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1.  Introduction

The slab allocator [Bonwick94] has taken on a life of
its own since its introduction in these pages seven
years ago. Initially deployed in Solaris 2.4, it has
since been adopted in whole or in part by several other
operating systems including Linux, FreeBSD,
NetBSD, OpenBSD, EROS, and Nemesis. It has also
been adapted to applications such as BIRD and Perl.
Slab allocation is now described in several OS
textbooks [Bovet00, Mauro00, Vahalia96] and is part
of the curriculum at major universities worldwide.

Meanwhile, the Solaris slab allocator has continued to
evolve. It now provides per−CPU memory allocation,
more general resource allocation, and is available as a
user−level library. We describe these developments in
seven sections as follows:

§2. Slab Allocator Review. We begin with brief
review of the original slab allocator.

§3. Magazines: Per−CPU Memory Allocation. As
servers with many CPUs became more common and
memory latencies continued to grow relative to
processor speed, the slab allocator’s original locking
strategy became a performance bottleneck. We
addressed this by introducing a per−CPU caching
scheme called the magazine layer.

§4.  Vmem: Fast, General Resource Allocation.  The
slab allocator caches relatively small objects and relies
on a more general−purpose backing store to provide
slabs and satisfy large allocations. We describe a new
resource allocator,vmem, that can manage arbitrary
sets of integers − anything from virtual memory
addresses to minor device numbers to process IDs.
Vmem acts as a universal backing store for the slab
allocator, and provides powerful new interfaces to
address more complex resource allocation problems.
Vmem appears to be the first resource allocator that
can satisfy allocations and frees of any size in
guaranteed constant time.

§5. Vmem−Related Slab Allocator Improvements.
We describe two key improvements to the slab
allocator itself: it now provides object caching forany
vmem arena, and can issuereclaim callbacksto notify
clients when the arena’s resources are running low.

§6. libumem: A User−Level Slab Allocator. We
describe what was necessary to transplant the slab
allocator from kernel to user context, and show that
the resulting libumem outperforms even the current
best−of−breed multithreaded user−level allocators.

§7. Conclusions. We conclude with some observa−
tions about how these technologies have influenced
Solaris development in general.
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Abstract

The slab allocator [Bonwick94] provides efficient object caching but has two significant
limitations: its global locking doesn’t scale to many CPUs, and theallocator can’t manage
resources other than kernel memory. To provide scalability we introduce a per−processor
caching scheme called themagazine layerthat provides linear scaling to any number of
CPUs. To support more general resourceallocation we introduce a new virtual memory
allocator,vmem, which acts as a universal backing store for the slab allocator. Vmem is a
complete general−purpose resource allocator in its own right, providing several important
new services; it also appears to be the first resource allocator that can satisfy arbitrary−size
allocations in constant time. Magazines and vmem have yielded performance gains
exceeding 50% on system−level benchmarks like LADDIS and SPECweb99.

We ported these technologies from kernel to user context and found that the resulting
libumemoutperforms the current best−of−breed user−level memory allocators. libumem also
provides a richer programming model and can be used to manage other user−level resources.



2.  Slab Allocator Review

2.1.  Object Caches

Programs often cache their frequently used objects to
improve performance. If a program frequently
allocates and freesfoo structures, it is likely to
employ highly optimized foo_alloc() and
foo_free() routines to “avoid the overhead of
malloc.” The usual strategy is to cachefoo objects on
a simple freelist so that most allocations and frees take
just a handful of instructions. Further optimization is
possible iffoo objects naturally return to a partially
initialized state before they’re freed, in which case
foo_alloc() can assume that an object on the
freelist is already partially initialized.

We refer to the techniques described above asobject
caching. Traditional malloc implementations cannot
provide object caching because the malloc/free
interface is typeless, so the slab allocator introduced
an explicit object cache programming model with
interfaces to create and destroy object caches, and
allocate and free objects from them (see Figure 2.1).

The allocator and its clients cooperate to maintain an
object’s partially initialized, orconstructed, state. The
allocator guarantees that an object will be in this state
when allocated; the client guarantees that it will be in
this state when freed. Thus, we can allocate and free
an object many times without destroying and
reinitializing its locks, condition variables, reference
counts, and other invariant state each time.

2.2.  Slabs

A slab is one or more pages of virtually contiguous
memory, carved up into equal−size chunks, with a
reference count indicating how many of those chunks
are currently allocated. To create new objects the
allocator creates a slab, applies theconstructorto each
chunk, and adds the resulting objects to the cache. If
system memory runs low the allocator can reclaim any
slabs whose reference count is zero by applying the
destructorto each object and returning memory to the
VM system. Once a cache is populated, allocations
and frees are very fast: they just move an object to or
from a freelist and update its slab reference count.

Figure 2.1:  Slab Allocator Interface Summary

kmem_cache_t *kmem_cache_create(
char *name, /* descriptive name for this cache */

size_t size, /* size of the objects it manages */

size_t align, /* minimum object alignment */

int (*constructor)(void *obj, void *private, int kmflag),

void (*destructor)(void *obj, void *private),

void (*reclaim)(void *private), /* memory reclaim callback */

void *private, /* argument to the above callbacks */

vmem_t *vmp, /* vmem source for slab creation */

int cflags); /* cache creation flags */

Creates a cache of objects, each of sizesize, aligned on analign boundary.name identifies the cache
for statistics and debugging.constructor anddestructor convert plain memory into objects and
back again;constructor may fail if it needs to allocate memory but can’t.reclaim is a callback
issued by the allocator when system−wide resources are running low (see §5.2).private is a
parameter passed to theconstructor, destructor andreclaim callbacks to support parameterized
caches (e.g. a separate packet cache for each instance of a SCSI HBA driver).vmp is thevmem source
that provides memory to create slabs (see §4 and §5.1).cflags indicates special cache properties.
kmem_cache_create() returns an opaque pointer to the object cache (a.k.a. kmem cache).

void kmem_cache_destroy(kmem_cache_t *cp);

Destroys the cache and releases all associated resources.  All allocated objects must have been freed.

void *kmem_cache_alloc(kmem_cache_t *cp, int kmflag);

Gets an object from the cache. The object will be in its constructed state.kmflag is eitherKM_SLEEP
or KM_NOSLEEP, indicating whether it’s acceptable to wait for memory if none is currently available. 

void kmem_cache_free(kmem_cache_t *cp, void *obj);

Returns an object to the cache.  The object must be in its constructed state.



3.  Magazines

The biggest limitation of the original slab allocator is
that it lacks multiprocessor scalability. To allocate an
object the allocator must acquire the lock that protects
the cache’s slab list, thus serializing all allocations.
To allow all CPUs to allocate in parallel we need some
form of per−CPU caching.

Our basic approach is to give each CPU an M−element
cache of objects called amagazine, by analogy with
automatic weapons. Each CPU’s magazine can satisfy
M allocations before the CPU needs to reload – that is,
exchange its empty magazine for a full one. The CPU
doesn’t access any global data when allocating from
its magazine, so we can increase scalability arbitrarily
by increasing the magazine size (M).

In this section we describe how the magazine layer
works and how it performs in practice. Figure 3
(below) illustrates the key concepts.

