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Discussion Today

Why use GPU streams?
Stream Basics

Example use cases
cudaMemcpyAsync
Custom Thrust allocator

Examples used in this presentation is available at:
https://github.com/chuckseberino/CCT.git




Why Use GPU Streams?

« Use streams when you have more than one kernel that can be
executed simultaneously
*Could be several compute tasks for an aggregated result
*Could be completely independent work products

 Better utilization of resources — shared memory, compute, thread
blocks

* Provides more opportunities for kernel scheduler to insert more
work when other kernels stall




Basics of Stream Usage

Create additional streams:
« cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking)

Issue kernel/CUDA calls on proper stream:
« kernel<<<grid, block, shmem, stream>>>(args)
« cudaMemcpyAsync(dst, src, size, kind, stream)

Create and use events for synchronization:
 cudaEventCreate(), cudaEventRecord(), cudaStreamWaitEvent()

When using more than one stream, never use default stream:
« Remove implicit synchronization with default stream

« Makes it easier to debug default stream problems

 Helps to identify and fix synchronization bugs

 Able to verify in NVVP correct behavior




First Priority — Schedule "Enough™ Work

« Make sure there are always 16-32x the number of threads queued

*4 000 cores = 64k to 128k threads of work

*Provides enough work to allow the kernel scheduler to maximize
functional units and hide memory latency.

« What if my kernel doesn’t use that much parallelism?

« What if my kernel uses (much) more than 32x?
Limited return or even degradation in performance
*Reduce parallelism by making “fatter” threads




Example 1 — Combine Components

Problem: One ore more kernels don'’t individually create enough
work, but they are independent calculations

Solution: Run them concurrently and synchronize their completion
*Create a separate stream for each component
*Place an event record in each stream after kernel call

*Have the aggregation stream wait on all event records of component
streams

 Events work across GPU devices and CPU threads

*Make sure that a cudaStreamWaitEvent() is issued after the
cudaEventRecord() has been placed in the stream.

*Particularly important when working across CPU threads.
*Use CPU synchronization primitives to guarantee order.




Example 1 - Parallelize Along Work Components

« Kernel{1-4} create independent sub-results that are aggregated
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Example 2 — “Too Much” Parallelism

* Column sum operation with 32M elements
*Run on Quadro P6000 with 3840 cores

This example gets
AN slower with
\\ increased threads!
g 1
g w1 Stream
g \\ /25treams
g 01 w4 Streams
“—

128 256 512 1024 2048 4096 8152 16384 32768 65536 131072
Number of Threads
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Example 3 — Resource Utilization

Problem: One kernel requires large amount of shared memory,
limiting occupancy
« Maxwell & Pascal have 48KB or 64KB of shared memory

*A block size of 1024 gives only 48(64) bytes of memory per thread -
12(16) floats

*Reduce block size to get more memory per thread
*4x increase in shared memory per thread requires 4x reduction in
occupancy

Solution: Given that another independent kernel is available that
requires no shared memory, run it in a separate stream

Examples — median, percentile, sort, histogram, transpose




cudaMemcpyAsync Potential Pitfall

 From CUDA C Best Practices Guide Chapter 9.1:

*“In contrast with cudaMemcpy (), the asynchronous transfer version
requires pinned host memory ...”

« What happens if | try to use cudaMemcpyAsync () with
non-pinned memory?

 Calling cudaMemcpyAsync() with pageable memory
works, but ...

*Copy operation gets serialized on GPU along with
kernel launches - no copy engine overlap with kernels

*Host doesn’t block on call though
Can examine in Visual Profiler




cudaMemcpyAsync Pinned
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... vs. cudaMemcpyAsync Paged
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Using Thrust

« Thrust is a great API that provides STL-like primitives

*Because it behaves like standard algorithms, it is also limited in how it
passes data back to the caller.

*If a thrust function requires temporary memory, OR it passes back a
result as the return value, then it will allocate and free CUDA memory
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Be Careful of Thrust Allocations!

* By using a custom allocator, you can control creation
and deletion.
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Calls cudaMalloc once the first time, then reuses on
subsequent calls.
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General Practice to Keep GPU Busy

1. Provide enough work for the GPU

« Create ~16x more threads than physical cores to provide enough
opportunities for the scheduler to hide latency.

2. Use multiple streams to increase utilization of resources
« Balance ALU, Shared Memory, I/O

3. Minimize warp divergence

« Multiple streams do not help divergence. Conditional code gets
disabled by thread mask




Thank You

e Source code is available:

* https://github.com/chuckseberino/CCT

*GPU wrapper
*Custom Thrust allocator (per stream)
Examples used in this presentation

* We are hiring GPU developers!




