
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the FREENIX Track:
1999 USENIX Annual Technical Conference

Monterey, California, USA, June 6–11, 1999

Managing Traffic with ALTQ

Kenjiro Cho
Sony Computer Science Laboratories, Inc., Tokyo

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org



Managing Traffic with ALTQ

Kenjiro Cho

Sony Computer Science Laboratories, Inc.
Tokyo, Japan 1410022
kjc@csl.sony.co.jp

Abstract
ALTQ is a package for traffic management. ALTQ

includes a queueing framework and several advanced
queueing disciplines such as CBQ, RED, WFQ and RIO.
ALTQ also supports RSVP and diffserv. ALTQ can be
configured in a variety of ways for both research and op-
eration. However, it requires understanding of the tech-
nologies to set up things correctly. In this paper, I sum-
marize the design trade-offs, the available technologies
and their limitations, and how they can be applied to typ-
ical network settings.

1 Queueing Basics

Essentially, every traffic management scheme involves
queue management. A large number of queueing dis-
ciplines have been proposed to date in order to meet con-
tradictory requirements such as fairness, protection, per-
formance bounds, ease of implementation or administra-
tion.

1.1 Queueing Components
Figure 1 illustrates queueing related functional blocks on
a router. Each functional block could be needed to build
a certain service but is not always required for other ser-
vices. In fact, most routers currently in use do not have
all the functional blocks.

Packets arrive at one interface of the router (ingress
interface), and then, are forwarded to another interface
(egress interface). A router could have functional blocks
in the ingress interface to police incoming packets but
the main functional blocks reside in the egress interface.
The function of each block is described below.

Classifier Packet classifiers categorizes packets based
on the content of some portion of the packet header.
(e.g., addresses and port numbers). Packets match-
ing some specified rule are classified for further pro-
cessing.

Meters Traffic meters measure the properties of a traf-
fic stream (e.g., bandwidth, packet counts). The
measured characteristics are stored as flow state and
used by other functions.

Markers Packet markers set a particular value to some
portion of the packet header. The written values
could be a priority, congestion information, an ap-
plication type, or other types of information.

Droppers Droppers discard some or all of the packets
in a traffic stream in order to limit the queue length,
or as an implicit congestion notification.

Queues Queues are finite buffers to store backlogged
packets. A queueing discipline could have multiple
queues for different traffic classes.

Schedulers Schedulers select a packet to transmit from
the backlogged packets in the queue.

Shapers Shapers delay some or all of the packets in a
traffic stream in order to limit the peak rate of the
stream. A shaper usually has a finite-size buffer, and
packets may be discarded if there is not sufficient
buffer space to hold the delayed packets.

A queueing discipline is, in general, defined as a set of
the functional blocks at the egress interface, and usually
consists of a specific queue structure, a scheduling mech-
anism and a dropper mechanism. However, the func-
tional blocks described here are conceptual and a wide
variety of combinations are possible.

1.2 Queueing Disciplines
Bandwidth allocation is one of the most important goals
of a queueing discipline. Fair or preferential band-
width allocation can be achieved by using an appropriate
queueing discipline. The same mechanism also isolates
a misbehaving flow, and thus, protects other traffic.

1



classifier

queues
shaper

dropper
marker

meter
dropper
marker

schedulerforwarding

ingress interface egress interface

classifier

Figure 1: Queueing Architecture

Another important goal is to control delay and jitter
that are critical to emerging real-time applications. It
is possible to bound the delay and jitter of a flow by
reserving the necessary network resources. Admission
control is required to decide whether requested resources
can be allocated. It is also needed to regulate the rate of
the reserved flow by means of shaping. The incoming
rate should be less than the reserved rate to avoid delay
caused by the flow’s own traffic. A leaky bucket is a
simple shaper mechanism with a finite buffer size. An-
other popular shaper mechanism is a token bucket that al-
lows small bursts with a configurable burst size. The to-
ken bucket can accommodate traffic streams with bursty
characteristics so it is more suitable for the current Inter-
net traffic.

Yet another goal of a queueing discipline is congestion
avoidance. TCP considers packet loss as a sign of con-
gestion. A router can notify TCP of congestion implicitly
by intentionally dropping a packet.

The following list describes representative queueing
disciplines.

