
1

This Presentation consists of several animations and is mostly compiled out of the Ph.D. defense
presentation of Volker Markl. Many parts and fragments have also been presented at several
workshops and conferences (including VLDB 2000, ICDE 1999, IDEAS 1999) as well as at
several DBMS vendors in U.S., Germany, and Japan.
The UB-Tree is a multidimensional access method that has been invented by Rudolf Bayer in
1996 and has been investigated by Volker Markl and Rudolf Bayer since then.
The presentation gives an overview of the MISTRAL project, an international research and
development project with the goal to investigate the UB-Tree and its applications which has been
undertaken at FORWISS from 1997 to 2000.
Further references, information, animations and interactive visualization tools can be found under
URL http://mistral.in.tum.de
For detailed explanation of UB-Trees please refer to
[Bay96] R. Bayer. The Universal B-Tree for multidimensional Indexing. Technical Report TUM-
I9637,November 1996. http://mistral.in.tum.de/results/publications/TUM-I9637.pdf
[Mar99] V. Markl. MISTRAL: Processing Relational Queries using a Multidimensional Access
Technique, Ph.D. Thesis, TU München, 1999, published by infix Verlag, St. Augustin, DISDBIS
59, ISBN 3-89601-459-5, 1999. http://mistral.in.tum.de/results/publications/Mar99.pdf
[MZB99] V. Markl, M. Zirkel, and R. Bayer. Processing Operations with Restrictions in
Relational Database Management Systems without external Sorting. Proc. of ICDE Conf.,
Sydney, Australia, 1999. http://mistral.in.tum.de/results/publications/MZB99.pdf
[MRB99] V. Markl, F. Ramsak, and R. Bayer. Improving OLAP Performance by
Multidimensional Hierarchical Clustering. Proc. of IDEAS Conf., Montreal, Canada, 1999.
http://mistral.in.tum.de/results/publications/MRB99.pdf
[RMF+00] F. Ramsak, V. Markl, R. Fenk et al. Integrating the UB-Tree into a Database System
Kernel Proc. of VLDB Conf. 2000, Cairo, Egypt, 2000.
http://mistral.in.tum.de/results/publications/RMF+00.pdf

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

1

MISTRAL
Processing Relational Queries Using a Multidimensional Access

Method

Volker Markl
Rudolf Bayer

http://mistral.in.tum.de
FORWISS

(Bayerisches Forschungszentrum
für Wissensbasierte Systeme)

2

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

2

Staff Members
MISTRAL Project Management

Prof. Rudolf Bayer, Ph.D. (FORWISS Knowledge Bases Group Head)

Dr. Volker Markl (MISTRAL Project Leader, Deputy Research Group Head)

MISTRAL Research Assistants
Dipl. Inform. Robert Fenk

Dipl. Inform. Roland Pieringer

Frank Ramsak, M.Sc.

Dipl. Inform. Martin Zirkel

MISTRAL Master Students and Interns
Ralf Acker, Bulent Altan, Sonja Antunes, Michael Bauer, Sascha Catelin, Naoufel Boulila, Nils Frielinghaus,

Sebastian Hick, Stefan Krause, Jörg Lanzinger, Christian Leiter, Yiwen Lue, Stephan Merkel, Nasim Nadjafi, Oliver

Nickel, Daniel Ovadya, Markus Pfadenauer, Timka Piric, Sabine Rauschendorfer, Antonius Salim, Maximilian

Schramm, Michael Streichsbier, Anton Tichatschek

The MISTRAL project team consists of 5 full time researchers and a large set of
master students, interns and guests of the participating companies.

3

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

3

http://mistral.in.tum.de

Range Queries

Tetris Algorithm

The partners on this slide have been sponsoring the MISTRAL work.

4

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

4

Overview
1. Concept of the UB-Tree: Z-Regions

2. Insertion

3. Range Query Algorithm

4. Tetris Algorithm

5. Kernel Integration

6. Performance Overview

5

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

5

Relations and MD Space
● Decision Support Relation (similar to TPC-D)

– Fact(customer, product, time, Sales)
� defines a three dimensional cube

● Point Query
– All sales for one customer for one specific product on

a certain day

● Partial Match Query
– All sales for product X

● Range Query
– All sales for year 1999 for a specific product group

for a specific customer group

This slide gives an example of how to map queries with multi-attribute
restrictions on a relational table to multidimensional range queries. Queries with
multi-attribute restrictions are typical for decision support applications, but also
frequent in archiving, geographical applications and relational database systems
in general.