“Adding per−CPU caches to the slab algorithm would
provide an excellent allocator.”

Uresh Vahalia, UNIX Internals: The New Frontiers

Figure 3:  Structure of an Object Cache − The Magazine and Slab Layers
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3.1.  Overview

A magazine is an M−element array of pointers to
objects* with a count of the number ofrounds (valid
pointers) currently in the array. Conceptually, a
magazine works like a stack. To allocate an object
from a magazine we pop its top element:

obj = magazine[--rounds];

To free an object to a magazine we push it on top:

magazine[rounds++] = obj;

We use magazines to provide each object cache with a
small per−CPU object supply. Each CPU has its own
loaded magazine,so transactions (allocations and
frees) can proceed in parallel on all CPUs.

The interesting question is what to do if the loaded
magazine is empty when we want to allocate an object
(or full when we want to free one). We cannot just
fall through to the slab layer, because then a long run
of allocations would miss in the CPU layer every time,
ruining scalability. Each object cache therefore keeps
a global stockpile of magazines, the depot, to replenish
its CPU layer. We refer to the CPU and depot layers
collectively as the magazine layer.

With M−round magazines we would intuitively expect
the CPU layer’s miss rate to be at most 1/M, but in
fact a tight loop of two allocations followed by two
frees can cause thrashing, with half of all transactions
accessing the globally−locked depotregardless of M,
as shown in Figure 3.1a below.

*We use an array of object pointers, rather than just linking objects
together on a freelist, for two reasons: first, freelist linkage would
overwrite an object’s constructed state; and second, we plan to use
the slab allocator to manage arbitrary resources, so we can’t assume
that the objects we’re managing are backed by writable memory.

We address this by keeping thepreviously loaded
magazinein the CPU layer, as shown in Figure 3
(previous page). If the loaded magazine cannot satisfy
a transaction but the previous magazine can, we
exchangeloaded with previous and try again. If
neither magazine can satisfy the transaction, we return
previous to the depot, moveloaded to previous, and
load a new magazine from the depot.

The key observation is that the only reason to load a
new magazine is to replace a full with an empty or
vice versa, so we know that after each reload the CPU
either has a full loaded magazineand an empty
previous magazineor vice versa. The CPU can
therefore satisfy at least M allocationsand at least M
frees entirely with CPU−local magazines before it
must access the depot again, so the CPU layer’s
worst−case miss rate is bounded by 1/M regardless of
workload.

In the common case of short−lived objects with a high
allocation rate there are two performance advantages
to this scheme. First, balanced alloc/free pairs on the
same CPU can almost all be satisfied by the loaded
magazine; therefore we can expect the actual miss rate
to be even lower than 1/M. Second, the LIFO nature
of magazines implies that we tend to reuse the same
objects over and over again. This is advantageous in
hardware because the CPU will already own the cache
lines for recently modified memory.

Figure 3.1b (next page) summarizes the overall
magazine algorithm in pseudo−code. Figure 3.1c
shows the actual code for the hot path (i.e. hitting in
the loaded magazine) to illustrate how little work is
required.

3.2.  Object Construction

The original slab allocator applied constructors at slab
creation time. This can be wasteful for objects whose
constructors allocate additional memory. To take an
extreme example, suppose an 8−byte object’s
constructor attaches a 1K buffer to it.Assuming 8K
pages, one slab would contain about 1000 objects,
which after construction would consume 1MB of
memory. If only a few of these objects were ever
allocated, most of that 1MB would be wasted.

We addressed this by moving object construction up to
the magazine layer and keeping only raw buffers in the
slab layer. Now a buffer becomes an object (has its
constructor applied) when it moves from the slab layer
up to the magazine layer, and an object becomes a raw
buffer (has its destructor applied) when it moves from
the magazine layer back down to the slab layer.

Figure 3.1a: Thrashing at a Magazine Boundary
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Figure 3.1b: The Magazine Algorithm

The allocation and free paths through the magazine layer are almost completely symmetric, as shown below.
The only asymmetry is that the free path is responsible for populating the depot with empty magazines, as
explained in §3.3.

Figure 3.1c: The Hot Path in the Magazine Layer

void *

kmem_cache_alloc(kmem_cache_t *cp, int kmflag)

{

kmem_cpu_cache_t *ccp = &cp->cache_cpu[CPU->cpu_id];

mutex_enter(&ccp->cc_lock);

if (ccp->cc_rounds > 0) {

kmem_magazine_t *mp = ccp->cc_loaded;

void *obj = mp->mag_round[--ccp->cc_rounds];

mutex_exit(&ccp->cc_lock);

return (obj);

}

...

}

void

kmem_cache_free(kmem_cache_t *cp, void *obj)

{

kmem_cpu_cache_t *ccp = &cp->cache_cpu[CPU->cpu_id];

mutex_enter(&ccp->cc_lock);

if (ccp->cc_rounds < ccp->cc_magsize) {

kmem_magazine_t *mp = ccp->cc_loaded;

mp->mag_round[ccp->cc_rounds++] = obj;

mutex_exit(&ccp->cc_lock);

return;

}

...

}

Alloc:

    if (the CPU's loaded magazine isn't empty)

        pop the top object and return it;

    if (the CPU's previous magazine is full)

        exchange loaded with previous,

        goto Alloc;

    if (the depot has any full magazines)

        return previous to depot,

        move loaded to previous,

        load the full magazine,

        goto Alloc;

    allocate an object from the slab layer,

    apply its constructor, and return it;

Free:

    if (the CPU's loaded magazine isn't full)

        push the object on top and return;

    if (the CPU's previous magazine is empty)

        exchange loaded with previous,

        goto Free;

    if (the depot has any empty magazines)

        return previous to depot,

        move loaded to previous,

        load the empty magazine,

        goto Free;

    if (an empty magazine can be allocated)

        put it in the depot and goto Free;

    apply the object's destructor

    and return it to the slab layer



3.3.  Populating the Magazine Layer

We have described how the magazine layer works
once it’s populated, but how does it get populated?

There are two distinct problems here: we must allocate
objects, and we must allocate magazines to hold them.

� Object allocation. In the allocation path, if the
depot has no full magazines, we allocate a single
object from the slab layer and construct it.

� Magazine allocation. In the free path, if the depot
has no empty magazines, we allocate one.

We never allocate full magazines explicitly, because
it’s not necessary: empty magazines are eventually
filled by frees, so it suffices to create empty magazines
and let full ones emerge as a side effect of normal
allocation/free traffic.

We allocate the magazines themselves (i.e. the arrays
of pointers) from object caches, just like everything
else; there is no need for a special magazine allocator.*

3.4.  Dynamic Magazine Resizing

Thus far we have discussed M−element magazines
without specifying how M is determined. We’ve
observed that we can make the CPU layer’s miss rate
as low as we like by increasing M, but making M
larger than necessary would waste memory. We
therefore seek the smallest value of M that delivers
linear scalability.