FIFO The simplest possible queueing discipline is
FIFO (First-In-First-Out) that has only a single
queue and a simple drop-tail dropper.

PQ PQ (Priority Queueing) has multiple queues associ-
ated with different priorities. A queue with a higher
priority is always served first. Priority queueing is
the simplest form of preferential queueing. How-
ever, low priority traffic easily starves unless there
is a mechanism to regulate high priority traffic.

WFQ WFQ (Weighted Fair Queueing) [11, 4, 8] is a dis-
cipline that assigns an independent queue for each
flow. WFQ can provide fair bandwidth allocation in
times of congestion, and protects a flow from other
flows. A weight can be assigned to each queue to
give a different proportion of the network capacity.

SFQ SFQ (Stochastic Fairness Queueing) [10] is an ap-
proximation of WFQ. WFQ is difficult to imple-
ment because a large number of queues are required

as the number of flows increases. In SFQ, a hash
function is used to map a flow to one of a fixed set
of queues, and thus, it is possible for two different
flows to be mapped into the same queue.

CBQ CBQ (Class Based Queueing) [7] achieves both
partitioning and sharing of link bandwidth by hier-
archically structured classes. Each class has its own
queue and is assigned its share of bandwidth. CBQ
is non-work conserving and can regulate bandwidth
use of a class. A child class can be configured to
borrow bandwidth from its parent class as long as
excess bandwidth is available.

RED RED (Random Early Detection) [6, 2] is a dropper
mechanism that exercises packet dropping stochas-
tically according to the average queue length. RED
avoids traffic synchronization in which many TCPs
lose packets at one time [5]. Also, RED makes
TCPs keep the queue length short. RED is fair in
the sense that packets are dropped from flows with
a probability proportional to their buffer occupation.
Since RED does not require per-flow state, it is con-
sidered scalable and suitable for backbone routers.

1.3 Issues in Queueing
Although there are a large number of mechanisms avail-
able for traffic management, there is no single mecha-
nism that satisfies a wide range of requirements. There-
fore, it is important to use appropriate mechanisms suit-
able for a purpose.

In addition, a mechanism can have quite different ef-
fects depending on how it is used. For example, WFQ for
best effort traffic can provide fair bandwidth allocation.
A certain portion of the link capacity can be reserved by
configuring the weight and the classifier of WFQ. Fur-
ther, the delay can be bounded by adding a token bucket
to the traffic source.

Furthermore, it is not easy to combine different mech-
anisms in a coherent manner because different mecha-
nisms are independently developed to meet the require-
ments of specific applications.

2



The issues in designing queueing disciplines are de-
scribed below.

Overhead Most of the functional blocks are located in
the packet forwarding path, and thus, adds some
overhead to forwarding performance. A queueing
discipline should require only a few simple opera-
tions to forward a packet in order to scale to a high-
speed network. It is also preferable to be easily im-
plemented in hardware.

Flow Definition A flow is a unit that a classifier iden-
tifies packets in a traffic stream. A flow can be a
micro flow such as a single TCP session, or some
type of aggregated flow.

Packets belonging to the same micro flow should be
placed in the same queue in order to avoid packet re-
ordering. Although TCP and other transport mech-
anisms can handle out-of-order packets, frequent
out-of-order packets will considerably damage the
transport performance.

Classifier Design The design of an efficient classifier is
still an area of active research. A scalable algorithm
is required as the number of filters or the number
of active flows increases. Efficient handling of wild
card filters is difficult because it needs to find a best
match for multiple fields.

Classifiers are required not only by queueing but
also by firewall, layer 4 forwarding, and traffic mon-
itoring. Classifiers should be designed to be shared
by other components.

To identify traffic types by port numbers, a classi-
fier needs to check the transport header (e.g., TCP,
UDP). However, port based classification is not
always possible if a packet is fragmented or en-
crypted. Although IP fragments will decrease by
the Path MTU Discovery, encrypted packets will be
common with the widespread use of secure shells
and IPsec.

Required States A queueing discipline needs to keep
some state for each traffic class. The size of a state
and the total number of states have a great impact
to the scalability of a queueing discipline. It is
believed that per-flow queueing is preferable for a
small network or at an edge of a backbone but only
aggregated-flow queueing is possible within a back-
bone network.

