations are distributed by simple, then the thread
waits for the others. But if the iterations are distributed by dynamic, the thread does
not wait, but goes back to get another chunksize iteration until the threads of
execution have run all the iterations of the loop.

The following table describes how to choose a schedtype.

007–3587–005 87

9: Multiprocessing #pragma Directives

Table 9-2 Choosing a schedtype

For a... Where... Use...

Single-User System iterations take same amount of time simple

data-sensitive iterations vary slightly gss

data-sensitive iterations vary greatly dynamic

Multiuser System data-sensitive iterations vary slightly gss

data-sensitive iterations vary greatly dynamic

If you are on a single-user system but are executing multiple programs, select the
scheduling from the multiuser rows.

If you are on a multiuser system, you should also consider using the environment
variable, MP_SUGNUMTHD. Setting MP_SUGNUMTHD causes the run-time library to
automatically adjust the number of active threads based on the overall system load.
When idle processors exist, this process increases the number of threads, up to a
maximum of MP_SET_NUMTHREADS. When the system load increases, it decreases the
number of threads. For more details about MP_SUGNUMTHD, see the C Language
Reference Manual.

chunksize: Specifying the Number of Iterations in a Chunk

The chunksize clause tells the multiprocessing C compiler how many iterations to
define as a chunk when using the dynamic or interleave clause (see "schedtype:
Sharing Loop Iterations Among Processors", page 85).

The syntax of #pragma pfor with the chunksize clause is as follows:

#pragma pfor chunksize [expr]

expr should be a positive integer. SGI recommends using the following formula:

(number of iterations)/X

X should be between twice and ten times the number of threads. Select twice the
number of threads when iterations vary slightly. Reduce the chunk size to reflect the

88 007–3587–005

MIPSproTM C and C++ Pragmas

increasing variance in the iterations. Performance gains may diminish after increasing
X to ten times the number of threads.

#pragma pure

The #pragma pure directive tells the compiler that a call to any of the named
functions has no side effects (see #pragma no side effects), and that its return
value depends only on the values of its arguments. In particular, it does not access an
existing object or file after its arguments have been evaluated. If the arguments of
such a call are loop-invariant, then the compiler may move the call out of the loop.

The syntax of the #pragma pure directive is as follows:

#pragma pure [function1 [, function2...]]

The functions named must be declared before the directive.

#pragma pure is not currently supported in C++, except for symbols marked
extern‘‘C’’.

#pragma set chunksize

The #pragma set chunksize directive sets the value of chunksize, which tells
the multiprocessing C compiler how many iterations to define as a chunk when using
the dynamic or interleave clause (see "#pragma set schedtype", page 90, and
"#pragma pfor Clauses", page 79, for more information).

The syntax of the #pragma set chunksize directive is as follows:

#pragma set chunksize [n]

SGI recommends using the following formula:

(number of iterations)/X

X should be between twice and ten times the number of threads. Select twice the
number of threads when iterations vary slightly. Reduce the chunk size to reflect the

007–3587–005 89

9: Multiprocessing #pragma Directives

increasing variance in the iterations. Performance gains may diminish after increasing
X to ten times the number of threads.

#pragma set numthreads

The #pragma set numthreads directive sets the value for numthreads, which
tells the multiprocessing C/C++ compiler how many of the available threads to use
when running this region in parallel. The default is all the available threads.

If you want to run a loop in parallel while you run some other code, you can use this
option to tell the compiler to use only some of the available threads.

Using #pragma set numthreads

The syntax of the #pragma set numthreads directive is as follows:

#pragma set numthreads [n]

n can range from 1 to 255. If if n is greater than 255, the compiler assumes the
maximum and generates a warning message. If n is less than 1, the compiler
generates a warning message and ignores the directive.

In general, you should never have more threads of execution than you have
processors, and you should specify numthreads with the MP_SET_NUMTHREADS
environment variable at run time (see the C Language Reference Manual for more
information).

#pragma set schedtype

The #pragma set schedtype directive sets the value of schedtype, which tells
the multiprocessing C compiler how to share the loop iterations among the
processors. The schedtype chosen depends on the type of system you are using and
the number of programs executing (see "#pragma pfor Clauses", page 79, for more
information on schedtype).