Rather than picking some “magic value,” we designed
the magazine layer to tune itself dynamically. We
start each object cache with a small value of M and
observe the contention rate on the depot lock. We do
this by using a non−blocking trylock primitive on the
depot lock; if that fails we use the ordinary blocking
lock primitive and increment a contention count. If
the contention rate exceeds a fixed threshold we
increase the cache’s magazine size. We enforce a
maximum magazine size to ensure that this feedback
loop can’t get out of control, but in practice the
algorithm behaves extremely well on everything from
desktops to 64−CPU Starfires. The algorithm
generally stabilizes after several minutes of load with
reasonable magazine sizes and depot lock contention
rates of less than once per second.

*Note that if we allocated full magazines in the allocation path, this
would cause infinite recursion the first time we tried to allocate a
magazine for one of the magazine caches. There is no such problem
with allocating empty magazines in the free path.

3.5.  Protecting Per−CPU State

An object cache’s CPU layer contains per−CPU state
that must be protected either by per−CPU locking or
by disabling interrupts. We selected per−CPU locking
for several reasons:

� Programming Model. Some operations, such as
changing a cache’s magazine size, require the
allocator to modify the state of each CPU. This is
trivial if the CPU layer is protected by locks.

� Real−time. Disabling interrupts increases dispatch
latency (because it disables preemption), which is
unacceptable in a real−time operating system like
Solaris [Khanna92].

� Performance. On most modern processors,
grabbing an uncontended lock is cheaper than
modifying the processor interrupt level.

3.6.  Hardware Cache Effects

Even per−CPU algorithms don’t scale if they suffer
from false sharing (contention for ownership of a
cache line that can occur when multiple CPUs modify
logically unrelated data that happens to reside in the
same physical cache line). We carefully pad and align
the magazine layer’s per−CPU data structures so that
each one has its own cache line. We found that doing
so is critical for linear scalability on modern hardware.

An allocator can alsoinducefalse sharing by handing
out objects smaller than a cache line to more than one
CPU [Berger00]. We haven’t found this to be a
problem in practice, however, because most kernel
data structures are larger than a cache line.

3.7.  Using the Depot as a Working Set

When the system is in steady state, allocations and
frees must be roughly in balance (because memory
usage is roughly constant). The variation in memory
consumption over a fixed period of time defines a
form of working set [Denning68]; specifically, it
defines how many magazines the depot must have on
hand to keep the allocator working mostly out of its
high−performance magazine layer. For example, if
the depot’s full magazine list varies between 37 and 47
magazines over a given period, then the working set is
10 magazines; the other 37 are eligible for reclaiming.

The depot continuously tracks the working set sizes of
its full and empty magazine lists, but does not actually
free excess magazines unless memory runs low.



3.8.  Microbenchmark Performance

The two key metrics for an MT−hot memory allocator
are latency and scalability. We measured latency as
the average time per iteration of a tight alloc/free loop.
We measured scalability by running multiple instances
of the latency test on a 333MHz 16−CPU Starfire.

The latency test revealed that the magazine layer
improves even single−CPU performance (356ns per
alloc/free pair vs. 743ns for the original slab allocator)
because the hot path is so simple (see Figure 3.1c).
Indeed, there is little room for further improvement in
latency because the cost of locking imposes a lower
bound of 186ns.

As we increased the number of threads the magazine
layer exhibited perfect linear scaling, as shown below.
Without the magazine layer, throughput was actually
lower with additional threads due to increasingly
pathological lock contention. With 16 threads (all 16
CPUs busy) the magazine layer delivered 16 times
higher throughput than a single CPU (and 340 times
higher throughput than the original allocator), with the
same 356ns latency.

3.9.  System−Level Performance

We ran several system−level benchmarks both with
and without the magazine layer to assess the magazine
layer’s effectiveness.* The system was uniformly
faster with magazines, with the greatest improvements
in allocator−intensive workloads like network I/O.  

*Unfortunately we could not make direct comparisons with other
kernel memory allocators because the Solaris kernel makes extensive
use of the object cache interfaces, which are simply not available in
other allocators. We will, however, provide direct comparisons with
best−of−breed user−level allocators in §6.

3.9.1.  SPECweb99

We ran the industry−standard SPECweb99 web server
benchmark [SPEC01] on an 8−CPU E4500. The
magazine layer more thandoubledperformance, from
995 to 2037 simultaneous connections. The gain is so
dramatic because every network packet comes from
the allocator.

3.9.2.  TPC−C

We ran the industry−standard TPC−C database
benchmark [TPC01] on an 8−CPU E6000. Magazines
improved performance by 7%. The gain here is much
more modest than with SPECweb99 because TPC−C
is not very demanding of the kernel memory allocator.

3.9.3.  Kenbus

We ran Kenbus, a precursor to the SPEC SMT
(System Multi−Tasking) benchmark currently under
development [SPEC01], on a 24−CPU E6000. The
magazine layer improved peak throughput by 13% and
improved the system’s ability tosustain peak
throughput as load increased. At maximum tested
load (6000 users) the magazine layer improved system
throughput by 23%.

3.10.  Summary

The magazine layer provides efficient object caching
with very low latency and linear scaling to any number
of CPUs. We discussed the magazine layer in the
context of the slab allocator, but in fact the algorithms
are completely general. A magazine layer can be
added to any memory allocator to make it scale.

Figure 3.8:  Allocation Scalability
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Figure 3.9.3:  Kenbus Performance
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4.  Vmem

The slab allocator relies on two lower−level system
services to create slabs: a virtual address allocator to
provide kernel virtual addresses, and VM routines to
back those addresses with physical pages and establish
virtual−to−physical translations.

Incredibly, we found that our largest systems were
scalability−limited by the old virtual address allocator.
It tended to fragment the address space badly over
time, its latency was linear in the number of
fragments, and the whole thing was single−threaded.

Virtual address allocation is just one example of the
more general problem ofresource allocation. For our
purposes, aresourceis anything that can be described
by a set of integers.  For example, virtual addresses are
subsets of the 64−bit integers; process IDs are subsets
of the integers [0, 30000]; and minor device numbers
are subsets of the 32−bit integers.

Resource allocation (in the sense described above) is a
fundamental problem that every operating system must
solve, yet it is surprisingly absent in the literature. It
appears that 40 years of research on memory allocators
has simply never been applied to resource allocators.
The resource allocators for Linux, all the BSD kernels,
and Solaris 7 or earlier all use linear−time algorithms.

In this section we describe a new general−purpose
resource allocator,vmem, which provides guaranteed
constant−time performance with low fragmentation.
Vmem appears to be the first resource allocator that
can do this.

We begin by providing background on the current
state of the art. We then lay out our objectives in
creating vmem, describe the vmem interfaces, explain
the implementation in detail, and discuss vmem’s
performance (fragmentation, latency, and scalability)
under both benchmarks and real−world conditions.

4.1.  Background

Almost all versions of Unix have aresource map
allocator calledrmalloc() [Vahalia96]. A resource
map can be any set of integers, though it’s most often
an address range like[0xe0000000, 0xf0000000).
The interface is simple:rmalloc(map, size)

allocates a segment of the specifiedsize from map,
and rmfree(map, size, addr) gives it back.

