Maximizing GPU
Throughput Across Multiple
Streams — Tips and Tricks

Chuck Seberino
Roche Sequencing Solutions, Santa Clara

Discussion Today

Why use GPU streams?
Stream Basics

Example use cases
cudaMemcpyAsync
Custom Thrust allocator

Examples used in this presentation is available at:
https://github.com/chuckseberino/CCT.git

Why Use GPU Streams?

« Use streams when you have more than one kernel that can be
executed simultaneously
*Could be several compute tasks for an aggregated result
*Could be completely independent work products

 Better utilization of resources — shared memory, compute, thread
blocks

* Provides more opportunities for kernel scheduler to insert more
work when other kernels stall

Basics of Stream Usage

Create additional streams:
« cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking)

Issue kernel/CUDA calls on proper stream:
« kernel<<<grid, block, shmem, stream>>>(args)
« cudaMemcpyAsync(dst, src, size, kind, stream)

Create and use events for synchronization:
 cudaEventCreate(), cudaEventRecord(), cudaStreamWaitEvent()

When using more than one stream, never use default stream:
« Remove implicit synchronization with default stream

« Makes it easier to debug default stream problems

 Helps to identify and fix synchronization bugs

 Able to verify in NVVP correct behavior

First Priority — Schedule "Enough™ Work

« Make sure there are always 16-32x the number of threads queued

*4 000 cores = 64k to 128k threads of work

*Provides enough work to allow the kernel scheduler to maximize
functional units and hide memory latency.

« What if my kernel doesn’t use that much parallelism?

« What if my kernel uses (much) more than 32x?
Limited return or even degradation in performance
*Reduce parallelism by making “fatter” threads

Example 1 — Combine Components

Problem: One ore more kernels don'’t individually create enough
work, but they are independent calculations

Solution: Run them concurrently and synchronize their completion
*Create a separate stream for each component
*Place an event record in each stream after kernel call

*Have the aggregation stream wait on all event records of component
streams

 Events work across GPU devices and CPU threads

*Make sure that a cudaStreamWaitEvent() is issued after the
cudaEventRecord() has been placed in the stream.

*Particularly important when working across CPU threads.
*Use CPU synchronization primitives to guarantee order.

Example 1 - Parallelize Along Work Components

« Kernel{1-4} create independent sub-results that are aggregated
iIn KernelO.

ps 0.55s 1s 158 2.5s 3s 3.5s
=] Context 1 (CUDA) \ |
= Compute _--_—-—
L 5F 5.6% kernel1(__in... I I | I I I I i | I |
L7 14.0% kernel2(_i... - i - i [| - - - i
L Y 22.3% kernel3(_i.. N | [| — - - - - - — [.
L 7 30.5% kernel4(_i... | [] [- — - — [| — |
L 27.7% kernelO(_i... | - e H B — - (ST — H B
* Increased utilization of GPU!
p s 0.5s 1s 1.5s 2s 25s
[=| Context 1 (CUDA) \
- (] [| - HE B - — -
Sl - HE BN N = HE T N
I kernel.. I I kernel... N | | [| [[| |
L 5 5.5% kernel1(__in... I l l l I . I . I l
L7 13.9% kernel2(__... - -] B -] [- - - |
L Y 22.4% kernel3(_... — - [— - — [| - - [W— - ‘
- 7 30.6% kerneld(_... e E B B I . - —
L ¥ 27.6% kernelO(_... \ — — — — — - i — |

GPU Technology Conference 2017 | 8 May 2017 | page 7 | © Roche

Example 2 — “Too Much” Parallelism

* Column sum operation with 32M elements
*Run on Quadro P6000 with 3840 cores

This example gets
AN slower with
\\ increased threads!
g 1
g w1 Stream
g \\ /25treams
g 01 w4 Streams
“—

128 256 512 1024 2048 4096 8152 16384 32768 65536 131072
Number of Threads

GPU Technology Conference 2017 | 8 May 2017 | page 8 | © Roche

Example 3 — Resource Utilization

Problem: One kernel requires large amount of shared memory,
limiting occupancy
« Maxwell & Pascal have 48KB or 64KB of shared memory

*A block size of 1024 gives only 48(64) bytes of memory per thread -
12(16) floats

*Reduce block size to get more memory per thread
*4x increase in shared memory per thread requires 4x reduction in
occupancy

Solution: Given that another independent kernel is available that
requires no shared memory, run it in a separate stream

Examples — median, percentile, sort, histogram, transpose

cudaMemcpyAsync Potential Pitfall

 From CUDA C Best Practices Guide Chapter 9.1:

*“In contrast with cudaMemcpy (), the asynchronous transfer version
requires pinned host memory ...”

« What happens if | try to use cudaMemcpyAsync () with
non-pinned memory?

 Calling cudaMemcpyAsync() with pageable memory
works, but ...