The syntax of the #pragma set schedtype directive is as follows:

90 007–3587–005

MIPSproTM C and C++ Pragmas

#pragma set schedtype [type]

The schedtype types are

• simple

• dynamic

• interleave

• gss

• runtime

#pragma shared

The #pragma shared directive tells the multiprocessing C/C++ compiler the names
of all the variables that the threads must share. This directive must be used in
conjunction with the #pragma parallel directive. #pragma shared can also be
used as a clause for the #pragma parallel directive (see "#pragma parallel
Clauses", page 74).

The syntax of #pragma shared is as follows:

#pragma shared [variable1, [, variable2...]]

Note: A variable in a shared clause cannot be an array element or a field within a
class, structure, or union.

#pragma synchronize

The #pragma synchronize directive tells the multiprocessing C/C++ compiler that
within a parallel region, no thread can execute the statement that follows this
directive until all threads have reached it. This directive is a classic barrier construct.

The syntax of #pragma synchronize is as follows:

#pragma synchronize

007–3587–005 91

9: Multiprocessing #pragma Directives

The following figure is a time-lapse sequence showing the synchronization of all
threads.

92 007–3587–005

MIPSproTM C and C++ Pragmas

1

2

3

4

5

A

A

...

#pragma parallel ...
{ ...
#pragma synchronize
 ...
} ... } A

a12049

Figure 9-7 Synchronization

007–3587–005 93

Chapter 10

OpenMP C/C++ API Multiprocessing Directives

This chapter provides an overview of the multiprocessing directives that MIPSpro C
and C++ compilers support. These directives are based on the OpenMP C/C++
Application Program Interface (API) standard, version 2.0, which is available in the
7.4.1 release. Programs that use these directives are portable and can be compiled by
other compilers that support the OpenMP standard.

The complete OpenMP standard is available at http://www.openmp.org/specs.
See that documentation for complete examples, rules of usage, and restrictions. This
chapter provides only an overview of the supported directives and does not give
complete details or restrictions.

To enable recognition of the OpenMP directives, specify -mp on the cc or CC
command line.

In addition to directives, the OpenMP C/C++ API describes several library functions
and environment variables. Information on the library functions can be found on the
omp_lock(3), omp_nested(3), and omp_threads(3) man pages. Information on the
environment variables can be found on the pe_environ(5) man page.

Note: The SGI multiprocessing directives, including the Origin series distributed
shared memory directives, are outmoded. Their preferred alternatives are the
OpenMP C/C++ API directives described in this chapter.

Using Directives
Each OpenMP directive starts with #pragma omp, to reduce the potential for conflict
with other #pragma directives with the same name. They have the following form:

#pragma omp directive-name [clause[clause] ...] new-line

Except for starting with #pragma omp, the directive follows the conventions of the C
and C++ standards for compiler directives.

Directives are case-sensitive. The order in which clauses appear in directives is not
significant. Only one directive name can be specified per directive.

007–3587–005 95

10: OpenMP C/C++ API Multiprocessing Directives

An OpenMP directive applies to at most one succeeding statement, which must be a
structured block.

Conditional Compilation
The _OPENMP macro name is defined by OpenMP-compliant implementations as the
decimal constant, yyyymm, which will be the year and month of the approved
specification. This macro must not be the subject of a #define or a #undef
preprocessing directive.

#ifdef _OPENMP

iam = omp_get_thread_num() + index;

#endif

If vendors define extensions to OpenMP, they may specify additional predefined
macros.

If an implementation is not OpenMP-compliant, or if its OpenMP mode is disabled, it
may ignore the OpenMP directives in a program. In effect, an OpenMP directive
behaves as if it were enclosed within #ifdef _OPENMP and #endif. Thus, the
following two examples are equivalent:

if(cond)

{

#pragma omp flush (x)
}

X++;

if(cond)

#ifdef)OPENMP

#pragma omp flush (x)

#endif

x++;

parallel Construct
The #pragma omp parallel directive defines a parallel region, which is a region of
the program that is to be executed by multiple threads in parallel.

When a thread encounters a parallel construct and no if clause is present, or the if
expression evaluates to a nonzero value, a team of threads is created. This thread

96 007–3587–005

MIPSproTM C and C++ Pragmas

becomes the master thread with a thread number of 0. If the value of the if
expression is zero, the region is serialized.

Work–sharing Constructs
A work-sharing construct distributes the execution of the associated statement among
the members of the team that encounter it. The work-sharing directives do not launch
new threads, and there is no implied barrier on entry to a work-sharing construct.

The sequence of work-sharing constructs and barrier directives encountered must be
the same for every thread in a team.

