
GPU Technology Conference 2017 | 8 May 2017 | page 1 | © Roche

Maximizing GPU
Throughput Across Multiple
Streams – Tips and Tricks

Chuck Seberino
Roche Sequencing Solutions, Santa Clara

GPU Technology Conference 2017 | 8 May 2017 | page 2 | © Roche

Discussion Today

2

•  Why use GPU streams?
•  Stream Basics
•  Example use cases
•  cudaMemcpyAsync
•  Custom Thrust allocator

Examples used in this presentation is available at:
https://github.com/chuckseberino/CCT.git

GPU Technology Conference 2017 | 8 May 2017 | page 3 | © Roche

Why Use GPU Streams?

•  Use streams when you have more than one kernel that can be
executed simultaneously

• Could be several compute tasks for an aggregated result
• Could be completely independent work products

•  Better utilization of resources – shared memory, compute, thread
blocks

•  Provides more opportunities for kernel scheduler to insert more
work when other kernels stall

GPU Technology Conference 2017 | 8 May 2017 | page 4 | © Roche

Basics of Stream Usage

Create additional streams:
•  cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking)

Issue kernel/CUDA calls on proper stream:
•  kernel<<<grid, block, shmem, stream>>>(args)
•  cudaMemcpyAsync(dst, src, size, kind, stream)

Create and use events for synchronization:
•  cudaEventCreate(), cudaEventRecord(), cudaStreamWaitEvent()

When using more than one stream, never use default stream:
•  Remove implicit synchronization with default stream
•  Makes it easier to debug default stream problems
•  Helps to identify and fix synchronization bugs
•  Able to verify in NVVP correct behavior

GPU Technology Conference 2017 | 8 May 2017 | page 5 | © Roche

First Priority – Schedule “Enough” Work

•  Make sure there are always 16-32x the number of threads queued
• 4,000 cores = 64k to 128k threads of work
• Provides enough work to allow the kernel scheduler to maximize
functional units and hide memory latency.

•  What if my kernel doesn’t use that much parallelism?

•  What if my kernel uses (much) more than 32x?

• Limited return or even degradation in performance
• Reduce parallelism by making “fatter” threads

GPU Technology Conference 2017 | 8 May 2017 | page 6 | © Roche

Example 1 – Combine Components

Problem: One ore more kernels don’t individually create enough
work, but they are independent calculations

Solution: Run them concurrently and synchronize their completion
• Create a separate stream for each component
• Place an event record in each stream after kernel call
• Have the aggregation stream wait on all event records of component
streams

•  Events work across GPU devices and CPU threads
• Make sure that a cudaStreamWaitEvent() is issued after the
cudaEventRecord() has been placed in the stream.

• Particularly important when working across CPU threads.
• Use CPU synchronization primitives to guarantee order.

GPU Technology Conference 2017 | 8 May 2017 | page 7 | © Roche

Example 1 - Parallelize Along Work Components

•  Kernel{1-4} create independent sub-results that are aggregated
in Kernel0.

•  Increased utilization of GPU!

GPU Technology Conference 2017 | 8 May 2017 | page 8 | © Roche

Example 2 – “Too Much” Parallelism

•  Column sum operation with 32M elements
• Run on Quadro P6000 with 3840 cores

This example gets
slower with
increased threads!

GPU Technology Conference 2017 | 8 May 2017 | page 9 | © Roche

Example 3 – Resource Utilization

Problem: One kernel requires large amount of shared memory,
limiting occupancy
•  Maxwell & Pascal have 48KB or 64KB of shared memory

• A block size of 1024 gives only 48(64) bytes of memory per thread -
12(16) floats

• Reduce block size to get more memory per thread
• 4x increase in shared memory per thread requires 4x reduction in
occupancy

Solution: Given that another independent kernel is available that
requires no shared memory, run it in a separate stream

Examples – median, percentile, sort, histogram, transpose

GPU Technology Conference 2017 | 8 May 2017 | page 10 | © Roche

cudaMemcpyAsync Potential Pitfall

•  From CUDA C Best Practices Guide Chapter 9.1:
• “In contrast with cudaMemcpy(), the asynchronous transfer version
requires pinned host memory ...”

•  What happens if I try to use cudaMemcpyAsync() with
non-pinned memory?

•  Calling cudaMemcpyAsync() with pageable memory
works,

• Copy operation gets serialized on GPU along with
kernel launches - no copy engine overlap with kernels

• Host doesn’t block on call though
• Can examine in Visual Profiler

but …

GPU Technology Conference 2017 | 8 May 2017 | page 11 | © Roche

cudaMemcpyAsync Pinned

GPU Technology Conference 2017 | 8 May 2017 | page 12 | © Roche

Not Pinned!

... vs. cudaMemcpyAsync Paged

GPU Technology Conference 2017 | 8 May 2017 | page 13 | © Roche

Using Thrust

•  Thrust is a great API that provides STL-like primitives
• Because it behaves like standard algorithms, it is also limited in how it
passes data back to the caller.

• If a thrust function requires temporary memory, OR it passes back a
result as the return value, then it will allocate and free CUDA memory

1
3

cudaMalloc/cudaFree every time! Serializes kernels!

Default Allocator

GPU Technology Conference 2017 | 8 May 2017 | page 14 | © Roche

Be Careful of Thrust Allocations!

Custom Allocator

•  By using a custom allocator, you can control creation
and deletion.

Calls cudaMalloc once the first time, then reuses on
subsequent calls.

GPU Technology Conference 2017 | 8 May 2017 | page 15 | © Roche

General Practice to Keep GPU Busy

1. Provide enough work for the GPU
•  Create ~16x more threads than physical cores to provide enough

opportunities for the scheduler to hide latency.

2. Use multiple streams to increase utilization of resources
•  Balance ALU, Shared Memory, I/O

3. Minimize warp divergence
•  Multiple streams do not help divergence. Conditional code gets

disabled by thread mask

GPU Technology Conference 2017 | 8 May 2017 | page 16 | © Roche

Thank You

•  Source code is available:
•  https://github.com/chuckseberino/CCT

• GPU wrapper
• Custom Thrust allocator (per stream)
• Examples used in this presentation

•  We are hiring GPU developers!