6

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

6

Design Goals
● clustering tuples on disk pages while preserving

spatial proximity

● efficient incremental organization

● logarithmic worst-case guarantees for insertion,
deletion and point queries

● efficient handling of range queries

● good average memory utilization

The design goals on this slide are generic for designing an access method, both
for single-attribute or multi-attribute access methods. However, most multi-
attribute methods do not fulfill all of the design goals. R-Trees, for instance, do
not offer a good average memory utilization. Most multidimensional access
methods like R*-Trees, Grid-Files or kd-B-Trees do not allow for efficient
incremental organization, e.g., by requiring forced reinsertion, Grid-Splits or
even complex reorganizations. Since UB-Trees (as we will see) rely on standard
B-Trees for their storage organization of so-called Z-regions, they inherit all of
the above properties from the underlying B-Tree structure.

7

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

7

Z-Ordering

��
−

= =

−+⋅⋅=
1

0 1

1
, 2)Z(

s

i

d

j

jdi
ijxx

10 54 1716 2120
32 76 1918 2322
98 1312 2524 2928
1110 1514 2726 3130
3332 3736 4948 5352
3534 3938 5150 5554
4140 4544 5756 6160
4342 4746 5958 6362

10 32 54 76

1
0

4

2

5

3

7
6

(a) (b)

Z(x) is a bijective function that computes for every tuple x its Z-address, i.e., its
position on the space filling Z-curve. The slide presents the Z-addresses (or Z-
values) for an 8x8 universe. Z-values are efficiently computed by bit-interleaving
as described e.g. by Orenstein and Merret in 1984. An additional animation
http://mistral.in.tum.de/results/presentations/ppt/zaddress.ppt

on the Mistral Web Site describes bit-interleaving.

8

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

8

Z-regions/UB-Trees
A Z-region [α : β] is the space covered by an interval
on the Z-curve and is defined by two Z-addresses α and β.

UB-Tree partitioning:
[0 : 3],[4 : 20],
[21 : 35], [36 : 47],
[48 : 63]

Z-region [4 : 20]

4 20

point data creating
the UB-Tree on the
left for a page
capacity of 2 points

A Z-region is the space covered by an interval on the Z-curve. Thus a Z-region has two
meaningful interpretations, a linear interpretation as an interval as well as a spatial interpretation.
The left part of this animation shows the Z-region [4:20] and its spatial interpretation. The spatial
extent of the Z-region becomes clearer if we draw the Z-region into the picture. Please note that
bit-interleaving is an efficient means to calculate the Z-value for a tuple (or the inverse, i.e., the
tuple values for a given Z-value). Thus we can arbitrarily switch between the linear Z-space and
the geometric interpretation.
The middle part shows a Z-region partitioning (or also called UB-Tree partitioning) which is a
disjoint set of Z-regions whose union covers the entire multidimensional space. In this picture the
partitioning consists of 5 Z-regions. Most Z-regions preserve spatial proximity, i.e., neighboring
points of a given point are in the same region with a high probability. The orange region [21 : 35]
consists of two disconnected parts. If a Z-region could consist of many disconnected parts, this
would prevent Z-regions from being suitable for clustering. However, [Mar99] gives a proof that
regardless of the dimensionality of the Z-ordered space (i.e., not only for 2d) the number of not
connected parts of a Z-region is at most two.
We can consider a Z-region corresponding to a disk page, i.e., being a container of a fixed or

variable capacity storing tuples which fall into the spatial extent of the Z-region. The right part of
the animation shows a point distribution of 10 points which with a page capacity of two points per
page might be stored in the Z-region partitioning of the middle picture of this slide .
We use a B-Tree to store the upper limit of the Z-value of each Z-region and call the
corresponding B-Tree storing the Z-region organization Universal B-Tree (UB-Tree) [Bay96,
Mar99]