OpenMP defines the following work-sharing constructs:

• The #pragma omp for directive identifies an iterative work-sharing construct
that specifies the iterations of the associated loop should be executed in parallel.
The iterations of the for loop are distributed across threads that already exist.

• The #pragma omp sections directive identifies a non-iterative work-sharing
construct that specifies a set of constructs that are to be divided among threads in
a team. Each section is executed once by a thread in the team. Each section is
preceded by a sections directive, although the sections directive is optional
for the first section.

• The #pragma omp single directive identifies a construct that specifies that the
associated structured block is executed by only one thread in the team (not
necessarily the master thread).

Combined Parallel Work-sharing Constructs
Combined parallel work-sharing constructs are short cuts for specifying a parallel
region that contains only one work-sharing construct. The semantics of these
directives are identical to that of explicitly specifying a parallel directive followed
by a single work-sharing construct.

• The parallel for directive is a shortcut for a parallel region that contains
one for directive.

• The #pragma omp parallel sections directive provides a shortcut form for
specifying a parallel region containing one sections directive.

007–3587–005 97

10: OpenMP C/C++ API Multiprocessing Directives

Master and Synchronization Constructs
The following list describes the synchronization constructs:

• The #pragma omp master directive identifies a construct that specifies a
structured block that is executed by the master thread of the team.

• The #pragma omp critical directive identifies a construct that restricts
execution of the associated structured block to one thread at a time.

• The #pragma omp barrier directive synchronizes all the threads in a team,
each thread waiting until all other threads have reached this point.

• The #pragma omp atomic directive ensures that a specific memory location is
updated atomically.

• The #pragma omp flush directive, explicit or implied, identifies precise
synchronization points at which the implementation is required to provide a
consistent view of certain objects in memory. This means that previous evaluations
of expressions that reference those objects are complete and subsequent
evaluations have not yet begun.

• A #pragma omp ordered directive must be within the dynamic extent of a for
or parallel for construct that has an ordered clause. The structured-block
following an ordered directive is executed in the same order as iterations in a
sequential loop.

Data Environment Constructs
The #pragma omp threadprivate directive makes file-scope, namespace-scope, or
static block-scope variables local to a thread but global within the thread. This
directive is not implemented for block-scope variables requiring dynamic
initialization in C++.

Several directives accept clauses that allow a user to control the scope attributes of
variables for the duration of the construct. Not all of the clauses are allowed on all
directives, but the clauses that are valid on a particular directive are included with the
description of the directive. Usually, if no data scope clauses are specified for a
directive, the default scope for variables affected by the directive is share.

The following list describes the data scope attribute clauses:

98 007–3587–005

MIPSproTM C and C++ Pragmas

• The private clause declares the variables in list to be private to each thread in a
team.

• The firstprivate clause provides a superset of the functionality provided by
the private clause.

• The lastprivate clause provides a superset of the functionality provided by the
private clause.

• The shared clause shares variables that appear in the list among all the threads in
a team. All threads within a team access the same storage area for shared
variables.

• The default clause allows the user to specify the data-sharing attributes of
variables.

• The reduction clause performs a reduction on the scalar variables specified,
with the operator specified.

• The copyin clause lets you assign the same value to threadprivate variables
for each thread in the team executing the parallel region. For each variable
specified, the value of the variable in the master thread of the team is copied to
the threadprivate copies at the beginning of the parallel region.

• The copyprivate clause provides a mechanism to use a private variable to
broadcast a value from one member of a team to the other members.

Directive Binding
Some directives are bound to other directives. A binding specifies the way in which
one directive is related to another. For instance, a directive is bound to a second
directive if it can appear in the dynamic extent of that second directive. The following
rules apply with respect to the dynamic binding of directives:

• The for, sections, single, master, and barrier directives bind to the
dynamically enclosing parallel directive, if one exists. If no parallel region is
currently being executed, the directives are executed by a team composed of only
the master thread.

• The ordered directive binds to the dynamically enclosing for directive.

• The atomic directive enforces exclusive access with respect to atomic directives
in all threads, not just the current team.

007–3587–005 99

10: OpenMP C/C++ API Multiprocessing Directives

• The critical directive enforces exclusive access with respect to critical
directives in all threads, not just the current team.

• A directive cannot bind to a directive outside the closest dynamically enclosing
parallel directive.

