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Magazines and Vmem:
Extending the Slab Allocator to Many CPUs and Arbitrary Resources

Jeff Bonwick, Sun Microsystems
Jonathan AdamsCalifornia Institute of Technology

Abstract

The slab allocator [Bonwick94] provides efficient object caching but has two significant
limitations: its global locking doesn’t scale to manyQs, and thallocator can’t manage
resources other than kernel memory. To provide scalability we introduce a per—processor
caching scheme called thmagazine layeithat provides linear scaling to any number of
CPUs. To support more general resoustlcation we introduce a new virtual memory
allocator,vmem which acts as a universal backing store for the slab allocator. Vmem is a
complete general-purpose resource allocator in its own right, providing several important
new services; it also appears to be the first resource allocator that can satisfy arbitrary—size
allocations in constant time. Magazines and vmem have yielded performance gains
exceeding 50% on system-level benchmarks lik®DIS and SPECweb99.

We ported these technologies from kernel to user context and found that the resulting
libumemoutperforms the current best—-of-breed user-level memory allocators. libumem also
provides a richer programming model and can be used to manage other user—level resources.

1. Introduction 84. Vmem: Fast, General Resource AllocationThe
slab allocator caches relatively small objects and relies
The slab allocator [Bonwick94] has taken on a life of on a more general-purpose backing store to provide
its own since its introduction in these pages sevenslabs and satisfy large allocations. We describe a new
years ago. Initially deployed in Solaris 2.4, it has resource allocatorymem that can manage arbitrary
since been adopted in whole or in part by several othesets of integers — anything from virtual memory
operating systems including Linux, FreeBSD, addresses to minor device numbers to process IDs.
NetBSD, OpenBSD, EROS, and Nemesis. It has also/mem acts as a universal backing store for the slab
been adapted to applications such as BIRD and Perlallocator, and provides powerful new interfaces to
Slab allocation is now described in several OSaddress more complex resource allocation problems.
textbooks [Bovet00, Mauro00, Vahalia96] and is part Vmem appears to be the first resource allocator that
of the curriculum at major universities worldwide. can satisfy allocations and frees of any size in
guaranteed constant time.
Meanwhile, the Solaris slab allocator has continued to
evolve. It now provides per—-CPU memory allocation, 85. Vmem-Related Slab Allocator Improvements.
more general resource allocation, and is available as &/e describe two key improvements to the slab
user-level library. We describe these developments irallocator itself: it now provides object caching fany
seven sections as follows: vmem arena, and can isstexlaim callbackgo notify
clients when the arena’s resources are running low.
§2. Slab Allocator Review. We begin with brief
review of the original slab allocator. 86. libumem: A User-Level Slab Allocator. We
describe what was necessary to transplant the slab
83. Magazines: Per—-CPU Memory Allocation. As  allocator from kernel to user context, and show that
servers with many CPUs became more common andhe resultinglibumem outperforms even the current
memory latencies continued to grow relative to best—-of-breed multithreaded user-level allocators.
processor speed, the slab allocator’s original locking
strategy became a performance bottleneck. We87. Conclusions. We conclude with some observa-
addressed this by introducing a per—-CPU cachingtions about how these technologies have influenced
scheme called thmagazine layer. Solaris development in general.



2. Slab Allocator Review The allocator and its clients cooperate to maintain an

object’s partially initialized, oconstructedstate. The
2.1. Object Caches allocator guarantees that an object will be i_n this state

when allocated; the client guarantees that it will be in
6his state when freed. Thus, we can allocate and free
an object many times without destroying and
reinitializing its locks, condition variables, reference
counts, and other invariant state each time.

Programs often cache their frequently used objects t
improve performance. If a program frequently
allocates and freefoo structures, it is likely to
employ highly optimized foo_alloc() and
foo_free() routines to “avoid the overhead of
malloc.” The usual strategy is to cacfieo objects on

a simple freelist so that most allocations and frees take-2- Slabs

just a handful of instructions. Further optimization is ) ) )
possible if foo objects naturally return to a partially A slabis one or more pages of virtually contiguous

initialized state before they're freed, in which case memory, carved up into equal-size chunks, with a
foo_alloc() can assume that an object on the reference count indicating how many of those chunks

freelist is already partially initialized. are currently allocated. To create new objects the
allocator creates a slab, applies ttanstructorto each

We refer to the techniques described abovehiect chunk, and adds the resulting objects to the ca_che. If
caching. Traditional malloc implementations cannot System memory runs low the allocator can reclaim any
provide object caching because the malloc/freeslabs whose reference count is zero by applying the
interface is typeless, so the slab allocator introducediestructorto each object and returning memory to the

an explicit object cache programming model with VM system. Once a cache is populated, allocations
interfaces to create and destroy object caches, an@nd frees are very fast: they just move an object to or
allocate and free objects from them (see Figure 2.1). from a freelist and update its slab reference count.

Figure 2.1: Slab Allocator Interface Summary

kmem_cache_t *kmem_cache_create(
char *name,

*

descriptive name for this cache */
size_t size, size of the objects it manages */
size_t align, minimum object alignment */

int (*constructor) (void *obj, void *private, int kmflag),

void (*destructor)(void *obj, void *private),

void (*reclaim)(void *private), /* memory reclaim callback */

*

NN

*

void *private, /* argument to the above callbacks */
vmem_t *vmp, /* vmem source for slab creation */
int cflags); /* cache creation flags */

Creates a cache of objects, each of sizee, aligned on aralign boundary. name identifies the cache
for statistics and debuggingconstructor anddestructor convert plain memory into objects and
back again;constructor may fail if it needs to allocate memory but can’teclaim is a callbac
issued by the allocator when system-wide resources are running low (see §brajate is a
parameter passed to tkenstructor, destructor andreclaim callbacks to support parameterized
caches (e.g. a separate packet cache for each instance of a SCSI HBA dvimelis the vmem source
that provides memory to create slabs (see 84 and 85c¥)lags indicates special cache properties.
kmem_cache_create() returns an opague pointer to the object cache (&hkeam cache

void kmem_cache_destroy(kmem_cache_t *cp);

void *kmem_cache_alloc(kmem_cache_t *cp, int kmflag);

Gets an object from the cache. The object will be in its constructed skat€lag is eitherKM_SLEEP
or KM_NOSLEEP, indicating whether it's acceptable to wait for memory if none is currently available.

void kmem_cache_free(kmem_cache_t *cp, void *obj);

Returns an object to the cache. The object must be in its constructed state.

Destroys the cache and releases all associated resources. All allocated objects must have been freed.



Our basic approach is to give each CPU an M—element
cache of objects called magazine by analogy with
“Adding per-CPU caches to the slab algorithm would atomatic weapons. Each CPU’s magazine can satisfy
provide an excellent allocator. M allocations before the CPU needsétpad— that is,
exchange its empty magazine for a full one. The CPU
doesn’t access any global data when allocating from
its magazine, so we can increase scalability arbitrarily
by increasing the magazine size (M).

