Managing the Google Web 1T 5-gram with
Relational Database

Yan Chi LAM
Faculty of the Graduate School of Global Studies
Tokyo University of Foreign Studies
Tokyo, Japan

ABSTRACT

On Sep 19 2006, Google released Web 1T 5-gram, an
n-gram corpus generated from a source of approxi-
mately 1 trillion words. It provides a valuable refer-
ence of English usage since there is no other compa-
rable corpus of this data size. However, it has not
been widely used in language education due to the
difficulty in managing the huge data size. In this pa-
per, a practical approach of using relational database
to store, index and search the corpus is described
and implemented with commodity hardware. Basic
search queries are also designed for performance test-
ing. Sample performance results are recorded which
show acceptable data processing and search response
times. It is shown that the 5-gram corpus can be man-
aged using relational database and commodity hard-
ware. Further search queries can be designed and im-
plemented to make better use of the corpus in lan-
guage education.

Keywords: Google Web 1T, 5-gram, N-gram, Mysq],
Corpus, Relational Database, Language education

1 INTRODUCTION

The use of corpora in language education has been
widely discussed in publication such as Rethinking lan-
guage pedagogy from a corpus perspective [1]. As men-
tioned in one of the paper in [1] by Aston [2], the use
of corpora in teaching languages take into account the
frequencies and characteristics of language usage by
native speakers which are ignored by traditional syl-
labus and teaching materials. In that sense, the big-
ger the corpus size, the better the representativeness
of the language usage. Recent technology has already
allowed researchers to harness the resources of corpora
with notable sizes such as The British National Cor-
pus (BNC) [3] containing 100 million words and The
Corpus of Contemporary American English (COCA)
[5] containing more than 385 million words.

On Sep 19 2006, Google released an English corpus,
Web 1T 5-gram Version 1 [6]. It contains English
word n-grams and their observed frequency counts.
The length of the n-grams ranges from unigrams (sin-
gle words) to five-grams. The n-gram counts were
generated from approximately 1 trillion word tokens
of text from publicly accessible Web pages. Its data
size is about 10000 times bigger than BNC and about
2500 times bigger than COCA. It provides a unique
reference of global English language usage since there
is no other comparable corpus of this data size. Here
is an overview of its data sizes:

Number of tokens:
Number of sentences:

1,024,908,267,229
95,119,665,584

Number of unigrams: 13,588,391
Number of bigrams: 314,843,401
Number of trigrams: 977,069,902

Number of fourgrams: 1,313,818,354

Number of fivegrams: 1,176,470,663

Physically the data are distributed in 6 DVDs, as
gzip’ed text files. Each gzip’ed text files contains
exactly 1,000,000 grams or less and their frequency
counts except for the unigram file which contains all
of the unigrams. All the raw data amount to around
25GB in gzip’ed format.

In this paper it will be described in details how the
Google 5-gram corpus can be stored and organized us-
ing relational database (RDB) with common commod-
ity machine hardware. Two kinds of search queries are
implemented to demonstrate the feasibility in running
searches on top of RDB. Results and performance will
be discussed.

2 RELATED WORK

There are a few researches related to managing and
extracting data from the Google N-gram corpus that
are found for references. Their main purposes of using
the corpus are for NLP tasks. Here is a summary of

their approaches in handling the corpus:

Research Strategies

Hawker etc. - hash-based strategy that pre-
[7] process queries and/or data
- reducing the resolution of the
data to give only approximate
frequency counts and sometimes
false positive counts
- data compressing
Islam etc. [8] - only 5-gram data are processed
- reducing the size of the data
set by deletion and substitution
of grams
- sorting data into different files
based on query word as indexing
strategies
- customized trie indexing
- index all of the 5-grams using a
index file 277GB of size

Sekine [9]

NLP tasks involve numerous statistical queries on the
data. It may justify the approaches of designing com-
plex indexing methods and softwares, and sacrificing
the accuracies of the data as they aim to return query
results within a faction of a second.