Directive Nesting
Dynamic nesting of directives must adhere to the following rules:

• A parallel directive dynamically inside another parallel directive logically
establishes a new team, which is composed of only the current thread, unless
nested parallelism is enabled.

• for, sections, and single directives that bind to the same parallel directive
are not allowed to be nested inside each other.

• critical directives with the same name are not allowed to be nested inside each
other.

• for, sections, and single directives are not permitted in the dynamic extent
of critical, ordered, and master regions if the directives bind to the same
parallel as the regions.

• barrier directives are not permitted in the dynamic extent of for, ordered,
sections, single, master, and critical regions if the directives bind to the
same parallel as the regions.

• master directives are not permitted in the dynamic extent of for, sections,
and single directives if the master directives bind to the same parallel as the
regions.

• ordered directives are not allowed in the dynamic extent of critical regions if
the directives bind to the same parallel as the regions.

• Any directive that is permitted when executed dynamically inside a parallel
region is also permitted when executed outside a parallel region. When
executed dynamically outside a user-specified parallel region, the directive is
executed with respect to a team composed of only the master thread.

100 007–3587–005

Chapter 11

Precompiled Header #pragma Directives

Table 11-1 lists the precompiled header #pragmas directives, along with a short
description of each and the compiler versions in which the directive is supported.

Table 11-1 Precompiled Header #pragma Directives

#pragma Short Description
Compiler
Versions

#pragma hdrstop Indicates the point at which the precompiled header
mechanism snapshots the headers. If -pch is off, #pragma
hdrstop is ignored.

7.2 and later

#pragma no_pch Disables the precompiled header mechanism. 7.2 and later

#pragma once Ensures (in -n32 and -64 mode) that an include file is
included at most one time in each compilation unit.

7.0 and later

#pragma hdrstop

The #pragma hdrstop directive indicates the point at which the precompiled
header mechanism snapshots the headers.

The syntax of the #pragma hdrstop directive is as follows:

#pragma hdrstop

If -pch is on, #pragma hdrstop indicates the point at which the precompiled
header mechanism snapshots the headers.

If -pch is off, #pragma hdrstop is ignored.

See the MIPSpro N32/64 Compiling and Performance Tuning Guide for details on the
precompiled header mechanism.

007–3587–005 101

11: Precompiled Header #pragma Directives

#pragma no_pch

The #pragma no_pch directive disables the precompiled header mechanism.

The syntax of #pragma no_pch is as follows:

#pragma no_pch

#pragma once

The #pragma once directive ensures (in -n32 and -64 mode) that each include
file is included one time in each compilation unit.

The syntax of #pragma once is as follows:

#pragma once

This directive has no effect in -o32 mode, but will ensure idempotent include files
in -n32 and -64 mode (that is, that an include file is included at most one time in
each compilation unit).

SGI recommends enclosing the contents of an afile.h include file with an #ifdef
directive similar to the following:

#ifndef afile_INCLUDED
#define afile_INCLUDED

<contents of afile.h>

#endif

102 007–3587–005

Chapter 12

Scalar Optimization #pragma Directives

Table 12-1 lists the #pragma directives discussed in this chapter, along with a short
description of each and the compiler versions in which the directive is supported.

Table 12-1 Scalar Optimization #pragma Directives

#pragma Short Description
Compiler
Versions

#pragma mips_frequency_hint Specifies the expected frequency of execution
so that cord2 can move exception code and
initialization code into separate pages to
minimize working set size.

7.2 and later

#pragma section_gp (in Chapter 7,
"Loader Information #pragma Directives",
page 41)

Causes an object to be placed in a gp_relative
section.

7.2 and later

#pragma section_non_gp (in Chapter 7,
"Loader Information #pragma Directives",
page 41)

Keeps an object from being placed in a
gp_relative section.

7.2 and later

#pragma unroll (in Chapter 8, "Loop Nest
Optimization #pragma Directives", page 49)

Suggests to the compiler that a specified
number of copies of the loop body be added to
the inner loop. If the loop following this
directive is an inner loop, then it indicates
standard unrolling. If the loop following this
directive is not innermost, then outer loop
unrolling (unroll and jam) is performed.

7.2 and later

#pragma mips_frequency_hint

This directive allows you to specify the expected frequency of execution of the named
function so the compiler can move exception code and initialization code into
separate pages to minimize working-set size.