3. Magazines

Uresh VahaliaJNIX Internals: The New Frontiers

The biggest limitation of the original slab allocator is
that it lacks multiprocessor scalability. To allocate an

object the allocator must acquire the lock that protectﬁn this section we describe how the magazine layer

the cache’s slab list, thus serializing all aIIocations.WOrks and how it performs in bractice. Eiqure 3
To allow all @PUs toallocate in parallel we need some ) P P : 9
form of per-CPU caching. (below) illustrates the key concepts.

Figure 3: Structure of an Object Cache — The Magazine and Slab Layers
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3.1. Overview We address this by keeping thmeviously loaded
magazinein the CPU layer, as shown in Figure 3

A magazineis an M-element array of pointers to (Previous page). If the loaded magazine cannot satisfy
object$ with a count of the number afounds(valid @ transaction but the previous magazine can, we
pointers) currently in the array. Conceptually, a €xchangeloaded with previousand try again. If
magazine works like a stack. To allocate an objectneither magazine can satisfy the transaction, we return
from a magazine we pop its top element: pl‘eVIOUStO the depot, movdoaded to preVIOUS and
load a new magazine from the depot.
obj = magazine[--rounds];

) ) ) The key observation is that the only reason to load a
To free an object to a magazine we push itontop:  new magazine is to replace a full with an empty or
vice versa, so we know that after each reload the CPU
either has a fullloaded magazineand an empty

We use magazines to provide each object cache with T€vious magazineor vice versa. The CPU can
small per-CPU object supply. Each CPU has its owntherefore satisfy at least M aIIocanoam_j at least M _
loaded magazine;so transactions (allocations and T€€S entirely with CPU-local magazines before it

frees) can proceed in parallel on aP@s. must access the depot again, so the CPU layer's
worst—case miss rate is bounded by 1/M regardless of

The interesting question is what to do if the loadedWorkload.

magazine is empty when we want to allocate an object . , ) )

(or full when we want to free one). We cannot just In the common case of short-lived objects with a high
fall through to the slab layer, because then a long rur@llocation rate there are two performance advantages
of allocations would miss in the CPU layer every time, to this scheme. First, balanced aI_Iog/free pairs on the
ruining scalability. Each object cache therefore keeps@me CPU can almost all be satisfied by the loaded
a global stockpile of magazines, tepot to replenish ~ Mmagazine; therefore we can expect the actual miss rate

its CPU layer. We refer to the CPU and depot layerst® Pe even lower than 1/M. Second, the LIFO nature
collectively as thenagazine layer of magazines implies that we tend to reuse the same

objects over and over again. This is advantageous in
hardware because the CPU will already own the cache
lines for recently modified memory.

magazine[rounds++] = obj;

With M-round magazines we would intuitively expect
the CPU layer's miss rate to be at most 1/M, but in
fact a tight loop of two allocations followed by two . :

frees can cause thrashing, with half of all transactionsFIgure 3.1b (next page) summarizes the overall

; a magazine algorithm in pseudo-code. Figure 3.1c
accessmg_thg globally-locked depemardless of M shows the actual code for the hot path (i.e. hitting in
as shown in Figure 3.1a below.

the loaded magazine) to illustrate how little work is
required.

Figure 3.1a: Thrashing at a Magazine Boundary

allocation allocation free free ) )
takes last gets full adds one gets empty 3 2 ObJeCt ConStrUCtlon
round from magazine round to magazine

magazine, from depot magazine, from depot

leaving it and takes leaving it and adds The original slab allocator applied constructors at slab

empty one round full one round

extreme example, suppose an 8-byte object's

constructor attaches a 1K buffer to itAssuming 8K
pages, one slab would contain about 1000 objects,
which after construction would consume 1MB of

memory. If only a few of these objects were ever
allocated, most of that 1MB would be wasted.

creation time. This can be wasteful for objects whose
CPU Layer

Seor constructors allocate additional memory. To take an

time

We addressed this by moving object construction up to

the magazine layer and keeping only raw buffers in the

slab layer. Now a buffer becomes an object (has its
*We use an array of object pointers, rather than just linking objects constructor appl!ed) when it moves f.rom the slab layer
together on a freelist, for two reasons: first, freelist linkage would Up to the magazine layer, and an object becomes a raw
overwrite an object's constructed state; and second, we plan to usgyffer (has its destructor applied) when it moves from

the slab allocator to manage arbitrary resources, so we can't assumg, o magazine laver back down to the slab laver
that the objects we're managing are backed by writable memory. Yy yer.



explained in 83.3.

Figure 3.1b: The Magazine Algorithm

The allocation and free paths through the magazine layer are almost completely symmetric, as show
The only asymmetry is that the free path is responsible for populating the depot with empty magaz

Alloc:

if (the CPU's Toaded magazine isn't empty)
pop the top object and return it;

if (the CPU's previous magazine is full)
exchange Toaded with previous,
goto Alloc;

if (the depot has any full magazines)
return previous to depot,
move loaded to previous,
Toad the full magazine,
goto Alloc;

allocate an object from the slab layer,
apply its constructor, and return it;

Free:

if (the CPU's Toaded magazine isn't full)
push the object on top and return;

if (the CPU's previous magazine is empty)
exchange Toaded with previous,
goto Free;

if (the depot has any empty magazines)
return previous to depot,
move loaded to previous,
Toad the empty magazine,
goto Free;

if (an empty magazine can be allocated)
put it in the depot and goto Free;

apply the object's destructor
and return it to the slab layer

n below.
ines, as

Figure 3.1c: The Hot Path in the Magazine Layer

{

mutex_enter(&ccp->cc_lock);

return;

void *
kmem_cache_alloc(kmem_cache_t *cp, int kmflag)
{
kmem_cpu_cache_t *ccp = &cp->cache_cpu[CPU->cpu_id];
mutex_enter(&ccp->cc_lock);
if (ccp->cc_rounds > 0) {
kmem_magazine_t *mp = ccp->cc_loaded;
void *obj = mp->mag_round[--ccp->cc_rounds];
mutex_exit(&ccp->cc_lock);
return (obj);
}
}
void

kmem_cache_free(kmem_cache_t *cp, void *obj)

kmem_cpu_cache_t *ccp = &cp->cache_cpu[CPU->cpu_id];

if (ccp->cc_rounds < ccp->cc_magsize) {
kmem_magazine_t *mp = ccp->cc_loaded;
mp->mag_round[ccp->cc_rounds++] = obj;
mutex_exit(&ccp->cc_lock);




3.3. Populating the Magazine Layer 3.5. Protecting Per-CPU State

We have described how the magazine layer worksAn object cache’s CPU layer contains per—CPU state
once it's populated, but how doegét populated? that must be protected either by per-CPU locking or
by disabling interrupts. We selected per—CPU locking
There are two distinct problems here: we must allocatefor several reasons:
objects, and we must allocate magazines to hold them.
» Programming Model. Some operations, such as

» Object allocation. In the allocation path, if the changing a cache’s magazine size, require the
depot has no full magazines, we allocate a single allocator to modify the state of each CPU. This is
object from the slab layer and construct it. trivial if the CPU layer is protected by locks.