A related issue is how long a flow state is main-
tained. A queueing discipline could keep only the
states of flows that have packets in the queue. On
the other hand, a discipline would need information
for a longer period to enforce a longer term rule.

Fairness Fairness is an important property to handle
best effort traffic. However, there are different def-
initions of fairness and different targets for whom
fairness is defined. Local fairness at a router does
not necessarily lead to global fairness. Besides, net-
work traffic is dynamic and constantly changing so
that static fairness does not necessarily lead to fair-
ness in a larger time scale.

Non-work Conserving Queues A work-conserving
discipline is idle only when there is no packet
awaiting service. A non-work conserving disci-
pline, on the other hand, can delay packets in the
queue; it can be considered as a form of a shaper.
A non-work conserving queue is more complex to
implement but is able to limit the peak rate, reduce
jitters, and provide tighter performance bounds.

Statistical Guarantee Performance guarantee can be
either deterministic or statistic. In general, deter-
ministic guarantee requires a much larger fraction
of the resources to be reserved than statistical guar-
antee. In practice, deterministic guarantee is dif-
ficult to implement because computer communica-
tion involves many mechanisms that do not have
tight bounds.

2 Traffic Management

There are people arguing that there are no need for QoS
control since bandwidth will be cheap and abundant in
the future. However, traffic management is not a choice
between QoS and non-QoS but a wide rage of spectrum.
For example, at one extreme, every single packet could
be precisely controlled at every router. At the other ex-
treme, packets could be transferred even without flow
control. However, both approaches are too expensive to
realize and to manage so that they have no practical im-
portance.

For a properly provisioned network, queue manage-
ment could be considered as a precaution in case of con-
gestion. It also works as a protective measure against
misbehaving flows, misconfiguration, or misprovision-
ing. The effect of active queue management will not be
so visible for such a properly provisioned network. How-
ever, it will virtually shift the starting point of congestion
so that the effect is similar to increasing the link capacity.

Traffic management needs a good balance between
controlling and provisioning at each level and among dif-
ferent levels. It is important to find a balance point that is
cost-effective as well as administratively easy to manage.

2.1 Time Scale of Traffic Management
Traffic management consists of a diverse set of mecha-
nisms and policies. Traffic management includes pric-

3



ing, capacity planning, end-to-end flow control, packet
scheduling, and other factors. These cover different time
scales and complement one another.

The time scale of queueing is a packet transmission
time. Queueing is effective to manage short bursts of
packets. End-to-end flow control in turn manages the rate
of a flow in a larger time scale. An important role of end-
to-end flow control is to keep the size of packet bursts
small enough to be manageable by queueing. To this end,
large capacity itself is of no use for managing bursts in
the packet level time scale. On the contrary, widening
gap in link speed makes bursts larger and larger so that
it makes managing traffic more important, especially at
bandwidth gap points.

2.2 Controlling Bottleneck Link
Typically, bottleneck points are entries of WAN connec-
tions and they are the source of packet loss and delay.
Queue management is most effective at those points.

Congestion is often caused by a small number of bulk
data sessions (e.g., web images, ftp) so that isolating such
sessions from other types of traffic will significantly im-
prove network performance. It also serves as a protective
measure. On the other hand, RED will substantially im-
prove the performance of cooperative TCP sessions.

There are network administrators trying to keep the
link utilization as high as possible. However, queueing
theory tells us that the system performance drastically
drops if the link utilization becomes close to 100%. It is
a phenomenon that a queue is no longer able to absorb
fluctuations in packet arrivals. Ideally, the link capacity
should be provisioned so that the average link utilization
is under a certain point, say 80%.

A difficulty in deploying queue management is that
queueing manages only outgoing traffic and the benefi-
ciaries are on the other side of a link. Queueing is not
appropriate for managing incoming traffic because the
queue is almost always empty at the exit of a bottleneck.
In order to manage incoming traffic, queue management
should be placed at the other end of the WAN link but
most organizations do not have control over it.

2.3 Queueing Delay
Network engineers tend to focus on the forwarding per-
formance. That is, how many packets can be forwarded
per second, or how long it takes to forward a single
packet. However, once the forwarding overhead be-
comes less than a packet transmission time, the through-
put reaches the wire speed by a pipeline effect. Although
further cutting down the overhead improves the delay, it
has no effect if the queue is not empty.