The syntax of #pragma mips_frequency_hint is as follows:

007–3587–005 103

12: Scalar Optimization #pragma Directives

#pragma mips_frequency_hint [NEVER|INIT] [function_name]

#pragma mips_frequency_hint is not currently supported in C++, except for
symbols marked extern ‘‘C’’.

This directive provides a mechanism for you to specify information about execution
frequency for certain regions in the code. You can provide the following frequency
specifications:

• NEVER: this region of code is never or rarely executed. The compiler might move
this region of the code away from the normal path. This movement might either
be at the end of the procedure or at some point to an entirely separate section.

• INIT: this region of code is executed only during initialization or startup of the
program. The compiler might try to put all regions under “INIT” together to
provide better locality during startup of a program.

You can use this directive in two ways:

1. You can specify it with a function declaration. The directive then applies
everywhere the function is called.

extern void Error_Routine();

#pragma mips_frequency_hint NEVER Error_Routine

Note: In this case, the directive must appear after the function declaration.

2. You can specify it without a function declaration. In this case, you can place the
directive anywhere in the body of a procedure. It then applies to the statement
directly following the directive.

if (some_condition)

{

#pragma mips_frequency_hint NEVER

Error_Routine ();
...

}

!
Caution: This is directive is supported on compiler version 7.2 only, and it does not
work for -o32 because it requires an ELF object file with .MIPS.content sections.

104 007–3587–005

Chapter 13

Warning Suppression Control #pragma Directives

Table 13-1 lists the #pragma directives discussed in this chapter, along with a brief
description and the compiler versions in which the directive is supported.

Table 13-1 Warning Suppression Control #pragma Directives

#pragma Short Description
Compiler
Versions

#pragma set woff Suppresses compiler warnings (either all, or by warning
number).

7.2 and later

#pragma reset woff Resets listed warnings to the state specified in the command
line.

7.2 and later

#pragma set woff

The #pragma set woff directive suppresses compiler warnings individually by
warning number.

The syntax of #pragma set woff is as follows:

#pragma set woff [warning_list]

warning_list is a list of the warning numbers that you want suppressed. Ranges are
allowed. Only the specified compiler warnings are suppressed.

For example, the following directive turns off warnings 1, 2, 300 through 310, and 8:

#pragma set woff 1,2,300-310,8

#pragma set woff does not nest. That is, any #pragma reset woff on a given
number resets the value to that implied by the command line.

007–3587–005 105

13: Warning Suppression Control #pragma Directives

Example 13-1 #pragma set woff

The following code illustrates the use of #pragma set woff:

cc -woff 300,302

/* example.c */

#pragma set woff 400

/* warnings 300,302, and 400 are off in example.c */

#include ‘‘example.h’’
/* You would expect that warnings 300,302,and 400 would be off

in example.h. However, the #pragma set woff does not travel

into #includes properly. In MIPSpro7.2 300 and 302 are off, but

400 is on in example.h. In a future release 400 may be off in

example.h
*/

#pragma reset woff 400

/* 400 is reset to command line state; that is, 400 is on. */

#pragma reset woff 300

/* 300 is reset to command line state; that is, 300 is still off */

#pragma reset woff

The #pragma reset woff directive resets listed warnings to the state specified in
the command line.

The syntax of #pragma reset woff is as follows:

#pragma reset woff [warning_list]

warning_list consists of a list of the warning numbers that you want reset to the state
specified in the command line. Ranges are allowed. Only the specified compiler
warnings are reset.

For example, the following directive sets warnings 1, 2, 300 through 310, and 8 back
to the command-line setting:

106 007–3587–005

MIPSproTM C and C++ Pragmas

#pragma set woff 1,2,300-310,8

This directive does not nest.

Example 13-2 #pragma reset woff

The following code illustrates the use of #pragma reset woff:

cc -woff 300,302

/* example.c */

#pragma set woff 400

/* warnings 300,302, and 400 are off in example.c */

#include ‘‘example.h’’

/* You would expect that warnings 300,302,and 400 would be off
in example.h. However, the #pragma set woff does not travel

into #includes properly. In MIPSpro7.2 300 and 302 are off,

but 400 is on in example.h. In a future release 400 may be off

in example.h

*/

#pragma reset woff 400

/* 400 is reset to command line state; that is, 400 is on. */

#pragma reset woff 300
/* 300 is reset to command line state; that is, 300 is still off */

007–3587–005 107

Chapter 14

Miscellaneous #pragma Directives

Table 14-1 lists the #pragma directives described in this chapter, along with a brief
description of each and the compiler version in which they are supported.