+ Magazine allocation. In the free path, if the depot + Real-time. Disabling interrupts increases dispatch

has no empty magazines, we allocate one. latency (because it disables preemption), which is
unacceptable in a real-time operating system like

We never allocate full magazines explicitly, because  Solaris [Khanna92].

it's not necessary: empty magazines are eventually

filled by frees, so it suffices to create empty magazines Performance. On most modern processors,

and let full ones emerge as a side effect of normal grabbing an uncontended lock is cheaper than

allocation/free traffic. modifying the processor interrupt level.

We allocate the magazines themselves (i.e. the arrays
of pointers) from object caches, just like everything 3.6. Hardware Cache Effects
else; there is no need for a special magazine allocator.
Even per-CPU algorithms don’t scale if they suffer
from false sharing (contention for ownership of a
3.4. Dynamic Magazine Resizing cache line that can occur when multiple CPUs modify
logically unrelated data that happens to reside in the
Thus far we have discussed M-element magazine§ame physical cache line). We carefully pad and align
without specifying how M is determined. We've the magazine _Iayer’s per-CPU data structures so t.hat
observed that we can make the CPU layer's miss rat€ach one has its own cache line. We found that doing
as low as we like by increasing M, but making M so iscritical for linear scalability on modern hardware.
larger than necessary would waste memory. We

therefore seek the smallest value of M that deliversAn allocator can alsinducefalse sharing by handing
linear scalability. out objects smaller than a cache line to more than one

CPU [Berger00]. We haven't found this to be a

Rather than picking some “magic value,” we designedpProblem in practice, however, because most kernel

the magazine layer to tune itself dynamically. We data structures are larger than a cache line.

start each object cache with a small value of M and

observe the contention rate on the depot lock. We do

this by using a non-blocking trylock primitive on the 3.7. Using the Depot as a Working Set

depot lock; if that fails we use the ordinary blocking

lock primitive and increment a contention count. If When the system is in steady state, allocations and

the contention rate exceeds a fixed threshold wefrees must be roughly in balance (because memory

increase the cache’s magazine size. We enforce asage is roughly constant). The variation in memory

maximum magazine size to ensure that this feedbackonsumption over a fixed period of time defines a

loop can't get out of control, but in practice the form of working set [Denning68]; specifically, it

algorithm behaves extremely well on everything from defines how many magazines the depot must have on

desktops to 64-CPU Starfires.  The algorithm hand to keep the allocator working mostly out of its

generally stabilizes after several minutes of load withhigh—performance magazine layer. For example, if

reasonable magazine sizes and depot lock contentiothe depot’s full magazine list varies between 37 and 47

rates of less than once per second. magazines over a given period, then the working set is
10 magazines; the other 37 are eligible for reclaiming.

*Note that if we allocated full magazines in the allocation path, this The depot continuously tracks the working set sizes of
would cause infinite recursion the first time we tried to allocate a . . .
magazine for one of the magazine caches. There is no such problerl‘FS full and empty magazine lists, but does not aCtua”y

with allocating empty magazines in the free path. free excess magazines unless memory runs low.



3.8. Microbenchmark Performance 3.9.1. SPECweb99

The two key metrics for an MT—hot memory allocator We ran the industry—standard SPECweb99 web server

are latency and scalability. We measured latency adenchmark [SPEC01] on an 8-CPU E4500. The

the average time per iteration of a tight alloc/free loop. magazine layer more thasoubledperformance, from

We measured scalability by running multiple instances995 to 2037 simultaneous connections. The gain is so

of the latency test on a 333MHz 16—-CPU Starfire. dramatic because every network packet comes from
the allocator.

The latency test revealed that the magazine layer

improves even single-CPU performance (356ns per

alloc/free pair vs. 743ns for the original slab allocator) 3.9.2. TPC-C

because the hot path is so simple (see Figure 3.1c).

Indeed, there is little room for further improvement in \ve ran the industry-standard TPC-C database
latency because the cost of locking imposes a lowehenchmark [TPC01] on an 8-CPU E6000. Magazines
bound of 186ns. improved performance by 7%. The gain here is much

more modest than with SPECweb99 because TPC-C

As we increased the number of threads the magazing not very demanding of the kernel memory allocator.
layer exhibited perfect linear scaling, as shown below.

Without the magazine layer, throughput was actually
lower with additional threads due to increasingly 3.9.3. Kenbus
pathological lock contention. With 16 threads (all 16

CPUs busy) the magazine layer delivered 16 timesye ran Kenbus, a precursor to the SPEC SMT

higher throughput than a single CPU (and 340 times(gystem Multi-Tasking) benchmark currently under
higher throughput than the original allocator), with the development [SPECO1], on a 24-CPU E6000. The

same 356ns latency. magazine layer improved peak throughput by 13% and
. _ . . improved the system’s ability tosustain peak
Figure 3.8: Allocation Scalability throughput as load increased. At maximum tested
load (6000 users) the magazine layer improved system
_ 50M_u yith magazines throughput by 23%.
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We ran several system—level benchmarks both with Number of Simulated Users
and without the magazine layer to assess the magazine

layer's effectiveness. The system was uniformly
faster with magazines, with the greatest improvement%
in allocator-intensive workloads like network 1/0. .10. Summary

The magazine layer provides efficient object caching

with very low latency and linear scaling to any number

of CPUs. We discussed the nemine layer in the
*Unfortunately we could not make direct comparisons with other context of the slab allocator, but in fa}Ct the algomhms
kernel memory allocators because the Solaris kernel makes extensiv@l® completely general. A magazine layer can be
use of the object cache interfaces, which are simply not available inadded taany memory allocator to make it scale.

other allocators. We will, however, provide direct comparisons with
best-of-breed user—level allocators in §6.



4. VYmem + Linear-time performance. All three allocators
maintain a list of free segments, sorted in address

The slab allocator relies on two lower-level system order so the allocator can detect witealescings
services to create slabs: a virtual address allocator to Possible: if segmentga, b) and[b, c) are both
provide kernel virtual addresses, and VM routines to  free, they can be merged into a single free segment

back those addresses with physical pages and establish [, <) to reduce fragmentation. The allocation
virtual-to—physical translations. code performs a linear search to find a segment

large enough to satisfy the allocation. The free

Incredibly, we found that our largest systems were code uses insertion sort (also a linear algorithm) to
scalability-limited by the old virtual address allocator. ~ return a segment to the free segment list. It can
It tended to fragment the address space badly over take severalmillisecondsto allocate or free a

time, its latency was linear in the number of  Segmentonce the resource becomes fragmented.

fragments, and the whole thing was single-threaded.