However, for usage such as language education, such
approaches can be redundant as time factor is not as
essential and priority should be put in the ease of set-
ting up the system, the flexibility of designing queries,
and the ability to browse accurate data. Under such
conditions, it justifies more to use existing RDB soft-
wares in handling the corpus for language education as
they have readily available internal storage and index-
ing functionalities that can be leveraged. This paper
will explore the practicability and feasibility of such
means.

3 PROPOSED APPROACH

This section will propose in abstract terms how the
corpus can be processed and organized into a RDB
and afterwards be indexed by it.

3.1 Data Modeling

In order to efficiently store and index all the n-grams
data into a RDB, each of the unique English words
in the corpus is given a numeric word_id since storage
and indexing of integers require less space and execute
faster compared with strings data type. The following
relational data models are proposed:

Unigrams Table

Field Name Data Type Description

word_id integer A unique id rang-
ing from 1 to
1,024,908,267,229
identifying the
English word

word string The English word

frequency integer The frequency
count of the En-
glish word

*All columns are to be indexzed by the RDB

Bigrams, Trigrams, 4-grams, 5-grams Tables

Field Name Data Type Description

gram_id integer A unique id identi-
fying the gram in-
stance

word1_id integer The corresponding

word_id of the first
word in the gram
according to the
Unigrams table

The corresponding
word_id of the nth
(up to 5) word in
the gram according
to the Unigrams ta-
ble

frequency integer The frequency

count of the gram

*All columns are to be indexed by the RDB

word(n)_id integer

The assignment of word_ids should be done when cre-
ating the Unigrams table. Considering the large scale
of the data, the following problems may arise if each
sets of the two to five grams is stored into one single
table:

e The actual file used by the RDB software to store
the table may exceed the maximum file size of the
underlying operating system

e The number of entries in a set of grams (e.g. 4-
grams has 1,313,818,354 entries) may exceed the
limit of the maximum number of rows in a single
table of the RDB software

e If the index size of a single table is too big, the
index may not load or effectively load into the
RAM, affecting search speed

Thus, each of the two to five grams tables is split
into smaller tables to avoid the mentioned problems.
The optimal way to split the tables depend largely

on the architectures of the hardware, the operating
system and the RDB software. Since the aim of this
paper is to explore the feasibility of using RDB to han-
dle the data rather than how to use RDB to handle
the data optimally, a naive splitting method is pro-
posed here. Each sets of the two to five grams is split
into the same number of tables as the number of raw
text files containing the whole set. E.g. The set of
4-grams come in a total of 132 text files so the set of
4-grams will be split into 132 tables accordingly with
each table holding the data of one of the text files.

3.2 Search Queries

Two kinds of queries are proposed here to serve the
purpose of demonstrating the feasibility of searching
the corpus processed into the proposed data models.

1. Exact Query

Two to five words or the special wildcard character
are to be input. The number of words and wildcards
together are taken as the grams to be searched. All
matching instances are returned sorted in descending
frequency order. E.g. If ”Apple *” is the input, all
bigrams will be searched and all instances with the
first word matching ” Apple” (case sensitive) and the
second word matching anything (wildcard) will be re-
turned sorted in descending frequency order.

*

2. Keyword Query

Two to five words and the number of grams to search
are to be input. Then any instances in the specified
grams to be searched containing all of the keywords
are returned in descending frequency order. E.g. If
7apple tree” is the query and the search is specified to
5-grams, then all matching instances of 5-grams con-
taining both the word ”apple” and "tree” (case sensi-
tive) will be returned in descending frequency order.
Moreover, another optional wildcard * can be used in
between words. E.g. If 7apple * tree” is the query and
the search is specified to 5-grams, then all matching
instances of 5-grams containg ”apple” as the first and
"tree” as the last word with be returned.

These two queries are for demonstrating possible us-
ages of the data and are not designed for any specific
purposes. Many other possible queries can be further
designed and implemented to extract data from the
5-gram corpus for specific purposes in language edu-
cation but they are out of the scope of this paper.