9

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

9

UB-Tree Insertion 1/2/3/4

UB-Tree disk pages correspond to Z-regions. Each tuple is stored on a disk page corresponding to
the Z-region that this tuple spatially belongs to. Each Z-region can store a certain capacity of
tuples and must be split into two Z-regions during insertion if the page capacity of a Z-region is
exceeded. Details can be found in [Bay96] and [Mar99]
This animation shows how data is inserted into a two-dimensional UB-Tree assuming a page (Z-
region) capacity of two tuples (or points). We start with an empty UB-Tree consisting of a single
Z-region corresponding to one disk page (the root node of the UB-Tree). Now points are inserted
into the universe (indicated by red circles). As soon as the third point is inserted, the Z-region
covering the the entire universe must be split into two Z-regions. This is done by choosing a
separator Z address on that page which ensures that 50% of the tuples stored already on that page
will have a lower value (in Z-order) than the separator. Choosing this separator for the split
ensures a page utilization of 50%. To optimize the geometric shape of Z-regions, an additional
heuristics exploiting the remaining freedom of choice for the separator may be used to avoid
fringes (however, this optimization is not used in the animation above). In addition, the geometric
shape of the region may be improved (be more rectangular) by lowering the page utilization and
thereby offering a greater freedom of choice for the separator selection. However, in practice one
can remain with the 50% choice.
After the (in this case horizontal) split, the UB-Tree consists of two Z-regions. Inserting further
points causes further splits each time the page capacity of a Z-region is exceeded. This animation
continues until a UB-Tree consisting of 4 Z-regions storing 8 tuples has been created.
In the enclosed file
http://mistral.in.tum.de/results/presentations/ppt/insert.ppt

one can find another animation of the UB-Tree insertion, using our standard view with a screen
split into three sections CODE, Z-SPACE and GEOMETRIC SPACE (in this presentation the
range query animation uses that layout) which allows to see the algorithm running view the code,
the events happening in geometric space as well as the events happening in linear Z-space as
stored in the B-Tree of the UB-Tree.

10

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

10

UB-Tree Insertion 18/19

This slide shows that insertion into UB-Trees is a local operation and thus allows
for efficient incremental updates. We have inserted further points into the UB-
Tree which induced further splits into 18 Z-regions (left UB-Tree visualization).
The UB-Tree on the right side was created by inserting further points into the last
Z-region (in Z-order) of the second quadrant (in the UB-Tree on the left). It is
important to note that only this single Z-region is split, resulting in one update
and one write of B-Tree leaf pages (plus possible further splits on the upper B-
Tree levels). This is a major difference to other multidimensional access methods
like R-Trees or Grid-Files.

11

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

11

Multidimensional Range Query
SELECT * FROM table

WHERE (A1 BETWEEN a1 AND b1) AND
(A2 BETWEEN a2 AND b2) AND
.....
(An BETWEEN an AND bn)

The goal of a multidimensional access methods is to efficiently answer
multidimensional range queries which are created by the SQL query template
above.

12

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

12

Theoretical Comparison of the
Rangequery Performance

ideal
case

s1*s2*P

multidimensional
index

s1
↑↑↑↑ *s2

↑↑↑↑ *P

multiple
B-Trees,

bitmap indexes

s1*I1+s2*I2+s1*s2*T

composite
key clustering

B-Tree

s1*P

This slide illustrates how range queries are processed with access methods that
are standard in today‘s relational DBMS. For simplification of our illustration we
assume uniformly distributed data as well as independence of the dimensions. We
assume a table consisting of P disk pages and a query box with the selectivities s1
and s2. In the ideal case we thus have to retrieve s1*s2*P disk pages to answer
the query. With a composite key B-Tree, however, only the leading dimension of
the composite key can be utilized, resulting in reading s1*P disk pages in the blue
stripe. The result set is then determined by post filtering the tuples in main
memory after retrieval. With bitmap indexes or multiple B-Trees, index
intersection results in reading row ids or bitmaps with sizes s1*i1 and s2*i2 for
index sizes of i1 respectively i2 pages. After this intersection, the result set tuples
are retrieved by random access, resulting in s1*s2*T page reads, if T tuples are
stored in the table. Note the difference between T (the number of tuples in the
table) and P (the number of pages in the table). With an average of 30 tuples
(empirical value from our project partners) per page bitmap indexes or multiple
B-Trees are immediately more than 30 times worse than the ideal case. In
contrast to that, a multidimensional index clusters the data more symmetrically
with respect to all dimensions. Since this clustering or partitioning is discrete,
there is always an overhead. However, with large database sizes the overhead
gets smaller. In general this means that multidimensional indexes approximate
the ideal case with some kind of ceiling function for each selectivity.