+ Implementation exposure. A resource allocator
Virtual address allocation is just one example of the needs data structures to keep information about its
more general problem a&source allocation For our free segments. In various ways, all three allocators
purposes, aesourceis anything that can be described ~ make thisyour problem:
by a set of integers. For example, virtual addresses are
subsets of the 64-bit integers; process IDs are subsets * rmalloc() requires the creator of the resource

of the integers [0, 30000]; and minor device numbers map to specify the maximum possible number
are subsets of the 32-bit integers. of free segments at map creation time. If the

map ever gets more fragmented than that, the
Resource allocation (in the sense described above) isa  allocator throws away resources imfree()
fundamental problem that every operating system must because it has nowhere to put them. (!)
solve, yet it is surprisingly absent in the literature. It
appears that 40 years of research on memory allocators * Linux puts the burden on itslientsto supply a
has simply never been applied to resource allocators. segment structure with each allocation to hold
The resource allocators for Linux, all the BSD kernels, the allocator’s internal data. (!)

and Solaris 7 or earlier all use linear—time algorithms. _
+ BSD allocates segment structures dynamically,

In this section we describe a new general-purpose but in so doing creates an awkward failure
resource allocatorymem which provides guaranteed mode:extent_free() fails if it can't allocate
constant-time performance with low fragmentation. a segment structure. It's difficult to deal with
Vmem appears to be the first resource allocator that an allocator that won't let you give stuff back.
can do this.

We concluded that it was time to abandon our stone

We begin by providing background on the current tools and bring modern technology to the problem.

state of the art. We then lay out our objectives in

creating vmem, describe the vmem interfaces, explain

the implementation in detail, and discuss vmem's4.2. Objectives

performance (fragmentation, latency, and scalability)

under both benchmarks and real-world conditions. ~ We believe a good resource allocator should have the
following properties:

4.1. Background » A powerful interface that can cleanly express the
most common resource allocation problems.

Almost all versions of Unix have aesource map

allocator called rmalloc() [Vahalia96]. A resource * Constant-time performance, regardless of the size

map can be any set of integers, though it's most often  of the request or the degree of fragmentation.

an address range likeDxe0000000, 0xf0000000).

The interface is simple:rmalloc(map, size) * Linear scalability to any number ofRUs.

allocates a segment of the specifisilze from map,

andrmfree(map, size, addr) gives it back. + Low fragmentation, even if the operating system
runs at full throttle foyears

Linux’s resource allocatoand BSD’sextent allocator

provide roughly the same services. All three suffer We'll begin by discussing the interface considerations,

from serious flaws in both design and implementation: then drill down to the implementation details.



4.3. Interface Description

The vmem interfaces do three basic things: create and

destroyarenasto describe resources, allocate and free
resources, and allow arenas itaport new resources

Example. To allocate a 20-byte segment whose
address is 8 bytes away from a 64—byte boundary,
and which lies in the range [200, 300), we can say:

addr = vmem_xalloc(foo, 20, 64, 8, O,
200, 300, VM_SLEEP);

dynamically. This section describes the key concepts

and the rationale behind them. Figure 4.3 (next page)

provides the complete vmem interface specification.

4.3.1. Creating Arenas

The first thing we need is the ability to define a
resource collection, aarena An arena is simply a set

of integers. Vmem arenas most often represent virtual

memory addresses (hence the namen), but in fact
they can represent any integer resource, from virtual
addresses to minor device numbers to process IDs.

The integers in an arena can usually be described as
single contiguous range, @pan such as [100, 500),
so we specify thisinitial span to vmem_create().
For discontiguous resources we can ugem_add()

to piece the arena together one span at a time.

+ Example. To create an arena to represent the
integers in the range [100, 500) we can say:

foo = vmem_create(“foo”, 100, 400, ..

BH

In this exampleaddr will be 262: it is 8 bytes
away from a 64—-byte boundary (262 mod 64 = 8),
and the segment [262, 282) lies within [200, 300).

Each vmem_[xJalloc() can specify one of three
allocation policieshrough itsvmflag argument:

VM_BESTFIT. Directs vmem to use the smallest
free segment that can satisfy the allocation. This
policy tends to minimize fragmentation of very

| small, precious resources.

VM_INSTANTFIT. Directs vmem to provide a
good approximation to best-fit in guaranteed
constant time. This is the default allocation policy.

a

VM_NEXTFIT. Directs vmem to use the next free
segment after the one previously allocated. This is
useful for things like process IDs, where we want
to cycle through all the IDs before reusing them.

We also offer an arena-wide allocation policy called
guantum caching The idea is that most allocations

are for just a few quanta (e.g. one or two pages of heap
(Note: 100 is the start, 400 is the size.) If we want or one minor device number), so we employ high-
foo to represent the integers [600, 800) as well, weperformance caching for each multiple of the quantum

can add the span [600, 800) by usimgm_add():

vmem_add(foo, 600, 200, VM_SLEEP);

vmem_create() specifies the arena’s natural unit of
currency, orquantum which is typically eitherl (for
single integers like process IDs) ®AGESIZE (for

up to qcache_max, specified in vmem_create().

We make the caching threshold explicit so that each
arena can request the amount of caching appropriate
for the resource it manages. Quantum caches provide
perfect-fit, very low latency, and linear scalability for
the most common allocation sizes (84.4.4).

virtual addresses). Vmem rounds all sizes to quantum
multiples and guarantees quantum-aligned allocation 3.3, Importing From Another Arena

4.3.2. Allocating and Freeing Resources

Vmem allows one arena tinport its resources from
another. vmem_create() specifies thesource arena
and the functions to allocate and free from that source.

The primary interfaces to allocate and free resourceShe arena imports new spans as needed, and gives

are simple: vmem_alloc(vmp, size, vmflag)
allocates asegmentof size bytes from arena/mp,
andvmem_free(vmp, addr, size) gives it back.

We also provide amem_xalloc() interface that can
specify commonallocation constraints: alignment
phase(offset from the alignment)address rangeand
boundary—-crossing restrictionge.g. “don’t cross a
page boundary”). vmem_xalloc() is useful for

them back when all their segments have been freed.

The power of importing lies in theide effectof the
import functions, and is best understood by example.
In Solaris, the functionsegkmem_alloc() invokes
vmem_alloc() to get a virtual address and then backs
it with physical pages. Therefore, we can create an
arena of mapped pages by simply importing from an
arena of virtual addresses usisggkmem_alToc()

things like kernel DMA code, which allocates kernel and segkmem_free(). Appendix A illustrates how
virtual addresses using the phase and alignmentmem’s import mechanism can be used to create
constraints to ensure correct cache coloring. complex resources from simple building blocks.