Linux’s resource allocatorand BSD’sextent allocator
provide roughly the same services. All three suffer
from serious flaws in both design and implementation:

� Linear−time performance. All three allocators
maintain a list of free segments, sorted in address
order so the allocator can detect when coalescing is
possible: if segments[a, b) and[b, c) are both
free, they can be merged into a single free segment
[a, c) to reduce fragmentation. The allocation
code performs a linear search to find a segment
large enough to satisfy the allocation. The free
code uses insertion sort (also a linear algorithm) to
return a segment to the free segment list. It can
take severalmilliseconds to allocate or free a
segment once the resource becomes fragmented.

� Implementation exposure. A resource allocator
needs data structures to keep information about its
free segments. In various ways, all three allocators
make this your problem:

� rmalloc() requires the creator of the resource
map to specify the maximum possible number
of free segments at map creation time. If the
map ever gets more fragmented than that, the
allocator throws away resources inrmfree()
because it has nowhere to put them. (!)

� Linux puts the burden on itsclientsto supply a
segment structure with each allocation to hold
the allocator’s internal data. (!)

� BSD allocates segment structures dynamically,
but in so doing creates an awkward failure
mode:extent_free() fails if it can’t allocate
a segment structure. It’s difficult to deal with
an allocator that won’t let you give stuff back.

We concluded that it was time to abandon our stone
tools and bring modern technology to the problem.

4.2.  Objectives

We believe a good resource allocator should have the
following properties:

� A powerful interface that can cleanly express the
most common resource allocation problems.

� Constant−time performance, regardless of the size
of the request or the degree of fragmentation.

� Linear scalability to any number of CPUs.

� Low fragmentation, even if the operating system
runs at full throttle for years.

We’ll begin by discussing the interface considerations,
then drill down to the implementation details.



4.3.  Interface Description

The vmem interfaces do three basic things: create and
destroyarenasto describe resources, allocate and free
resources, and allow arenas toimport new resources
dynamically. This section describes the key concepts
and the rationale behind them. Figure 4.3 (next page)
provides the complete vmem interface specification.

4.3.1.  Creating Arenas

The first thing we need is the ability to define a
resource collection, orarena. An arena is simply a set
of integers. Vmem arenas most often represent virtual
memory addresses (hence the namevmem), but in fact
they can represent any integer resource, from virtual
addresses to minor device numbers to process IDs.

The integers in an arena can usually be described as a
single contiguous range, orspan, such as [100, 500),
so we specify thisinitial span to vmem_create().
For discontiguous resources we can usevmem_add()

to piece the arena together one span at a time.

� Example. To create an arena to represent the
integers in the range [100, 500) we can say:

foo = vmem_create(“foo”, 100, 400, ...);

(Note: 100 is the start, 400 is the size.) If we want
foo to represent the integers [600, 800) as well, we
can add the span [600, 800) by using vmem_add():

vmem_add(foo, 600, 200, VM_SLEEP);

vmem_create() specifies the arena’s natural unit of
currency, orquantum, which is typically either1 (for
single integers like process IDs) orPAGESIZE (for
virtual addresses). Vmem rounds all sizes to quantum
multiples and guarantees quantum−aligned allocations.

4.3.2.  Allocating and Freeing Resources

The primary interfaces to allocate and free resources
are simple: vmem_alloc(vmp, size, vmflag)

allocates asegmentof size bytes from arenavmp,
and vmem_free(vmp, addr, size) gives it back. 

We also provide avmem_xalloc() interface that can
specify commonallocation constraints: alignment,
phase(offset from the alignment),address range, and
boundary−crossing restrictions(e.g. “don’t cross a
page boundary”). vmem_xalloc() is useful for
things like kernel DMA code, which allocates kernel
virtual addresses using the phase and alignment
constraints to ensure correct cache coloring.

� Example. To allocate a 20−byte segment whose
address is 8 bytes away from a 64−byte boundary,
and which lies in the range [200, 300), we can say:

addr = vmem_xalloc(foo, 20, 64, 8, 0,

200, 300, VM_SLEEP);

In this exampleaddr will be 262: it is 8 bytes
away from a 64−byte boundary (262 mod 64 = 8),
and the segment [262, 282) lies within [200, 300).

Each vmem_[x]alloc() can specify one of three
allocation policies through its vmflag argument:

� VM_BESTFIT. Directs vmem to use the smallest
free segment that can satisfy the allocation. This
policy tends to minimize fragmentation of very
small, precious resources.

� VM_INSTANTFIT. Directs vmem to provide a
good approximation to best−fit in guaranteed
constant time.  This is the default allocation policy.

� VM_NEXTFIT. Directs vmem to use the next free
segment after the one previously allocated. This is
useful for things like process IDs, where we want
to cycle through all the IDs before reusing them.

We also offer an arena−wide allocation policy called
quantum caching. The idea is that most allocations
are for just a few quanta (e.g. one or two pages of heap
or one minor device number), so we employ high−
performance caching for each multiple of the quantum
up to qcache_max, specified in vmem_create().
We make the caching threshold explicit so that each
arena can request the amount of caching appropriate
for the resource it manages. Quantum caches provide
perfect−fit, very low latency, and linear scalability for
the most common allocation sizes (§4.4.4).

4.3.3.  Importing From Another Arena

Vmem allows one arena toimport its resources from
another. vmem_create() specifies thesource arena,
and the functions to allocate and free from that source.
The arena imports new spans as needed, and gives
them back when all their segments have been freed.

The power of importing lies in theside effectsof the
import functions, and is best understood by example.
In Solaris, the functionsegkmem_alloc() invokes
vmem_alloc() to get a virtual address and then backs
it with physical pages. Therefore, we can create an
arena of mapped pages by simply importing from an
arena of virtual addresses usingsegkmem_alloc()
and segkmem_free(). Appendix A illustrates how
vmem’s import mechanism can be used to create
complex resources from simple building blocks.



Figure 4.3:  Vmem Interface Summary

vmem_t *vmem_create(

char *name, /* descriptive name */

void *base, /* start of initial span */
size_t size, /* size of initial span */

size_t quantum, /* unit of currency */

void *(*afunc)(vmem_t *, size_t, int), /* import alloc function */

void (*ffunc)(vmem_t *, void *, size_t), /* import free function */

vmem_t *source, /* import source arena */

size_t qcache_max, /* maximum size to cache */

int vmflag); /* VM_SLEEP or VM_NOSLEEP */

Creates a vmem arena called name whose initial span is [base, base + size).  The arena’s natural
unit of currency isquantum, sovmem_alloc() guaranteesquantum−aligned results. The arena may
import new spans by invokingafunc on source, and may return those spans by invokingffunc on
source. Small allocations are common, so the arena provides high−performance caching for each
integer multiple of quantum up to qcache_max. vmflag is either VM_SLEEP or VM_NOSLEEP

depending on whether the caller is willing to wait for memory to create the arena.vmem_create()

returns an opaque pointer to the arena.

void vmem_destroy(vmem_t *vmp);

Destroys arena vmp.

void *vmem_alloc(vmem_t *vmp, size_t size, int vmflag);

Allocates size bytes from vmp. Returns the allocated address on success,NULL on failure.
vmem_alloc() fails only if vmflag specifiesVM_NOSLEEP and no resources are currently available.
vmflag may also specify an allocation policy (VM_BESTFIT, VM_INSTANTFIT, or VM_NEXTFIT) as
described in §4.3.2. If no policy is specified the default isVM_INSTANTFIT, which provides a good
approximation to best−fit in guaranteed constant time.