13

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

13

rangeQuery(Tuple ql, Tuple qh)
{

Zaddress start = Z(ql);
Zaddress cur = start;
Zaddress end = Z(qh);
Page page = {};

while (1)
{
cur = getRegionSeparator(cur);
page = getPage(cur);
outputMatchingTuples(page, ql, qh);
if (cur >= end) break;

cur = getNextZAddress(cur, start, end);
}

}

B*-Tree

linear Z-space

UB-Tree

This slide and the following slides explain the UB-Tree range query algorithm.
The screen is divided into 4 sections: The left part shows the code, the right part
shows the geometrical interpretation of the UB-Tree (UB-Tree), the linear B*-
Tree as well as the linear Z-space. Please note that the UB-Tree and the B*-Tree
on the linear Z-space are merely two different interpretations or visualizations of
the same data set. In the algorithms we can arbitrarily switch between both
representations. In the following we show how the read query box defined by the
tuples ql and qh with (ql, qh) is processed by the range query algorithm.

14

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

14

rangeQuery(Tuple ql, Tuple qh)
{

Zaddress start = Z(ql);
Zaddress cur = start;
Zaddress end = Z(qh);
Page page = {};

while (1)
{
cur = getRegionSeparator(cur);
page = getPage(cur);
outputMatchingTuples(page, ql, qh);
if (cur >= end) break;

cur = getNextZAddress(cur, start, end);
}

}

B*-Tree

linear Z-space

UB-Tree

First the algorithm calculates the start and the end Z-values of the query box
coordinates ql and qh.

15

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

15

rangeQuery(Tuple ql, Tuple qh)
{

Zaddress start = Z(ql);
Zaddress cur = start;
Zaddress end = Z(qh);
Page page = {};

while (1)
{
cur = getRegionSeparator(cur);
page = getPage(cur);
outputMatchingTuples(page, ql, qh);
if (cur >= end) break;

cur = getNextZAddress(cur, start, end);
}

}

B*-Tree

linear Z-space

UB-Tree

First the region separator of the Z-region where the start point of the query box is
located is determined by a single B-Tree point search (in SQL: SELECT min(Z)
where Z>cur) as illustrated by the blue path through the B-Tree.

16

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

16

rangeQuery(Tuple ql, Tuple qh)
{

Zaddress start = Z(ql);
Zaddress cur = start;
Zaddress end = Z(qh);
Page page = {};

while (1)
{
cur = getRegionSeparator(cur);
page = getPage(cur);
outputMatchingTuples(page, ql, qh);
if (cur >= end) break;

cur = getNextZAddress(cur, start, end);
}

}

B*-Tree

linear Z-space

UB-Tree

Then the leaf page corresponding to that Z-region is retrieved as illustrated by the
blue leaf page in the B-Tree as well as the green colored space in the UB-Tree.

17

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

17

rangeQuery(Tuple ql, Tuple qh)
{

Zaddress start = Z(ql);
Zaddress cur = start;
Zaddress end = Z(qh);
Page page = {};

while (1)
{
cur = getRegionSeparator(cur);
page = getPage(cur);
outputMatchingTuples(page, ql, qh);
if (cur >= end) break;

cur = getNextZAddress(cur, start, end);
}

}

B*-Tree

linear Z-space

UB-Tree

Then all tuples of that page that are inside the query box are returned.

18

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

18

rangeQuery(Tuple ql, Tuple qh)
{

Zaddress start = Z(ql);
Zaddress cur = start;
Zaddress end = Z(qh);
Page page = {};

while (1)
{
cur = getRegionSeparator(cur);
page = getPage(cur);
outputMatchingTuples(page, ql, qh);
if (cur >= end) break;

cur = getNextZAddress(cur, start, end);
}

}

B*-Tree

linear Z-space

UB-Tree

Now the next Z-address intersecting the query box is computed, i.e.,
cur = min { Z(x) where x in [[ql, qh]] and Z(x) > cur)
This is achieved by an algorithm that only requires O(n) bit operations (copy and
compare) where n is the number of bits (i.e., length) of the Z-address cur.
The details of that algorithm can be found in [Mar99] and [RMF+00].