Figure 4.3: Vmem Interface Summary

vmem_t *vmem_create(

vmem_t *source,
size_t gcache_max,
int vmflag);

* import source arena */
* maximum size to cache */
VM_SLEEP or VM_NOSLEEP */

3

char *name, /* descriptive name */
void *base, /* start of initial span */
size_t size, /* size of initial span */
size_t quantum, /* unit of currency */
void *(*afunc) (vmem_t *, size_t, int), /* import alloc function */
void (*ffunc)(vmem_t *, void *, size_t), /* import free function */
/*
/-.
/

Creates a vmem arena callesine whose initial span i§base, base + size). The arena’s naturé
unit of currency isquantum, sovmem_alloc() guaranteeguantum—aligned results. The arena m
import new spans by invokingfunc on source, and may return those spans by invokififunc on
source. Small allocations are common, so the arena provides high—performance caching fqg
integer multiple of quantum up to qcache_max. vmflag is either VM_SLEEP or VM_NOSLEEP
depending on whether the caller is willing to wait for memory to create the aremam_create()
returns an opaque pointer to the arena.

void vmem_destroy(vmem_t *vmp);
Destroys arenamp.
void *vmem_alloc(vmem_t *vmp, size_t size, int vmflag);
Allocates size bytes from vmp. Returns the allocated address on succéif,L on failure.

vmem_alloc() fails only if vmflag specifiesVM_NOSLEEP and no resources are currently availak
vmflag may also specify an allocation policyM_BESTFIT, VM_INSTANTFIT, or VM_NEXTFIT) as

described in 84.3.2. If no policy is specified the defaulvs INSTANTFIT, which provides a good

approximation to best—fit in guaranteed constant time.
void vmem_free(vmem_t *vmp, void *addr, size_t size);
Freessize bytes ataddr to arenavmp.

void *vmem_xalloc(vmem_t *vmp, size_t size, size_t align, size_t phase,
size_t nocross, void *minaddr, void *maxaddr, int vmflag);

A

r each

e.

Allocates size bytes at offsetphase from an align boundary such that the resulting segment

[addr, addr + size) is a subset ofminaddr, maxaddr) that does not straddle mocross—
aligned boundary.vmflag is as above. One performance caveat: if eithémaddr or maxaddr is

non-NULL, vmem may not be able to satisfy the allocation in constant time. If allocations within a
given [minaddr, maxaddr) range are common it is more efficient to declare that range to be its own

arena and use unconstrained allocations on the new arena.
void vmem_xfree(vmem_t *vmp, void *addr, size_t size);

Freessize bytes ataddr, whereaddr was a constrained allocatiorvmem_xfree () must be used i
the original allocation wasanem_xalToc () because both routines bypass the quantum caches.

void *vmem_add(vmem_t *vmp, void *addr, size_t size, int vmflag);

Adds the sparfaddr, addr + size) to arenavmp. Returnsaddr on successNULL on failure.
vmem_add () will fail only if vmfTag is VM_NOSLEEP and no resources are currently available.




external boundary tagsFor each segment in the arena
we allocate a boundary tag to manage it, as shown in

In this section we describe how vmem actually works. Figure 4.4 below. (See Appendix A for a description

Figure 4.4 illustrates the overall structure of an arena.0f how we allocate the boundary tags themselves.)
We'll see shortly that external boundary tags enable

constant-time performance.

4.4. Vmem Implementation

4.4.1. Keeping Track of Segments

“Apparently, too few researchers realized the full 4. 4.2, Allocating and Freeing Segments
significance of Knuth’s invention of boundary tags.”

Each arena has segment listthat links all of its
segments in address order, as shown in Figure 4.4.
Every segment also belongs to either a freelist or an
rallocation hash chain, as described below. (The
arena’s segment list also includepan markersto
keep track of span boundaries, so we can easily tell
when an imported span can be returned to its source.)

Paul R. Wilson et. al. in [Wilson95]

Most implementations ofalloc() prepend a small
amount of space to each buffer to hold information fo
the allocator. Theséboundary tags invented by
Knuth in 1962 [Knuth73]solve two major problems:

+ They make it easy fofree() to determine how
large the buffer is, becausealloc() can store
the size in the boundary tag.

We keep all free segments on power—of-two freelists;
that is, freelist[n] contains all free segments
whose sizes are in the rang€',[2™"). To allocate a

+ They make coalescing trivial. Boundary tags link segment we search the appropriate freelist for a
all segments together in address orderfsae () segment large enough to satisfy the allocation. This

can simply look both ways and coalesce if either approach, calledegregated fitactually approximates
neighbor is free. best—fit becauseany segment on the chosen freelist is

a good fit [Wilson95]. (Indeed, with power—of-two
Unfortunately, resource allocators can't use traditionalfreelists, a segregated fit is necessarily within 2x of a
boundary tags because the resource they're managingerfect fit) Approximations to best-fit are appealing
may not be memory (and therefore may not be able tdecause they exhibit low fragmentation in practice for
hold information). In vmem we address this by using a wide variety of workloads [Johnstone97].

Figure 4.4: Structure of a Vmem Arena

vmem_alloc() vectors allocations based on size: small allocations go to the quantum caches, larger ones to the segment list. In this
figure we've depicted an arena with a 1-page quantum and a 5-page gcache_max. Note that the “segment list” is, strictly speaking,
a list of boundary tags (“BT” below) that represent the segments. Boundary tags for allocated segments (white) are also linked into
an allocated-segment hash table, and boundary tags for free segments (gray) are linked into size-segregated freelists (not shown).
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The algorithm for selecting a free segment depends om},4.4. Quantum Caching
the allocation policy specified in the flags to

vmem_alloc() as follows; in all cases, assume that The slab allocator can provide object caching for any
the allocation size lies in the rangé, [2): vmem arena (§5.1), so vmem's quantum caches are
actually implemented as object caches. For each small
integer multiple of the arena’s quantum we create an
object cache to service requests of that size.
vmem_alloc() and vmem_free() simply convert
each small requestsize <= qgcache_max) into a
kmem_cache_alloc() or kmem_cache_free() on
the appropriate cache, as illustrated in Figure 4.4.
ecause it is based on object caching, quantum
caching provides very low latency and linear
scalability for the most common allocation sizes.

+ VM_BESTFIT. Search for the smallest segment on
freelist[n] that can satisfy the allocation.

* VM_INSTANTFIT. If the size is exactly 2 take
the first segment orfreelist[n]. Otherwise,
take the first segment ofireelist[n+1]. Any
segment on this freelist is necessarily large enoug
to satisfy the allocation, so we get constant-time
performance with a reasonably good fit.

* VM_NEXTFIT. Ignore the freelists altogether and

search the arena for the next free segment after the
one previously allocated.