Table 14-1 Miscellaneous #pragma Directives

#pragma Short Description
Compiler
Versions

#pragma ident Adds a .comment section to the object file and puts the
supplied string inside the .comment section.

6.0 and later
(-o32 only)

#pragma int_to_unsigned Identifies identifier as a function whose type was int in
a previous release of the compilation system, but whose
type is unsigned int in the MIPSpro compiler release.

7.0 and later

#pragma intrinsic Allows certain preselected functions from math.h,
stdio.h, and string.h to be inlined at a call site. Can
also enable the compiler to get additional information
about the function to improve execution efficiency.

7.0 and later

#pragma
unknown_control_flow

Indicates user level functions that have behavior similar
to setjmp and getcontext.

7.3 and later

#pragma ident

The #pragma ident directive adds a .comment section to the object file and puts
the supplied string inside the .comment section.

The syntax of #pragma ident is as follows:

#pragma ident ‘‘string’’

string is the string you want to add to the .comment section in the object file. The
string must be enclosed in double quotation marks.

007–3587–005 109

14: Miscellaneous #pragma Directives

!
Caution: The #pragma ident directive is only available in -o32 mode.

#pragma int_to_unsigned

The #pragma int_to_unsigned directive tells the compiler that the named
function has a different type (unsigned int) in the MIPSpro compiler release than
it did in previous releases (int).

The syntax of #pragma int_to_unsigned is as follows:

#pragma int_to_unsigned function_name

#pragma int_to_unsigned is not currently supported in C++, except for symbols
marked extern ‘‘C’’.

This directive identifies function_name as a function whose type was int in a previous
release of the compilation system, but whose type is unsigned int in the MIPSpro
compiler release. The declaration of the identifier must precede the directive:

unsigned int strlen(const char*);

#pragma int_to_unsigned strlen

This declaration makes it possible for the compiler to identify where the changed type
may affect the evaluation of expressions.

#pragma intrinsic

The #pragma intrinsic directive allows certain preselected functions from
math.h, stdio.h, and string.h to be inlined at a call site for execution efficiency.

The syntax of #pragma intrinsic is as follows:

#pragma intrinsic [function_name]

110 007–3587–005

MIPSproTM C and C++ Pragmas

!
Caution:
• This directive has no effect on functions other than the preselected ones.
• Exactly which functions may be inlined, how they are inlined, and under what

circumstances inlining occurs is implementation-defined and may vary from one
release of the compilers to the next.

• The inlining of intrinsics may violate some aspect of the ANSI C standard (for
example, the errno setting for math.h functions).

• All intrinsics are activated through directives in the respective standard header
files and only when the preprocessor symbol __INLINE_INTRINSICS is defined
and the appropriate include files are included. __INLINE_INTRINSICS is
predefined by default only in -cckr and -xansi mode.

#pragma unknown_control_flow

The #pragma unknown_control_flow directive indicates that the procedures
listed as func1, func2, etc. have a nonstandard control flow behavior, such as setjmp
or getcontext. This type of behavior interferes with optimizations such as tail call
optimization.

The syntax of #pragma unknown_control_flow is as follows:

#pragma unknown_control_flow [func1 , [func2] ...]

This directive should appear after the external declaration of the function(s).

007–3587–005 111

Chapter 15

The Auto-Parallelizing Option (APO)

The Auto-Parallelizing Option (APO) enables the MIPSpro C/C++ compilers to
optimize parallel codes and enhances performance on multiprocessor systems. APO is
controlled with command line options and source directives.

APO is integrated into the compiler; it is not a source-to-source preprocessor.
Although run-time performance suffers slightly on single-processor systems,
parallelized programs can be created and debugged with APO enabled.

Parallelization is the process of analyzing sequential programs for parallelism and
restructuring them to run efficiently on multiprocessor systems. The goal is to
minimize the overall computation time by distributing the computational workload
among the available processors. Parallelization can be automatic or manual.

During automatic parallelization, the compiler analyzes and restructures the program
with little or no intervention by you. With APO, the compiler automatically generates
code that splits the processing of loops among multiple processors. An alternative is
manual parallelization, in which you perform the parallelization using compiler
directives and other programming techniques.

APO integrates automatic parallelization with other compiler optimizations, such as
interprocedural analysis (IPA), optimizations for single processors, and loop nest
optimization (LNO). In addition, run-time and compile-time performance is improved.