*Copy operation gets serialized on GPU along with
kernel launches - no copy engine overlap with kernels

*Host doesn’t block on call though
Can examine in Visual Profiler

cudaMemcpyAsync Pinned

CCENMEEE A Y

—

| 01485 0155 01585
'} — 1

[= Process "memoryTest.exe” (54852)
L Profiling Overhead
[=! Thread 55280
- Runtime AP
(=] Thread 54568
" Runtime AP
= Driver APl
[= 0] GeForce GTX TITAN X
[=] Context 1 (CUDA)
=7 MemCpy (HtoD) I — | | |
7 MemCpy (OtoH) [— [—

kernel(short ¢

< [I——
) Console [

[Analysis 33 [Details

Settings

Results

1. CUDA Application Analysis

The guided analysis system walks you -
through the various analysis stages to help H

you understand the optimization
opportunities in your application. Once you
become familiar with the optimization
process, you can explore the individual
analysis stages in an unguided mode.
When optimizing your application it is
important to fully utilize the compute and
data movement capabilities of the GPU. To
do this you should look at your
aoolication’s overall GPU usaae as well as

kemel{short ¢

R [Femeltshort c-.|
e Kemellshort R temeishor ¢
= Streams
- Stream 13 - kemnel(short c... kemel(short
- sueante] |
- suesmis m eroere I
© stream 16 | [remelihort .|

0165
v

E = -
E = .
kernel(short ¢

kernel(short c. .

kemel(short c...

kernel(short c. _

. @ B [Properties 33

Memcpy DtoH [async]

Start

End

Duration

Size

Throughput

4 Memory Type

Source
Destination

0.1?2 H

kernel(short ¢

kemel(short c...

0.1?5 s

kernel(short ¢

lveme <

150.075 ms (150,074,...
150.726 ms (150,726, ...
651632 us

4MB

6.133 GB/s

Device
Pinned

GPU Technology Conference 2017 | 8 May 2017 | page 11

| © Roche

... vs. cudaMemcpyAsync Paged

File View Window Run Help
£l 8. R[S RAQ|F R|ELEE
© ‘pinMemory | § pageMemory 52 =B

| 0.1;! H 01425 0.145 s 0.148 s 0&5 s 0.1?2 s 0.1‘55 s 0.1‘58 s 0.1‘6 s 0.1?2 H 0.1?5 s

[= Process "memoryTest.exe .pin 0" ...
[=! Thread 54796
“ Runtime API
" Driver API
(=] Thread 54904
L Runtime APY \ 1B y cudaMemcpyAsync cudaMemc
= Profiling Overhead
= 1] GeForce GTXTITAN X \
(=] Context 1 (CUDA) i

= 7 MemCpy (HtoD) \ l [] [| []
© 7 MemCpy (OtoH) | |
% conpute | [Femetce]
=] Streams
 sweam13 | |
- seam 14 ‘ [kemells. ||
- sueam1s | [Semdie] |
- sueans o on
« m »
G Analysis 33 Details [E Console Settings W @ B [Properties 37 = a
I-l$ Export PDF Report Results Memcpy DtoH [async]
1. CUDA Application Analysis Start 142.207 ms (142,206,...
The guided analysis system walks yo _ End 143.074 ms (143,073,...
d Wi you -
through the various analysis stages to help Duration 866633 ps
you understand the optimization Size 4MB
opportunities in your application. Once you Throughput 45616 GB/s

become familiar with the optimization

process, you can explore the individual .

analysis stages in an unguided mode. '
When optimizing your application it is O I n n e L
important to fully utilize the compute and

data movement capabilities of the GPU. To

do this you should look at your

aoplication’s overall GPU usaae a5 well as

GPU Technology Conference 2017 | 8 May 2017 | page 12 | © Roche

Using Thrust

« Thrust is a great API that provides STL-like primitives

*Because it behaves like standard algorithms, it is also limited in how it
passes data back to the caller.

*If a thrust function requires temporary memory, OR it passes back a
result as the return value, then it will allocate and free CUDA memory

000 X/ NVIDIA Visual Profiler
File View Window Run Help

CEBE WS- R

QIF RINHE &

© multilevel-customnthrust & multilevel-defaultthrust 52

| 0.275s

[= Process "multilevelTest -s 4...
[=| Thread 863422336
" Runtime API
" Driver API
[=| Thread 501335808
" Runtime API
" Driver API
- Profiling Overhead
[=! [0] Quadro M6000 24GB
[=] Context 1 (CUDA)
- MemCpy (HtoD)
-5 MemCpy (DtoH)
Compute

- Stream 13
- Stream 14
- Stream 15
- Stream 16

;| cudarree

)

[

cudaMalloc/cudaFree every time! Serializes kernels!

GPU Technology Conference 2017 | 8 May 2017 | page 13 | © Roche

Be Careful of Thrust Allocations!

* By using a custom allocator, you can control creation
and deletion.

File View Window Run

Help

NEENSGS - QRQ@AlF R ([E2 2
© multilevel-customthrust 53 vel-defaultthrust

§ multile:

PI
© Runtime API O TN W 1 X
- Driver AP
ling Overhead
0 24GB
)

Custom Allocator

| [[
|| [[
TC T | -

(]] |
[] T | O -
|] O O Ty [T T
] | [N R R T U O N W™ W T O R T [~ T T B
LY 1 O O O ™ | W | ™ T~ " [O W o
L O N O Y T W ™ OO Ty ™
[T = T O T T~ ™ N T R T~ T T~ T T T~ .-y
YT N T W " N~ T O™ Y N) I o -

K1 |

Calls cudaMalloc once the first time, then reuses on
subsequent calls.

GPU Technology Conference 2017 | 8 May 2017 | page 14 | © Roche

General Practice to Keep GPU Busy

1. Provide enough work for the GPU

« Create ~16x more threads than physical cores to provide enough
opportunities for the scheduler to hide latency.

2. Use multiple streams to increase utilization of resources
« Balance ALU, Shared Memory, I/O

3. Minimize warp divergence

« Multiple streams do not help divergence. Conditional code gets
disabled by thread mask

Thank You

e Source code is available:

* https://github.com/chuckseberino/CCT

*GPU wrapper
*Custom Thrust allocator (per stream)
Examples used in this presentation

* We are hiring GPU developers!