On the other hand, queueing delay (waiting time in the
queue) is by orders of magnitude larger than the forward-
ing delay. It implies that, if there is a bottleneck, high-

Table 1: Queueing Overhead Comparison
FIFO FIFOQ RED WFQ CBQ CBQ

+RED
(usec) 0.0 0.14 1.62 1.95 10.72 11.97

speed forwarding does not improve the delay because
most of the delay comes from queueing delay. Thus, we
should pay closer attention to queueing delay, once the
throughput reaches the wire speed.

2.4 Impact of Link Speed
It is important to understand how the effects and the over-
heads of queueing are related to the link speed. To illus-
trate the issues involved, Figure 2 plots packet transmis-
sion time and queueing delay on varying link speed in
log-log scale. min delay and packet delay show the re-
quired time to transmit a packet at the wire speed with
the packet size of 64 bytes and 1500 bytes, respectively.
These are the minimum time required to forward a packet
by a store-and-forward method. worst delay shows the
worst case queueing delay when the queue is full, as-
suming that the maximum queue length is 50 (the de-
fault value in BSD UNIX) and all packets are 1500-byte
long. On the other hand, Table 1 shows the per-packet
overhead of different queueing disciplines measured on
a PentiumPro 200MHz machine [3].

The per-packet overhead of queueing is independent
of link speed. By a simplistic analysis, queueing over-
head would be negligible if the per-packet overhead is
less than min delay, and could be acceptable if the per-
packet overhead is less than packet delay. The overhead
of CBQ is 10usec. It would be negligible up to 40Mbps
and acceptable even at 1Gbps. The overhead of RED is
1.6usec. It would be negligible up to 300Mbps.

On the other hand, the delay requirement of an appli-
cation is also independent of link speed. If an interac-
tive telnet session needs the latency to be less than 300
msec, preferential scheduling is required for link speed
less than 1.5Mbps. If a voice stream needs the latency to
be less than 30 msec, preferential scheduling is required
for link speed less than 20Mbps.

Although there are other performance factors and the
analysis is simplistic, it illustrates the effects of the link
speed on queueing. In summary, queueing does not
have significant overhead for commonly used link speed.
Preferential scheduling improves interactive response on
a slow link, and improves real-time traffic on a medium
speed link.

2.5 Building Services
So far, we have looked at the behavior of a single router.
An end-to-end service quality can be obtained by con-

4



10K 100K 1M 10M 100M 1G

1usec

1msec

1sec

10ms

100ms

10sec

100usec

10usec

worst delay

packet delay

min delay

telnet delay limit

voice delay limit

kernel timer

CBQ overhad

T1 Ethernet FastEther

RED overhad

Time

Link Speed (bps)

Figure 2: Queueing and Link Speed

catenating router behaviors along the communication
path. For example, a traffic stream from user A to user
B can be controlled such a way that the average rate is
1Mbps, the peak rate is 3Mbps and the packet delay is
less than 1msec.

However, to make useful services, a network as a
whole should be properly configured in a consistent way.
In order to guarantee a service quality, it is necessary to
configure all routers along the path and control all in-
coming traffic to these routers.

The diffserv working group at IETF is trying to es-
tablish a framework for various types of differentiated
services [1]. In the diffserv model, a network that sup-
ports a common set of services is called “DS domain”. A
DS domain should be built in such a way that all incom-
ing packets are policed at the boundary. Incoming pack-
ets are classified, measured and marked according to the
user contract. These boundary actions are called “traf-
fic conditioning”. Inside a DS domain, internal routers
(called DS interior nodes) perform preferential packet
scheduling using only the packet header field (DS field)
that has been marked at the boundary.

Traffic management mechanisms can be simpler in a
closed network that can police all incoming traffic at
the network boundary. For example, a simple priority
queueing discipline can provide a premium service if the
amount of incoming premium traffic is limited to a small
fraction of the capacity. On the other hand, most current
IP networks do not follow such a closed network model
so that no firm assumption can be made about incoming

traffic.

3 ALTQ

ALTQ [3] is a framework for FreeBSD that introduces a
variety of queueing disciplines. ALTQ provides a plat-
form for traffic management related research. ALTQ
also makes active queue management available for op-
erational experience.