Once we've selected a segment, we remove it from its
freelist. If the segment is not an exact fit we split the
segment, create a boundary tag for the remainder, and

Example. Assume the arena shown in Figure 4.4.
A 3-page allocation would proceed as follows:
vmem_alloc(foo, 3 * PAGESIZE) would call
kmem_cache_alloc(foo->vm_gcache[2]). In
most cases the cache’s magazine layer would
satisfy the allocation, and we would be done. If

the cache needed to create a new slab it would call
vmem_alloc(foo, 16 PAGESIZE), which
would be satisfied from the arena’s segment list.
The slab allocator would then divide its 16—page
slab into five 3—page objects and use one of them
to satisfy the original allocation.

put the remainder on the appropriate freelist. We then
add our newly-allocated segment’s boundary tag to a
hash table semem_free() can find it quickly.

vmem_free() is straightforward: it looks up the
segment’s boundary tag in the allocated—segment hash
table, removes it from the hash table, tries to coalesc?N
the segment with its neighbors, and puts it on the
appropriate freelist. All operations are constant-time
Note that the hash lookup also provides a cheap an
effective sanity check: the freed address must be in th ; . )
hash table, and the freed size must match the segmthse this particular value for three reasons: (1) the slab
size must be larger thangcache_max to prevent

size. This helps to catch bugs such as duplicate freesinfinite recursion; (2) by numerical luck, this slab size

The key feature of the algorithm described above isProvides near-perfect slab packing (e.g. five 3-page
that its performance is independent of both transactiorPPiects fill 15/16 of a 16-page slab); and (3) we'll see
size and arena fragmentation. Vmem appears to pebelow that using a common slab size for all quantum
the first resource allocator that can perform allocationsc@ches helps to reduce overall arena fragmentation.
and frees of any size in guaranteed constant time.

hen we create an arena’s quantum caches we pass a
flag to kmem_cache_create(), KMC_QCACHE, that
‘directs the slab allocator to use a particular slab size:
S‘ue next power of two abovd * qcache_max. We

4.4.5. Fragmentation
4.4.3. Locking Strategy

“A waste is a terrible thing to mind.” - Anonymous

For simplicity, we protect each arena’s segment list,Fragmentation is the disintegration of a resource into
freelists, and hash table with a global lock. We rely ynysably small, discontiguous segments. To see how
and allow the arena’s quantum caches to providegne pyte at a time, then freeing only the even-
linear scalability for all the common allocation sizes. nymbered bytes. The arena would then have 500MB
This strategy is very effective in practice, as illustratedfree, yet it could not even satisfy a 2-byte allocation.
by the performance data in §4.5 and the allocation

statistics for a large Solaris 8 server in Appendix B. e observe that it is theombinationof different

*We like instant-fit because it guarantees constant time performance@llocation sizes and different segment lifetimes that
provides low fragmentation in practice, and is easy to implement.causes persistent fragmentation. If all allocations are
There are many other techniques for choosing a suitable free segmehe same size, then any freed segment can obviously
in reasonable (e.g. logarithmic) time, such as keeping all freesatisfy another allocation of the same size. If all

segments in a size-sorted tree; see [@iB5] for a thorough survey. . ) . . .
Any of these techniques could be used for a vmem implementation. a@llocations are transient, the fragmentation is transient.



We have no control over segment lifetime, but 4.5.2. System-Level Performance

guantum caching offers some control over allocation

size: namely, all quantum caches have the same slamem's low latency and linear scaling remedied

size, so most allocations from the arena’s segment liskerious pathologies in the performance of kernel

occur in slab-size chunks. virtual address allocation undemalloc(), yielding
o _ dramatic improvements in system-level performance.

At first it may appear that all we’ve done is move the

problem: the segment list won’t fragment as much, but. | ADDIS. Veritas reported a 50% improvement in

now the quantum caches;henjselvescan suffer LADDIS peak throughput with the new virtual
fragmentation in the form of partially-used slabs. The memory allocator [Taylor99].

critical difference is that the free objects in a quantum
cache areof a size that's known to be usefwhereas . yyeph Service. On a large Starfire system running
the segment list can disintegrate iniselesspieces 2700 Netscape servers under Softway’s Share I
under hostile workloads. Moreover, prior allocationis  gcheduler, vmem reduced system time from 60% to
a good predictor of future allocation [Weinstock88], so 1094, roughly doubling system capacity [Swain98].
free objects are likely to be used again.
o ) ) . ) « |/O Bandwidth. An internal I/O benchmark on a
It is |mp053|k_)le toprqvethat this helps,but it seems 64-CPU Starfire generated such heavy contention
to work well in practice. We have never had a report 54 the old rmalloc() lock that the system was
of severe fragmentation since vmem's introduction  ggsentially useless. Contention was exacerbated by
(we had many such reports with the old resource map very long hold times due tamalloc()’s linear
allocator), and Solaris systems often stay upyéars search of the increasingly fragmented kernel heap.
Tockstat(IM) (a Solaris utility that measures
kernel lock contention) revealed that threads were
4.5. Performance spinning for an average of 4@nillisecondsto
acquire thermalloc() lock, thus limiting I/O
bandwidth to just 1000/48 = 21 1/O operations per
second per CPU. With vmem the problem
completely disappeared and performance improved
by severabrders of magnitude

45.1. Microbenchmark Performance

We've stated thatmem_alloc() andvmem_free()
are constant-time operations regardless of arena
fragmentation, whereasmalloc() and rmfree()
are linear-time. We measured alloc/free latency as a
function of fragmentation to verify this. 4.6. Summary

Figure 4.5.1: Latency vs. Fragmentation The vmem interface supports both simple and highly
constrained allocations, and isporting mechanism
—a vmem can build complex resources from simple components.
—o— rmalloc The interface is sufficiently general that we've been
able to eliminate over 30 special-purpose allocators in
Solaris since vmem'’s introduction.
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The vmem implementation has proven to be very fast
and scalable, improving performance on system-level
benchmarks by 50% or more. It has also proven to be
very robust against fragmentation in practice.
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Vmem'’sinstant—fit policy andexternal boundary tags
ppear to be new concepts. They guarantee constant—
ime performance regardless of allocation size or arena

fragmentation.

rmalTloc() has a slight performance edge at very low
fragmentation because the algorithm is so naive. Al
zero fragmentation, vmem'’s lateneyithout quantum
caching was 1560ns, vs. 715ns formalloc(Q).
Quantum caching reduces vmem’s latency to jus
482ns, so for allocations that go to the quantum cache[%/
(the common case) vmem is faster themalloc()
even at very low fragmentation.

mem’squantum cacheprovide very low latency and
Inear scalability for the most common allocations.
They also present a particularly friendly workload to
the arena’s segment list, which helps to reduce overall
*In fact, it has been proven that “there is no reliable algorithm for arena fragmentatlon'
ensuring efficient memory usagd none is possihle [Wilson95]



5. Core Slab Allocator Enhancements 6. User—Level Memory Allocation:

The libumem Library
Sections 3 and 4 described the magazine and vmem
layers, two new technologies above and below the slaly \as relatively straightforward to transplant the
layer. In this section we describe two vmem-relatedmagazine, slab, and vmem technologies to user-level.
enhancements to the slab allocator itself. We created a librarylibumem that provides all the
same services. In this section we discuss the handful
of porting issues that came up and compare libumem’s
performance to other user-level memory allocators.
libumem is still experimental as of this writing.