19

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

19

rangeQuery(Tuple ql, Tuple qh)
{

Zaddress start = Z(ql);
Zaddress cur = start;
Zaddress end = Z(qh);
Page page = {};

while (1)
{
cur = getRegionSeparator(cur);
page = getPage(cur);
outputMatchingTuples(page, ql, qh);
if (cur >= end) break;

cur = getNextZAddress(cur, start, end);
}

}

B*-Tree

linear Z-space

UB-Tree

After that the algorithm proceeds in the same way as described before until the
entire query box has been processed, i.e., cur > end.

20

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

20

rangeQuery(Tuple ql, Tuple qh)
{

Zaddress start = Z(ql);
Zaddress cur = start;
Zaddress end = Z(qh);
Page page = {};

while (1)
{
cur = getRegionSeparator(cur);
page = getPage(cur);
outputMatchingTuples(page, ql, qh);
if (cur >= end) break;

cur = getNextZAddress(cur, start, end);
}

}

B*-Tree

linear Z-space

UB-Tree

21

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

21

rangeQuery(Tuple ql, Tuple qh)
{

Zaddress start = Z(ql);
Zaddress cur = start;
Zaddress end = Z(qh);
Page page = {};

while (1)
{
cur = getRegionSeparator(cur);
page = getPage(cur);
outputMatchingTuples(page, ql, qh);
if (cur >= end) break;

cur = getNextZAddress(cur, start, end);
}

}

B*-Tree

linear Z-space

UB-Tree

22

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

22

rangeQuery(Tuple ql, Tuple qh)
{

Zaddress start = Z(ql);
Zaddress cur = start;
Zaddress end = Z(qh);
Page page = {};

while (1)
{
cur = getRegionSeparator(cur);
page = getPage(cur);
outputMatchingTuples(page, ql, qh);
if (cur >= end) break;

cur = getNextZAddress(cur, start, end);
}

}

B*-Tree

linear Z-space

UB-Tree

23

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

23

rangeQuery(Tuple ql, Tuple qh)
{

Zaddress start = Z(ql);
Zaddress cur = start;
Zaddress end = Z(qh);
Page page = {};

while (1)
{
cur = getRegionSeparator(cur);
page = getPage(cur);
outputMatchingTuples(page, ql, qh);
if (cur >= end) break;

cur = getNextZAddress(cur, start, end);
}

}

B*-Tree

linear Z-space

UB-Tree

24

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

24

rangeQuery(Tuple ql, Tuple qh)
{

Zaddress start = Z(ql);
Zaddress cur = start;
Zaddress end = Z(qh);
Page page = {};

while (1)
{
cur = getRegionSeparator(cur);
page = getPage(cur);
outputMatchingTuples(page, ql, qh);
if (cur >= end) break;

cur = getNextZAddress(cur, start, end);
}

}

B*-Tree

linear Z-space

UB-Tree

25

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

25

rangeQuery(Tuple ql, Tuple qh)
{

Zaddress start = Z(ql);
Zaddress cur = start;
Zaddress end = Z(qh);
Page page = {};

while (1)
{
cur = getRegionSeparator(cur);
page = getPage(cur);
outputMatchingTuples(page, ql, qh);
if (cur >= end) break;

cur = getNextZAddress(cur, start, end);
}

}

B*-Tree

linear Z-space

UB-Tree

26

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

26

rangeQuery(Tuple ql, Tuple qh)
{

Zaddress start = Z(ql);
Zaddress cur = start;
Zaddress end = Z(qh);
Page page = {};

while (1)
{
cur = getRegionSeparator(cur);
page = getPage(cur);
outputMatchingTuples(page, ql, qh);
if (cur >= end) break;

cur = getNextZAddress(cur, start, end);
}

}

B*-Tree

linear Z-space

UB-Tree

27

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

27

rangeQuery(Tuple ql, Tuple qh)
{

Zaddress start = Z(ql);
Zaddress cur = start;
Zaddress end = Z(qh);
Page page = {};

while (1)
{
cur = getRegionSeparator(cur);
page = getPage(cur);
outputMatchingTuples(page, ql, qh);
if (cur >= end) break;

cur = getNextZAddress(cur, start, end);
}

}

B*-Tree

linear Z-space

UB-Tree

28

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

28

rangeQuery(Tuple ql, Tuple qh)
{

Zaddress start = Z(ql);
Zaddress cur = start;
Zaddress end = Z(qh);
Page page = {};