void vmem_free(vmem_t *vmp, void *addr, size_t size);

Frees size bytes at addr to arena vmp.

void *vmem_xalloc(vmem_t *vmp, size_t size, size_t align, size_t phase,

size_t nocross, void *minaddr, void *maxaddr, int vmflag);

Allocates size bytes at offsetphase from an align boundary such that the resulting segment
[addr, addr + size) is a subset of[minaddr, maxaddr) that does not straddle anocross−
aligned boundary.vmflag is as above. One performance caveat: if eitherminaddr or maxaddr is
non−NULL, vmem may not be able to satisfy the allocation in constant time. If allocations within a
given [minaddr, maxaddr) range are common it is more efficient to declare that range to be its own
arena and use unconstrained allocations on the new arena.

void vmem_xfree(vmem_t *vmp, void *addr, size_t size);

Freessize bytes ataddr, whereaddr was a constrained allocation.vmem_xfree() must be used if
the original allocation was a vmem_xalloc() because both routines bypass the quantum caches.

void *vmem_add(vmem_t *vmp, void *addr, size_t size, int vmflag);

Adds the span[addr, addr + size) to arenavmp. Returnsaddr on success,NULL on failure.
vmem_add() will fail only if vmflag is VM_NOSLEEP and no resources are currently available.



4.4.  Vmem Implementation

In this section we describe how vmem actually works.
Figure 4.4 illustrates the overall structure of an arena.

4.4.1.  Keeping Track of Segments

Most implementations ofmalloc() prepend a small
amount of space to each buffer to hold information for
the allocator. Theseboundary tags, invented by
Knuth in 1962 [Knuth73], solve two major problems:

� They make it easy forfree() to determine how
large the buffer is, becausemalloc() can store
the size in the boundary tag.

� They make coalescing trivial. Boundary tags link
all segments together in address order, sofree()

can simply look both ways and coalesce if either
neighbor is free.

Unfortunately, resource allocators can’t use traditional
boundary tags because the resource they’re managing
may not be memory (and therefore may not be able to
hold information). In vmem we address this by using

external boundary tags. For each segment in the arena
we allocate a boundary tag to manage it, as shown in
Figure 4.4 below. (See Appendix A for a description
of how we allocate the boundary tags themselves.)
We’ll see shortly that external boundary tags enable
constant−time performance.

4.4.2.  Allocating and Freeing Segments

Each arena has asegment listthat links all of its
segments in address order, as shown in Figure 4.4.
Every segment also belongs to either a freelist or an
allocation hash chain, as described below. (The
arena’s segment list also includesspan markersto
keep track of span boundaries, so we can easily tell
when an imported span can be returned to its source.)

We keep all free segments on power−of−two freelists;
that is, freelist[n] contains all free segments
whose sizes are in the range [2n, 2n+1). To allocate a
segment we search the appropriate freelist for a
segment large enough to satisfy the allocation. This
approach, calledsegregated fit,actually approximates
best−fit becauseany segment on the chosen freelist is
a good fit [Wilson95]. (Indeed, with power−of−two
freelists, a segregated fit is necessarily within 2x of a
perfect fit.) Approximations to best−fit are appealing
because they exhibit low fragmentation in practice for
a wide variety of workloads [Johnstone97].

Figure 4.4:  Structure of a Vmem Arena
vmem_alloc() vectors allocations based on size: small allocations go to the quantum caches, larger ones to the segment list. In this
figure we’ve depicted an arena with a 1−page quantum and a 5−page qcache_max. Note that the “segment list” is, strictly speaking,
a list of boundary tags (“BT” below) that represent the segments. Boundary tags for allocated segments (white) are also linked into
an allocated−segment hash table, and boundary tags for free segments (gray) are linked into size−segregated freelists (not shown).

“Apparently, too few researchers realized the full
significance of Knuth’s invention of boundary tags.”

Paul R. Wilson et. al. in [Wilson95]
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The algorithm for selecting a free segment depends on
the allocation policy specified in the flags to
vmem_alloc() as follows; in all cases, assume that
the allocation size lies in the range [2n, 2n+1):

� VM_BESTFIT. Search for the smallest segment on
freelist[n] that can satisfy the allocation.

� VM_INSTANTFIT. If the size is exactly 2n, take
the first segment onfreelist[n]. Otherwise,
take the first segment onfreelist[n+1]. Any
segment on this freelist is necessarily large enough
to satisfy the allocation, so we get constant−time
performance with a reasonably good fit.*

� VM_NEXTFIT. Ignore the freelists altogether and
search the arena for the next free segment after the
one previously allocated.

Once we’ve selected a segment, we remove it from its
freelist. If the segment is not an exact fit we split the
segment, create a boundary tag for the remainder, and
put the remainder on the appropriate freelist. We then
add our newly−allocated segment’s boundary tag to a
hash table so vmem_free() can find it quickly.

vmem_free() is straightforward: it looks up the
segment’s boundary tag in the allocated−segment hash
table, removes it from the hash table, tries to coalesce
the segment with its neighbors, and puts it on the
appropriate freelist. All operations are constant−time.
Note that the hash lookup also provides a cheap and
effective sanity check: the freed address must be in the
hash table, and the freed size must match the segment
size.  This helps to catch bugs such as duplicate frees.

The key feature of the algorithm described above is
that its performance is independent of both transaction
size and arena fragmentation. Vmem appears to be
the first resource allocator that can perform allocations
and frees of any size in guaranteed constant time.

4.4.3.  Locking Strategy

For simplicity, we protect each arena’s segment list,
freelists, and hash table with a global lock. We rely
on the fact that large allocations are relatively rare,
and allow the arena’s quantum caches to provide
linear scalability for all the common allocation sizes.
This strategy is very effective in practice, as illustrated
by the performance data in §4.5 and the allocation
statistics for a large Solaris 8 server in Appendix B.

*We like instant−fit because it guarantees constant time performance,
provides low fragmentation in practice, and is easy to implement.
There are many other techniques for choosing a suitable free segment
in reasonable (e.g. logarithmic) time, such as keeping all free
segments in a size−sorted tree; see [Wilson95] for a thorough survey.
Any of these techniques could be used for a vmem implementation.

4.4.4.  Quantum Caching

The slab allocator can provide object caching for any
vmem arena (§5.1), so vmem’s quantum caches are
actually implemented as object caches.  For each small
integer multiple of the arena’s quantum we create an
object cache to service requests of that size.
vmem_alloc() and vmem_free() simply convert
each small request (size <= qcache_max) into a
kmem_cache_alloc() or kmem_cache_free() on
the appropriate cache, as illustrated in Figure 4.4.
Because it is based on object caching, quantum
caching provides very low latency and linear
scalability for the most common allocation sizes.

� Example. Assume the arena shown in Figure 4.4.
A 3−page allocation would proceed as follows:
vmem_alloc(foo, 3 * PAGESIZE) would call
kmem_cache_alloc(foo->vm_qcache[2]). In
most cases the cache’s magazine layer would
satisfy the allocation, and we would be done. If
the cache needed to create a new slab it would call
vmem_alloc(foo, 16 * PAGESIZE), which
would be satisfied from the arena’s segment list.
The slab allocator would then divide its 16−page
slab into five 3−page objects and use one of them
to satisfy the original allocation.