For details on using APO command line options and source directives, see the
MIPSpro C++ Programmer’s Guide

007–3587–005 113

Index

A

ABI
N32 APO, 113
N64 APO, 113

affinity, 81, 82
aggressive inner loop fission, 50
align_symbol, 21
APO, 113
Application Program Interface, 95
Auto-Parallelizing Option

See "APO", 113
Automatic parallelization

definition, 113
automatic parallelization, 11

B

blocking size, 51

C

C++ instatiation directives, 17
can_instantiate, 18
chunksize, 88
Clauses

affinity, 81, 82
chunksize, 88
for #pragma parallel, 74
for #pragma pfor, 79
for #pragma prefetch_ref, 57
if, 75
iterate, 79
lastlocal, 80
local, 75, 80

nest, 85
numthreads, 76
onto, 27, 33
reduction, 81
schedtype, 85
shared, 74

concurrent, 11
concurrent call, 12
concurrentize, 14
copyin, 62
critical, 63

D

Data layout directives, 21
Directives

OpenMP, 95
See "#pragma", 11

Directives, list of, 2
distribute, 25
distribute_reshape, 28
Distributed shared memory optimization, 25
do_not_instantiate, 19
DSM optimization, 25
dynamic, 30

E

enter gate, 66
exit gate, 66

F

fill_symbol, 23

007–3587–005 115

Index

fission, 52
fissionable, 52
fusable, 53
fuse, 53

H

hdrstop, 101
hidden, 42

I

ident, 109
if, 75
independent, 69
inline, 35
Inlining directives, 35
instantiate, 17
instantiation directives, 17
int_to_unsigned, 110
internal, 42
intrinsic, 110
IPA

automatic parallelization, 113
iterate, 79
ivdep, 54

L

lastlocal, 80
LNO

automatic parallelization, 113
Loader information directives, 41
local, 70, 75, 80
Loop nest optimization directives, 49

M

Manual parallelization, 113
mips_frequency_hint, 103
Multiprocessing c compiler directives, 2
Multiprocessing directives, 61

N

nest, 85
no blocking, 51
no fission, 52
no fusion, 53
no interchange, 54
no side effects, 71
no_delete, 43
no_pch, 102
noconcurrentize, 14
noinline, 35
numthreads, 76

O

once, 102
one processor, 71
onto clause

#pragma distribute, 27
#pragma redistribute, 33

OpemMP
multiprocessing directives, 95

Optimization
APO, 113

optional, 43

P

pack, 24
page_place, 31

116 007–3587–005

MIPSproTM C and C++ Pragmas

parallel, 72
Parallelization

automatic, 113
definition, 113
manual, 113

permutation, 15
pfor, 76
#pragma

aggressive inner loop fission, 50
align_symbol, 21
blocking size, 51
can_instantiate, 18
concurrent, 11
concurrent call, 12
concurrentize, 14
copyin, 62
critical, 63
distribute, 25
distribute_reshape, 28
do_not_instantiate, 19
dynamic, 30
enter gate, 66
exit gate, 66
fill_symbol, 23
fission, 52
fissionable, 52
fusable, 53
fuse, 53
hdrstop, 101
hidden, 42
ident, 109
independent, 69
inline, 35
instantiate, 17
int_to_unsigned, 110
internal, 42
intrinsic, 110
ivdep, 54
local, 70
mips_frequency_hint, 103
no blocking, 51
no fission, 52

no fusion, 53
no interchange, 54
no side effects, 71
no_delete, 43
no_pch, 102
noconcurrentize, 14
noinline, 35
once, 102
one processor, 71
optional, 43
pack, 24
page_place, 31
parallel, 72
permutation, 15
pfor, 76
prefer concurrent, 15
prefer serial, 16
prefetch, 55
prefetch_manual, 56
prefetch_ref, 56
prefetch_ref_disable, 58
protected, 44
pure, 89
redistribute, 32
reset woff, 106
section_gp, 45
section_non_gp, 45
serial, 16
set chunksize, 89
set numthreads, 90
set schedtype, 90
set woff, 105
shared, 91
synchronize, 91
unknown_control_flow, 111
unroll, 58
weak, 46

Precompiled header directives, 101
prefer concurrent, 15
prefer serial, 16
prefetch, 55

007–3587–005 117

Index

prefetch_manual, 56
prefetch_ref, 56
prefetch_ref_disable, 58
prefetching, 55
protected, 44
pure, 89