3.1 Design
The basic design of ALTQ is quite simple; the queue-
ing interface is designed as a switch to a set of queueing
disciplines as shown in Figure 3. To implement ALTQ,
several fields are added to struct ifnet. The added fields
are a discipline type, a common state field, a pointer to
a discipline specific state, and pointers to discipline spe-
cific enqueue/dequeue functions.

The implementation policy of ALTQ is to make min-
imal changes to the existing code. The current kernel,
however, does not have queueing abstraction enough to
implement various types of queueing disciplines. As a
result, there are many parts of the kernel code that as-
sume FIFO queueing and the ifqueue structure.

Especially, it is problematic that many drivers directly
use the ifqueue structure, if snd, in the ifnet structure.
These drivers must be modified but it is not easy to mod-
ify all the existing drivers. Therefore, we took an ap-
proach that allows both modified drivers and unmodified
drivers to coexist so that we can modify only the drivers
we need, and incrementally add supported drivers.

5



ip_output

if_output

if_start

if_snd
alternative
discipline 1

alternative
discipline 2

altq_enqueue

altq_dequeue

IF_ENQUEUE

IF_DEQUEUE

Figure 3: Alternate Queueing Architecture

3.1.1 Queueing Operations

In ALTQ, queueing disciplines have a common set of
queue operations. Other parts of the kernel code manipu-
late a queue through 4 queueing operations; enqueue, de-
queue, peek and flush. Drivers are modified to use only
these operations, and not to refer to the ifqueue structure.

The enqueue operation is responsible not only for
queueing a packet but also for other functions such as
classifier and dropper that are required to enqueue a
packet.

The dequeue operation returns the next packet to
send. The main role of the dequeue operation is packet
scheduling.

The peek operation is similar to the dequeue operation
but it does not remove the packet from the queue. The
peek operation can be used by a driver to see if there
is enough buffer space or DMA descriptors for the next
packet. ALTQ does not have a prepend operation since
prepending a packet does not make sense if a discipline
has multiple queues. Therefore, a driver should use a
peek-and-dequeue policy if necessary.

The flush operation is used to empty the queue since
non-work conserving queues cannot be emptied by a
dequeue-loop.

3.1.2 Discipline Operations

Queueing disciplines are controlled by ioctl system calls
via a queueing device (e.g., /dev/cbq). ALTQ is defined
as a character device and each queueing discipline is de-
fined as a minor device of ALTQ.

There are 4 common operations to handle queueing
disciplines; attach, detach, enable, and disable. The at-
tach operation sets a queueing discipline to the specified
interface. An interface can have one queueing discipline
attached at a time. The attached discipline is not ac-
tivated until the enable operation is performed. When

the alternative queueing is disabled or closed, the system
falls back to the original FIFO queueing.

Other than these operations, each queueing discipline
usually needs discipline specific settings, which are also
done via discipline specific ioctls.

3.2 Using ALTQ

ALTQ implements several queueing disciplines includ-
ing CBQ, WFQ, RED, ECN, and RIO. For managing an
operational network, CBQ will be the most appropriate
discipline. CBQ is flexible to meet a wide range of re-
quirements and the implementation is stable and well
tested. Moreover, the CBQ implementation also inte-
grates RED so that RED can be enabled for each CBQ
class. The detailed mechanism of CBQ can be found
elsewhere [7, 12, 3].

There are implementation issues when using ALTQ
for different link speeds. These issues are described be-
low.

3.2.1 Effect of Timer Resolution

Shapers are usually realized using timers, and thus, the
resolution of a shaper is limited by the kernel timer res-
olution. The kernel timer resolution is 10msec in most
UNIX systems. This implies that traffic becomes bursty
if the packet transmission time of the link is less than
the kernel timer resolution. On 10Mbps Ethernet, a 1500
byte packet takes 1.2msec so that 8 packets can be sent
during a timer interval. 100Mbps FastEthernet is prob-
lematic since more than 80 packets can be sent during a
timer interval. Therefore, it is desirable to use a higher
resolution for the kernel timer. Current PCs seem to have
little overhead even if the timer resolution is increased by
a factor of 10.