When we create an arena’s quantum caches we pass a
flag to kmem_cache_create(), KMC_QCACHE, that
directs the slab allocator to use a particular slab size:
the next power of two above3 * qcache_max. We
use this particular value for three reasons: (1) the slab
size must be larger thanqcache_max to prevent
infinite recursion; (2) by numerical luck, this slab size
provides near−perfect slab packing (e.g. five 3−page
objects fill 15/16 of a 16−page slab); and (3) we’ll see
below that using a common slab size for all quantum
caches helps to reduce overall arena fragmentation.

4.4.5.  Fragmentation

Fragmentation is the disintegration of a resource into
unusably small, discontiguous segments. To see how
this can happen, imagine allocating a 1GB resource
one byte at a time, then freeing only the even−
numbered bytes. The arena would then have 500MB
free, yet it could not even satisfy a 2−byte allocation.

We observe that it is thecombination of different
allocation sizes and different segment lifetimes that
causes persistent fragmentation. If all allocations are
the same size, then any freed segment can obviously
satisfy another allocation of the same size. If all
allocations are transient, the fragmentation is transient.

“A waste is a terrible thing to mind.”   − Anonymous



We have no control over segment lifetime, but
quantum caching offers some control over allocation
size: namely, all quantum caches have the same slab
size, so most allocations from the arena’s segment list
occur in slab−size chunks.

At first it may appear that all we’ve done is move the
problem: the segment list won’t fragment as much, but
now the quantum cachesthemselvescan suffer
fragmentation in the form of partially−used slabs. The
critical difference is that the free objects in a quantum
cache areof a size that’s known to be useful, whereas
the segment list can disintegrate intouselesspieces
under hostile workloads. Moreover, prior allocation is
a good predictor of future allocation [Weinstock88], so
free objects are likely to be used again.

It is impossible toprove that this helps,* but it seems
to work well in practice. We have never had a report
of severe fragmentation since vmem’s introduction
(we had many such reports with the old resource map
allocator), and Solaris systems often stay up for years.

4.5.  Performance

4.5.1.  Microbenchmark Performance

We’ve stated thatvmem_alloc() andvmem_free()
are constant−time operations regardless of arena
fragmentation, whereasrmalloc() and rmfree()

are linear−time. We measured alloc/free latency as a
function of fragmentation to verify this.

rmalloc() has a slight performance edge at very low
fragmentation because the algorithm is so naïve. At
zero fragmentation, vmem’s latencywithout quantum
caching was 1560ns, vs. 715ns forrmalloc().
Quantum caching reduces vmem’s latency to just
482ns, so for allocations that go to the quantum caches
(the common case) vmem is faster thanrmalloc()
even at very low fragmentation.

*In fact, it has been proven that “there is no reliable algorithm for
ensuring efficient memory usage, and none is possible.”  [Wilson95]

4.5.2.  System−Level Performance

Vmem’s low latency and linear scaling remedied
serious pathologies in the performance of kernel
virtual address allocation underrmalloc(), yielding
dramatic improvements in system−level performance.

� LADDIS. Veritas reported a 50% improvement in
LADDIS peak throughput with the new virtual
memory allocator [Taylor99].

� Web Service. On a large Starfire system running
2700 Netscape servers under Softway’s Share II
scheduler, vmem reduced system time from 60% to
10%, roughly doubling system capacity [Swain98].

� I/O Bandwidth. An internal I/O benchmark on a
64−CPU Starfire generated such heavy contention
on the oldrmalloc() lock that the system was
essentially useless. Contention was exacerbated by
very long hold times due tormalloc()’s linear
search of the increasingly fragmented kernel heap.
lockstat(1M) (a Solaris utility that measures
kernel lock contention) revealed that threads were
spinning for an average of 48milliseconds to
acquire thermalloc() lock, thus limiting I/O
bandwidth to just 1000/48 = 21 I/O operations per
second per CPU. With vmem the problem
completely disappeared and performance improved
by several orders of magnitude.

4.6.  Summary

The vmem interface supports both simple and highly
constrained allocations, and itsimporting mechanism
can build complex resources from simple components.
The interface is sufficiently general that we’ve been
able to eliminate over 30 special−purpose allocators in
Solaris since vmem’s introduction.

The vmem implementation has proven to be very fast
and scalable, improving performance on system−level
benchmarks by 50% or more. It has also proven to be
very robust against fragmentation in practice.

Vmem’s instant−fit policyandexternal boundary tags
appear to be new concepts. They guarantee constant−
time performance regardless of allocation size or arena
fragmentation.

Vmem’s quantum caches provide very low latency and
linear scalability for the most common allocations.
They also present a particularly friendly workload to
the arena’s segment list, which helps to reduce overall
arena fragmentation.

Figure 4.5.1: Latency vs. Fragmentation
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5.  Core Slab Allocator Enhancements

Sections 3 and 4 described the magazine and vmem
layers, two new technologies above and below the slab
layer. In this section we describe two vmem−related
enhancements to the slab allocator itself.

5.1.  Object Caching for Any Resource

The original slab allocator usedrmalloc() to get
kernel heap addresses for its slabs and invoked the VM
system to back those addresses with physical pages.

Every object cache now uses a vmem arena as its slab
supplier. The slab allocator simply invokes
vmem_alloc() and vmem_free() to create and
destroy slabs. It makes no assumptions about the
nature of the resource it’s managing, so it can provide
object caching forany arena.* This feature is what
makes vmem’s high−performancequantum caching
possible (§4.4.4).  

5.2.  Reclaim Callbacks 

For performance, the kernel caches things that aren’t
strictly needed. The DNLC (directory name lookup
cache) improves pathname resolution performance, for
example, but most DNLC entries aren’t actually in use
at any given moment. If the DNLC could be notified
when the system was running low on memory, it could
free some of its entries to relieve memory pressure.

We support this by allowing clients to specify a
reclaim callback to kmem_cache_create(). The
allocator calls this function when the cache’s vmem
arena is running low on resources. The callback is
purely advisory; what it actually does is entirely up to
the client. A typical action might be to give back
some fraction of the objects, or to free all objects that
haven’t been accessed in the last N seconds.

This capability allows clients like the DNLC, inode
cache andNFS_READDIRcache to grow more or less
unrestricted until the system runs low on memory, at
which point they are asked to start giving some back.

One possible future enhancement would be to add an
argument to the reclaim callback to indicate the
number of bytes wanted, or the “level of desperation.”
We have not yet done so because simple callback
policies like “give back 10% each time I’m called”
have proven to be perfectly adequate in practice.  

*For caches backed by non−memory vmem arenas, the caller must
specify theKMC_NOTOUCH flag to kmem_cache_create() so
the allocator won’t try to use free buffers to hold its internal state.

6.   User−Level Memory Allocation:
      The libumem Library

It was relatively straightforward to transplant the
magazine, slab, and vmem technologies to user−level.
We created a library,libumem, that provides all the
same services. In this section we discuss the handful
of porting issues that came up and compare libumem’s
performance to other user−level memory allocators.
libumem is still experimental as of this writing.