while (1)
{
cur = getRegionSeparator(cur);
page = getPage(cur);
outputMatchingTuples(page, ql, qh);
if (cur >= end) break;

cur = getNextZAddress(cur, start, end);
}

}

B*-Tree

linear Z-space

UB-Tree

29

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

29

rangeQuery(Tuple ql, Tuple qh)
{

Zaddress start = Z(ql);
Zaddress cur = start;
Zaddress end = Z(qh);
Page page = {};

while (1)
{
cur = getRegionSeparator(cur);
page = getPage(cur);
outputMatchingTuples(page, ql, qh);
if (cur >= end) break;

cur = getNextZAddress(cur, start, end);
}

}

B*-Tree

linear Z-space

UB-Tree

30

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

30

rangeQuery(Tuple ql, Tuple qh)
{

Zaddress start = Z(ql);
Zaddress cur = start;
Zaddress end = Z(qh);
Page page = {};

while (1)
{
cur = getRegionSeparator(cur);
page = getPage(cur);
outputMatchingTuples(page, ql, qh);
if (cur >= end) break;

cur = getNextZAddress(cur, start, end);
}

}

B*-Tree

linear Z-space

UB-Tree

Now the end condition is satisfied, since the largest address of the Z-region is
larger than the end address of the query box. Thus, the algorithm can terminate
now.

31

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

31

Range Queries and Data Distributions

This slide shows range queries in sparsely and densely populated parts of the
universe. The data of this UB-Tree consists of 5 clusters (please note that small
Z-regions denote parts of the space that are densely populated since each Z-
region stores about the same number of tuples). Whereas a query in a densely
populated part of the space (left side) retrieves a lot of Z-regions, a query in the
sparsely populated part (right side) retrieves only 3 Z-regions. This means that
the number of pages retrieved is correlated with the results set size, resulting in a
very desirable response time behavior.

32

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

32

Growing Databases

1000 tuples 50 000 tuples

This slide shows that with larger database sizes the Z-region partitioning gets
finer and query boxes are better approximated by the partitioning. This slide also
shows that the UB-Tree partitioning will very well answer a range query if the
query box is larger than the average Z-region size. Of course, if the query box is
smaller than a Z-region, only one or very few Z-regions must be retrieved.

33

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

33

Summary UB-Trees
➼ 50% storage utilization, dynamic updates
➼ Efficient Z-address calculation (bit-interleaving)
➼ Logarithmic performance for the basic operations
➼ Efficient range query algorithm (bit-operations)
➼ Prototype UB/API above RDBMS (Oracle 8,

Informix, DB2 UDB, TransBase, MS SQL 7.0) using
ESQL/C

� Patent application

This slide summarizes the achievements of the MISTRAL project with respect to
the UB-Tree prototype implementation.

34

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

34

Standard Query Pattern
SELECT * FROM table

WHERE (A1 BETWEEN a1 AND b1) AND
(A2 BETWEEN a2 AND b2) AND
.....
(An BETWEEN an AND bn)

ORDER BY Ai, Aj, Ak, ...
(GROUP BY Ai, Aj, Ak, ...)

In addition to range queries, sorting is a very important and frequent operation in
relational databases. Sorting is not only used for ordering, but also provides a
basis for efficient algorithms for duplicate elimination or join operations as well
as for group by operations.

35

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

35

Z-Order/Tetris Order

10 32 54 76

1
0

4

2

5

3

7
6

A
2

A
1

0

63

10 32 54 76

1
0

4

2

5

3

7
6

A
2

A
1

0

63

Tj(x) = xj ◦ Z(x1,...,xj-1,xj+1,...,xd)

1
0

4

2

5

3

7
6

10 32 54 76 A
2

A1

Sorting a Z-ordered space means to introduce a Tetris order, an ordering that
extracts a single attribute out of a Z-ordered space. The Z-regions are read in this
Tetris order as opposed to the Z-order that the range query uses to retrieve Z-
regions. Please confer to [MZB99] for detailed information about Tetris order
and the Tetris algorithm.

36

37

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

37

Summary Tetris
● Combines sort process and evaluation of multi-

attribute restrictions in one processing step

● I/O-time linear w.r. to result set size

● temporary storage sublinear w.r. to result set size

● Sorting no longer a “blocking operation”

� Patent application

This slide summarizes the main results of the Tetris algorithm.