CBQ employs a more elaborate scheme to limit band-
width but it also has constraints from the timer resolu-
tion. In CBQ, an overlimit class is suspended until the
state becomes underlimit again. A suspended class can
be resumed from transmission complete interrupts but it
relies on a timeout in case that the class is not resumed
from interrupts. CBQ also limits the number of back-to-
back packets by a variable maxburst. In the worst case
scenario in which resuming is done only from timeouts,
bandwidth of a class is limited by the timer resolution
and maxburst. The default value of maxburst is 16; the
value is selected to achieve 9.6Mbps on Ethernet with
the default timer resolution. However, it is only 1/10 of
the link capacity for FastEthernet. It is desirable to use a
higher timer resolution for FastEthernet; 1 msec resolu-
tion achieves 96Mbps.

Note that the timer resolution affects only non-work
conserving disciplines. Work-conserving disciplines do

6



not need timers since packets are sent from transmission
complete interrupts.

3.2.2 Difference in Network Cards

Some cards generate interrupts every time a packet is
transmitted, and some generate interrupts only when the
buffer becomes empty. It is generally believed that a
smart network card should reduce interrupts to allevi-
ate CPU burden. However, a queueing discipline could
have finer grained control with frequent interrupts; it is
a trade-off between CPU control and CPU load. There
is an interesting report that CBQ works much better with
an old NE2000 card that interrupts a lot and has small
buffers.

3.2.3 Device Buffers

There is a similar trade-off in setting the buffer size in
a network card. When delay is a concern on a slow
link, large buffers in network cards could adversely af-
fect queueing. For example, if a network card for a
128Kbps link has a 16KB buffer, the buffer can hold 1
second worth of packets. The device buffer has an ef-
fect of inserting another FIFO queue beneath a queueing
discipline. This problem is invisible under FIFO but it
becomes apparent when preferential scheduling is used.

The transmission buffer size should be set to the min-
imum amount that is required to fill up the link. Al-
though it is not easy to automatically detect the appro-
priate buffer size, it seems that many drivers set an ex-
cessive buffer size.

3.3 Availability
A public release of ALTQ for FreeBSD, the source
code along with additional information, can be found at
http://www.csl.sony.co.jp/person/kjc/software.html.

4 Related Work

4.1 Dummynet
Dummynet [9] is another popular mechanism available
for FreeBSD to limit bandwidth. Dummynet is originally
designed to emulate a link with varying bandwidth and
delay, and realized as a set of 2-level shapers; the first
level shaper enforces the bandwidth limit, and the second
level shaper enforces the specified delay.

Dummynet has several advantages over ALTQ. Dum-
mynet is implemented solely in the IP layer so that it is
device independent and no modification is necessary to
drivers. Because dummynet is a set of software shapers,
dummynet can be used both on the input path and on the
output path. In addition, the classifier of dummynet is in-
tegrated into ipfw (the firewall mechanism of FreeBSD)

so that it can be configured as part of firewall rules. Dum-
mynet also works with the Ethernet bridging mechanism.

On the other hand, there are disadvantages. The shaper
mechanism is realized solely by the kernel timer so that
the shaper resolution is limited to the kernel timer res-
olution as described in Section 3.2.1. Although ALTQ
shares the same limitation, ALTQ can take advantage of
transmission complete interrupts. Dummynet currently
does not have a mechanism for packet scheduling nor ac-
tive buffer management. Dummynet does not work with
the fastforwarding mechanism that bypasses the normal
IP forwarding path.

In summary, dummynet is good for simple bandwidth
limiting on moderate (Ethernet class) link speed, and it
is easy to configure. There are great demands for band-
width control that fall into this category.

4.2 Linux Traffic Control

Linux has a traffic control (TC) framework since version
2.1. The implemented queueing disciplines include CSZ,
PQ, CBQ, RED and SFQ.

Linux TC is similar to ALTQ in a number of ways.
The Linux TC framework has a switch of queueing dis-
ciplines and defines a set of queue operations. One minor
difference found in the queue operations is that Linux TC
defines “requeue” (prepend) instead of “peek”. Linux TC
employs a dequeue-and-requeue policy while ALTQ em-
ploys a peek-and-dequeue policy.

The architectural differences come from the kernel ar-
chitecture. That is, Linux has a network device layer and
its sk buff has rich fields.

Linux has a common network device layer that han-
dles link type specific processing and acts as an upper
half of a driver. Queueing is done within this device layer
so that TC requires changes only in this layer.