6.1.  Porting Issues

The allocation code (magazine, slab, and vmem) was
essentially unchanged; the challenge was to find user−
level replacements for the kernel functionality on
which it relies, and to accommodate the limitations
and interface requirements of user−level library code.

� CPU ID. The kernel uses the CPU ID, which can
be determined in just a few instructions, to index
into a cache’scache_cpu[] array. There is no
equivalent of CPU ID in the thread library; we
need one.** For the prototype we just hashed on the
thread ID, which is available cheaply in libthread.

� Memory Pressure. In the kernel, the VM system
invokes kmem_reap() when system−wide free
memory runs low. There is no equivalent concept
in userland. In libumem we check the depot
working set size whenever we access the depot and
return any excess to the slab layer.

� Supporting malloc(3C) and free(3C). To
implementmalloc() andfree() we create a set
of about 30 fixed−size object caches to handle
small−to−mediummalloc() requests. We use
malloc()’s size argument to index into a table
to locate the nearest cache, e.g.malloc(350)

goes to theumem_alloc_384 cache. For larger
allocations we use the VM system directly, i.e.
sbrk(2) or mmap(2). We prepend an 8−byte
boundary tag to each buffer so we can determine
its size in free().

� Initialization. The cost of initializing the kernel
memory allocator is trivial compared to the cost of
booting, but the cost of initializing libumem is not
entirely trivial compared to the cost ofexec(2),
primarily because libumem must create the 30
standard caches that supportmalloc/free. We
therefore create these caches lazily (on demand).

**Our game plan is to make the kernel and thread library cooperate,
so that whenever the kernel dispatches a thread to a different CPU, it
stores the new CPU ID in the user−level thread structure.



6.2.  Performance

A complete analysis of user−level memory allocators
is beyond the scope of this paper, so we compared
libumem only to the strongest competition:

� the Hoard allocator [Berger00], which appears to
be the current best−of−breed among scalable user−
level memory allocators;

� ptmalloc [Gloger01], a widely used multithreaded
malloc used in the GNU C library;

� the Solaris mtmalloc library.

We also benchmarked the Solaris C library’s malloc
[Sleator85] to establish a single−threaded baseline.

During our measurements we found several serious
scalability problems with the Solaris mtmalloc library.
mtmalloc creates per−CPU power−of−two freelists for
sizes up to 64K, but its algorithm for selecting a
freelist was simply round−robin; thus its workload was

merely fanned out, not made CPU−local. Moreover,
the round−robin index was itself a global variable, so
frequent increments by all CPUs caused severe
contention for its cache line. We also found that
mtmalloc’s per−CPU data structures were not suitably
padded and aligned to cache line boundaries to prevent
false sharing, as discussed in §3.6.

We fixed mtmalloc to select a per−CPU freelist by
thread ID hashing as in libumem, and we padded and
aligned its per−CPU data structures. These changes
improved the scalability of mtmalloc dramatically,
making it competitive with Hoard and libumem.

We measured the allocators’ scalability on a 10−CPU
E4000 using the methods described in §3.8. Figure
6.2 shows that libc’s malloc and the original mtmalloc
perform abysmally as the number of threads increases.
ptmalloc provides good scalability up to 8 CPUs, but
appears not to scale beyond that. By contrast,
libumem, Hoard, and the fixed mtmalloc all show
linear scaling. Only the slopes differ, with libumem
being the fastest.

Figure 6.2:  malloc/free Performance
Note: the shaded area indicates data points where the number of threads exceeds the number of CPUs; all curves
necessarily flatten at that point.  An allocator with linear scaling should be linear up to the shaded area, then flat.
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7.  Conclusions

The enduring lesson from our experience with the slab
allocator is that it is essential to create excellent core
services. It may seem strange at first, but core
services are often the most neglected.

People working on a particular performance problem
such as web server performance typically focus on a
specific goal like better SPECweb99 numbers. If
profiling data suggests that a core system service is
one of the top five problems, our hypothetical
SPECweb99 performance team is more likely to find a
quick−and−dirty way to avoid that service than to
embark on a major detour from their primary task and
redesign the offending subsystem. This is how we
ended up with over 30 special−purpose allocators
before the advent of vmem.

Such quick−and−dirty solutions, while adequate at the
time, do not advance operating system technology.
Quite the opposite: they make the system more
complex, less maintainable, and leave behind a mess
of ticking time bombs that will eventually have to be
dealt with. None of our 30 special−purpose allocators,
for example, had anything like a magazine layer; thus
every one of them was a scalability problem in
waiting.  (In fact, some were no longer waiting.)

Before 1994, Solaris kernel engineers avoided the
memory allocator because it was known to be slow.
Now, by contrast, our engineers actively seek ways to
use the allocator because it is known to be fast and
scalable. They also know that the allocator provides
extensive statistics and debugging support, which
makes whatever they’re doing that much easier.

We currently use the allocator to manage ordinary
kernel memory, virtual memory,DMA, minor device
numbers, System V semaphores, thread stacks and task
IDs. More creative uses are currently in the works,
including using the allocator to manage pools of
worker threads − the idea being that the depot working
set provides an effective algorithm to manage the size
of the thread pool. And in the near future, libumem
will bring all of this technology to user−level
applications and libraries.

We’ve demonstrated that magazines and vmem have
improved performance on real−world system−level
benchmarks by 50% or more. But equally important,
we achieved these gains by investing in a core system
service (resource allocation) that many other project
teams have built on. Investing in core services is
critical to maintaining and evolving a fast, reliable
operating system.
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Appendix A:  Composing Vmem Arenas and Object Caches

In this Appendix we describe all the key steps to get from system boot to creating a complex object cache.

At compile time we statically declare a few vmem arena structures and boundary tags to get us through boot.
During boot, the first arena we create is the primordialheap_arena, which defines the kernel virtual address
range to use for the kernel heap:

heap_arena = vmem_create("heap",

kernelheap, heapsize, /* base and size of kernel heap */

PAGESIZE, /* unit of currency is one page */

NULL, NULL, NULL, /* nothing to import from -- heap is primordial */

0, /* no quantum caching needed */

VM_SLEEP); /* OK to wait for memory to create arena */

vmem_create(), seeing that we’re early in boot, uses one of the statically declared arenas to represent the
heap, and uses statically declared boundary tags to represent the heap’s initial span. Once we have the heap
arena, we can create new boundary tags dynamically. For simplicity, we always allocate a whole page of
boundary tags at a time: we select a page of heap, map it, divvy it up into boundary tags, use one of those
boundary tags to represent the heap page we just allocated, and put the rest on the arena’s free boundary tag list.