5.1. Object Caching for Any Resource

The original slab allocator usedmalloc() to get
kernel heap addresses for its slabs and invoked the VM
system to back those addresses with physical pages. 6.1. Porting Issues

Every object cache now uses a vmem arena as its slaphe allocation code (magazine, slab, and vmem) was
supplier.  The slab allocator simply invokes essentially unchanged; the challenge was to find user—
vmem_alloc() and vmem_free() to create and |eve| replacements for the kernel functionality on
destroy slabs. It makes no assumptions about thgyhich it relies, and to accommodate the limitations
nature of the resource it's managing, so it can provideand interface requirements of user-level library code.

object caching forany arena. This feature is what
makes vmem’s high—performancguantum caching .
possible (84.4.4).

5.2. Reclaim Callbacks

For performance, the kernel caches things that aren’t
strictly needed. The DNLC (directory name lookup .
cache) improves pathname resolution performance, for
example, but most DNLC entries aren’t actually in use
at any given moment. If the DNLC could be notified
when the system was running low on memory, it could
free some of its entries to relieve memory pressure.

We support this by allowing clients to specify a .
reclaim callbackto kmem_cache_create(). The
allocator calls this function when the cache’s vmem
arena is running low on resources. The callback is
purely advisory; what it actually does is entirely up to
the client. A typical action might be to give back
some fraction of the objects, or to free all objects that
haven’'t been accessed in the last N seconds.

This capability allows clients like the DNLC, inode
cache andNFS_READDIRcache to grow more or less
unrestricted until the system runs low on memory, at
which point they are asked to start giving some back. .

One possible future enhancement would be to add an
argument to the reclaim callback to indicate the
number of bytes wanted, or the “level of desperation.”
We have not yet done so because simple callback
policies like “give back 10% each time I'm called”
have proven to be perfectly adequate in practice.

CPU ID. The kernel uses the CPU ID, which can
be determined in just a few instructions, to index
into a cache’scache_cpu[] array. There is no
equivalent of CPU ID in the thread library; we
need oné€. For the prototype we just hashed on the
thread ID, which is available cheaply in libthread.

Memory Pressure. In the kernel, the VM system
invokes kmem_reap() when system-wide free
memory runs low. There is no equivalent concept
in userland. In libumem we check the depot
working set size whenever we access the depot and
return any excess to the slab layer.

Supporting malloc(3C) and free(3C). To
implementmalloc() andfree() we create a set
of about 30 fixed-size object caches to handle
small-to—-mediummalloc() requests. We use
malloc()’s size argument to index into a table
to locate the nearest cache, emalloc(350)
goes to theumem_alloc_384 cache. For larger
allocations we use the VM system directly, i.e.
sbrk(2) or mmap(2). We prepend an 8-byte
boundary tag to each buffer so we can determine
its size infree().

Initialization. The cost of initializing the kernel
memory allocator is trivial compared to the cost of
booting, but the cost of initializing libumem is not
entirely trivial compared to the cost efxec(2),
primarily because libumem must create the 30
standard caches that supperlloc/free. We
therefore create these caches lazily (on demand).

*For caches backed by non—-memory vmem arenas, the caller must*Our game plan is to make the kernel and thread library cooperate,

specify theKMC_NOTOUCH flag to kmem_cache_create() so
the allocator won't try to use free buffers to hold its internal state.

so that whenever the kernel dispatches a thread to a different CPU, it
stores the new CPU ID in the user-level thread structure.



6.2. Performance merely fanned out, not made CPU-local. Moreover,
the round-robin index was itself a global variable, so

A complete analysis of user-level memory allocatorsfrequent increments by all CPUs caused severe

is beyond the Scope of this paper' SO we Compared:ontention for its cache line. We also found that
libumem only to the strongest competition: mtmalloc’s per—-CPU data structures were not suitably

padded and aligned to cache line boundaries to prevent

« the Hoard allocator [Berger00], which appears to false sharing, as discussed in §3.6.

be the current best—-of-breed among scalable user- ] )
level memory allocators; We fixed mtmalloc to select a per-CPU freelist by

thread ID hashing as in libumem, and we padded and

- ptmalloc [Gloger01], a widely used multithreaded aligned its per-CPU data structures. These changes
malloc used in th&NU C library; improved the scalability of mtmalloc dramatically,

making it competitive with Hoard and libumem.
» the Solaris mtmalloc library. N

We measured the allocators’ scalability on a 10-CPU
We also benchmarked the Solaris C library’s malloc 4000 using the methods described in 83.8. Figure
[Sleator85] to establish a single-threaded baseline.  6-2 shows that libc’s malloc and the original mtmalloc

perform abysmally as the number of threads increases.
During our measurements we found several seriougtmalloc provides good scalability up to 8POs, but
scalability problems with the Solaris mtmalloc library. @ppears not to scale beyond that. By contrast,
mtmalloc creates per—-CPU power-of-two freelists for libumem, Hoard, and the fixed mtmalloc all show
sizes up to 64K, but its algorithm for selecting a linear scaling. Only the slopes differ, with libumem
freelist was simply round-robin; thus its workload was being the fastest.

Figure 6.2: malloc/free Performance

Note: the shaded area indicates data points where the number of threads exceeds the number of CPUs; all curves
necessarily flatten at that point. An allocator with linear scaling should be linear up to the shaded area, then flat.
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Appendix A: Composing Vmem Arenas and Object Caches

In this Appendix we describe all the key steps to get from system boot to creating a complex object cache.

At compile time we statically declare a few vmem arena structures and boundary tags to get us through boot.

During boot, the first arena we create is the primordiehp_arena, which defines the kernel virtual addre
range to use for the kernel heap:

heap_arena = vmem_create('"heap",

kernelheap, heapsize, /* base and size of kernel heap */

PAGESIZE, /* unit of currency is one page */

NULL, NULL, NULL, /* nothing to import from -- heap 1is primordial */
0, /* no quantum caching needed */

VM_SLEEP) ; /* OK to wait for memory to create arena */

vmem_create(), seeing that we're early in boot, uses one of the statically declared arenas to repres
heap, and uses statically declared boundary tags to represent the heap’s initial span. Once we have

SS

ent the
the heap

arena, we can create new boundary tags dynamically. For simplicity, we always allocate a whole page of

boundary tags at a time: we select a page of heap, map it, divvy it up into boundary tags, use one

of those

boundary tags to represent the heap page we just allocated, and put the rest on the arena’s free boundary tag list.