R

redistribute, 32
reduction, 81
reset woff, 106

S

Scalar optimization directives, 103
schedtype, 85
section_gp, 45
section_non_gp, 45

serial, 16
set chunksize, 89
set numthreads, 90
set schedtype, 90
set woff, 105
shared, 74, 91
synchronize, 91

U

unknown_control_flow, 111
unroll, 58

W

Warning suppression control directives, 105
weak, 46

118 007–3587–005

	New Features in this Guide
	Table of Contents
	List of Figures
	List of Tables
	List of Examples

	About This Manual
	Related Publications
	Obtaining Publications
	Conventions
	Reader Comments

	1. Alphabetical Listing of Directives
	2. Automatic Parallelization #pragma Directives
	#pragma concurrent
	#pragma concurrent call
	#pragma concurrentize
	#pragma no concurrentize
	#pragma permutation
	#pragma prefer concurrent
	#pragma prefer serial
	#pragma serial

	3. C++ Instantiation #pragma Directives
	#pragma instantiate
	#pragma can_instantiate
	#pragma do_not_instantiate

	4. Data Layout #pragma Directives
	#pragma align_symbol
	#pragma fill_symbol
	#pragma pack

	5. DSM Optimization #pragma Directives
	#pragma distribute
	onto Clause

	#pragma distribute_reshape
	#pragma dynamic
	#pragma page_place
	#pragma redistribute
	onto Clause

	6. Inlining #pragma Directives
	#pragma inline and #pragma noinline
	Keywords
	Examples of #pragma inline and #pragma noinline

	7. Loader Information #pragma Directives
	#pragma hidden
	#pragma internal
	#pragma no_delete name
	#pragma optional
	#pragma protected
	#pragma section_gp
	#pragma section_non_gp
	#pragma weak

	8. Loop Nest Optimization #pragma Directives
	#pragma aggressive inner loop fission
	#pragma blocking size
	#pragma no blocking
	#pragma fission
	#pragma fissionable
	#pragma no fission
	#pragma fuse
	#pragma fusable
	#pragma no fusion
	#pragma no interchange
	#pragma ivdep
	#pragma prefetch
	#pragma prefetch_manual
	#pragma prefetch_ref
	#pragma prefetch_ref_disable
	#pragma unroll

	9. Multiprocessing #pragma Directives
	#pragma copyin
	Example of #pragma copyin

	#pragma critical
	#pragma enter gate and #pragma exit gate
	#pragma independent
	#pragma local
	#pragma no side effects
	#pragma one processor
	#pragma parallel
	#pragma parallel Clauses
	shared :Specifying Shared Variables
	local :Specifying Local Variables
	if: Specifying Conditional Parallelization
	numthreads :Specifying the Number of Threads

	#pragma pfor
	C++ Multiprocessing Considerations With #pragma pfor

	#pragma pfor Clauses
	iterate :Specifying the for Loop
	local and lastlocal: Specifying Local Variables
	reduction :Specifying Variables for Reduction
	affinity: Thread Affinity
	affinity :Data Affinity
	Data Affinity for Redistributed Arrays
	Data Affinity for a Formal Parameter
	Data Affinity and the #pragma pfor nest Clause
	nest :Exploiting Nested Concurrency
	schedtype: Sharing Loop Iterations Among Processors
	chunksize :Specifying the Number of Iterations in a Chunk

	#pragma pure
	#pragma set chunksize
	#pragma set numthreads
	Using #pragma set numthreads

	#pragma set schedtype
	#pragma shared
	#pragma synchronize

	10. OpenMP C/C++ API Multiprocessing Directives
	Using Directives
	Conditional Compilation
	parallel Construct
	Work{sharing Constructs
	Combined Parallel Work-sharing Constructs
	Master and Synchronization Constructs
	Data Environment Constructs
	Directive Binding
	Directive Nesting

	11. Precompiled Header #pragma Directives
	#pragma hdrstop
	#pragma no_pch
	#pragma once

	12. Scalar Optimization #pragma Directives
	#pragma mips_frequency_hint

	13. Warning Suppression Control #pragma Directives
	#pragma set woff
	#pragma reset woff

	14. Miscellaneous #pragma Directives
	#pragma ident
	#pragma int_to_unsigned
	#pragma intrinsic
	#pragma unknown_control_flow

	15. The Auto-Parallelizing Option (APO)
	Index