Next, we createkmem_va_arena as a subset ofheap_arena to provide virtual address caching (via quantum
caching) for up to 8 pages. Quantum caching improves performance and helps to minimize heap fragmentation,
as we saw in §4.4.5.  kmem_va_arena uses vmem_alloc() and vmem_free() to import from heap_arena:

kmem_va_arena = vmem_create("kmem_va",

NULL, 0, /* no initial span; we import everything */

PAGESIZE, /* unit of currency is one page */

vmem_alloc, /* import allocation function */

vmem_free, /* import free function */
heap_arena, /* import vmem source */

8 * PAGESIZE, /* quantum caching for up to 8 pages */

VM_SLEEP); /* OK to wait for memory to create arena */

Finally, we createkmem_default_arena, the backing store for most object caches. Its import function,
segkmem_alloc(), invokes vmem_alloc() to get virtual addresses and then backs them with physical pages:

kmem_default_arena = vmem_create("kmem_default",

NULL, 0, /* no initial span; we import everything */

PAGESIZE, /* unit of currency is one page */

segkmem_alloc, /* import allocation function */

segkmem_free, /* import free function */

kmem_va_arena, /* import vmem source */
0, /* no quantum caching needed */

VM_SLEEP); /* OK to wait for memory to create arena */

At this point we have a simple page−level allocator: to get three pages of mapped kernel heap, we could call
vmem_alloc(kmem_default_arena, 3 * PAGESIZE, VM_SLEEP) directly. In fact, this is precisely how
the slab allocator gets memory for new slabs. Finally, the kernel’s various subsystems create their object
caches.  For example, the UFS filesystem creates its inode cache:

inode_cache = kmem_cache_create("ufs_inode_cache",

sizeof (struct inode), /* object size */

0, /* use allocator's default alignment */

ufs_inode_cache_constructor, /* inode constructor */

ufs_inode_cache_destructor, /* inode destructor */

ufs_inode_cache_reclaim, /* inode reclaim */

NULL, /* argument to above funcs */

NULL, /* implies kmem_default_arena */
0); /* no special flags */



Appendix B:  Vmem Arenas and Object Caches in Solaris 8

                          memory    memory  total
vmem arena name           in use  imported allocs
---------------------- --------- --------- ------
heap                   650231808         0  20569
    vmem_seg             9158656   9158656   1118
    vmem_vmem             128656     81920     81
    kmem_internal       28581888  28581888   4339
        kmem_cache        667392    974848    334
    kmem_log             1970976   1974272      6
    kmem_oversize       30067072  30400512   3616
    mod_sysfile              115      8192      4
    kmem_va            557580288 557580288   2494
        kmem_default   557137920 557137920 110966
    little_endian              0         0      0
    bp_map              18350080  18350080   7617
    ksyms                 685077    761856    125
heap32                   1916928         0     58
    id32                   16384     16384      2
    module_text          2325080    786432    120
    module_data           368762   1032192    165
    promplat                   0         0     15
segkp                  449314816         0   3749
taskid_space                   3         0      4
sbus0_dvma               3407872         0     14
...
sbus7_dvma               2097152         0     12
ip_minor                     256         0      4
ptms_minor                     1         0      1

                             obj   objs     total
object cache name           size in use    allocs
------------------------- ------ ------ ---------
kmem_magazine_1               16   1923      3903
kmem_magazine_3               32   6818     56014
kmem_magazine_7               64  29898     37634
kmem_magazine_15             128  26210     27237
kmem_magazine_31             256   4662      8381
kmem_magazine_47             384   4149      7003
kmem_magazine_63             512      0      3018
kmem_magazine_95             768   1841      3182
kmem_magazine_143           1152   6655      6655
kmem_slab_cache               56  29212     31594
kmem_bufctl_cache             32 222752    249720
kmem_va_8192                8192  67772    111495
kmem_va_16384              16384     77        77
kmem_va_24576              24576     28        29
kmem_va_32768              32768      0         0
kmem_va_40960              40960      0         0
kmem_va_49152              49152      0         0
kmem_va_57344              57344      0         0
kmem_va_65536              65536      0         0
kmem_alloc_8                   8  51283  57609715
kmem_alloc_16                 16   4185  19065575
kmem_alloc_24                 24   2479  76864949
...
kmem_alloc_16384           16384     52       162
streams_mblk                  64 128834    142921
streams_dblk_8               128      8    464076
streams_dblk_40              160    205  10722289
streams_dblk_72              192    302    201275
...
streams_dblk_12136         12256      0         0
streams_dblk_esb             120      0         3
id32_cache                     8   1888      1888
bp_map_16384               16384      0   6553071
bp_map_32768               32768      0      2722
bp_map_49152               49152      0       292
bp_map_65536               65536      0        21
bp_map_81920               81920      0       768
bp_map_98304               98304      0       995
bp_map_114688             114688      0         5
bp_map_131072             131072      0        99
sfmmuid_cache                 48     35   7617426
sfmmu8_cache                 312 358161    389921
sfmmu1_cache                  88 126878    138258
seg_cache                     64   1098 134076345
segkp_8192                  8192      0         0
segkp_16384                16384     79        79
segkp_24576                24576    722    845690
segkp_32768                32768      0         0
segkp_40960                40960      0      1213
thread_cache                 672    229   4027805
lwp_cache                    880    229   1260382
turnstile_cache               64    749   3920308
cred_cache                    96      8    866335
dnlc_space_cache              24    819    565894
file_cache                    56    307  46876583
queue_cache                  608    604    991955
syncq_cache                  160     18       112
as_cache                     144     34   7727219
anon_cache                    48   4455 112122999
anonmap_cache                 56    676  60732684
segvn_cache                   96   1096 121023992
snode_cache                  256    379   1183612
ufs_inode_cache              480  23782   3156269
sbus0_dvma_8192             8192     66   1180296
sbus0_dvma_16384           16384      2    309600
sbus0_dvma_24576           24576      2     13665
sbus0_dvma_32768           32768      0    154246
sbus0_dvma_40960           40960      0         0
sbus0_dvma_49152           49152      0         0
sbus0_dvma_57344           57344      0         0
sbus0_dvma_65536           65536      0         0
fas0_cache                   256     26     21148
fas1_cache                   256      0        15
fas2_cache                   256      0        15
fas3_cache                   256      0        15
sock_cache                   432     45       234
sock_unix_cache              432      0         8
ip_minor_1                     1    116       549
process_cache               2688     37   3987768
fnode_cache                  264      6        55
pipe_cache                   496      8    545626
authkern_cache                72      0       312
authloopback_cache            72      0       232
authdes_cache_handle          72      0         0
rnode_cache                  656      3        15
nfs_access_cache              40      2        20
client_handle_cache           32      4         4
pty_map                       48      1         1

The data on this page was obtained by
running the ::kmastat command under
mdb(1) on a large Solaris 8 server. It was
substantially trimmed to fit the page.

The (shortened) list of all vmem arenas
appears below; the (shortened) list of all
object caches appears to the right. Shaded
regions show the connection between vmem
arenas and their quantum caches. [Note:
vmem names its quantum caches by
appending the object size to the arena name,
e.g. the 8K quantum cache forkmem_va is
named kmem_va_8192.]

Arena names are indented in the table below
to indicate their importing relationships. For
example, kmem_default imports virtual
addresses fromkmem_va, which in turn
imports virtual addresses from heap.

The allocation statistics demonstrate the
efficacy of quantum caching. At the time of
this snapshot there had been over a million
allocations for sbus0_dvma (1.18 million
8K allocations, as shown in the total
allocation column forsbus0_dvma_8192;
309,600 16K allocations, and so on). All of
this activity resulted in just 14 segment list
allocations. Everything else was handled by
the quantum caches. 