Next, we creatkmem_va_arena as a subset diieap_arena to provide virtual address caching (via quantum
caching) for up to 8 pages. Quantum caching improves performance and helps to minimize heap fragmentation,

as we saw in 84.4.5%mem_va_arena usesvmem_alloc() andvmem_free() to import fromheap_arena:

kmem_va_arena = vmem_create("kmem_va",
NULL, O, /* no initial span; we import everything */
PAGESIZE, /* unit of currency is one page */
vmem_alloc, /* dimport allocation function */
vmem_free, /* import free function */
heap_arena, /* import vmem source */
8 * PAGESIZE, /* quantum caching for up to 8 pages */
VM_SLEEP) ; /* OK to wait for memory to create arena */

Finally, we createkmem_default_arena, the backing store for most object caches. Its import function,
segkmem_aTlloc(), invokesvmem_alloc() to get virtual addresses and then backs them with physical pages:

kmem_default_arena = vmem_create("kmem_default",

NULL, O, /* no initial span; we import everything */
PAGESIZE, /* unit of currency is one page */
segkmem_alloc, /* import allocation function */
segkmem_free, /* import free function */

kmem_va_arena, /* import vmem source */

0, /* no quantum caching needed */

VM_SLEEP) ; /* OK to wait for memory to create arena */

At this point we have a simple page-level allocator: to get three pages of mapped kernel heap, we cq¢
vmem_alloc(kmem_default_arena, 3 * PAGESIZE, VM_SLEEP) directly. In fact, this is precisely ho
the slab allocator gets memory for new slabs. Finally, the kernel's various subsystems create thei
caches. For example, thi=S flesystem creates its inode cache:

inode_cache = kmem_cache_create("ufs_inode_cache",
sizeof (struct inode), /* object size */

0, /* use allocator's default alignment */
ufs_inode_cache_constructor, /* inode constructor */
ufs_inode_cache_destructor, /* inode destructor */
ufs_inode_cache_reclaim, /* inode reclaim */
NULL, /* argument to above funcs */
NULL, /* implies kmem_default_arena */

/

0); no special flags */

ould call
N
r object




Appendix B: Vmem Arenas and Object Caches in Solaris 8

The data on this page was obtained
running the ::kmastat command unde
mdb (1) on a large Solaris 8 server. It wi
substantially trimmed to fit the page.

The (shortened) list of all vmem aren
appears below; the (shortened) list of
object caches appears to the right. Sha
regions show the connection between vm
arenas and their quantum caches. [N
vmem names its quantum caches
appending the object size to the arena na
e.g. the 8K quantum cache fimem_va is
namedkmem_va_8192.]

Arena names are indented in the table be
to indicate their importing relationships. F
example, kmem_default imports virtual
addresses fromkmem_va, which in turn
imports virtual addresses froheap.

The allocation statistics demonstrate |
efficacy of quantum caching. At the time
this snapshot there had been over a mill
allocations for sbusO_dvma (1.18 million
8K allocations, as shown in the tot
allocation column forsbus0_dvma_8192;
309,600 16K allocations, and so on). All
this activity resulted in just 14 segment |
allocations. Everything else was handled
the quantum caches.

by
r
aS

as
all
ded
Dte:

by
me,

ow

he
on
al

St
by

menory menory tota

vmem ar ena nane in use inported allocs
heap 650231808 0 20569
vnem seg 9158656 9158656 1118
virem vimem 128656 81920 81
kmem_i nt er nal 28581888 28581888 4339
kmem cache 667392 974848 334

kmem_ | og 1970976 1974272 6
kmem oversi ze 30067072 30400512 3616
nod_sysfile 115 8192 4
kmem va 557580288 557580288 2494

kmem def aul t

557137920 557137920 110966

little_endian 0 0 0
bp_map 18350080 18350080 7617
ksyms 685077 761856 125
heap32 1916928 0 58
i d32 16384 16384 2
nmodul e_t ext 2325080 786432 120
nodul e_dat a 368762 1032192 165
pronpl at 0 0 15
segkp 449314816 0 3749
taski d_space 3 0 4
sbus0_dvma 3407872 0 14
sbus7_dvima 2097152 0 12
i p_m nor 256 0 4
pt ms_mi nor 1 0 1

obj ect cache nane

tota
al | ocs

kmem_nmagazi ne_1
kmem nmagazi ne_3
kmem_magazi ne_7
kmem_nmagazi ne_15
kmem magazi ne_31
kmem magazi ne_47
kmem_magazi ne_63
kmem magazi ne_95
kmem _nmagazi ne_143
kmem sl ab_cache
kmem buf ct| _cache
kmem va_8192
kmem va_16384
kmem va_24576
kmem va_32768
kmem va_40960
kmem va_49152
kmem va_57344
kmem va_65536
kmem al | oc_8
kmem al | oc_16
kmem al | oc_24

kmem al | oc_16384
streanms_nbl k
streanms_dbl k_8
streans_dbl k_40
streanms_dbl k_72

streanms_dbl k_12136
streans_dbl k_esb
i d32_cache
bp_map_16384
bp_map_32768
bp_map_49152
bp_map_65536
bp_map_81920
bp_map_98304
bp_map_114688
bp_map_131072
sfmmui d_cache

sf mmu8_cache

sf mul_cache
seg_cache
segkp_8192
segkp_16384
segkp_24576
segkp_32768
segkp_40960
thread_cache

| wp_cache
turnstile_cache
cred_cache

dnl c_space_cache
file_cache
queue_cache
syncq_cache
as_cache
anon_cache
anonmap_cache
segvn_cache
snode_cache

uf s_i node_cache
sbus0_dvna_8192
sbusO_dvra_16384
sbus0_dvma_24576

sbus0_dvna_32768
sbus0_dvna_40960
sbusO_dvma_49152
sbus0_dvna_57344
sbus0_dvna_65536
fas0_cache
fasl_cache
fas2_cache
fas3_cache
sock_cache
sock_uni x_cache
ip_mnor_1
process_cache
fnode_cache

pi pe_cache

aut hker n_cache

aut hl oopback_cache
aut hdes_cache_handl e
rnode_cache
nfs_access_cache
client_handl e_cache

pty_map

obj obj s
size in use
16 1923
32 6818
64 29898
128 26210
256 4662
384 4149
512
768 1841
1152 6655
56 29212
32 222752
8192 67772
16384 77
24576 28
32768 0
40960 0
49152 0
57344 0
65536
8 51283
16 4185
24 2479
16384 52
64 128834
128 8
160 205
192 302
12256 0
120 0
8 1888
16384 0
32768 0
49152 0
65536 0
81920 0
98304 0
114688 0
131072 0
48 35
312 358161
88 126878
64 1098
8192 0
16384 79
24576 722
32768 0
40960 0
672 229
880 229
64 749
96 8
24 819
56 307
608 604
160 18
144 34
48 4455
56 676
96 1096
256 379
480 23782
8192 66
16384 2
24576 2
32768 0
40960 0
49152 0
57344 0
65536 0
256 26
256 0
256 0
256 0
432 45
432 0
1 116
2688 37
264 6
496 8
72 0
72 0
72 0
656 3
40 2
32 4
48 1

57609715
19065575
76864949

162
142921
464076

10722289
201275

0

3

1888
6553071
2722
292

21

768

995

5

99
7617426
389921
138258
134076345
0

79
845690
0

1213
4027805
1260382
3920308

866335
565894
46876583
991955
112
7727219
112122999
60732684
121023992
1183612
3156269
1180296
309600
13665
154246