4 IMPLEMENTATION

4.1 System Setup

Hardware and OS
In this research two machines are used. Their specifi-
cations are as follow:

Development Server Machine
Machine
CPU | Intel Core(TM)2 | Intel Xeon
Duo CPU E8400 | Quad-Core
3.00GHz E5506 2.13GHz
Memory | 4GB 8GB
Harddisk | 200GB 1TB
OS | Ubuntu 9.10 64- | Ubuntu 9.10 64-
bit Server bit Server

The development machine’s specification is common
to most desktop machines. It is used for developing
the scripts and codes before deployment and for com-
parison of speed with the server machine. The server
machine is for final deployment and physically holds
the database that contains all the data in the 5-gram
corpus.

RDB and Programming Language

Mysql [10] is a free, open source, popular, easy to set
up, and stable RDB software. Mysql version 5.0 is
used in this research. Python [11] is an expressive in-
terpreted programming language which provides good
balance between coding time and execution speed.
Python version 2.6 is used in this research.

4.2 Data Processing

First, the Unigrams table is created according to the
data model described, assigning a word_id to each of
the English words. Then, algorithm 1 is used for read-
ing each n-gram raw text files and inputting them into
Mysql.

The mapping of the English words to their word_ids
and the insertion of data into the Mysql table are the
heaviest tasks in this process. The mapping is done
using an on memory cache of Python data structure
dictionary to make it fast. The cache holding the map-
pings of all words implemented by Python dictionary
takes up about 1.7GB of RAM.

It is essential that the insertion into Mysql table
is done in a batch to minimize the overhead of each
insertion calls to Mysql. The INSERT statement in
Mysql supports multiple rows insert in one SQL com-
mand. Batch size of 10000 table rows is used in this
implementation.

Indexes are to be created after all the insertion of
one file instead of during insertion or it will slow the
process down. Locking the table during insertion gives

a better performance.

Algorithm 1 Processing a two to five grams text file
into a table in Mysql
Require: Unigram file, one of the n-gram files, Mysql
connection
1: Create an empty Python dictionary data structure
cache
2: 10
3: for each English word in the unigram file do
4: cahce|word] + i {Assigning an ID to the word.
Same assignment is used in creating the Uni-
grams table.}
1 1+1
6: end for
7: Create a Mysql table to hold the data according
to the data model
8: Lock the table for faster insertion
9: while Lines can be read from the n-gram file do
10: batch + Create an empty data structure (e.g.
array or list) for temporary storage
11: lines < Read as many as 10000 lines from the

file

12: for each line in lines do

13: Split line to get individual words in the gram
and its corresponding frequency

14: Use the cache dictionary to get the word_ids
for each words in the gram

15: Save all the word_ids and the frequency count
into batch

16: end for

17: Insert all data in batch in a single batch into the
Mysql table

18: end while

19: Unlock the Mysql table

20: Create index on each columns in the Mysql table

After processing all the raw n-gram text files, the
Mysql database contains the following tables:

No. of | Physical Size

Tables
Unigram | 1 1.3GB (data: 463MB, index:
878MB)
Bigram | 32 19.7GB (Each tables - data:
201MB, index: 430MB)
Trigram | 98 73.3GB(Each tables - data:

239MB, index: 527MB)
4-gram 132 116.1GB (Each tables - data:
277MB, index: 624MB)
5-gram 118 119.4GB (Each tables - data:
315MB, index: 721MB)
Total 381 329.8GB

4.3 Search Queries

Algorithm 2 and 3 describe how the exact and keyword
searches are implemented respectively.