38

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

38

Integration Issues
● Starting point with TransBase:

– clustering B*-Tree

– appropriate data type for Z-values: variable bit strings

● Modifications to B*-Tree in TransBase:
– support for computed keys:

» Z-values are only stored in the index, not together with the
tuples

» tuples are stored in Z-order

– generalization of splitting algorithm:

» computed page separators for improved space partitioning

In the MDA project between FORWISS, GfK, and TransAction Software the
UB-Tree was integrated seamlessly into the RDBMS TransBase. The resulting
product TransBase HyperCube is shipping since Systems 1999 and was awarded
the 2001 IT-Prize by EUROCASE and the European Commission.
The TransBase RDBMS already provided clustering B*-Trees and a bitstring
datatype, which are a pre-requisite for a UB-Tree implementation. These
implementations had to be slightly modified and enhanced in order to store the Z-
addresses used by the UB-Tree.

39

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

39

● Minor extensions:

● Major extensions:

● New modules:

● NO changes for:
– DML

– Multi-user support, i.e.,
locking, logging facilities
� handled by underlying B*-
Tree

Access Structure
Manager

Query
Processor

Lock
Manager

Catalog
Manager

Creation of UB-Trees

SQL
Compiler/Interpreter

Extend Parser with
DDL statements
for UB-Trees

Query
Optimizer

New Rules+Cost Model
for UB-Trees

UB-Tree Range
Query Support

UB-Tree Modules:
Transformation Functions, Page Splitting,
Range Query

Storage
Manager

Recovery
Manager

Buffer
Manager

Communication Manager

This slide shows the extensions that had to be made to TransBase in order to
incorporate the UB-Tree. It is important to note that UB-Trees rely on an
underlying B-Tree; thus locking, caching and recovery did not need to be
modified. Further details about the kernel integration can be found in [RMF+00].

40

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

40

Summary Integration
● Integration of the UB-Tree has been achieved within one year

● TransBase HyperCube is shipping since Systems 1999 and
was awarded the 2001 IT-Prize by EUROCASE and the
European Commission

● UB-Trees speed up relational DBMS for multidimensional
applications like Geo-DB and data warehouse up to two orders
of magnitude

● Speedup is even more dramatic for CD-ROM databases
(archives)

This slide summarizes the integration of the UB-Tree into TransBase.

41

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

41

Application Fields of the UB-Tree
● Data Warehouses

– Measurements with SAP BW Data

» UB-Tree/API for Oracle

» UB-Tree on top of Oracle outperforms conventional B-Tree and
Bitmap indexes in Oracle!

– Measurements with the GfK Data Warehouse

» UB-Tree in TransBase HyperCube

» significant performance increases (Factor of 10)

● Geographic Databases

● „Multidimensional Problems“
– Archiving Systems, Lifecycle-Management, Data Mining, OLAP, OLTP, etc.

The UB-Tree can be applied to any large record set that is queried and retrieved
by multidimensional range queries.
A typical application is data warehousing: Measurements with an UB-Tree API
on top of Oracle compared to built-in Oracle indexes (including bitmap and IOT)
showed speed-ups in favor of the UB-Tree, sometimes of more than two orders of
magnitude. Similar results have been achieved with TransBase HyperCube
compared to native TransBase indexes.
The product TransBase is also used for GIS database, for instance for tracking the
signal quality of the cells of a mobile phone network. Further application areas
for TransBase HyperCube include archiving systems, data ming, and lifecycle
management. Due to the good update and multi-user characteristics, UB-Trees
can also be used to organize OLTP databases.
Performance measurements details and applications of the UB-Tree and
TransBase HyperCube can be found under http://mistral.in.tum.de and
http://www.transaction.de

42

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

42

TheTheTheThe UBUBUBUB----TreeTreeTreeTree

The figure above shows the Z-region partitioning for a GIS database storing point
data for Africa, Europe and the Americas.

43

© 2000 FORWISS, http://mistral.in.tum.de/results/presentations/ppt/ubtree.ppt

FORWISSFORWISS

43

Further Information

Tetris

HI
MISTRAL

UB-Tree

Temptris

http://mistral.in.tum.de

mistral@in.tum.de