In BSD UNIX, there is no common code path between
the network layer and network device drivers. Opera-
tions are performed only through struct ifnet. As a result,
the ALTQ support is scattered in if output and if start.
Note that it is not only ALTQ but also BPF and ether-
net bridging need supporting code in device drivers. In
Linux, they are also supported in the common network
device layer.

Linux’s sk buff has many fields and have almost all
information about a packet. A classifier can easily access
network layer or transport layer information.

On the other hand, mbuf of BSD UNIX carries no in-
formation about a packet. Though this design is good for
enforcing network stack layering, a classifier needs to ex-
tract information from a packet itself by parsing headers.

These architectural differences illustrate the difference
in their design philosophy. The network code of BSD
UNIX has been successful with this minimalist approach.

7



However, BSD UNIX might need to redesign the cur-
rent abstraction in the future. An abstracted network de-
vice will make extensions easier and keep drivers sim-
pler. There are other possible extensions to the interface
level such as sub-interfaces for VLAN and virtual inter-
faces for multi-link. Also, various optimizations will be
possible if packet information can be tagged to mbuf.

5 Conclusion

There are increasing demands and expectations for net-
work traffic management. Although a variety of tech-
nologies are available, there is no single mechanism that
satisfies a wide range of requirements. It is important to
understand advantages and limitations of different mech-
anisms.

It is also important to understand the system bottle-
neck for different link speeds. With a network ranging
from a slow modem to a high-speed fiber, the system bot-
tleneck shifts one place to another. The requirements for
the hardware and the system configuration also change.

The behaviors of single queueing disciplines are well
understood but interaction of different mechanisms, es-
pecially in operational settings, needs more study and
experience. We hope ALTQ will be of use to gain ex-
perience in the field.

References

[1] S. Blake, D. Black, M. Carlson, E. Davies,
Z. Wang, and W. Weiss. An architecture for differ-
entiated services. RFC 2475, Internet Engineering
Task Force, December 1998.

[2] B. Braden, D. Clark, J. Crowcroft, B. Davie,
S. Deering, D. Estrin, S. Floyd, V. Jacob-
son, G. Minshall, C. Partridge, K. L. Peterson,
S. Shenker Ramakrishnan, J. Wroclawski, and
L. Zhang. Recommendations on queue manage-
ment and congestion avoidance in the internet.
RFC 2309, Internet Engineering Task Force, April
1998.

[3] Kenjiro Cho. A Framework for Alternate Queue-
ing: Towards Traffic Management by PC-UNIX
Based Routers. In USENIX 1998 Annual Techni-
cal Conference, pages 247–258, June 1998.

[4] Alan Demers, Srinivasan Keshav, and Scott
Shenker. Analysis and simulation of a fair queue-
ing algorithm. In Proceedings of SIGCOMM ’89
Symposium, pages 1–12, Austin, Texas, September
1989.

[5] S. Floyd and V. Jacobson. Traffic phase effects in
packet-switched gateways. Computer Comunica-
tion Review, 21(2):26–42, April 1991.

[6] Sally Floyd and Van Jacobson. Random early
detection gateways for congestion avoidance.
IEEE/ACM Transaction on Networking, 1(4):397–
413, August 1993. Also available from http://www.
aciri.org/floyd/papers.html.

[7] Sally Floyd and Van Jacobson. Link-sharing and
resource management models for packet networks.
IEEE/ACM Transactions on Networking, 3(4), Au-
gust 1995. Also available from http://www.aciri.
org/floyd/papers.html.

[8] Srinivasan Keshav. On the efficient implementation
of fair queueing. Internetworking: Research and
Experience, 2:157–173, September 1991.

[9] Rizzo L. Dummynet: A simple approach to the
evaluation of network protocols. Computer Comu-
nication Review, 27(1):31–41, April 1997. Also
available from http://www.iet.unipi.it/�luigi/.

[10] P. E. McKenney. Stochastic fairness queueing. In
Proceedings of INFOCOM, San Francisco, Califor-
nia, June 1990.

[11] John Nagle. On packet switches with infinite stor-
age. IEEE Trans. on Comm., 35(4), April 1987.

[12] Ian Wakeman, Atanu Ghosh, Jon Crowcroft, Van
Jacobson, and Sally Floyd. Implementing real-time
packet forwarding policies using streams. In Pro-
ceedings of USENIX ’95, pages 71–82, New Or-
leans, Louisiana, January 1995.

8