Algorithm 2 Exact Search

10:
11:
12:
13:
14:
15:
16:

17:

18:

19:

20:

21:
22:

query < Get user input
Parse query to get individual words and wildcards
n < the total number of words and wildcards
Query the Unigrams table to get the word_ids for
all the words in the query
table_stacks < Create an empty data structure
(e.g. array or list) for holding temporary Mysql
table data
for each n-gram tables do
Execute an SQL query to return only the first
instance in descending frequency order match-
ing all the word_ids in the right word positions
if result are returned then
Append the result, frequency count, row off-
set (which is 1 now) and table name in
table_stacks
end if
end for
Sort table_stacks with descending frequency count
cache < Create an empty Python dictionary to
cache word_ids mappings
result_set <— Create an empty data structure to
store results (grams and frequency sets)
while table_stacks is not empty do
top_table + Pop the top table (highest fre-
quency count), its cached offset and cached re-
sult from table_stacks
Replace the word ids in the cached result in
top_table with actual words using cache, if the
mappings are not found in cache, query the un-
igram table and cached them in cached for later
use
Append the gram and frequency in top_table to
result_set
Try to fetch a new row from top_table with the
same matching condition
If fetched then, append the result, frequency
count, row offset and table name in table_stacks
and sort table_stacks by descending frequency
count
end while
return result_set

Algorithm 3 Keyword Search
1: query,ngrams < Get user input for keywords and
grams to search
2: Parse query to get individual words and get their
corresponding word_ids by querying the Unigrams
table
3: table_stacks < Create an empty data structure
(e.g. array or list) for holding temporary Mysql
table data
4: for each n-gram tables of ngrams do
Execute an SQL query to return only the first
instances in descending frequency order match-
ing all the word_ids in any word positions or
positions that match with the wildcard criteria
if result are returned then
Append the result, frequency count, row off-
set (which is 1 now) and table name in
table_stacks
8 end if
9: end for
10: Sort table_stacks with descending frequency count
11: Follow step 12 to 22 described in the Exact Search
algorithm

5 PERFORMANCE

5.1 Data Processing

Development Machine

It takes around 150 seconds to insert and index a bi-
gram text file into a Mysql table while it takes around
230 seconds for a 5-gram text file. Trigram and 4-gram
files take more time than bigram but less time than 5-
gram. Let us generously assume that the time to pro-
cess one text file (there are totally 381) is 4 minutes,
it would take 1524 minutes, 25.4 hours, only a little
bit over a day to process the whole Google 5-gram
corpus into Mysql and index them, with a commonly
available desktop machine specification.

Server Machine

It takes around 210 seconds to insert and index a bi-
gram text file into a Mysql table while it takes around
340 seconds for a 5-gram text file. Trigram and 4-gram
files take more time than bigram but less time than 5-
gram. The process takes longer in the server machine
than the development machine probably due to the
bigger overhead in utilizing a bigger RAM size and a
bigger harddisk size. However, the performance can be
largely compensated by running multiple processes in
parallel to process several text files at the same time.
In this research, up to four processes are running in
parallel processing 4 different text files at the same
time. Again, for easy calculations, let us generously
assume that three parallel processes are run and the
time to process one text file (there are totally 381) is

6 minutes, thus, the average time to process one file
becomes 2 minutes. It would then take 762 minutes,
12.7 hours, only a little bit over half a day to process
the whole Google 5-gram corpus into Mysql and index
them.

5.2 Search Queries

Exact Search

The following table gives some examples of execution
times of the wildcard search implemented. All of the
query return within one minute which is very accept-
able in querying a corpus of this data size. Second
runs are much faster due to the caching mechanism of
Mysql.

Query Time taken to return the
first 100 results (in sec-
onds)
1st run 2nd run

”banana *” 0.4 0.1

”* banana” 11.9 0.5

"cake * * kA7 4 0.2

"E K cake * K7 33.6 1.6

nE KKK cake” 47.3 1.7

"day dream * *7 | 3.6 0.2

"day * * dream” | 3.7 0.2

"* day dream *7 | 31.7 0.5

7* * day dream” | 54.1 0.5

Keyword Search

The following table gives some examples of execu-
tion times of the keyword search implemented. Some
queries take up to 6-7 minutes to return. Second
runs are much faster due to the caching mechanism
of Mysql. The search is now running in a sequential
manner, querying Mysql tables one by one and does
not take any advantage of the possibility of distributed
computing. The way how the data models are pro-
posed, the data can actually be stored across several
servers in the same network running Mysql. By run-
ning the part from line 6-11 described in algorithm 3
in parallel across for example n machines, the speed
would be shortened by close to n times theoretically.

Query N-gram | Time taken to
return the first
100 results (in
seconds)
1st run 2nd run
"love” 2 45.2 0.5
"love” 3 209.3 1.7
”love” 4 371.6 2.3
" love” 5 394.8 2
”book library” | 3 191.1 1
"book library” | 4 314.4 1.5
”book library” | 5 321.6 1.5

6 FUTURE WORK

The Google 5-gram corpus can serve as a valuable re-
source in language education. It is shown and docu-
mented in this paper how the Google English 5-gram
corpus can be handled by using commodity machines
leveraging the power of readily available relational
database softwares. Furthermore, search queries are
also implemented on top of the proposed data mod-
els to demonstrate the feasibility of designing useful
searches. With this knowledge, the Google 5-gram
corpus can now be set up easily and be examined,
browsed and considered for use in language education.

Currently, web interface has been setup to allow
teachers and students on campus to use the imple-
mented search functions. Figure 1 shows a sample
screenshot of the web interface. After more testing
and usage data collection, more meaningful searches
tailored to language education can be developed and
search performance can be optimized according to ac-
tual needs.

Finally, as Google has also released n-grams corpora
in Japanese and other European languages, the same
way of handling data can be extended to those corpora
and thus can benefit language education research in
those languages.

Figure 1: Sample web interface scrrenshot

Query: apple * tree [12 gram (13 gram (4 gram 5 gram (‘submit)

Elapsed Time: 0:00:01.344384
Frequency counts for each query words

e apple: 6878789
e tree: 33783604

Results
Words Frequency

apple right off the tree 1216

apple fall from a tree 509

apple falling from a tree 455

apple falls from the tree 211

apple falls from a tree 183

apple fell from the wee 161

apple falling from the tree 140

apple tree , pear tree 126

apple tree <UNK> apple tree 113
apple is on the tree 106

References

[1] Burnard, L., & McEnery, T. (Eds.). (2000). Re-
thinking language pedagogy from a corpus perspec-
tive: Papers from the Third International Confer-
ence on Teaching and Language Corpora. Frank-
furt: Peter Lang.

[2] Aston, Guy (2000): Corpora and language teach-
ing. In: Burnard, Lou & McEnery, Tony (eds),
7-17.

[3] The British National Corpus, version 3 (BNC
XML Edition). 2007. Distributed by Oxford Uni-
versity Computing Services on behalf of the BNC
Consortium. URL: http://www.natcorp.ox.ac.uk/

[4] What makes an Ozxford Dictionary? AskOx-
ford.com. Oxford University Press. URL:
http://www.askoxford.com/oec/mainpage/
Retrieved 13 Feb, 2010.

[5] Davies, Mark (2009), The 385+ Million Word
Corpus of Contemporary American English (1990-
present). International Journal of Corpus Linguis-
tics.

[6] Thorsten Brants, Alex Franz. 2006. Web 1T 5-
gram Version 1. Linguistic Data Consortium,
Philadelphia.

[7] Tobias Hawker, Mary Gardiner and Andrew Ben-
netts (2007). Practical Queries of a Massive n-
gram Database. Proceedings of the Australasian
Language Technology Workshop 2007. Melbourne,
Australia, 10th—11th September, 2007, pages
40-48.

[8] Aminul Islam, Diana Inkpen. Managing the Google
Web 1T 5-gram Data Set. Proceedings of the IEEE
International Conference on Natural Language
Processing and Knowledge Engineering (IEEE
NLP-KE’09). Dalian, China, September, 2009.

[9] Sekine, Satoshi (2008). A Linguistic Knowledge
Discovery Tool: Very Large Ngram Database
Search with Arbitrary Wildcards. Proceedings of
Coling 2008: Companion volume: Demonstra-
tions. Coling 2008 Organizing Committee. Manch-
ester, UK. Pages 181-184

[10] http://www.mysql.com/

[11] http://www.python.org/

